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Abstract

Most complex diseases are influenced jointly by genes (G) and environmental or non-
genetic attributes (F). Gene-environment interaction (G'x E') is measured by statisti-
cal interaction between G and E, which occurs when genotype relative risks (GRRs)
vary with E. In this thesis, we explore the sources of spurious Gx E and propose a
data-smoothing approach to Gx E for case-parent trio data.

In the first project, we address the problem of making inference about G x E based
on the transmission rates of alleles from parents to affected offspring. Since GRRs
that vary with E lead to transmission rates that do too, transmission rates have been
used to make inference about GxFE. However transmission-based tests of GXE are
found to be invalid in general. To understand the bias of the transmission-based test,
we derive theoretical transmission rates and compare their variation with £ to that in
the GRRs. Through simulation, we investigate the practical implication of the bias.

Valid approaches that are not based on transmission rates require specifying or
are designed to work well under a parametric form for Gx E. In the second project,
we develop a data-smoothing method to explore Gx E that does not require model
specification for the interaction component when we work with genotypes for a causal
marker. The data-driven method produces graphical displays of Gx E that suggest
its form. For testing significance of G X E, we take a permutation approach to account
for the additional uncertainty introduced by the smoothing process.

For many approaches to inference of Gx E with case-parent trio data, including
our own, a key assumption is that the test marker is causal; however, in reality, it
may not be causal but in linkage disequilibrium with a causal locus. In this case,

the approaches can give a false impression of GXFE due to a form of population

il
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stratification that has not been appreciated well. In the final project, we investigate,
through simulation, the source of the spurious Gx E and propose an adjustment that

uses additional unlinked markers genotyped in the affected offspring.

Keywords: Case-parent trios; gene-environment interaction; genotype relative risk;
population stratification; generalized additive model; penalized maximum likelihood

estimation
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Chapter 1

Introduction

Complex diseases, such as diabetes or cancer, are thought to result from an interplay
between genes G and environmental or non-genetic attributes E. The case-parent
trio study design is often used for estimation and testing genetic effects and gene-
by-environment interactions for such diseases. The design collects genotypes from
unrelated children affected with a disease and also from their parents. Information
may also be collected on environmental factors in the children. Genetic effects can
be measured by genotype relative risk (GRR) in individuals with one genotype com-
pared to those with some reference genotype. Under a log-additive penetrance model,
statistical interaction between G and E, or G X E, occurs when GRRs vary with the
levels or the values of E. In this thesis, we explore the sources of spurious Gx F and
propose methods to uncover true Gx E using data from a case-parent trio study.
The thesis consists of three projects. The work in Chapters 2 and 4 has been pub-
lished. As a result, some introductory material and the description of the simulation

settings are repeated in more than one chapter.

1.1 Overview of the thesis

Allelic transmission rates from parents to cases are frequently stratified by an en-
vironmental risk factor £ and compared, with heterogeneity interpreted as GxFE.

Although such transmission-based approaches to GxE are found to be invalid in
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general under population stratification (Umbach and Weinberg, 2000), such analyses
continue to appear. In Chapter 2, we revisit why heterogeneity is not equivalent
to GXFE in a range of settings not considered previously. The objective is a fuller
understanding of the bias in transmission rates and what is driving it. Extending
previously published findings of Umbach and Weinberg (2000), we derive parental
mating-type probabilities in cases and use them to obtain transmission rates, which
we then compare to GxFE. Through simulation, we investigate the practical impli-
cations of the bias for a transmission-based test of GXFE. For exploring GXFE, we
suggest graphical displays of the transmission rates within parental mating types, as
they are robust to population stratification and the penetrance model. This work has
been published in Shin et al. (2010).

Numerous approaches have been proposed to assess Gx FE using data from case-
parent trios (e.g., Schaid, 1999; Umbach and Weinberg, 2000; Lake and Laird, 2004).
Many of these approaches require specifying a parametric regression model for GX F,
such as linearity, or are designed to work well under a specific form of GxFE. When
the form of the underlying Gx E differs from that specified by the regression model,
or from the form for which an approach was designed, it can lead to bias and loss of
statistical power. To address this issue, in Chapter 3, we develop a penalized maxi-
mum likelihood method to graphically explore the form of Gx E, under a generalized
additive modelling framework (e.g., Wood, 2006). This data-smoothing approach of-
fers the advantage of allowing the data to suggest the functional form of G x F, rather
than specifying it in advance. For testing Gx FE, we adopt a permutation-based ap-
proach in order to account for the additional uncertainty introduced by the smoothing
process. We investigate the statistical properties of the proposed permutation test
through simulation. We also illustrate the use of the method with a simulated data
set.

Many approaches to inference of Gx E with data from case-parent trios, includ-
ing that of the previous chapter, rely on genotypes G being measured at a causal
locus and G being independent of £ within families. Then, under the log-additive

penetrance model, dependence of G and E within affected families is equivalent to
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GxE (Umbach and Weinberg, 2000). At a causal locus, one may therefore, infer
G x E from association between G and E within affected families. However, a test
locus may in fact be in linkage disequilibrium with a causal locus. As noted by Shi
et al. (2011), when genotypes G’ are measured at a non-causal test locus, population
stratification can create association between G’ and E within affected families in the
absence of GxE. In Chapter 4, we describe this apparent interaction as a conse-
quence of mis-specification of the penetrance model and population stratification. A
log-additive penetrance model for the causal locus does not apply to the test locus.
The mis-specification of the penetrance model for the test locus, together with pop-
ulation stratification, gives rise to G'-E dependence within affected families in the
absence of GX E. One design-based solution to avoid incorrectly inferring interaction
involves collecting data on the environmental variable in an unaffected sibling of the
affected child (Shi et al., 2011). We propose an analysis-based solution that uses
genotypes for random or ancestral informative markers in the affected child to adjust
the penetrance model. Our approach does not require data on unaffected siblings and
has been published in Shin et al. (2012).

In the last chapter, we make concluding remarks. Some of theoretical and sim-
ulation details for Chapters 1, 2 and 3 are provided in Appendices A, B and C,

respectively.



Chapter 2

On the use of allelic transmission
rates for assessing GxFE in

case-parent trios

2.1 Introduction

For many complex diseases, both genes (G) and environmental exposure or non-
genetic attributes (F) act jointly to increase risk. For example, even though cigarette
smoking is one of the most important risk factors for chronic obstructive pulmonary
disease, only 10-20% of chronic smokers develop the disease, indicating the possible
contribution of genetic factors (e.g., glutathione S-transferase gene family; Cheng
et al., 2004). For such diseases, failure to account for the interplay between G and FE
may lead to incorrect conclusions about their etiological roles. One way to measure
the interplay between GG and FE is through variation with F in genotype relative
risks (GRRs), which are ratios of disease risks compared between individuals with
a genotype of interest and those with some reference genotype. We refer to this
variation in GRRs as statistical interaction between G and F, or GX E.

For data from case-parent trios, it is natural to work with allelic transmission
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rates from parents to cases, as in the transmission disequilibrium test (TDT; Spiel-
man et al., 1993). It is then tempting to stratify transmission analyses by E and
interpret heterogeneity with E in transmission rates as Gx FE, assuming the robust-
ness of the TDT to population stratification carries over. However, as noted by
Umbach and Weinberg (2000), heterogeneity in transmission rates does not neces-
sarily reflect heterogeneity in GRRs. These authors illustrated the point with a
counter-example involving a recessive penetrance model and no G x E, but transmis-
sion rates that vary with E because of population stratification. Their purpose was
to motivate an alternate likelihood-based approach to inference of Gx FE, which they
subsequently discussed. The current investigation revisits their initial point about the
non-equivalence of heterogeneity in transmission rates and GRRs. We feel that this
non-equivalence is not widely appreciated because transmission analyses stratified by
E continue to appear (e.g., Wang et al., 2006; Bellgrove et al., 2006; Brookes et al.,
2008; Du et al., 2008; Ma et al., 2009). Hence, there is a need to expand on some of
the ideas touched on by Umbach and Weinberg. The current investigation aims to
fulfil this need, and to gain further insight into how and why the bias in transmission
rates arises when they are used as a proxy for GRRs.

In this work, we continue the line of investigation started by Umbach and Wein-
berg, and derive general expressions for the mating-type probabilities in the parents of
cases under population stratification. We then use these expressions to compare the
variation in transmission rates to that in the GRRs, under different penetrance models
and levels of G-E dependence induced by population stratification. The comparison
gives a fuller understanding of the bias in transmission rates and what is driving it.
Along the way, we also clarify how to derive Umbach and Weinberg’s expressions for
the mating-type specific transmission rates. The practical implications of the bias
in transmission rates are explored through a simulation study comparing the error
rates of a transmission-based test for Gx E to those of a likelihood-based test. We
conclude by suggesting descriptive summaries for exploring Gx E. Unlike stratified
transmission rates, these summaries are not biased by population stratification or by

non-multiplicative penetrance models.
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2.2 Models and Methods

Consider a single nucleotide polymorphism (SNP). Let G, Gj; and G denote the
number of copies of the putative risk allele carried by a child, his/her mother and
father, respectively. Each of G, G; and G can take a value from 0, 1 or 2. We
assume symmetry of mating such that, for example, (G, Gr) = (0, 1) has the same
probability of occurring as (Gyr, Gr) = (1,0). Under this assumption there are six
distinctive parental mating types G, as described in Appendix A.1. Let D denote
the event that a child develops disease and E denote his/her continuously varying
non-genetic attribute. Let R,(e) be the attribute-specific GRR of an individual with
g copies of the risk allele compared to an individual with no copies. The details of
the notation and model are given in Appendix A.1.

The transmission rate is defined to be the probability that a heterozygous parent
transmits the risk allele to his/her affected child. The attribute-specific transmission

rate 7(e) can be written as
() = Y Tmle)wm(e),

where 7 is the set of mating types with at least one heterozygous parent (reviewed in
Appendix A.2). This is a weighted average of the mating-type-specific transmission
rates 7,,(e), with the weight w,,(e) being the proportion of heterozygous parents of
cases with F' = e that come from mating type m (Umbach and Weinberg, 2000). In
Table 1 of Umbach and Weinberg (2000), reproduced as our Table 2.1, 7,,(e) and
wy,(e) are written, respectively, in terms of the R,(e) and the proportion m,,(e) =
Pr(G, =m | D, E = e) of cases with E = e that come from mating type G, = m. In
Appendix A.3, we derive the expressions for 7,,(e).

By way of a numerical example, Umbach and Weinberg showed that, when GRRs
do not vary with E (i.e. there is no G x FE), transmission rates can still vary with £
because the weights w,,(e) vary under G-E dependence. From the form of wy,(e) in

Table 2.1, we can see that they vary with £ because of m,,(e). Thus, to understand
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Table 2.1: Components of the transmission rate of a risk allele from heterozygous
parents to affected children with £ = e (Reproduced from Umbach and Weinberg,
2000.)

Informative Proportion of parents Proportion of heterozygous  Mating-type-specific
mating of cases that come parents of cases that come transmission rate
type from given mating type* from given mating type'
o1 (€) ( )
0,1 =
(0,1) mo1(€) wor(e) d(e) Toi(e) = 1+ Ri(e)
mi2(e) Ry(e)
1,2 -
(1,2) Ta(e) wiz(e) = d(e) T12(e) = Ri(e) + Ra(e)
27711( ) Ry (6) + Rz(@)
1,1 =
1) mule) o) =g )= TR+ Rae)

* Expressions for m,,(e) = Pr(G, =m | D, E = e) are given in equation (2.1).
d(e) = mo1(e) + mi2(e) + 2mi1(e).

how transmission rates 7(e) vary with E, we need to understand how m,,(e) does.
Towards this goal, we derive expressions for m,,(e) and use these to clarify how G-
E dependence impacts 7(e). The model of G-E dependence that we use is the one
considered by Umbach and Weinberg, in which dependence is induced by population

stratification.

2.2.1 Example settings

In their example illustrating the bias in transmission rates for assessing Gx E, Um-
bach and Weinberg considered a structured population consisting of two equal-sized
subpopulations, assuming E had no effect on disease risk and that a recessive gene
affected the disease penetrance with a relative risk of size 3. For our investigation,
we considered settings with or without GX E for dominant and recessive penetrance
models, as defined in Appendix A.1, under both G-E dependence and independence
in the general population. We did not consider multiplicative penetrance models be-
cause the variation with F in transmission rates is equivalent to that in GRRs, as
reviewed in Appendix A.2 (see equation (A4)). The specific settings considered for
our investigation are no Gx E and G-F dependence, GX E and G-F dependence, and
GxFE and G-FE independence. The setting with no GXE and G-FE independence is
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omitted because both the transmission rates and GRRs are constant in E in this case;
that is, 7(e) reflects the (lack of) GX E.

We discuss the details of the model and related notation in Appendix A.1. In the
risk model, we set 5§ = log(3) for GRRs in (A1), f(e) = 0 under no GXE and f(e) =
—0.25¢ under GXFE. To induce G-F dependence due to population stratification
(e.g., Figure 2.1) we considered a general population with two hidden subpopulations,
denoted by S = 0 or 1, of equal sizes in which genotype frequencies follow Hardy-
Weinberg proportions, and the risk allele frequencies are ¢y = 0.1 and ¢; = 0.9, as in
the example of Umbach and Weinberg (2000). The general population is subdivided,
with all subpopulations in Hardy-Weinberg equilibrium. The general population is
therefore, subject to the well-known Wahlund effect (Li, 1955; Wahlund, 1928) in
which the number of heterozygotes tends to be less than expected under Hardy-
Weinberg equilibrium. For the non-genetic attribute £, we let the general population
have a mean of 0 and variance of 1 and the subpopulations have a common variance o2.
The conditional expected value E(E | .S) is linear in the binary variable S, implying
V(E(E | S))/V(E) = p%g, where pgg is the correlation between E and S (Hogg
et al., 2005). Using this identity, the subpopulation-specific means are E(E | S =
0) = po = —pps and E(E | S = 1) = yy = pgs, and their variances are 0 = 1 — p%.
Within each subpopulation, we let E be normally distributed and independent of G.
With fixed subpopulation-specific allele frequencies ¢o = 0.1 and ¢; = 0.9, one can
show that Cov(G, E) = 0.8 X pgg, by first expressing Cov(G, E) = E(Cov(G, E |

S))+Cov(E(G | S),E(E | S)). A similar conditioning calculation yields V(G) = 0.82
0.8

Vv0.82

we controlled the G-F correlation by varying pgs. The values of pgg considered were

for this population in which V(£) = 1. Thus, pgr = X pps. Using this identity,
0.2, 0.5 and 0.8, which correspond to pgg values of 0.18, 0.44 and 0.71, respectively.
Under G-F independence, we let qo = ¢ = ¢ with ¢ = 0.1,0.5 and 0.9, and pgs = 0
(i.e., o = 1 = 0). The G-E dependence can arise from the same (hidden) population
stratification responsible for the Wahlund effect; or it can arise by chance through
genetic sampling of a random population. In this work, we view this dependence pgg

as a population-level parameter that is invariant to the sampling design or artefacts
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A. Subpopulation 0 B. Subpopulation 1 C. General population
© | © | ©
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non—genetic attribute (e)

Figure 2.1: Inducing G-E dependence through population structure. The
subpopulation-specific and population allele frequencies (qg,q; and g, respectively)
for the SNP G are indicated by the grey scale in panel C: higher allele frequencies
are indicated by darker shadings and lower frequencies, by lighter shadings. The E-S
correlation is ppg = 0.8. As indicated in panels A and B, within each subpopulation,
G and E occur independently. However, as shown in panel C, in the (combined)
general population, G and E become dependent in the sense that, for the individuals
with lower values of E, the risk-allele frequency tends to be lower, whereas for those
with higher values of E, the risk-allele frequency tends to be higher. The resulting
G-FE correlation is pgrp = 0.71. Individuals with lower values of F are more likely to
be from subpopulation 0 which has a lower risk-allele frequency, whereas those with
higher values of F are more likely to be from subpopulation 1 which has a higher
risk-allele frequency.

of statistical sampling from a fixed population.

2.2.2 Simulation study

The transmission rates can give a biased assessment of GRRs. To assess the prac-
tical implications of such bias, we evaluated the power of a transmission-based test
of GXFE by simulation. False-positive rates correspond to the power of tests un-
der the no-G x E null hypothesis. False-negative rates correspond to one minus the
power under the GxFE alternative hypothesis. As previously noted (Umbach and
Weinberg, 2000), these error rates are also influenced by incorrectly assuming inde-
pendence of transmission events. The transmissions from two heterozygous parents

to their affected child are independent only under a multiplicative penetrance model
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or when the variant allele has no effect on disease risk. The transmission-based test
was compared to a likelihood-based benchmark. Following Umbach and Weinberg
(2000), we simulated 1000 affected trios with informative mating types according to
the settings described in the previous subsection. The risk allele frequency in the
general population was ¢ = 0.5. Estimates of power were based on 10,000 simulation
replicates, giving simulation errors of < 0.01. Simulations were programmed in R (R
Development Core Team, 2011).

For the transmission-based approach, the log-odds of transmitting the risk allele
to an affected child were modelled as a linear function of E and the slope term
was assessed via a likelihood-ratio test assuming independence of transmissions. For
the likelihood-based approach, a conditional logistic regression was used to model
the conditional probability of the affected child’s genotype given E and the parental
genotypes G, (Schaid, 1999). A likelihood-ratio test was applied, based on a co-
dominant penetrance model, as defined in Appendix A.1. For categorical E, this
approach is equivalent to the log-linear modelling approach of Umbach and Weinberg
(2000).

2.3 Results

The probabilities ,,(e) of mating-types in parents of cases with £ = e can be written

as

Tm(e) =Pr(Gp,=m | D,E =e)

_ degm Pr(Gp=m,D,G =g,E =e)
Zm’EM Zglégm/ PI'(Gp = m/’ D, G = g/,E — 6)

!
=
&
I
2

dengr(D|G:g,E:e)Pr(G:g|G =m)Pr(Gp=m|E=e

Yomem geg,, Pr(D |G =g E=e)Pr(G=yg|G,=m)Pr(Gy,=m'| E=¢e)Pr(E =e)

_ Pr(Gy=m|E=¢e)} g, Pr(G=g|Gp=m)Rye)
Zm’EM Pr(G,=m'| E =e) Zg/egm, Pr(G=¢ |G, = m’)Rg/ (e)’
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where M is the set of distinct parental mating types (see Appendix A.1). The first
line of the equation is the definition of 7,,(e). The third line follows under conditional

G-F independence given parental genotypes and no parent-of-origin effects, so that

Pr(G,=m,D,G=g,E=¢)=
Pr(D|G=¢g,E=¢)Pr(G=g|G,=m)Pr(G,=m | E=¢)Pr(E=e).

The final line follows from dividing through by Pr(D | G = 0, E' = e) in the numerator
and denominator and factoring out the terms that do not depend on g. Even with
GRRs that are constant in F, equation (2.1) shows that m,(e) can vary with F
through the stratum-specific mating-type probabilities Pr(G, =m | E = e).
Through equation (2.1), we see that Pr(G, = m | E = e) can be as important as
the GRRs in determining whether m,,(e), and hence the overall transmission rates

7(e), vary with e. Under G-F independence within subpopulations,

Pr(G,=m|E=e)
= ZPr(Gp:m|S:S)Pr(Eze]S:s)Pr(st)/Pr(E:e)

= ZPr(Gp:m|S:s)Pr(S:s|E:e).

Thus, Pr(G, = m | E = e) vary with e when both G, and E depend on S; i.e., when

there is G-E dependence in the overall population.

2.3.1 G-E dependence

In the hypothetical population of Figure 2.1, the population stratification induces G-
E dependence. The resulting probabilities Pr(G, = m | E = e) are shown in Figure
2.2. At lower values of E, parents are more likely to come from subpopulation 0
(go = 0.1), which has a higher frequency of mating type (0, 1) than mating types (1, 1)
and (1,2). At higher values of F, parents are more likely to come from subpopulation

1 (¢ = 0.9), which has a higher frequency of mating type (1,2) than the other
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Figure 2.2: The mating-type probabilities Pr(G, = m | E = e) in the parents of
children with £ = e under G-E dependence with pgp = 0.71.

informative mating types.

The impact of the stratified mating-type probabilities, Pr(G, = m | E =€), on
the weights, w,,(e), in Table 2.1 is shown in Figure 2.3 for the setting with G x E' and
G-F correlation of pggp = 0.71 under the dominant penetrance model. The weights
under the recessive penetrance model are similar. The pattern in the weights closely
mirrors that in the conditional mating-type probabilities. For example, at low values
of E, parental mating type (0,1) is weighted heavily compared to the other two
informative mating types. By contrast, at high values of E, parental mating type
(1,2) is weighted heavily compared to the other two informative mating types.

Figures 2.4 and 2.5 illustrate the impact of Pr(G, = m | E = e) on the trans-
mission rates under pgr = 0.18,0.44 and 0.71. Define R(e) = Ry(e) = Ry(e) under
dominant penetrance and R(e) = Ra(e) under recessive penetrance. Throughout,
variation with E in logit(7(e)) is compared with that in log(R(e)), as would be done

under multiplicative penetrance based on the relationship (A4).
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Figure 2.3: The weights w,,(e) under no Gx E and G-E correlation of pgr = 0.71 for
the dominant penetrance model.

Figure 2.4 plots logit(7(e)) versus e calculated under the setting where G and E
are dependent in the absence of Gx E, for dominant (panel A) and recessive (panel
B) penetrance models. From the figure, we can see logit(7(e)) varies with £ while
log(R(e)) does not, as expected based on the form of m,,(e) in equation (2.1). The
figure also shows that logit(7(e)) varies more as G-E dependence increases. Hence,
inferring G x E based on variation with F in transmission rates may lead to false-
positive results.

Figure 2.5 plots logit(7(e)) versus e calculated under the setting where G and E
are dependent in the presence of Gx E. As shown in the figure, the form of variation
with £ in logit(7(e)) differs from that in log(R(e)) at any level of G-E dependence.
The figure suggests that inferring Gx F based on variation in transmission rates may
lead to false-negative results in some cases; for example, logit(7(e)) curves under
recessive penetrance with G-E correlations of 0.18 or 0.44 are relatively close to a

horizontal line, which represents no variation in 7(e).
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Figure 2.4: Variation in GRRs and transmission rates under no GXE and G-E de-
pendence. Solid lines indicate log(R(e)), which represents the true GxE measure.
Broken lines indicate logit(7(e)) for different levels of G-E dependence, pgg, induced
by pgs. Curves in the left column represent the variation for a dominant penetrance
model, and those in the right column, the variation for a recessive model.

In the presence of G X E, the weights w,, (e) are very similar to those in the absence
of GXE (results not shown), indicating that Pr(G, = m | E = e) continues to drive
their behaviour. Moreover, the patterns of variation in transmission rates with (Figure
2.5) and without (Figure 2.4) Gx E are also similar. These similar patterns indicate
that, even in the presence of GXF, the behaviour of 7(e) can be determined by
Pr(G, = m | E = e) rather than by GxXE.

In summary, for the population stratification that we have considered, variation
in the stratified mating-type probabilities, Pr(G, = m | £ = e), drives variation in
the weights wy,(e). In turn, the weights drive variation in the transmission rates 7(e).
For example, in the dominant penetrance model, 7o1(e) > 71(e) > T2(e) = 1/2.
From Figure 2.3, we see that, for the overall transmission rate, the large mating-type
specific transmission rate 7o;(e) gets most of the weight at low values of e, whereas

the small mating-type specific transmission rate 713(e) gets most of the weight at high
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Figure 2.5: Variation in GRRs and transmission rates under Gx E and G-E depen-
dence. Solid lines indicate log(R(e)), the true Gx E measure. Broken lines indicate
logit(7(e)) for different levels of G-F dependence, pgg, induced by pgg.

values. The influence of the weights and/or the probabilities Pr(G, = m | £ = e)
can be seen in panel A of Figures 2.4 and 2.5. Similar arguments apply in the case

of the recessive penetrance model.

2.3.2 G-F independence

Even when G and F are independent, transmission rates still may not reflect GRRs,

as indicated by the odds of transmission under no population stratification:

fife) if dominant

7(e) (1—g¢

— ) + R(e)
(1—q)+

R(e) - q (2.2)
R(e)-q if recessive,

1—7(e)

where ¢ is the relative frequency of the risk allele in the population. The details of
the derivations are provided in Appendix A.4. Hence, under the dominant (recessive)
penetrance model, logit(7(e)) reflects log(R(e)) correctly only as ¢ — 0 (¢ — 1) in the
presence of Gx E. To illustrate, Figure 2.6 shows logit(7(e)) for a high (¢ = 0.9) and
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a low (¢ = 0.1) risk-allele frequency. In general, for this setting under Gx E and G-F

A. Dominant B. Recessive

2.0

— R(e)
~ B

Al e

1.0

log(R(e)) or logit(t(e))

non—genetic attribute (e)

Figure 2.6: Variation in GRRs and transmission rates under G x E and G-F indepen-
dence. Solid lines indicate log(R(e)), the true Gx E measure. Dashed lines indicate
logit(7(e)) for a low population risk-allele frequency ¢ = 0.1, and dotted-dashed lines
indicate logit(7(e)) for a high risk-allele frequency ¢ = 0.9.

independence, logit(7(e)) varies less than log(R(e)). Hence, inferring Gx E based on

variation in logit(7(e)) may lead to false-negative results.

2.3.3 Simulation results

Table 2.2 summarizes the results of the simulation study. Under no GXE and G-
E correlation, the false-positive error rate of the transmission-based test is inflated
above the nominal 5% level. These results are consistent with the bias in transmission
rates shown in Figure 2.4. By contrast, the error rates of the likelihood-based test is
within simulation error of the nominal 5% level.

Under Gx E and G-FE correlation, we expect the transmission-based test to have
greater power than the likelihood-based test given its grossly inflated false-positive er-
ror rates. In those cases when its power is less, the transmission rates vary noticeably

less with £ than the GRRs. For example, under recessive penetrance and pggp = 0.44
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Table 2.2: Estimated power of the transmission and likelihood tests under the example
settings, with ¢ =0.5. For each configuration, the column “error type” indicates
whether errors under that configuration are false-positive (fp) or false-negative (fn)
results. Under no Gx E, power estimates are false-positive (type 1 error) rates; under
Gx FE, they are one minus false-negative rates. Power estimates are based on 10,000
simulation replicates and the simulation error is < 0.01. The nominal level of all tests
is 5%.

Power
Setting GXxE penetrance pgp error type transmission likelihood

1 no dom 0.71 fp 1.000 0.047
0.44 fp 0.909 0.047

0.18 fp 0.251 0.050

rec 0.71 fp 0.999 0.049

0.44 fp 0.872 0.051

0.18 fp 0.246 0.050

2 yes dom 0.71 fn 1.000 0.284
0.44 fn 0.997 0.414

0.18 fn 0.670 0.474

rec 0.71 fn 0.794 0.539

0.44 fn 0.092 0.684

0.18 fn 0.368 0.736

3 yes dom 0 fn 0.177 0.487
rec 0 fn 0.884 0.830

or 0.18 the curves for transmission rates in Figure 2.5, panel B, are relatively flat.
The transmission-based test relies on a linear approximation to the log-odds of trans-
mission; its power depends on the slope of this approximation. Accordingly, we see
that, under the recessive penetrance model, power of the transmission-based approach
is lowest for pgrp = 0.44, the configuration in which a linear approximation to the
transmission rates has slope closest to zero. It is interesting to note that, when the
penetrance model is recessive and pgr = 0.44 or 0.71, the transmission-based test
displays the perverse behaviour of rejecting more often under the null hypothesis
than under an alternative hypothesis. Specifically, the transmission-based test has
substantially larger type 1 error rates (0.872 and 0.999, respectively) than its power
under the specified alternative (0.092 and 0.794, respectively).
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Under no Gx E and no G-E correlation (results not shown), the false-positive error
rates for the dominant penetrance model are 0.034 and 0.048, for the transmission-
based and likelihood tests, respectively; for the recessive penetrance model, the error
rates are 0.067 and 0.052. In this setting, the variation in transmission rates is an
unbiased reflection of that in the GRRs. In this case, the bias in the transmission-
based test arises from incorrectly assuming that the transmission events of parents
are independent. By contrast, in the previous two example settings, the transmission-
based test was biased under population stratification.

Under GxFE and no G-E correlation, the power of the transmission-based test
is lower than that of the likelihood-based test for the dominant penetrance model.
This lower power is consistent with the conservative type 1 error rate of this test and
the conservative bias in the logit(7(e)) curves under under dominant penetrance (see
Figure 2.6, panel A). By conservative bias in the logit(7(e)) curves, we mean curves
that are closer to horizontal than the log(R(e)) curve. For the recessive penetrance
model, a slight conservative bias in the transmission rates is countered by the anti-

conservative nature of the transmission-based test.

2.4 Discussion

With the case-parent trio design and no GxFE, the TDT is an attractive test for
genetic association, as it is robust to population structure, regardless of the penetrance
mode of the underlying disease (Spielman et al., 1993). However, as noted by Umbach
and Weinberg (2000), extensions which detect GxE based on variation with £ in
allelic transmission rates are not robust to population stratification unless the disease
risk follows a multiplicative penetrance model. To illustrate this point, Umbach and
Weinberg provided a counter-example involving a recessive penetrance model and no
GxE. They expressed the transmission rate in terms of the GRRs and the mating-
type probabilities ,,(e) of parents of cases. In this paper, we have investigated this
point more extensively, using a wider variety of settings, for a continuously-varying

E. To do so, we derived expressions for m,,(e) and used them to obtain theoretical
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transmission rates. These rates were then compared to GRRs for various penetrance
models and G-FE correlations induced by population stratification. This comparison
enabled a fuller understanding of the bias in transmission rates and what is driving
it.

We showed that, when GG and E are dependent, the stratum-specific mating-type
probabilities Pr(G, = m | E' = e) can drive the weighting of the mating-type-specific
transmission rates 7,,(e) when determining the overall transmission rate 7(e). As a
result, 7(e) varies with e in the absence of GX E (Figure 2.4) and varies with e to a
greater or less extent than GRRs in the presence of Gx E (Figure 2.5). When G and
E are independent, 7(e) depends on the GRRs and the variant allele frequency and
varies less with e than the GRRs under GX E (Figure 2.6).

The practical implications of such bias were investigated through a simulation
study. We have reported results for simulation configurations with pgg > 0 and
decreasing interaction parameter f(e); similar conclusions (results not shown) are
obtained for pgr < 0 and f(e) increasing. For simulation settings with notable bias in
transmission rates, the error rates of the transmission-based test were inflated relative
to those of the likelihood-based test. For example, the false-positive error rates of the
transmission-based test were grossly inflated above the nominal 5% level for higher
levels of G-E dependence, whereas those of the likelihood-based test matched the
nominal level. As another example, the false-negative error rates of the transmission-
based test were inflated relative to those of the likelihood-based test in a recessive
penetrance model, under moderate levels of G-E dependence.

Our results reinforce the message that transmission-based analyses of Gx E can be
misleading. This message applies not only to tests but also to descriptive summaries.
For example, a common descriptive summary involves pooling the transmissions from
informative parental mating types and graphically comparing the observed transmis-
sion rates across strata for E. Heterogeneity in the stratified transmission rates is
taken to be suggestive of GXFE. Figure 2.7A gives an example of such a graphical
display for a simulated data set under no GxE with pgr = 0.71 and a dominant

penetrance model. There is a striking but erroneous impression of GxXE due to the
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population stratification. To avoid such bias, we suggest comparing the transmission
rates within parental mating types instead, as they depend on the GRRs only (Table
2.1). Within a mating type G, = m, let the observed transmission rate for the stra-
tum defined by E = e be 7,(e) and let V,,(e) be an estimate of its variance given by
equation (A8) in Appendix A.5. Then the suggested display is of 7,,(e) = 2\/f/m(e)
across the strata, within a parental mating type m. Figure 2.7B illustrates this display
using the same simulated data set shown in Figure 2.7A. The display of transmission
rates within mating types in Figure 2.7B is robust to the population stratification,
whereas the display of pooled transmission rates in Figure 2.7A is not. We stress
that the display of transmission rates within mating types is intended only as a de-
scriptive summary of the data. Inference of G x E should be based on valid statistical
approaches developed for this purpose (e.g., Lake and Laird, 2004; Cordell et al.,
2004; Lim et al., 2005).
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Figure 2.7: Observed transmission rates stratified by low (< 0) and high (> 0) values
of F, for simulated data from 1000 case-parent trios under no Gx E with pgg = 0.71
and a dominant penetrance model. Panel A shows the transmission rates for pooled
data, and Panel B, those within each informative parental-mating-type. Lines rep-
resent approximate 95% confidence intervals calculated under a multiplicative pene-
trance model.



Chapter 3

A data smoothing method to
uncover gene-environment
interaction using data from

case-parent trios

3.1 Introduction

A case-parent trio study collects the genotypes of unrelated affected children and
their parents. Information on cases’ non-genetic covariates can also be collected.
The design allows conditioning on parent genotypes, which has the effect of creating
family-based controls matched to the case for ancestry; the inference of genetic effects
is robust to population stratification.

The joint effect of genetic and non-genetic factors, that is gene-by-environment
interaction (GxFE), is often of interest. As for the genetic effects, conditioning on
parent genotypes G, provides robust inference of GXE from case-parent trio data
against population stratification when the test marker is causal (e.g., Umbach and
Weinberg, 2000). Various approaches have been developed to examine G'X E using

data from case-parent trios. Such approaches include the log-linear modelling method

22
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(Umbach and Weinberg, 2000), the conditional logistic regression (e.g., Schaid, 1999)
and the family-based association test of interaction (FBAT-I; Lake and Laird, 2004).
These methods condition on parent genotypes for assessing Gx FE in data from case-
parent trios.

However, there are issues with these approaches. For example, the log-linear
modelling approach can only handle a categorical non-genetic covariate. Therefore,
if £ is a continuous covariate, it needs to be categorized, which results in a loss of
information. Conditional logistic regression can handle a continuous E, but it needs
to assume a parametric form (e.g., linear) for the G x £ model. When the interaction
model is mis-specified, it can lead to invalid conclusions about Gx E. FBAT-I does
not assume any parametric model for Gx E; however, it uses a test statistic that
works best when G and E are linearly associated. The test also needs to specify the
mode of inheritance, which can also lead to mis-leading inference about G x E when
the mode is mis-specified.

To address such issues, we develop a penalized maximum likelihood method to
assess G X FE, using a generalized additive modelling framework (e.g., Wood, 2006).
The proposed method does not require specification of either the GxE model or
the mode of inheritance. The resulting point and interval estimates may be used to
displayed to graphically explore the form of GxE and the mode of inheritance. For
assessing the significance of G x E, we adopt a permutation-based approach that takes
into account of the additional uncertainty introduced by the smoothing process. A
simulation study is conducted to evaluate the type 1 error rates and the statistical
power of the proposed test under various scenarios. We also compare the power of
the proposed test to that of the other available methods mentioned above. For the
simulation study, we generate and use datasets with a large sample size; the power
of our permutation test is expected to be low since it is difficult to detect GXE in
general (Smith and Day, 1984; Dempfle et al., 2008), and on top of that, we only

make minimal assumptions about the G x E model.
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3.2 Model

Let G denote the number of copies of the index allele for a SNP carried by an in-
dividual, which can take a value from 0, 1, or 2; E, his/her continuously varying
non-genetic covariate; and D denote the binary indicator of his/her disease status
(D =1 if affected). Let Gj; and G denote the numbers of the copies of the index
allele carried by the mother and the father of the individual.

We assume mating symmetry and Mendelian segregation. Under these assump-
tions, the informative mating type G, can take a value from 1, 2 or 3, indicating
(Gu,Gr) = {(0,1) or (1,0)}, {(1,2) or (2,1)} and {(1,1)}, respectively. G and F
are assumed to be conditionally independent given G),. For disease risk probability,

we assume the following log-additive model (Shin et al., 2010):

P(D=1|G=g,E=¢)=exp{k+2z(g9)y+&(e) +2(g9)f(e)}, (3.1)

where k is the baseline disease probability, z(g) = (21(g), 22(g)) where z;(g) and
29(g) are indicator variables for ¢ > 0 and g = 2, representing the co-dominant
genetic coding; v = (71,72)", where 7y, and 7, represent genetic main effect; £(e),
an unspecified smooth function of E representing the non-genetic main effect; and
fle) = (fi(e), fale))T where fi(e) and fo(e) are unspecified smooth functions of E.
Gx E occurs when genotype relative risks (GRRs) vary with values of non-genetic
covariates. The parameterization in model (3.1) focuses on the idea of differential
genetic effects on the disease risk due to differential gene dose effects, which is a
natural interpretation in our context. Other parameterizations that allow for two
GRRs are also possible, and one such example is presented in Appendix B.1.

Under the risk model (3.1), we have

log (GRR;(e)) = log { i
(3.2)

log (GRR3(e)) = log { ]ngg — 1 :
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The smooth functions fi(e) and f>(e) model Gx E since GRR’s depend on E through
them. When fi(e) = fa(e) = 0 for all values E' = e, it indicates there is no Gx E.
When fi(e) and/or fy(e) vary with e, it indicates that there is Gx E.

Under different genetic inheritance modes, fi(e) and fa(e) behave differently. Un-
der dominant models, fi(e) varies with E, but fi(e) = 0 since

P(D=1|G=1,E=¢) P(D=2|G=1E=c¢)
P(D=0|G=1,E=¢) PD=0|G=1E=c¢)

log(GRR;(e)) # 0, log(GRRy(e)) = 0.
Under multiplicative or log-additive models, both functions vary with £ in the same

way (i.e., fi(e) = fa(e)) since

P(D=1|G=1,E=c¢)
P(D=0|G=1E=e¢)

(D=2|G=1,E

— Z) 1 (3.4)

T
log(GRR;(e)) = log(GRRy(e)) # 0.

Under recessive models, fi(e) = 0, but fy(e) varies with E since

log(GRR;(e)) = 0,log(GRRxa(e)) # 0.
For the case-parent trio design, the data are ascertained conditional on D = 1,

and hence the likelihood for the observed data for a single family is

P(G=g,E=¢,G,=m|D=1)
= PG=yg|E=eG,=m,D=1)-P(E=e,G,=m|D=1). (3.6)

However, unconditional inference based on the joint probability distribution P(G =
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g, E = e, G, = m | D = 1) requires knowledge about the joint distribution of E
and G, which is not available from case-parent trios. An alternative way is to make
conditional inference by conditioning on E and G, (e.g., Schaid, 1999), such that
the likelihood is based only on the first factor in equation (3.6). Conditioning on
E and G, would result in loss of information (e.g., Liang, 1983) due to ignoring the
second factor in equation (3.6), which also contains information on Gx E. However,
Moerkerke et al. (2010) have shown that the conditional inference is asymptotically
efficient under linear Gx E. Hence, we expect that the loss of information about Gx E
from conditioning on G}, and E would be minimal, provided that the sample size is
big enough.

For the purpose of writing the likelihood based on P(G =g | E =e,G, =m,D =
1), it is convenient to introduce a binary variable Y,,;, coding the genotype of the

affected child in j** trio from m* mating type, such that

1 if the child has G = g,
Yonig = . :
0 otherwise
Y.y are mutually independent, and if two affected children within a mating type

have the same value of E = e, their responses are identically distributed.

The mean responses ji,4(€) are
pmg(e) =E(Y, | E=¢)=P(G=g|E=¢eG,=m,D=1),

for which the expressions under the considered assumptions are provided in Table
3.1. Note that the baseline parameter £ and the non-genetic main effect parameter
&(e) of the disease risk model (3.1) are not estimable since, as shown in Table 3.1,
they are cancelled out in the calculation of P(G =g | E = e,G, = m,D = 1) on
which we base our conditional likelihood inference. However, we are not concerned
with this because k£ and £(e) are nuisance parameters in an analysis of Gx E.
Assuming no mutation, G = 2 is impossible for trios from G, =1, and G = 0 is

impossible for those from G, = 2. Therefore, py2(e) and pgp(e) are not defined, as
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Table 3.1: Expressions for y,4(e) = P(G =g | £ =¢,G, = m,D = 1) under the
assumptions.

Genotype (g)

Mating type

(m) 0 1 2
. 1 exp(y1 + fi(e)) -
1+ exp(y1 + fi(e)) 1+ exp(y1 + fi(e))
, ) 1 exp(y2 + fa(e))
1+ exp(y2 + fale)) 1+ exp(y2 + fa(e))
" 1 2exp(y1 + fi(e) exp(y1 + fi(e) + 72 + fa(e))

d(v1,72, f1(e), fale)) — d(v, 72, file), fa(e)) d(71,72, f1(e), fa(e))

Ad(y1,72, fi(e), fa(e)) = 1+ 2exp(y1 + fi(e)) +exp(y1 + fi(e) + 72 + fa(e))

indicated in Table 3.1. Letting pi(e) = (po(e), p11(e))T, pale) = (pai(e), poz(e))™
and psz(e) = (uso(e), psi(e), ps2(e))T, the log-likelihood function can be expressed as

a sum of three components:

ni

1, p3) = Y [yijolog(poler;)) +yiji log(pi(ers))]
j=1
n2

+>  [y2j1 log(pai(ea;)) + yajo log(paz(ea)))]
j=1

n3
+>  [ysjolog(pso(es;)) + ysji log(pai(es;)) + ysjzlog(paz(es;))]
j=1

> hy(pa(ey)) + Y loj(pales;)) + Y Isj(pales;)).
j=1 j=1 j=1

where n,, is the number of affected trios from G, = m, and [,,,;(-) is a log-likelihood
contribution for a trio from G, = m. The first two components of the log-likelihood
function are binomial log-likelihoods, and the last one is a trinomial log-likelihood.
From Table 3.1, we can see that py(e) involves v, and fi(e), and po(e), 2 and
fa(e), while ps(e) involves 1, 72, fi(e) and fa(e). Consequently, the log-likelihood
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function can be re-expressed in terms of GRR-model parameters as

L(v1,72, f1(e), fa(e)) =
D by (s, file) + o (2, falea)) + Yl (11,72, falless), falesy))
=1 j=1 j=1

(3.7)

which indicates that the trios from G, = 1 are used for estimating v, and fi(e), those

from G, = 2, for 7, and f>(e); and those from G, = 3 are used for all the parameters

’717’727][1(6) and f2(€).

3.3 Methods

3.3.1 Penalized likelihood setup

For modelling the smooth G x E functions fi(e) and fy(e), we consider natural cubic
splines, respectively, with K; and K5 knots. The K; and K5 knots are selected based
on the observed £ in the trios from mating types G, = 1,2 and those from G, = 2, 3,
respectively. Under a penalized estimation framework with a fixed basis dimension,
the exact number and positions of the knots do not contribute much impact on the
resulting fit, as long as the basis dimension is large so that there are enough degrees
of freedom for representing the true function (Wood, 2006).

Since fi(e) and fy(e) are not expected be complex, by default, we assume K; =
K5 = 5 are enough to represent the smooth functions. In order to make good use of
the data, we let them be distributed evenly through out the data by placing them
at sample quantiles. For example, under the default numbers of knots, the we place
three interior knots at the 25", 50" and 75" quantiles and two boundary knots, at
the endpoints of the data.

With the chosen K, knots, fi(e) can be expressed as

Ky,
fu(e) = bukle)eiy = Xile)ep,  for h=1,2, (3.8)
k=1
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where the k' basis function by (e)is evaluated at F = e based on the K} knots, Crye
is the corresponding coefficient, Xj:(e) = [bpi(e), ..., bur(e)], and ¢ = (cfy, ..o g, )T
There are several ways to define a natural cubic spline function and hence the basis
function vector X (e) (e.g., Wood, 2006). We show one definition of X} (e) in equation
(B2) in Appendix B.2.

The roughness penalties associated with f,, for h = 1,2 are measured by the

integrated squared second derivative

[y = <Tsie. 39)

where f;/(e) is the second derivative function of fi,(e), Sy is the K, x K} penalty
matrix. The (i, 7)™ elements of Sj are {s} ;} = [ b;(e)by;(e)de, for which by, (e) is
the second derivative function of the i** basis function evaluated at E = ¢ (Wood and
Augustin, 2002).

To identify the genetic main effect terms 7, and 7 from log-GRRy,(e) in equations
(3.2), we impose the following two constraints for A = 1,2 that the sums of f,(e;;)
over all observed covariate values of cases in trios from mating type m = h or 3 are

Zero:

Yo hulem) =D D> D bulemy)ciy = Crej =0, (3.10)

me{h,3} J k. me{h3} 7
where Cj, is the 1x K, matrix with k" element Cj = Zme{h 3 Zj bri(€mj). The
fitting problem may be reparameterized in terms of a new basis coefficient vector ¢y,

of length (K} — 1) induced by the constraints (3.10), by letting
CZ = AhCh.

Thus, the constraints (3.10) will be automatically satisfied if A}, can be chosen such
that
ChA), = 0. (3.11)

One way to find an Ay, is to use the QR-decomposition on C] (Section 1.8.1 Wood,
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2006); that is, we write

Cp = QiR = [th : th} Ry,

where Q, is a Kj;x K}, orthogonal matrix, and Ry, is a Kj,x1 (upper triangular)
matrix. Let Qj be partitioned into two parts: Qij, a matrix containing the first
column of Q, and Qgy, a matrix containing the last (K, — 1) columns. Then, setting
A, = Qg will lead to equation (3.11) since the columns of Qg are in the null space
of Cj, (Fundamental Theorem of Linear Algebra).

Hence, letting X, (e) = X (e)Ay, we obtain

fh(e) = Xh(e)cm

while satisfying the constraints on f,(e) in equation (3.10). Consequently, the log-
likelihood function in (3.7) can be re-written in terms of the parameter vector 3 =
(71, ¢{,72,cq)". Similarly, letting S, = ATS} A}, we obtain the corresponding rough-
ness penalty

/ (Fr(e)2de = T Sue.

The roughness penalty can be further re-expressed in terms of the parameter vector
3 as
[0y de =558,
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by letting the penalty matrix S, be (K + K3)x(K; + K3) square matrices

0 0 . 0 00 --- 0
0 S1,11 cee S1,1(K1—1) 00 0
S 0 si-11 0 Sua-1)E—1y 0 0 - 0
1= ’
0 0 0 00 0
0 0 0 0.0 -0
0 0 0 00 0
and _ T
00 0 0 0 0
00 00 0 0
00 --- 00 0 . 0
Sy = ’
00 --- 00 0 e 0
00 --- 00 8911 ce 52,1(K2—1)
_O 0 -+ 0 0 Sokp—iyt - 52,(K2—1)(K2—1) |

where {sj,;;} represent the elements of S,. Consequently, the penalized log-likelihood

function can be written in terms of 3 as

2
L(B) = 18) ~ 5 > MBTSB
h=1

where )\, represents the smoothing parameter that controls the trade-off between the

fit to the observed data (i.e., bias) and smoothness (i.e., variance) for the estimator

of fu(e).
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3.3.2 Penalized maximum likelihood estimation

To write the additive predictors for estimating the GRRy,-parameters 3y, = (v, )7
for h = 1,2, we let X,(e) = [1,Xn(e)]. Then, we define the mating-type-specific

additive predictors n,,(e) for m =1,2,3 to be

m(e) = log mg} = Xy(c)Br;

) = b [ ] =0

ns(e) = ns1(€) _ log {pz1(e)/pao(e) } _ Xi(e)B1 + log(2)
n32(€) log {s2(€)/ 31 (e) } Xs(e)Bs —log(2)]

where fi,4(€) are as defined in Table 3.1. These additive predictors indicate that the

likelihood contribution from the j% trio from m!* mating type is

¢

Y11 (e1;) — log(1 + em(e)) ifm=1

Yajona(e2;) — log(1 + 6772(623')) ifm=2

ysjs1(€3;) + ysjo(ns1(es;) + Ms2(es;))
— log(l + emsilesy) 4 e7731(63j)+7732(53j))

if m=3.

From the forms of 7,,(e) above, we can see that n3;(e) = n1(e) + log(2) and n3s(e) =
n2(e) —log(2), and hence the penalized log-likelihood is a function of n;(e) and 72(e)

only, which can be expressed as

3 m 2
B(8) = D2 3 by (en) molens)) — 5 S MBTSB. (312
m=1 j=1 h=1

For given smoothing parameters A; and )y, we can find the penalized maximum
likelihood estimate (PMLE) B numerically, using the Newton-Raphson method. The
Newton-Raphson update for 3 can be derived using the fact that the penalized log-
likelihood function in (3.12) has a similar form to that of a size-2 vector GAM (Yee
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and Wild, 1996). It can be shown that the update is equivalent to the penalized

iteratively re-weighted least squares (P-IRLS) solution in a matrix form

grew _ (XTWX + 22: AhSh> - (XTWZ),

h=1
where the descriptions for X, W and Z are as follows.

The model matrix X is obtained by stacking the trio-specific matrices X,,; cor-

responding to the j trio in mating type m. Respectively for m = 1,2 and 3, these
matrices are

Xy = [Xl(elj) ]1X(K1+Kz),

X2j = |: 0 : X2<€2j)]1><(K1+K2)

and

0 : X2<€3j) 2X(K1+K2).

The weight matrix W is a block-diagonal matrix having the trio-specific diagonal

blocks. Setting 7,,; = nm(€m;), we can express these blocks as

021y, e
le = - 9 21] = N2
771]' (1 + emJ)
0%ly; e
W, = L= -

o3 (14 em)?
and

eBL 4 313 +132; e"3151n32;5

013, (1 + ™ + em+msz;)?

W, = ——— _ =
J T 7315 +1M32;
a7]:5;'8773]‘ ey

(1 + ey e7731j+7732j)2
e7731j+7732j (1 + e7731j)

(1 + eM1j 4 eﬁ31j+7732j)2 (1 + e e7731j+7732j)2

Furthermore, the pseudo-response vector Z can be obtained by stacking the trio-

specific pseudo-responses

ij = Xm]/B + Wn_z]ldmja
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where
d 8l1j e’
17 = 5 — Y
J 67]1]' J 1+ ey
d 8l2j e'2i
25 = 7 = Y252 )
J 87]2]' J 1 + €2 ’
and
8l3j el e7731j+7732j
9 Ysj1 + Ysj2 — ; Ty
7731]- 1 4+ 315 - 31511325
8[3j e7731j+7l32j
87732]' Y3;2 1+ et 4 M1 +m32;

3.3.3 Smoothing parameter estimation and confidence inter-

vals

Smoothing parameter estimation is done by using two one-dimensional grid searches

to find the values of A\; and Ay that minimize the generalized AIC function:

VO As) = %D(B) 6+ %tr(A)qﬁ, (3.13)

~

where D(3) is the model deviance, which is negative twice the unpenalized log-
likelihood, ¢ is the scale parameter, which is 1 in this context, and A = X(XTWX +
Zi:l AnSp)1XTW is the hat matrix through which the objective function depends
on the smoothing parameters (Wood, 2006). The computational details showing how
to estimate the smoothing parameters are presented in Appendix B.3.

Naive confidence bands for f,(e) based on the asymptotic normal distribution of
¢, have coverage probabilities less than the nominal confidence level due to the inten-
tional bias introduced by penalized estimation (e.g., Wood, 2006). As an alternative,
we consider the Bayesian intervals that have been shown to have good frequentist
coverage probabilities (e.g., Nychka, 1988; Marra and Wood, 2012). To construct
the Bayesian intervals for f(e), we use the approximate normality of the posterior

distribution of ¢y, so that

fule) ~ N(Xh(e)éh, Xh(e)vchx,j(e)),
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where the variance-covariance matrix V., is obtained by extracting appropriate rows
and columns from the Bayesian posterior variance-covariance matrix for the full pa-
rameter vector 8 (Wood, 2006)
2
Vg = (XTWX + > \Si) 6.
h=1

For displaying the smoothed fits for Gx F functions, we plot the fitted curves fl
and f, along with their (1 —a)100% Bayesian confidence bands for a given confidence
level av. Different genetic inheritance modes will yield different patterns in fh: under
the dominant mode, non-horizontal fl and horizontal f2 would be produced; under
the recessive mode, horizontal fl and non-horizontal fg would be produced; and under
the multiplicative or log-additive mode, non-horizontal fl and fg having equivalent

forms would be produced.

3.3.4 Permutation test of GxFE

To account for the extra uncertainty introduced by the estimation of the smoothing
parameters, we take a permutation-based approach to testing Gx E. We define the
test statistic T as

T =¢é™{V.) e,

where ¢ = (¢],¢])T, and V. is the (K; + Ky — 2) x (K} + Ky — 2) matrix formed
by extracting, from V3, the appropriate columns and rows corresponding to c. As
the analysis is conditional on parental genotypes, we estimate the distribution of T’
under the hypothesis of no Gx E by shuffling £ within mating types. Under no Gx F,
G and FE are independent within a random affected trio when they are independent
within a trio from the general population (Umbach and Weinberg, 2000). The p-value
is obtained by computing the proportion of test statistics that are more extreme than
or as extreme as the observed test statistic. For our analysis conditional on parental
mating types, an alternative to permutation is bootstrap re-sampling of F within

parental mating types. The advantage of a bootstrap-based approach is that its
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statistical properties are better understood. However, when the number of affected
trios within each parental mating types is large, both approaches should reach similar

conclusions.

3.4 Simulation

We conducted a simulation study to evaluate type 1 error rate and power of the
proposed permutation test of GXFE under various scenarios. The test statistic T
was computed based K; = K; = 5 knots placed at the quartiles of the observed
distribution of E in the appropriate subsets of case-parent trios (e.g., trios in mating
types m = 1,3 for estimating fi(e)). The p-values were obtained based on 1000
permutations.

When assessing the size of the test, we considered both a homogeneous (or un-
stratified) and a stratified population to verify unbiasedness of the test regardless of
population stratification. However, when assessing the power, we did not consider
population stratification. For comparison, we also evaluated three other tests, which
will be discussed below: (i) a likelihood ratio test based on a conditional logistic
regression model (e.g., Schaid, 1999), (ii) a likelihood ratio test based on a log-linear
model (Umbach and Weinberg, 2000), and (iii) a family-based association test of
gene-environment interaction (FBAT-I; Lake and Laird, 2004).

In the conditional logistic regression, we used linear GXE via fi(e) = Bgere and
fa(€) = Byeze in model (3.1). For the log-linear modelling approach, we dichotomized
E based on its sample median [ in the affected trios and set fi(e) = Sgeil{e > i}
and fo(e) = Bye2l{e > i} in model (3.1). For FBAT-I, we set z1(g) = 22(9) = g,
7 =72 and fi(e) = fa(e) in model (3.1) and calculated the p-values based on 10,000
permutations. The type 1 error rates for these three tests were not examined because
it is well established that they maintain the nominal level of significance when the
test marker is causal (e.g., Lake and Laird, 2004; Shin et al., 2010).

All computation was done by R (R Development Core Team, 2011). The proposed
method was implemented in R and is soon to be available on CRAN. For FBAT-I,
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we used the ‘fbati’ package (Hoffmann, 2009). We simulated 1000 data sets in the
absence and 500 in the presence of Gx E under dominant, log-additive and recessive
penetrance models, where each data set consisted of (G, E,G,) of informative case-
parent trios. We chose to use a large sample size of 3000 in order to get enough

resolution for comparing power since it is well known that the power to detect Gx E is

low (Smith and Day, 1984; Dempfle et al., 2008).

3.4.1 Simulation setting

Under population stratification, we considered a stratified population with two equal-
sized subpopulations S = 0 and 1, assuming random-mating within but not between
subpopulations. Within subpopulations, the index allele frequencies were chosen as
g = 0.1 and ¢¢ = 0.9, and the means and common variance of F, as py = 0.8,
i1 = —0.8 and 0% = 0.36, respectively. Under no population stratification, the two
subpopulations were set to have the same allele frequency ¢y = ¢; = ¢ = 0.1 and
the same mean and variance of E so that g = u; = = 0 and ¢? = 1. In each
subpopulation, G}, were simulated under Hardy-Weinberg proportions (HWP) and
mating symmetry; G were simulated under Mendelian segregation with no mutation;
and F were simulated independently of GG, and GG under normal distributions.

Parameters in the disease risk model in equation (3.1) were chosen as follows. Since
the baseline disease probability and the non-genetic main effect are not estimable from
case-parent trio data, we let k = 0 and £(e) = 0 for all values of e, for convenience.
Under a dominant penetrance model, we took 7; = log(3) and v, = 0, giving GRR
of 3 between the individuals with one or two copies and those with zero copies of the
index allele. Under the log-additive penetrance model, 4, = v, = log(v/3), giving
GRR of 3 between the individuals with two copies and those with zero copies of the
index allele and GRR of 1.5 between those with one copy and those with zero copies of
the index allele. Under a recessive penetrance model, we took 7, = 0 and v, = log(3),
giving GRR of 3 between the individuals with two copies and those with one or zero
copies of the index allele.

Under no GXE, we let fi(e) = fa(e) = 0 for all E = e both in the absence (setting
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Hoy) and in the presence (setting Hog) of population stratification. Under Gx E, we
let fi(e) = f(e) and fa(e) = 0 under a dominant penetrance model, fi(e) = fa(e) =
%- f(e) under a multiplicative penetrance model, and let fi(e) = 0 and fo = f(e) under
a recessive penetrance model, to have the equivalent GRR between the individuals
with two copies of the index allele and those with zero copies under both penetrances.

For f(e), we considered linear (setting Hi.), piecewise linear (setting Hip) and
quadratic (setting H;g) models in the absence of population stratification. Table 3.2

summarizes the scenarios we considered for the simulation study. Under setting Hy,

Table 3.2: Simulation scenarios

Setting Population Stratification GxFE
Hos Yes No
Hou No No
Hi, No Yes
Hp No Yes
Hig No Yes

we let f(e) be a linear function with slope (.. Under setting Hyp, we let f(e) be a
piecewise linear function created by joining one horizontal line and one straight line
having a slope of 3, together at a point z,, which represents the pth-quantile of the
standard normal distribution of F in general population. Although using a piecewise
linear function violates the assumption that fi(e) and fy(e) are smooth functions, we
chose to use it since it is easier to control the shape of the function and hence the
effect size of GXFE than a smooth function with a similar form (e.g., exponential).
Under setting Hyg, we let f(e) be a quadratic function with coefficient f,. and axis
of symmetry z, placed at p™ quantile of N(0,1). The specific forms for f(e) and the
ranges of B, and p under different models of Gx E are presented in Table 3.3.
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Table 3.3: Parameterizations for f(e) under Gx E

Settlng f(e) Bge pa
Hy,, Byee 0.24, -0.10] -

Hip®  Bel{e <z} (e—2,) [0.20,1.00] [0.10, 0.50]

Hig Bgele — zp)° [-0.20, -0.04]  [0.10, 0.50]

® 2, indicates the p™ quantile of the standard normal
distribution of E in the general population.

b f(e) is not smooth, but chosen for convenience.

3.4.2 Simulation results

Under no Gx E, the proposed test maintained the nominal significance level of 0.05
within simulation error both in the absence (setting Hoy) and in the presence (set-
ting Hog) of population stratification. Under the dominant penetrance models, the
empirical type 1 error rates were 0.053 under Hoy (SE = 0.007) and 0.060 under Hyg
(SE=0.008). The rates were similar under the log-additive and the recessive models
(results not shown).

Figures 3.1 — 3.3 show the empirical power results for different penetrance models
under various simulation configurations. The simulation results can be summarized
as follows: i) when the underlying Gx E' is non-linear, and there is little or no linear
association between G and FE, the proposed test has the highest power among the four
tests; ii) when G'x E is non-linear, but there is some linear association between G and
E the proposed test has comparable power to that of conditional logistic regression
approach and/or FBAT-I but higher power than the log-linear approach; iii) when
G'x FE is linear, the proposed test has lower power than conditional logistic regression
and can have lower or higher power than FBAT-I depending on whether the FABT-I
mode of inheritance is incorrectly specified as additive rather than recessive.

For the other tests, conditional logistic regression had more power than the log-
linear approach. FBAT-I performed as well as conditional logistic regression under

the dominant penetrance model, better than conditional logistic regression under the
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log-additive model and worse than conditional logistic regression under the reces-
sive penetrance. The results indicated that FBAT-I can lose power under recessive
penetrance when the mode of inheritance is mis-specified as additive.

Under Hy, the proposed test had lower power than the conditional logistic regres-
sion approach with linear G x E' (Figure 3.1). Under the dominant and the log-additive
models, it also had lower power than FBAT-I since FBAT-I's sample covariance test
statistic measures the strength of the linear association between G' and E (Figure 3.1
panels A and B). However, under the recessive penetrance models, the proposed test
performed better than FBAT-I, which has a huge power loss due to mis-specification
of the penetrance mode (Figure 3.1C). The proposed test had comparable power to
that of the log-linear approach under all penetrance models.

Under H; p, the power of the proposed and the other tests increased with the effect
size |Bge| (e.g., Figure 3.2, panels A and B) and with the joining point p (e.g., Figure
3.2, panels C and D). Under the dominant models, the proposed test had more power
than the other tests when the joining point was at a lower quantile (Figure 3.2A). This
is because when p is low, the linear association between G and E is weak, leading to
the loss of power for the conditional logistic regression approach and FBAT-I. When
| Bge| is low, the proposed test had similar power to conditional logistic regression and
FBAT-I (e.g., Figure 3.2C) since it tends to fit the GXx E curves as linear functions
(results not shown). Similar but weaker patterns were observed under the log-additive
and the recessive models (results not shown).

Under H,q, the proposed test had comparable or superior power to that of the
other competing tests (e.g., Figure 3.3). The power of the proposed test increased
with the effect size |fy|, while the power of the other tests did not always increase
with |B,| (e.g., Figure 3.3, panels A and B). The power of the other tests increased
with |B4e| when the axis of symmetry z,, is far from the median (e.g., Figure 3.3A) but
not when z, was at the median (e.g., Figure 3.3B). The power of both the proposed
and the other tests decreased as z, became closer to the median of F; however, the
relative power for the proposed test increased as z, became closer to the median (e.g.,

Figure 3.3 panels C and D). When z,, was far from the median, both the proposed and
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Linear GXE : f(e) = Bgee
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Figure 3.1: Empirical power results for gene-environment tests under linear

GxFE (Setting Hyz, in Table 3.3). The black circles with solid lines represent power
for the proposed test (triogam); the blue cross-marks with dashed lines represent
power for FBAT-I (fbati); the red diamonds with dotted lines represent power for
the conditional logistic regression approach (clogist); and the yellow triangles with
dot-dashed lines represent power for the log-linear modelling approach (log-linear).
The shaded area represents simulation error about the nominal 5% level: a test with
the correct size would have estimated type 1 error within the shaded region 19 times
out of 20. The vertical bars represent £2 simulation errors, which we present for
the proposed test, FBAT-I and/or conditional logistic regression since the latter two
tests can be more powerful than the proposed test under linear GxFE. Results are
based on 500 simulation replicates of 3000 informative case-parent trios generated
under the dominant (panel A), the log-additive (panel B) and the recessive (panel C)
penetrance models.



CHAPTER 3. DATA SMOOTHING APPROACH TO GxFE 42

Piecewise Linear GXE : f(e) = Bge I(e <2,) (e -2p)
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Figure 3.2: Empirical power results for gene-environment tests under piecewise linear
GxE (Setting Hyp in Table 3.3). The black circles with solid lines represent power
for the proposed test (triogam); the blue cross-marks with dashed lines represent
power for FBAT-I (fbati); the red diamonds with dotted lines represent power for
the conditional logistic regression approach (clogist); and the yellow triangles with
dot-dashed lines represent power for the log-linear modelling approach (log-linear).
The shaded area represents simulation error about the nominal 5% level - a test with
the correct size would have estimated type 1 error within the shaded region 19 times
out of 20. The vertical bars represent +2 simulation errors, which we present only
for the proposed test and FBAT-I since FBAT-I is uniformly more powerful than the
other two competing tests. Results are based on 500 simulation replicates of 3000
informative trios generated under the dominant penetrance models.
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the competing tests performed well and had comparable power. When z, was close
to the median, both the proposed and the other tests did not perform as well as when
2, was far from the median; however, the power of the proposed test was greater than
that of the other tests, and it decreased at a slower rate than that of the other tests.
The reason why the power of all the tests decreased as z, was closer to the median of
FE is that the G x E function varies with E more rapidly in the boundary areas where
there is little information available when its axis of symmetry is closer to the median,
while it varies more rapidly in the regions where there is a lot of information (e.g.,
near median) when its z, is far from the median. The reason why the other tests
performed worse when z, was close to the median is that in addition to the previous
reason, the linear association between G and E also becomes weaker as the axis of

symmetry of a quadratic Gx E curve is closer to the median.

3.5 Illustration: Application to acute lymphoblas-
tic leukemia simulated data

Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in chil-
dren aged 1 — 19 years old. ALL can occur at any age, but the age-adjusted incidence
rates are highest during childhood between age 2 and 6 years, decrease during young-
adulthood, and then increase again at older ages around > 50 years (Ries et al., 1999)
(e.g., Figure 3.4). We examined the C609T polymorphism in NAD(P)H:quinone ox-
idoreductase 1 (NQO1), which plays a role in detoxification of carcinogenic byprod-
ucts. Homozygous individuals for the variant allele (T/T) are deficient in NQOL1
activity, and lower activity of the NQO1 has been shown to be associated with in-
fant ALL (Wiemels et al., 1999). The bimodal distribution of incidence with age is
consistent with different disease mechanisms for younger- and older- patients. For
example, younger cases could have a genetic basis whereas older cases could be spo-
radic. This motivates us to search for age-dependent NQO1 genotype relative risks

for ALL patients.
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Quadratic GXE : f(e) = Bge(e - 2p)*
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Figure 3.3: Empirical power results for gene-environment tests under quadratic
GXE (Setting Hyg in Table 3.3). The black circles with solid lines represent power
for the proposed test (triogam); the blue cross-marks with dashed lines represent
power for FBAT-I (fbati); the red diamonds with dotted lines represent power for
the conditional logistic regression approach (clogist); and the yellow triangles with
dot-dashed lines represent power for the log-linear modelling approach (log-linear).
The shaded area represents simulation error about the nominal 5% level - a test with
the correct size would have estimated type 1 error within the shaded region 19 times
out of 20. The vertical bars represent +2 simulation errors, which we present only
for the proposed test and FBAT-I since FBAT-I is uniformly more powerful than the
other two competing tests. Results are based on 500 simulation replicates of 3000
informative trios generated under the dominant penetrance models.
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Figure 3.4: Age-specific incidence of ALL in white patients in the US during 2004—
2008. The horizontal axis shows five-year age intervals. The vertical axis shows the
frequency of new cases of ALL per 100,000 in a given age-group. (source: Surveil-
lance, Epidemiology and End Results [SEER] Program, 2004-2008, National Cancer
Institute, 2011).

We illustrate our method by using a simulated data set that mimics case-parent
trio data obtained from a genetic association study of childhood ALL. The real data
arise from two family studies from Québec (Infante-Rivard et al., 2000; Infante-Rivard,
2003; Infante-Rivard et al., 2007) and France. The French data are from a case-
control study (Perrillat et al., 2001; Clavel et al., 2005), for which parental genotype
information was later collected. There were 1031 case-parent trios, of which 288 were
informative for the polymorphism of interest. It is well known that the sample size
requirements to detect Gx E are much larger than those to detect the main effects
of G or £ (Smith and Day, 1984; Dempfle et al., 2008). A typical rule of thumb
is that, for a given power, the sample size for detecting GxE should be at least
four times that for detecting a marginal effect with the same power. To increase the
power to detect interaction, we used the original data to simulate 1000 informative
case-parent trios. Simulated data were generated based on the characteristics of the

real data. Note that the data were simulated in the presence of GX E (i.e., fi(e) #0
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and fy(e) # 0) as indicated by the theoretical log-GRR curves shown in Figure 3.5.
Other details describing how the data were simulated are presented in Appendix B.4.

Theoretical log—GRR curves
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Figure 3.5: Theoretical log-GRR curves used for simulating the ALL data set. The
curves were constructed based on the GxFE curves estimated from fitting the 288
informative case-parent trios in the original data set of ALL.

The mating-type-specific distribution of genotype frequencies and the histogram
of age-at-diagnosis among the cases from the resulting 1000 simulated informative
trios are shown in Table 3.4 and Figure 3.6, respectively. According to Table 3.4,
heterozygous parents transmit the variant allele to the cases 634/1175 = 54.0% of the
time. The transmission disequilibrium test (TDT; Spielman et al., 1993) confirms that
the variant allele was transmitted slightly more frequently than expected (p = 0.007).
A similar trend was observed in the original data, for which the observed proportion
was 181/348 = 52% (p = 0.49).

Figure 3.7 shows the fitted curves of G x E and their corresponding Bayesian 95%
confidence intervals. The confidence intervals are suggestive for G x E' between NQO1
C609T and age-at-onset of ALL. To test for Gx E, we applied the proposed permu-

tation test to the simulated data set using 1000 replications. The resulting p-value
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Table 3.4: Mating-type-specific frequencies (%) of case-genotypes in 1000 simulated
informative trios

Informative mating type (m”*)

Number of copies of

NQO1 C609T variant 1 2 3
0 343 (44) — 32 (18)
1 435 (57) 27 (57) 107 (61)
2 - 20 (43) 36 (21)
N, 778 (100) 47 (100) 175 (100)

*

m = 1,2, 3 corresponds to parental genotype pairs (G, Gr) =
{(1,0) or (0,1)}, {(1,2) or (2,1)} and {(1,1)}, respectively.

for our approach indicated there was GXE (p = 0.03), while the p-values of the
conditional logistic regression, FBAT-I and the log-linear modelling approach did not
(p =0.12,0.19 and 0.34, respectively).

3.6 Discussion

Complex diseases, such as diabetes and cancer, are the result of both genetic and
non-genetic factors acting jointly on the disease risk. For example, the effects of
multiple genes in the HLA region on the risk of type 1 diabetes vary with age-at-
onset (e.g., Caillat-Zucman et al., 1992). The more we learn about gene-environment
interactions, the better insights we can get into the disease aetiology.

In this work, we proposed a smoothing approach to exploring Gx E using data
from case-parent trios. The method provides a flexible way of modelling Gx FE via
spline functions, which are estimated under a penalized maximum likelihood frame-
work. Rather than making assumptions about the parametric form and the inher-
itance mode of GxFE, the proposed approach lets the data determine them. The
revealed patterns are displayed graphically, which can provide new or better insights

into the biological mechanisms for G and E under the study. For testing GxF,
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Figure 3.6: Histogram of age-at-diagnosis for the cases from 1000 simulated infor-
mative trios with complete information on NQO1 genotype and age-at-onset. The
dashed-line curve represents the density curve estimated from the observed E of the
informative affected trios in the real-data.

we adopted a permutation-based test that takes into account the extra uncertainty
arising from the estimation of the smoothing parameters.

The simulation study results demonstrate that the proposed test can have much
greater power to detect non linear G X E, compared to the other available tests we
considered (e.g., Figure 3.2A and 3.3B). The power of the permutation test can be
low since we make minimal assumptions about the parametric form of GxE model.
However, the proposed test can be useful in a unique way. For example, when con-
sidering G x E' with continuous F, an analyst can fit a conditional logistic regression
model with linear G'x E; if such inference suggests that G x F is not significant, she/he
could look at the form for Gx E by applying our method and, if the estimated curve
is not linear, our permutation test can be applied to get the p-value.

One advantage of the case-parent trio design is that it can allow for the genetic
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Figure 3.7: Fitted Gx E curves for the simulated ALL data set. The left panel shows
the fitted Gx E for GRR between the individuals with 1 and 0 copies of the NQO1
C609T variant, and the right one, the fitted Gx E for GRR between those with 2 and
1 copy of the variant allele. The dashed lines indicate the 95% pointwise Bayesian
confidence limits.

effects such as parent-of-origin effects. A parent-of-origin effect exists when the disease
risk of an individual is affected by whether the allele responsible for the disease
was transmitted from the mother or the father. Numerous association and linkage
studies of complex disorders have suggested existence of parent-of-origin effects, and
hence incorporating parent-of-origin effects will improve our understanding of disease
aetiology (Guilmatre and Sharp, 2012). One possible way to extend the current

method to incorporate parent-of-origin effects is outlined in Chapter 5.



Chapter 4

Adjusting for spurious
gene-by-environment interaction

using case-parent triads.

4.1 Introduction

In the case-parent design, unrelated children affected with a disease are genotyped
along with their parents. The requirement of parental genotypes makes this design
most practical for early-onset diseases. Information on the cases’ non-genetic covari-
ates, such as age at onset, may also be collected. Throughout we use the notation G
to denote a genotype at a causal SNP, with possible values 0, 1 or 2 for number of
copies of an index allele. We let E denote the exposure to an environmental factor,
which we assume is continuous.

If G is associated with the disease, it may then be of interest to ask whether the
association is modified by E. Alternately, if E is associated with disease, it may be
of interest to ask whether G modifies this association. In either case, interest is in

gene-by-environment interaction which exists when genotype relative risks (GRRs)

50
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depend on E:

P(D=1|G=2E=¢)
PD=1|G=1,E=c¢)

=1|G= =e
GRRI(G)_P(DleG:O,EZB) or GRRy(e) =

Here D = 1 is the event that the child in the trio is affected. The choice of
parametrization of the two GRR functions is arbitrary. In the above parametriza-
tion, each GRR function is the factor by which risk increases for an additional copy
of the index allele in G, for a fixed value of E. Throughout we define models with
gene-by-environment interaction (G X E) to be those that imply E-dependent GRRs.

As recently noted by Shi et al. (2011), inference of interaction based on a non-
causal genotype G’ at a test locus that is in linkage disequilibrium (LD) with the causal
locus can be misleading under population stratification. They show that GRRs at
G’ can vary with E without G x E when both the distribution of E and the GG’
haplotypes vary by sub-population. The interpretation of G x E in such a case is
spurious and may be regarded as a bias due to population stratification. We refer to
this situation as spurious interaction.

Whether or not such spurious interaction is a concern depends on how plausible
it is to have haploty