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ABSTRACT 

The idea of using cooperating relays has been much discussed in the past 

decade. In a wireless communication system, relaying techniques can offer 

significant benefits in the throughput enhancement and range extension. On the 

other hand, cognitive radio is an interesting concept for solving the problem of 

spectrum availability by reusing the underutilized licensed frequency bands. In a 

cognitive radio network, relays can be particularly useful for reducing the 

transmission power at the source and thus reduce the interference to the primary 

users. In this thesis, we study resource allocation problems for cognitive radio 

networks that employ relays. In this work, the transmission power of the nodes 

(users and relays) is the resource that we wish to allocate. The power allocation 

problems are formulated as non-convex non-linear programs and they do not 

have a structure that could guarantee the quality of the solution. We present a 

method of transforming the proposed optimization problems to a new formulation 

so that ε-optimal algorithms can be designed. In general, the transformed 

problem exhibits certain properties, which enable us to solve the optimization 

problems to a desirable accuracy by applying known global optimization 

techniques. We note that the global optimization techniques require significant 

computations to solve our proposed optimizations. Therefore, we propose low 

complexity heuristics that provide suboptimal solutions to the given optimization 

problems. The simulation results show that the performance of the heuristics is 

close to their respective optimal solutions. 

Keywords: Cognitive radio, Cooperative communication, Two-Way Relay, 

Multi-Way Relay, Global Optimization 
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CHAPTER 1: INTRODUCTION 

1.1 Research Motivation 

The idea of using cooperating relays has been much discussed in the past 

decade [1], [2]. In a wireless communication system, relaying techniques can 

offer significant benefits in the throughput enhancement, and range extension [1]. 

Relaying protocols for one-way half-duplex relays are considered in [1]. Recent 

research on cooperative communications has shown that half-duplex two-way 

relaying is spectrally more efficient [2] than the conventional half-duplex one-way, 

[1], relaying. In two-way relaying two users can exchange data with each other 

using a relay in two time slots. Recently, the idea of two-way relay channel has 

been extended to multi-way relay channel in [3]. In this model, multiple users (≥ 

2) can exchange information with each other using a relay terminal in two time 

slots. 

Cognitive radio [4], [5], [6] is an emerging technology intended to enhance 

the utilization of the radio frequency spectrum. A combination of cognitive radio 

with cooperative communication can further improve the future wireless systems 

performance. However, the combination of these techniques raises new issues in 

the wireless systems that need to be addressed. In particular, in this thesis, we 

address the issue of allocating transmission power to the nodes (users and 

relays) subject to the constraints on the nodes’ transmit powers. We provide low 

complexity heuristics to the proposed optimizations and compare them with their 

respective optimal solutions. We also study the rate and power allocation 

problem in a wireless relay network employing multi-way relaying and provide an 

optimal solution to the proposed optimization. 
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1.2 Background 

In this section, we provide a brief overview of cooperative communication 

and cognitive radio.  

1.2.1 Cognitive Radio System  

Formally, a cognitive radio is defined as [7]  

“A radio that changes its transmitter parameters based on the interaction 

with its environment” 

The cognitive radio has been mainly proposed to improve the spectrum 

utilization by allowing unlicensed (secondary) users to use underutilized licensed 

frequency bands [8] [9] [10]. In reality, unlicensed wireless devices (e.g., 

automatic garage doors, microwaves, cordless phones, TV remote controls etc.) 

are already in the market [11] [12].  The IEEE 802.22 standard for Wireless 

Regional Area Network (WRAN) addresses the cognitive radio technology to 

access white spaces in the licensed TV band. In North America, the frequency 

range for the IEEE 802.22 standard will be 54–862 MHz, while the 41–910MHz 

band will be used in the international standard [9]. Table 1.1 shows the IEEE 

802.22 system parameters, e.g., frequency range, bandwidth, modulation types, 

maximum transmit power ratings, multiple access schemes, etc. [13].  

In the context of cognitive radio, the Federal Communications Commission 

(FCC) recommended two schemes to prevent interference to the television 

operations due to the secondary (unlicensed) users. These are listen-before-talk 

and geo-location/database schemes [11] [12]. In the listen-before-talk scheme, 

the secondary/unlicensed device senses the presence of TV signals in order to 

select the TV channels that are not in use.  In geo-location/database scheme, the 

licensed/unlicensed users have a location-sensing device (e.g., GPS receiver 

etc.) The locations of primary and secondary users are stored in a central 

database. The central controller (also known as spectrum manager) of the 

secondary/unlicensed users has the access to the location database.   
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Table  1.1 IEEE 802.22 system parameters.  

Parameters Specification Remarks 

Frequency range 54-862 MHz TV band 

Bandwidth 6 MHz, 7 MHz, 8 MHz  

Modulation QPSK, 16-QAM, 64-QAM  

Transmit power 4W For USA, may vary in 
other regulatory domains 

Multiple access OFDMA  

 

The main functions of cognitive radio to support intelligent and efficient 

utilization of frequency spectrum are as follows:  

1.2.1.1 Spectrum sensing 

Spectrum sensing determines the status of the spectrum and activity of 

the primary users [9] [4]. An intelligent cognitive radio transceiver senses the 

spectrum hole without interfering with the primary users. Spectrum holes are the 

frequency bands currently not used by the primary users. Spectrum sensing is 

implemented either in a centralized or distributed manner. The centralized 

spectrum sensing can reduce the complexity of the secondary user terminals, 

since the centralized controller performs the sensing function. In distributed 

spectrum sensing, each mobile device (secondary user terminal) senses the 

spectrum independently. Both centralized and distributed decision-making is 

possible in distributed spectrum sensing [9]. The central controller (spectrum 

manager), based on the spectrum sensing information, allocates the resources 

for efficient utilization of the available spectrum. One major role of the central 

controller is to prevent overlapped spectrum sharing between the secondary 

users [7] [9] [10]. 
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1.2.1.2 Dynamic Spectrum Access  

Dynamic spectrum access (DSA) is defined as real-time spectrum 

management in response to the time varying radio environment − e.g., change of 

location, addition or removal of some primary users, available channels, 

interference constraints etc [7] [10]. There are three DSA models in the literature, 

namely, exclusive-use model, common-use model and shared-use model [10]. 

Fig. 1.1 shows a hierarchal overview of DSA.  

 

Fig. 1.1 Dynamic spectrum access strategies. 

 

The exclusive-use model has two approaches, spectrum property rights 

and dynamic spectrum allocation. In spectrum property rights, owner of the 

spectrum can sell and trade spectrum; and is free to choose the technology of 

interest. Dynamic spectrum allocation improves spectrum efficiency by exploiting 

the spatial and temporal traffic statistics of different services [10]. The European 

Union funded DRiVE (Dynamic Radio for IP Services in Vehicular Environments) 

project is a classical example of dynamic spectrum allocation [14]. It uses cellular 

(e.g., GSM, GPRS, and UMTS) and broadcast technologies (e.g., Digital Video 

Broadcast Terrestrial, Digital Audio Broadcast) to enable spectrum efficient 

vehicular multimedia services. 
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Fig. 1.2 Overlay spectrum access. 
 

 

Fig. 1.3 Underlay spectrum access. 

 
Fig. 1.4 Joint overlay and underlay spectrum access. 
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The common-use model is an open sharing regime in which spectrum is 

accessible to all users. The ISM (industrial, scientific and medical) band and Wi-

Fi are examples of the commons-use model. Spectrum underlay and overlay 

approaches are used in the shared-use model [9] [10]. Spectrum overlay or 

opportunistic spectrum access is shown in Fig. 1.2. In spectrum overlay, the 

secondary users first sense the spectrum and find the location of a spectrum hole 

(vacant frequency band). After locating the vacant frequency bands, the 

secondary users transmit in these frequency bands. In spectrum underlay 

technique, the secondary users can transmit on the frequency bands used by the 

primary users as long as they do not cause unacceptable interference for the 

primary users. This approach does not require secondary users to perform 

spectrum sensing, however the interference caused by the secondary user’s 

transmission must not exceed the interference threshold. Fig. 1.3 shows the 

spectrum underlay model.  

In [15], a joint spectrum overlay and underlay method is proposed for 

better spectrum utilization. An illustration of joint spectrum overlay and underlay 

is shown in Fig. 1.4. In joint spectrum overlay and underlay approach, the 

secondary users with the help of spectrum sensing first try to find a spectrum 

hole. If there is a spectrum hole then the secondary users can use the spectrum 

overlay technique. If there is no spectrum hole then the secondary users will use 

spectrum underlay technique.  

1.2.2 Cooperative Communication  

We now provide a brief background of cooperative communications. 

Recently the idea of cooperative communication has gained much attention. The 

cooperative communications exploit the broadcast nature of wireless channels. 

The basic idea is that the relay nodes can assist the transmissions of the source 

node by relaying a replica of the transmission of the source node that in turn 

exploits the inherent spatial diversities. Recent research in wireless 

communication systems shows that relaying techniques can offer significant 
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benefits in the throughput enhancement, and range extension [1]. A number of 

relaying schemes e.g., amplify-and-forward (AF), decode and forward (DF), 

incremental relaying etc. for improving the performance of the wireless networks 

are in the literature e.g., [1], [16]. In a simple AF relaying scheme, a relay 

amplifies the received signal and forwards it to the destination. In decode and 

forward relaying scheme, a relay first decodes the received signal and then 

transmits the re-encoded signal to the destination. Table 1.2 shows a simple 

cooperative communication protocol. In this protocol, conveyance of each symbol 

from the source to the destination takes place in two phases (two time slots). In 

the first phase, the source transmits its data symbol, and the destination and the 

relay(s) receive the signal carrying the symbol. In the second phase, the relay(s) 

forwards the data to the destination. 

Recent research on cooperative relaying has shown that half-duplex two-

way relaying is spectrally more efficient [2] than the conventional half-duplex one-

way, [16], relaying. In two-way relaying, a pair of users exchanges information 

with each other using a relay using two time slots. The key idea is that a user can 

cancel the interference (generated by its own transmission) from the signal it 

receives from the relay to recover the transmission of other terminals. Table 1.3 

illustrates the two-way relaying. 

Half-duplex protocols for two-way relaying using multiple relays have been 

discussed in [17] and [18]. In this work, we study the power allocation problem for 

different types of two-way relaying protocols. In one of the protocols, which we 

will refer to as orthogonal amplify-and-forward (OAF) relaying, the transmissions 

of the relays are separated in time by allocating each relay a different time-slot 

band. In the other relaying protocol, which we will refer to as shared-band 

amplify-and-forward (SAF) relaying, the relays share the same medium for their 

transmissions. We study the problem of jointly allocating power to the users and 

the relays for both OAF and SAF relaying protocols. Tables 1.4 and 1.5 show 

OAF and SAF bidirectional relaying protocols. 
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Recently, the idea of two-way relaying has been extended to the case of 

multiple users sharing a single relay that is referred to as multi-way relaying [8]. 

In this thesis, we consider multi-way relaying where relay performs amplify and 

forward relaying. In this relaying scheme, in the first time-slot, the users 

broadcast their data and in the second time-slot, the relay broadcasts the 

amplified data. The capacity and achievable rates for different relaying 

techniques (amplify-and-forward (AF), decode-and-forward and compress-and-

forward) for multi-way relay channel are discussed in [3]. Table 1.6 presents the 

multi-way relaying communication protocol. 

 

Table  1.2 Half-Duplex One-Way Relaying. 

Time T1 Time T2 

S  D, S  R   

 R  D 

 
Table  1.3 Half-Duplex Two-Way Relaying. 

Time T1 Time T2 

S1, S2 R   

 R  S1, S2 

 
Table  1.4 OAF Two-Way Relaying. 

Time T1 Time T2 Time T3 Time T4 … Time TL+1 

S1, S2 (R1, R2,.., 
RL)  

R1  (S1, S2) 
R2  (S1, S2) R3  (S1, S2) … RL  (S1, S2) 
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Table  1.5 SAF Two-Way Relaying. 

Time T1 Time T2 

S1, S2 (R1,R2,..,RL)   

 (R1,R2,..,RL)  S1, S2 

Table  1.6 Multi-Way Relaying. 

Time T1 Time T2 

(S1, S2...,SK) R   

 R  (S1, S2...,SK) 

 

1.3 Thesis Overview 

The main objective of this thesis is to determine power allocation in 

wireless relay networks. This thesis discusses three problems: 1) Power 

allocation in OAF relay networks, 2) Power allocation in SAF relay networks and 

3) Power allocation in multi-way relay networks. In all three problems, we 

examine the effect of different system parameters (e.g. maximum transmit power 

interference threshold level, the number of primary users, the number of 

secondary users, relay power levels, etc.) on the performance of the proposed 

algorithms. 

1.3.1 Power allocation in OAF relay networks 

In this work, we study a cognitive radio network (comprising multiple 

primary users) in which a pair of sources communicates with each other through 

multiple relays that employ two-way amplify-and- forward relaying. The relays 

use orthogonal channels to transmit their data. We formulate optimization 

problems to adequately decide the transmission powers of the nodes in such 

networks. We consider two optimization problems. In one problem, we consider 

maximizing the minimum among the two sources’ capacities. In the other 
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problem, we consider maximizing the sum capacity of the system. Our 

formulated optimization problems turn out to be non-convex and non-linear.  

For theoretical interest in dealing with these non-convex optimization 

problems for deciding the power levels, we show in this work that these 

optimization problems have a set of properties that guarantees ε-convergence if 

the monotonic optimization techniques are used. Then, we apply the monotonic 

optimization [19], [20] algorithm to obtain the optimal solution of the proposed 

non-linear non-convex programming problems. Although the monotonic 

optimization algorithm can guarantee convergence to a solution that has a 

performance arbitrarily close (within an arbitrary number ε) to the optimal 

performance, our experimentation with the monotonic optimization applied to this 

relay power allocation problem shows rather slow convergence and heavy 

computational load. Therefore, we propose a low-complexity heuristics, which we 

name as Greedy Power Allocation with Max-Min Fairness (GPAMF) and Greedy 

Power Allocation with Sum Capacity Maximization (GPASM). The simulation 

results show that the proposed heuristics perform well in comparison with the 

respective optimal solutions and have much lower computational complexity than 

the monotonic optimization algorithm.  

1.3.2 Power allocation in SAF relay networks 

In this work, we consider a cognitive radio network (comprising multiple 

primary users) in which a pair of sources communicates with each other through 

multiple relays that employ two-way amplify-and-forward relaying. The relays 

employ SAF relaying, i.e., in the first slot the users broadcast their data and in 

the second slot, the relays simply re-scale and re-transmit the received signal. 

We study the problem of allocating powers to the users and relays such 

that the minimum among the users’ SNRs is maximized subject to the constraints 

on the transmit power of the nodes. The formulated optimization problem is non-

convex non-linear program and we do not see a special structure that could 

guarantee the quality of a solution. We observe that we can transform the 
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problem into an equivalent problem (although still a non-convex non-linear 

program) which exhibit a special property. In the transformed problems, we 

observe that the objective function and the constraints are increasing function of 

each optimization variable when other variables are fixed. This property enables 

us to determine the global optimal solution to our optimization problems by 

applying the concepts of monotonic optimization algorithm [19]. Monotonic 

optimization algorithm guarantees convergence to a solution that has a 

performance arbitrarily close (within an arbitrary number ε) to the optimal 

performance. However, the application of monotonic optimization techniques to 

solve the optimization problem requires significant computations. Therefore, we 

propose a low-complexity heuristic. We perform simulations to examine the 

quality of the solution obtained from the proposed heuristic and benchmark its 

performance using the optimal solution obtained by using monotonic optimization 

techniques. 

1.3.3 Power allocation in Multi-Way relay networks 

In this work, we consider a multi-way relay channel comprising multiple 

users and a single relay. We assume that the relay terminal uses AF relaying. 

For such systems, we study the problem of allocating power to the users and the 

relay terminal such that the minimum among the users’ transmission rates is 

maximized subject to the constraints on the transmission power of the nodes. 

The formulated optimization problem is a non-convex non-linear program and 

does not have a structure to guarantee the quality of a solution. We observe that 

we can transform the problem into another equivalent problem (although still a 

non-convex non-linear program) which could be solved to global optimality by 

applying the concepts of monotonic optimization algorithm [19].  

1.4 Literature Review 

This section contains a literature review for resource allocation strategies 

in wireless communication system. In particular, we review the literature 
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corresponding to the relay assignment and power allocation in relay assisted 

wireless networks. 

Table 1.3 summarizes the literature review for the relay assignment 

strategies (RAS) in the wireless communication systems. The first column in 

Table 1.3 lists the objective functions as defined in the literature. The succeeding 

columns show the relaying type (one-way or two-way relaying), cognitive radio 

capability, protocol type (e.g. centralized, distributed or decentralized) and power 

allocation capability respectively. There are three major classes of resource 

allocation in cooperative communications. The classes are, centralized resource 

allocation [21-24] [28] [33-32], distributed resource allocation [25] [34], and 

decentralized resource allocation [26] [27] [33]. 

In [21], joint bandwidth and power allocation strategies for a Gaussian 

relay network are investigated. Orthogonal and shared-band AF and DF 

schemes are analyzed for joint bandwidth and power allocation. The main 

objective of joint bandwidth and power allocation is to maximize the signal-to-

noise ratio at the receiver using AF and DF schemes. The study in [22] proposes 

a centralized framework that selects multiple relays for transmission in a two-hop 

network. The aim of the multiple relay selection is to maximize the SNR at the 

destination using binary power allocation at the relays. An optimal relay 

assignment and power allocation in a cooperative cellular network is discussed in 

[23]. Using the sum-rate maximization as a design metric, the authors proposed 

a convex optimization problem that provides an upper bound on performance. A 

heuristic water-filling algorithm is also suggested to find a near-optimal relay 

assignment and power allocation.  In [24], a linear-marking mechanism is 

investigated for relay assignment in a multi-hop network with multiple source-

destination pairs. The aim of the proposed linear-marking mechanism is to 

maximize the worst user capacity.  

A distributed nearest neighbour relay selection protocol and its outage 

analysis are presented in [25]. For the relay assignment in a multiuser 

communication system, decentralized protocols are discussed in [26] and [30]. 
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The decentralized framework in [26] uses decode and forward relaying and 

assigns relays without exercising power control. In [30], decentralized amplify 

and forward protocol is used for joint relay assignment and power control. The 

scheme maximizes a harmonic mean-based approximate expression for the 

instantaneous received signal-to-noise ratio. The relay assignment and selection 

schemes described in [21] − [27] and [30] are not applicable in the CRS because 

the interference caused by the relays to the primary users can exceed the 

prescribed interference limit. 

The relay selection scheme for a cognitive radio network has been 

considered in several recent works [28]−[34].  In [28], a mathematical formulation 

is proposed with the objective of minimizing the required network-wide radio 

spectrum resource for a set of user sessions. The proposed formulation is a 

mixed-integer non-linear program. The authors proposed a lower bound for the 

objective by relaxing the integer variables and using a linearization technique. A 

near-optimal algorithm is presented that is based on a sequential fixing 

procedure, where the integer variables are determined iteratively via a sequence 

of linear programs. In [31], relay selection in multi-hop CRS with the objective of 

minimizing the outage probability is proposed. The power allocation problem is 

solved using standard convex optimization techniques for both AF and DF 

protocols under Rayleigh fading conditions. A joint relay selection, spectrum 

allocation and rate control (JRSR) scheme in CRS is proposed in [21]. A three-

stage sub-optimal algorithm is proposed to address the JRSR problem. A non-

cooperative game based decentralized power allocation for primary and 

secondary users is considered in [33]. The two kinds of links, one of which 

includes the primary users and their relay, the other includes the secondary 

users and their relay, are treated as players of the non-cooperative game. Each 

player competes against the other by choosing the power allocation strategy that 

maximizes its own rate, subject to the QoS threshold of the primary system. A 

relay-assisted iterative algorithm is proposed to efficiently reach the Nash 

equilibrium. In [34], authors proposed both centralized and distributed power 

allocation schemes for multi-hop wideband CRS. The main objective is to 
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maximize the output signal-to interference plus noise ratio (SINR) at the 

destination node of the CRS.  

The aforementioned work on relay networks cannot be applied to the 

bidirectional relay networks. Reference [35], [36], [37] discussed power allocation 

for two-way relay networks with single relay. In [35], a network comprising a 

single relay and multiple source-destination pairs is considered, and an 

optimization problem to decide transmission power of the relay was studied. 

Reference [35] does not consider jointly allocating power to the sources and the 

relay. In [36], a cognitive radio network comprising one source-destination pair, a 

single relay, and a single primary user is considered. For this system, the 

problem of allocating power to the source and determining optimal beam-forming 

vectors of the relay is considered. In [37], a two-way relay network comprising a 

pair of users and multiple relays is considered and the problem of selecting a 

single relay and allocating power to it is considered. 

Power allocation for OAF bidirectional relaying is considered in [17]. 

Reference [17] considers a two-way relay network comprising a pair of users and 

multiple relays and performs joint source and relay power allocation. However, 

reference [17] presents a simpler sub-optimal power allocation by maximizing the 

lower bound that serves as a good approximation only at the high-SNR region. 

Power allocation for NAF bidirectional relaying is considered in [38]-[42]. 

Reference [39], [42] and [43] consider the optimization of only relays’ transmit 

powers. Joint users’ and relays’ transmission powers allocation is considered in 

[10], [31], [34] where optimization problems are formulated to determine the 

transmission power of the users and the beam-forming vectors of the relay. 

However, the optimizations in [10], [31], [34] consider only a single sum-power 

constraint and the obtained solutions cannot be applied to the optimization 

problems that has both sum-power and multiple individual power constraints. 
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Table  1.3 Literature Survey. 

Objective Relaying  CR Protocol  Power 
Control 

Ref. 

[Ref Num, Name] 

Maximize the SNR of 
AF/DF shared bandwidth 
schemes 

One-Way No Centralized Yes [21, I. Maric et. al] 

Select the multiple relays 
to maximize the SNR in 
shared bandwidth AF 
scheme 

One-Way No Centralized 
Binary 
Power 
Control 

[22, Y. Jing et al.] 

Sum-rate maximization One-Way No Centralized Yes [23, Kadloor et al.] 

Maximize the minimum 
capacity One-Way No Centralized No [24, Y. Shi et al.] 

Protocols and outage 
analysis One-Way No Distributed No [25, Sadek et al.] 

Average sum-capacity One-Way No Decentralize No [26, P. Zhang et al.] 

Maximize the 
instantaneous received 
SNR 

One-Way No Decentralize Yes [27, G. Farhadi et al.] 

Minimize the total 
bandwidth One-Way Yes Centralized No [28, T. Hou et al.] 

Closed-form expressions 
of detection probability One-Way Yes ---- No [29, J. Zhu et al.] 

Cooperation between 
primary user and 
secondary 
user.(secondary user act 
as relay for primary user) 

One-Way Yes ---- Yes [30, R. Manna et al.] 

Minimize outage 
probability One-Way Yes Centralized Yes [31, Jayasinghe et al.] 

Maximize Average 
throughput One-Way Yes Centralized Yes [32, H. Chun et al.] 

Maximize the rate utility 
function One-Way Yes Decentralize Yes [33, Xiaoyu et al.] 

Maximize SNR of RD link One-Way Yes Distributed Yes [34, Mietzner et al.] 

Sum-Capacity 
Maximization for AF/DF 
relaying 

 

Two-Way No Centralized Yes [35, Chen et al.] 
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Sum-Capacity 
Maximization for OAF 
two-way relaying 

Two-Way No Centralized Yes [17, Zhang et. al] 

Sum-Capacity 
Maximization for SAF 
two-way relaying 

Two-Way No Centralized Yes [39, vaze et. al] 

Beamforming in SAF 
Two-Way relaying Two-Way No Distributed Yes [38], [40],[42]-[43] 

Beamforming in SAF 
Two-Way relaying Two-Way Yes Centralized Yes [36] 

Single relay selection and 
power allocation Two-Way No Centralized Yes [37], [41] 

 

1.5 Organization of Thesis  

The structure of the thesis is as follows. Chapter 2 describes the power 

allocation in two-way relay assisted cognitive radio networks where the relays 

employ OAF relaying. Chapter 3 describes the power allocation in two-way NAF 

relaying subject to individual and sum-power constraints. Chapter 4 describes 

power allocation in multi-way relay channel.  
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CHAPTER 2: POWER ALLOCATION IN 
ORTHOGONAL TWO WAY RELAY ASSISTED 
COGNITIVE RADIO NETWORKS 

The conventional one-way relaying protocols suffer from a loss in spectral 

efficiency due to the half-duplex nature of the terminals. In order to increase the 

spectral efficiency of such a relay network, a bidirectional (two-way) relay 

assisted communication protocol was suggested in [3]. In this chapter, we study 

a cognitive radio [1] network (comprising multiple primary users) in which a pair 

of sources communicates with each other through multiple relays that employ 

two-way amplify-and-forward relaying. The multiple relays transmit in orthogonal 

channels that can be achieved by assigning each relay a non-overlapping time-

slot band for their respective transmissions as in [4]. We formulate optimization 

problems to adequately decide the transmission powers of the nodes in such 

networks. We consider two optimization problems. In one problem, we consider 

maximizing the minimum among the two sources capacities. In the other 

problem, we consider maximizing the sum capacity of the system. Our 

formulated optimization problems turn out to be non-convex and non-linear. 

Power allocation in one-way relay networks has been well studied. 

Reference [6] presents a distributed single and multiple relay selection schemes 

with relay power allocation. In [7], a one-way wireless relay network comprising 

multiple relays and a source-destination pair is studied and optimal relay power 

allocation is determined. Joint source and relay power allocation is studied in [8]. 

Reference [8] performs joint optimization of the source and the relay power by 

using a high SNR approximation of the SNR at the destination. Unfortunately, the 

power allocation schemes developed for one-way relays cannot be directly 

applied to the two-way relays, as the optimizations are very different. 
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Reference [4] deals with joint source and relay power allocation in two-

way relay networks where the relays use orthogonal channels. In [4], a high SNR 

approximation of the SNR at the two users is used to jointly determine the 

sources’ and relays’ transmit powers. However, the formulation in [4] is not 

relevant to cognitive radio network. Bidirectional relaying in the context of 

cognitive radio has been considered in [5]. In [5], a cognitive radio network 

comprising one source-destination pair, a single relay, and a single primary user 

is considered. For this system, the problem of allocating power to the source and 

determining optimal beam-forming vectors of the relay is considered. In this work, 

we provide an optimal joint source and relay power allocation. We also consider 

different cost functions (max-min and sum-rate) and we provide low-complexity 

heuristics to determine sub-optimal solutions to our optimizations. 

For theoretical interest in dealing with these non-convex optimization 

problems for deciding the power levels, we show in this chapter that these 

optimization problems have a set of properties that guarantees ε-convergence if 

the monotonic optimization (MO) algorithm [9], [10] is used. We observe that our 

formulated optimizations have specific structures that enable us to reduce the 

number of optimization variables to only two variables. The resulting optimization 

problems are still non-convex. However, we show that they can be transformed 

to equivalent optimizations that could be solved to global optimality by using the 

methods of MO algorithm. Although the MO algorithm can guarantee 

convergence to a solution that has a performance arbitrarily close (within an 

arbitrary number ε) to the optimal performance, our experimentation with the MO 

algorithm applied to this relay power allocation problem shows rather slow 

convergence and heavy computational load. Therefore, we propose a low-

complexity heuristics, which we name as Greedy Power Allocation with Max-Min 

Fairness (GPAMF) and Greedy Power Allocation with Sum Capacity 

Maximization (GPASM). The simulation results show that the proposed heuristics 

perform well in comparison to the respective optimal solutions and have much 

lower computational complexity than the MO algorithm. 
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Table  2.1 Notations used in chapter 2. 

Symbol Definition 
M Number of primary users 
L Number of relays 
s1,s2 Source 1, source 2 

lf  Channel gain from source 1 to the lth relay  

lg  Channel gain from source 2 to the lth relay 

,l mh  Channel gain from lth relay to the mth primary user  

1,s mh  Channel gain from s1 to the mth primary user  

2,s mh  Channel gain from s2 to the mth primary user  

1sp 2sp  Transmission power of source 1, souece2 

lp  Transmission power of lth relay 
max
lp  Maximum allowed transmission power of the lth  relay 
max
mI  Maximum allowed interference at mth primary user  

n
+R ( )n

++R  Set of non-negative (positive > 0) integers 

 

 

lg

,l mh

lf

1,s mh 2,s mh

 

Fig. 2.1 Two-way relay assisted Cognitive Radio network 
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2.1 System Model  

We consider a two-way relay system with two sources and L relays. Our 

system model also includes M primary users, for which the transmission power of 

the cognitive radio nodes (secondary users) must be limited. Figure 2.1 depicts 

our system model. The two sources will communicate with each other with the 

help of relays that use amplify-and-forward relaying. The relays, source 1 (s1), 

and source 2 (s2) are equipped each with a single antenna. We assume that the 

transmission channels of the relays are orthogonal to one another, which can be 

achieved by assigning the relays to non-overlapping frequency bands or time 

slots. We denote by lf the channel gain from s1 to the lth relay, lg  the channel 

gain from s2 to the lth relay, 1, 2,( )s m s mh h the channel gain from s1 (s2) to the mth 

primary user and by ,l mh the channel gain from lth relay to the mth primary user. 

For gaining simple insights to the system, in this chapter we assume that each 

channel between a source and a relay is symmetric. It is also assumed that 

transmissions from all nodes are perfectly synchronized. Let ps1, ps2 and pl denote, 

respectively, sources s1’s and s2’s transmission powers per dimension.  

We consider a two-step two-way amplify-and-forward (AF) scheme, as 

given in [4] for cooperative communication which we will refer to as orthogonal 

amplify and forward (OAF) relaying.  In the first step the users (sources) send 

their data to the relays. The signal received by relay l (l = 1, 2,.., L) is 

1 1 2 2
n
l s l s s l s ly p f X p g X Z= + + (2.1) 

where complex-valued random variables Xs1 and Xs2 represent the transmitted 

symbols and are normalized such that ( ) ( )2 2

1 2 1s sE X E X= = . lZ is the complex-

valued white Gaussian noise at relay l with ( )2

l oE Z N= . In the subsequent L 

time-slots, relays 1,2 , … , L each transmits in its own non-overlapping time-

slot/frequency band. Without loss of generality, we define our indexing such that 

the lth relay transmits at the l+1 time slot and the sources transmit at the first time 
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slot of the frame. The lth relay amplifies the signal received from sources s1, s2 

and transmits the amplified signal.  

The received signal at s1 and s2 from the lth relay can be written as  

( )
( )

1 1 1 2 2 1,

2 1 1 2 2 2,

s s l s s l s l l s ll

s s l s s l s l l l s l

y p f X p g X Z f Z

y p f X p g X Z g Z

β

β

= + + +

= + + +  
(2.2) 

where Zs1, Zs2 are the i.i.d complex valued white Gaussian noise at s1 and s2 with 

( ) ( )2 2

1, 2,s l s l oE Z E Z N l= = ∀ and lβ  is the amplification gain of the lth relay. The 

amplification gain, lβ ,  is chosen such that the transmit power of the lth relay is pl,  

[20] i.e. 

2 2
1 2

l
l

s l s l o

p
p f p g N

β =
+ +

 
(2.3) 

where lp is the transmission power of the lth relay. Notice that in (2.2), the 

received signal at s1 consists of a self-interference term 1 1s l s llp f X fβ . Since s1 

knows the signal it transmitted and assuming perfect knowledge of the 

corresponding channel gains, s1 can subtract the interfering signal from its 

received signal. Similarly, s2 can also subtract the interfering signal from its 

received signal. The received signals at s1, s2 from the lth relay after self-

interference cancellation can be written as 

( )
( )

1 2 2 1,

2 1 1 2,

s s l s l l s ll

s s l s l l l s l

y p g X Z f Z

y p f X Z g Z

β

β

= + +

= + +  
 

After self-interference cancellation [3]-[4], the received signals at s1 and s2 

from the relays l = 1, 2, .., L can be written as 
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1 1 1 1,11 1 1

1 2 2 1,

1,

1 1 1 1,11 1 1

2 1 1 1,

1,

s

s s s l l l s ll l l

L L L s LL L L

s

s s s l l l s ll l l

L L L s LL L L

f Z Zg f

y p X f Z Zg f

f Z Zg f

g Z Zg f

y p X g Z Zg f

g Z Zg f

ββ

ββ

ββ

ββ

ββ

ββ

⎛ ⎞⎛ ⎞ +
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= + +⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
⎛⎛ ⎞ +
⎜⎜ ⎟
⎜⎜ ⎟
⎜⎜ ⎟= + +⎜⎜ ⎟
⎜⎜ ⎟
⎜⎜ ⎟⎜ ⎟ +⎝ ⎠ ⎝

##

##

##

##

⎞
⎟
⎟
⎟
⎟
⎟
⎟⎜ ⎟
⎠

 
(2.4) 

After maximal ratio combining (MRC) SNRs at s1 and s2 are written as  

( )

( )

2 2
2

1 2 2 2
1 1 2

2 2
1

2 2 2 2
1 1 2

,
L

s l l l
s

l o l l s l s l o

L
s l l l

s
l o l l s l s l o

p p f g

N p f p f p g N

p p f g

N p g p f p g N

γ

γ

=

=

=
+ + +

=
+ + +

∑

∑  
(2.5) 

2.2 Problem Formulations  

In this section, we present our optimizations for allocating power to the 

sources and the relays. We consider two optimization problems. In one problem, 

we consider maximizing the sum capacity of the system. In the other problem, we 

consider maximizing the minimum among the two sources capacities. We shall 

refer to aforementioned optimizations as joint sources’ and relays’ powers 

optimization with sum capacity maximization (JSRSM) and joint sources’ and 

relays’ powers optimization with max-min fairness (JSRMF). 
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2.2.1 Joint Sources’ and Relays’ Powers Optimization with Sum-Capacity 
Maximization  

In this sub-section, we consider the optimization problem in which the 

sources’ and relays’ transmit powers that together maximize the sum capacity of 

the system are sought. We denote by p the vector ( )1 2, ,.., Lp p p . We formulate the 

optimization problems as minimizing the cost function 

( ) ( ) ( )1 2 1 2
1 1, , log 1 log 1

1 1s s s sf p p
L L

γ γ≡ + + +
+ +

p

 
(2.6) 

which is the sum capacity (in bits per degree of freedom) . The optimization 

problem is formulated as  

{
( )

( )

( )

1 2
1 2, , }

2

,

1 2

2 2

1 1, 2 2,
1 2

1 2

max , , , 

subject to 

1: , ,

2 : 0 ,
3 : , ,  where

,  ,
,

 0 ,

s s
s sp p

max
l l m m

max
l l

s s

max
s s m s s m m

s s
max

s s s

f p p

C p h I m l

C p p l
C p p Y

p h p h I m
Y p p

p p p

≤ ∀

≤ ≤ ∀

∈

⎧ ⎫+ ≤ ∀⎪ ⎪≡ ⎨ ⎬
≤ ≤⎪ ⎪⎩ ⎭

p
p

 
(2.7) 

In the above optimization problem, constraint C1 ensures that the 

threshold of the relays’ interference to each PU is not exceeded. C2 represents 

each relay’s maximum transmission power constraints. C3 limits the sources’ 

transmission powers both from their own limitation max
sp  and from the threshold of 

sources’ interference to every primary user.  It should be noted that the objective 

function is not convex with respect to the variables (ps1, ps2, p ). Thus, convex 

optimization techniques cannot be applied to determine the global optimal 

solution. In the sequel, we will refer to this problem as Joint Sources’ Powers and 

Relays’ Gains Optimization with Sum Capacity Maximization (JSRSM). 
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2.2.2 Joint Sources’ and Relays’ Powers Optimization with Max-Min 
Fairness  

In this sub-section, we consider the optimization problem that determines 

the sources’ and relays’ transmit powers so that the lesser of the two source’s 

(s1 or s2) communication capacities is maximized under the interference 

constraint to the primary users. The optimization problem is formulated as  

{
( )

( )

( )

( ) { }

1 2
1 2, , }

2
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1 2

2 2
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1 2
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(2.8) 

In the above optimization problem, constraint C1 ensures that the 

threshold of the relays’ interference to each PU is not exceeded. C2 represents 

each relay’s maximum transmission power constraints. C3 limits the sources’ 

transmission powers both from their own limitation max
sp  and from the threshold of 

sources’ interference to every primary user.  It should be noted that the objective 

function is not convex with respect to the variables (ps1, ps2, p ). Thus, convex 

optimization techniques cannot be applied to determine the global optimal 

solution. In the sequel, we will refer to this problem as Joint Sources’ Powers and 

Relays’ Gains Optimization with Sum Capacity Maximization (JSRMF). 

2.3 Proposed Approach to a Solution  

Both the optimization problems (2.7) and (2.8) have two sets of decision 

variables: relay transmission power represented by { }1 2, ,.... Lp p p , and the 
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source’s transmission power represented by 1 2,s sp p . We first note a special 

structure of the optimization problem (2.7) and (2.8). The only constraints on the 

variables { }1 2, ,.... Lp p p  are  
2

, , ,max
l l m mp h I m l≤ ∀  and 0 ,max

l lp p l≤ ≤ ∀ , which can 

be simplified to   1 2
2 2 2

,1 ,2 ,

0 min , , , ,
max max max

max M
l l

l l l M

I I Ip p l
h h h

⎧ ⎫⎪ ⎪≤ ≤ ∀⎨ ⎬
⎪ ⎪⎩ ⎭

" , and variable lp  do 

not appear in any other constraints in (2.7) and (2.8).  That is, the interval 

constraint 1 2
2 2 2

,1 ,2 ,

0 min , , , ,
max max max

max M
l l

l l l M

I I Ip p l
h h h

⎧ ⎫⎪ ⎪≤ ≤ ∀⎨ ⎬
⎪ ⎪⎩ ⎭

"  of lp , is decoupled from all 

other constraints in (2.7) and (2.8). Therefore, problem (2.7) (and also (2.8)) can 

be rewritten as: 
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( )

( )
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(2.9) 

or equivalently, 
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(2.10) 

For any choice of sources’ transmission power { }1 2,s sp p , the inner 

maximization has a nice structure.  The objective function is monotonically 

increasing function of { }, 1, 2,..,lp l L=  and the constraints set is a box (Appendix 

A). Therefore, for any sources’ transmission powers{ }1 2,s sp p , the maximizing lth 

relay’s transmit power is 1 2
2 2 2

,1 ,2 ,

min , , , ,
max max max

max M
l l

l l l M

I I Ip p
h h h

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

" . We denote the 

optimal transmit power of lth relay as 

1 2
2 2 2

,1 ,2 ,

min , , , ,
max max max

max M
l l

l l l M

I I Ip p
h h h

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

� "
 

(2.11) 

With l lp p l= ∀� , the optimization problem (2.7) (and also (2.8)) is reduced to 
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(2.12) 

Similar analysis can be applied to the optimization in (2.8) and the resulting 

optimization problem can be written as 
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(2.13) 

 Optimizations in (2.12)-(2.13) are simpler than (2.7)-(2.8) and have two 

optimization variables. Further, the optimization problems (2.12)-(2.13) have only 

linear constraints on the optimization variables. However, the cost functions in 

(2.12)-(2.13) are neither concave nor monotonically increasing/decreasing 

functions of the optimization variables. However, we note that we can determine 

the optimal solutions to the optimizations in (2.12)-(2.13) by using methods of 

monotonic optimization [9]. In the following section, we discuss the preliminaries 
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of monotonic optimization. In the subsequent section, we present our solutions 

based on monotonic optimization techniques. 

2.4 Preliminaries of Monotonic Optimization  

 We first present some definitions related to monotonic optimization. Then, 

we present the standard monotonic optimization problem and the polyblock outer 

approximation algorithm, which gives the ε-optimal solution to the standard 

monotonic optimization problem. The material in this section is taken from [9], 

[10] 

2.4.1 Definitions and Concepts of Monotonic Optimization  

Definition 1: For any two vectors ˆ, n∈x x R , we write  ˆ≥x x  and say that x  

dominates x̂  if ˆ , 1, 2,..,i ix x i n≥ ∀ = . We write  ˆ>x x  and say that x  strictly 

dominates x̂  if ˆ , 1, 2,..,i ix x i n> ∀ = .   

Further we define { }0n n
+ ∈ ≥R x R x�  and { }0n n

++ ∈ >R x R x� . For n
+∈x R , 

let { }( ) 0iI i x= =x  and denote { }( )n
i ix x i I+∈ > ∀ ∉xK = x R x . 

Definition 2: We define a box (hyper rectangle) [0, b] as the set of all x such 

that ≤ ≤0 x b . 

Definition 3: A function : nf →R R  is said to be increasing on n
+R  iff 

( ) ( )ˆf f≥x x  whenever ˆ ≥ ≥x x 0 . 

Definition 4:  A function : nf →R R is said to be increasing on a box [0,b] 
n
+⊂ R  iff ( ) ( )ˆf f≥x x  whenever ˆ≥ ≥ ≥b x x 0 . 

Definition 5: A set nG +⊂ R  is called normal iff for any two vectors ˆ , n
+∈x x R  

such that ˆ ≥x x , ˆ G∈x  G⇒ ∈x . In other words, if ˆ G∈x  then all the points in the 

box, [ ]ˆ0, x , are also in G, i.e. [ ]ˆ G⊆0, x . The empty set, singleton {0} and n
+R  are 

some examples of normal sets.  
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Definition 6: A point n
+∈y R  is called an upper boundary point of a bounded 

closed normal set G if G∈y  while the set { }ˆ ˆn nK ++ += + = ∈y y R y R y > y  lies 

outside G, i.e. \nK G+⊂y R . The set of upper boundary points of G is called the 

upper boundary of G and it is denoted as G+∂ . Figure 2.2 presents an exemplary 

normal set with its upper boundary. Note that the normal set in fig. 2.2 is not a 

convex set.  
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A Normal Set and Its Upper Boundary

 

 
Normal Set
Upper Boundary

 

Fig. 2.2 An Exemplary Normal Set and Its Upper Boundary. 

 

Definition 7: Let [ , ]G ⊂ 0 b  be a compact normal set. For every point 

{ }\ 0n
+∈z R , the half-line from 0 through z meets G+∂  at a unique point ( )Gπ z  

which we call as the projection of point z onto G. The projection is defined as 

( ) { }, max 0 |G Gπ λ λ α α= = > ∈z z z . Fig. 2.3 presents the projection of the vector z 

on the upper boundary of the feasible set G. 
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Fig. 2.3 Projection on the Upper Boundary of the Normal Set. 

 

The standard monotonic optimization problem can be written as follows 

( )max  . .f s t G∈
x

x x

 
(2.14) 

where [ ], nG +⊂ ⊂0 b R is a compact normal set with nonempty interior and f(x) is 

an increasing function on[ ],0 b . 

Proposition 1: The maximum of f(x) on G, if it exists, is attained on G+∂ . 

     Proof: See [9]. 

The approach we follow to determine the optimal solution of the monotonic 

optimization problems is based on the approximation of the normal sets by 

simpler sets, called polyblocks (which we will define in the following). 
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Definition 8: A set nP +⊂ R  is called a polyblock in [ , ] n
+⊂0 b R  if 

( )[ , ], [ , ],
T

P T T
∈

= ∪ ⊂ < ∞
z

0 z 0 b  . The set T is called the vertex set of the polyblock 

P. 

Definition 9: A vertex T∈z  is called proper if it is not dominated by any 

other vertex ˆ T∈z , i.e., if ˆ ˆ T∉ ∀ ∈z [0, z] z \ {z}. The  set of all proper vertices of a 

polyblock is called the proper vertex set. A polyblock is fully determined by its 

proper vertices. Further, it has been shown in [10] that a compact normal set can 

be approximated as closely as desired by a polyblock.  In addition, the maximum 

of an increasing function over a polyblock is achieved at a proper vertex. 

Therefore, we can design an algorithm where we construct a nested sequence of 

polyblocks which are an outer approximation of the normal feasible set G, that is 

we approximate the feasible set G as 1 2P P G⊃ ⊃ ⊃" , such that 

( ){ } ( ){ }max | max |

as
kf P f G

k

∈ → ∈

→∞
x x

x x x x

 
(2.15) 

We now present a method to construct the nested sequence of 

polyblocks. At iteration k, let Tk denote the set of proper vertices of the polyblock 

Pk and arg max ( )
k

k

T
f

∈
=

x
z x . Let xk denote the projection of zk on G+∂ . We are 

interested in constructing a new polyblock 1 \ k
k kP P+ ⊂ z  and 1kP G+ ⊃ .  According 

to proposition 17 in [10], the new polyblock Pk+1 can be obtained from Pk by 

replacing [0, zk] with , \ k
k K⎡ ⎤⎣ ⎦ x

0 z , i.e. ( ) { }1 \
, \ [0, ]k k

k

k
k T

P K+ ∈
⎡ ⎤= ∪⎣ ⎦ x z z
0 z z . The 

obtained polyblock, Pk+1, satisfies 1 \ k
k kP P+ ⊂ z  and 1kP G+ ⊃ . In the following 

proposition, we provide an explicit method for determining the vertices of the 

polyblock Pk+1. Let Tk+1 denote the proper vertex set determined by removing 

improper elements from Vk+1. 

Proposition 2: The set of vertices (not necessarily proper) Vk+1 of polyblock 

Pk+1 can be determined as follows 
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{ }( ) ( ){ }1 \ 1, 2,.., ,k k k k i
k k i iV T z x e i n+ = ∪ − − =z z

 
(2.16) 

where ei is the ith column of the identity matrix. The polyblock Pk+1 obtained from 

Tk+1 satisfies that 1k kG P P+⊂ ⊂ . The proof of proposition 2 is given in [9]. 

In Fig. 2.4, we provide an example to explain the method of constructing 

the sequence of polyblocks. Fig. 2.4 consists of two sub-plots. In subplot 1, a 

polyblock P1 is given. Using the maximizer z1 (maximizer of f(x) on p1) and the 

projection x1, we compute the new vertices that would determine the polyblock 

P2 from (2.16). The maximizer z1 and the new vertices (for P2) are highlighted in 

sub-plot 2. Notice that the new generated polyblock P2 is a subset of P1 and is a 

better approximation of the feasible set. 
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Fig. 2.4 Determination of Polyblock P2 from P1. 

As the iterations proceed, there are improvements in the outer 

approximation of the normal set. Fig 2.5, illustrates the polyblock generated in 
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the 143rd iteration.  We see that the polyblock in Fig. 2.5 is a significantly better 

approximation of the feasible set as compared to the ones given in Fig. 2.4. 
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Fig. 2.5 Outer Approximation of the Upper Boundary of the Feasible Set 

2.4.2 Polyblock Outer Approximation Algorithm  

      The pseudocode of the polyblock outer approximation algorithm is given in 

table 2.2. We now provide a brief description of the algorithm based on the 

pseudocode in table 2.2. The polyblock outer approximation is an iterative 

algorithm. At iteration k, we have polyblock Pk with vertex set Tk. The algorithm 

first determines the maximizer, zk, of f(x) on the polyblock Pk. If the maximizer zk 

G∈ , then zk solves the optimization in (2.14). Otherwise, the algorithm computes 

the projection, xk, of zk on the boundary of the feasible set G. If ( ) ( )k kf f ε− ≤z x  

then the algorithm terminates with xk as an ε-optimal solution. Otherwise, based 

on proposition 2 (and the steps 10-11 the pseudocode in table 2.2), the algorithm 

constructs a new polyblock  Pk+1 by using Pk and xk such that 1k kG P P+⊂ ⊂ . We 

repeat this procedure until the termination criteria is met, i.e., either we find an 



 

 39

optimal solution or we find an optimal or ε -optimal solution to the optimization in 

(2.14). 

Theorem 1: If the polyblock outer approximation algorithm in table 2.2 is infinite, 

each of the generated sequences {zk}, {xk} contains a subsequence converging to 

an optimal solution. 

Proof: See [9]. 

Table  2.2 Pseudocode of polyblock outer approximation algorithm 

INITIALIZATION: 
{ }1Select 0,  Set ,set 1,

(current best value)
T k

Set CBV
ε ≥ = =

= −∞

b
 

 
1: While (1) 
2:    { }arg max ( ) | ;k kf T= ∈z x x  
3:    if k G∈z  
4:        x*=zk is the optimal solution; 
5:    else 
6:        Compute the projection of zk on G+∂ as 
          { }( ) , max 0 | ;G Gπ λ λ α α= = > ∈z z z  
7:       if ( ) ( )k kf f ε− ≤z x  
8:           xk is an ε-optimal solution; 
9:       else 
10:         Compute a new polyblock Pk+1 with vertices set  

              
{ }( ) { }
( )

1 ,1 ,

,1

\ , , ,

, 1, 2,...,

k k k k k n

i i i
k k k k

V T

e i n

+ = ∪

= − − =

z z z

z z z x

"
 

11:         Determine Tk+1 by removing improper elements of Pk+1; 
12:     end 
13:  end 
14: k:=k+1; 
15: end 

 

2.5 ε-Optimal Solution based on Monotonic Optimization 

In this section, we apply the monotonic optimization techniques to 

determine the ε-optimal solutions of our optimizations in (2.12)-(2.13). The 
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optimizations in (2.12)-(2.13) are not the standard monotonic optimization 

problems as their respective cost functions are not an increasing function of the 

optimization variables ps1 and ps2 (see Appendix C). We notice that we can 

transform our optimizations in (2.12)-(2.13) to the standard monotonic 

optimization problem given in (2.14). More specifically, we write our optimizations 

as difference of increasing functions and then with the help of an auxiliary 

variable, we transform our optimizations to the standard monotonic optimization 

problems. In the following subsections, we transform the sum-capacity and max-

min optimizations in (2.12)-(2.13) to the standard monotonic optimization 

problem. 

2.5.1 ε-Optimal Solution of Sum-Capacity Optimization 

The sum-capacity optimization problem in (2.12) is not a standard 

monotonic optimization problem. However, by using an auxiliary variable, we can 

transform the optimization in (2.12) to the standard monotonic optimization 

problem. More specifically, we write the cost function in (2.12) as difference of 

two functions that are monotonically increasing functions of the optimization 

variables ps1 and ps2 and then with an introduction of an additional variable we 

write the sum-capacity optimization problem in (2.12) as a standard monotonic 

optimization problem.  

We first observe that the SNR at the users s1and s2 can be written as 

follows 
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(2.16) 

The capacity of user s1 and s2 can be written as difference of increasing 

functions as follows: 
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(2.18) 

Therefore, the sum-capacity of user s1 and s2 can be written as difference 

of increasing functions as follows: 
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1 1log 1 log 1 , , ,
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q p p r p p
L L
where q p p q p p q p p

r p p r p p r p p

γ γ+ + + = −
+ +

= +

= +

� �

 (2.19) 

We showed above that the objective function of our optimization in (2.12) 

can be written as difference of increasing functions. We now transform our 

optimization to the standard monotonic optimization problem as in (2.14). We 

introduce a new decision variable that expands the feasible set of the solutions 

but at the same time allows us to apply the monotonic optimization techniques to 

determine the optimal solution of sum-capacity optimization in (2.12).  

Using the notations in (2.17)-(2.18), we can write the sum-capacity 

optimization problem as the following: 
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 Since  r(ps1, ps2) is a monotonic function of ( )1 2,s sp p , ( )1 2,s sr p p  

( )1 2,max max
s sr p p≤ ) Y. As a result, we have א (ps1, ps2)׊ ) ( )1 2 1 2, ,max max

s s s sr p p t r p p+ = . 

With the help of a new optimization variable, t, we can substitute for r(ps1, ps2). 

The resulting optimization problem can be written as follows, 

{
( ) ( )

( ) ( )
( )

1 2
1 2 1 2, ,

1 2 1 2

1 2

max , ,

subject to

1: , ,

2 : ,

s s
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s s s s

s s

q p p t r p p

C r p p t r p p

C p p Y

+ −

+ ≤

∈

 (2.21) 

The optimization in (2.21) is equivalent to that in (2.20). Further, the optimization 

in (2.21) is a standard monotonic optimization problem, which can be solved by 

using the polyblock outer approximation algorithm presented in previous section. 

Let us denote by G, the set of feasible solutions of (2.21).  

The application of polyblock outer approximation method to find the ε-

optimal solution of the optimization in (2.21) is quite straightforward with the 

exception of a single non-trivial step. In the polyblock outer approximation 

algorithm, in each iteration, we need to project the maximizer (over the vertex set 

of the polyblock at that iteration) onto the boundary of the feasible set of the 

solutions. Let us define the vector ( )1 2, ,k k k k
s sp p t=z . The projection can be written 

as ( )k k
Gπ=x z , ( )k k k

Gπ λ=z z , { }max 0 |k k Gλ α α= > ∈z . As mentioned above, 

the computation of projection requires us to solve the following single variable 

optimization in α, which can be written as follows 
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Due to the monotonicity of the constraint functions in (2.22), we can use a 

bisection search based algorithm to solve the optimization above. We first 

initialize an interval min max,α α⎡ ⎤⎣ ⎦  which contains the optimal solution, t*, to the 

optimization in (2.22). In our case minα = 0 and 
1 2

min 1, , ,
max max

max s s
k k
s s

p p
p p

α
⎛

= ⎜
⎝  

2 2

1 1, 2 2,

max
m

k k
s s m s s m

I

p h p h

⎞
⎟
⎟+ ⎠

. We then check if α� = 
min max

2
α α+  is a feasible solution to 

the optimization in (2.22). If α�  is a feasible solution, then due to the monotonicity 

of the constraint functions we can conclude that the optimal solution to the 

optimization problem is in the interval max,α α⎡ ⎤⎣ ⎦
�  . Otherwise, if α�  is not a feasible 

solution to the optimization in (2.22) then it means that the optimal solution to the 

optimization problem is in the interval min ,α α⎡ ⎤⎣ ⎦
�  .  We formally present in table 2.2 

our bisection search based procedure for solving the optimization in (2.22). 

The proposed algorithm keeps on iterating until max minα α ε− ≤ . In each 

iteration, the interval min max,α α⎡ ⎤⎣ ⎦  is bisected in two parts. As the iteration 

proceeds, the length of the interval min max,α α⎡ ⎤⎣ ⎦
 

 keeps on diminishing. Exactly 

max min

2log α α
ε

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥  

iterations are required before

 

the algorithm terminates. 
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Table  2.3 Bisection Search Based Projection Computation 

Main Algorithm 

Initialization: max min1, 0,α α ε= =   

While max minα α ε− >  

1:    
min max

 ;
2

α αα +
=   

2:    Check if α  is a feasible solution to the optimization in   
(2.22) 
3:    If α  is a feasible solution  
4:          min α α=  
5:     else 

6:       max α α=  
7:     endif 
EndWhile 

 

2.5.2 ε-Optimal Solution of Max-Min Optimization 

The max-min optimization problem in (2.13) is not a standard monotonic 

optimization problem. However, by using an auxiliary variable, we can transform 

the optimization in (2.13) to the standard monotonic optimization problem. More 

specifically, we write the cost function in (2.12) as difference of two functions that 

are monotonically increasing functions of the optimization variables ps1 and ps2 

and then with an introduction of an additional variable we write the sum-capacity 

optimization problem in (2.12) as a standard monotonic optimization problem.  

Using notations from (2.17) and (2.18), the cost function of the max-min 

optimization problem in (2.13) can be written difference of increasing functions as 

follows: 
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(2.23) 

 We now transform our optimization to the standard monotonic optimization 

problem as in (2.14). We introduce a new decision variable that although, 

expands the feasible set of the solutions but at the same time allows us to apply 

the monotonic optimization techniques to determine the optimal solution of max-

min optimization in (2.13).  

Using the notations in (2.17)-(2.18) and (2.23), we can write the max-min 

optimization problem as the following: 

{
( ) ( )

( )

( )

1 2
1 2 1 2,

1 2
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1 2 1 1, 2 2,
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max , , ,
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 (2.24) 

 Since  r(ps1, ps2) is a monotonic function of ps1, ps2, ( ) ( )1 2 1 2, ,max max
s s s sr p p r p p≤  

) Y, where Y is defined in (2.24) . Hence, we have א (ps1, ps2)׊ )1 2,s sr p p t+  
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( )1 2,max max
s sr p p=  for some 0t ≥ . Hence, with the help of a new optimization 

variable, t, we can substitute r(ps1, ps2). The resulting optimization problem can be 

written as follows, 

{
( ) ( )

( ) ( )
( )

1 2
1 2 1 2, ,

1 2 1 2

1 2

max , ,

subject to

1: , ,

2 : ,

s s

max max
s s s sp p t

max max
s s s s

s s

q p p t r p p

C r p p t r p p

C p p Y

+ −

+ ≤

∈

 (2.25) 

The optimization in (2.25) is equivalent to that in (2.24). Further, the 

optimization in (2.25) is a standard monotonic optimization problem, which can 

be solved by using the polyblock outer approximation algorithm presented in 

previous section. For computation of projections, we use the bisection search 

based method that we presented in previous sub-section for sum-capacity 

optimization. 

Although the monotonic optimization algorithm can guarantee convergence 

to a solution to the optimization in (2.20) and (2.24) that has a performance 

arbitrarily close (within an arbitrary number ε) to the optimal performance, our 

experimentation with the monotonic optimization algorithm applied to this relay 

and source power allocation problem shows rather slow convergence. Therefore, 

we propose low-complexity heuristics that have low computational complexity 

and perform well in comparison with the respective optimal solutions. In the next 

section, we present the heuristics to solve the optimizations in (2.12) and (2.13). 

We name these heuristics as Greedy Power Allocation with Max-Min Fairness 

(GPAMF) and Greedy Power Allocation with Sum Capacity Maximization 

(GPASM). 

2.6 Proposed Heuristics  

In this section, we present low-complexity iterative heuristic algorithms to 

determine suboptimal solutions to the optimizations in (2.12) and (2.13). The 
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proposed algorithm uses the simple bounds on the received SNR at s1 and s2. 

The bounds can be obtained as 
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(2.26) 

Thus, we observe that the SNRs at s1 and s2 depend on the corresponding 

sources power and the channel gains |gl|2 and |fl|2. In the following sub-section, 

we first describe the GPASM algorithm that provides the sub-optimal solution to 

the optimization in (2.7). In the subsequent sub-section, we describe the GPAMF 

algorithm which provides the sub-optimal solution to the optimization in (2.8).  

2.6.1 Greedy Power Allocation with Sum-Capacity Maximization 

In this sub-section, we present a low-complexity heuristic algorithm to 

determine a suboptimal solution to the optimization in (2.12). The proposed 

algorithm uses the simple bounds on the received SNR at s1 and s2 given in 

(2.26). In this heuristic algorithm, we consider the optimization of the upper 

bounds subject to the constraints on the source powers (ps1, ps2) as given in C1 

(2.24). That is, we solve the following optimization,  
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(2.27) 

The optimization in (2.27) is a simple convex optimization problem in two 

variables and can be solved using interior point methods. Let us denote the 

solution to (2.17) as ( )1 2ˆ ˆ,s sp p . The sub-optimal sum-capacity can be written as 

follows 
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2.6.2 Greedy Power Allocation with Max-Min Fairness 

In this sub-section, we present a low-complexity heuristic algorithm to 

determine a suboptimal solution to the max-min optimization problem in (2.13). In 

this heuristic algorithm we first consider the optimization of the upper bounds 

subject to the constraints on the source powers (ps1, ps2) as given in C3 in (2.8). 

More specifically, solve the following optimization problem and determine 

suboptimal values of source powers ( )1 2ˆ ˆ,s sp p .  
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(2.28) 

Due to the monotonicity of logarithm, we can consider optimizing the 

arguments of the logarithm in the cost function above. More specifically, we can 

replace (2.28) with the following linear program: 
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(2.29) 

The objective function 2 22 1min ,s s
l l

l lo o

p pg f
N N

⎛ ⎞
⎜ ⎟
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∑ ∑  is continuous and the 

feasible set is compact, so a maximum exists. In fact, we can express the 

maximizer in closed form as ( )1 2ˆ ˆ,s sp p =
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. This closed form 

solution is determined by using the fact that for the optimization problem in (2.29) 

∃a maximizer ( )1 2ˆ ˆ,s sp p such that 2 2
2 1ˆ ˆs l s l

l l
p g p f=∑ ∑ . We establish this fact in 

lemma II given below.  
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Lemma II:  There exists a maximizer  ( )1 2ˆ ˆ,s sp p  at which 
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2 1ˆ ˆs l s l

l l
p g p f=∑ ∑  

Proof: See the Appendix B. 

 Now that we have established the lemma II, we can add the equality 

constraint to the set of constraints in (2.29) and solve for  
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Using C3 in (2.30), we substitute 
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 and solve the following 

trivial single variable linear program to obtain the closed form solution. 
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(2.31) 
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2.7 Results  

We present the simulation results of the proposed suboptimal schemes 

GPAMF, GPASM and compare their performance with the optimal solutions 

obtained by applying monotonic optimization techniques. In our simulations, we 

assume same interference constraints at all the PUs and denote it as maxI . We 

denote the total number of relays as L and total number of primary users as M. 

The maximum allowed transmission powers of the source and relays are denoted 

as s
maxp , r

maxp  and their values are fixed to 5 watts and 2.5 watts respectively. For 

the polyblock outer approximation algorithm, the value of convergence tolerance 

parameter ε is kept at 0.05. 

Fig. 2.6 and 2.7 present the convergence results of the polyblock outer 

approximation technique applied to the optimizations in (2.7) and (2.8). We 

present our convergence results for the scenario M = 1, L = 2, Imax = 1mw. As 

discussed earlier the polyblock outer approximation algorithm generates a 

sequence of nested polyblocks. As the iterations proceeds, the approximation of 

the feasible set by the polyblocks improves. The maximization of the objective 

function over a polyblock is an upper bound to the original optimization problem. 

The corresponding projection of the solution, obtained from the polyblock outer 

approximation algorithm, on to the feasible set is a lower bound to the original 

optimization problem. The lower bound is essentially the best feasible solution 

obtained until the current iteration. As the iterations proceeds the difference 

between the upper and lower bound decreases and the algorithm terminates in a 

finite number of iterations when the difference is within a desirable accuracy, ε. 

The result in fig. 2.6 and 2.7 are in conformance with the theory that we 

discussed above. 

The polyblock outer approximation algorithm converges to within ε of the 

optimal solution in finite number of iterations. However, the algorithm may take 

unmanageably large number of iterations for ε-convergence. Thus, in order to 

avoid the heavy computational burden due to slow convergence, we set an upper 

bound on the number of iterations for which we run the polyblock outer 
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approximation algorithm. In the following results, we compare the heuristics with 

upper bounds and lower bounds obtained from polyblock outer approximation 

after 2000 iterations. 

Figs. 2.8 and 2.9 represent the performance of the heuristics GPAMF and 

GPASM with respect to the interference threshold. We compare our proposed 

heuristics with the upper and lower bounds obtained from the polyblock outer 

approximation algorithm for the scenario M = 1 and 4, L = 3. Figs. 2.4 and 2.5 

show that the sum-rate and minimum among the users’ rate increase with the 

interference threshold because the feasible set of the optimization problem with 

lower interference threshold is a subset of the feasible set of the optimization 

problem with higher interference threshold. Further, we notice that with the 

increase in the number of primary users, the sum-rate and minimum among the 

users’ rate decreases as more number of primary users means that the 

secondary users have more constraints on their transmit powers. 

Fig. 2.10 represents the performance of the heuristic GPAMF with respect 

to the number of primary users. We compare our proposed heuristic with the 

upper and lower bounds obtained from the polyblock outer approximation 

algorithm for the scenario L = 3, Imax = (0.1, 100) mw. The observations are as 

expected. 

Figs. 2.11 and 2.12 represent the performance of the heuristics GPAMF 

and GPASM with respect to the number of relays. We compare our proposed 

heuristics with the upper and lower bounds obtained from the polyblock outer 

approximation algorithm for the scenario M = 1, Imax = 1mw, 100mw. We observe 

that the sum-rate (minimum user’s capacity) increases with the increase in 

number of primary users. This is because with the increase in number of relays 

there are more options in assigning transmit power to the relays. Similarly, the 

minimum among the users’ rate increases with the relays. 
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Fig. 2.6 Convergence Results Sum-Capacity Optimization 
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Fig. 2.7 Convergence Results Max-Min Optimization 
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Fig. 2.8 Sum Capacity vs. max

mI  , L = 3 
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Fig. 2.10 Minimum User Capacity vs.Primary Users, L =3  
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Fig. 2.11 Sum- Capacity vs.Relays, M =1  
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Fig. 2.12 Minimum User Capacity vs.Relays, M = 1  
 

2.8 Summary  

In this work, we considered a cognitive radio system comprising a pair of 

sources and multiple relays. We studied two optimization problems− the sum 

capacity maximization and max-min capacity. The formulated optimization 

problems were non-convex and nonlinear in nature.  We obtained their optimal 

solutions by applying the monotonic optimization algorithm.   However, our 

experiments indicated that the computational load of this approach is heavy. For 

computational efficiency, we proposed low-complexity heuristic algorithms to 

determine suboptimal solutions of the proposed optimization problems. By 

comparing the quality of these solutions to that of the solutions produced by 

monotonic optimization algorithm, we showed that our heuristic algorithms 

provide good solutions.   
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CHAPTER 3: POWER ALLOCATION IN SHARED 
BAND TWO WAY RELAY ASSISTED COGNITIVE 
RADIO NETWORKS 

In this chapter, we study a two-way relay network comprising a pair of 

users and multiple relays. The relays employ AF relaying. In AF relaying, in the 

first time-slot the users broadcast their data. In the second time-slot, the relays 

simply re-scale and re-transmit the received signal. The received signal (from 

relays) at each receiver consists of its own transmitted symbol and the 

transmitted symbol of other user. The receiver can then cancel the effect of its 

own transmitted symbol and recover the transmitted symbol of the other user. In 

this work, we consider the relaying protocol where all the relays transmit in the 

same band at the same time. This communication protocol has been given in [5] 

for one-way relaying and [4] for two-way relay. 

Performance of a cooperative cognitive radio network can be improved by 

designing efficient resource allocation schemes. Some of the existing work on 

shared-band amplify and forward relaying can be found in [5], [6], [7], [8], [9] and 

[10]. Reference [5] and [6] discuss relay power allocation for one-way SAF 

relaying. In [5], a relay network comprising a source-destination pair and multiple 

relays is considered and the problem of maximizing the capacity of the SAF 

relaying scheme is studied. The authors in [5] study the problem of allocating 

power to the relays subject to a single sum-power constraint on the transmit 

power of the relays. In [6], the relays’ power allocation problem is studied for a 

SAF relay network comprising a source-destination pair and multiple relays. The 

optimizations in [6] have a single sum-power constraint and individual power 

constraints on the transmissions of the relays. The authors in [6] show that the 

cost functions in their optimizations (although not concave) is a quasiconcave 

function of the relay powers. The authors in [6], then, derive the optimal relay 
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power allocation by using the known bisection search procedure for solving 

quasi-convex programs. Both the references for one-way relay [5]-[6] consider 

allocating only relay powers. Power allocation and determining beamforming 

vectors of the relays have been studied in [7]-[10] for the SAF two-way wireless 

relay network comprising multiple relays and a pair of users. Reference [7], [8] 

study determining relay beamforming vectors. References [7], [8] optimize sum-

rate of the pair of users subject to a sum-power constraint on the relays. The 

individual rates of the users in SAF two-way relays have a structure similar to 

that of NAF one-way relay i.e. they are quasiconcave functions of the relay 

powers. The optimizations in [7], [8] involve sum of two quasiconcave functions 

(sum-rates) which may not be quasiconcave. To overcome this difficult the 

authors in [7], [8] consider the optimizations where the user rates are proportional 

to each other and provide bisection search based solution to their optimizations 

as done previously in [6]. The joint optimization of source and relay transmit 

powers unfortunately does not have such structure. Joint source and relay power 

optimization for SAF two-way relaying is studied in [9], [10]. However, the 

optimizations in [9], [10] considers only a single sum-power constraint and the 

solution to the optimizations in [9], [10] cannot be applied to the optimization 

problems that has both sum-power and multiple individual power constraints. 

In this work, we study the problem of allocating power to the sources and 

the relays subject to individual power constraints on the nodes and the 

interference temperature constraints on the relays [11]. The cost function of our 

optimization problem is to maximize the minimum among the sources’ capacities. 

Our formulated optimization problem is a non-convex non-linear program and 

does not have a structure to guarantee the quality of a solution. We observe that 

we can transform our proposed optimization problem into another equivalent 

problem (although still a non-convex non-linear program) which exhibits a special 

property. In the transformed problem, we observe that the objective function and 

the constraints are increasing function of each optimization variable when other 

variables are fixed. This property enables us to determine the global optimal 

solution to our optimization problem by applying the concepts of monotonic 
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optimization algorithm [12]. Monotonic optimization algorithm guarantees 

convergence to a solution that has a performance arbitrarily close (within an 

arbitrary number ε) to the optimal performance. 

Although the monotonic optimization techniques can guarantee 

convergence to a solution that has a performance arbitrarily close (within an 

arbitrary number ε) to the optimal performance, our experimentation with the 

monotonic optimization techniques applied to this relay power allocation problem 

shows rather slow convergence and heavy computational load. Therefore, we 

propose a low-complexity heuristics, which we name as Greedy Two-Step Power 

Allocation (GTSPA). The simulation results show that the proposed heuristics 

perform well in comparison to the respective optimal solutions and have much 

lower computational complexity than the monotonic optimization algorithm. 

 Table  3.1 Notations used in chapter 3. 

Symbol Definition 
M Number of primary users 
L Number of relays 
s1,s2 Source 1, source 2 

lf  Channel gain from source 1 to the lth relay  

lg  Channel gain from source 2 to the lth relay 

,l mh  Channel gain from lth relay to the mth primary user  

1,s mh  Channel gain from s1 to the mth primary user  

2,s mh  Channel gain from s2 to the mth primary user  

1sp 2sp  Transmission power of source 1, souece2 

lp  Transmission power of lth relay 
max
lp  Maximum allowed transmission power of the lth  relay 

,
max
m kI  Maximum allowed interference at mth primary user  

n
+R ( )n

++R  Set of positive (strictly positive > 0) integers 
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1,s mh 2,s mh

 

Fig. 3.1 Two-way relay assisted Cognitive Radio network 

3.1 System Model  

We consider a two-way relay system with two sources and L relays. Our 

system model also includes M primary users, for which the transmission power of 

the cognitive radio nodes (secondary users) must be limited. M primary users can 

mean, as well as primary user devices, M geographic locations or regions in 

which the strengths of the cognitive radio signals must be constrained. Figure 3.1 

depicts our system model. The two sources will communicate with each other with 

the help of relays that use amplify-and-forward relaying. The relays, source 1 (s1), 

and source 2 (s2) are equipped each with a single antenna. We denote by lf  the 

channel gain from s1 to the lth relay, lg  the channel gain from s2 to the lth relay, 

1, 2,( )s m s mh h the channel gain from s1 (s2) to the mth primary user and by ,l mh the 

channel gain from lth relay to the mth primary user. For gaining simple insights to 

the system, in this chapter we assume that each channel between a source and a 

relay is symmetric. It is also assumed that transmissions from all nodes are 

perfectly synchronized. Let ps1, ps2 and pl denote, respectively, sources s1’s, s2’s 

and relays’ transmission powers per dimension.  
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We consider a two-way amplify-and-forward (AF) scheme, as given in [4], 

[7] for cooperative communication which we will refer to as shared-band amplify 

and forward (SAF) relaying.  In the first time-slot the users (sources) send their 

data to the relays. The signal received by relay l (l = 1, 2,.., L) is 

1 1 2 2l s l s s l s ly p f X p g X Z= + + (3.1) 

where complex-valued random variables Xs1 and Xs2 represent the transmitted 

symbols and are normalized such that ( ) ( )2 2

1 2 1s sE X E X= = . lZ is the complex-

valued white Gaussian noise at relay l with ( )2

l oE Z N= . In the second time slot, 

the relays amplify the received signal yl, l=1,2,..,L and broadcast it to the users. 

The transmitted signal from lth relay can be written as  l l lx yβ= where lβ is the 

amplification applied by lth relay. lβ  is chosen such that the average transmit 

power of the lth relay is pl . The relay amplification gain can be written as lβ  [2], 

[13], [6] 

( ) ( )

2 2
1 2

arg arg

ljl
l

s l s l o

l l l

p e
p f p g N

f g

θβ

θ

=
+ +

= − −  
(3.2) 

The signal received at s1 and s2 from the relays can be written as 

( )
( )

1 1 1 2 2 1
1

2 1 1 2 2 2
1

L

s s l s s l s l l l s
l

L

s s l s s l s l l l s
l

y p f X p g X Z f Z

y p f X p g X Z g Z

β

β

=

=

= + + +

= + + +

∑

∑  
(3.3) 

where Zs1, Zs2 are the i.i.d complex valued white Gaussian noise at s1 and s2 with 

( ) ( )2 2

1 2s s oE Z E Z N= =   
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After self-interference cancellation [1], the received signals at s1 and s2 can be 

written as 

( )
( )

1 2 2 1
1

2 1 1 2
1

L

s s l s l l l s
l

L

s s l s l l l s
l

y p g X Z f Z

y p f X Z g Z

β

β

=

=

= + +

= + +

∑

∑  
(3.4) 

After substituting for lβ , the capacities of s1 and s2 can be written as the 

following:  

( ) ( )1 2 2 1

2
2 2

2 2 2
1 1 2

1 2

2 2
1 1 2

2
2 2

1 2 2
1 1 2

2 2

2 2
1 1 2

1 1log 1 , log 1
2 2

,

s s s s

L
l l l

s
l s l s l o

s L
l l

o o
l s l s l o

L
l l l

s
l s l s l o

s L
l l

o o
l s l s l o

R R

p f g
p

p f p g N

p f
N N

p f p g N

p f g
p

p f p g N

p g
N N

p f p g N

γ γ

γ

γ

=

=

=

=

= + = +

⎛ ⎞
⎜ ⎟
⎜ ⎟+ +⎝ ⎠=

+
+ +

⎛ ⎞
⎜ ⎟
⎜ ⎟+ +⎝ ⎠=

+
+ +

∑

∑

∑

∑

 
(3.5) 

3.2 Problem Formulation 

In this section, we present our optimizations for allocating power to the 

sources and the relays. In this work, we study the problem of determining the 

optimal transmission powers of the users s1, s2 and the relays such that the 

lesser of the two sources’ (s1 or s2) capacities is maximized subject to the 

interference constraint to the primary users and the individual transmit power 

constraints on the sources and the relays. We denote by p the vector (p1, p2, · · · , 

pl, · · · , pL) . The joint source and relay power optimization can be formulated as 

the following: 
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{
{ }

( )

( )

1 2
1 2, , }

2

,
1

1 2

2 2

1 1, 2 2,
1 2

1 2

max min ,

subject to 

1: ,

2 : 0 ,
3 : , ,  where

,  ,
,

 0 ,

s s
s sp p

L
max

l l m m
l

max
l l

s s

max
s s m s s m m

s s
max

s s s

R R

C p h I m

C p p l
C p p Y

p h p h I m
Y p p

p p p

=

≤ ∀

≤ ≤ ∀

∈

⎧ ⎫+ ≤ ∀⎪ ⎪≡ ⎨ ⎬
≤ ≤⎪ ⎪⎩ ⎭

∑

p

 
(3.6) 

In the above optimization problem, constraint C1 ensures that the threshold of 

the relays’ interference to each PU is not exceeded. C2 represents each relay’s 

maximum transmission power constraints. C3 limits the sources’ transmission 

powers both from their own limitation max
sp  and from the threshold of sources’ 

interference to every primary user.  It should be noted that (as shown in 

Appendix E) the objective function is not convex with respect to the variables 

(ps1, ps2, p ). Thus, convex optimization techniques cannot be applied to 

determine the global optimal solution.  

3.2.1 Existing methods 

Joint source and relay power optimization for SAF two-way relaying is 

studied in [9], [10]. In the optimizations in [9] and [10], the transmit powers of the 

sources and the relays are constrained by a single sum-power constraint. The 

authors in [9] and [10] show that the sum-power constraint is met with equality at 

the optimal solutions of the optimizations. This observation is then further used to 

determine the optimal solutions of the optimizations in [9] and [10]. In our 

formulation in (3.6), we have multiple constraints on the transmit power of the 

nodes and it is difficult to predict which constraints would be met with equality at 
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the optimal solution. Therefore, we need to determine other methods to solve our 

proposed optimizations. In the following section, we provide a ε-optimal solution 

to the optimization in (3.6). 

3.3 ε-Optimal Solution based on Monotonic Optimization 

In this section, we apply the monotonic optimization techniques to 

determine the ε-optimal solutions of our max-min optimization problem in (3.6). 

The optimization in (3.6) is not of the form of a standard monotonic optimization 

problem as the cost function is not an increasing function of the optimization 

variables (ps1, ps2, p ). More specifically, the SNRs 1 2,s sγ γ� �
 are not an increasing 

function of the optimization variables p  [15].  We notice that with a change of 

variables, we can arrive at an optimization problem, which can be conveniently 

written as difference of increasing functions. We first observe that, from (3.2), the 

transmit power of lth relay can also be written as ( )2 2 2
1 2l l s l s l op p f p g Nβ= + + . 

We substitute l lz β=  and substitute for ( )2 22
1 2l l s l s l op z p f p g N= + +  in (3.6). 

Let us denote by z, the vector (z1, z2,…, zL). The resulting optimization can be 

written as the following: 

{
{ }

( )

( )
( )

( )

1 2
1 2, , }

22 22
1 2 ,

1

2 2
1 2

1 2

2 2

1 1, 2 2,
1 2

1 2

max min ,

subject to 

1: ,

2 : 0 ,

3 : , ,  where

 ,  ,
,

 0 ,

s s
s sp p

L
max

l s l s l o l m m
l

max
l

l

s l s l o

s s

max
s s m s s m m

s s
max

s s s

R R

C z p f p g N h I m

pC z l
p f p g N

C p p Y

p h p h I m
Y p p

p p p

=

+ + ≤ ∀

≤ ≤ ∀
+ +

∈

⎧ ⎫+ ≤ ∀⎪ ⎪≡ ⎨ ⎬
≤ ≤⎪ ⎪⎩ ⎭

∑

z

 
(3.7) 

where 
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( ) ( )1 2 2 1

2 2

2 1
1 1

1 2
2 22 2

1 1

1 1log 1 , log 1
2 2

,

s s s s

L L

s l l l s l l l
l l

s sL L

o o l l o o l l
l l

R R

p z f g p z f g

N N z f N N z g

γ γ

γ γ= =

= =

= + = +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= =
+ +

∑ ∑

∑ ∑

 

The optimization problem in (3.7) is not a standard monotonic optimization 

problem. However, by using an auxiliary variable, we can transform the 

optimization in (3.7) to the standard monotonic optimization problem. More 

specifically, we write the cost function in (3.7) as difference of two functions that 

are monotonically increasing functions of the optimization variables ps1, ps2 and z. 

Then, with an introduction of an additional variable, we write the max-min 

optimization problem in (3.7) as a standard monotonic optimization problem.  

The capacities of user s1 and s2 can be written as difference of increasing 

functions as follows: 

( ) ( ) ( )

( )

( )

1 1 2 1

1 2

2
22

2
1 1

22
1

1

1 log 1 ,
2

,

1 log
2

1 log
2

s s

s

L L

o o l l s l l l
l l

L

o o l l
l

q p r

q p

N N z f p z f g

r N N z f

γ

= =

=

+ = −

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

∑ ∑

∑

z z

z

z

 (3.8) 

( ) ( ) ( )

( )

( )

2 2 1 2

2 1

2
22

1
1 1

22
2

1

1 log 1 ,
2

,

1 log
2

1 log
2

s s

s

L L

o o l l s l l l
l l

L

o o l l
l

q p r

q p

N N z g p z f g

r N N z g

γ

= =

=

+ = −

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤= +⎢ ⎥⎣ ⎦

∑ ∑

∑

z z

z

z

 (3.9) 
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Using notations from (3.8) and (3.9), the cost function of the max-min 

optimization problem in (3.7) can be written difference of increasing functions as 

follows: 

( ) ( )

( ) ( ) ( ) ( )}{
( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )}
( ) ( ){ ( ) ( )} ( ) ( )

( ) ( )

1 2

1 2 1 2 1 2

1 2 2 1 2

2 1 1 2 1

1 2 2 2 1 1 1 2

1 2

1 1min log 1 , log 1
2 2

min . , , from (4.8) (4.9)

min , ,

,

min , , ,

, ,

s s

s s

s

s

s s

s s

q p r q p r

q p r r r

q p r r r

q p r q p r r r

q p p r

γ γ⎧ ⎫+ +⎨ ⎬
⎩ ⎭

= − − −

= + − −

+ − −

= + + − −

= −

z z z z

z z z z

z z z z

z z z z z z

z z

 (3.10) 

where 

( ) ( ) ( ){ ( ) ( )}
( ) ( ) ( )

1 2 1 2 2 2 1 1

1 2

, , min , , , and

 
s s s sq p p q p r q p r

r r r

= + +

= +

z z z z z

z z z
 

We showed above that the objective function of our optimization in (3.7) can be 

written as difference of increasing functions. We now transform our optimization 

to the standard monotonic optimization problem as in (2.14). We introduce a new 

decision variable that although, expands the feasible set of the solutions but at 

the same time allows us to apply the monotonic optimization techniques to 

determine the optimal solution of max-min optimization in (3.7).  

Using the notations in (3.8)-(3.10), we can write the max-min optimization 

problem as the following: 



 

 69

{
( ) ( )

( )

( )

1 2
1 2, ,

22 22
1 2 ,

1

2 2
1 2

2 2

1 1, 2 2,

1 2

max , , ,

subject to 

1: ,

2 : 0 ,

3 :

4 : 0 ,

s s
s sp p

L
max

l s l s l o l m m
l

max
l

l

s l s l o

max
s s m s s m m

max
s s s

q p p r

C z p f p g N h I m

pC z l
p f p g N

C p h p h I m

C p p p

=

−

+ + ≤ ∀

≤ ≤ ∀
+ +

+ ≤ ∀

≤ ≤

∑

z
z z

 (3.11) 

Since  r(z) is a monotonic function of z, therefore ׊(z) that satisfies C1-C2 in 

(3.11), ( ) ( ) 1 2, ,..,
max max max

max max L

o o o

p p pr r
N N N

⎛ ⎞
≤ = ⎜ ⎟⎜ ⎟

⎝ ⎠
z z , z . Hence, we have 

( ) ( )maxr t r+ =z z . Hence, with the help of new optimization variable, t, we can 

substitute for r(z). The resulting optimization problem can be written as follows, 

{
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(3.12) 

The optimization in (3.12) is equivalent to that in (3.11). Further, the 

optimization in (3.12) is a standard monotonic optimization problem, which can 

be solved by using the polyblock outer approximation algorithm presented in 
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previous chapter. For computation of projections, we use the bisection search 

based method that we presented in previous chapter for sum-capacity 

optimization. 

Although the monotonic optimization algorithm can guarantee convergence 

to a solution to the optimization in (3.12) that has a performance arbitrarily close 

(within an arbitrary number ε) to the optimal performance, our experimentation 

with the monotonic optimization algorithm applied to this relay and source power 

allocation problem shows rather slow convergence. Therefore, we propose a low-

complexity heuristic that has low computational complexity and perform well in 

comparison with the respective optimal solution obtained from the polyblock 

outer-approximation algorithm. In the next section, we present the heuristic to 

solve the optimizations in (3.7). We name these heuristics as Greedy Two-Step 

Power Allocation (GTSPA). 

3.4 Proposed Heuristic 

In this section, we present a low-complexity heuristic algorithm to 

determine a suboptimal solution to the max-min optimization problem in (3.7). In 

our proposed algorithm, we try to separate out the optimization of the sources’ 

and relays transmission powers. We first compute some simple bounds on the 

signal-to-noise ratios at s1 and s2. The bounds that we determine are dependent 

on the transmission powers of the sources and the channel gains between the 

sources and the relays. We then optimize the bounds over the constraints C3 in 

(3.7). The optimization is a simple linear program and we provide a closed form 

solution to the linear program. In the next step, we substitute the determined 

source powers into the optimization in (3.7). Although, the resulting optimization is 

a non-convex non-linear program, it has a special structure, which allows us to 

efficiently compute its optimal solution. 

The proposed algorithm uses the simple bounds on the received SNR at 

s1 and s2 given in (2.26). The bounds are based on the Cauchy Schwarz 

inequality. In the Euclidean space, Rn, the Cauchy Schwarz inequality is 
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γs1 in (3.7) can be bounded as 
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Similarly, γs2 can be bounded as 
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In this heuristic algorithm, we first consider the optimization of the upper 

bounds subject to the constraints on the source powers (ps1, ps2) as given in C3 in 

(3.6). Using the obtained suboptimal values of source powers ( )1 2ˆ ˆ,s sp p , we 

optimize the original objective function over the transmit powers.  We formally 

state the GTSPA algorithm as follows:   

Phase 1: Solve the following optimization problem and determine 

suboptimal values of source powers ( )1 2ˆ ˆ,s sp p .  
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Due to the monotonicity of logarithm, we can consider optimizing the arguments 

of the logarithm in the cost function above. More specifically, we solve the 

following linear program: 
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The above optimization is identical to the one given in (2.29). We can express the 

maximizer in closed form as ( )1 2ˆ ˆ,s sp p =
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We substitute for ( )1 2ˆ ˆ,s sp p  in (3.7) and solve the resulting optimization 

problem, which is 
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The optimization in (3.16) has a convex constraint set but the cost function 

is not a concave function of the optimization variables z [6]. Therefore, convex 

optimization techniques cannot be applied to determine the optimal solution of 

the optimization in (3.16). However, we are able to exploit a special structure of 

the optimization in (3.16). More specifically, we note that the cost function of the 

optimization in (3.16) is quasiconcave w.r.t to the optimization variables z. Thus, 

optimization in (3.16) is a quasiconvex optimization problem. We further observe 

that we can efficiently determine the optimal solution to (3.16) by using a 

bisection method, where in each step we solve a convex feasibility program. 

We first show that the cost function in the above optimization is a 

quasiconcave function of the optimization variables z.  To do so, we show that 

the upper level set of the cost function is a convex set. 
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The individual inequalities in (3.17) can be written as follows: 

[ ]

2

2
1

22

1

22

1 12

1 1

1 1
2

2
1 1 2

11
2

ˆ

ˆ

where ,.., , ,
ˆ

is a 1 null vector

 , ,
ˆ

L

s l l l
l

L

o o l l
l

L L

l l l o o l l
l ls

T T

T

o
L l l l

s

o
T

s

p z f g
t

N N z f

tz f g N N z f
p

tNc c c f g
p

L

t f N t f
diag

p

=

=

= =

⎛ ⎞
⎜ ⎟
⎝ ⎠ ≥
+

⎛ ⎞ ⎛ ⎞
⇔ ≥ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⇔ ≥ +

⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
×

⎡ ⎤
= =⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

∑ ∑

cz A z b

c b 0

0

A
A A

0

2 2

2 2

,...,
ˆ ˆ

o L o

s s

N t f N
p p

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

(3.18-a)



 

 75

 

Similarly, the second inequality can be written as follows: 
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Using (3.18-a) and (3.18-b), we can rewrite (3.17) as 

{ }1 1 2 2( , ) : ,T TUL f t = ≥ + ≥ +z cz A z b cz A z b (3.19) 

The upper level set ( , )UL f t  is a convex set as it is an intersection of a finite 

number, 2, of second order cones (which are convex sets). Hence, the objective 

function  ( )f z  is a quasiconcave function of the optimization variables z. Further, 

we have a closed form representation, given in (3.19), of the upper level set of 

the objective function. Therefore, we can use the methods for quasi-convex 

optimization given in [14]. More specifically, we use a bisection search based 

method to solve the optimization in (3.16). We first initialize an interval min max,t t⎡ ⎤⎣ ⎦  

which contains the optimal solution, t*, to the optimization in (3.16). We then 
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solve the feasibility problem at the midpoint, 
min max

2
t tt +

= , of the interval.  In each 

iteration of the bisection search, we solve a convex feasibility problem. The 

convex feasibility problem can be written as follows 
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The convex feasibility problem can be solved by using interior-point methods 

[14]. If we can find a feasible solution to the optimization in (3.20) at t, then it 

means that the optimal solution to the optimization problem is in the interval 
max,t t⎡ ⎤⎣ ⎦  . Otherwise, if we cannot find a feasible solution to the optimization in 

(3.20) at t then it means that the optimal solution to the optimization problem is in 

the interval min ,t t⎡ ⎤⎣ ⎦  . We accordingly bisect the interval by using the results of 

solving the feasibility problem (3.20). The pseudo-code of the proposed bisection 

search based method is given in table 3.2. In the proposed BSPA algorithm, the 

algorithm keeps on iterating until max mint t ε− ≤ . In each iteration, the interval 
min max,t t⎡ ⎤⎣ ⎦  is bisected in two parts. As the iteration proceeds, the length of the 

interval min max,t t⎡ ⎤⎣ ⎦
 

 keeps on diminishing. It has been shown in [14] that exactly 

max min

2log t t
ε

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥  

iterations are required before

 

the algorithm terminates. 
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Main Algorithm 

Initialization: max min, 0,t t ε=   

While max mint t ε− ≥  

1:    
min max

 ;
2

t tt +
=   

2:    Solve the convex feasibility problem in (3.20) 
3:    If feasible solution found 
4:          min t t=  
5:     else 

6:       max t t=  
7:     endif 
EndWhile 

Table  3.2 Bisection Search Based Power Allocation For SAF Two-Way Relaying  
 

3.5 Results  

We present the simulation results of the proposed suboptimal schemes 

GTSPA algorithm and compare its performance with the optimal solutions 

obtained by applying monotonic optimization techniques. In our simulations, we 

assume same interference constraints at all the PUs and denote it as maxI . We 

denote the total number of relays as L and total number of primary users as M. 

The maximum allowed transmission powers of the source and relays are denoted 

as s
maxp , r

maxp  and their values are fixed to 5 watts and 2.5 watts respectively. For 

the polyblock outer approximation algorithm, the value of convergence tolerance 

parameter is kept at 0.0005. 

Fig. 3.2 presents the convergence results of the polyblock outer 

approximation technique applied to the optimization in (3.12). As discussed 

earlier the polyblock outer approximation algorithm generates a sequence of 

nested polyblocks. As the iterations proceeds, the approximation of the feasible 

set by the polyblocks improves. The maximization of the objective function over a 

polyblock is an upper bound to the original optimization problem. The projection 
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of the maximizer over the polyblocks on to the feasible set is a lower bound to 

the original optimization problem. The lower bound is essentially the best feasible 

solution obtained until the current iteration. As the iterations proceeds, the 

difference between the upper and lower bound decreases and the algorithm 

terminates in a finite number of iterations when the difference is within a 

desirable accuracy, ε.  

The polyblock outer approximation algorithm converges to within ε of the 

optimal solution in a finite number of iterations. However, the algorithm may take 

unmanageably large number of iterations for ε-convergence. Thus, in order to 

avoid the heavy computational burden due to slow convergence, we set an upper 

bound on the number of iterations for which we run the polyblock outer 

approximation algorithm. In the following results, we compare the heuristics with 

upper bounds and lower bounds obtained from polyblock outer approximation 

after 4000 iterations. 

Fig. 3.3 represents the performance of the proposed heuristics against the 

number of primary users. We compare our proposed heuristics with the upper 

and lower bounds obtained from the polyblock outer approximation algorithm for 

the scenario L = 2, Imax = (1, 100) mw. The observations are as expected. Fig. 

3.3 shows that the minimum among the users’ rate increase with the interference 

threshold because the feasible set of the optimization problem with lower 

interference threshold is a subset of the feasible set of the optimization problem 

with higher interference threshold. Further, we notice that with the increase in the 

number of primary users, the sum-rate and minimum among the users’ rate 

decreases as more number of primary users means that the secondary users 

have more constraints on their transmit powers. 



 

 79

0 100 200 300 400 500 600 700 800 900
0

0.005

0.01

0.015

0.02

0.025

0.03

Iterations

O
bj

ec
tiv

e 
Fu

nc
tio

n 
V

al
ue

 

 
MO UB
MO LB

 
Fig. 3.2 Convergence Results Max-Min Optimization 
 

 

100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M

M
in

im
um

 U
se

r C
ap

ac
ity

 b
/s

/H
z

 

 
MO UB Imax=1mw

MO LB Imax=1mw

Gr Imax=1mw

MO UB Imax=100mw

MO LB Imax=100mw

Gr Imax=100mw

 

Fig. 3.3 Minimum User Capacity vs.Primary Users, L =2  



 

 80

 

3.6 Summary  

In this work, we considered a cognitive radio system comprising a pair of 

sources and multiple relays. We studied the optimization problem to maximize 

the minimum among the users’ capacities. The formulated optimization problems 

were non-convex and nonlinear in nature.  We obtained their optimal solutions by 

applying the monotonic optimization algorithm.   However, our experiments 

indicated that the computational load of this approach is heavy. For 

computational efficiency, we proposed a low-complexity heuristic algorithm to 

determine suboptimal solutions of the proposed optimization problem. By 

comparing the quality of these solutions to that of the solutions produced by 

monotonic optimization algorithm, we showed that our heuristic algorithms 

provide good solutions.   
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CHAPTER 4: POWER ALLOCATION IN MULTI-WAY 
RELAY NETWORKS  

In the previous chapters, we studied resource allocation in half-duplex two 

way relay assisted wireless networks. Recently, the idea of multi-way relay 

channel was discussed in [3]. In this model, there are multiple clusters 

comprising multiple users. The users in each cluster wish to exchange 

information with each other using a relay terminal. Various real world 

communication scenarios can be modelled using multi-way relay channel. 

Consider, for example, a social network scenario comprising multiple distinct 

clusters where each cluster consists of users who belonging to e.g. a particular 

friend group. In such scenario, the users in each cluster may wish to exchange 

personal information with each other using a relay terminal. Another example 

could be a sensor network where there are different kinds of sensors observing 

different physical phenomena. In such scenario, the temperature sensors may 

form one cluster and exchange their local temperature measurements with each 

other while there can also be pressure sensors sharing their local pressure 

measurements by forming another cluster. In [3], different relaying techniques 

(amplify-and-forward (AF), decode-and-forward and compress-and-forward) for 

multi-way relay channel are discussed. In this work, we consider a specific case 

of multi-way relay channel comprising a single cluster consisting of three users 

and a single relay. We assume that the relay terminal uses AF relaying. 

Resource allocation in a cooperative communication system can offer 

various benefits such as longer network lifetime, better quality-of-service etc. In 

our model, transmission power of the nodes (users and relay) is the resource that 

we wish to allocate. In this work, we study the problem of allocating power to the 

users and the relay terminal such that the minimum among the users’ 

transmission rates is maximized subject to the constraints on the transmission 
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power of the nodes. The formulated optimization problem is a non-convex 

nonlinear program does not have a structure to guarantee the quality of a 

solution. We observe that we can transform the problem into another equivalent 

problem (although still a non-convex nonlinear program) which exhibits a special 

property. In the transformed problem, we observe that the objective function and 

the constraints are increasing function of each optimization variable when other 

variables are fixed. This property enables us to determine the global optimal 

solution to our optimization problem by applying the concepts of monotonic 

optimization algorithm [5]). Monotonic optimization algorithm guarantees 

convergence to a solution that has a performance arbitrarily close (within an 

arbitrary number ε) to the optimal performance.  

We perform simulations to examine the quality of the solution obtained 

from the proposed monotonic optimization based scheme. We compare it with a 

naive scheme, which allocates equal power to all the nodes. The simulation 

results show that proposed optimal solution is better than the uniform power 

allocation approach. Our system model and problem formulations are given in 

section II. Some definitions and concepts related to monotonic optimization are 

presented in section III. In section IV, we present our solution based on 

monotonic optimization. The numerical results are given in section V. 

4.1 System Model  

We consider a system with multiple users and a single relay. The users 

wish to exchange information with each other using a single relay. There are K ≥ 

2 users in the system. We denote by IK = {1, · · · ,K} as the set of users. The relay 

and the users are equipped each with a single antenna. We denote by fk,r the 

channel gain from the kth user to the lth relay. We assume symmetric channels 

from users to the relay i.e. the backward and forward channel gains between the 

users and the relay are identical. We represent by pk, the transmission power of 

the user k and by pr the transmission power of the relay. We assume that there is 

no direct link between the users and all the nodes are in half-duplex mode. 

Therefore, the transmission occurs in two time slots. In the first time slot, the 
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users broadcast their information. The signal yr received at the relay can be 

written as 

,
1

K

r k k r k r
k

y p f X Z
=

= +∑
 

(4.1) 

In the received signal at the relay, complex-valued Xk, normalized such 

that E(|Xk |2) = 1, represent the transmitted symbol, and Zr is the complex-valued 

white Gaussian noise at the relay with E(|Zr |2) = Nr. In the second time slot, the 

relay amplifies the received signal yr and broadcasts it to the users. The 

transmitted signal from the relay can be written as r rx yβ=  where β  is the 

amplification gain of the relay. β is chosen such that the average transmit power 

at the relay is pr. Mathematically, 

2
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k k r r
k

p

p f N
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+∑  
(4.2) 

The signal received at the kth user from the relay can be written as 
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(4.3) 

In the received signal at the kth user, Zk is the complex-valued white Gaussian 

noise at the kth user with E(|Zk|2) = Nk. After self interference  cancellation, the 

signal received at the jth user  can be written as 
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 (4.4) 

As given in [3], at each receiver k, k א IK we have a Gaussian Multiple Access 

Channel (MAC) with K-1 users. In the received signal yk at user k, the SNR from 

the jth user, j
kγ , can be written as 

2 2

, ,

22

, ,

r j j r k rj
k

r r k r j j r r k
j

p p f f

p N f p f N N
γ =

⎛ ⎞
+ +⎜ ⎟
⎝ ⎠
∑  (4.5) 

 For the kth user to be able to decode the messages in the received 

signal, the rates R1,R2, · · · ,Rk−1,Rk+1, · · · ,RK of the users should satisfy the 

following inequalities (eqn. (8) in [3]). 
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For multi-way relay channel comprising a relay and multiple users, the rate tuple 

R = (R1, R2,..,RK) is achievable if it satisfies the following inequalities,  
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(4.6) 

In this work, we study the problem of determining the users rates (R1, R2, · · · ,RK), 

the average transmit power of users (p1, p2, · · · , pK) and the transmit power of 

the relay pr such that the minimum among the user rates (R1, R2, · · · ,RK) is 

maximized subject to the constraints on the user rates and average transmit 

power of users and relay. The optimization problem is formulated as 
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(4.7) 

Constraint C1 is the constraint on user rates as discussed earlier. C2 

requires that cumulative transmit power of all the nodes should be under a 

specified threshold. The constraints on individual transmit power of the nodes is 

given in C3−C4. The optimization problem in (4.7) is a non-convex non-linear 

program because the constraint set is not convex because of C1. In the next 

section, we present a method to determine the optimal solution to the 

optimization in (4.7). 
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4.2 ε-Optimal Solution based on Monotonic Optimization 

In this sub-section, for determining, the global optimal solution of the 

optimization in (4.7), we examine the use of monotonic optimization techniques. 

We note that the constraint set of the optimization in (4.7) is not a normal set (as 

shown in Appendix F). Hence, monotonic optimization techniques cannot be 

applied directly to solve the optimization in (4.7). In the following, we provide a 

monotonic optimization problem that is equivalent to the optimization in (4.7) in 

the sense that the optimal solutions of both of the optimization problems are 

same. In order to arrive at this monotonic optimization problem, we first provide 

an optimization problem that has reduced number of the optimization variables. 

The optimization problem, with reduced number of variables, is then transformed 

to an equivalent monotonic optimization problem. 

We now explain the method of reducing the number of optimization 

variables. We notice that we can associate each feasible vector 

{ }1 1, , , , , ,K K rR R p p p=x … …  with another feasible vector ( )π =x  

{ }1
ˆ ˆ, , , , , , ,K rR R p p p… … ˆ min

K
kk I

R R
∈

= . We also notice that both  x  and ( )π x have the 

same objective function value. Therefore, we can add the constraint R1 = R2 · · · = 

RK to the optimization in (4.7) without compromising the quality of its optimal 

solution. 

Addition of the constraint R1 = R2 · · · = RK to our formulation in (4.7) results 

in the following optimization problem: 

{ }

{ }
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,

i+1

max min , ,

subject to
1 4 (5.7)
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We can define a new variable R, such that R = R1 = R2 · · · = RK and rewrite the 

above formulation as, 
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(4.8) 

Although, we have reduced the number of optimization variables by K-1, 

we still do see a structure that we can exploit to determine its optimal solution. We 

notice that we can omit the variable R from the optimization in (4.8) and write the 

cost function as the point wise minima of multiple functions present in constraint 

C1. To simplify our notations, we define two sets { }11, 2,.., 2 1K
KT −= − and 

{ }: \{ }n n
k k k KW W W I k= ⊆ .  The set kW  is a collection of all the possible subsets of 

the set \{ }KI k . Each element, n
kW , of the set kW  is indexed as 11, 2,.., 2 1Kn −= −  

and the index Kn T∈ . The revised formulation can be written as 
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(4.9) 

where, 
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The constraint set of the above formulation is convex. However, the cost function 

is not an increasing function of the optimization variables { }1 , , ,K rp p p… , e.g. 

consider ( ), 1, ,...,n k r Kj p p p  which is an increasing function of , , n
r j kp p j W∈ and 

decreasing function of , \ n
i K kp i I W∈ . However, with a simple change of variables, 

we can easily transform the optimization (4.9) to an equivalent standard 

monotonic optimization problem. From (4.2), we can also write the relay’s 

transmission power as 
2

,r k k r r
k

p p f Nβ ⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ . Substituting for pr in (4.8), we 

arrive at the following optimization problem: 
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We establish in the following lemma that the optimization (4.10) is an 

instance of the standard monotonic optimization problem and hence can be 

solved by the polyblock outer approximation algorithm.  

Lemma II:  The optimization in (4.10) is an instance of the standard 

monotonic optimization problem.  

Proof: We first show that the set of feasible solution is normal. We refer to 

proposition 5 in [5] that states that if the constraint functions in an optimization 

problem are all increasing function of the optimization variables then the 

constraint set represents a normal set. We note that in our optimization in (4.10), 

the constraint functions in C1 and C2 are all increasing function of the 

optimization variables ( )1, ,..., Kp pβ  and C3 is a simple box constraint on the 

transmit powers of users. Therefore, the constraint set in optimization (4.10) is 

normal. We now prove that the cost function is an increasing function of the 

optimization variables ( )1, ,..., Kp pβ . We observe that the cost function is a 

pointwise minima of functions ( ), 1, ,...,n k Kr p pβ . We know that if the individual 

functions ( ), 1, ,...,n k Kr p pβ  are an increasing function of the optimization variables 

( )1, ,..., Kp pβ  then, their pointwise minima is also an increasing function of the 

optimization variables [5]. We observe that ( ), 1, ,...,n k Kr p pβ  is defined in (4.10) as 

( ), 1, ,...,n k Kr p pβ
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. Now ( )C x =  1 log(1 )

2
x+ and due to 

the monotonicity of logarithm, we can as well establish the monotonicity of its 

argument to complete our proof. Therefore, we need to establish the monotonicity 

of ( )
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 . We notice that the variables 1,..., Kp p  

occur only in the numerator of ( ), 1, ,...,n k Kp pν β . Therefore, ( ), 1, ,...,n k Kp pν β  is an 



 

 92

increasing function of  1,..., Kp p  while the partial derivative of ( ), 1, ,...,n k Kp pν β  with 

respect to β , computed as ( )

( )
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, ,
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n
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k j j r k r
j Wn k K

k r r k
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∂ +

∑
, is always 

nonnegative.  Therefore, ( ), 1, ,...,n k Kp pν β  is an increasing function of the 

optimization variable ( )1, ,..., Kp pβ  and thus, the cost function in (4.10) is an 

increasing function of the optimization variables ( )1, ,..., Kp pβ . 

The application of polyblock outer approximation method to find the ε-

optimal solution of the optimization in (2.21) is quite straightforward and follows 

the pseudo code given in Chapter 2. Moreover, the step involving the projection 

of the maximizer (over the vertex set of the polyblock at that iteration) onto the 

boundary of the feasible set of the solutions is straightforward. As mentioned 

before (Chapter 2), the computation of projection requires us to solve the 

following single variable optimization in α, which can be written as follows 
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where 1, ,...,i i i
Kp pβ denote the maximizer over the polyblock vertices in the ith 

iteration. Constraint C1 and C2 have quadratic inequalities and C3 represents a 

linear inequality. We can rewrite the single-variable optimization in (4.11) as 

follows: 
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It is clear that 1

l
ct , 2

l
ct 0≤ . Therefore, the closed form solution to the optimization in 

(4.12) can be simply obtained as * minα =  { } { }1 2, ,1u u max i
c c k k Kt t P p k I∪ ∀ ∈ .  

4.3 Numerical results  

 We perform simulations to evaluate the performance of the proposed 

solution. We consider a system comprising a single relay and three users 

(denoted as A, B and C). The results, obtained from proposed solution, are 

compared with a naive scheme where we determine the power of each 

transmitting node as min ,
1

maxtot
k k K

P
p P k I

K
⎧ ⎫= ∀ ∈⎨ ⎬

+⎩ ⎭
min ,

1
maxtot

r r
P

p P
K

⎧ ⎫= ⎨ ⎬
+⎩ ⎭

. We will refer to 

this scheme as uniform power allocation (UPA). In our implementation of the 
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monotonic optimization based solution, we set the accuracy parameter as ε = 

0.001 and the maximum number iterations, Imax = 5000. Without loss of 

generality, we set the noise variances Nr = 1, NA = 1, NB = 1 and NC = 1. 

In Fig. 4.1, we present the convergence plot of the proposed solution. as 

discussed earlier the polyblock outer approximation algorithm generates a 

sequence of nested polyblocks. As the iterations proceeds, the approximation of 

the feasible set by the polyblocks improves. The maximization of the objective 

function over a polyblock is an upper bound to the original optimization problem. 

The corresponding projection of the solution, obtained from the polyblock outer 

approximation algorithm, on to the feasible set is a lower bound to the original 

optimization problem. The lower bound is essentially the best feasible solution 

obtained till the current iteration. As the iterations proceeds the difference 

between the upper and lower bound decreases and the algorithm terminates in a 

finite number of iterations when the difference is within a desirable accuracy, ε. 

The result in fig. 4.1 is in conformance with the theory that we discussed above. 
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In fig. 4.2, we compare the minimum user rate with the maximum 

transmission power, P (in dB), of the nodes. The maximum transmission power 

of each node (in watts) is set as 1010 , 2
P

A B C R A
max max max max maxP P P P P= = = = and Ptot = 1 

watts. The results are averaged over 100 different scenario. In each scenario, the 

channel gains among the users and the relay are randomly generated in 

accordance with the assumption of independent channel gains drawn from a 

complex Gaussian distribution. We observe that as transmission power 

increases, the minimum user rate increases only up to a certain point. This is 

because at low transmission power the individual constraints on the nodes are 

active. However, after a certain point the sum-power constraint is active, thus 

limiting the minimum user rate at higher SNR. Further, we observe that the 

proposed optimal solution performs much better than the naive Uniform Power 

Allocation scheme. 
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Fig. 4.2 Minimum Rate vs Transmit Power, Ptot = 1 watt 
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4.4 Summary  

We considered a multi-way relay channel comprising multiple users and a 

relay where the users wish to exchange information among them with the help of 

the relay terminal. The relay used amplify-and-forward (AF) relaying. We 

formulated the optimization problem of allocating power to the users and the 

relay such that the minimum among the user’s rate is maximized. Then, we 

presented a method of transforming the problem to a new formulation so that a ε-

optimal algorithm can be designed. The formulated problem, although still non-

convex, can be solved by the monotonic optimization. In our numerical 

experiments, we compared the solution obtained from the proposed method with 

a uniform power allocation method. The numerical results indicated that the 

proposed method provide excellent solutions.  
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CHAPTER 5: CONTRIBUTIONS AND FUTURE WORK 

In this chapter, we present a brief overview of the contributions and discuss 

open issues that can be addressed in future research.  

5.1 Contributions 

In this thesis, we studied resource allocation problems in cooperative 

cognitive radio systems. In particular, we have made following major 

contributions in this thesis: 

5.1.1 Power allocation in Two-Way Relay assisted cooperative cognitive 
radio networks  

We studied power allocation problems for two-way relay assisted 

cooperative cognitive radio networks employing orthogonal and shared band 

amplify and forward relaying. The formulated optimization problems were non-

convex and nonlinear in nature.  We obtained their optimal solutions by applying 

the monotonic optimization algorithm techniques. Due to the heavy 

computational burden involved in obtaining the optimal solutions, we compared 

the bounds obtained from the monotonic optimization algorithm with our 

proposed heuristics. By comparing the quality of these solutions to that of the 

solutions produced by monotonic optimization algorithm, we showed that our 

heuristic algorithms provide good solutions. 

5.1.2 Power Allocation in Multi-Way Relaying  

We studied joint sources’ and relay’s transmit power allocation in a multi-

way relay channel comprising multiple users and a relay where the users wish to 

exchange information among themselves with the help of the relay terminal. The 
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relay used amplify-and-forward (AF) relaying. We formulated the optimization 

problem of allocating power to the users and the relay such that the minimum 

among the user’s rate is maximized. Then, we presented a method of 

transforming the problem to a new formulation so that an ε-optimal algorithm can 

be designed. The formulated problem was then solved using monotonic 

optimization techniques. In our numerical experiments, we compared the solution 

obtained from the proposed method with a uniform power allocation method. The 

numerical results indicated that the proposed method provide excellent solutions.  

5.2 Future work 

The proposed schemes in this thesis address some aspects of resource 

allocation in CRS with relaying capabilities. However, there are still many open 

issues. In the following, we list some important future research directions. 

5.2.1 Resource allocation in cooperative CRS with imperfect CSI  

For resource allocation, we have assumed that the central controller 

knows the perfect CSI. However, there always exists some uncertainty in the CSI 

due to unreliable feedback channel. Therefore, a possible extension of the 

proposed resource allocation formulation is to analyze the relay assignment 

schemes with imperfect CSI in multi-hop CRS. Another interesting issue to 

consider is the effect of quantized CSI on the relay assignment in multi-hop 

cooperative CRS.  

5.2.2 Power allocation in Two-Way Relay assisted cooperative cognitive 
radio networks 

The resource allocation problems were studied for a single user pair. The 

proposed formulations can be extended to the multi-user, multi-relay assisted 

CRS. A comparative study of shared band and orthogonal two-way AF relaying 

can also be done. For the case of shared band two-way AF relaying, we only 

studied the power allocation with max-min fairness. We can also consider sum-
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rate optimization with quality-of-service constraints.  Further, we can also extend 

our power allocation problems with imperfect CSI and propose distributed and 

decentralized solutions. A direct extension of two-way relaying with single user 

pair would be to study the case of multi-hop (> 2 hops) cooperative CRS 

comprising single user and multiple relays  An interesting problem to study in the 

multi-hop cooperative CRS would be to study scheduling of relays’ transmissions 

and power allocation. 

5.2.3 Power allocation in Multi-Way Relaying 

We studied resource allocation in multi-way relaying with max-min 

fairness. We can extend our formulation to sum-rate maximization in multi-way 

relaying. In our max-min power allocation, we noted that there could be a multiple 

solutions to the max-min optimization problem. Another interesting formulation 

would to select the solution that has the best sum-rate among these multiple 

solutions to the max-min optimization. We can also consider the multi-way 

relaying with multiple users and relays. 
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APPENDICES 

Appendix A 

We first show that 1sγ  and 2sγ  are increasing w.r.t to pl in the following. 
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l

p p f g
p p N p f p f p g N

p f p f p g N p f g p p f g

N p f p f p g N

p f p g N
p f g

N p f p f p g N

p f p
p f g

p

γ

γ

=

∂ ∂
=

∂ ∂ + + +

+ + + −
=

+ + +

+ +
= ≥

+ + +

+∂
=

∂

∑

( )
( )

2
2

22 2 2
1 2

0
s l o

o l l s l s l o

g N

N p g p f p g N

+
≥

+ + +

(A.1) 

Now consider the cost function of (2.7), ( )1 2, ,s sf p p =p ( )1
1 log 1

1 sL
γ+

+
 

( )2
1 log 1

1 sL
γ+ +

+
. Logarithm is increasing with respect to its argument, in our 

case 1sγ  and 2sγ . Further in (A.1) we showed that 1sγ  and 2sγ are increasing w.r.t 

pl. Therefore, ( )1 2, ,s sf p p p  is increasing w.r.t relay transmit powers pl. Similarly 

the cost function of (2.8) ( )1 2, ,s sg p p =p ( ) ( )1 2
1 1min log 1 , log 1

1 1s sL L
γ γ⎧ ⎫+ +⎨ ⎬+ +⎩ ⎭

 is 

increasing function of pl as minimum of two increasing functions is also 

increasing. 



 

 101

Appendix B 

Proof of Lemma II:  For notational convenience, we denote 
2 2

1 2,l l
l l

c f c g= =∑ ∑ . Suppose that ( )* *
1 2,s sp p   is a maximizer and let us assume 

without loss of generality that   * *
2 2 1 1s sc p c p> . Then, we have *

2 0sp > and the optimal 

objective function value is *
1 1sc p . We consider the cases of *

1sp = s
maxp  and  *

1
s

s maxp p<  

separately. 

Case 1: * *
2 2 1 1s sc p c p> and *

1sp = s
maxp . In this case, let ( )* *

2 2 1 1 2s sc p c p c∆ = − and 

consider a point  ( )* *
1 2,s sp p −∆ . Note that ( )* * * *

2 2 2 2 1 1 2s s s sp p p c p c c−∆ = − − =  

*
1 1 2 0sc p c ≥ and * *

2 2
s

s s maxp p p− ∆ ≤ ≤ . Also, we have ( )2 2* *
1 1, 2 2,s s m s s mp h p h+ − ∆   

2 2* *
1 1, 2 2, ,max

s s m s s m mp h p h I m≤ + ≤ ∀ . Thus, ( )* *
1 2,s sp p −∆  is a feasible point of 

optimization problem (2.29). Also, ( ) ( )* * *
2 2 2 1 1 2 1 1s s sc p c p c c c p−∆ = = . Therefore, 

( )1 2ˆ ˆ,s sp p = ( )* *
1 2,s sp p −∆  is an optimal solution and satisfies 2 2 1 1ˆ ˆs sc p c p= . 

Case 2: * *
2 2 1 1s sc p c p> and *

1
s

s maxp p< .  

Denote 
2 2 2

1,1 1, 1,
2 2 2

2,1 2, 2,

max ,.., ,..,  s s m s M

s s m s M

h h h

h h h
α

⎛ ⎞
⎜ ⎟≡
⎜ ⎟
⎝ ⎠

.  Consider a point 

( )* *
1 2,s sp pδ αδ+ − . Because *

1
s

s maxp p<  and *
2 0sp > , we have 

* *
1 20 , s

s s maxp p pδ αδ≤ + − ≤  for a sufficiently small 0δ > . Also,  

( ) ( )2 2 2 2* * * *
1 1, 2 2, 1 1, 2 2,s s m s s m s s m s s mp h p h p h p hδ αδ+ + − = + +  

2
2 2 21, * *

2, 1 1, 2 2,2

2,

,s m max
s m s s m s s m m

s m

h
h p h p h I m

h
α δ

⎛ ⎞
⎜ ⎟− ≤ + ≤ ∀
⎜ ⎟
⎝ ⎠

 

Therefore, for a sufficiently small 0δ >  , ( )* *
1 2,s sp pδ αδ+ −   is a feasible 

point. Also, because  * *
2 2 1 1s sc p c p> , for a sufficiently small 0δ > we have 
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( ) ( )* *
1 1 2 2s sc p c pδ αδ+ < −   and thus ( ) ( ){ }* *

1 1 2 2min ,s sc p c pδ αδ+ −  

( )* *
1 1 1 1s sc p c pδ= + > . This contradicts the optimality of ( )* *

1 2,s sp p . Therefore, Case 2 

is impossible.  

Considerations of Case 1 and Case 2 establishes existence of an optimal 

solution problem (2.29),  ( )1 2ˆ ˆ,s sp p   that satisfies that 2 2 1 1ˆ ˆs sc p c p= . Likewise, 

suppose that ( )* *
1 2,s sp p   is a maximizer and * *

2 2 1 1s sc p c p< . By following the 

arguments presented above we can conclude that we can find an optimal 

solution, ( )1 2ˆ ˆ,s sp p , such that 2 2 1 1ˆ ˆs sp c p c= .  Q.E.D. 
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Appendix C 

In this section, we show that 1sγ  and 2sγ  are not increasing w.r.t to ps1 and  

ps2 in the following. We provide a counter-example  

( )( )
( ) ( ) ( )( )

( )( )
( ) ( ) ( )( )

2 2
2

1 2 2 2
1 1 2

2 2
1

2 2 2 2
1 1 2

1

,
1

L
s o l o l l

s
l l o l s o l s o l

L
s o l o l l

s
l l o l s o l s o l

p N p N f g

p N f p N f p N g

p N p N f g

p N g p N f p N g

γ

γ

=

=

=
+ + +

=
+ + +

∑

∑
          (C.1) 

For 1 10 , 0.0054, 18.34op N f g= = = , we have ( )1 2min , 0.04952s sγ γ =  when 

1 210 , 0.8s o s op N p N= =  while ( )1 2min , 0.02681s sγ γ =   when 1 10 ,s op N=  

2 10s op N= .Therefore, 1sγ  is not an increasing function of 1 2,s sp p . Similarly the 

sum-rate ( ) ( )1 2log 1 log 1 0.09712s sγ γ+ + + =  when 1 210 , 0.8s o s op N p N= =  and sum-

rate equals 0.07852 when 1 10 ,s op N= 2 10s op N= .  
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Appendix D 

In this section, we show that feasible set of the following optimization 

problem is not a normal set. 

{ }

{ }

1,
,

2 2

, ,

2 2

, ,
1

1

max min , ,

subject to

11:
2

\ , ,

2 :

3 : 0

4 : 0 ,

Kk K
k K
r

k

k

Kk IR k I
p k I
p

r j j r k r
j W

j K
j W

r k r r k i i r r k
i

k k K

K

k r tot
k

max
r r

max
k k K

R R

p p f f
C R C

p f N N p f N N

W I k k I

C p p P

C p P

C p P k I

∈∈
∈

∈

∈

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟≤
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

∀ ⊆ ∀ ∈

+ ≤

≤ ≤

≤ ≤ ∀ ∈

∑
∑

∑

∑

…

       (D.1) 

where ( ) ( )1 log 1
2

C x x= + .  

In our proof, we consider a multi-way relaying system with three users and 

a single relay and show that the set of feasible solutions for this system may not 

always be a normal set. The constraint C1 in (D.1) for this special system can be 

written as follows: 
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( )

2 2

1 1, 3,
1 32 2

3, 3 , 3
1

2 2

2 2, 3,
2

2 2

3, 3 , 3
1

2 2 2

1 1, 2 2, 3,

1 2
2 2

3, 3 , 3
1

11.1: ,
2

11.2 :
2

11.3 :
2

r r r

r r r i i r r
i

r r r
K

r r r i i r r
i

r r r r r

K

r r r i i r r
i

p p f f
C R C

p f N N p f N N

p p f f
C R C

p f N N p f N N

p p f p p f f
C R R C

p f N N p f N N

=

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟≤
⎜ ⎟+ +⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟≤
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

+
+ ≤

+ +

∑

∑

∑

( )

2 2

2 2, 1,
2 32 2

1, 1 , 1
1

2 2

3 3, 1,
3 32 2

1, 1 , 1
1

2 2 2

2 2, 3 3, 1,

2 3
2

1, 1 ,

11.4 : ,
2

11.5 :
2

11.6 :
2

r r r

r r r i i r r
i

r r r

r r r i i r r
i

r r r r r

r r r i i

p p f f
C R C

p f N N p f N N

p p f f
C R C

p f N N p f N N

p p f p p f f
C R R C

p f N N p f

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟≤
⎜ ⎟+ +⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟≤
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

+
+ ≤

+

∑

∑

3 2

1
1

2 2

1 1, 3,
1 32 2

2, 2 , 2
1

11.7 : ,
2

r r
i

r r r

r r r i i r r
i

N N

p p f f
C R C

p f N N p f N N

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟≤
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

∑

∑

 (D.2) 
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( )

2 2

3 3, 2,
3 32 2

2, 2 , 2
1

2 2 2

1 1, 3 3, 2,

1 3 32 2

2, 2 , 2
1

11.8 :
2

11.9 :
2

r r r

r r r i i r r
i

r r r r r

r r r i i r r
i

p p f f
C R C

p f N N p f N N

p p f p p f f
C R R C

p f N N p f N N

=

=

⎛ ⎞
⎜ ⎟
⎜ ⎟≤
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

⎛ ⎞
+⎜ ⎟

⎜ ⎟+ ≤
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

∑

∑

 

Consider a feasible solution vector { }1 2 3 1 2 3, , , , , , rR R R p p p p≡x . Further 

assume that for vector x inequality C1.1 is met with equality. Let us define another 

vector as { }1 2 3 1 2 3 1 1ˆ ˆ, , , , , , ,rR R R p p p p p p≡ <y . Notice that ≥x y . Further notice that 

right hand side of the inequality C1.1,
2 2

1 1, 3,
32 2

3, 3 , 3
1

1
2

r r r

r r r i i r r
i

p p f f
C

p f N N p f N N
=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

∑
, is an 

increasing function of 1p . We initially assumed that  x meets inequality C1.1 with 

inequality, i.e. 
2 2

1 1, 3,
1 32 2

3, 3 , 3
1

1
2

r r r

r r r i i r r
i

p p f f
R C

p f N N p f N N
=

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟+ +⎜ ⎟
⎝ ⎠

∑
. We observe that for 

vector y , 
2 2

1 1, 3,
1 32 2 2

3, 3 1 1, , 3
2

ˆ1
2 ˆ

r r r

r r r r i i r r
i

p p f f
R C

p f N N p f p f N N
=

⎛ ⎞
⎜ ⎟
⎜ ⎟>
⎜ ⎟⎛ ⎞

+ + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑
. Therefore, 

vector y  does not satisfy inequality C1.1 in (D.2). Therefore the feasible set of the 

optimization (D.1) is not a normal set. 
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Appendix E 

In this section, we show that ( ) ( )1 2min ,s sf γ γ≡ζ  where 2sγ and 2sγ  are 

given in (E.1) is not a concave function of the variables ( )1 2 1, , ,..,s s Lp p p p≡ζ .  

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
( ) ( )

2
2 2

2
2 2

1 1 2

1 2

2 2
1 1 2

2
2 2

1
2 2

1 1 2

2 2

2 2
1 1 2

1
,

1
1

1

1
1

L
l o l ls

lo s o l s o l

s L
l o l

l s o l s o l

L
l o l ls

lo s o l s o l

s L
l o l

l s o l s o l

p N f gp
N p N f p N g

p N f
p N f p N g

p N f gp
N p N f p N g

p N g
p N f p N g

γ

γ

=

=

=

=

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠=

+
+ +

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟+ +⎝ ⎠⎝ ⎠=

+
+ +

∑

∑

∑

∑

 (E.1) 

For 1 2 1 2 1 22, 10 , 0.001, 0.4838, 0.71, 11.74oL p p N f f g g= = = = = = = , consider 

( )1 , ,0,10o o oN N N≡ζ  and ( )2 , ,10 ,10o o o oN N N N≡ζ . Now ( )1 20.5 0.5 0.3742f + =ζ ζ  

( )10.5 f< +ζ ( )20.5 0.379f =ζ . Therefore, ( )f ζ  is not a concave function of 

( )1 2 1, , ,..,s s Lp p p p≡ζ  for 1 2 1 2 12, 10 , 0.001, 0.4838, 0.71,oL p p N f f g= = = = = =  

2 11.74g = .  

 

 


