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Abstract 

This paper demonstrates how an U.S. application of CIMS, a technologically explicit and 

behaviourally realistic energy-economy simulation model which includes macro-

economic feedbacks, can be used to derive estimates of elasticity of substitution (ESUB) 

and autonomous energy efficiency index (AEEI) parameters.  

The ability of economies to reduce greenhouse gas emissions depends on the potential 

for households and industry to decrease overall energy usage, and move from higher to 

lower emissions fuels. Energy economists commonly refer to ESUB estimates to 

understand the degree of responsiveness of various sectors of an economy, and use 

estimates to inform computable general equilibrium models used to study climate 

policies. 

Using CIMS, I have generated a set of future, ‘pseudo-data’ based on a series of 

simulations in which I vary energy and capital input prices over a wide range. I then used 

this data set to estimate the parameters for transcendental logarithmic production 

functions using regression techniques. From the production function parameter 

estimates, I calculated an array of elasticity of substitution values between input pairs.  

Additionally, this paper demonstrates how CIMS can be used to calculate price-

independent changes in energy-efficiency in the form of the AEEI, by comparing energy 

consumption between technologically frozen and ‘business as usual’ simulations. 

The paper concludes with some ideas for model and methodological improvement, and 

how these might figure into future work in the estimation of ESUBs from CIMS. 

Keywords:  Elasticity of substitution; hybrid energy-economy model; translog; 
autonomous energy efficiency index; rebound effect; fuel switching. 
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1. Introduction, Research Objectives and 
Literature Review  

1.1. Challenges to Energy-Economy Modeling: 
The Importance of Substitution 

 “The key to analyzing the economic impacts of energy and environmental 
policy is the substitutability among productive inputs, especially energy 
inputs, in response to price changes induced by policy.”  (Goettle, et al. 
2011) 

The responsiveness of the economy to changes in energy prices is a key 

concern of policy makers for assessing the ability of price-related policies to reduce 

greenhouse gas emissions or reduce reliability on certain forms of energy. For many 

decades, economists using aggregate energy-economy models have estimated price 

elasticities using aggregate time series and cross-section data. However, the general 

approach has been subject to certain criticisms and concerns.  These include issues 

relating to the sources of historical data, the functional forms assumed, the specification 

of the elasticity measures, and the ability of historical data to sufficiently capture future 

technological advances.   

In this project, I have used an alternative approach to estimate long-run U.S. 

price elasticities based on a set of simulated ‘pseudo-data’ generated using a 

technologically explicit, behaviourally realistic energy-economy simulation model which 

includes realistic macro-economic feedbacks – CIMS (Jaccard, Nyboer, et al. 2003, 

Rivers and Jaccard 2005).  

Energy-economy models are useful tools for analyzing and designing energy and 

climate policy. At a time when the threats of climate change are clear, and the need to 

act is increasingly recognized as vital to human welfare, the importance of better 
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understanding, and better forecasting the likely economic effects of climate policies is 

elevated. 

Supplying the amount of greenhouse gas (GHG) emissions-free energy 

necessary to stabilize atmospheric greenhouse gas concentrations at ambitious and 

commonly agreed upon targets will be a challenging task. Assuming realistic 

improvements in energy efficiency, we will require an enormous amount of carbon-free 

energy in the near future (Hoffert, et al. 1998). Scalable methods to meet this need are 

not yet adequately available. The world is facing the enormous challenge of supplying 

this energy while avoiding environmental damage. As we move-forward, energy systems 

must evolve to avoid the dangers of climate change. Energy-economy modeling can 

help decision making as governments and citizens contribute to changing energy 

systems around the world.  

In this study, I focus on energy elasticity of substitution values – measures that 

indicate how substitution between energy types, and away from energy might contribute 

to the evolution of our energy system. This paper contributes to the existing elasticity of 

substitution body of research by advancing the unique approach of using simulated 

pseudo-data (as opposed to historical data) to derive price elasticity estimates. While my 

focus is on methodological details, the elasticity measures that I derive have widespread 

implications over how our energy system might evolve, and how it might respond to 

alternate future policy scenarios. 

1.2. Outline of the Report 

I have chosen to include the literature review elements of my project in Chapter 

2, “Background”. Chapter 3, “Methods and Data”, includes the details of my methodology 

for price-shocking CIMS in order to generate a set of ‘pseudo-data’, descriptions of how I 

specify the capital-energy and inter-fuel translog production models that I use for 

parameter estimation, and a description of how I calculate elasticities from estimated 

translog cost function parameters. Chapter 3 also includes a description of my technique 

for calculating AEEI parameters from CIMS outputs, and describes some of the 

challenges with the methodology. In Chapter 4, I present my ESUB and AEEI results, 
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with parameter estimates for energy-capital and inter-fuel ESUBs and AEEI values 

presented at national and sectoral levels of aggregation. Chapter 5 provides 

interpretation of the ESUB and AEEI estimates, as well as discussion about how my 

values compare to some external values. In Chapter 6 (“Conclusions and Future 

Research”), I review some of the key conclusions from the research, discuss remaining 

issues, and explore ideas for methodological and modeling improvements in future 

research. There are several appendices that follow, which include an overview of the key 

CIMS algorithm, a single-table overview of the ESUB results, data on input cost shares, 

and a presentation of my elasticity results in the form of price elasticities of demand. 

The next chapter provides an overview of common frameworks for energy and 

climate policy analysis. I will describe opposing “top-down” and “bottom-up” approaches, 

and then show how the CIMS model reconciles advantages and drawbacks from those 

opposing frameworks. 
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2. Background 

2.1. Top-down versus Bottom-up Modeling 

An energy-economy model refers to any conceptual depiction of a regional or 

global economy, with a focus on its energy system. More generally, a scientific model is 

a “numerical simulation of a highly parameterized complex system” (Oreskes 2003, 14). 

In other words, a model is an abstraction of reality that provides a useful framework for 

people to better understand different aspects of the true situation. Energy-economy 

modeling in particular employs a mathematical abstraction of a regional economy that is 

useful to test the effects of policies which effect energy use, to assess the various trade-

offs that exist among policy options, and to rank alternative actions. Modellers are 

attempting to predict, using the best available information, how the future will unfold.  

Predictions can never be perfect, but hopefully they can be sufficiently realistic to offer a 

meaningful evaluation, and help in the design of policy. 

Energy-economy modeling is one of the most important techniques for 

understanding how best to move forward towards a sustainable energy system. This is 

because the modeling results are often what policymakers rely upon for evaluating the 

economic and social implications of plans designed to prevent climate change impacts, 

to assess mitigation and adaptation options, and hopefully to inform the development of 

alternative region-specific climate and energy management. Sound energy-economy 

models are essential for researchers to effectively communicate climate change issues 

and solutions to the government, industry, and the general public. 

Three of the most important and desirable characteristics of energy-economy 

models which are used to analyze energy and climate policies – and which often help to 

distinguish different classes of models – are:  

1.  Technological explicitness – The level of detail in which a model 
represents energy usage and production technologies. For example, a 
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model can represent technology very abstractly, or with a high level of 
engineering detail (i.e. fuel consumption attributes, ratios, lifespan, cost 
information, etc.) for a given technology. 

2.  Behavioural realism – The extent to which the simulated development 
of production and consumption mimics decision-making in the real 
world. This characteristic refers to the fact that humans do not always 
make optimal/rational decisions. 

3.  Macroeconomic feedbacks – The attribute of a model which 
accounts for transactions in all key markets, and the interactions 
between them. In the case of an energy-economy model, this refers to 
the incorporation of realistic aggregate financial flows in response to 
stimuli. 

Figure 1 Characteristics for Comparing Energy-economy Models 
(Source: Jaccard, Nyboer et al. (2003), adapted with permission) 

 

The ideal model would incorporate all three of the attributes listed above (in 

Figure 1, it would be located in the top right corner). However in practice, a trade-off 

exists between models which are technologically explicit and those that fully adhere to 
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economic theory. Models that have a reasonably detailed treatment of technology tend 

to not (fully) incorporate general equilibrium responses, and their portrayal of firm and 

consumer behaviour tends to be derived from aggregated historical data that may not be 

sufficiently realistic (Rivers and Sawyer 2008). In the context of modeling the impacts of 

environmental policy such as carbon pricing, researchers commonly employ two 

opposing modeling frameworks. These opposing frameworks allude to one of the most 

common distinctions amongst energy-economy models  - the distinction between ‘top-

down’ and ‘bottom-up’ models. 

Top-down models – benefits and drawbacks 

Top-down modeling involves estimating energy use, fuel switching, and 

emissions abatement potential from historical time series data (Loschel 2002, Jaccard 

2009). Parameters that indicate responsiveness to changes in energy prices, as well as 

the rate at which energy efficiency improves independent of energy cost, are normally 

estimated based on historical market data. Computable General Equilibrium (CGE) 

models are a common variety of top-down models, and often used in the analysis of 

climate and energy policy. 

Employed mainly by economists, top-down models tend to be highly aggregated 

as compared to other economic models, and as such they tend to exhibit low technology 

detail. These models are based upon descriptions of the economy consistent with 

economic theory (Loschel 2002). Due to all of the general equilibrium interactions that 

exist in an economy, increasing the complexity of a model by adding a high number of 

sectors, or by using many households, often results in the model being impossible or 

impractical to solve. 

A common criticism of top-down models is that they are most often based on 

historical time-series data – many would argue that parameterizing and calibrating a 

model to historical data prevents it from capturing the advances in technology that may 

occur in the future. Moreover, given that the models depend so heavily on these 

estimated parameters, any misspecification of model parameters can impact results. 

Model parameters are often ‘guesstimated’, and thus highly open to alternative 

subjective views.  
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Given limited technological detail, top-down models often miss important 

dynamics associated with capital stock turnover (capital vintaging) and technology 

development. They often fail to account for the effects of cumulative production and 

market penetration on both the tangible (financial) and (perceived) cost of a given 

technology (Loschel 2002).  

Bottom-up models – benefits and drawbacks 

Bottom-up modeling involves the estimation of energy usage, fuel switching, and 

emissions abatement potential from technologically explicit analysis (Loschel 2002, 

Jaccard 2009). Bottom-up models explicitly account for technologies and engineering 

processes, which compete with each other on the basis of financial cost and 

performance attributes. This is the approach commonly undertaken by engineers, and 

sometimes favoured by environmental advocates since bottom-up models tend to show 

a lower social cost from the reduction of GHG emissions. Bottom-up energy-economy 

models are normally partial models of the energy sector which do not include 

interactions with the rest of the economy (Loschel 2002). Technologically explicit models 

are useful for computing the least-cost cost approach (from a limited financial cost 

perspective) for meeting a particular final energy demand or emissions target. However, 

this approach is poorly suited to studying phenomena that are likely to have economy-

wide effects. 

Drawbacks of the bottom-up approach include a lack of behavioural and 

macroeconomic realism. Perceptions of producers and consumers are difficult to 

estimate due to a lack of adequate market behaviour data at the technology level 

(Jaccard, Nyboer, et al. 2003). Moreover, these models are not behaviourally realistic, in 

part because they are not based on market-generated data. As a result, this class of 

models tend to lack micro-economic realism – they tend to not realistically portray the 

ways in which consumers and producers behave when faced with decisions related to 

energy use. The bottom-up modeling approach fails to account for risks and for the 

quality of energy technology services in modeling simulations. 

To highlight the failure of bottom-up modeling techniques in capturing the 

bounded rationality that consumers and producers exhibit, two recent, highly influential 
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reports by the management consulting firm McKinsey (McKinsey&Company 2007, 

McKinsey&Company 2009) made use of least-cost energy-efficiency curves and bottom-

up modeling methodology. Their results indicate that the U.S. can make significant 

reductions at far lower costs than much of the research on the subject over the past 20 

years, but the validity of these estimates has been challenged by those who note the 

shortcomings of the pure bottom-up approach (Murphy and Jaccard 2011). 

Substitution in energy-economy models, and the contrasting 
role of substitution in bottom-up vs. top-down models 

Substitution among productive inputs plays an important role in understanding 

the costs of climate change policy, since substitution possibilities underlie resilience and 

adaptability in an economy (Jorgenson, et al. 2000). Assumptions about substitution 

between forms of energy and other inputs have a large influence on the results of 

economic models used to study costs. Rigidity in a model tends to magnify economic 

costs, whereas flexibility tends to reduce them. There are exceptions, however. For 

example, substitution rigidity would obscure the increasing energy demands with the 

depletion of more readily accessible forms of a resource. Jorgenson et al. (2000) outline 

ways in which producers can substitute among the inputs to production (though they 

note that similar opportunities exist for consumers): 

• less carbon-intensive fuels for more carbon-intensive fuels (for example, 
gas for coal); 

• non-fossil energy sources for fossil fuels (nuclear, hydropower, 
geothermal, solar, and wind for coal, oil, and gas); 

• non-energy inputs (materials, labor, and capital) for energy inputs 
(installing automation and process control equipment); 

• energy conserving inputs for highly energy-using inputs (more energy-
efficient vehicles, lighting, cooling, heating, production and computing 
equipment);  

• less energy-intensive goods for more energy-intensive goods (greater 
use of high strength plastics and products made from recycled aluminum 
and steel);  

• more competitive imported goods and services for the now more 
expensive domestic ones. (Jorgenson, et al. 2000). 



 

9 
9 

Given the pervasiveness and importance of substitution in energy-economic 

models, it is helpful to note that within top-down and bottom-up models, substitution 

plays a contrasting role.  

While substitution between different forms of energy, and non-energy inputs 

occurs in both top-down and bottom-up models, it occurs differently in each. In top-down 

models, substitution is guided by exogenously set model parameters (namely, 

elasticities of substitution – the focus of this study - which will be introduced later in this 

chapter). On the other hand, in bottom-up models, substitution most often is the by-

product of technology evolution. 

An alternative hybrid approach – description of the CIMS 
energy-economy model 

As described above, while both bottom-up and top-down modeling approaches 

have strengths and appropriate uses, the drawbacks from each make them problematic 

for a broad analysis of environmental policy. “Hybrid” models attempt to incorporate 

attributes of both bottom-up and top-down methodologies. Ideally, a hybrid model 

incorporates all three model characteristics described above – it is technologically 

explicit, behaviourally realistic, and includes macroeconomic feedback effects 

(Hourcade, et al. 2006).  

CIMS (Jaccard, Nyboer, et al. 2003, Rivers and Jaccard 2005, Jaccard 2009) is 

an integrated energy-economy simulation model and policy analysis tool developed by 

the Energy and Materials Research Group at Simon Fraser University, which is 

technologically explicit and behaviourally realistic. The model’s primary use is to 

evaluate energy and climate policies and to determine the cost of reducing GHG 

emissions. CIMS has a detailed representation of technologies that produce goods and 

services throughout the economy and attempts to simulate capital stock turnover and 

choice between these technologies in a realistic way. This is accomplished by 

incorporating stated preferences (via discrete choice surveying techniques) as well as 

revealed preferences (via analysis of historical market data). It also includes a 

representation of equilibrium feedbacks, such that supply and demand for energy 

intensive goods and services adjust to reflect policy. This reflects the importance of 
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considering how the macroeconomic evolution of the economy proceeds in terms of 

structural composition and total output. Also, it is an example of a hybrid model, as it 

incorporates macroeconomic feedback effects and detailed estimation of behavioural 

parameters within a technologically explicit model. See Appendix A for a description of 

the market share algorithm that is central to this model (along with the two algorithms for 

simulating endogenous technical change).  

Behavioural parameters in CIMS, such as those representing market 

heterogeneity, intangible costs that consumers associate with certain technologies, and 

changes in consumer perceptions of technologies, are estimated from a combination of 

past technology choices (revealed preferences) and likely future technology choices 

(stated preferences). Stated preference research involves surveying various segments 

of a market to gauge, for example, willingness to pay for a plug-in hybrid electric vehicle 

compared to conventional vehicle options (Axsen, Mountain and Jaccard 2009). 

Researchers employ discrete choice models to provide an empirical basis for 

behavioural parameters in CIMS (Horne, Jaccard and Tiedemann 2005).  Revealed 

preferences are incorporated in CIMS by studying existing market conditions and 

technology composition in a given market – thus using historical consumer and firm 

decisions about technology choices to inform the model. 

Though CIMS incorporates to a large extent the three model characteristics 

mentioned above, its representation of economic inputs and outputs is skewed toward 

energy supply and demand (Jaccard 2009). While this applies to technology attribute 

representation and representation of behaviourally realistic decision making by firms and 

consumers, the emphasis on energy is particularly notable in terms of CIMS’ inclusion of 

macroeconomic feedback effects. CIMS includes detailed feedbacks between energy 

supply and demand among different sectors of the economy as well as trade effects, 

though unlike CGE models, it does not include equilibrium effects in terms of labour and 

investment markets. 

CIMS functions by simulating the evolution of capital stocks over time via retiring, 

retrofitting, and purchasing of new technologies by consumers and firms in 5-year 

increments. CIMS calculates energy costs at every energy service demand node within 

each sector represented, and a model simulation iterates, using a convergence 
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procedure, until differences fall below a specified threshold. The competition of available 

(represented) technologies at each service node is based upon life-cycle cost of 

competing technologies, which have embedded technology-specific controls (Jaccard 

2009). Life-cycle costs are the basis for how the model determines the market share of 

competing technologies, and is influenced by consumer preferences, financial attributes, 

and technological attributes. Several behavioural parameters embedded in the 

technology competition algorithm enable the influence of aspects such as intangible 

(non-price) differences in technologies, time-preferences of consumers, and market 

heterogeneity.  

There are two functions within CIMS for simulating endogenous change in the 

attributes of individual technologies in response to stimuli: the declining capital cost 

(DCC) and the declining intangible cost (DIC) functions. The DCC function allows for 

decreases in a technology’s financial cost as an effect of cumulative production, which 

reflects economies-of-scale and learning effects. The DIC function allows for decreases 

in a technology’s intangible cost (a portion of a technology’s cost that represents risk and 

other intangible aspects that may decrease adoption) in a given period as a function of 

market share in the previous period, reflecting the decreases in perceived risk and 

greater awareness of a technology as it gains market share (the ‘champion or neighbour 

effect’).  

CIMS is composed of sub-models that account for nearly all of the energy 

consumption and production in the economy (CIMS excludes energy consumption in 

construction, forestry and agriculture sectors unrelated to off-road transportation, and 

also excludes non-energy usage of fuels). Figure 2 gives a diagrammatic overview of the 

basic structure of CIMS. 
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Figure 2 Structure of the CIMS Model (Source: Murphy and Jaccard (2011), 
used with permission) 

 

 The following table describes the goods and services represented within the 

sub-models that compose CIMS-U.S. Note that each sector includes space heating and 

cooling, pumping, compression, conveyance, hot water, steam, air displacement, and 

motor drive if applicable. 
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Table 1 Sector Sub-models in CIMS 

CIMS Sector Model Goods and Services Included 

Residential Cooking, refrigeration, hot water, plug-in electric load 

Commercial/Institutional Cooking, refrigeration, hot water, washers/dryers, plug-in electric 
load 

Personal Transportation Intercity and urban, split into single and high-occupancy vehicles, 
transit, walking, cycling, as well as off-road  

Freight Transportation Marine, air, road, and rail 

Industry  

Chemical Products Chlor-alkali, sodium chlorate, hydrogen peroxide, ammonia, 
methanol, and polymers 

Industrial Minerals Cement, lime, glass, and bricks 

Iron and Steel Slabs, blooms and billets 

Non-Ferrous Metal Smelting Lead, copper, nickel, titanium, magnesium, zinc and aluminum 

Metals and Mineral Mining Open-pit, underground, potash mining 

Other Manufacturing Food, tobacco, beverages, rubber, plastics, leather, textiles, 
clothing, wood products, furniture, printing, machinery, 
transportation equip., electrical and electronic equipment 

Pulp and Paper Pulp, newsprint, linerboard, uncoated/coated paper, and tissue 

Energy Supply  

Coal Mining Lignite, sub-bituminous, bituminous and anthracite coal 

Electricity Generation Electricity 

Natural Gas Extraction Natural gas and liquefied natural gas, transportation of product 

Petroleum Crude Extraction Light and heavy crude oil, synthetic crude oil 

Petroleum Refining Gasoline, diesel, kerosene, naphtha, aviation fuel, petroleum coke 

Biofuels Ethanol and biodiesel (represented as separate sub-models within 
CIMS, but combined within this study) 

Agriculture Soil practices, manure management, vehicles/tractors 

Waste Flaring or electricity generation from methane release 
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2.2. Elasticity of Substitution (ESUB) and Autonomous 
Energy Efficiency Index (AEEI) Values in Energy 
and Climate Policy Modeling 

Definition of ESUB 

Within economics, “elasticity” refers to how changes in one variable impact 

another. More specifically, elasticity refers to a measure of the relationship between 

price and demand for two variables (Ramskov and Munksgaard 2001). Thus, elasticities 

play a key role within production analysis and various economic models, since they 

determine the size and direction of demand adjustments that come about from price 

changes in a given market. 

An elasticity of substitution (ESUB) in particular refers to the ratio of relative price 

changes to relative quantity changes for two inputs. Introduced by Hicks (1932), ESUBs 

have become fundamental, and highly debated economic parameters. They are useful in 

various capacities for production analysis, as inputs to economic models, as well as 

being informative stand-alone indicators of the relationships between pairs of economic 

inputs. 

ESUBs indicate the responsiveness of a quantity to a change in price. “Own” 

price elasticities describe the responsiveness of a quantity of a variable to changes in its 

price. “Cross” price elasticities on the other hand describe the change in quantity of one 

variable as a result of changes to the price of another. 

ESUBs can be short-run or long-run in nature. Short-run ESUBs indicate 

responsiveness to price changes over a time horizon that is in general less than a 5-year 

period. These changes include near-term adaptive responses such as turning off lights 

more frequently, and changing habits about driving (Wade 2003). On the other hand, 

long-run parameters involve changes in an economy or sector’s infrastructure in 

response to prices, which occur over time spans that allow for the turnover of capital 

stock, such as the replacement of used equipment and retrofits (Wade 2003). Lifespans 

of capital stocks can vary greatly – for example, in CIMS, they are on the order of 13 

years for vehicles, and are over 50 years for very long-lived capital stock such as a 

hydroelectric dam. In the study at-hand, I use a 45-year simulation period in an attempt 
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to look at long-term substitution responses. This period is sufficient to capture the 

majority of long-term response. 

Allen-Uzawa elasticity of substitution 

The Allen-Uzawa (or simply Allen) elasticity of substitution (AES, represented by 

σ) (Allen 1938, Uzawa 1962) is a partial elasticity of substitution, meaning that it does 

not factor in effects of any factors of production other than the 2 that any given AES is 

based on. The AES is the most common elasticity of substitution measure, and in the 

current paper, I focus on calculating AES values. Shown in an alternate form from Allen’s 

initial 1938 definition, the Allen elasticity of substitution between two inputs Qi and Qj, 

with prices Pi and Qj is described as: 

!!" ! !
!!!! !!!
!!!! !!!

!! ! !! !!
!! !!

! 

Interpreting AES values is fairly straightforward. AES values are symmetrical, 

applying in both directions; that is, the value of i for j substitution is equivalent to that of j 

for i. Negative values suggest that input pairs are compliments, while positive values 

suggest that pairs are substitutes. A value of 1 for a pair of inputs (or for an own-price 

elasticity), for example, indicates that a 1% rise in the relative price of one, will yield a 

1% rise in the relative demand for the other – and vice versa. An own-price value of -1, 

means that a 1% rise in the own-price of an input will lead to a 1% decrease in 

consumption of that input. Values between 0 and 1, or between 0 and -1 indicate an 

inelastic relationship and values greater than 1 or less than -1 indicate an elastic 

relationship. Note that special cases are 0 (perfectly inelastic - a fixed proportion 

relationship), 1 or -1 (unit elastic), and positive or negative infinity (perfectly elastic – 

indicating perfect compliments/substitutes). As a guide to interpreting quantitative ESUB 

results qualitatively, the following list is useful: 
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• 0 to 0.3  or  0 to -0.3 Highly inelastic 

• 0.3 to 0.6  or  -0.3 to -0.6  Fairly inelastic 

• 0.6 to 0.9  or  -0.6 to -0.9  Slightly inelastic 

• 0.9 to 1.1  or  -0.9 to -1.1  (Roughly) unit elastic 

• 1.1 to 1.4  or  -1.1 to -1.4  Slightly elastic 

• 1.4- to 2.0  or  -1.4 to -2.0  Fairly elastic 

• 2.0 and above  or  -2.0 and below  Highly elastic 

There are a number of alternate specifications that have different uses, which 

some argue can be superior to the AES. 

Alternate specifications of ESUB values 

Though ESUBs in the form of the AES are fairly standard in the literature (and 

are focused upon in this report) there are a number of alternate elasticity of substitution 

specifications that have unique definitions, interpretations, and usages. There is 

extensive debate about the appropriateness of the various alternate elasticity metrics in 

different contexts (Blackorby and Russel 1989, Frondel 2011). Commonly employed 

alternate specifications include: 

1.  Own and cross-price elasticity of demand 

While the AES is the dominant ESUB metric, own/cross price elasticities of 

demand (PED) are also good indicators of substitutability. They account for a given 

input’s share, si, and as such are directional. I report own- and cross-price elasticities of 

demand (along with cost shares of the various inputs) in Appendix D. From the AES, 

cross-price elasticities of demand, PEDij, are given by: 

!"#!" ! ! !!!!" 

which gives the relative percentage change in the Qi  resulting from an increase in                                            

Pj (but not vice-versa, since the inputs usually have different cost shares (Serletis, 

Timilsina and Vasetsky 2011). Own-price elasticities of demand are given by: 

!"#!! ! ! !!!!! 
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2.  Morishima elasticity of substitution 

Like the price elasticity of demand, the Morishima elasticity of substitution (MES) 

is a directional (asymmetric) measure of substitution. The distinguishing feature of this 

metric is that it indicates how changes in the price of input j impact the ratio of Qi:Qj. Like 

the PED, the MES can be derived from the AES, as follows (Serletis, Timilsina and 

Vasetsky 2011): 

!"#!! ! ! !!!!!" ! !!!! 

The specification of elasticities has proven important in debates over ESUB 

values (Jaccard 2008). There are a few things to note concerning these alternate 

measures. While the AES is the dominant measure of the elasticity of substitution in the 

literature, there are cases where the PED or MES elasticities may be preferable, since, 

being asymmetric, they are arguably more representative of true economic behaviour 

(Broadstock, Hunt and Sorrell 2007). Frondel (2011) argues that price elasticities of 

demand are the preferable metric for many practical purposes. Blackorby and Russell 

(1989) are critical of the AES in cases with more than two inputs, and discuss the 

relative merits of the Morishima elasticity. In this research project, I chose to use the 

AES specification, since it is the most widespread in the literature, and thus easiest to 

compare. 

Definition of the AEEI 

ESUB values guide price-induced changes in energy usage. However, some 

energy-efficiency improvements are not price driven; as the name implies, the 

autonomous energy efficiency index (AEEI) indicates a rate of price-independent 

improvements in energy-efficiency (Jaccard 2009, Paltsev, et al. 2005) and it is used to 

capture these dynamics in energy-economy models. It is possible that modeling 

limitations prevent certain types of energy-efficiency gains from being captured by 

substitution between fuels, other inputs and technologies, and thus there is a need to 

capture these changes in energy-economy models. The AEEI is typically represented as 

an annual percentage improvement in overall energy-efficiency, and tends to vary by 

sector (though models will often use a single value across the economy). The 

methodology for calculating AEEI values from CIMS is described in section 3.5. 
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Role of ESUB and AEEI values 

ESUB and AEEI values are key parameters in general equilibrium models – and 

in particular in the CGE class of models mentioned above. ESUB and AEEI parameters 

simulate price dependant and price independent energy use responses to changes in 

technology, respectively. Since, in response to price changes, ESUB values indicate the 

degree of substitutability between any two pairs of production inputs, as well as between 

different forms of energy/fuels, ESUB values govern how demand adjusts to price 

changes within many economic models. For example, they indicate how easily one can 

buy energy-efficient equipment when energy prices rise. The AEEI is a parameter that 

guides improvements in energy productivity that result from price-independent 

technological advances. Calibrating these parameters is vital to the accuracy of the 

simulations, and is thus an important part of model design. 

More generally, ESUB and AEEI values are useful in a stand-alone context since 

they allow one to assess the relative opportunities for fuel switching, and the decoupling 

of energy use from output, across sectors or across regions. For example, if one 

observes a higher value for the ESUB between energy and capital in the residential 

sector as compared to the commercial sector, then one could expect that there will be 

greater potential for price induced improvements in energy efficiency in the residential 

sector. Additionally, ESUBs are a useful tool for understanding and estimating the 

magnitude of the rebound effect. The next section explores the debate over energy-

capital substitutability, and discusses how this relates to the rebound effect. 

The debate over energy-capital ESUB values 

The periods of oil price volatility that began in 1973 motivated many energy 

economists to study the empirical relationship between energy inputs and economic 

output in greater depth (Jaccard 2008). The idea that we can substitute capital (for 

example, in the form of the monetary value of more efficient equipment) for energy is 

widespread, and the debate over the extent to which we can substitute the two inputs is 

a very complicated - and divisive - topic (Jaccard 2008). 

Engineers and environmentalists often argue that we can make considerable 

reductions in energy consumption while maintaining economic output levels, even with 
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possible economic benefits (McKinsey&Company 2009, Lovins 1977). However, by 

employing more energy-efficient capital, economists note several possible complicating 

factors. First, the savings brought on by energy efficiency gains are realized in the 

future, and if returns on capital would be higher for investments on things other than 

energy efficiency, economic output would decrease. As well, the energy efficiency 

increase may require more expensive capital (equipment), which may not be entirely 

offset by energy cost savings, thus causing a reduction in economic output (Jaccard 

2008). Finally, and perhaps most important among the risks of energy-efficiency 

investment, is concern over the rebound effect. There is evidence of both a direct and 

indirect rebound effect (Sorrell 2008). An example of a direct rebound is that when 

investing in a higher efficiency television, one might purchase a larger television, 

offsetting some of the efficiency gain. Indirect rebound effects refer to phenomena such 

as a consumer or firm using cost savings from energy efficiency improvements to 

acquire additional goods or services that in themselves use energy. As compared to 

ESUBs suggesting long-term substitutability between energy and capital, ESUBs 

indicating a complimentary relationship suggest a greater influence of rebound effects 

upon shifts to more energy-efficient capital. 

Whether capital and energy factors of production serve as compliments or 

substitutes, and to what extent, is highly debated. Seminal papers on the extent of 

energy-capital (E-K) substitution found conflicting results. This debate is often expressed 

via elasticity values. Berndt and Wood (1975) initially reported complementarity between 

capital and energy. However, Griffin and Gregory (1976) argued that the time series data 

set employed by Berndt and Wood could only elicit short-run elasticities, and that their 

new work using pooled, inter-country data in fact revealed capital and energy to be 

substitutes. Griffin and Gregory argued that time-series data did not contain enough 

price variation to capture long-run dynamics, and that the pooled data, with it’s greater 

price-variation, was more representative of potential long-term response. In trying to 

determine other factors that might explain the conflicting results throughout the literature, 

researchers have looked into the effects of alternate functional forms other than the 

commonly employed translog (described in section 3.3), the effects of alternate ESUB 

specifications from the standard Allen values, and the importance of relative input share 

size on the elasticity estimates (Jaccard 2008). 
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Upon observing the extensive literature on E-K substitution, it quickly becomes 

clear that there is no consensus on the values, despite decades of intensive research on 

the subject - so much so, that many values seem nearly impossible to reconcile (and are 

even arbitrary). As reinforced by Broadstock, Hunt and Sorrell’s comprehensive review 

of E-K relationships in the literature (2007), the debate on E-K 

complementarity/substitutability has not been solved. 

The debate over AEEI values 

Given their exogenous nature, variations in AEEI values are highly influential 

over model forecasts. Similar to the debate over ESUB values, it is impossible to 

accurately predict the rate of technological energy efficiency improvement on the basis 

of historical data. As with ESUB values, there is a fair degree of expert elicitation and 

‘guesstimation’ in addition to historical information used for AEEI estimation. This was 

reinforced by exchanges that I had with a well-known CGE modeller who mentioned in a 

personal communication that for some studies AEEI values might need to be changed 

for some periods in order to reflect observed world developments. This is necessary, 

since there is no way to observe responses to new developments (and thus no hard data 

upon which to base the numbers), but nimble adjustments highlight the occasionally soft 

terms upon which the numbers are based. 

A survey of ESUB and AEEI parameters in models used for 
energy and climate policy analysis and related studies 

The goal of this section is to explore various ways in which ESUB and AEEI 

parameters are estimated and used in the literature, and to show some numerical 

examples drawn for sources comparable to my study. The following is an overview of 

both the specification and treatment of the parameters in a brief survey of top-down 

models and other elasticity of substitution studies. There is a fairly wide body of literature 

available on aggregate factor substitution between capital, labour, and materials/energy 

(though for energy-economy modeling, energy-capital aggregate factor substitution 

relationships are most important), with less research on inter-fuel relationships. 

The complete findings from the survey can be found in Appendix B, but tables 

Table 2-Table 4 below shows some of the key values. 
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In Table 2 I give an overview of key energy for capital ESUB values, beginning 

with the seminal finding of complementarity by Berndt and Wood (1975) – the study 

listed in the top-row. The next study listed is that of Griffin and Gregory (1976) which 

showed energy-capital substitutability using pooled inter-country data. From the survey, 

it appears that time-series data seems to lead to findings of complementarity, while 

pooled data show substitutability. I also included the ESUB within MIT’s EPPA model, a 

value generated from CIMS-CANADA in a previous study, as well as estimates from a 

recent comprehensive review by Broadstock, Hunt and Sorrell in the last two rows. 

Elasticity values ranging from -3.25 to 1.7 indicate the high variation among estimates. 

Table 2 Energy-Capital ESUB Key Models/Studies 

 

A brief overview of inter-fuel ESUBs drawn from various sources is given in Table 

3. Note that NG and RPP indicate natural gas and refined petroleum products, 

respectively. For the purpose of this comparison, I include only electricity sector values 

across select sources – values for other sectors (and including additional sources) are in 

Table 13 of Appendix B. As with capital for energy ESUB values, there is a very wide 

range in values, with certain notable trends across sources. Given the very minor role 

(~1%) that RPPs play in electricity generation (mostly for peaking generation) in the US 

and Canada, RPP own-price ESUB values indicate a highly elastic response, as 

expected.   

ENERGY-CAPITAL ESUBs 

Model/Survey Sector Elasticity of 
Substitution 

Time series data (Berndt and Wood 1975) U.S. Manufacturing -3.25 
Pooled data (Griffin and Gregory 1976)  U.S. National 1.07 
Time series data (Fuss 1977) CAN Manufacturing -0.10 
Pooled data (Pindyck 1979) U.S. National 1.77 
Time series data (Hunt 1984)  UK Industrial -1.6 
MIT-EPPA (Paltsev, et al. 2005) U.S. National 0.4 to 0.5 
Generated from CIMS-CANADA (Bataille 2005) CAN National 0.13 

Comprehensive review 
(Broadstock, Hunt and Sorrell 2007) 

National -0.39 

Industrial -0.23 
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Table 3 Inter-fuel ESUB for Electricity in Key Models/Studies 

Model/Survey Sector Input pair  
(or own-price) 

Elasticity of 
Substitution 

U.S. Translog inter-fuel model 
(Serletis, Timilsina and Vasetsky 
2011) 

Electricity 
Generation 

NG own-price -0.482 
NG-RPP -0.071 
NG-COAL 0.227 
RPP own-price -4.553 
RPP-COAL 0.671 
COAL own-price -0.196 

U.S. Translog inter-fuel model 
(Griffin 1977) 

Electricity 
Generation 

NG own-price -0.90 
NG-RPP 0.58 
NG-COAL 0.16 
RPP own-price -3.46 
RPP-COAL 0.50 
COAL own-price -0.66 

MIT-EPPA (Paltsev, et al. 2005) Electricity COAL – RPP/NG bundle 1.00 
RPP – NG 0.30 

CIMS-Canada (Bataille 2005) Electricity 

NG own-price -0.99 
NG-RPP Na 
NG-COAL 2.13 
RPP own-price -2.49 
RPP-COAL N.A. 
COAL own-price -1.34 

Table 4 summarizes AEEI values from various sources. The first two sources 

listed – the MIT-EPPA and MERGE models – use 1% and 0.8%, respectively for 

economy-wide AEEI values (though MIT uses 0.35-0.40% for electricity generation), 

while the corresponding CIMS-CANADA derived value is a far lower 0.16%. Moreover, 

while the MIT-EPPA and MERGE AEEI values are positive across all sectors, those 

derived from CIMS-CANADA (shown in the bottom part of the table) indicate decreasing 

energy efficiency in electricity, as well as the aggregate of energy supply sectors. 
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Table 4 AEEI Values in Key Models/Studies 

Model/Study Sector AEEI Value 
(%/yr) 

MIT-EPPA 
(Paltsev, et al. 
2005; personal 
communication) 

Electricity 0.35-0.40 

All sectors 
except 
electricity 

1.00 

MERGE 
 (Richels and 
Blanford 2008)  

All sectors - 
technology as 
usual scenario 

0.80 

All sectors - 
advanced 
technology path 

1.00 

CIMS-Canada 
(Bataille 2005, 
Bataille et al. 2006) 

Canada (All 
Sectors) 0.16 

Energy supply -0.73 
Energy demand 0.57 
Electricity -1.09 

As was previously alluded to, given the importance of ESUB and AEEI 

parameters, it is somewhat surprising- and troubling - that such a broad range of 

opinions and values exists, with little agreement over values or the procedures used for 

estimation. Trying to model a true-life process of course requires simplifying 

assumptions, which can help to explain the variety of approaches and values. 

Furthermore, empirically estimating such values from time-series data is challenging 

since we desire long-term ESUB and AEEI valus, yet there are always confounding 

short-term effects occurring in the economy, and thus the long term is difficult to estimate 

with confidence.  

2.3. Estimation of ESUB and AEEI Parameters in Top-
Down Models 

Traditional approach 

Given that top-down energy-economy model forecasts rely on aggregated 

representations of an economy, external information is required in order to guide how 

energy consumption might change in the future, and to parameterize the equations by 

which sectors interact as time progresses. The intuitive sources for this data are 
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historical records about energy consumption and energy prices. In many developed 

countries, this information is extensive, and often available to the public. For example, 

the U.S. Department of Energy ‘s Energy Information Administration, or Natural 

Resource Canada are two examples of organizations that keep and make public 

extensive records about historical energy usage, data from utilities, and provide analysis 

of trends. Historical records can reveal important behavioural and technological 

information about consumer and producer energy dynamics.  

Most top-down modellers analyze historical data using econometric techniques to 

derive the key parameters that drive their models. While the historic record is the best 

(because it is the only) true data that a modeller has upon which to base parameters, the 

past does not fully encapsulate the future possibility. Thus, the data may be obscuring 

true future price and non-price induced energy responses. 

An important caveat for parameter estimation is that ESUB and AEEI values are 

often model dependent; in other words, if an econometric study was done for a specific 

sectoral or regional aggregation that is different from the one used in the intended 

model, it can lead to inconsistencies. Consequently, most of the time it is necessary to 

estimate values that are to inform a specific production structure/model. 

An alternate approach to estimating ESUB and AEEI parameters 

A major and persistent critique of the top-down approach (such as in CGE 

models) concerns the values of key ESUB and AEEI parameters. Misspecification of 

ESUB parameters can have a very large influence on the outcomes of model 

simulations, estimates of policy costs, and accordingly on emissions reduction potential 

in an economy.  Much of the historical data used for parameter estimation dates back to 

the decades following World War II (Jorgenson, et al. 2000). Does historical data carry 

enough information to accurately portray future substitution potential? The future – with 

different technologies and fuels may differ from the past in terms of price response. For 

example, ESUB values between electricity and gasoline, or between ethanol and 

electricity in personal vehicles are important for understanding future substitution 

possibilities, however those possibilities were non-existent in the past (and there was not 

a clear incentive for low emission technologies). Relying solely on revealed preferences 
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from past markets is dubious when we know that market options are changing. There is 

a lack of empirical evidence concerning our behaviour when faced with emission 

reduction issues.  

While estimated from historical data in most cases, there is wide use of expert 

elicitation, and subjective ‘guesstimation’ in informing models. A modeller might have a 

quantitative basis to assume a particular level of price responsiveness for an input pair – 

for example, electricity and natural gas in the residential sector, though oftentimes they 

will simply assume a value that is in accordance with their qualitative observations. 

Incorporating technological change in top-down models using ESUB parameters 

enables modellers to capture substitution responses despite relying on highly 

aggregated data (Jaccard 2009). While bottom-up models excel at modeling 

endogenous technological change, top-down CGE models are not ideal for this purpose, 

though they remain essential for understanding the macro-economic effects of climate 

policies. There is a need to overcome the shortcomings of using historical data, and to 

incorporate future possibilities in elasticity estimation. But we do not have a 

counterfactual – there is no way to know what would have happened under a different 

set of circumstances with any certainty.  

Given the shortcomings of using historical records to derive top-down model 

ESUB and AEEI parameters, some researchers have explored an alternative approach. 

Griffin (1977) created a simulated set of future ‘pseudo-data’ based on a highly varied 

range of input prices to derive elasticity of substitution estimates. Griffin used a 

technologically explicit optimization model of the U.S. petroleum refining sector that can 

solve for optimal input quantities given a set of input prices. Via repetitive solution of the 

model, varying the input prices between simulations, Griffin was able to generate an 

artificial data set of model outputs corresponding to a range of input values, and thereby 

estimate the shape of the production possibility frontier. In other words, he could assess 

the substitution potential within the sector; he used the data on how input quantities 

change relative to input prices to derive elasticities of substitution for statistical 

estimation of ESUB parameters based on a flexible functional form. Griffin obtained 

results that were arguably more indicative of potential future responsiveness and 

substitution possibilities than those obtained by analyzing historical data, because (1) 
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statistical estimation can be problematic given all the confounding historic effects and (2) 

technology and fuel choices differ in the future versus the past to and this impacts the 

economic response to price change.  

While Griffin found a way to avoid using historical data to estimate elasticities, he 

derived forecasted pseudo-data using a linear programming/optimization model – a 

bottom-up energy-economy model. As discussed in section 2.1, conventional bottom-up 

models fail to capture behaviourally realistic responses to price and technology changes. 

Griffin’s optimization modeling approach might be inappropriate for estimating the likely 

real-world substitution response in the market to price change. Jaccard et al. (1996) 

suggested that replacing the optimization model used by Griffin with CIMS, a hybrid 

model that incorporates behavioural realism might offer a more faithful portrayal of 

substitution responses. Thus, Bataille (2005), and Bataille, Jaccard et al. (2006) used 

CIMS to generate the future ‘pseudo-data’ set based on sectors of the Canadian 

economy. The method creates ceteris paribus conditions by freezing all variables but a 

price change for one input in a given scenario, which allows one to avoid problems of 

confounding short-term effects apparent in historical data. With historical data, one can 

never see such isolated responses – one of the main reasons people have at-times 

been suspicious of the significance of values issuing from econometric studies. The 

same methodology has not been used since those studies from 2005 and 2006, and the 

methodology has not yet been applied to any other regional versions of CIMS. Given the 

particular interest in, and importance of climate policy developments within the U.S., 

using a U.S. application of CIMS can provide a check on the values emanating from 

conventional econometric estimation of historical data. 

2.4. Research Objectives 

In summary, my research objectives are to: 

1.  Provide estimates of elasticity of substitution and autonomous energy 
efficiency index, which, by being derived from historical data (revealed 
preference) but also future likely market conditions (stated preference 
research which estimates CIMS values), offer extra and perhaps better 
information than typical estimates based on time-series historical data 
alone. 
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2. Use the CIMS ESUB generating methodology for estimating long-run 
values for the U.S., which has never been done before. 

To achieve these objectives, I will: 

• Apply the price-shocking technique to generate a suite of pseudo-data from 
CIMS-US. 

• From this pseudo-data, estimate transcendental logarithmic production 
functions, and thereby calculate long-run ESUB parameter values for the U.S. 

• Investigate inter-fuel substitutability between the major fossil-fuel categories at 
both the economy-wide and sectoral levels. 

• Investigate aggregate-factor substitutability between capital and energy at 
economy-wide and sectoral levels. 

• Calculate AEEI values by comparing a technologically frozen CIMS simulation 
with a CIMS Business-as –usual (BAU) simulation. 

• Elicit and outline remaining challenges in using the price shocking, pseudo-
data estimation methodology. 

• Discuss potential applications for ESUB and AEEI results.  

• Describe ideas for model and methodological improvement. 
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3. Methods and Data 

3.1. Overview 

My principal objective was to calculate a suite of sectoral and national elasticity of 

substitution (ESUB) values for the United States, based on a set of ‘pseudo data’ 

generated from simulated scenarios in which prices of key energy inputs and capital 

varied. I followed the method set out by Griffin (1977), using the ‘pseudo-data’ to 

estimate transcendental logarithmic (translog) production functions. I also calculated 

sectoral and national autonomous energy efficiency index (AEEI) values from the 

pseudo-data. 

Bataille (2005) as well as Bataille, Jaccard et al. (2006) adapted the methodology 

set out by Griffin (1977) to estimate ESUB parameters by simulating a contrasting range 

of input prices in CIMS, treating the model output as a set of pseudo-data. The 

methodology for this study is closely based on this work, but my research is for the first 

time applying a United States application of CIMS, which was developed in recent years. 

The use of ‘pseudo-data’ generated with hybrid models such as CIMS is an adaptation 

to Griffin’s methodology since it pursues behavioural realism while allowing for 

technological developments not predictable from historical records.  In addition to 

differences related to applying the CIMS methodology to a new region, the base CIMS 

model has improved significantly in recent years in terms of its ability to show response 

to new prices in the energy-economy system, especially in transportation and in 

technologies that prevent carbon emissions via capture and storage. These 

advancements could have a significant effect on ESUB estimates. 

Price shocking an energy-economy model can be seen as testing out the model’s 

response surface. This refers to assessing and exploring potential for technological 

development in multiple directions, pushing the model towards its response limits. 
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As noted in chapter 1, ESUBs such as the values resulting from my work, can 

serve to inform CGE models, though choice of production function would most often be 

of the constant elasticity of substitution (CES) form rather than translog. However, in the 

case of this empirical work, I wanted to focus on exploring the price-shocking 

methodology, and generating a suite of values useful for comparison to other values in 

the literature.  

For this project, I price-shocked the CIMS-US model for 45-year periods to 

estimate long-run inter-factor and inter-fuel ESUBs from the data set produced from 

these simulations at both sectoral and national levels. In addition, I calculated AEEI 

values for each sector by comparing BAU runs with 'technologically frozen' runs, to 

establish the energy-efficiency improvement that is embedded in the baseline 

technology evolution within the model. The following sections provide more detail on 

how I went about each of the steps involve in estimating the ESUB and AEEI values. 

3.2. Price-shocking CIMS to Generate a Suite of 
Pseudo-data 

Model run methodology 

I generated a script1 to automate CIMS simulations with input price variations. I 

considered a range of prices for each fuel input as well as capital that include four 

unique price levels per input: -30%, starting price, +30%, and +60%. Thus, with four 

price levels for each of five inputs, there are 1024 unique price combinations, each 

representing an individual model simulation. The script outlined the price combinations in 

each of the 1024 pricing scenarios, and generated code that instructs CIMS to run each 

 
1 For the script, I used a script-generating tool initially developed by Jotham Peters, member the 

Energy and Materials Research Group where I am based, and which developed CIMS. For 
more information on the Energy and Materials Research Group at Simon Fraser University in 
Vancouver, Canada, and to access past publications and model documentation, visit 
www.emrg.sfu.ca 
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scenario at the correct price combination scenario, in a sequence that resets the fuel 

prices between simulations in order to model every possible pricing combination. Using a 

simulation period of 45 years from 2005-2050, prices were set to immediately go to the 

specified level in 2005, and remain at that level through the end of the simulation, 2050. I 

chose this time horizon since it is the standard run-time in CIMS (though the model can 

theoretically run indefinitely). Given my goal to calculate long-run ESUB values, the 45-

year simulation period is more than sufficient to elicit full capital stock turnover in all 

sectors (with notable exceptions being very long-lived capital such as hydroelectric dams 

and nuclear power plants in the electric generation sector). The initial price changes are 

imposed at the simulation outset in 2005. Though price adjustments are gradual in real 

world situations, for the purposes of gauging production responsiveness to price 

changes, it is not necessary to mimic this. In fact, maintaining constant prices throughout 

may yield superior representations of an economy’s absolute responsiveness by 

imposing the price shock immediately. Nevertheless, the rationale for using gradual price 

changes has merit. This is discussed in section 5.3. 

The price range I used is similar (though not identical) to that used in the 

antecedent work employing Canadian data (Bataille 2005) and captures a broad range 

of possible prices, revealing the majority of the simulation model’s price response 

surface. Absent carbon pricing policy, this range is likely to show the majority of the 

possible price variation for the long-term real prices from 2005 to 2050, the current 

standard simulation period in CIMS. It is worth noting that in the presence of significant 

carbon pricing policies (for example, in the range of $200/ton of CO2e, the fuel prices 

could rise significantly higher than the maximum +60% variation that I consider (with coal 

prices rising the most drastically given the notably high emissions associated with coal 

combustion). Nevertheless, carbon price elasticities should be analyzed in future studies 

since many researchers view stringent carbon pricing as the most efficient mechanism to 

curtail GHG emissions in regional and supra-regional economies. This is discussed in 

greater detail in section 5.3 on future work. 

The ‘pseudo data’ that results from the price-shocking simulations represents 

1024 alternate pricing situations that are roughly comparable to individual data points on 

a time series or in a cross-section, in terms of the way that they are used to estimate 

production functions. 
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I aggregated the resulting 2050 data for each sector into spreadsheets that show 

data on prices and quantity of each of the five inputs in a single file, and then summed 

each sector into national level data. From the price and quantity data, I could calculate 

expenditure on each fuel input up, and accordingly the cost share for each input, which 

is what the parameter regressions for the translog regression are based on. This formed 

the set of pseudo-data used to estimate translog production functions. 

3.3. Estimation of a Transcendental Logarithmic 
(Translog) Production Function Based on 
Pseudo-data 

While there are various functional forms studied and applied to estimate 

production functions, the transcendental logarithmic cost function (Christensen, 

Jorgenson and Lau 1975) is the common choice among researchers wishing to look at 

substitution elasticities. This is because, as a fully flexible functional form, the translog 

cost function allows one to look at the relationship between any pair of inputs with 

relative ease, since it places no a priori restrictions on specification of the Allen 

elasticities of substitution that one can calculate from production function parameter 

estimates. The translog production function is: 

!" ! ! !! ! !!
!

!!!
!"!! ! !!! !!"

!

!!!

!

!!!
!"!!!"!! ! 

in which q is output, !’s and "’s are the parameters to estimate by regression, and xi and 

xj are inputs (for this study: capital, electricity, natural gas, refined petroleum products, 

and coal).  

Using logarithmic differentiation, and applying Shephard’s Lemma (Shephard 

1953) to the translog function above yields a system of cost share equations, 

representing the demand for each individual energy type in terms of its share of 

aggregate energy expenditure. The system of cost share equations has several unique 

attributes that facilitate parameter estimation (and subsequent ESUB calculation). The 

system of cost share equations that applies to sectors in which every input category that 
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I chose to represent is included is as follows. Note that E=electricity, N=natural gas, 

O=refined petroleum products, and C=coal. Section 2.3 describes how the parameters 

are regressed from the set of pseudo-data.  

!! ! !! ! !!! !" !! ! !!" !" !! ! !!" !" !! ! !!" !" !!
!! ! !! ! !!" !" !! ! !!! !" !! ! !!" !" !! ! !!" !" !!
!! ! !! ! !!" !" !! ! !!" !" !! ! !!! !" !! ! !!" !" !!
!! ! !! ! !!" !" !! ! !!" !" !! ! !!" !" !! ! !! !" !!

 

An assumption that the translog function is homogenous of degree one (this is 

related to having constant returns to scale) requires the following symmetry and 

parameter restrictions be imposed, which allow the cost share equations to be estimated 

as a system: 

!!" ! !!"

!! ! !
!
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!!"
!

!!!
! !!"

!
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! !

 

The first restriction above implies that cross-price elasticities are symmetric. In 

order to estimate the parameters of the system, any one of the share equations needs to 

be removed by deleting any one cost share equation, as shown by Barten (1969). As a 

result of the symmetry restrictions above, the system of cost share equations can then 

be written as below, where I drop the coal equation (though any share equation can be 

dropped equivalently) to yield a resulting system of the form: 

!! ! !! ! !!! !" !!!!! ! !!" !" !!!!! ! !!" !" !!!!!
!! ! !! ! !!" !" !!!!! ! !!! !" !!!!! ! !!" !" !!!!!
!! ! !! ! !!" !" !!!!! ! !!" !" !!!!! ! !!! !" !!!!!
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Regression of pseudo-data to estimate production model 
parameters 

Regression of the parameters for the production model’s system of cost share 

equations was done using the “STATA” statistical software package (StataCorp. 2009), 

using Zellner’s Seemingly Unrelated Regression (SUR) technique (Zellner 1962). SUR 

estimation is a variety of linear regression across a system of equations, in which the 

error terms across the equations are seemingly unrelated, but in reality are correlated. In 

terms of translog cost share equations, since the equations’ error terms exhibit non-zero 

covariance, the cost share equations for each input are in fact related, and as such SUR 

estimation is the appropriate regression tool (Griffin 1977). For energy-capital 

relationships, however, since there are only two cost-share equations, SUR regression 

was not necessary – and as such I used linear regression for estimating these 

relationships. 

The output from each of the 1024 price-combination scenarios/simulations 

represented a single data point for regression. This output, a set of prices and quantities 

across each scenario, was used to calculate input cost shares, which along with the 

natural logarithm of the prices formed the basis for the SUR /linear regression of this 

data, which yielded the parameter estimates for the system of cost share equations for 

each sector (or national aggregations). The multiple pricing scenarios formed the basis 

for a regression of the parameter estimates for the system of cost share equations. The 

remaining parameter estimates for the omitted cost share equation can be calculated by 

virtue of the parameter restrictions outlined above.   

Note that in CIMS, not every fuel is represented in every sector. (For example, it 

is assumed that there is no coal consumption in the residential sector.)  As a result, in 

sections where certain fuel classes are not represented, there will be one fewer cost 

share equation in the system per excluded fuel category. The following section describes 

the inter-fuel production models used in this study by sector, and Table 5 indicates which 

fuel categories are included by sector.  
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Inter-fuel production models 

For this study, as indicated in the system of equations above, I have 

distinguished energy types into four categories: (1) Electricity; (2) Natural Gas; (3) 

Refined Petroleum Products; and (4) Coal. Each individual fuel has specific and unique 

attributes – notably in terms of GHG and particulate emissions intensity, energy density, 

cost, and availability by sector. However, bundling them into the four categories makes 

both logical and computational sense. 

1.  Electricity – Includes electricity only. (The electricity generation sector 
within CIMS accounts for the various primary forms of energy used for 
generation, including fossil fuels, nuclear, and renewable fuels.) 

2. Natural Gas – Includes methanol natural gas and process natural gas. 

3. Refined Petroleum Products – Includes aviation fuel, biodiesel, 
diesel, ethanol, gasoline, heavy (residual) fuel oil, light (distillate) fuel 
oil, liquefied petroleum gas, petroleum coke, petroleum pitch, propane, 
refinery fuel gas and still gas. (All products are generated from crude 
oil, which is represented by a separate sector within CIMS.) 

4. Coal – Includes regional varieties of anthracite, bituminous, sub-
bituminous and lignite coal, coke, and coke oven gas. 

Table 5 below is a summary of the fuel categories included in CIMS by sector, 

where shaded cells indicate that a particular sector includes the given fuel category: 
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Table 5 Fuel Categories Consumed/Represented in CIMS by Sector 

Fuel Category 
Sector Electricity Natural Gas Refined Petroleum Products Coal 

Residential     

Commercial/Institutional     

Personal Transportation     

Freight Transportation     

Industry     

Chemical Products     

Industrial Minerals     

Iron and Steel     

Non-Ferrous Metal Smelting     

Metals and Mineral Mining     

Other Manufacturing     

Pulp and Paper     

Energy Supply  

Coal Mining     

Electricity Generation     

Natural Gas Extraction     

Petroleum Crude Extraction     

Petroleum Refining     

Biofuels     

Agriculture     

Waste     

It is important to note my production functions do not include every fuel/energy-

type that is represented in the CIMS model; I only include electricity, along with fossil fuel 

categories. While this is logical in regard to GHG emissions and constituency of the U.S. 

energy-system, there are also reasons that one would explicitly include other major (and 

high future potential) energy types such as hydroelectric, other renewables, and nuclear. 

(However, these are primary inputs in electrical generation with little to no direct energy 

consumption, and as such represented indirectly in electricity.) Reasons for choosing 

what is included in this study include the fuels’ roles in GHG emissions reduction, and 
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the limited role for omitted fuels outside of the electricity generation sector. I discuss the 

rationale and drawbacks to only including electricity and fossil fuel energy types in 

Section 5.3 (future research). 

The following is a list of fuels/energy-types that, while represented and 

demanded by technologies in CIMS-US, are omitted from my analysis (note that some of 

the fuels serve as primary inputs for electricity generation): bio-gas, black liquor, by-

product gas, crude oil (though crude oil is processed into RPPs, which themselves are 

subject to price changes), flare gas, geothermal, hazardous waste, hog fuel, hydrogen, 

landfill gas, solar, uranium (nuclear), walking, waste fuel, water (hydro), wind, wood, and 

iron process gases.  That said, the simulations I conducted include the information 

needed to infer the effect of substitution between fossil fuels and renewables in the 

electricity sector, since this substitution is embodied in the K-E elasticity (since the cost 

of renewable generation is virtually entirely capital.) 

Aggregate factor energy and capital production model 
The energy price aggregator function 

Using the translog cost function approach, I analyzed inter-fuel substitution using 

the model specification described above in2.3. However, calculating substitutability 

between the two aggregate factors of production included in this study – capital (K) and 

energy (E) – required data on price and quantity of each factor. The model output from 

each of the 1024 simulation scenarios yielded this information only for K. Obtaining the 

required price and quantity information on the energy aggregate required aggregating 

price information for the individual energy sub-types. One might initially attempt 

weighting each energy price by its share – however this is appropriate only if all ESUBs 

are zero. Since this is not the case, I needed to calculate an overall energy price index. 

Following the methodology initially set out by Fuss (1977), and used in 

subsequent studies (Serletis, Timilsina and Vasetsky 2011, Bataille, Jaccard, et al. 2006) 

I calculated an aggregate energy price index using an energy price aggregator function. 

The energy price aggregator has a similar form to the translog production function: 
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In which PE is the price of the energy aggregate, PEi,, and PEj represent prices of 

individual energy types (thus each possible fuel pair figures in to the equation), and the 

alpha and beta values are parameters estimates from the inter-fuel production model. In 

essence, I could insert inter-fuel parameter estimates along with disaggregate energy 

prices to the translog price aggregator function to generate an aggregate energy cost 

estimate for each price-shocking scenario. 

Calculating the energy price-index involves treating the inter-fuel energy 

production function as a sub-model and recognizing the implicit assumption of 

homothetic, weak separability – that aggregate inputs (in my case, capital and energy) 

can be disaggregated, and that the sub-function(s) are monotonically increasing, such 

that the two stage regression procedure yields valid results (Fuss 1977). In this study I 

am treating RPP, ELEC, NG and COAL as making up a separable and homogenous 

energy aggregate. This essentially allows modeling of the production function to occur in 

2 stages, beginning with energy types, and then feeding an aggregate energy price 

index into the two-input capital-energy model. The assumption of separability is required 

in order to able to analyze inter-fuel relationships (as described in the previous section), 

such that total output can be ‘separated’ into a capital (K) component, and an energy (E) 

bundle. The simplified form of the production function illustrates this: 

! ! !!!!!!!!"!# !!!" !!!"" !!!"#$!! 
   

Value-added compensation and data source for comparison 

Since the focus of CIMS is on energy supply and demand aspects of production, 

the model does not fully capture the amount of value-added (VA) provided by productive 

capital and labour inputs within each sector. Moreover, energy is the only intermediate 

input that CIMS explicitly represents (other materials are excluded in CIMS). CIMS sub-

models cover fuel costs, capital costs associated with consuming energy, and some 

labour costs (operation and maintenance costs, which are often represented as a fixed 

proportion of capital costs). Thus, the sub-models omit costs for installing capital that are 
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not associated with energy and raw materials. The extent of costs covered by each 

sector varies from very low (~5%) to nearly full coverage. For example, within the 

commercial sector of CIMS, the sub-model covers only the equipment that uses energy 

and the building shells, and not activity that occurs within the shells. Similarly, in the 

other manufacturing sector, the model only represents energy using and consuming 

activity, and as such does not capture the majority of capital provided by the sector.  I 

measured the missing costs by comparing CIMS’ capital cost output with historical data, 

and the CIMS output was adjusted accordingly by a compensation factor proportional to 

the size of the gap. In my study, I did not consider labour costs; thus I only needed to 

account for capital costs not covered by CIMS in order to yield meaningful estimates of 

capital for energy substitutability. It was necessary to apply compensation factors to the 

capital levels reported by CIMS simulations to do so. 

In order to determine appropriate compensation factors, I utilized input-output 

data from the 2002 benchmark data provided by the U.S. Bureau of Economic Analysis 

(BEA) (US Bureau of Economic Analysis 2011) and aggregated the reported VA values 

into aggregations that matched with CIMS sector composition to yield a valid 

comparison. As in Griffin and Gregory (1976), I then separated out wages and salaries - 

the labour cost component (listed by the BEA as “compensation to employees”) - from 

the BEA VA values, since I desired capital values. Though CIMS does not account for all 

categories that the BEA data reports, in aggregating BEA sectors to match those from 

CIMS, I accounted for 88% of all capital reported by BEA for the U.S. economy, and thus 

included the majority of capital expenses (the BEA reports certain categories such as 

government expenditures which are not accounted for in CIMS, explaining why I could 

only account for 88% of total BEA reported capital expenditures). After compensation for 

consumer price adjustments and growth to make the 2002 BEA data comparable with 

the 2005 CIMS data which I was assessing, I determined the proportion of capital that 

was captured in each sector of CIMS.  

At the national level, CIMS captures 49% of the capital as reported by the BEA. 

Excluding transportation sectors, this number drops to 25%, presumably due to CIMS 

accounting for a relatively high share of capital in the transportation sectors – a logical 

finding since a large part of capital in the transportation sectors is energy using, and as 

such is represented in CIMS.  
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Individual sectors showed considerable variation as expected. For example, the 

other manufacturing sub-sector of CIMS captured 6.4% of BEA reported K, which is 

sensible since much of the other manufacturing capital stock is excluded from CIMS 

analysis. This translated into a 1/0.064, or ~15.6 compensation factor for CIMS’ K 

values. Similarly, my finding of ~78% and ~100% of K captured by electricity and refinery 

sectors, respectively, is logical since the majority of activity in energy supply sectors is 

energy-intensive. On the other hand, in certain sectors, I found that CIMS was ostensibly 

indicating greater than the full K indicated by the BEA, suggesting either methodological 

or model issues. For these sectors, I applied a decreasing compensation factor to 

reduce K estimates from CIMS. 

Though I would not expect CIMS to capture the full extent of value added/capital 

in most sectors, the problem sectors should be assessed in future work. This is 

discussed further in Section 5.3. 

3.4. Calculation of ESUBs Based on Regressed 
Production Function Parameters 

From the parameter estimates for the translog system of cost share equations, 

Allen elasticities of substitution can be calculated as follows: 

!"#$$ ! !"#$%!!!!!!!!!!!!!" !
!!" ! !!!!
!!!!
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!!! ! !!! ! !!

!!!

 

For all resulting ESUB values, I followed Bataille (2005) in using  +/- 3.00 as a 

maximum cut-off point for ESUB values calculated. The ESUB estimation process can, 

in theory, yield a response surface implying elasticity values from negative to positive 

infinity. For certain inter-fuel values, when the price-shocking technique takes the model 

and pseudo-data out of the realm of reality – and especially in sectors in which a 

particular fuel has a very low cost share – the model can yield elasticities of an 

unrealistically high magnitude. The limiting elasticity values of +/- 3.00 are cut-off points 
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that constrain my estimates within reasonable bounds (comparable to what is found in 

external literature). The +/- 3.00 range has the potential to indicate highly elastic 

substitution response, but prevents values that suggest infinitely/very highly elastic 

responses, which are likely unrealistic. 

Figure 3 below shows an overview of the ESUB estimation methodology: 

Figure 3 Graphic Overview of Elasticity Calculation Method  

 

As shown, the process of generating elasticities from CIMS pseudo-data is a 

multi-step procedure, in which the outputs from the various steps are soft-linked (for 

example, I manually took the pseudo data output and entered it into the regression 

model). Beginning with the desired range of input prices, I ran a series of simulations. I 

then assembled a set of pseudo data so that it would be compatible with the translog 

structure, and used regression software to calculate the coefficients of the cost-share 

equations. Finally, I used the coefficient estimates to calculate elasticity values. 
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3.5. Calculation of AEEI values using CIMS 

Autonomous energy efficiency index (AEEI) values were calculated by comparing 

energy consumption in the year 2035 between a technologically frozen (TF) simulation 

and a BAU reference simulation. Running a model under technologically frozen 

conditions entails freezing market shares and technology attributes within CIMS. The 

formula used to determine the annual rate of change in energy consumption in the 

model is: 

!""# ! !!" !"#!! !"!"#! ! ! ! 

which outputs a rate of AEEI in %/year, in which n refers to the number of compounding 

periods, TF refers to energy consumption in the technologically frozen simulation, and 

BAU the energy consumption in the reference case (Luciuk 1999, Bataille 2005). I 

considered AEEI values at both national and sectoral levels of aggregation. 

I chose a to use a 30-year simulation period for AEEI calculations (n = 30), as 

opposed to the 45-year period used for ESUB calculation. It made sense to use this 

shorter timeframe for calculating AEEI values due to concern about CIMS reaching a 

maximum in terms of technical development, and as such compounding energy 

consumption changes over an unreasonably long-period, causing erroneously lowered 

AEEI estimates. On the other hand, even if certain aspects of the model achieved their 

maximum technical potential ahead of 2050 (the end of the ESUB simulation period), I 

would not expect the additional run time to have a significant effect on ESUB values. 

3.6. Challenges 

One of the main challenges associated with the elasticity generation technique 

outlined above is the coordination of all steps, as well as deciding on time frames, price 

deviations, sectoral aggregations and other such decisions that might have an influence 

upon the results. Quantifying the impact of methodological variations is a separate 

challenge – one that I did not explore in any depth given the large number of price 

variations I was already studying in the model. That said, by the large number of price 
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combinations, I am already doing somewhat of a sensitivity analysis, since the ESUB 

values represent an ‘average’ of responses to multiple changes in price.  I discuss some 

of these considerations in greater detail at the end of this report, where I consider 

potential methodological improvements and sensitivity analyses for future studies (see 

Section 5.3). 
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4. Results and Discussion 

This section outlines the ESUB and AEEI results that I calculated from the set of 

simulated pseudo-data generated by CIMS. Note that I present national level results 

both with and without the personal and freight transportation sectors included. This is 

mainly due to low price responses that I found in the transportation sectors (discussed 

further in later sections) which I thought might unduly distort national level data.  

When interpreting the results, the reader should keep in mind the following: (1) as 

noted previously, the Allen elasticity of substitution values are symmetrical between any 

2 inputs, and as such I do not present the duplicate data – i.e. a capital for energy ESUB 

is equivalent to energy for capital; and (2) the following abbreviations apply: E = 

electricity or energy (depending upon context – energy if aggregate results, electricity if 

interfuel results), NG = natural gas, RPP = refined petroleum products, K = capital. 

4.1. ESUB results 

National ESUB estimates are presented first, with inter-fuel values listed in Table 

6, and aggregate (E-K) values presented in Table 8. Following this, I present sub-sector 

ESUB results, with inter-fuel values given in Table 7, and aggregate values in Table 92. 

 

 
2 Most regressions, on which the ESUBs are based, yielded coefficients of variation (R2) values 

that indicate the majority of variation within the pseudo-data set being explained by the 
production model. For many sectors the values are 0.9 or higher. P-values are generally 
under 0.05 indicating that the dependent variables were strongly significant. This makes 
sense since the CIMS simulation algorithm is designed to respond to changes in prices in 
(usually) predictable and expected ways. 
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Interpretation 

At the national scale, inter-fuel ESUBs, as shown in Table 6, exhibited a wide 

range of values, and seemed to be influenced to a varying degree by the inclusion or 

exclusion of the transportation sector in the national aggregate. Natural gas and coal 

own-price values in both cases were highly elastic, each with a value of -3. According to 

the result, at the national scale, a 1% rise in the relative price of either input will result in 

in a 3% decline in its relative demand. Electricity and refined petroleum product own-

price values, on the other hand, indicate lower elasticity and greater influence from the 

inclusion of transportation sectors. The calculated own-price elasticity for electricity 

became less elastic with the exclusion of transport, going from -1.02 to #0.60. 

Table 6 National Inter-fuel Elasticities of Substitution  

Substitution 
Relationships U.S. U.S. w/out 

Transport 
ELEC own-price -1.02 -0.60 
ELEC:RPP 0.36 0.47 
ELEC:NG 1.27 1.04 
ELEC:COAL -0.73 -0.69 

 
NG own-price -3.00 -3.00 
NG:RPP 1.10 2.83 
NG:COAL 3.00 2.59 

 
RPP own-price -0.77 -3.00 
RPP:COAL -0.16 -1.06 

 
COAL own-price -3.00 -3.00 

Between individual fuels, I found the electricity for RPP relationship to be 

moderately inelastic (0.36 with transport sectors, 0.47 without), and electricity for NG to 

be close to unit elastic. Electricity’s more elastic relationship with NG (1.27 with transport 

sectors, 1.04 without) reflects the many instances across the U.S. economy in which 

electricity and NG can offer similar services – for example for space heating, and 

providing heat for industrial processes – instances in which RPPs have limited 

applicability. A result that is somewhat surprising, and seemingly counterintuitive is the 

complimentary relationships that I found between coal and electricity (-0.73 with, 

and -0.69 without transport sectors), and coal and RPPs (-0.16, and -1.06). I speculate 

that these interesting coal-electricity results are strongly influenced by the predominance 
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of coal in the U.S. electric generation sector, which, consuming nearly the entire share of 

coal in the economy, may experience a rise in electricity output price and/or decline in 

output in response to higher coal input prices. However, these national level results also 

show that aggregating sectors and end-uses can lead us to estimate complementary 

relationship between two inputs, when in fact they may be substitutes at a sectoral/end-

use level.   

In interpreting the national level results, note that the values are not simply the 

mean of ESUB (and AEEI) values across all sectors, but are calculated from national 

level pseudo-data and production models. In effect, the national aggregates are 

weighted by costs/expenditures. It is important to keep this in mind when interpreting 

national aggregate results, since for certain measures, a given sector may hold 

significantly more influence on the elasticity value. For example, since the majority of 

expenditures on petroleum products are in the transportation sector, transportation price 

responses dominate the calculation of the national values involving RPPs. As shown in 

Table 7 below, measured RPP own-price elasticities in personal and freight 

transportation were -0.04 and -0.15, respectively, or very inelastic, and in general for 

other sectors the ESUB was more elastic, and in many cases -3. This is reflected by the 

national aggregate measures given in Table 6. With the transportation sector included, 

the RPP own-price value is -0.77, whereas with the transport sector excluded, the value 

is -3.  
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Table 7 Inter-fuel Elasticities of Substitution by Sector 

 

 

  

 

Note: * = not applicable; _p = own-price 
elasticities; E = electricity, N = natural 
gas, O = refined petroleum products, and 
C = coal) 

Substitution 
Relationships: E:N E:O E:C N:O N:C O:C 

Demand Sectors  
Commercial 0.69 1.17 * 3.00 * * 
Residential 1.80 1.20 * 2.26 * * 
Personal Trans. -3.00 1.06 * 3.00 * * 
Freight Trans. * * * 3.00 * * 
Waste * * * * * * 
Agriculture 0.76 0.02 * -0.18 * * 
Industry 

Chemical Products 1.50 1.11 -3.00 3.00 -3.00 3.00 
Industrial Minerals 0.64 3.00 0.13 -0.12 0.18 0.40 
Iron and Steel 0.18 0.20 -0.07 3.00 0.19 0.17 
Metal Smelting 0.26 0.61 -0.23 3.00 1.68 0.75 
Mining 0.11 0.33 0.36 1.68 -3.00 0.36 
Other Manufacturing 0.82 0.77 -1.00 3.00 3.00 3.00 
Pulp and Paper 0.57 0.48 -1.33 3.00 1.41 -0.37 

Supply Sectors 
Crude Extraction -0.26 0.09 1.86 0.42 3.00 -0.54 
Electricity * * * 3.00 2.26 0.29 
Coal Mining -0.26 0.17 -3.00 -0.35 3.00 -1.11 
Petroleum Refining -3.00 -1.87 -3.00 1.47 -3.00 0.04 
NG Extr. and Trans. 1.29 -3.00 * 0.12 * * 
Biofuels 2.46 0.16 1.26 0.72 3.00 -3.00 
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Table 7 Continued 

Substitution 
Relationships: Ep Np Op Cp 

Demand Sectors 
Commercial -0.20 -3.00 -3.00 * 
Residential -0.34 -3.00 -3.00 * 
Personal Trans. -3.00 -3.00 -0.04 * 
Freight Trans. * -3.00 -0.15 * 
Waste 2.64 * * * 
Agriculture -0.26 -1.07 0.01 * 
Industry 

Chemical Products -2.89 -1.30 -3.00 3.00 
Industrial Minerals -0.63 -0.84 -3.00 -0.83 
Iron and Steel -0.12 -3.00 -3.00 -0.17 
Metal Smelting -0.12 -3.00 -3.00 -3.00 
Mining -0.22 -3.00 -0.76 3.00 
Other Manufacturing -0.78 -1.44 -3.00 -3.00 
Pulp and Paper -0.09 -3.00 -3.00 3.00 

Supply Sectors 
Crude Extraction -0.35 -1.57 -0.19 -3.00 
Electricity * -1.47 -3.00 -3.00 
Coal Mining -0.09 2.87 -0.12 3.00 
Petroleum Refining -3.00 -3.00 -0.36 3.00 
NG Extr. and Trans. -3.00 -0.43 3.00 * 
Biofuels -3.00 -1.08 -1.02 -3.00 

Own price elasticities across the four fuel categories revealed notable 

differences. As seen in Table 7, NG, RPP and coal values often reached the cut-off of 

+/- 3.00, while electricity values were by comparison modest, and with greater variability. 

One would normally expect negative values indicating reductions in the quantity of a fuel 

used in response to price increases, but this was not always observed. While this makes 

sense for the waste sector’s own-price electricity value (since cogeneration causes 

waste’s electricity output to increase in light of higher electricity prices), for own-price 

coal responses some values are difficult to explain. In the industrial and supply sectors, 

coal own-price ESUBs indicated highly elastic responses across all sectors, and in both 

positive and negative directions. The seemingly strange own-price coal responses may 

be due in part to the low cost share of coal in most sectors, which can cause 

exaggerated results, since elasticity estimates are directly affected by the cost share of a 

given fuel. As such, while some elasticities don’t make sense for coal, they are not 

particularly important results. In light of its low price and low use, coal has a very low 

(0.2% - ~3%) cost share in five out of 7 industrial sectors. ( Table 16 in Appendix D gives 

an overview of each fuel categories’ cost share across sectors.) The two sectors that use 
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significant shares of coal, and accordingly displayed inelastic own-price coal ESUBs 

were industrial minerals and iron and steel – indicating very limited substitution 

possibilities. For example in a scenario that had coal prices inflated by 60%, with all 

other fuels unchanged, adoption of coal consuming technologies was relatively 

unchanged, given that metallurgical coal is an essential input in the manufacturing of 

steel. Also, while relative price changes are the same across all fuels, since coal has 

such a low price to begin with changes to coal prices may get buried in model noise, and 

thus a greater range of coal prices could help to more fully determine the effect of coal 

price change.  

Capital-energy relationships indicate the potential for switching away from 

energy, and are shown in Table 8 below. National capital for energy ESUB calculations 

resulted in fairly inelastic measures of 0.21 with and 0.15 without the inclusion of the 

transportation sector, indicating only modest potential for long-term substitution between 

the input pair. This difference suggests that a good portion of energy-efficiency price 

based response occurs in the transportation sector. Notably, personal transportation had 

the highest E-K ESUB of all demand sectors at the national level, 0.28, surpassed only 

by certain supply sectors - electricity (0.62) and biofuels (1.56). Chemical products was 

the only demand sector showing a negative relationship, albeit negligible at -0.02. 

Residential and commercial sectors yielded values of 0.09 and 0.13, respectively. 

Amongst energy supply sectors, coal mining and petroleum refining were the only two 

that exhibited complimentary relationships, as indicated by the negative E-K ESUB 

values - potentially a result of demand feedbacks that cause reductions in output as a 

consequence of higher energy prices. 

Table 8 National Inter-factor Capital (K) for Energy (E) Elasticities of 
Substitution  

Substitution 
Relationships U.S. U.S. w/out 

Transport 
K:E 0.21 0.15 

 
K own-price -0.06 -0.02 
E own-price -0.66 -1.00 

Even with results suggesting only slight potential for long-term substitution 

between energy and capital, the future ability to produce energy with low or zero 
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emissions may reduce the importance of the debate over E-K ESUB values (Jaccard 

2008). 

From Table 9 below, we see that own-price energy responsiveness was 

generally low, with notable exceptions in the residential sector (-3.00), waste sector (2.64 

– a positive value due to cogeneration possibilities), electrical generation sector (-1.63) 

and biofuels sectors (-3.00). Inelastic own-price energy elasticities show the relative 

susceptibility of those sectors to fluctuations in energy prices. The relatively high 

response to energy prices in the residential sector reflects the adoption of efficient 

varieties of space and water heating and electrical appliances (notably refrigeration 

technologies). In scenarios with high natural gas and electricity prices, the more energy-

efficient technologies in a technology node captured significant portions of new market 

share. Likewise, under high fuel prices in the electrical sector, I observed energy-efficient 

(though relatively costly) combined cycle generators gaining the majority of new market 

share over the course of the simulation period. Nationally, the values for own-price 

energy elasticity were -0.66, and -1.00 both with and without transportation, implying 

inelastic and unit elastic complementary relationships, respectively. 
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Table 9 Inter-factor Capital (K) for Energy (E) Elasticities of Substitution by 
Sector 

Substitution Relationships: K:E Kp Ep 
Demand Sectors 

 Commercial 0.09 -0.01 -1.29 
Residential 0.13 0.00 -3.00 
Personal Trans. 0.28 -2.37 -0.03 
Freight Trans. 0.07 -0.02 -0.20 
Waste 0.17 0.01 2.64 
Agriculture 0.05 -0.03 -0.09 
Industry  

Chemical Products -0.02 0.00 0.08 
Industrial Minerals 0.07 -0.05 -0.11 
Iron and Steel 0.07 -0.16 -0.03 
Metal Smelting 0.06 -0.28 -0.01 
Mining 0.08 -0.16 -0.04 
Other Manufacturing 0.07 -0.01 -0.41 
Pulp and Paper 0.11 -0.04 -0.31 

Supply Sectors  
Crude Extraction 0.07 -0.07 -0.06 
Electricity 0.62 -0.24 -1.63 
Coal Mining -0.31 1.06 0.09 
Petroleum Refining -0.05 0.02 0.09 
NG Extraction and Trans. 0.25 -0.10 -0.66 
Biofuels 1.56 -3.00 -0.51 

Table 15 in Appendix C gives an overview of all ESUB values. 

Comparison to literature 

While initial work by Berndt and Wood (1975) found complementarity between E 

and K, Griffin and Gregory (1976) found divergent evidence of substitutability, and 

argued that the time-series data used by Berndt and Wood could only elicit short-run 

elasticities. Berndt and Wood (1979) wrote that early contradictory results on E-K 

substitution were the result of differing data sets, treatments of excluded inputs, and 

distinctions between short-run and long-run elasticities. Thus, without sufficient time for 

adjustment to price changes deducible from time-series data sets, findings of 

complementarity might make sense. Nevertheless, Griffin and Gregory’s seminal 

findings of E-K substitutability reflected their use of data that represented greater 

variation in prices, and which they argued could, as such, better elicit long-run E-K 

relationships. In addition to the issues of eliciting long-term effects from short-term data, 

there are too many confounding effects over time to be able to elicit the long-term effect 
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of price changes from historical data – and of course this is made all the more difficult 

during periods of no price change. My calculations indicated substitutability, however 

with only a slight opportunity for the long-term substitution between capital and energy. 

This suggests that increases in price-induced energy-efficiency have less potential for 

the reduction of energy consumption and GHG emissions than some claim (and in 

particular, less then many engineers and environmentalists believe). 

In comparison to the elasticity study done by Bataille (2005) using a Canadian 

application of CIMS, certain results stand out. In particular, E-K ESUBs responded in the 

opposite direction with the exclusion of transport sectors. In Bataille’s work, the value 

rose from 0.13 to 0.27, whereas in my U.S. study, it declined from 0.21 to 0.15 with the 

exclusion of personal and freight transportation. Note that in my unreported preliminary 

results, however, in which my price-shocking scheme involved more drastic price 

changes (relative to embodied emissions in the different fuel categories) I found a result 

similar to that of Bataille – E-K National ESUBs went from 0.14 to 0.29 – nearly identical 

to Bataille’s result. I believe that this is due to my finding of relatively high E-K 

substitution in the personal transportation sector (0.28) as compared to Bataille’s 

transportation result of 0.08 (noting again that Bataille’s model did not disaggregate 

personal and freight transportation). Also note that Bataille’s study was done roughly 8 

years ago (published in 2005), and several key models of efficient vehicles are now in 

the CIMS model now (in both Canadian and U.S. versions). This may help to explain the 

reversal of the effect of including/excluding transport between newer and older models.  

An earlier article which utilized a price-shocking methodology comparable to my 

own in order to derive ESUBs from the NEMS hybrid energy-economy model (Wade 

2003) appears to have found significantly less responsiveness in the U.S. residential and 

commercial sectors, as compared to my results (see Table 7). Though the reason is not 

clear, it is interesting to note that the Wade study used a simple price shocking scheme 

that involved two price scenarios (base and doubled prices), whereas in the CIMS study, 

I employed a less extreme, and more gradated price-shocking scheme. Additionally, I 

consider price increases and decreases, whereas Wade looks only at price increases, 

and this might help explain the lower responsiveness that he found. Wade discusses 

how an earlier round of elasticity estimates from NEMS was obtained using a 10% 

increase in prices, as opposed the subsequent approach of doubling energy prices. The 
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use of higher prices was motivated by higher than anticipated energy prices, though the 

change of price shocking scheme did not have a significant impact on elasticity 

estimates. Despite differences in price shocking schemes, the higher price 

responsiveness in my study using CIMS as compared to Wade’s NEMS study might 

simply reflect greater technical efficiency potential embedded in CIMS model options. 

4.2. AEEI Results 

Interpretation 

Comparing 30-year simulations of CIMS with and without technological 

development revealed a varying response across sectors. As shown in Table 10 below, 

nationally, the U.S. AEEI was estimated to be 0.96%/year with all sectors included. The 

exclusion of the transport sector raised the measure of energy-efficiency improvement to 

1.07%/year, largely due to the impact of removing freight transportation, which exhibited 

a low 0.25%/year AEEI, and is a high energy consuming sector. 

Table 10 AEEI Results: National 

Sector/Region AEEI % / year 
U.S. 0.96% 
U.S. w/out transportation sectors 1.07% 

Table 11 indicates that the residential sector showed the highest potential for 

price-independent energy-efficiency improvement, with an AEEI value of 1.99%/year – 

due in part to energy efficient HVAC options gaining market share as relatively long-lived 

older equipment is retired. The commercial sector on the other hand exhibited a lower 

AEEI value of 0.56%/year, potentially reflecting the greater initial efficiency of some 

commercial sector technologies. With the exception of the chemical products sector that 

exhibited a slightly negative AEEI of -0.02%/year, AEEI values ranged from 0.26-

0.79%/year across the industrial sectors. Electricity generation experienced relatively 

high improvements in energy-efficiency when technology development was unhindered, 

with an AEEI value of 1.39%/year. 
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Table 11 AEEI Results: Sectoral 

Sector AEEI % / year 
Demand Sectors 

 Commercial 0.56% 
Residential 1.99% 
Personal Trans. 0.73% 
Freight Trans. 0.25% 
Waste -1.73% 
Agriculture 0.74% 
Industry  

Chemical Products 0.43% 
Industrial Minerals 0.33% 
Iron and Steel 0.41% 
Metal Smelting 0.79% 
Mining 0.26% 
Other Manufacturing 0.26% 
Pulp and Paper -0.02% 

Supply Sectors  
Crude Extraction -0.82% 
Electricity 1.39% 
Coal Mining 1.37% 
Petroleum Refining 1.31% 
NG Extraction and Trans. -0.68% 
Biofuels -80.53% 

Sectors with negative AEEI values include waste (-1.73), natural gas extraction 

and transportation (-0.68) and crude extraction (-0.82). AEEI is a function of of both 

technical efficiency and sub-structural change (i.e. energy intensity). Note that the 

energy intensity of a sector can be increasing even though the technologies are in 

general becoming more efficient. This can happen if the more energy-intensive sub-

sectors are gaining in importance relative to the less energy-intensive sectors. A 

negative AEEI value suggests price-independent increases in energy consumption over 

time, and reflects decreases in sectoral energy-intensity. As for the negative AEEI values 

that occur in energy supply sectors – the crude oil and natural gas extraction sectors - 

the negative value I obtained is the result of a shift to more energy intensive 

extraction/processing techniques in the BAU run (compared to the technologically frozen 

case), including shale/tight natural gas extraction using hydraulic fracturing in the natural 

gas sector. In natural gas extraction, both tight gas, and shale gas technology groups 

obtain significant market share over the course of simulation. These shifts to 

unconventional, energy intensive forms of primary energy reflect the exhaustion of 

conventional extraction techniques. 
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Comparison to literature 

The most direct comparison that I can make for my AEEI results is to Bataille 

(2005). One interesting and notable difference between my AEEI results for the U.S. and 

Bataille’s (2005) results for Canada is for electric generation, in which I found a positive 

value, indicating improvements in price-independent energy efficiency, while Bataille 

found a negative value. Bataille reported that the negative values might be the result of 

the exhaustion of technologies in the BAU simulation, such as available hydroelectric 

sites, which do not require primary energy input, and thus a shift in generation to thermal 

sources. As for the positive value that I found, I cannot pinpoint the cause since the 

sectors differ considerably between countries. Possibly this is in part due to the high 

amount of inefficient single-cycle coal generation in the U.S., and evolution away from 

these technologies. Otherwise, natural gas extraction evolves in the opposite direction 

from the Canadian data. This is logical, because when the Canadian numbers were 

calculated (in 2005), CIMS models did not incorporate the development of shale/tight 

gas, along with their higher energy inputs resulting from the energy-intensive nature of 

fracking extraction techniques.  

Aside from Bataille’s results, values presented in Table 4 do not tend to reveal 

AEEI values at as high a level of disaggregation as presented in the present work. The 

MERGE model simply uses an overall value for the entire economy of 0.8-1.0%/yr. The 

EPPA model uses different values for electric and non-electric sectors. My national value 

(0.96%/year) was slightly lower than in MITs EPPA model (~1.3%/year). However, for 

the electric sector in particular, I found significantly higher energy-efficiency improvement 

of 1.39%/year as compared to EPPA’s 0.35-0.40%/year. The variation in AEEI values in 

the literature suggests that the methodology for estimation has a significant impact on 

parameter values, and indicates a potential value from further research to explore the 

reasons for the divergence. 
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5. Conclusions and Future Research 

5.1. Key conclusions 

The ESUB experiments suggested various conclusions about potential energy 

substitutability in the U.S., the U.S. version of CIMS, and the methodology that I used to 

elicit the elasticities of substitution. While I found modest potential for energy-efficiency 

changes as a response to varied energy costs, in general, potential for inter-fuel 

switching seems to be more significant. In addition, I found AEEI and ESUB parameters 

to differ considerably between model sub-sectors.  

While the model and method I used to estimate the likely response of sectors of 

the economy to changing prices produced many plausible results, it also produced some 

that appeared less plausible.  In some cases, it is possible that unexpected or illogical 

results reflect issues within the CIMS model. For example, the model suggested low 

price elasticities in transportation. I am suspicious of this because there are many 

alternative technology options that I expect to outcompete conventional transportation 

technologies. This is due in part to the aggregation of all RPPs into one fuel category 

(thus masking shifts to biofuels, for example), however there was still less shifting to 

efficient varieties of internal combustion engines than I expected in a scenario with RPP 

prices elevated by 60%. An additional example of a result that seems implausible is the 

low electricity price response in the commercial sector. In this case, the lack in electricity 

response was partly the result of the high take up of an HVAC natural gas cogeneration 

technology that was capturing roughly 10% of the HVAC market share under high 

electricity prices, thus increasing the available electricity to be consumed within the 

sector. 
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5.2. Remaining issues with results and methodology 

Some implausible values may reflect areas that need improvement within CIMS, 

inadequate specification of production functions, problems with my estimation of 

production function parameters, or issues with the calculation and reporting of ESUB 

values based on the production function estimates. In this chapter, I outline what I view 

as remaining issues with my results and methodology and offer ideas for improving upon 

them.  

5.3. Future research, and improvements to results and 
methods 

Ideas for model improvement and further CIMS technology 
development 

Some of the results which seemed illogical or otherwise stood out caused me to 

look into underlying reasons in greater detail. As such, I have made a few observations 

that relate to potential CIMS model improvement. 

1. Cogeneration adoption in the commercial sector: 

My finding of low own-price electricity ESUBs in the commercial sector (-0.20) 

appeared low, since there are many available energy-efficient technologies running on 

electricity, any of which would be adopted in those simulations I ran which entailed 

inflated electricity prices. Technologies such as improved appliances, building 

shells/construction, and lighting were readily available. From investigating technology 

shares in the commercial sector, once a sufficiently high electricity price exists in the 

market, I found that there was a significant shift to a specific natural gas fuelled 

cogeneration HVAC technology. This appears to be the principal cause of the low 

electricity elasticity in the sector.  The extent of cogeneration in the sector is not 

plausible and needs to be addressed within CIMS-US, for example by restricting 

cogeneration technologies to the types of commercial buildings that are more likely to be 

initial adopters (e.g. hospitals, schools, etc.). 
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2. Low responsiveness of RPPs in transportation sectors 

My finding of low own-price values for RPPs may indicate that the transportation 

sectors are overly resistant to changes in fuel prices. Bataille (2005) noted similar 

findings in his Canadian study. However, it is also possible that by aggregating all fuels 

consumed in transport (other than natural gas and electricity) into a single category, I am 

masking some opportunities for switching from gasoline to diesel engines, and more 

importantly switching to vehicles that run on biofuels, since biofuels can be made from 

renewable resources, and offer reductions in GHG emissions. In further price-shocking 

studies, I would recommend disaggregating individual RPPs to better portray the 

substitution possibilities in transportation. 

3. Value added in sub-sectoral models 

Certain sub-sector models appeared to be showing unreasonably high levels of 

value-added from labour and capital as compared to comparable data from the U.S. 

Bureau of Economic Analysis (US Bureau of Economic Analysis 2011). In some cases 

CIMS sub-sectors appeared to be showing greater than 100% of the capital reported by 

the BEA, whereas one should expect CIMS to capture less than 100% in most sectors 

since CIMS focuses only on energy-using capital stocks. Though this may not point to a 

model problem, and may in fact be the result of inappropriate comparison, or other 

factors such as flaws in unit conversion, it is possible that this finding points to some 

calibration problems within CIMS-US. The at times drastic and/or negative compensation 

factors that I needed to apply again highlight the diagnostic benefits of the elasticity 

calculation work in this paper, which may have additional benefits for not only future 

elasticity studies, but for any work involving CIMS-US. The fact that CIMS does not 

account for non-energy related capital, and does not incorporate full labour costs is not a 

problem with CIMS, since CIMS is focused on energy by design. Adjusting capital values 

reported by CIMS is not an issue in terms of elasticity estimation, however I would 

recommend investigating the calibration (in particular the technology specification, initial 

technology splits, and base year stocks) in the sectors which appeared to capture an 

implausible amount of capital. I did not look at the model calibration since it is an 

extensive process that is beyond the scope of my project. 
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Ideas for methodological improvement 

The effect of the magnitude of input-price level variation 

For future studies, there may be value in testing the responsiveness of the long-

run price elasticity estimates to the size of the price-shocks in CIMS. Based on the 

differences in ESUB values that I observed between my first round results, involving 

carbon intensity price changes, and the final results presented in this paper, it is clear 

that the effect of having more levels per input (the gradation of the price changes), and 

of changing the magnitude of relative price changes has a significant impact on 

elasticities generated, and potentially a drastic effect. Carbon intensity price variations 

involve varied input prices for each fuel category relative to the average embodied 

emissions for each fuel category. Thus, in my first round of results, coal prices were 

changed by greater proportions than natural gas. There is not much of a precedent 

against which to judge price shock levels. The four levels per input scheme I employed 

(-30%, standard, +30%, +60%) was relatively similar to that of Bataille (2005) who used 

6 levels (-50%, -25%, standard, +25%, +50% and +75%). Once I can quantify the 

impacts of price-levels, and assess the influence that this factor has on simulation 

outputs and ESUB results, it may be easier to determine the most logical price-shocking 

scheme. It is possible that the most appropriate price-shocking scheme depends on 

intended use for results (i.e. for comparison to other values vs. the intent of informing a 

CGE model). It is also possible that the scheme may involve a more detailed gradient of 

price-levels.  

It is worth noting that generating a consistent data set for production function 

parameter regression involves capturing every possible input price combination, with 

each being the basis of a unique model simulation. Consequently, increasing the 

number of price-levels per input increases the number of CIMS simulations required to 

generate a full suite of price-shocking data exponentially. At the four level per input 

(-30%, base prices, +30%, +60%) 5 input (K, ELEC, NG, RPP, COAL) scale that I used, 

capturing every input price combination requires 4^5 = 1024 simulations. Five price 

levels per input instead of four implies 3125 simulations, while 6 inputs instead 5 

requires 4096 simulations. It is possible to complete approximately 100 simulations per 

hour using CIMS-US running on a standard personal computer, thus run-time can be an 
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issue with greater price-levels or additional inputs. Run-time would increase if I had 

disaggregated CIMS-US into distinct regions. The price-shocking scheme I employed 

represents a good balance of run-time and gradation of price-shocks. However, for 

future studies I would suggest using lower number of price-levels (3) for initial tests and 

trials, so as to quickly gauge initial problem areas, and then increasing to 5-7 price-levels 

per fuel once any initial issues have been addressed.  

The importance of capturing every possible price level combination is another 

point to consider. In Bataille (2005), the price shocking scenarios were slightly different. 

Rather than analyze every possible price combination, for his 6 price variations on each 

of the 5 inputs analyzed, other inputs were held constant at their normal levels. Bataille 

looked at every possible price per input with other inputs held constant and thus had a 

drastically lower number of simulations. The tools that I used to price-shock the model, 

however, were designed to look at every possible combination. While it may seem 

otherwise, it is in fact not more work to include a far higher number of simulations – 

though it does require several hours/days to run a complete price-shocking suite.  

The study of price shock size brings about another related, albeit quite different, 

point to consider. In my study, the primary goal was to assess the response surface of 

the model. Put otherwise, I wanted to push the model to its limits to see what is 

technically feasible in terms of simulated technology development. However, the price 

changes that I used are arguably unrealistic. 

In terms of capital price modifications, I looked at a very extreme range 

compared to what might occur in reality. Capital price variations on the order of 5-10% 

are already significant, and would serve as better ranges, should my goal be to study 

realistic capital price changes. However, the responsiveness to the model may be very 

slight. This is an unfounded prediction, and the only way to know if the model would 

show much response to these comparatively minor changes would be to test it. 

Including other energy inputs 

In my study, I only looked at four different energy inputs: refined petroleum 

products, natural gas, electricity, and coal. These are the fuels that cover the majority of 

energy use in the U.S. and are responsible for the majority of CO2 emissions. However, 
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including different fuels (renewables for industry), and/or disaggregating fuel categories 

(splitting biofuels from RPPs) may reveal critical substitution information, in particular for 

the electricity generation and transportation sectors. The ability of economies and 

sectors therein to switch between emitting energy-types, and non-emitting energy types 

such as nuclear, hydroelectric, and renewables may be highly informative.  

Dynamic effects 

1. Endogenous change: Learning by doing and the neighbour effect 

functions in CIMS 

Simulation period length may have a significant impact on outputs from price-

shocking, given the functioning of the declining capital cost (DCC) and declining 

intangible cost (DIC) functions of CIMS (section 2.1 gives a brief description of these 

functions, and Appendix A), which were operating for my simulations. The longer a 

model is set to run for, the greater the potential impact of the DCC and DIC functions on 

technologies that initially play a relatively minor role. Across the economy, many of the 

technologies which have low starting market shares entail relative increases in energy-

efficiency or consume lower emissions fuels. Given the low initial market shares, they 

are likely to be the most influenced by the effects of DCC and DIC functions. As such, a 

longer run time in many cases will imply greater adoption of such technologies. Thus, 

longer run times might result in higher values for capital-energy substitutability, and/or 

greater fuel switching represented by higher inter-fuel elasticities, should the DIC and 

DCC function exert a greater influence on technology evolution. I did not look at the 

impact of changing DCC and DIC settings (or turning them off entirely) on ESUB results, 

and in future research using the same price-shocking method, I recommend looking into 

the sensitivity of results to changes in these behavioural parameters. 
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2. Gradual price changes 

Figure 4 Sudden and Rising Price Shocks 

Sudden:     Gradual:  

In my simulations, input prices were set immediately at the desired level, and 

remained constant throughout. It may be worthwhile to implement the price-shocking 

technique using a gradually changing price (as shown in the right panel of Figure 4). 

Gradual price changes would be helpful if one is to estimate short-run elasticities (for 

simulating years before all capital stock has turned over). Gradual changes will help to 

more realistically simulate the initial technology competition dynamics, and will have 

effects over the rate of price-responsive technology switching, and the resulting 

technology mix and levels of inputs (energy and sub-types, and capital),. 

3. Using actual/present input cost shares to calculate ESUBs 

 The standard practice for calculating ESUBs from translog cost function 

parameter estimates is to use the mean of the cost shares across the data set. (Translog 

functions are locally flexible, meaning that elasticities can be calculated at any single 

point across possible input mixes.)  However, since the ‘pseudo-data’ set I generated is 

not of time-series or true cross-sectional types, the average does not necessarily have 

much meaning. An alternative is to use actual cost shares from the current year (i.e. 

today’s cost shares) since the pseudo-data is not real-world data. In this regard, using 

real cost shares, along with estimated production function coefficients to calculate 

ESUBs may yield more accurate results, since the average cost share across a series of 

simulations may not be the same as the present cost shares. I chose to follow the norm 

of using the mean within the data, in accordance with standard elasticity estimation 

literature, and as in Bataille (2005), though the differences in cost shares obtained by 

either method do not differ significantly in my study. For future work with the price-

shocking methodology, it is worthwhile to compare cost shares based on the average 
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across scenarios, with real/current cost shares. Should they differ considerably, I would 

suggest using those based on current cost shares. 

Applying the methodology to inform specific top-down models 

While the intent of my study was to provide a scholarly exploration of the price-

shocking methodology to generate ESUBs, in other instances, the intent may be to 

produce values that can inform a top-down, CGE model. Doing so would require a 

number of changes to the approach. 

Most likely, rather than estimating translog production functions, one would need 

to estimate constant elasticity of substitution (CES) production functions, since CGE 

models are designed using specific nesting structures to represent how an economy 

functions, and how the model solves. Note, however, that it is necessary to know the 

nesting structure of a particular CGE model prior to elasticity estimation, since this 

changes the way one would aggregate fuels, regions, and sub-sectors in the CIMS 

model prior to production function estimation. 

The variation between my ESUB results across individual fuels, as shown by this 

study, brings into question the validity and potential drawbacks of the standard approach 

of using CES production functions and elasticities to inform CGE models. While a CGE 

model would use a single value (a “constant elasticity”) to represent substitutability 

between fuels (i.e. all non-electricity energy inputs) and electricity, according to my 

findings this would obscure true substitution potential. Being fully flexible, the translog 

function has this advantage of enabling the modeller to specify the relationship between 

any two factors of production. For example, Rivers and Sawyer (2008) use an ESUB of 

0.66 between fuels and electricity, whereas my results, in which I analyze the 

relationships between each of the 5 inputs that I chose to include, show differing ESUBs 

for electricity paired with each other fuel. Thus, I found the electricity for natural gas 

elasticity to be 1.27, whereas electricity for refined petroleum products was estimated at 

0.36. While I am not suggesting that translog models are inevitably superior for informing 

CGE models, given the significant computational advantages of using CES functions,  

rather I am highlighting the fact that the simplifying advantages of CES functions may 

mask some of the more nuanced substitution responses that may exist in an economy. 
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5.4. Final words 

Energy-economy modeling has played, and continues to play an important role in 

helping to understand the dynamics of energy substitution. The methodology which I 

presented and applied in this research project offers a potentially beneficial approach to 

estimating elasticity of substitution parameters for production analysis and for informing 

top-down models. This overcomes some of the shortcomings of the standard use of 

parameters estimated from time-series data. While the methodology yielded interesting 

parameter results, it also serves to assist in CIMS model improvement and diagnostics, 

exposing potential areas for improvement via unexpected and outlying parameter 

estimates. 

The debate over ESUB and AEEI parameter values for the United States remains 

unresolved, with a notable lack of consensus in the literature. In estimating parameters 

for top-down models, there is always a degree of subjectivity at play, and despite the 

uncertainty involved with price-shocking technique, traditionally estimated top-down 

model parameters appear to be more arbitrary and less informative than the numbers 

that can be produced by price-shocking a hybrid model such as CIMS. Given that that 

the price-shocking pseudo-data methodology overcomes some of the shortcomings of 

the more common time-series and cross-sectional methods for estimating ESUBs, it 

merits serious consideration and further study. 
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Appendix A  
 
Description of CIMS Algorithms 

In CIMS simulations, technologies compete for a market share of new capital 

stock at each energy service node based on a comparison of their life cycle costs. CIMS 

also includes several technology specific physical, technical, or regulatory controls that 

provide means to constrain a technology from capturing the entire market share, but 

which are not shown in the market share equation below (Jaccard 2009, Murphy and 

Jaccard 2011) 

!"! !
!!! ! !

! ! ! ! ! !!! !!"! ! !"! ! !!
!!

!!! ! !
! ! ! ! ! !!! !!"! ! !"! ! !!

!!
!
!!!

 

In the above formula, market share for a technology j MSj is given by the ratio of 

the life cycle cost of j to the total life-cycle cost of every competing technology k and 

where for each technology, CC is the capital cost, MC is the maintenance and operation 

cost, and EC is the energy cost, which depends on energy prices and service demands. 

As mentioned in the main text of this paper, microeconomic behavioral parameters in 

CIMS are informed by a combination of revealed and stated preference research. i, r, 

and v represent the three behavioral parameters in the market share algorithm: 

The i parameter denotes intangible costs and benefits, which represent option 

value costs and/or consumer surplus losses for a given technology compared to its 

competitors. Intangible costs are a means of embedding consumers’ and businesses’ 

perceptions of costs and benefits that do not figure into the simple financial costs used in 

traditional bottom-up analyses. They represent aspects such as the perception of risk for 

a new technology and the social benefits or drawbacks of a given technology. For 

example, plug-in hybrid electric cars are often perceived as a risky purchase to 

consumers, since there is high uncertainty as to how the electrical infrastructure for 

vehicles will develop. As well, some consumers feel that they will ‘stand-out’ in either 

desirable or undesirable ways for owning such vehicles, thus changing the intangible 

costs and benefits of such a technology.   
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The r parameter represents the weighted average time preference of decision 

makers for a particular energy service demand, and is generally set higher than social 

discount rates (whereas traditional bottom-up analyses typically use the social discount 

rate). r is the same across all technologies at a given service node, however differs 

between the various energy service nodes in accordance with market observations. 

Along with a technologies lifespan, n, one can calculate a capital recovery factor, which 

can be used to annualize the up-front capital cost of a technology, and then added to the 

annual MC and EC costs to obtain annualized estimates of technology cost (Jaccard 

2009, Murphy and Jaccard 2011). 

Last, the v parameter indicates the degree of heterogeneity in a particular 

market, by which firms and consumers experience differing costs for the same 

technology due to varying locations, perceptions, and preferences. Conventional bottom-

up models depict homogenous markets, ignoring such variation, and thus the technology 

with the lowest cost captures 100% of the market. Modifying the v parameter in CIMS 

changes the shape of the inverse power function that assigns market share to 

technology j. Low values for v mean that competing technologies obtain fairly distributed 

market share, even if life-cycle costs differ. High values, on the other hand, will result in 

the technology with the lowest cost capturing most of the market share (up until v = $ at 

which point the model operates as a conventional bottom-up model, with the cheapest 

technology capturing the entire market. At a value of v = 10, if technology A becomes 

15% more expensive than B, B will capture 85% of the new market share (this is typically 

the starting value prior to market-specific parameter calibration). 

Aside from the central market share algorithm, CIMS contains two key functions 

for simulating endogenous technological change, as briefly described in the main text: 

First, the declining capital cost (DCC) function (often referred to as a learning 

curve) is described as: 

! ! ! ! ! ! !
! !

!"#! !"
 

in which the financial cost of a technology at a time t is adjusted from its initial 

cost C(0) as a function of cumulative production and assumed progress ratios. N(t)/N(0) 
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represents cumulative production at time t relative to initial production, and PR 

represents the percentage reduction in a technology’s cost given a doubling in 

cumulative production. This formulation enables CIMS to capture economies of scale 

and economies of learning. 

Second, the declining intangible cost (DIC) function reflects the ‘neighbour’ effect, 

whereby the intangible cost of a technology in a given period is linked to its market share 

in the previous period. This function reflects improved information, and decreased 

perceptions of risk by firms and consumers as technologies gain market presence. The 

formulation in CIMS is: 

!! ! ! !! !
! ! !!!!!!!"!!!!

 

in which ij(t) is the intangible cost of technology j at time t, MSjt-1 is the market 

share of technology j at time t-1, while A and k are estimated parameters that indicate 

the rate at which intangible costs decline in response to increases in market share.  
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Appendix B  
 
Survey of ESUB and AEEI values 

Table 12, Table 13 and Table 14 below give an overview of values and methods 

used for E-K ESUBs, inter-fuel ESUBs, and AEEI values in various models/studies, 

respectively. 
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Table 12 Summary of Energy-Capital ESUBs in Various Models/Studies 

 

  

Model/Survey Notes/Parameter Source Sector Elasticities of 
Substitution 

Time series data 
(Berndt and Wood 
1975) 

Translog cost function approach. 
Authors present E-K ESUB at 5 points in 
time – I report the mean of values. 

U.S. 
Manufacturing -3.25 

Pooled data 
(Griffin and 
Gregory 1976)  

Griffin and Gregory respond to 
perceived shortcomings of using time-
series data in estimating long run 
elasticities. Also translog approach. 

U.S. National 1.07 

Time series data 
(Fuss 1977) 

Using two-stage approach, estimating 
separable fuel sub-model. I estimated 
AES from price elasticities given. 

CAN 
Manufacturing -0.10 

Pooled data 
(Pindyck 1979) Similar approach to Griffin and Gregory.  U.S. National 1.77 

Time series UK 
data (Hunt 1984)  

A time-series approach with translog 
cost function method. Notably, data-set 
reflects the oil price-shocks of the early 
1970s. 

UK Industrial -1.6 

MIT-EPPA 
(Paltsev, et al. 
2005) 

A dynamic CGE model. Since there is a 
specific nesting structure using CES 
production functions, one can only find 
ESUB values as per the model's 
aggregations. As such, note that the 
value indicated here is between energy 
and value added (thus including labour 
in addition to capital). It is nevertheless 
worthy of comparison. 

U.S. National 0.4 to 0.5 

Generated from 
CIMS-CANADA 
(Bataille 2005) 

Translog cost function approach, using 
similar methodology to the current study. CAN National 0.13 

Time series U.S. 
data for paper 
sector (Roy, et al. 
2006) 

A translog cost function study for several 
countries. The authors present results 
for pooled, cross sectional data across 
countries, and using time series data for 
the individual countries. Here I present 
U.S. time series data for paper, the only 
sector reported for the U.S. in this study.  

Paper 5.27 

Comprehensive 
review 
(Broadstock, Hunt 
and Sorrell 2007) 

Mean of studies reporting AES U.S. 
values. 

National -0.393 

Industrial -0.23 
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Table 13 Summary of Inter-Fuel ESUBs in Various Models/Studies 

Model/Survey Notes Sector Input pair (or 
own-price) 

Elasticities of 
Substitution 

NEMS 
Residential 
and 
Commercial 
models (Wade 
2003) 

A hybrid model from the U.S. 
Department of Energy, similar in nature 
to CIMS. Values obtained by running 
the sub-models with doubled energy 
prices from 2005-2025 (thus not 
capturing longest lived capital) and 
comparing adjustments with base price 
scenarios. I consider distillate fuel 
equivalent to RPP for residential and 
commercial sectors. Wade reports 
directional, share adjusted cross-price 
elasticities (not AES). 

Residential 

ELEC own-price -0.49 
ELEC-NG 0.01 
ELEC-RPP 0.00 
NG-own-price -0.41 
NG-ELEC 0.13 
NG-RPP 0.02 
RPP own-price -0.60 
RPP-ELEC 0.01 
RPP-NG 0.05 

Commercial 

ELEC own-price -0.45 
ELEC-NG 0.01 
ELEC-RPP 0.00 
NG own-price -0.40 
NG-ELEC 0.86 
NG-RPP 0.01 
RPP own-price -0.39 
RPP-ELEC 0.08 
RPP-NG 0.75 

U.S. Translog 
interfuel 
model 
(Serletis, 
Timilsina and 
Vasetsky 
2011) 

Includes electricity, natural gas, crude 
oil and coal using data from the U.S. 
Energy Information Administration. 
Similar specification of fuels and 
production model to my study. 

National 

ELEC own-price -0.287 
ELEC-NG 0.326 
ELEC-RPP 0.185 
ELEC-COAL 0.283 
NG own-price -3.258 
NG-RPP 0.344 
NG-COAL 1.050 
RPP own-price -0.299 
RPP-COAL -0.028 
COAL own-price -3.335 

Residential 

ELEC own-price -0.382 
ELEC-NG 0.675 
ELEC-RPP -1.385 
NG own-price -2.903 
NG-RPP -1.385 
RPP own-price -7.146 

Commercial 

ELEC own-price -0.158 
ELEC-NG 0.497 
ELEC-RPP 1.280 
NG own-price -3.565 
NG-RPP -1.697 
RPP own-price -12.981 

Electricity 
Generation 

NG own-price -0.482 
NG-RPP -0.071 
NG-COAL 0.227 
RPP own-price -4.553 
RPP-COAL 0.671 
COAL own-price -0.196 
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Industrial 

ELEC own-price -0.914 
ELEC-NG 1.693 
ELEC-RPP 0.024 
ELEC-COAL 2.824 
NG own-price -3.719 
NG-RPP 0.331 
NG-COAL -6.589 
RPP own-price -0.222 
RPP-COAL 0.638 
COAL own-price -10.642 

U.S. Translog 
inter-fuel 
model (Griffin 
1977) 

Focus on the electricity generation 
sector, using OECD data, reporting for 
several countries – here I report the 
U.S. values. 

Electricity 
Generation 

NG own-price -0.90 
NG-RPP 0.58 
NG-COAL 0.16 
RPP own-price -3.46 
RPP-COAL 0.50 
COAL own-price -0.66 

MIT-EPPA 
(Paltsev, et al. 
2005) 

I report for fuel aggregations that are 
relevant to my study. 

Electricity 
COAL - RPP/NG 
bundle 1.00 

RPP - NG 0.30 

All sectors Electricity - fuels 
bundle 0.50 

All except 
electricity Among fuels 1.00 

CIMS-Canada 
(Bataille 2005) 

Translog cost function approach, 
using similar methodology to the 
current study. 

National 

ELEC own-price -1.95 
ELEC-NG 1.91 
ELEC-RPP 1.73 
ELEC-COAL .01 
NG own-price -1.69 
NG-RPP 1.27 
NG-COAL 0.95 
RPP own-price -0.35 
RPP-COAL 1.29 
COAL own-price -1.16 

Electricity 

NG own-price -0.99 
NG-RPP Na 
NG-COAL 2.13 
RPP own-price -2.49 
RPP-COAL Na 
COAL own-price -1.34 
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Table 14 Summary of AEEI Values in Various Models/Studies 

Model/Study Notes Sector 
AEEI 
Value 
(%/yr) 

MIT-EPPA 
(Paltsev, et al. 
2005; personal 
communication) 

Somewhat subjective/guesstimated it appears. Dr. 
Paltsev at MIT reported that in combination with 
price-induced changes, the AEEI and ESUB 
aggregate effect usually implies improvements in 
energy efficiency of about 1.2-1.3% for non-
energy sectors and about 0.4-0.45% for electricity. 

Electricity 0.35-
0.40 

All sectors except 
electricity 1.00 

MERGE 
(Richels and 
Blanford 2008)  

MERGE model of U.S. Includes advanced 
technology scenario in which efficiency advances 
more quickly. I report both scenarios. 

All sectors - 
technology as usual 
scenario 

0.80 

All sectors - 
advanced 
technology path 

1.00 

CIMS-Canada 
(Bataille 2005, 
Bataille et al. 
2006) 

Calculated using the same methodology that I 
present in the next chapter, but with a Canadian 
application of CIMS, dating back 6 years. I use the 
results Bataille presents under conditions of all 
markets clearing). 

Canada (Energy 
Demand) 0.57 

Canada (Energy 
Supply) -0.73 

Canada (Demand 
and Energy Supply) 0.16 

  Energy Demand Sectors 
Residential 0.46 
Commercial & 
Institutional 1.59 

Transportation 0.53 
Industry 
Total 0.27 
Chemical Products 0.33 
Industrial Minerals 0.84 
Iron and Steel 0.15 
Metal Smelting 0.52 
Mining 0.37 
Other 
Manufacturing 0.17 

Pulp and Paper 0.16 
  Energy Supply Sectors 
Crude Oil Extraction -2.07 
Electricity -1.09 
Coal Mining 0.65 
Petroleum Refining 0.46 
NG Extraction 0.22 
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Table 15 
S

um
m

ary of S
ubstitution R

elationships 

R
egion/Sector 

Substitution R
elationships (K

:EN
 = C

apital for Energy; * = not applicable; _p = ow
n-price elasticities) 

K
:EN

 
K

-p 
EN

-p 
E:N

 
E:O

 
E:C

 
N

:O
 

N
:C

 
O

:C
 

Ep 
N

p 
O

p 
C

p 
U

.S
. (w

/ Trans.) 
0.21 

-0.06 
-0.66 

1.27 
0.36 

-0.73 
1.10 

3.00 
-0.16 

-1.02 
-3.00 

-0.77 
-3.00 

U
.S

. (w
/o Trans.) 

0.15 
-0.02 

-1.00 
1.04 

0.47 
-0.69 

2.83 
2.59 

-1.06 
-0.60 

-3.00 
-3.00 

-3.00 
D

em
and S

ectors 
 

C
om

m
ercial 

0.09 
-0.01 

-1.29 
0.69 

1.17 
* 

3.00 
* 

* 
-0.20 

-3.00 
-3.00 

* 
R

esidential 
0.13 

0.00 
-3.00 

1.80 
1.20 

* 
2.26 

* 
* 

-0.34 
-3.00 

-3.00 
* 

P
ersonal Transportation 

0.28 
-2.37 

-0.03 
-3.00 

1.06 
* 

3.00 
* 

* 
-3.00 

-3.00 
-0.04 

* 
Freight Transportation 

0.07 
-0.02 

-0.20 
* 

* 
* 

3.00 
* 

* 
* 

-3.00 
-0.15 

* 
W

aste 
0.17 

0.01 
2.64 

* 
* 

* 
* 

* 
* 

2.64 
* 

* 
* 

A
griculture 

0.05 
-0.03 

-0.09 
0.76 

0.02 
* 

-0.18 
* 

* 
-0.26 

-1.07 
0.01 

* 
Industry 

 
C

hem
ical P

roducts 
-0.02 

0.00 
0.08 

1.50 
1.11 

-3.00 
3.00 

-3.00 
3.00 

-2.89 
-1.30 

-3.00 
3.00 

Industrial M
inerals 

0.07 
-0.05 

-0.11 
0.64 

3.00 
0.13 

-0.12 
0.18 

0.40 
-0.63 

-0.84 
-3.00 

-0.83 
Iron and S

teel 
0.07 

-0.16 
-0.03 

0.18 
0.20 

-0.07 
3.00 

0.19 
0.17 

-0.12 
-3.00 

-3.00 
-0.17 

M
etal S

m
elting 

0.06 
-0.28 

-0.01 
0.26 

0.61 
-0.23 

3.00 
1.68 

0.75 
-0.12 

-3.00 
-3.00 

-3.00 
M

ining 
0.08 

-0.16 
-0.04 

0.11 
0.33 

0.36 
1.68 

-3.00 
0.36 

-0.22 
-3.00 

-0.76 
3.00 

O
ther M

anufacturing 
0.07 

-0.01 
-0.41 

0.82 
0.77 

-1.00 
3.00 

3.00 
3.00 

-0.78 
-1.44 

-3.00 
-3.00 

P
ulp and P

aper 
0.11 

-0.04 
-0.31 

0.57 
0.48 

-1.33 
3.00 

1.41 
-0.37 

-0.09 
-3.00 

-3.00 
3.00 

S
upply S

ectors 
 

C
rude E

xtraction 
0.07 

-0.07 
-0.06 

-0.26 
0.09 

1.86 
0.42 

3.00 
-0.54 

-0.35 
-1.57 

-0.19 
-3.00 

E
lectricity 

0.62 
-0.24 

-1.63 
* 

* 
* 

3.00 
2.26 

0.29 
* 

-1.47 
-3.00 

-3.00 
C

oal M
ining 

-0.31 
1.06 

0.09 
-0.26 

0.17 
-3.00 

-0.35 
3.00 

-1.11 
-0.09 

2.87 
-0.12 

3.00 
P

etroleum
 R

efining 
-0.05 

0.02 
0.09 

-3.00 
-1.87 

-3.00 
1.47 

-3.00 
0.04 

-3.00 
-3.00 

-0.36 
3.00 

N
G

 E
xtraction and Trans. 

0.25 
-0.10 

-0.66 
1.29 

-3.00 
* 

0.12 
* 

* 
-3.00 

-0.43 
3.00 

* 
B

iofuels 
1.56 

-3.00 
-0.51 

2.46 
0.16 

1.26 
0.72 

3.00 
-3.00 

-3.00 
-1.08 

-1.02 
-3.00 
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A
ppendix D

 
 

 C
ost Shares, and O

w
n- and C

ross-Price Elasticities of D
em

and 
 Table 16 

A
verage C

ost S
hares of A

ggregate and Fuel Inputs 

 
C

ost shares are expressed as a percentage 

 
 

of expenditures on given aggregate factor or 

 
 

fuel, calculated from
 average expenditure 

 
 

across the 1024 sim
ulation scenarios.  

 
 

N
egative values for electricity in refining, 

 
 

and for energy in W
aste sectors result from

 

 
 

cogeneration of electricity. * indicates not-

 
 

applicable. 

 

 
K

 
EN

ER
 

ELEC
 

N
G

 
R

PP 
C

O
A

L 
U

.S
. (w

/ Trans.) 
76.3%

 
23.7%

 
35.5%

 
18.7%

 
42.4%

 
3.4%

 
U

.S
. (w

/o Trans.) 
87.0%

 
13.0%

 
53.6%

 
28.8%

 
12.3%

 
5.3%

 
D

em
and S

ectors 
 

 
C

om
m

ercial 
93.4%

 
6.6%

 
80.5%

 
14.3%

 
5.2%

 
* 

R
esidential 

96.3%
 

3.7%
 

82.0%
 

9.8%
 

8.2%
 

* 
P

ersonal Transportation 
10.4%

 
89.6%

 
3.0%

 
0.0%

 
97.0%

 
* 

Freight Transportation 
75.0%

 
25.0%

 
* 

2.7%
 

97.3%
 

* 
W

aste 
107.0%

 
-7.0%

 
100.0%

 
* 

* 
* 

A
griculture 

63.4%
 

36.6%
 

25.9%
 

7.1%
 

67.0%
 

* 
Industry 

 
 

C
hem

ical P
roducts 

81.8%
 

18.2%
 

32.9%
 

57.7%
 

9.2%
 

0.2%
 

Industrial M
inerals 

59.4%
 

40.6%
 

45.8%
 

38.1%
 

0.6%
 

15.5%
 

Iron and S
teel 

30.0%
 

70.0%
 

44.9%
 

17.8%
 

18.7%
 

18.7%
 

M
etal S

m
elting 

16.6%
 

83.4%
 

75.7%
 

11.4%
 

10.6%
 

2.2%
 

M
ining 

33.5%
 

66.5%
 

58.5%
 

4.6%
 

36.0%
 

0.9%
 

O
ther M

anufacturing 
86.2%

 
13.8%

 
50.4%

 
45.8%

 
3.3%

 
0.5%

 
P

ulp and P
aper 

74.1%
 

25.9%
 

77.3%
 

14.0%
 

5.8%
 

3.0%
 

S
upply S

ectors 
 

 
C

rude E
xtraction 

47.5%
 

52.5%
 

13.6%
 

27.3%
 

55.5%
 

3.6%
 

E
lectricity 

72.4%
 

27.6%
 

* 
62.3%

 
1.8%

 
35.9%

 
C

oal M
ining 

22.8%
 

77.2%
 

48.2%
 

8.1%
 

43.6%
 

0.1%
 

P
etroleum

 R
efining 

67.3%
 

32.7%
 

-4.1%
 

16.5%
 

87.6%
 

0.0%
 

N
G

 E
xtraction and Trans. 

72.4%
 

27.6%
 

25.1%
 

74.8%
 

0.0%
 

* 
B

iofuels 
24.8%

 
75.2%

 
6.9%

 
63.1%

 
22.2%

 
7.8%
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Table 17 
O

w
n- and C

ross-Price Elasticities of D
em

and 

 
Substitution R

elationships (K
:EN

 = C
apital for Energy; * = not applicable; _p = ow

n-price elasticities) 
R

egion/Sector 
K

:EN
 

EN
:K

 
K

-p 
EN

-p 
N

:E 
O

:E 
C

:E 
Ep 

E:N
 

O
:N

 
C

:N
 

N
p 

U
.S

. (w
/ Trans.) 

0.05 
0.16 

-0.05 
-0.16 

0.45 
0.13 

-0.26 
-0.36 

0.24 
0.20 

1.21 
-1.13 

U
.S

. (w
/o Trans.) 

0.02 
0.13 

-0.02 
-0.13 

0.56 
0.25 

-0.37 
-0.32 

0.30 
0.82 

0.75 
-1.04 

D
em

and S
ectors 

 
 

 
 

 
 

 
 

 
C

om
m

ercial 
0.01 

0.09 
-0.01 

-0.09 
0.55 

0.94 
* 

-0.16 
0.10 

1.97 
* 

-1.27 
R

esidential 
0.00 

0.12 
0.00 

-0.12 
1.47 

0.99 
* 

-0.28 
0.18 

0.22 
* 

-1.66 
P

ersonal Transportation 
0.25 

0.03 
-0.25 

-0.03 
-3.00 

0.03 
* 

-0.80 
-0.23 

0.01 
* 

-0.03 
Freight Transportation 

0.02 
0.05 

-0.02 
-0.05 

* 
* 

* 
3.00 

* 
0.12 

* 
-3.00 

W
aste 

-0.01 
0.18 

0.01 
-0.18 

* 
* 

* 
2.64 

* 
* 

* 
* 

A
griculture 

0.02 
0.03 

-0.02 
-0.03 

0.20 
0.00 

* 
-0.07 

0.05 
-0.01 

* 
-0.08 

Industry 
 

 
 

 
 

 
 

 
 

C
hem

ical P
roducts 

0.00 
-0.02 

0.00 
0.02 

0.49 
0.37 

-2.03 
-0.95 

0.87 
1.93 

-3.00 
-0.75 

Industrial M
inerals 

0.03 
0.04 

-0.03 
-0.04 

0.29 
2.27 

0.06 
-0.29 

0.24 
-0.05 

0.07 
-0.32 

Iron and S
teel 

0.05 
0.02 

-0.05 
-0.02 

0.08 
0.09 

-0.03 
-0.06 

0.03 
0.69 

0.03 
-0.84 

M
etal S

m
elting 

0.05 
0.01 

-0.05 
-0.01 

0.20 
0.46 

-0.18 
-0.09 

0.03 
0.36 

0.19 
-0.57 

M
ining 

0.05 
0.03 

-0.05 
-0.03 

0.06 
0.19 

0.21 
-0.13 

0.00 
0.08 

-0.38 
-0.60 

O
ther M

anufacturing 
0.01 

0.06 
-0.01 

-0.06 
0.41 

0.39 
-0.51 

-0.40 
0.38 

3.00 
1.77 

-0.66 
P

ulp and P
aper 

0.03 
0.08 

-0.03 
-0.08 

0.44 
0.37 

-1.03 
-0.07 

0.08 
2.60 

0.20 
-1.56 

S
upply S

ectors 
 

 
 

 
 

 
 

 
 

C
rude E

xtraction 
0.04 

0.03 
-0.04 

-0.03 
-0.04 

0.01 
0.25 

-0.05 
-0.07 

0.11 
1.75 

-0.43 
E

lectricity 
0.17 

0.45 
-0.17 

-0.45 
* 

* 
* 

* 
* 

3.00 
1.40 

-0.92 
C

oal M
ining 

-0.24 
-0.07 

0.24 
0.07 

-0.12 
0.08 

-3.00 
-0.04 

-0.02 
-0.03 

2.71 
0.23 

P
etroleum

 R
efining 

-0.01 
-0.03 

0.01 
0.03 

1.07 
0.08 

3.00 
3.00 

-3.00 
0.24 

-3.00 
-2.06 

N
G

 E
xtraction and Trans. 

0.07 
0.18 

-0.07 
-0.18 

0.32 
-3.00 

* 
-0.89 

0.96 
0.09 

* 
-0.32 

B
iofuels 

1.17 
0.39 

-1.17 
-0.39 

0.17 
0.01 

0.09 
-1.69 

1.55 
0.45 

2.89 
-0.68 
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Table 17 
O

w
n- and C

ross-Price Elasticities of D
em

and (C
ontinued) 

R
egion/Sector 

N
:E 

O
:E 

C
:E 

Ep 
E:N

 
O

:N
 

C
:N

 
N

p 
U

.S
. (w

/ Trans.) 
0.15 

0.46 
-0.07 

-0.33 
-0.02 

0.22 
-0.01 

-0.88 
U

.S
. (w

/o Trans.) 
0.06 

0.35 
-0.13 

-1.01 
-0.04 

0.14 
-0.06 

-0.25 
D

em
and S

ectors 
 

 
 

 
 

 
 

 
C

om
m

ercial 
0.06 

0.71 
* 

-2.91 
* 

* 
* 

* 
R

esidential 
0.10 

0.19 
* 

-1.21 
* 

* 
* 

* 
P

ersonal Transportation 
1.03 

3.00 
* 

-0.04 
* 

* 
* 

* 
Freight Transportation 

3.00 
3.00 

* 
-0.15 

* 
* 

* 
* 

W
aste 

* 
* 

* 
* 

* 
* 

* 
* 

A
griculture 

0.01 
-0.12 

* 
0.01 

* 
* 

* 
* 

Industry 
 

 
 

 
 

 
 

 
C

hem
ical P

roducts 
0.10 

0.31 
0.36 

-2.30 
-0.01 

-0.05 
0.01 

3.00 
Industrial M

inerals 
0.03 

0.00 
0.00 

-2.28 
0.02 

0.03 
0.06 

-0.13 
Iron and S

teel 
0.04 

0.73 
0.03 

-0.81 
-0.01 

0.03 
0.03 

-0.03 
M

etal S
m

elting 
0.06 

0.34 
0.08 

-0.84 
-0.01 

0.04 
0.02 

-0.10 
M

ining 
0.12 

0.61 
0.13 

-0.27 
0.00 

-0.07 
0.00 

0.04 
O

ther M
anufacturing 

0.03 
0.23 

0.13 
-3.00 

-0.01 
0.02 

0.02 
-1.40 

P
ulp and P

aper 
0.03 

1.07 
-0.02 

-2.95 
-0.04 

0.04 
-0.01 

0.85 
S

upply S
ectors 

 
 

 
 

 
 

 
 

C
rude E

xtraction 
0.05 

0.23 
-0.30 

-0.11 
0.07 

0.23 
-0.02 

-1.70 
E

lectricity 
* 

0.11 
0.01 

-3.00 
* 

0.81 
0.10 

-1.41 
C

oal M
ining 

0.07 
-0.15 

-0.48 
-0.05 

-0.01 
0.05 

0.00 
1.11 

P
etroleum

 R
efining 

-1.64 
1.29 

0.03 
-0.32 

-0.20 
-0.30 

0.00 
3.00 

N
G

 E
xtraction and Trans. 

-0.08 
0.00 

* 
3.00 

* 
* 

* 
* 

B
iofuels 

0.04 
0.16 

-0.69 
-0.23 

0.10 
0.36 

-0.24 
-2.29 

 


