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Abstract

Most complex diseases are influenced jointly by genes (G) and environmental or non-

genetic attributes (E). Gene-environment interaction (G×E) is measured by statisti-

cal interaction between G and E, which occurs when genotype relative risks (GRRs)

vary with E. In this thesis, we explore the sources of spurious G×E and propose a

data-smoothing approach to G×E for case-parent trio data.

In the first project, we address the problem of making inference about G×E based

on the transmission rates of alleles from parents to affected offspring. Since GRRs

that vary with E lead to transmission rates that do too, transmission rates have been

used to make inference about G×E. However transmission-based tests of G×E are

found to be invalid in general. To understand the bias of the transmission-based test,

we derive theoretical transmission rates and compare their variation with E to that in

the GRRs. Through simulation, we investigate the practical implication of the bias.

Valid approaches that are not based on transmission rates require specifying or

are designed to work well under a parametric form for G×E. In the second project,

we develop a data-smoothing method to explore G×E that does not require model

specification for the interaction component when we work with genotypes for a causal

marker. The data-driven method produces graphical displays of G×E that suggest

its form. For testing significance of G×E, we take a permutation approach to account

for the additional uncertainty introduced by the smoothing process.

For many approaches to inference of G×E with case-parent trio data, including

our own, a key assumption is that the test marker is causal; however, in reality, it

may not be causal but in linkage disequilibrium with a causal locus. In this case,

the approaches can give a false impression of G×E due to a form of population

iii
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stratification that has not been appreciated well. In the final project, we investigate,

through simulation, the source of the spurious G×E and propose an adjustment that

uses additional unlinked markers genotyped in the affected offspring.

Keywords: Case-parent trios; gene-environment interaction; genotype relative risk;

population stratification; generalized additive model; penalized maximum likelihood

estimation
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Chapter 1

Introduction

Complex diseases, such as diabetes or cancer, are thought to result from an interplay

between genes G and environmental or non-genetic attributes E. The case-parent

trio study design is often used for estimation and testing genetic effects and gene-

by-environment interactions for such diseases. The design collects genotypes from

unrelated children affected with a disease and also from their parents. Information

may also be collected on environmental factors in the children. Genetic effects can

be measured by genotype relative risk (GRR) in individuals with one genotype com-

pared to those with some reference genotype. Under a log-additive penetrance model,

statistical interaction between G and E, or G×E, occurs when GRRs vary with the

levels or the values of E. In this thesis, we explore the sources of spurious G×E and

propose methods to uncover true G×E using data from a case-parent trio study.

The thesis consists of three projects. The work in Chapters 2 and 4 has been pub-

lished. As a result, some introductory material and the description of the simulation

settings are repeated in more than one chapter.

1.1 Overview of the thesis

Allelic transmission rates from parents to cases are frequently stratified by an en-

vironmental risk factor E and compared, with heterogeneity interpreted as G×E.

Although such transmission-based approaches to G×E are found to be invalid in

1
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general under population stratification (Umbach and Weinberg, 2000), such analyses

continue to appear. In Chapter 2, we revisit why heterogeneity is not equivalent

to G×E in a range of settings not considered previously. The objective is a fuller

understanding of the bias in transmission rates and what is driving it. Extending

previously published findings of Umbach and Weinberg (2000), we derive parental

mating-type probabilities in cases and use them to obtain transmission rates, which

we then compare to G×E. Through simulation, we investigate the practical impli-

cations of the bias for a transmission-based test of G×E. For exploring G×E, we

suggest graphical displays of the transmission rates within parental mating types, as

they are robust to population stratification and the penetrance model. This work has

been published in Shin et al. (2010).

Numerous approaches have been proposed to assess G×E using data from case-

parent trios (e.g., Schaid, 1999; Umbach and Weinberg, 2000; Lake and Laird, 2004).

Many of these approaches require specifying a parametric regression model for G×E,

such as linearity, or are designed to work well under a specific form of G×E. When

the form of the underlying G×E differs from that specified by the regression model,

or from the form for which an approach was designed, it can lead to bias and loss of

statistical power. To address this issue, in Chapter 3, we develop a penalized maxi-

mum likelihood method to graphically explore the form of G×E, under a generalized

additive modelling framework (e.g., Wood, 2006). This data-smoothing approach of-

fers the advantage of allowing the data to suggest the functional form of G×E, rather

than specifying it in advance. For testing G×E, we adopt a permutation-based ap-

proach in order to account for the additional uncertainty introduced by the smoothing

process. We investigate the statistical properties of the proposed permutation test

through simulation. We also illustrate the use of the method with a simulated data

set.

Many approaches to inference of G×E with data from case-parent trios, includ-

ing that of the previous chapter, rely on genotypes G being measured at a causal

locus and G being independent of E within families. Then, under the log-additive

penetrance model, dependence of G and E within affected families is equivalent to
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G×E (Umbach and Weinberg, 2000). At a causal locus, one may therefore, infer

G×E from association between G and E within affected families. However, a test

locus may in fact be in linkage disequilibrium with a causal locus. As noted by Shi

et al. (2011), when genotypes G′ are measured at a non-causal test locus, population

stratification can create association between G′ and E within affected families in the

absence of G×E. In Chapter 4, we describe this apparent interaction as a conse-

quence of mis-specification of the penetrance model and population stratification. A

log-additive penetrance model for the causal locus does not apply to the test locus.

The mis-specification of the penetrance model for the test locus, together with pop-

ulation stratification, gives rise to G′-E dependence within affected families in the

absence of G×E. One design-based solution to avoid incorrectly inferring interaction

involves collecting data on the environmental variable in an unaffected sibling of the

affected child (Shi et al., 2011). We propose an analysis-based solution that uses

genotypes for random or ancestral informative markers in the affected child to adjust

the penetrance model. Our approach does not require data on unaffected siblings and

has been published in Shin et al. (2012).

In the last chapter, we make concluding remarks. Some of theoretical and sim-

ulation details for Chapters 1, 2 and 3 are provided in Appendices A, B and C,

respectively.



Chapter 2

On the use of allelic transmission

rates for assessing G×E in

case-parent trios

2.1 Introduction

For many complex diseases, both genes (G) and environmental exposure or non-

genetic attributes (E) act jointly to increase risk. For example, even though cigarette

smoking is one of the most important risk factors for chronic obstructive pulmonary

disease, only 10-20% of chronic smokers develop the disease, indicating the possible

contribution of genetic factors (e.g., glutathione S-transferase gene family; Cheng

et al., 2004). For such diseases, failure to account for the interplay between G and E

may lead to incorrect conclusions about their etiological roles. One way to measure

the interplay between G and E is through variation with E in genotype relative

risks (GRRs), which are ratios of disease risks compared between individuals with

a genotype of interest and those with some reference genotype. We refer to this

variation in GRRs as statistical interaction between G and E, or G×E.

For data from case-parent trios, it is natural to work with allelic transmission

4
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rates from parents to cases, as in the transmission disequilibrium test (TDT; Spiel-

man et al., 1993). It is then tempting to stratify transmission analyses by E and

interpret heterogeneity with E in transmission rates as G×E, assuming the robust-

ness of the TDT to population stratification carries over. However, as noted by

Umbach and Weinberg (2000), heterogeneity in transmission rates does not neces-

sarily reflect heterogeneity in GRRs. These authors illustrated the point with a

counter-example involving a recessive penetrance model and no G×E, but transmis-

sion rates that vary with E because of population stratification. Their purpose was

to motivate an alternate likelihood-based approach to inference of G×E, which they

subsequently discussed. The current investigation revisits their initial point about the

non-equivalence of heterogeneity in transmission rates and GRRs. We feel that this

non-equivalence is not widely appreciated because transmission analyses stratified by

E continue to appear (e.g., Wang et al., 2006; Bellgrove et al., 2006; Brookes et al.,

2008; Du et al., 2008; Ma et al., 2009). Hence, there is a need to expand on some of

the ideas touched on by Umbach and Weinberg. The current investigation aims to

fulfil this need, and to gain further insight into how and why the bias in transmission

rates arises when they are used as a proxy for GRRs.

In this work, we continue the line of investigation started by Umbach and Wein-

berg, and derive general expressions for the mating-type probabilities in the parents of

cases under population stratification. We then use these expressions to compare the

variation in transmission rates to that in the GRRs, under different penetrance models

and levels of G-E dependence induced by population stratification. The comparison

gives a fuller understanding of the bias in transmission rates and what is driving it.

Along the way, we also clarify how to derive Umbach and Weinberg’s expressions for

the mating-type specific transmission rates. The practical implications of the bias

in transmission rates are explored through a simulation study comparing the error

rates of a transmission-based test for G×E to those of a likelihood-based test. We

conclude by suggesting descriptive summaries for exploring G×E. Unlike stratified

transmission rates, these summaries are not biased by population stratification or by

non-multiplicative penetrance models.
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2.2 Models and Methods

Consider a single nucleotide polymorphism (SNP). Let G, GM and GF denote the

number of copies of the putative risk allele carried by a child, his/her mother and

father, respectively. Each of G, GM and GF can take a value from 0, 1 or 2. We

assume symmetry of mating such that, for example, (GM , GF ) = (0, 1) has the same

probability of occurring as (GM , GF ) = (1, 0). Under this assumption there are six

distinctive parental mating types Gp as described in Appendix A.1. Let D denote

the event that a child develops disease and E denote his/her continuously varying

non-genetic attribute. Let Rg(e) be the attribute-specific GRR of an individual with

g copies of the risk allele compared to an individual with no copies. The details of

the notation and model are given in Appendix A.1.

The transmission rate is defined to be the probability that a heterozygous parent

transmits the risk allele to his/her affected child. The attribute-specific transmission

rate τ(e) can be written as

τ(e) =
∑
m∈I

τm(e)wm(e),

where I is the set of mating types with at least one heterozygous parent (reviewed in

Appendix A.2). This is a weighted average of the mating-type-specific transmission

rates τm(e), with the weight wm(e) being the proportion of heterozygous parents of

cases with E = e that come from mating type m (Umbach and Weinberg, 2000). In

Table 1 of Umbach and Weinberg (2000), reproduced as our Table 2.1, τm(e) and

wm(e) are written, respectively, in terms of the Rg(e) and the proportion πm(e) ≡

Pr(Gp = m | D,E = e) of cases with E = e that come from mating type Gp = m. In

Appendix A.3, we derive the expressions for τm(e).

By way of a numerical example, Umbach and Weinberg showed that, when GRRs

do not vary with E (i.e. there is no G×E), transmission rates can still vary with E

because the weights wm(e) vary under G-E dependence. From the form of wm(e) in

Table 2.1, we can see that they vary with E because of πm(e). Thus, to understand
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Table 2.1: Components of the transmission rate of a risk allele from heterozygous
parents to affected children with E = e (Reproduced from Umbach and Weinberg,

2000.)

Informative Proportion of parents Proportion of heterozygous Mating-type-specific
mating of cases that come parents of cases that come transmission rate
type from given mating type∗ from given mating type†

(0, 1) π01(e) w01(e) =
π01(e)

d(e)
τ01(e) =

R1(e)

1 +R1(e)

(1, 2) π12(e) w12(e) =
π12(e)

d(e)
τ12(e) =

R2(e)

R1(e) +R2(e)

(1, 1) π11(e) w11(e) =
2π11(e)

d(e)
τ11(e) =

R1(e) +R2(e)

1 + 2R1(e) +R2(e)

∗ Expressions for πm(e) ≡ Pr(Gp = m | D,E = e) are given in equation (2.1).
† d(e) ≡ π01(e) + π12(e) + 2π11(e).

how transmission rates τ(e) vary with E, we need to understand how πm(e) does.

Towards this goal, we derive expressions for πm(e) and use these to clarify how G-

E dependence impacts τ(e). The model of G-E dependence that we use is the one

considered by Umbach and Weinberg, in which dependence is induced by population

stratification.

2.2.1 Example settings

In their example illustrating the bias in transmission rates for assessing G×E, Um-

bach and Weinberg considered a structured population consisting of two equal-sized

subpopulations, assuming E had no effect on disease risk and that a recessive gene

affected the disease penetrance with a relative risk of size 3. For our investigation,

we considered settings with or without G×E for dominant and recessive penetrance

models, as defined in Appendix A.1, under both G-E dependence and independence

in the general population. We did not consider multiplicative penetrance models be-

cause the variation with E in transmission rates is equivalent to that in GRRs, as

reviewed in Appendix A.2 (see equation (A4)). The specific settings considered for

our investigation are no G×E and G-E dependence, G×E and G-E dependence, and

G×E and G-E independence. The setting with no G×E and G-E independence is
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omitted because both the transmission rates and GRRs are constant in E in this case;

that is, τ(e) reflects the (lack of) G×E.

We discuss the details of the model and related notation in Appendix A.1. In the

risk model, we set β = log(3) for GRRs in (A1), f(e) ≡ 0 under no G×E and f(e) =

−0.25e under G×E. To induce G-E dependence due to population stratification

(e.g., Figure 2.1) we considered a general population with two hidden subpopulations,

denoted by S = 0 or 1, of equal sizes in which genotype frequencies follow Hardy-

Weinberg proportions, and the risk allele frequencies are q0 = 0.1 and q1 = 0.9, as in

the example of Umbach and Weinberg (2000). The general population is subdivided,

with all subpopulations in Hardy-Weinberg equilibrium. The general population is

therefore, subject to the well-known Wahlund effect (Li, 1955; Wahlund, 1928) in

which the number of heterozygotes tends to be less than expected under Hardy-

Weinberg equilibrium. For the non-genetic attribute E, we let the general population

have a mean of 0 and variance of 1 and the subpopulations have a common variance σ2.

The conditional expected value E(E | S) is linear in the binary variable S, implying

V(E(E | S))/V(E) = ρ2ES, where ρES is the correlation between E and S (Hogg

et al., 2005). Using this identity, the subpopulation-specific means are E(E | S =

0) ≡ µ0 = −ρES and E(E | S = 1) ≡ µ1 = ρES, and their variances are σ2 = 1− ρ2ES.

Within each subpopulation, we let E be normally distributed and independent of G.

With fixed subpopulation-specific allele frequencies q0 = 0.1 and q1 = 0.9, one can

show that Cov(G,E) = 0.8 × ρES, by first expressing Cov(G,E) = E(Cov(G,E |

S))+Cov(E(G | S),E(E | S)). A similar conditioning calculation yields V(G) = 0.82

for this population in which V(E) = 1. Thus, ρGE =
0.8√
0.82
×ρES. Using this identity,

we controlled the G-E correlation by varying ρES. The values of ρES considered were

0.2, 0.5 and 0.8, which correspond to ρGE values of 0.18, 0.44 and 0.71, respectively.

Under G-E independence, we let q0 = q1 = q with q = 0.1, 0.5 and 0.9, and ρES = 0

(i.e., µ0 = µ1 = 0). The G-E dependence can arise from the same (hidden) population

stratification responsible for the Wahlund effect; or it can arise by chance through

genetic sampling of a random population. In this work, we view this dependence ρGE

as a population-level parameter that is invariant to the sampling design or artefacts
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Figure 2.1: Inducing G-E dependence through population structure. The
subpopulation-specific and population allele frequencies (q0, q1 and q, respectively)
for the SNP G are indicated by the grey scale in panel C: higher allele frequencies
are indicated by darker shadings and lower frequencies, by lighter shadings. The E-S
correlation is ρES = 0.8. As indicated in panels A and B, within each subpopulation,
G and E occur independently. However, as shown in panel C, in the (combined)
general population, G and E become dependent in the sense that, for the individuals
with lower values of E, the risk-allele frequency tends to be lower, whereas for those
with higher values of E, the risk-allele frequency tends to be higher. The resulting
G-E correlation is ρGE = 0.71. Individuals with lower values of E are more likely to
be from subpopulation 0 which has a lower risk-allele frequency, whereas those with
higher values of E are more likely to be from subpopulation 1 which has a higher
risk-allele frequency.

of statistical sampling from a fixed population.

2.2.2 Simulation study

The transmission rates can give a biased assessment of GRRs. To assess the prac-

tical implications of such bias, we evaluated the power of a transmission-based test

of G×E by simulation. False-positive rates correspond to the power of tests un-

der the no-G×E null hypothesis. False-negative rates correspond to one minus the

power under the G×E alternative hypothesis. As previously noted (Umbach and

Weinberg, 2000), these error rates are also influenced by incorrectly assuming inde-

pendence of transmission events. The transmissions from two heterozygous parents

to their affected child are independent only under a multiplicative penetrance model
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or when the variant allele has no effect on disease risk. The transmission-based test

was compared to a likelihood-based benchmark. Following Umbach and Weinberg

(2000), we simulated 1000 affected trios with informative mating types according to

the settings described in the previous subsection. The risk allele frequency in the

general population was q = 0.5. Estimates of power were based on 10,000 simulation

replicates, giving simulation errors of ≤ 0.01. Simulations were programmed in R (R

Development Core Team, 2011).

For the transmission-based approach, the log-odds of transmitting the risk allele

to an affected child were modelled as a linear function of E and the slope term

was assessed via a likelihood-ratio test assuming independence of transmissions. For

the likelihood-based approach, a conditional logistic regression was used to model

the conditional probability of the affected child’s genotype given E and the parental

genotypes Gp (Schaid, 1999). A likelihood-ratio test was applied, based on a co-

dominant penetrance model, as defined in Appendix A.1. For categorical E, this

approach is equivalent to the log-linear modelling approach of Umbach and Weinberg

(2000).

2.3 Results

The probabilities πm(e) of mating-types in parents of cases with E = e can be written

as

πm(e) ≡ Pr(Gp = m | D,E = e)

=

∑
g∈Gm Pr(Gp = m,D,G = g,E = e)∑

m′∈M
∑

g′∈Gm′
Pr(Gp = m′, D,G = g′, E = e)

=

∑
g∈Gm Pr(D | G = g,E = e) Pr(G = g | Gp = m) Pr(Gp = m | E = e) Pr(E = e)∑

m′∈M
∑

g′∈Gm′
Pr(D | G = g′, E = e) Pr(G = g′ | Gp = m′) Pr(Gp = m′ | E = e) Pr(E = e)

=
Pr(Gp = m | E = e)

∑
g∈Gm Pr(G = g | Gp = m)Rg(e)∑

m′∈M Pr(Gp = m′ | E = e)
∑

g′∈Gm′
Pr(G = g′ | Gp = m′)Rg′(e)

, (2.1)
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where M is the set of distinct parental mating types (see Appendix A.1). The first

line of the equation is the definition of πm(e). The third line follows under conditional

G-E independence given parental genotypes and no parent-of-origin effects, so that

Pr(Gp = m,D,G = g, E = e) =

Pr(D | G = g, E = e) Pr(G = g | Gp = m) Pr(Gp = m | E = e) Pr(E = e).

The final line follows from dividing through by Pr(D | G = 0, E = e) in the numerator

and denominator and factoring out the terms that do not depend on g. Even with

GRRs that are constant in E, equation (2.1) shows that πm(e) can vary with E

through the stratum-specific mating-type probabilities Pr(Gp = m | E = e).

Through equation (2.1), we see that Pr(Gp = m | E = e) can be as important as

the GRRs in determining whether πm(e), and hence the overall transmission rates

τ(e), vary with e. Under G-E independence within subpopulations,

Pr(Gp = m | E = e)

=
∑
s

Pr(Gp = m | S = s) Pr(E = e | S = s) Pr(S = s)/Pr(E = e)

=
∑
s

Pr(Gp = m | S = s) Pr(S = s | E = e).

Thus, Pr(Gp = m | E = e) vary with e when both Gp and E depend on S; i.e., when

there is G-E dependence in the overall population.

2.3.1 G-E dependence

In the hypothetical population of Figure 2.1, the population stratification induces G-

E dependence. The resulting probabilities Pr(Gp = m | E = e) are shown in Figure

2.2. At lower values of E, parents are more likely to come from subpopulation 0

(q0 = 0.1), which has a higher frequency of mating type (0, 1) than mating types (1, 1)

and (1, 2). At higher values of E, parents are more likely to come from subpopulation

1 (q1 = 0.9), which has a higher frequency of mating type (1, 2) than the other
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Figure 2.2: The mating-type probabilities Pr(Gp = m | E = e) in the parents of
children with E = e under G-E dependence with ρGE = 0.71.

informative mating types.

The impact of the stratified mating-type probabilities, Pr(Gp = m | E = e), on

the weights, wm(e), in Table 2.1 is shown in Figure 2.3 for the setting with G×E and

G-E correlation of ρGE = 0.71 under the dominant penetrance model. The weights

under the recessive penetrance model are similar. The pattern in the weights closely

mirrors that in the conditional mating-type probabilities. For example, at low values

of E, parental mating type (0, 1) is weighted heavily compared to the other two

informative mating types. By contrast, at high values of E, parental mating type

(1, 2) is weighted heavily compared to the other two informative mating types.

Figures 2.4 and 2.5 illustrate the impact of Pr(Gp = m | E = e) on the trans-

mission rates under ρGE = 0.18, 0.44 and 0.71. Define R(e) = R1(e) = R2(e) under

dominant penetrance and R(e) = R2(e) under recessive penetrance. Throughout,

variation with E in logit(τ(e)) is compared with that in log(R(e)), as would be done

under multiplicative penetrance based on the relationship (A4).
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Figure 2.3: The weights wm(e) under no G×E and G-E correlation of ρGE = 0.71 for
the dominant penetrance model.

Figure 2.4 plots logit(τ(e)) versus e calculated under the setting where G and E

are dependent in the absence of G×E, for dominant (panel A) and recessive (panel

B) penetrance models. From the figure, we can see logit(τ(e)) varies with E while

log(R(e)) does not, as expected based on the form of πm(e) in equation (2.1). The

figure also shows that logit(τ(e)) varies more as G-E dependence increases. Hence,

inferring G×E based on variation with E in transmission rates may lead to false-

positive results.

Figure 2.5 plots logit(τ(e)) versus e calculated under the setting where G and E

are dependent in the presence of G×E. As shown in the figure, the form of variation

with E in logit(τ(e)) differs from that in log(R(e)) at any level of G-E dependence.

The figure suggests that inferring G×E based on variation in transmission rates may

lead to false-negative results in some cases; for example, logit(τ(e)) curves under

recessive penetrance with G-E correlations of 0.18 or 0.44 are relatively close to a

horizontal line, which represents no variation in τ(e).
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Figure 2.4: Variation in GRRs and transmission rates under no G×E and G-E de-
pendence. Solid lines indicate log(R(e)), which represents the true G×E measure.
Broken lines indicate logit(τ(e)) for different levels of G-E dependence, ρGE, induced
by ρES. Curves in the left column represent the variation for a dominant penetrance
model, and those in the right column, the variation for a recessive model.

In the presence of G×E, the weights wm(e) are very similar to those in the absence

of G×E (results not shown), indicating that Pr(Gp = m | E = e) continues to drive

their behaviour. Moreover, the patterns of variation in transmission rates with (Figure

2.5) and without (Figure 2.4) G×E are also similar. These similar patterns indicate

that, even in the presence of G×E, the behaviour of τ(e) can be determined by

Pr(Gp = m | E = e) rather than by G×E.

In summary, for the population stratification that we have considered, variation

in the stratified mating-type probabilities, Pr(Gp = m | E = e), drives variation in

the weights wm(e). In turn, the weights drive variation in the transmission rates τ(e).

For example, in the dominant penetrance model, τ01(e) > τ11(e) > τ12(e) ≡ 1/2.

From Figure 2.3, we see that, for the overall transmission rate, the large mating-type

specific transmission rate τ01(e) gets most of the weight at low values of e, whereas

the small mating-type specific transmission rate τ12(e) gets most of the weight at high
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logit(τ(e)) for different levels of G-E dependence, ρGE, induced by ρES.

values. The influence of the weights and/or the probabilities Pr(Gp = m | E = e)

can be seen in panel A of Figures 2.4 and 2.5. Similar arguments apply in the case

of the recessive penetrance model.

2.3.2 G-E independence

Even when G and E are independent, transmission rates still may not reflect GRRs,

as indicated by the odds of transmission under no population stratification:

τ(e)

1− τ(e)
=


R(e)

(1− q) +R(e) · q
if dominant

(1− q) +R(e) · q if recessive,

(2.2)

where q is the relative frequency of the risk allele in the population. The details of

the derivations are provided in Appendix A.4. Hence, under the dominant (recessive)

penetrance model, logit(τ(e)) reflects log(R(e)) correctly only as q → 0 (q → 1) in the

presence of G×E. To illustrate, Figure 2.6 shows logit(τ(e)) for a high (q = 0.9) and
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Figure 2.6: Variation in GRRs and transmission rates under G×E and G-E indepen-
dence. Solid lines indicate log(R(e)), the true G×E measure. Dashed lines indicate
logit(τ(e)) for a low population risk-allele frequency q = 0.1, and dotted-dashed lines
indicate logit(τ(e)) for a high risk-allele frequency q = 0.9.

independence, logit(τ(e)) varies less than log(R(e)). Hence, inferring G×E based on

variation in logit(τ(e)) may lead to false-negative results.

2.3.3 Simulation results

Table 2.2 summarizes the results of the simulation study. Under no G×E and G-

E correlation, the false-positive error rate of the transmission-based test is inflated

above the nominal 5% level. These results are consistent with the bias in transmission

rates shown in Figure 2.4. By contrast, the error rates of the likelihood-based test is

within simulation error of the nominal 5% level.

Under G×E and G-E correlation, we expect the transmission-based test to have

greater power than the likelihood-based test given its grossly inflated false-positive er-

ror rates. In those cases when its power is less, the transmission rates vary noticeably

less with E than the GRRs. For example, under recessive penetrance and ρGE = 0.44
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Table 2.2: Estimated power of the transmission and likelihood tests under the example
settings, with q =0.5. For each configuration, the column “error type” indicates
whether errors under that configuration are false-positive (fp) or false-negative (fn)
results. Under no G×E, power estimates are false-positive (type 1 error) rates; under
G×E, they are one minus false-negative rates. Power estimates are based on 10,000
simulation replicates and the simulation error is ≤ 0.01. The nominal level of all tests
is 5%.

Power
Setting G×E penetrance ρGE error type transmission likelihood

1 no dom 0.71 fp 1.000 0.047
0.44 fp 0.909 0.047
0.18 fp 0.251 0.050

rec 0.71 fp 0.999 0.049
0.44 fp 0.872 0.051
0.18 fp 0.246 0.050

2 yes dom 0.71 fn 1.000 0.284
0.44 fn 0.997 0.414
0.18 fn 0.670 0.474

rec 0.71 fn 0.794 0.539
0.44 fn 0.092 0.684
0.18 fn 0.368 0.736

3 yes dom 0 fn 0.177 0.487
rec 0 fn 0.884 0.830

or 0.18 the curves for transmission rates in Figure 2.5, panel B, are relatively flat.

The transmission-based test relies on a linear approximation to the log-odds of trans-

mission; its power depends on the slope of this approximation. Accordingly, we see

that, under the recessive penetrance model, power of the transmission-based approach

is lowest for ρGE = 0.44, the configuration in which a linear approximation to the

transmission rates has slope closest to zero. It is interesting to note that, when the

penetrance model is recessive and ρGE = 0.44 or 0.71, the transmission-based test

displays the perverse behaviour of rejecting more often under the null hypothesis

than under an alternative hypothesis. Specifically, the transmission-based test has

substantially larger type 1 error rates (0.872 and 0.999, respectively) than its power

under the specified alternative (0.092 and 0.794, respectively).
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Under no G×E and no G-E correlation (results not shown), the false-positive error

rates for the dominant penetrance model are 0.034 and 0.048, for the transmission-

based and likelihood tests, respectively; for the recessive penetrance model, the error

rates are 0.067 and 0.052. In this setting, the variation in transmission rates is an

unbiased reflection of that in the GRRs. In this case, the bias in the transmission-

based test arises from incorrectly assuming that the transmission events of parents

are independent. By contrast, in the previous two example settings, the transmission-

based test was biased under population stratification.

Under G×E and no G-E correlation, the power of the transmission-based test

is lower than that of the likelihood-based test for the dominant penetrance model.

This lower power is consistent with the conservative type 1 error rate of this test and

the conservative bias in the logit(τ(e)) curves under under dominant penetrance (see

Figure 2.6, panel A). By conservative bias in the logit(τ(e)) curves, we mean curves

that are closer to horizontal than the log(R(e)) curve. For the recessive penetrance

model, a slight conservative bias in the transmission rates is countered by the anti-

conservative nature of the transmission-based test.

2.4 Discussion

With the case-parent trio design and no G×E, the TDT is an attractive test for

genetic association, as it is robust to population structure, regardless of the penetrance

mode of the underlying disease (Spielman et al., 1993). However, as noted by Umbach

and Weinberg (2000), extensions which detect G×E based on variation with E in

allelic transmission rates are not robust to population stratification unless the disease

risk follows a multiplicative penetrance model. To illustrate this point, Umbach and

Weinberg provided a counter-example involving a recessive penetrance model and no

G×E. They expressed the transmission rate in terms of the GRRs and the mating-

type probabilities πm(e) of parents of cases. In this paper, we have investigated this

point more extensively, using a wider variety of settings, for a continuously-varying

E. To do so, we derived expressions for πm(e) and used them to obtain theoretical
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transmission rates. These rates were then compared to GRRs for various penetrance

models and G-E correlations induced by population stratification. This comparison

enabled a fuller understanding of the bias in transmission rates and what is driving

it.

We showed that, when G and E are dependent, the stratum-specific mating-type

probabilities Pr(Gp = m | E = e) can drive the weighting of the mating-type-specific

transmission rates τm(e) when determining the overall transmission rate τ(e). As a

result, τ(e) varies with e in the absence of G×E (Figure 2.4) and varies with e to a

greater or less extent than GRRs in the presence of G×E (Figure 2.5). When G and

E are independent, τ(e) depends on the GRRs and the variant allele frequency and

varies less with e than the GRRs under G×E (Figure 2.6).

The practical implications of such bias were investigated through a simulation

study. We have reported results for simulation configurations with ρGE > 0 and

decreasing interaction parameter f(e); similar conclusions (results not shown) are

obtained for ρGE < 0 and f(e) increasing. For simulation settings with notable bias in

transmission rates, the error rates of the transmission-based test were inflated relative

to those of the likelihood-based test. For example, the false-positive error rates of the

transmission-based test were grossly inflated above the nominal 5% level for higher

levels of G-E dependence, whereas those of the likelihood-based test matched the

nominal level. As another example, the false-negative error rates of the transmission-

based test were inflated relative to those of the likelihood-based test in a recessive

penetrance model, under moderate levels of G-E dependence.

Our results reinforce the message that transmission-based analyses of G×E can be

misleading. This message applies not only to tests but also to descriptive summaries.

For example, a common descriptive summary involves pooling the transmissions from

informative parental mating types and graphically comparing the observed transmis-

sion rates across strata for E. Heterogeneity in the stratified transmission rates is

taken to be suggestive of G×E. Figure 2.7A gives an example of such a graphical

display for a simulated data set under no G×E with ρGE = 0.71 and a dominant

penetrance model. There is a striking but erroneous impression of G×E due to the
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population stratification. To avoid such bias, we suggest comparing the transmission

rates within parental mating types instead, as they depend on the GRRs only (Table

2.1). Within a mating type Gp = m, let the observed transmission rate for the stra-

tum defined by E = e be τ̂m(e) and let V̂m(e) be an estimate of its variance given by

equation (A8) in Appendix A.5. Then the suggested display is of τ̂m(e) ± 2

√
V̂m(e)

across the strata, within a parental mating type m. Figure 2.7B illustrates this display

using the same simulated data set shown in Figure 2.7A. The display of transmission

rates within mating types in Figure 2.7B is robust to the population stratification,

whereas the display of pooled transmission rates in Figure 2.7A is not. We stress

that the display of transmission rates within mating types is intended only as a de-

scriptive summary of the data. Inference of G×E should be based on valid statistical

approaches developed for this purpose (e.g., Lake and Laird, 2004; Cordell et al.,

2004; Lim et al., 2005).
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Figure 2.7: Observed transmission rates stratified by low (< 0) and high (≥ 0) values
of E, for simulated data from 1000 case-parent trios under no G×E with ρGE = 0.71
and a dominant penetrance model. Panel A shows the transmission rates for pooled
data, and Panel B, those within each informative parental-mating-type. Lines rep-
resent approximate 95% confidence intervals calculated under a multiplicative pene-
trance model.



Chapter 3

A data smoothing method to

uncover gene-environment

interaction using data from

case-parent trios

3.1 Introduction

A case-parent trio study collects the genotypes of unrelated affected children and

their parents. Information on cases’ non-genetic covariates can also be collected.

The design allows conditioning on parent genotypes, which has the effect of creating

family-based controls matched to the case for ancestry; the inference of genetic effects

is robust to population stratification.

The joint effect of genetic and non-genetic factors, that is gene-by-environment

interaction (G×E), is often of interest. As for the genetic effects, conditioning on

parent genotypes Gp provides robust inference of G×E from case-parent trio data

against population stratification when the test marker is causal (e.g., Umbach and

Weinberg, 2000). Various approaches have been developed to examine G×E using

data from case-parent trios. Such approaches include the log-linear modelling method

22
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(Umbach and Weinberg, 2000), the conditional logistic regression (e.g., Schaid, 1999)

and the family-based association test of interaction (FBAT-I; Lake and Laird, 2004).

These methods condition on parent genotypes for assessing G×E in data from case-

parent trios.

However, there are issues with these approaches. For example, the log-linear

modelling approach can only handle a categorical non-genetic covariate. Therefore,

if E is a continuous covariate, it needs to be categorized, which results in a loss of

information. Conditional logistic regression can handle a continuous E, but it needs

to assume a parametric form (e.g., linear) for the G×E model. When the interaction

model is mis-specified, it can lead to invalid conclusions about G×E. FBAT-I does

not assume any parametric model for G×E; however, it uses a test statistic that

works best when G and E are linearly associated. The test also needs to specify the

mode of inheritance, which can also lead to mis-leading inference about G×E when

the mode is mis-specified.

To address such issues, we develop a penalized maximum likelihood method to

assess G×E, using a generalized additive modelling framework (e.g., Wood, 2006).

The proposed method does not require specification of either the G×E model or

the mode of inheritance. The resulting point and interval estimates may be used to

displayed to graphically explore the form of G×E and the mode of inheritance. For

assessing the significance of G×E, we adopt a permutation-based approach that takes

into account of the additional uncertainty introduced by the smoothing process. A

simulation study is conducted to evaluate the type 1 error rates and the statistical

power of the proposed test under various scenarios. We also compare the power of

the proposed test to that of the other available methods mentioned above. For the

simulation study, we generate and use datasets with a large sample size; the power

of our permutation test is expected to be low since it is difficult to detect G×E in

general (Smith and Day, 1984; Dempfle et al., 2008), and on top of that, we only

make minimal assumptions about the G×E model.
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3.2 Model

Let G denote the number of copies of the index allele for a SNP carried by an in-

dividual, which can take a value from 0, 1, or 2; E, his/her continuously varying

non-genetic covariate; and D denote the binary indicator of his/her disease status

(D = 1 if affected). Let GM and GF denote the numbers of the copies of the index

allele carried by the mother and the father of the individual.

We assume mating symmetry and Mendelian segregation. Under these assump-

tions, the informative mating type Gp can take a value from 1, 2 or 3, indicating

(GM , GF ) = {(0, 1) or (1, 0)}, {(1, 2) or (2, 1)} and {(1, 1)}, respectively. G and E

are assumed to be conditionally independent given Gp. For disease risk probability,

we assume the following log-additive model (Shin et al., 2010):

P (D = 1 | G = g, E = e) = exp{k + z(g)γ + ξ(e) + z(g)f(e)}, (3.1)

where k is the baseline disease probability, z(g) = (z1(g), z2(g)) where z1(g) and

z2(g) are indicator variables for g > 0 and g = 2, representing the co-dominant

genetic coding; γ = (γ1, γ2)
T, where γ1 and γ2 represent genetic main effect; ξ(e),

an unspecified smooth function of E representing the non-genetic main effect; and

f(e) = (f1(e), f2(e))
T where f1(e) and f2(e) are unspecified smooth functions of E.

G×E occurs when genotype relative risks (GRRs) vary with values of non-genetic

covariates. The parameterization in model (3.1) focuses on the idea of differential

genetic effects on the disease risk due to differential gene dose effects, which is a

natural interpretation in our context. Other parameterizations that allow for two

GRRs are also possible, and one such example is presented in Appendix B.1.

Under the risk model (3.1), we have

log (GRR1(e)) ≡ log

{
P (D = 1 | G = 1, E = e)

P (D = 1 | G = 0, E = e)

}
= γ1 + f1(e); and

log (GRR2(e)) ≡ log

{
P (D = 1 | G = 2, E = e)

P (D = 1 | G = 1, E = e)

}
= γ2 + f2(e).

(3.2)
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The smooth functions f1(e) and f2(e) model G×E since GRR’s depend on E through

them. When f1(e) = f2(e) = 0 for all values E = e, it indicates there is no G×E.

When f1(e) and/or f2(e) vary with e, it indicates that there is G×E.

Under different genetic inheritance modes, f1(e) and f2(e) behave differently. Un-

der dominant models, f1(e) varies with E, but f2(e) = 0 since

P (D = 1 | G = 1, E = e)

P (D = 0 | G = 1, E = e)
=
P (D = 2 | G = 1, E = e)

P (D = 0 | G = 1, E = e)
6= 1 (3.3)

m

log(GRR1(e)) 6= 0, log(GRR2(e)) = 0.

Under multiplicative or log-additive models, both functions vary with E in the same

way (i.e., f1(e) = f2(e)) since

P (D = 1 | G = 1, E = e)

P (D = 0 | G = 1, E = e)
=
P (D = 2 | G = 1, E = e)

P (D = 1 | G = 1, E = e)
6= 1 (3.4)

m

log(GRR1(e)) = log(GRR2(e)) 6= 0.

Under recessive models, f1(e) = 0, but f2(e) varies with E since

P (D = 1 | G = 1, E = e)

P (D = 0 | G = 1, E = e)
= 1,

P (D = 2 | G = 1, E = e)

P (D = 0 | G = 1, E = e)
6= 1 (3.5)

m

log(GRR1(e)) = 0, log(GRR2(e)) 6= 0.

For the case-parent trio design, the data are ascertained conditional on D = 1,

and hence the likelihood for the observed data for a single family is

P (G = g, E = e,Gp = m | D = 1)

= P (G = g | E = e,Gp = m,D = 1) · P (E = e,Gp = m | D = 1). (3.6)

However, unconditional inference based on the joint probability distribution P (G =
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g, E = e,Gp = m | D = 1) requires knowledge about the joint distribution of E

and Gp, which is not available from case-parent trios. An alternative way is to make

conditional inference by conditioning on E and Gp (e.g., Schaid, 1999), such that

the likelihood is based only on the first factor in equation (3.6). Conditioning on

E and Gp would result in loss of information (e.g., Liang, 1983) due to ignoring the

second factor in equation (3.6), which also contains information on G×E. However,

Moerkerke et al. (2010) have shown that the conditional inference is asymptotically

efficient under linear G×E. Hence, we expect that the loss of information about G×E

from conditioning on Gp and E would be minimal, provided that the sample size is

big enough.

For the purpose of writing the likelihood based on P (G = g | E = e,Gp = m,D =

1), it is convenient to introduce a binary variable Ymjg coding the genotype of the

affected child in jth trio from mth mating type, such that

Ymjg =

 1 if the child has G = g,

0 otherwise
.

Ymjg are mutually independent, and if two affected children within a mating type

have the same value of E = e, their responses are identically distributed.

The mean responses µmg(e) are

µmg(e) ≡ E(Ymgj | E = e) = P (G = g | E = e,Gp = m,D = 1),

for which the expressions under the considered assumptions are provided in Table

3.1. Note that the baseline parameter k and the non-genetic main effect parameter

ξ(e) of the disease risk model (3.1) are not estimable since, as shown in Table 3.1,

they are cancelled out in the calculation of P (G = g | E = e,Gp = m,D = 1) on

which we base our conditional likelihood inference. However, we are not concerned

with this because k and ξ(e) are nuisance parameters in an analysis of G×E.

Assuming no mutation, G = 2 is impossible for trios from Gp = 1, and G = 0 is

impossible for those from Gp = 2. Therefore, µ12(e) and µ20(e) are not defined, as
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Table 3.1: Expressions for µmg(e) ≡ P (G = g | E = e,Gp = m,D = 1) under the
assumptions.

Genotype (g)
Mating type

(m) 0 1 2

1
1

1 + exp(γ1 + f1(e))

exp(γ1 + f1(e))

1 + exp(γ1 + f1(e))
–

2 –
1

1 + exp(γ2 + f2(e))

exp(γ2 + f2(e))

1 + exp(γ2 + f2(e))

3a
1

d(γ1, γ2, f1(e), f2(e))

2 exp(γ1 + f1(e))

d(γ1, γ2, f1(e), f2(e))

exp(γ1 + f1(e) + γ2 + f2(e))

d(γ1, γ2, f1(e), f2(e))

ad(γ1, γ2, f1(e), f2(e)) ≡ 1 + 2 exp(γ1 + f1(e)) + exp(γ1 + f1(e) + γ2 + f2(e))

indicated in Table 3.1. Letting µ1(e) ≡ (µ10(e), µ11(e))
T, µ2(e) ≡ (µ21(e), µ22(e))

T

and µ3(e) ≡ (µ30(e), µ31(e), µ32(e))
T, the log-likelihood function can be expressed as

a sum of three components:

l(µ1,µ2,µ3) =

n1∑
j=1

[y1j0 log(µ10(e1j)) + y1j1 log(µ11(e1j))]

+

n2∑
j=1

[y2j1 log(µ21(e2j)) + y2j2 log(µ22(e2j))]

+

n3∑
j=1

[y3j0 log(µ30(e3j)) + y3j1 log(µ31(e3j)) + y3j2 log(µ32(e3j))]

≡
n1∑
j=1

l1j(µ1(e1j)) +

n2∑
j=1

l2j(µ2(e2j)) +

n3∑
j=1

l3j(µ3(e3j)).

where nm is the number of affected trios from Gp = m, and lmj(·) is a log-likelihood

contribution for a trio from Gp = m. The first two components of the log-likelihood

function are binomial log-likelihoods, and the last one is a trinomial log-likelihood.

From Table 3.1, we can see that µ1(e) involves γ1 and f1(e), and µ2(e), γ2 and

f2(e), while µ3(e) involves γ1, γ2, f1(e) and f2(e). Consequently, the log-likelihood
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function can be re-expressed in terms of GRR-model parameters as

l(γ1, γ2, f1(e), f2(e)) =
n1∑
j=1

l1j (γ1, f1(e1j)) +

n2∑
j=1

l2j (γ2, f2(e2j)) +

n3∑
j=1

l3j (γ1, γ2, f1(e3j), f2(e3j)) ,

(3.7)

which indicates that the trios from Gp = 1 are used for estimating γ1 and f1(e), those

from Gp = 2, for γ2 and f2(e); and those from Gp = 3 are used for all the parameters

γ1, γ2, f1(e) and f2(e).

3.3 Methods

3.3.1 Penalized likelihood setup

For modelling the smooth G×E functions f1(e) and f2(e), we consider natural cubic

splines, respectively, with K1 and K2 knots. The K1 and K2 knots are selected based

on the observed E in the trios from mating types Gp = 1, 2 and those from Gp = 2, 3,

respectively. Under a penalized estimation framework with a fixed basis dimension,

the exact number and positions of the knots do not contribute much impact on the

resulting fit, as long as the basis dimension is large so that there are enough degrees

of freedom for representing the true function (Wood, 2006).

Since f1(e) and f2(e) are not expected be complex, by default, we assume K1 =

K2 = 5 are enough to represent the smooth functions. In order to make good use of

the data, we let them be distributed evenly through out the data by placing them

at sample quantiles. For example, under the default numbers of knots, the we place

three interior knots at the 25th, 50th and 75th quantiles and two boundary knots, at

the endpoints of the data.

With the chosen Kh knots, fh(e) can be expressed as

fh(e) =

Kh∑
k=1

bhk(e)c
∗
hk = X∗h(e)c∗h, for h = 1, 2, (3.8)
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where the kth basis function bhk(e)is evaluated at E = e based on the Kh knots, c∗hk

is the corresponding coefficient, X∗h(e) = [bh1(e), ..., bhk(e)], and c∗h = (c∗h1, ..., c
∗
hKh

)T.

There are several ways to define a natural cubic spline function and hence the basis

function vector X∗h(e) (e.g., Wood, 2006). We show one definition of X∗h(e) in equation

(B2) in Appendix B.2.

The roughness penalties associated with fh, for h = 1, 2 are measured by the

integrated squared second derivative

∫
{f ′′h (e)}2de = c∗ThS∗hc

∗
h, (3.9)

where f ′′h (e) is the second derivative function of fh(e), S∗h is the Kh × Kh penalty

matrix. The (i, j)th elements of S∗h are {s∗h,ij} =
∫
b′′hi(e)b

′′
hj(e)de, for which b′′hi(e) is

the second derivative function of the ith basis function evaluated at E = e (Wood and

Augustin, 2002).

To identify the genetic main effect terms γ1 and γ2 from log-GRRh(e) in equations

(3.2), we impose the following two constraints for h = 1, 2 that the sums of fh(emj)

over all observed covariate values of cases in trios from mating type m = h or 3 are

zero: ∑
m∈{h,3}

∑
j

fh(emj) =
∑
k

∑
m∈{h,3}

∑
j

bhk(emj)c
∗
hk = Chc

∗
h = 0, (3.10)

where Ch is the 1×Kh matrix with kth element Chk =
∑

m∈{h,3}
∑

j bhk(emj). The

fitting problem may be reparameterized in terms of a new basis coefficient vector ch

of length (Kh − 1) induced by the constraints (3.10), by letting

c∗h = Ahch.

Thus, the constraints (3.10) will be automatically satisfied if Ah can be chosen such

that

ChAh = 0. (3.11)

One way to find an Ah is to use the QR-decomposition on CT
h (Section 1.8.1 Wood,
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2006); that is, we write

CT
h = QhRh =

[
Q1h : Q2h

]
Rh,

where Qh is a Kh×Kh orthogonal matrix, and Rh is a Kh×1 (upper triangular)

matrix. Let Qh be partitioned into two parts: Q1h, a matrix containing the first

column of Qh and Q2h, a matrix containing the last (Kh− 1) columns. Then, setting

Ah = Q2h will lead to equation (3.11) since the columns of Q2h are in the null space

of Ch (Fundamental Theorem of Linear Algebra).

Hence, letting Xh(e) = X∗h(e)Ah, we obtain

fh(e) = Xh(e)ch,

while satisfying the constraints on fh(e) in equation (3.10). Consequently, the log-

likelihood function in (3.7) can be re-written in terms of the parameter vector β =

(γ1, c
T
1 , γ2, c

T
2 )T. Similarly, letting Sh = AT

hS∗hAh, we obtain the corresponding rough-

ness penalty ∫
{f ′′h (e)}2de = cThShch.

The roughness penalty can be further re-expressed in terms of the parameter vector

β as ∫
{f ′′h (e)}2de = βTShβ,
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by letting the penalty matrix Sh be (K1 +K2)×(K1 +K2) square matrices

S1 =



0 0 · · · 0 0 0 · · · 0

0 s1,11 · · · s1,1(K1−1) 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 s1,(K1−1)1 · · · s1,(K1−1)(K1−1) 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0



,

and

S2 =



0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 0 · · · 0

0 0 · · · 0 0 s2,11 · · · s2,1(K2−1)
...

...
. . .

...
...

...
. . .

...

0 0 · · · 0 0 s2,(K2−1)1 · · · s2,(K2−1)(K2−1)



,

where {sh,ij} represent the elements of Sh. Consequently, the penalized log-likelihood

function can be written in terms of β as

lp(β) = l(β)− 1

2

2∑
h=1

λhβ
TShβ,

where λh represents the smoothing parameter that controls the trade-off between the

fit to the observed data (i.e., bias) and smoothness (i.e., variance) for the estimator

of fh(e).
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3.3.2 Penalized maximum likelihood estimation

To write the additive predictors for estimating the GRRh-parameters βh = (γh, c
T
h )T

for h = 1, 2, we let Xh(e) = [1, Xh(e)]. Then, we define the mating-type-specific

additive predictors ηm(e) for m = 1, 2, 3 to be

η1(e) = log

[
µ11(e)

µ10(e)

]
= X1(e)β1;

η2(e) = log

[
µ22(e)

µ21(e)

]
= X2(e)β2; and

η3(e) ≡

η31(e)
η32(e)

 =

log {µ31(e)/µ30(e)}

log {µ32(e)/µ31(e)}

T

=

X1(e)β1 + log(2)

X2(e)β2 − log(2)

T

,

where µmg(e) are as defined in Table 3.1. These additive predictors indicate that the

likelihood contribution from the jth trio from mth mating type is

lmj ≡



y1j1η1(e1j)− log(1 + eη1(e1j)) if m = 1

y2j2η2(e2j)− log(1 + eη2(e2j)) if m = 2

y3j1η31(e3j) + y3j2(η31(e3j) + η32(e3j))

− log(1 + eη31(e3j) + eη31(e3j)+η32(e3j))
if m = 3.

From the forms of ηm(e) above, we can see that η31(e) = η1(e) + log(2) and η32(e) =

η2(e)− log(2), and hence the penalized log-likelihood is a function of η1(e) and η2(e)

only, which can be expressed as

lp(β) =
3∑

m=1

n∑
j=1

lmj(η1(emj), η2(emj))−
1

2

2∑
h=1

λhβ
TShβ. (3.12)

For given smoothing parameters λ1 and λ2, we can find the penalized maximum

likelihood estimate (PMLE) β̂ numerically, using the Newton-Raphson method. The

Newton-Raphson update for β can be derived using the fact that the penalized log-

likelihood function in (3.12) has a similar form to that of a size-2 vector GAM (Yee
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and Wild, 1996). It can be shown that the update is equivalent to the penalized

iteratively re-weighted least squares (P-IRLS) solution in a matrix form

βnew =
(
XTWX +

2∑
h=1

λhSh

)−1(
XTWZ

)
,

where the descriptions for X, W and Z are as follows.

The model matrix X is obtained by stacking the trio-specific matrices Xmj cor-

responding to the jth trio in mating type m. Respectively for m = 1, 2 and 3, these

matrices are

X1j =
[
X1(e1j) : 0

]
1×(K1+K2),

X2j =
[

0 : X2(e2j)
]
1×(K1+K2),

and

X3j =

X1(e3j) : 0

0 : X2(e3j)


2×(K1+K2).

The weight matrix W is a block-diagonal matrix having the trio-specific diagonal

blocks. Setting ηmj ≡ ηm(emj), we can express these blocks as

W1j = −∂
2l1j
∂η21j

=
eη1j

(1 + eη1j)2
,

W2j = −∂
2l2j
∂η22j

=
eη2j

(1 + eη2j)2

and

W3j = − ∂2l3j
∂η3j∂ηT3j

=


eη31j + eη31j+η32j

(1 + eη31j + eη31j+η32j)2
eη31j+η32j

(1 + eη31j + eη31j+η32j)2

eη31j+η32j

(1 + eη31j + eη31j+η32j)2
eη31j+η32j (1 + eη31j)

(1 + eη31j + eη31j+η32j)2

 .
Furthermore, the pseudo-response vector Z can be obtained by stacking the trio-

specific pseudo-responses

Zmj = Xmjβ +W−1
mj dmj,
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where

d1j =
∂l1j
∂η1j

= y1j1 −
eη1j

1 + eη1j
,

d2j =
∂l2j
∂η2j

= y2j2 −
eη2j

1 + eη2j
,

and

d3j =


∂l3j
∂η31j

∂l3j
∂η32j

 =


y3j1 + y3j2 −

eη31j + eη31j+η32j

1 + eη31j + eη31j+η32j

y3j2 −
eη31j+η32j

1 + eη31j + eη31j+η32j

 .

3.3.3 Smoothing parameter estimation and confidence inter-

vals

Smoothing parameter estimation is done by using two one-dimensional grid searches

to find the values of λ1 and λ2 that minimize the generalized AIC function:

V(λ1, λ2) =
1

n
D(β̂)− φ+

2

n
tr(A)φ, (3.13)

where D(β̂) is the model deviance, which is negative twice the unpenalized log-

likelihood, φ is the scale parameter, which is 1 in this context, and A = X(XTWX+∑2
h=1 λhSh)

−1XTW is the hat matrix through which the objective function depends

on the smoothing parameters (Wood, 2006). The computational details showing how

to estimate the smoothing parameters are presented in Appendix B.3.

Naive confidence bands for fh(e) based on the asymptotic normal distribution of

ĉh have coverage probabilities less than the nominal confidence level due to the inten-

tional bias introduced by penalized estimation (e.g., Wood, 2006). As an alternative,

we consider the Bayesian intervals that have been shown to have good frequentist

coverage probabilities (e.g., Nychka, 1988; Marra and Wood, 2012). To construct

the Bayesian intervals for fh(e), we use the approximate normality of the posterior

distribution of ch, so that

fh(e) ∼̇ N
(
Xh(e)ĉh, Xh(e)VchX

T
h (e)

)
,
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where the variance-covariance matrix Vch is obtained by extracting appropriate rows

and columns from the Bayesian posterior variance-covariance matrix for the full pa-

rameter vector β (Wood, 2006)

Vβ = (XTWX +
2∑

h=1

λhSh)
−1φ.

For displaying the smoothed fits for G×E functions, we plot the fitted curves f̂1

and f̂2 along with their (1−α)100% Bayesian confidence bands for a given confidence

level α. Different genetic inheritance modes will yield different patterns in f̂h: under

the dominant mode, non-horizontal f̂1 and horizontal f̂2 would be produced; under

the recessive mode, horizontal f̂1 and non-horizontal f̂2 would be produced; and under

the multiplicative or log-additive mode, non-horizontal f̂1 and f̂2 having equivalent

forms would be produced.

3.3.4 Permutation test of G×E

To account for the extra uncertainty introduced by the estimation of the smoothing

parameters, we take a permutation-based approach to testing G×E. We define the

test statistic T as

T = ĉT{Vc}−1ĉ,

where c = (cT1 , c
T
2 )T, and Vc is the (K1 + K2 − 2) × (K1 + K2 − 2) matrix formed

by extracting, from Vβ, the appropriate columns and rows corresponding to c. As

the analysis is conditional on parental genotypes, we estimate the distribution of T

under the hypothesis of no G×E by shuffling E within mating types. Under no G×E,

G and E are independent within a random affected trio when they are independent

within a trio from the general population (Umbach and Weinberg, 2000). The p-value

is obtained by computing the proportion of test statistics that are more extreme than

or as extreme as the observed test statistic. For our analysis conditional on parental

mating types, an alternative to permutation is bootstrap re-sampling of E within

parental mating types. The advantage of a bootstrap-based approach is that its
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statistical properties are better understood. However, when the number of affected

trios within each parental mating types is large, both approaches should reach similar

conclusions.

3.4 Simulation

We conducted a simulation study to evaluate type 1 error rate and power of the

proposed permutation test of G×E under various scenarios. The test statistic T

was computed based K1 = K2 = 5 knots placed at the quartiles of the observed

distribution of E in the appropriate subsets of case-parent trios (e.g., trios in mating

types m = 1, 3 for estimating f1(e)). The p-values were obtained based on 1000

permutations.

When assessing the size of the test, we considered both a homogeneous (or un-

stratified) and a stratified population to verify unbiasedness of the test regardless of

population stratification. However, when assessing the power, we did not consider

population stratification. For comparison, we also evaluated three other tests, which

will be discussed below: (i) a likelihood ratio test based on a conditional logistic

regression model (e.g., Schaid, 1999), (ii) a likelihood ratio test based on a log-linear

model (Umbach and Weinberg, 2000), and (iii) a family-based association test of

gene-environment interaction (FBAT-I; Lake and Laird, 2004).

In the conditional logistic regression, we used linear G×E via f1(e) = βge1e and

f2(e) = βge2e in model (3.1). For the log-linear modelling approach, we dichotomized

E based on its sample median µ̃ in the affected trios and set f1(e) = βge1I{e > µ̃}

and f2(e) = βge2I{e > µ̃} in model (3.1). For FBAT-I, we set z1(g) = z2(g) = g,

γ1 = γ2 and f1(e) = f2(e) in model (3.1) and calculated the p-values based on 10,000

permutations. The type 1 error rates for these three tests were not examined because

it is well established that they maintain the nominal level of significance when the

test marker is causal (e.g., Lake and Laird, 2004; Shin et al., 2010).

All computation was done by R (R Development Core Team, 2011). The proposed

method was implemented in R and is soon to be available on CRAN. For FBAT-I,
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we used the ‘fbati’ package (Hoffmann, 2009). We simulated 1000 data sets in the

absence and 500 in the presence of G×E under dominant, log-additive and recessive

penetrance models, where each data set consisted of (G,E,Gp) of informative case-

parent trios. We chose to use a large sample size of 3000 in order to get enough

resolution for comparing power since it is well known that the power to detect G×E is

low (Smith and Day, 1984; Dempfle et al., 2008).

3.4.1 Simulation setting

Under population stratification, we considered a stratified population with two equal-

sized subpopulations S = 0 and 1, assuming random-mating within but not between

subpopulations. Within subpopulations, the index allele frequencies were chosen as

q0 = 0.1 and q1 = 0.9, and the means and common variance of E, as µ0 = 0.8,

µ1 = −0.8 and σ2 = 0.36, respectively. Under no population stratification, the two

subpopulations were set to have the same allele frequency q0 ≡ q1 ≡ q = 0.1 and

the same mean and variance of E so that µ0 ≡ µ1 ≡ µ = 0 and σ2 = 1. In each

subpopulation, Gp were simulated under Hardy-Weinberg proportions (HWP) and

mating symmetry; G were simulated under Mendelian segregation with no mutation;

and E were simulated independently of Gp and G under normal distributions.

Parameters in the disease risk model in equation (3.1) were chosen as follows. Since

the baseline disease probability and the non-genetic main effect are not estimable from

case-parent trio data, we let k = 0 and ξ(e) = 0 for all values of e, for convenience.

Under a dominant penetrance model, we took γ1 = log(3) and γ2 = 0, giving GRR

of 3 between the individuals with one or two copies and those with zero copies of the

index allele. Under the log-additive penetrance model, γ1 = γ2 = log(
√

3), giving

GRR of 3 between the individuals with two copies and those with zero copies of the

index allele and GRR of 1.5 between those with one copy and those with zero copies of

the index allele. Under a recessive penetrance model, we took γ1 = 0 and γ2 = log(3),

giving GRR of 3 between the individuals with two copies and those with one or zero

copies of the index allele.

Under no G×E, we let f1(e) = f2(e) = 0 for all E = e both in the absence (setting
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H0U) and in the presence (setting H0S) of population stratification. Under G×E, we

let f1(e) ≡ f(e) and f2(e) = 0 under a dominant penetrance model, f1(e) ≡ f2(e) =
1

2
·f(e) under a multiplicative penetrance model, and let f1(e) = 0 and f2 ≡ f(e) under

a recessive penetrance model, to have the equivalent GRR between the individuals

with two copies of the index allele and those with zero copies under both penetrances.

For f(e), we considered linear (setting H1L), piecewise linear (setting H1P ) and

quadratic (setting H1Q) models in the absence of population stratification. Table 3.2

summarizes the scenarios we considered for the simulation study. Under setting H1L,

Table 3.2: Simulation scenarios

Setting Population Stratification G×E

H0S Yes No

H0U No No

H∗1L No Yes

H1P No Yes

H1Q No Yes

we let f(e) be a linear function with slope βge. Under setting H1P , we let f(e) be a

piecewise linear function created by joining one horizontal line and one straight line

having a slope of βge together at a point zp, which represents the pth-quantile of the

standard normal distribution of E in general population. Although using a piecewise

linear function violates the assumption that f1(e) and f2(e) are smooth functions, we

chose to use it since it is easier to control the shape of the function and hence the

effect size of G×E than a smooth function with a similar form (e.g., exponential).

Under setting H1Q, we let f(e) be a quadratic function with coefficient βge and axis

of symmetry zp placed at pth quantile of N(0, 1). The specific forms for f(e) and the

ranges of βge and p under different models of G×E are presented in Table 3.3.
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Table 3.3: Parameterizations for f(e) under G×E

Setting f(e) βge pa

H1L βgee [-0.24, -0.10] –

H1P
b βgeI{e < zp} · (e− zp) [0.20, 1.00] [0.10, 0.50]

H1Q βge(e− zp)2 [-0.20, -0.04] [0.10, 0.50]

a zp indicates the pth quantile of the standard normal
distribution of E in the general population.

b f(e) is not smooth, but chosen for convenience.

3.4.2 Simulation results

Under no G×E, the proposed test maintained the nominal significance level of 0.05

within simulation error both in the absence (setting H0U) and in the presence (set-

ting H0S) of population stratification. Under the dominant penetrance models, the

empirical type 1 error rates were 0.053 under H0U (SE = 0.007) and 0.060 under H0S

(SE=0.008). The rates were similar under the log-additive and the recessive models

(results not shown).

Figures 3.1 – 3.3 show the empirical power results for different penetrance models

under various simulation configurations. The simulation results can be summarized

as follows: i) when the underlying G×E is non-linear, and there is little or no linear

association between G and E, the proposed test has the highest power among the four

tests; ii) when G×E is non-linear, but there is some linear association between G and

E, the proposed test has comparable power to that of conditional logistic regression

approach and/or FBAT-I but higher power than the log-linear approach; iii) when

G×E is linear, the proposed test has lower power than conditional logistic regression

and can have lower or higher power than FBAT-I depending on whether the FABT-I

mode of inheritance is incorrectly specified as additive rather than recessive.

For the other tests, conditional logistic regression had more power than the log-

linear approach. FBAT-I performed as well as conditional logistic regression under

the dominant penetrance model, better than conditional logistic regression under the
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log-additive model and worse than conditional logistic regression under the reces-

sive penetrance. The results indicated that FBAT-I can lose power under recessive

penetrance when the mode of inheritance is mis-specified as additive.

Under H1L, the proposed test had lower power than the conditional logistic regres-

sion approach with linearG×E (Figure 3.1). Under the dominant and the log-additive

models, it also had lower power than FBAT-I since FBAT-I’s sample covariance test

statistic measures the strength of the linear association between G and E (Figure 3.1

panels A and B). However, under the recessive penetrance models, the proposed test

performed better than FBAT-I, which has a huge power loss due to mis-specification

of the penetrance mode (Figure 3.1C). The proposed test had comparable power to

that of the log-linear approach under all penetrance models.

Under H1P , the power of the proposed and the other tests increased with the effect

size |βge| (e.g., Figure 3.2, panels A and B) and with the joining point p (e.g., Figure

3.2, panels C and D). Under the dominant models, the proposed test had more power

than the other tests when the joining point was at a lower quantile (Figure 3.2A). This

is because when p is low, the linear association between G and E is weak, leading to

the loss of power for the conditional logistic regression approach and FBAT-I. When

|βge| is low, the proposed test had similar power to conditional logistic regression and

FBAT-I (e.g., Figure 3.2C) since it tends to fit the G×E curves as linear functions

(results not shown). Similar but weaker patterns were observed under the log-additive

and the recessive models (results not shown).

Under H1Q, the proposed test had comparable or superior power to that of the

other competing tests (e.g., Figure 3.3). The power of the proposed test increased

with the effect size |βge|, while the power of the other tests did not always increase

with |βge| (e.g., Figure 3.3, panels A and B). The power of the other tests increased

with |βge| when the axis of symmetry zp is far from the median (e.g., Figure 3.3A) but

not when zp was at the median (e.g., Figure 3.3B). The power of both the proposed

and the other tests decreased as zp became closer to the median of E; however, the

relative power for the proposed test increased as zp became closer to the median (e.g.,

Figure 3.3 panels C and D). When zp was far from the median, both the proposed and
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Figure 3.1: Empirical power results for gene-environment tests under linear
G×E (Setting H1L in Table 3.3). The black circles with solid lines represent power
for the proposed test (triogam); the blue cross-marks with dashed lines represent
power for FBAT-I (fbati); the red diamonds with dotted lines represent power for
the conditional logistic regression approach (clogist); and the yellow triangles with
dot-dashed lines represent power for the log-linear modelling approach (log-linear).
The shaded area represents simulation error about the nominal 5% level: a test with
the correct size would have estimated type 1 error within the shaded region 19 times
out of 20. The vertical bars represent ±2 simulation errors, which we present for
the proposed test, FBAT-I and/or conditional logistic regression since the latter two
tests can be more powerful than the proposed test under linear G×E. Results are
based on 500 simulation replicates of 3000 informative case-parent trios generated
under the dominant (panel A), the log-additive (panel B) and the recessive (panel C)
penetrance models.
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Figure 3.2: Empirical power results for gene-environment tests under piecewise linear
G×E (Setting H1P in Table 3.3). The black circles with solid lines represent power
for the proposed test (triogam); the blue cross-marks with dashed lines represent
power for FBAT-I (fbati); the red diamonds with dotted lines represent power for
the conditional logistic regression approach (clogist); and the yellow triangles with
dot-dashed lines represent power for the log-linear modelling approach (log-linear).
The shaded area represents simulation error about the nominal 5% level - a test with
the correct size would have estimated type 1 error within the shaded region 19 times
out of 20. The vertical bars represent ±2 simulation errors, which we present only
for the proposed test and FBAT-I since FBAT-I is uniformly more powerful than the
other two competing tests. Results are based on 500 simulation replicates of 3000
informative trios generated under the dominant penetrance models.
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the competing tests performed well and had comparable power. When zp was close

to the median, both the proposed and the other tests did not perform as well as when

zp was far from the median; however, the power of the proposed test was greater than

that of the other tests, and it decreased at a slower rate than that of the other tests.

The reason why the power of all the tests decreased as zp was closer to the median of

E is that the G×E function varies with E more rapidly in the boundary areas where

there is little information available when its axis of symmetry is closer to the median,

while it varies more rapidly in the regions where there is a lot of information (e.g.,

near median) when its zp is far from the median. The reason why the other tests

performed worse when zp was close to the median is that in addition to the previous

reason, the linear association between G and E also becomes weaker as the axis of

symmetry of a quadratic G×E curve is closer to the median.

3.5 Illustration: Application to acute lymphoblas-

tic leukemia simulated data

Acute lymphoblastic leukemia (ALL) is the most common type of leukemia in chil-

dren aged 1 – 19 years old. ALL can occur at any age, but the age-adjusted incidence

rates are highest during childhood between age 2 and 6 years, decrease during young-

adulthood, and then increase again at older ages around > 50 years (Ries et al., 1999)

(e.g., Figure 3.4). We examined the C609T polymorphism in NAD(P)H:quinone ox-

idoreductase 1 (NQO1), which plays a role in detoxification of carcinogenic byprod-

ucts. Homozygous individuals for the variant allele (T/T) are deficient in NQO1

activity, and lower activity of the NQO1 has been shown to be associated with in-

fant ALL (Wiemels et al., 1999). The bimodal distribution of incidence with age is

consistent with different disease mechanisms for younger- and older- patients. For

example, younger cases could have a genetic basis whereas older cases could be spo-

radic. This motivates us to search for age-dependent NQO1 genotype relative risks

for ALL patients.
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Figure 3.3: Empirical power results for gene-environment tests under quadratic
G×E (Setting H1Q in Table 3.3). The black circles with solid lines represent power
for the proposed test (triogam); the blue cross-marks with dashed lines represent
power for FBAT-I (fbati); the red diamonds with dotted lines represent power for
the conditional logistic regression approach (clogist); and the yellow triangles with
dot-dashed lines represent power for the log-linear modelling approach (log-linear).
The shaded area represents simulation error about the nominal 5% level - a test with
the correct size would have estimated type 1 error within the shaded region 19 times
out of 20. The vertical bars represent ±2 simulation errors, which we present only
for the proposed test and FBAT-I since FBAT-I is uniformly more powerful than the
other two competing tests. Results are based on 500 simulation replicates of 3000
informative trios generated under the dominant penetrance models.
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Figure 3.4: Age-specific incidence of ALL in white patients in the US during 2004–
2008. The horizontal axis shows five-year age intervals. The vertical axis shows the
frequency of new cases of ALL per 100,000 in a given age-group. (source: Surveil-
lance, Epidemiology and End Results [SEER] Program, 2004-2008, National Cancer
Institute, 2011).

We illustrate our method by using a simulated data set that mimics case-parent

trio data obtained from a genetic association study of childhood ALL. The real data

arise from two family studies from Québec (Infante-Rivard et al., 2000; Infante-Rivard,

2003; Infante-Rivard et al., 2007) and France. The French data are from a case-

control study (Perrillat et al., 2001; Clavel et al., 2005), for which parental genotype

information was later collected. There were 1031 case-parent trios, of which 288 were

informative for the polymorphism of interest. It is well known that the sample size

requirements to detect G×E are much larger than those to detect the main effects

of G or E (Smith and Day, 1984; Dempfle et al., 2008). A typical rule of thumb

is that, for a given power, the sample size for detecting G×E should be at least

four times that for detecting a marginal effect with the same power. To increase the

power to detect interaction, we used the original data to simulate 1000 informative

case-parent trios. Simulated data were generated based on the characteristics of the

real data. Note that the data were simulated in the presence of G×E (i.e., f1(e) 6= 0



CHAPTER 3. DATA SMOOTHING APPROACH TO G×E 46

and f2(e) 6= 0) as indicated by the theoretical log-GRR curves shown in Figure 3.5.

Other details describing how the data were simulated are presented in Appendix B.4.
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Figure 3.5: Theoretical log-GRR curves used for simulating the ALL data set. The
curves were constructed based on the G×E curves estimated from fitting the 288
informative case-parent trios in the original data set of ALL.

The mating-type-specific distribution of genotype frequencies and the histogram

of age-at-diagnosis among the cases from the resulting 1000 simulated informative

trios are shown in Table 3.4 and Figure 3.6, respectively. According to Table 3.4,

heterozygous parents transmit the variant allele to the cases 634/1175 = 54.0% of the

time. The transmission disequilibrium test (TDT; Spielman et al., 1993) confirms that

the variant allele was transmitted slightly more frequently than expected (p = 0.007).

A similar trend was observed in the original data, for which the observed proportion

was 181/348 = 52% (p = 0.49).

Figure 3.7 shows the fitted curves of G×E and their corresponding Bayesian 95%

confidence intervals. The confidence intervals are suggestive for G×E between NQO1

C609T and age-at-onset of ALL. To test for G×E, we applied the proposed permu-

tation test to the simulated data set using 1000 replications. The resulting p-value
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Table 3.4: Mating-type-specific frequencies (%) of case-genotypes in 1000 simulated
informative trios

Informative mating type (m∗)

Number of copies of
NQO1 C609T variant 1 2 3

0 343 (44) – 32 (18)
1 435 (57) 27 (57) 107 (61)
2 – 20 (43) 36 (21)

nm 778 (100) 47 (100) 175 (100)

∗m = 1, 2, 3 corresponds to parental genotype pairs (GM , GF ) =
{(1, 0) or (0, 1)}, {(1, 2) or (2, 1)} and {(1, 1)}, respectively.

for our approach indicated there was G×E (p = 0.03), while the p-values of the

conditional logistic regression, FBAT-I and the log-linear modelling approach did not

(p = 0.12, 0.19 and 0.34, respectively).

3.6 Discussion

Complex diseases, such as diabetes and cancer, are the result of both genetic and

non-genetic factors acting jointly on the disease risk. For example, the effects of

multiple genes in the HLA region on the risk of type 1 diabetes vary with age-at-

onset (e.g., Caillat-Zucman et al., 1992). The more we learn about gene-environment

interactions, the better insights we can get into the disease aetiology.

In this work, we proposed a smoothing approach to exploring G×E using data

from case-parent trios. The method provides a flexible way of modelling G×E via

spline functions, which are estimated under a penalized maximum likelihood frame-

work. Rather than making assumptions about the parametric form and the inher-

itance mode of G×E, the proposed approach lets the data determine them. The

revealed patterns are displayed graphically, which can provide new or better insights

into the biological mechanisms for G and E under the study. For testing G×E,
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Figure 3.6: Histogram of age-at-diagnosis for the cases from 1000 simulated infor-
mative trios with complete information on NQO1 genotype and age-at-onset. The
dashed-line curve represents the density curve estimated from the observed E of the
informative affected trios in the real-data.

we adopted a permutation-based test that takes into account the extra uncertainty

arising from the estimation of the smoothing parameters.

The simulation study results demonstrate that the proposed test can have much

greater power to detect non linear G×E, compared to the other available tests we

considered (e.g., Figure 3.2A and 3.3B). The power of the permutation test can be

low since we make minimal assumptions about the parametric form of G×E model.

However, the proposed test can be useful in a unique way. For example, when con-

sidering G×E with continuous E, an analyst can fit a conditional logistic regression

model with linear G×E; if such inference suggests that G×E is not significant, she/he

could look at the form for G×E by applying our method and, if the estimated curve

is not linear, our permutation test can be applied to get the p-value.

One advantage of the case-parent trio design is that it can allow for the genetic
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Figure 3.7: Fitted G×E curves for the simulated ALL data set. The left panel shows
the fitted G×E for GRR between the individuals with 1 and 0 copies of the NQO1
C609T variant, and the right one, the fitted G×E for GRR between those with 2 and
1 copy of the variant allele. The dashed lines indicate the 95% pointwise Bayesian
confidence limits.

effects such as parent-of-origin effects. A parent-of-origin effect exists when the disease

risk of an individual is affected by whether the allele responsible for the disease

was transmitted from the mother or the father. Numerous association and linkage

studies of complex disorders have suggested existence of parent-of-origin effects, and

hence incorporating parent-of-origin effects will improve our understanding of disease

aetiology (Guilmatre and Sharp, 2012). One possible way to extend the current

method to incorporate parent-of-origin effects is outlined in Chapter 5.



Chapter 4

Adjusting for spurious

gene-by-environment interaction

using case-parent triads.

4.1 Introduction

In the case-parent design, unrelated children affected with a disease are genotyped

along with their parents. The requirement of parental genotypes makes this design

most practical for early-onset diseases. Information on the cases’ non-genetic covari-

ates, such as age at onset, may also be collected. Throughout we use the notation G

to denote a genotype at a causal SNP, with possible values 0, 1 or 2 for number of

copies of an index allele. We let E denote the exposure to an environmental factor,

which we assume is continuous.

If G is associated with the disease, it may then be of interest to ask whether the

association is modified by E. Alternately, if E is associated with disease, it may be

of interest to ask whether G modifies this association. In either case, interest is in

gene-by-environment interaction which exists when genotype relative risks (GRRs)

50
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depend on E:

GRR1(e) =
P (D = 1 | G = 1, E = e)

P (D = 1 | G = 0, E = e)
or GRR2(e) =

P (D = 1 | G = 2, E = e)

P (D = 1 | G = 1, E = e)
.

Here D = 1 is the event that the child in the trio is affected. The choice of

parametrization of the two GRR functions is arbitrary. In the above parametriza-

tion, each GRR function is the factor by which risk increases for an additional copy

of the index allele in G, for a fixed value of E. Throughout we define models with

gene-by-environment interaction (G×E) to be those that imply E-dependent GRRs.

As recently noted by Shi et al. (2011), inference of interaction based on a non-

causal genotypeG′ at a test locus that is in linkage disequilibrium (LD) with the causal

locus can be misleading under population stratification. They show that GRRs at

G′ can vary with E without G × E when both the distribution of E and the GG′

haplotypes vary by sub-population. The interpretation of G × E in such a case is

spurious and may be regarded as a bias due to population stratification. We refer to

this situation as spurious interaction.

Whether or not such spurious interaction is a concern depends on how plausible

it is to have haplotype and E distributions that vary by sub-population. Differences

in haplotype distributions between populations may result from genetic drift or pos-

itive selection (Bersaglieri et al., 2004). Examples of genomic regions under positive

selection include the lactase gene and the Duffy blood group locus. The lactase gene

is thought to be under positive selection in Europeans and other dairy-dependent so-

cieties for a variant that confers the ability to digest milk into adulthood (Bersaglieri

et al., 2004; Tishkoff et al., 2007). The Duffy blood group locus is thought to be

under positive selection in African populations for a variant that confers resistance

to malaria (Hamblin et al., 2002). In both cases, haplotype frequencies in the popu-

lation under selection differ from those of other populations (Teo et al., 2009). Thus,

when studying non-causal loci, differences in E between genetic subgroups in the

population could lead to inference of spurious interaction.

Shi et al. discuss a robust approach to spurious interaction that requires E to also
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be available on an unaffected sibling of the affected child. In this paper we further

explore the source of spurious interaction and suggest an alternate approach that

mitigates its effects using the existing case-parent triads. In contrast to Shi et al.,

our approach does not require data on unaffected siblings. Simulations of case-parent

trio data used an approach that is implemented in a freely-available R package soon

to be released on the Comprehensive R Archive Network (CRAN).

A summary of the remainder of the chapter is as follows. In the next section

we present data simulated under population stratification that lead to inference of

spurious interaction. This is followed by a brief description of the risk model used for

inference. We then propose an adjustment to the risk model that uses information

on unlinked markers to provide robustness to spurious interaction. We also comment

on risk model adjustments that can preserve power to detect interaction. Simulations

show that, with enough independent marker information, the proposed adjustments

achieve the nominal type 1 error rate and reasonable power. We conclude with a

summary and comparison of approaches to avoiding spurious interaction and ideas

for future work.

4.2 Example of spurious interaction

For illustration, we consider a population comprised of two equi-sized and non-mixing

sub-populations in which both the distribution of E and the GG′ haplotypes vary

by sub-population. The subpopulation-specific haplotype distributions are given in

Table 4.1. In this example, alleles in G are denoted by R (risk) and N (non-risk),

while alleles in G′ are denoted by 1 and 0. Here, and in what follows, it will be

convenient to summarize haplotype distributions by the implied allelic correlations

between the index alleles R and 1. Under the GG′ haplotype frequencies given in

the table, these correlations are r0 = −1 in sub-population S = 0 and r1 = 1 in

sub-population S = 1. Consequently, G′ = 1 is associated with low disease risk in

S = 0 and high disease risk in S = 1. The subpopulation-specific E-distributions are

given in Figure 4.1. Low values of E tag individuals as being likely from S = 0 while
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high values tag them as likely from S = 1.
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Figure 4.1: Example distributions of E in two sub-populations

When data are simulated from these settings under noG×E, the non-zero slopes of

the fitted log-GRR curves for G′ indicate spurious interaction, as shown in Figure 4.2.

The curves were obtained by applying likelihood methods to fit a model described in

the next section. The source of the spurious interaction is illustrated in the schematic

of Figure 4.3. Though GRRs do not vary within either sub-population, low E tags

sub-population 0 in which G′ = 1 is low risk, while high E tags sub-population 1 in

which G′ = 1 is high risk. As a result, GRRs for G′ vary with E; i.e., there is G′×E.

However, the interaction is spurious because it is the allelic correlation between G

and G′ that modifies the GRRs, not E.
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Table 4.1: Example haplotype frequencies for haplotypes comprised of causal and
non-causal loci in two sub-populations. Alleles in G (causal) are denoted by R (risk)
and N (non-risk), and alleles in G′ (non-causal) are denoted by 1 and 0. Table entries
are GG′ haplotype frequencies in the two sub-populations, denoted by S = 0 and
S = 1.

Sub-population
S = 0 S = 1

R1 0 0.5
R0 0.5 0
N1 0.5 0
N0 0 0.5
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Figure 4.2: Plot of fitted log-GRRs for G′ versus E. The non-zero slopes of the
fitted log-GRRs for G′ = 1 versus G′ = 0 (solid) and G′ = 2 versus G′ = 1 (dashed)
suggest interaction. Shaded regions represent approximate point-wise 95% confidence
intervals.
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4.3 Methods

4.3.1 Model

Throughout, we use the following log-additive model:

P (D = 1 | G = g, E = e) ∝ exp {z1(g)β1 + z2(g)β2 + η(e) + z1(g)f1(e) + z2(g)f2(e)} ,

(4.1)

where z1(g) and z2(g) are indicator variables for g > 0 and g = 2, respectively (Shin

et al., 2010). To emphasize the dependence of the resulting GRRs on E, we write

them as a function of e:

GRR1(e) =
P ( D = 1 | G = 1, E = e )

P ( D = 1 | G = 0, E = e )
= exp

(
β1 + f1(e)

)
and

GRR2(e) =
P ( D = 1 | G = 2, E = e )

P ( D = 1 | G = 1, E = e )
= exp

(
β2 + f2(e)

)
.

The model allows for G × E because GRRs can vary with E through the functions

f1 and f2. If f1 = f2 ≡ 0 then there is no interaction.

Assuming G and E are conditionally independent given parental genotypes Gp,

and conditioning on Gp and E we can obtain a likelihood based on

P (G = g | D = 1, E = e,Gp) =

exp (z1(g)β1 + z2(g)β2 + z1(g)f1(e) + z2(g)f2(e))P (G = g | Gp)∑
g∗ exp (z1(g∗)β1 + z2(g∗)β2 + z1(g∗)f1(e) + z2(g∗)f2(e))P (G = g∗ | Gp)

,

where the sum in the denominator is over genotypes g∗ consistent with parental

genotypes Gp and the probabilities P (G = g | Gp) are given by Mendel’s laws.

4.3.2 Avoiding spurious interaction

Recall the diagram in Figure 4.3 that illustrates the source of spurious G′ × E de-

scribed by Shi et al. (2011). The different log-GRRs for G′ reflect different patterns

of G′-G LD in the different sub-populations. A correctly specified penetrance model
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with separate genetic effects for each sub-population would eliminate the spurious

interaction. As illustrated in Figure 4.4, spurious interaction is also avoided if we

allow separate genetic effects for groups of sub-populations with different E distribu-

tions. The variable X distinguishes groups, taking value 0 for the group comprised

of sub-populations S = 0 and S = 1, and value 1 for the group comprised of sub-

populations S = 2 and S = 3. In the spirit of Shi et al. (2011), we could adjust the

penetrance model my X to account for different E-distributions. Although adjusting

for X avoids spurious interaction, the E-specific GRRs for G′ are mis-specified for

each sub-population. In future work we plan to correct for this mis-specification of the

penetrance model by allowing each sub-population to have separate genetic effects.

With X we might adjust the risk model to, e.g.,

GRRi(e) =
P (D = 1|G′ = i, E = e,X = x)

P (D = 1|G′ = i− 1, E = e,X = x)
= exp

(
βi + fi(e) + βiXx

)
; i = 1, 2

(4.2)

so that subjects from group X = 0 have genetic main effects βi and subjects from

group X = 1 have genetic main effects βi +βiX . Appendix C provides details on how

such adjustments avoid inference of spurious interaction.

In practice, sub-populations and their groupings X are not known. Shi et al.

(2011) collect dichotomous E on an unaffected sibling and allow separate genetic

effects for different values of sibship-averaged E. In effect, the sibship-average is used

to tag the distribution of E from which the siblings are sampled. Here we take the

alternative approach of allowing separate genetic effects for different values of E(E |

sub-population). The idea is to use the sub-population-specific average of E to tag

the distribution from which the affected child is sampled. We use E(E |M) ≡ µ(M)

as a proxy for E(E | sub-population) where M is a set of ancestry-informative markers

(AIMs) or random SNPs collected on the affected child. We allow GRRs for G′ to

vary with µ(M) through the adjusted risk model

P (D = 1|G′ = i, E = e,M)

P (D = 1|G′ = i− 1, E = e,M)
= exp

(
βi + fi(e) + hi(µ(M))

)
; i = 1, 2. (4.3)
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That is, we replace βiXx in equation (4.2) with hi(µ(M)).

To model µ(M) there are several possibilities. We opted to regress E on “im-

portant” principal components (PCs), where the number of important PCs is deter-

mined by the selection procedure of Zhu and Ghodsi (2006). This selection procedure

is an automated version of the standard approach based on inspection of a scree

plot (e.g. Jolliffe, 2002, Chapter 6), which graphs the proportion of variance in the

data explained by each PC against its rank. Given a number k of important PCs,

PC1, . . . , PCk, the estimates of µ(M) for each child are taken to be the child’s fit-

ted value from an ordinary least-squares regression of E on PC1, . . . , PCk. We took

hi(µ(M)) = γiµ(M), i = 1, 2, since in our simulations there are always two modes in

the distribution of µ(M).

4.3.3 Power

Under G × E, patterns of G′ × E can vary with GG′ haplotype distributions in

different groups of sub-populations. Hence, enforcing a common interaction across

sub-populations may yield low power. For example, an allelic correlation flip in the

two sub-populations can flip the sub-population-specific effects of G′×E, as illustrated

in Figure 4.5. The figure is a schematic of the log-GRRs for G′ under negative linear

interactions for the causal G such that f1(e) = f2(e) = βGE × e with βGE < 0 (as in

our simulation study), and allelic correlations r0 = −1 in S = 0 and r1 = 1 in S = 1.

In S = 1, the log-GRR curve for G′ is the same as for G. In S = 0, the log-GRR

curves for G′ are the negative of those for G. The result is log-GRR curves for G′

with opposite-signed slopes in two sub-populations. Enforcing a common interaction

in the two sub-populations misses the signal.

To maximize power in this example, we would like to allow the G′ × E effect to

vary by haplotype distribution. For example, letting Y distinguish the two groups

of sub-populations with different haplotype distributions, we could modify the risk
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model for G′ to

GRRi(e) =
P (D = 1|G′ = i, E = e,X = x, Y = y)

P (D = 1|G′ = i− 1, E = e,X = x, Y = y)

= exp
(
βi + fi(e) + βiXx+ fiY (e)y

)
; i = 1, 2

so that subjects from group Y = 0 have interaction effects fi(e) and subjects from

group Y = 1 have interaction effects fi(e) + fiY (e). However, sub-populations, their

haplotype distributions and hence Y are not known.

Assuming different E distributions correspond to different haplotype distributions,

as in our example, one could use µ(M) in the model

P (D = 1|G′ = i, E = e,M)

P (D = 1|G′ = i− 1, E = e,M)
=

exp
(
βi + fi(e) + γiµ(M) + fiY (e)µ(M)

)
; i = 1, 2.

In simple cases of two sub-populations this adjustment would be expected to perform

well. However, power is lost if haplotype distributions vary within the distribution

of E, as illustrated in Figure 4.6. We emphasize though that the primary motivation

for modifying the risk model is to prevent detection of spurious interaction, and that

preserving power when interaction is present is a secondary consideration.

4.4 Simulation Study

4.4.1 Simulation settings

We generated 5000 data sets comprised of 3000 case-parent trios with at least one

heterozygous parent and information on (G′p, G
′, S, E). To induce spurious interac-

tion we simulated a stratified population with different distributions of E and GG′

haplotypes in each of two sub-populations. The two sub-populations were of equal

size, were randomly mating, and did not mix.

The sub-population distributions of E were chosen to be normal with common
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variance σ2 = 0.36, and means µ0 = −0.8 and µ1 = 0.8 in S = 0 and S = 1, respec-

tively (Figure 4.1). The resulting population distribution of E has mean zero and

variance one. Given sub-population status, E values were simulated independently

of all genetic data on the trio.

The GG′ haplotype distributions in the two sub-populations were chosen to have

common marginal allele frequencies of 0.5 for the index alleles R and 1 of the causal

and test locus, respectively. Haplotype distributions were then determined by the

allelic correlation between R and 1. We considered two scenarios for the allelic cor-

relations r0 and r1 in sub-populations S = 0 and S = 1: (i) r0 = −r and r1 = r and

(ii) r0 = 0 and r1 = r, for a grid of r values from zero to one. The first scenario may

occur when, for example, an advantageous variant arises independently on different

backgrounds in different sub-populations, as in the case of the lactase persistence

trait (Tishkoff et al., 2007). The second scenario is plausible in the case of an older

sub-population S = 0, in which recombination has broken up haplotype structure in

the neighborhood of the test locus, and a younger sub-population S = 1, in which

LD is present due to a founder effect. The haplotype distributions were used to

simulate parental haplotypes under Hardy-Weinberg proportions (HWP). Children’s

haplotypes were then sampled according to Mendel’s laws, assuming no recombination

between the causal and test loci during parental meioses.

Parameters in the disease risk model (equation 4.1) were chosen as follows. We

took β1 = β2 = log
√

3, giving multiplicative inheritance with GRRs of
√

3 under no

G× E. For interaction we set f1(e) = f2(e) = 0 under no G×E and f1(e) = f2(e) =

−0.25e under G×E. Since the main effect of E is not estimable from case-parent

trio data, we set η(e) = 0 for simplicity. We simulated informative trios according

to their population distribution, keeping only those with an affected child. An R

function trioGESim() written to perform the simulations will be made available in a

forthcoming R package.

In the simulation configurations described so far, the allele frequencies at both

causal and test loci were always the same in the two sub-populations. However, we

also conducted limited simulations in which both allele frequencies at the two loci and
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GG′ haplotype frequencies vary among sub-populations. The simulation configuration

was intended to mimic a situation in which the “risk” allele at the causal locus arose

on a common haplotypic background and was under positive selection in one of the

sub-populations. Results were qualitatively similar to those obtained in the other

configurations, and are not shown.

4.4.2 Unadjusted tests of interaction

We evaluated two tests that did not adjust for population structure: (i) a likelihood

ratio test based on a conditional logistic regression (Schaid, 1999) and (ii) FBAT-I

(Lake and Laird, 2004). For the conditional logistic regression approach, we fit a

model with separate linear interactions for each GRR and tested the significance of

these linear interactions with a likelihood ratio test. For the FBAT-I, we computed

the p-value based on 10000 Monte-Carlo iterations in the R package fbati (Hoffmann,

2009). The nominal significance level was 0.05.

4.4.3 Adjusted test of interaction

For the adjusted approach, we generated panels of various numbers of substructure-

informative markers. The genotypes of these markers were independent of G and

G′ and each other, and followed HWP (Hardy-Weinberg proportions) within sub-

populations. The subpopulation-specific index allele frequencies for these SNPs were

generated independently from a uniform distribution U(l, u), with l < u. We consid-

ered two types of markers: ancestry informative markers (AIMs) and random SNPs.

AIMs were chosen such that the subpopulation-specific allele frequencies differed by

at least δ = 0.4. To be conservative in evaluating our procedure, our threshold for

classifying a SNP as ancestry informative was more inclusive than the δ = 0.5 value

that has been recommended (Shriver et al., 1997). Random SNPs included all mark-

ers, without any restriction on allele frequency differences. We considered panels of

50 and 100 AIMs and 100 and 250 random SNPs. Models were fit by conditional

logistic regression and hypotheses were tested by likelihood ratio tests.
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4.4.4 Type 1 error results

Simulation results under no G × E are given in Figures 4.7 (for r0 = −r, r1 = r)

and 4.8 (for r0 = 0, r1 = r). In both cases, the type 1 error rate of the unadjusted

methods quickly increases beyond the nominal 5% with increasing r. However, with

enough independent marker data, the type 1 error rate of the adjusted approach stays

near the nominal level. In our simulation setting, about 250 random SNPs or 100

AIMs appears to be enough to reliably identify the E distribution of each subject.

4.4.5 Power results

Results under G × E are summarized in Figures 4.9 (for r0 = −r, r1 = r) and 4.10

(for r0 = 0, r1 = r). Each figure displays the relative power of the test for interaction,

defined as the power based on the test SNP divided by power based on the causal

SNP. The first simulation setting, with allelic correlations of r0 = −r and r1 = r, is

the one in which interaction curves flip, so that enforcing a common interaction curve

would miss the signal. Reassuringly, the simulation results from this configuration

(Figure 4.9) show that, with the proposed adjustment, relative power increases in r

and approaches one as r approaches one. In the second configuration with r0 = 0 and

r1 = 1, the test SNP provides no information about G× E in sub-population S = 0.

This is reflected by lower powers in the second configuration (Figure 4.10), relative

to the first, for the same value of r.

4.5 Discussion

G× E describes statistical interaction; i.e., departures from additive effects on some

scale defined by a linear model (Cordell, 2002). When this linear model is mis-

specified, the interpretation of statistical interaction is problematic. The general issue

is well known in both plant genetics (Gauch, 2006) and epidemiology (Clayton, 2009).

The issue has also been recognized in the context of case-parent trio studies (Umbach

and Weinberg, 2000; Lake and Laird, 2004; Cordell, 2009). More recently, Shi et al.
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(2011) have shown how misspecification of a log-additive model of disease risk can

arise from LD between a test locus G′ and causal locus G. They demonstrate spurious

interaction when GG′ haplotype frequencies and the distribution of the environmental

variable E vary by sub-population. Such variation in haplotype distributions may

occur due to various forces such as migration, genetic drift, selection, etc. Shi et al.

proposed to avoid this LD-based source of spurious interaction via a design-based

approach requiring case-parent trios and measurements of E on an unaffected sibling

of the affected child. We provide further investigation of this LD-based source of

spurious interaction and propose an alternate approach to inference that relies only

on data from the case-parent triads.

Both the design-based approach and our adjusted approach require extra data

compared to a traditional case-parent design. The design-based approach requires

E on unaffected siblings, while the adjusted approach requires independent marker

genotypes on affected children. For studies in the planning stages, either requirement

would be straightforward to incorporate. For example, including AIMs on custom

genotyping chips is common practice, while in genome-wide studies there is an abun-

dance of genotypes available and no extra genotyping is necessary. For studies in

which genotyping has been completed and does not include independent markers, the

extra genotyping is an extra cost, but is at least logistically straightforward, relying

only on the availability of DNA samples for study subjects. By contrast, adding

unaffected siblings to a study that has completed contact with subjects would likely

be difficult. We therefore feel that our approach can be useful in studies which have

completed contact with subjects but have DNA samples available.

Our approach is based on an adjustment to the risk model that uses independent

marker information to identify each subject’s E distribution. In our simulations with

two underlying subpopulations, this adjustment maintained the nominal type 1 error

rate when sufficient independent marker information was available to reliably identify

the E distribution of each subject. In our setting, about 250 random SNPs or 100

AIMs was sufficient. Under our simulation setting, a simple adjustment to the risk

model with hi(µ(M)) = γiµ(M) (see equation 4.3) worked well, but it is less clear
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how to proceed with more than two sub-populations. One possibility that we are

currently investigating will be discussed in Chapter 5.

We have also discussed adjustments to the risk model aimed at preserving power

when G × E exists in the special case when the distributions of E and haplotypes

coincide. These adjustments performed well in our simulations under the special

case but would not be expected to work well in general. Development of a more

general-purpose adjustment to preserve power is therefore of interest.

The method we used for simulating genotypes and environmental covariates in

affected, informative case-parent trios has been implemented in a freely-available R

package that will soon be released to the Comprehensive R Archive Network (CRAN).
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Figure 4.3: Schematic of log-GRRs for G′ versus E in a structured population with
two sub-populations S = 0 and S = 1. Dashed curves represent log-GRRs within
each sub-population. Solid curve represents a linear log-GRR curve fit to data from
both sub-populations combined.
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Figure 4.4: Schematic of log-GRRs for G′ versus E in a structured population with
four sub-populations S = 0, 1, 2, 3. Dashed lines represent log-GRRs in the different
sub-populations. Spurious interaction is avoided if we allow separate genetic effects
(solid lines) for the group X = 0 comprised of sub-populations S = 0 and S = 1 and
the group X = 1 comprised of sub-populations S = 1 and S = 2.
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Figure 4.5: Schematic to illustrate how a flip in allelic correlations flips G′ × E.
Dashed lines indicate log-GRR curves for G′ = 1 versus 0 in sub-populations S = 0
and S = 1. The solid line is the fitted log-GRR that would result from enforcing a
common interaction in the two sub-populations.
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Figure 4.6: The proposed approach may miss interaction signal when haplotype dis-
tributions vary within E distributions. Dashed lines indicate log-GRR curves for
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fitted log-GRR that would result from allowing interaction to vary according to the
distribution of E rather than the distribution of haplotypes.
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Figure 4.7: Type 1 error as a function of the allelic correlation r, with correlation
between R at G and 1 at G′ being −r in S = 0 and r in S = 1. The left panel
includes all methods considered, while the right panel includes only those that make
an adjustment to avoid spurious interaction. The shaded area in the right panel
represents simulation error about the nominal 5% level – a test with the correct size
would have estimated type 1 error within the shaded region 19 times out of 20.
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Figure 4.8: Type 1 error as a function of the allelic correlation r, with correlation
between R at G and 1 at G′ being 0 in S = 0 and r in S = 1. The left panel
includes all methods considered, while the right panel includes only those that make
an adjustment to avoid spurious interaction. The shaded area in the right panel
represents simulation error about the nominal 5% level – a test with the correct
size would have estimated type 1 error within the shaded region 19 times out of 20.
Results based on 5000 simulation replicates of 3000 informative trios.
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Figure 4.9: Relative power of the non-causal SNP to detect G× E. Sub-population-
specific haplotype distributions are summarized by GG′ allelic correlations of r0 = −r
and r1 = r. Results based on 5000 simulation replicates of 3000 informative trios.
Interaction effects were f1(e) = f2(e) = −0.25e.
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Figure 4.10: Relative power of the non-causal SNP to detect G×E. Sub-population-
specific haplotype distributions are summarized by GG′ allelic correlations of r0 = 0
and r1 = r. Results based on 5000 simulation replicates of 3000 informative trios.
Interaction effects were f1(e) = f2(e) = −0.25e.



Chapter 5

Conclusions

The three projects in this thesis consider the sources and remedies of bias that can

arise in the analysis of G×E in data from case-parent trios.

In Chapter 2, we revisited the problem of inferring G×E with a transmission-

based approach. We discussed how, in the absence of G×E, transmission rates can

vary with E because of, for example, correlation between G and E due to population

stratification. A simulation study demonstrated that the transmission-based test can

have inflated type 1 error rate and lower power than a likelihood-based test. To guard

against false-positive G×E due to population stratification, we suggest exploratory

graphical displays of transmission-rates within parent mating types.

In Chapter 3, we developed a data-smoothing method to explore G×E, using

data from case-parent trios. The method protects against the bias caused by mis-

specification of the parametric form or the mode of inheritance of G×E. In particular,

it models the G×E functions using spline functions and allows for separate genotype

relative risks depending on the number of copies of the variant allele. A permutation-

based test was adopted to test G×E, taking into account the additional uncertainty

due to the smoothing process. A simulation study demonstrated that the proposed

test can detect non-linear G×E better than other available approaches.

One concern with our proposed smoothing approach is that the G×E curve esti-

mates and the performance of the associated confidence intervals are sensitive to how

data are distributed, which is a general issue in smoothing approaches (e.g., Nychka,
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1988). In general, when the observations are distributed evenly throughout the range

of the data, smoothing methods perform well; the estimated curves have low bias,

and their associated confidence intervals have good coverage probabilities. However,

when the data are sparsely distributed, the approaches can miss a more complicated

feature of the underlying smooth function (e.g., curvature in quadratic G×E). Sparse

data regions can have estimates with large bias and hence confidence intervals with

coverage probabilities that are lower than the nominal confidence level.

Poor performance in sparse data regions was observed for our smoothing approach

in a preliminary simulation study. In the simulation study, the performance was eval-

uated based on the coverage probabilities for the 95% Bayesian confidence intervals

of G×E functions under the no-G×E null hypothesis, linear G×E and quadratic

G×E. The confidence intervals have good coverage probabilities when G×E is a sim-

ple linear or horizontal (i.e., no G×E) function. However, when the G×E function

is quadratic, the proposed approach can perform poorly. Under no population strat-

ification, the confidence intervals have poor coverage probabilities when the variant

allele frequency is either high or low. Under population stratification, the confidence

intervals behave poorly when the degree of population stratification is high. In both

situations, a large bias at sparse boundary regions seemed to be responsible for the

poor performance (e.g., Figure 5.1). One solution to this problem is to increase the

sample size to obtain more points across the range of E. However, collecting more

data may be hard in practice. Thus, analysts should be aware of the limitations of

sparse data before using this or any data smoothing approach.

In the third project, we investigated how approaches to G×E, including our own

smoothing approach, are not robust to population stratification when the test marker

is not causal but linked to an unobserved causal gene. When we have such a test

marker, population stratification arises when there exist hidden subpopulations that

have different distributions of the non-genetic covariate and different distributions for

the frequency of the haplotype comprised of the test and the causal marker. The

project provided further insights into how this type of population stratification can

lead to both false-positive and false-negative G×E. To protect against population
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Figure 5.1: Estimated G×E functions for a dataset based on 1000 case-parent trios
under quadratic G×E with f1(e) = 0, f2(e) = 0.25e2 (i.e., recessive penetrance).
The data were generated under population stratification with two subpopulations
S = 0 and 1. Subpopulation S = 0 (S = 1) has a variant allele frequency of
q0 = 0.1 (q1 = 0.9) and non-genetic covariate distributed as E ∼ N(−0.8, 0.36)
(E ∼ N(0.8, 0.36)). The black solid lines represent the estimated f̂1(e) and f̂2(e); the
grey solid lines, the true f1(e) and f2(e); and the black-dashed lines indicate the 95%
Bayesian confidence intervals.
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stratification, we proposed an approach to adjusting the disease risk model, based on

ancestry informative markers or random markers measured on the affected children.

The simulation results demonstrated that when sufficient independent marker infor-

mation is available, the adjustments maintain the nominal level while maintaining

power.

The approaches developed in Chapters 3 and 4 can be extended in several direc-

tions to incorporate other genetic effects and/or a more general population structure.

In what follows, we will discuss some possibilities for future research.

For the smoothing approach developed in Chapter 3, one possible direction for

future research is to extend the current approach to incorporate parent-of-origin ef-

fects, as follows. For this, we consider the ordered child-genotypes G = 0, 1M , 1F , 2,

where 1M (1F ) is a heterozygote with index allele inherited from the mother (father).

The informative mating types, Gp = (GM , GF ) ∈ {(1, 0), (0, 1), (1, 2), (2, 1), (1, 1)},

now have five possibilities rather than three. The disease risk model can be written

similarly to the one in (3.1), such that

P (D = 1 | G = g, E = e) = exp(k + ξ(e) + γz(g) + f(e)z(g)),

where γ, z(g) and f(e) are length-three vectors rather than two; the genetic cod-

ing vector z(g) = (z1M(g), z2M(g), z2(e))
T, the main genetic effect parameters γ =

(γ1M , γ1F , γ2), and the G×E functions f(e) = (f1M(e), f1F (e), f2(e)). The elements

of z(g) are defined as z1M(g) = I{g = 1M}, z1F (g) = I{g = 1F} and z2(g) = I{g = 2}.

Under this model, genotype relative risks can be represented by

GRR1M(e) = γ1M + f1M(e)

GRR1F (e) = γ1F + f1F (e)

GRR2(e) = γ2 + f2(e),

where

GRRg(e) ≡ P (D = 1 | G = g, E = e)/P (D = 1 | G = 0, E = e),
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indicating the genotype relative risk between individuals withG = g (g 6= 0) and those

with G = 0. The G×E functions f1M(e) and f1F (e) allow for separate interaction

terms depending on whether the child inherits the variant allele from the mother

or from the father. Consequently, under G×E, f1M(e) 6= f1F (e) indicates there is

a parent-of-origin effect. When f1M(e) = f1F (e) 6= 0 or f1M(e) = f1F (e) = 0 and

f2(e) 6= 0, it indicates that there is G×E but no parent-of-origin effect. Under no

G×E, we have f1M(e) = f1F (e) = f2(e) ≡ 0.

One important issue arising from incorporating parent-of-origin effects is that, for

trios with all members heterozygous, one cannot observe whether G = 1M or G = 1F ,

which leads to a missing-data problem. To handle the missing information, one can

adopt an expectation-maximization (EM) approach (Dempster et al., 1977).

It is anticipated that many case-parent trios would be required for this extended

smoothing method since it estimates more parameters than the original smoothing

approach, which already requires a large sample size due to its generality. One strat-

egy for retaining power is to restrict the disease penetrance model (e.g., to dominant)

in order to reduce the number of the parameters that must be estimated.

In Chapter 4, recall that M is a set of ancestry-informative markers (AIMs) or

random SNPs collected on the affected child, and E(E|M) ≡ µ(M). The proposed

approach to adjusting the risk model using hi(µ(M)) = γiµ(M) in equation (4.3) was

demonstrated to work well under two subpopulations, but it would not be expected to

do well under three or more subpopulations. To incorporate a more general population

structure, we are currently investigating one approach based on identifying clusters

in the distribution of µ(M) among affected children. We use a clustering approach

to determine the number of clusters k in the distribution of µ(M) and estimate

probabilities p(µ(M)) ≡ (p1, . . . , pk)
T of membership in each cluster for each affected

child. These cluster membership probabilities are then used as predictors in the

adjusted risk model; i.e., we take hi(µ(M)) = ~γTi p(µ(M)) for equation (4.3), where

~γi is a vector of regression coefficients of length k. While this approach has shown

promise in initial tests, more work is required to fully evaluate its properties.

Another possible direction for future research is to modify the smoothing approach
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of Chapter 3 to protect against false G×E due to population stratification that occurs

when the test marker is not causal. For example, to protect against false positive

G×E under two subpopulations, we can modify the GRRs in equation (3.2), using

the adjustment shown in equation (4.3), with hi(µ(M)) = δiµ(M), i = 1, 2. This

adjustment would lead to the estimation of two more parameters δ1 and δ2 in addition

to the original genetic main effect terms γ1 and γ2 in equation (3.2).
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Appendix A

A.1 Details of Model

Letm = (m1,m2) indexGp with specific values inM = {(0, 0), (0, 1), (0, 2), (1, 1), (1, 2),

(2, 2)}, corresponding to (GM , GF ) ∈
{
{(0, 0)}, {(0, 1), (1, 0)}, {(0, 2), (2, 0)}, {(1, 1)},

{(2, 1), (1, 2)}, {(2, 2)}
}

, respectively. The three mating types in the set I = {(0, 1),

(1, 2), (1, 1)} have at least one heterozygous parent and are informative because they

yield variation in child genotypes under the Mendelian segregation law.

Throughout, we assume that G and E are conditionally independent given the

parental genotypes; that both maternal and parent-of-origin effects on the disease

risk are absent; and that the disease risk of a child with G = g copies of the risk

allele and non-genetic attribute E = e follows a log-additive model: log
[

Pr(D | G =

g, E = e)
]

= k(e) + z(g)β + z(g)f(e), where k(e) denotes the disease probability

for those with the reference genotypes g0 and value e of the non-genetic attribute;

z(g0) = 0 and f(e) is a smooth function with f(e0) = 0 for the reference value e0

of the non-genetic attribute. This model generalizes the log-linear model of Umbach

and Weinberg (2000). The term z(g)f(e) represents G × E. Throughout, we refer

to the genetic coding z(g) = g as the multiplicative penetrance model, to the coding

z(g) = I{g > 0} as the dominant penetrance model, to the coding z(g) = I{g = 2}
as the recessive penetrance model, and to the coding z(g) = (I{g = 1}, I{g = 2})T

as the co-dominant penetrance model, where the indicator function I{relation} takes

the value 1 when the relation is true and 0 otherwise. Under the log-additive model,

Rg(e) =
Pr(D | G = g, E = e)

Pr(D | G = 0, E = e)
= exp (z(g)β + z(g)f(e)) , for g = 1, 2, (A1)

and the hypothesis of no G×E is equivalent to the hypothesis that f(e) = 0 for

every value of e. The genetic codings z(g) above allow R1(e) and R2(e) to have the
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appropriate relationships under each genetic model:
R1(e) = R2(e) ≡ R(e) if dominant;

R1(e) ≡ R(e), R2(e) = R2(e) if multiplicative; and

R1(e) = 1, R2(e) ≡ R(e) if recessive.

(A2)

A.2 Transmission rates

Let T denote the event that a parent transmits the risk allele to his/her child, and

H, the event that the parent is heterozygous. Then, the transmission rate may be

written as

τ(e) = Pr(T | H,D,E = e)

=
∑
m∈I

Pr(T | Gp = m,H,D,E = e) Pr(Gp = m | H,D,E = e)

≡
∑
m∈I

τm(e)wm(e). (A3)

Under multiplicative penetrance, the mating-type-specific transmission rate for

any m ∈ I, listed in Table 2.1, is τm(e) = R(e)/[1 + R(e)], where R(e) is defined

based on the appropriate relationship in (A2). Hence, the overall transmission rate

τ(e) in equation (A3) becomes

τ(e) =
∑
m∈I

R(e)

1 +R(e)
wm(e) =

R(e)

1 +R(e)
, because

∑
m∈I wm(e) = 1.

Rearranging the terms, we obtain

logit(τ(e)) ≡ log
( τ(e)

1− τ(e)

)
= log (R(e)) , (A4)

demonstrating that variation in transmission rates with E is equivalent to variation

in GRRs with E. Under non-multiplicative penetrance models, however, τ(e) does

not reduce to a function of the GRRs only; transmission rates depend on both Rg(e)

and wm(e), except when Rg(e) ≡ 1 for all g = 1, 2 (i.e., no genetic effects).
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A.3 Derivations of τm(e)

The event that a heterozygous parent from mating type (0, 1) transmits the risk allele

to his/her affected child is equivalent to the event that the child is heterozygous.

Hence, the transmission rate for this mating type is

τ01(e) ≡ Pr(T | Gp = (0, 1), H,D,E = e)

= Pr(G = 1 | Gp = (0, 1), D,E = e). (A5)

Similarly, the transmission rate for mating type (1, 2) is

τ12(e) ≡ Pr(T | Gp = (1, 2), H,D,E = e)

= Pr(G = 2 | Gp = (1, 2), D,E = e). (A6)

The transmission rate for mating type (1, 1) is

τ11(e) = Pr(T | Gp = (1, 1), D,E = e)

=
2∑
g=0

Pr(T | G = g,Gp = (1, 1), D,E = e) Pr(G = g | Gp = (1, 1), D,E = e)

=
1

2
Pr(G = 1 | Gp = (1, 1), D,E = e) + Pr(G = 2 | Gp = (1, 1), D,E = e).

(A7)

The mating-type-specific genotype probabilities in (A5) – (A7) are

Pr(G = g | Gp = m,D,E = e) =
Pr(G = g,Gp = m,D,E = e)∑

g′∈Gm Pr(G = g′, Gp = m,D,E = e)
.

Applying the identity,

Pr(G = g,Gp = m,D,E = e) =

Pr(D | G = g, E = e) Pr(G = g | Gp = m) Pr(Gp = m | E = e) Pr(E = e),

which assumes G and E are conditionally independent given Gp, we obtain

Pr(G = g | Gp = m,D,E = e) =
Pr(D | G = g, E = e) Pr(G = g | Gp = m)∑

g′∈Gm Pr(D | G = g′, E = e) Pr(G = g′ | Gp = m)

=
Rg(e) Pr(G = g | Gp = m)∑

g′∈Gm Rg′(e) Pr(G = g′ | Gp = m)
.
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Inserting the appropriate values for Pr(Gp = m | G = g) and substituting the result

into (A5) – (A7), we obtain the final column of Table 2.1.

A.4 Derivation of odds of transmission under G-E

independence

To derive the expressions in equation (2.2), consider the mating-type probabilities

πm(e) in equation (2.1) for the parents of cases. Inserting the appropriate values for

Pr(G = g | Gp = m), it can be shown that

πm(e) ∝



1

2
· [1 +R1(e)] · Pr(Gp = (0, 1) | E = e) if m = (0, 1)

1

2
· [R1(e) +R2(e)] · Pr(Gp = (1, 2) | E = e) if m = (1, 2)

1

4
· [1 + 2R1(e) +R2(e)] · Pr(Gp = (1, 1) | E = e) if m = (1, 1).

Under G-E independence and Hardy-Weinberg genotype proportions in the popula-

tion, this simplifies to

πm(e) ∝


2 [1 +R1(e)] q(1− q)3 if m = (0, 1)

2 [R1(e) +R2(e)] q
3(1− q) if m = (1, 2)

[1 + 2R1(e) +R2(e)] q
2(1− q)2 if m = (1, 1).

From the third column of Table 2.1, these πm(e) lead to

wm(e) =



[1 +R1(e)] · (1− q)2

d(e)
if m = (0, 1)

[R1(e) +R2(e)] · q2

d(e)
if m = (1, 2)

[1 + 2R1(e) +R2(e)] · q(1− q)
d(e)

if m = (1, 1),

where d(e) is the sum of the numerators for all m ∈ I. These wm(e) and the τm(e)

in the last column of Table 2.1 can be substituted into equation (A3) to obtain the
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overall transmission rate τ(e) as

τ(e) =
R1(e) · (1− q)2 +R2(e) · q2 + [R1(e) +R2(e)] · q(1− q)

d(e)
,

from which the odds of transmission is

τ(e)

1− τ(e)
=
R1(e) · (1− q) +R2(e) · q

(1− q) +R1(e) · q
.

Under the appropriate constraints in (A2), the expression above is reduced to the

expressions in (2.2) for dominant and recessive penetrance models.

A.5 Variances of observed mating-type specific trans-

mission rates

Initially, we suppress the conditioning on D and the stratum E = e to simplify

the notation. For a given stratum defined by E = e, let nm be the number of

case-parent trios with parents from mating type m. For the parental mating type

Gp = (0, 1), the child’s genotype can be G = 0 or 1. Thus τ̂01 =
∑n01

i=1Gi/n01

and V01 ≡ Var(τ̂01) = Var(G |Gp = (0, 1) )/n01. Similarly, for Gp = (1, 2), the

child’s genotype can be G = 1 or 2, and τ̂12 =
∑n12

i=1(Gi − 1)/n12. It follows that

V12 = Var(G |Gp = (1, 2) )/n12. Finally, for Gp = (1, 1), the child’s genotype can be

G = 0 if neither parent transmitted the risk allele; G = 1 if one parent transmitted

the risk allele and the other parent did not; and G = 2 if both parents transmitted the

risk allele. Therefore, τ̂11 =
∑n11

i=1Gi/(2n11) and V11 = Var(G |Gp = (1, 1) )/(4n11).

To obtain the mating-type specific variances of the child’s genotype G, we reason

as follows. For Gp = (0, 1), the case genotype G is a Bernoulli random variable with

parameter τ01. For Gp = (1, 2), G− 1 is a Bernoulli random variable with parameter

τ12. Hence Var(G |Gp = (0, 1) ) = τ01(1−τ01) and Var(G |Gp = (1, 2) ) = τ12(1− τ12),
so that V01 = τ01(1− τ01)/n01 and V12 = τ12(1− τ12)/n12. For Gp = (1, 1), we have

E(G |Gp = (1, 1) ) = Pr(G = 1 |Gp = (1, 1) ) + 2 Pr(G = 2 |Gp = (1, 1) )
(A7)
= 2 τ11
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and

E(G2 |Gp = (1, 1) )

= Pr(G = 1 |Gp = (1, 1) ) + 4 Pr(G = 2 |Gp = (1, 1) )
(A7)
= 4 τ11 − Pr(G = 1 |Gp = (1, 1) ).

Hence, Var(G |Gp = (1, 1) ) = 4 τ11(1− τ11)− Pr(G = 1 |Gp = (1, 1) ), and

V11 =
1

n11

[
τ11(1− τ11)−

1

4
Pr(G = 1 |Gp = (1, 1) )

]
.

The variances V01, V12 and V11, of the observed mating-type-specific transmission

rates may be estimated by substituting the observed mating-type-specific transmis-

sion rates τ̂01, τ̂12, τ̂11, and the observed proportion, P̂r(G = 1 |Gp = (1, 1) ), of trios

from mating type Gp = (1, 1) with G = 1 into the preceding expressions. Restoring

the conditioning on E = e and D in the notation,

V̂m(e) =



1

n01(e)
· τ̂01(e)[1− τ̂01(e)] if m = (0, 1)

1

n12(e)
· τ̂12(e)[1− τ̂12(e)] if m = (1, 2)

1

n11(e)
·
[
τ̂11(e)(1− τ̂11(e))

if m = (1, 1),

−1

4
P̂r(G = 1 |Gp = (1, 1), D,E = e )

]
(A8)

where nm(e) is the number of trios with parental mating type m and E = e.
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B.1 Example of an alternate parameterization of

the disease risk model

Disease risk can be modelled with a log-linear model similar to (4.1) but parameterized

in a different way, such that

P (D = 1 | G = g, E = e) = exp{k + z∗(g)γ∗ + ξ(e) + z∗(g)f ∗(e)},

where z∗(g) = (I{g = 1}, I{g = 2}), γ∗ = (γ∗1 , γ
∗
2)T, and f ∗(e) = (f ∗1(e), f

∗
2(e))

T.

Then, under the disease risk model above, two GRRs can be expressed as

GRR∗1(e) ≡
P (D = 1 | G = 1, E = e)

P (D = 1 | G = 0, E = e)
= exp(γ∗1 + f ∗1 (e)),

and

GRR∗2(e) ≡
P (D = 1 | G = 2, E = e)

P (D = 1 | G = 0, E = e)
= exp(γ∗2 + f ∗2 (e)).

This parameterization allows for different genotype relative risks for the individ-

uals with G = 1 and G = 2 compared to the individuals in the baseline group

having G = 0. Comparing this parameterization to that of the risk model (4.1), we

have γ∗1 = γ1, f
∗
1 (e) = f1(e), γ

∗
2 = γ1 + γ2 and f ∗2 (e) = f1(e) + f2(e). As before,

f ∗1 (e) = f ∗2 (e) = 0 indicates there is no G×E. Under different modes of inheritance,

f ∗1 (e) and f ∗2 (e) behave differently. Under the dominant mode shown in equation

(3.3),

f ∗1 (e) = f ∗2 (e) 6= 0
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since GRR∗1(e) = GRR∗2(e) 6= 1. Under the log-additive or multiplicative mode (3.4),

f ∗1 (e) =
1

2
f ∗2 (e) 6= 0

since
{

GRR∗1(e)
}2

= GRR∗2(e) 6= 1. Under the recessive mode (3.5),

f ∗1 (e) = 0, and f ∗2 (e) 6= 0

since GRR∗1(e) = 0 and GRR∗2(e) 6= 1.

In practice, under this parameterization, it may be more difficult to distinguish

between the dominant and the log-additive inheritance models than under the original

gene-dosage parameterization used in (4.1). Patterns in G×E curves can be similar

under these two inheritance with the new parameterization as we have f ∗1 (e) 6= 0 and

f ∗2 (e) 6= 0 under both modes. Patterns in the interaction curves are different with

the original parameterization as we have f1(e) = 0 and f2(e) 6= 0 under the dominant

mode and f1(e) = f2(e) 6= 0 under the log-additive mode.

B.2 Expression of X∗(e)

In this section, we will see how the natural cubic spline basis function vector X∗h(e) =

[bh1(e), . . . , bhKh
(e)] in expression (3.8) can be explicitly defined, using the represen-

tation of a natural cubic spline function used in Wood (2006), section 4.1.2. Since all

the following arguments can be applied to any natural cubic spline function, we will

suppress the dependence on h for fh(e) and its related terms, for notational simplicity.

Suppose x1 < · · · < xK are the knots chosen to represent f(e). For this rep-

resentation, the spline function is parameterized in terms of its values at the knots

c∗k = f(xk), k = 1, ..., K. Incorporating the conditions necessary for f(e) to be a

natural cubic spline function leads to

f(e) =
(xk+1 − e)

tk
c∗k +

(e− xk)
xk

c∗k+1 +

1

6

[
(xk+1 − e)3

tk
− tk(xk+1 − e)

]
Fkc

∗ +

1

6

[
(e− xk)3

tk
− tk(e− xk)

]
Fk+1c

∗, if xk ≤ e ≤ xk+1 (B1)

where c∗ = (c1, . . . , cK)T, and Fk = [Fk1, . . . , FkK ] is the kth row of a K ×K matrix

F whose elements are either zero or in terms of the distance tk = xk+1 − xk between
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two adjacent knots. The matrix F will be defined at the bottom of the section.

Since

Fkc
∗ =

K∑
k′=1

Fkk′c
∗
k′ ,

the representation in (B1) can be re-expressed as a linear combination in the form of

f(e) =
(xk+1 − e)

tk
c∗k +

(e− xk)
tk

c∗k+1 +

1

6

[
(xk+1 − e)3

tk
− tk(xk+1 − e)

] K∑
k′=1

Fkk′c
∗
k′ +

1

6

[
(e− xk)3

tk
− tk(e− xk)

] K∑
k′=1

Fk+1k′c
∗
k′ , if xk ≤ e ≤ xk+1.

This indicates that the row vector X∗(e) = [b1(e), . . . , bK(e)] of the basis functions in

equation (3.8) is

X∗(e) =





a−1 (e) + F11c
−
1 (e) + F21c

+
1 (e)

a+1 (e) + F12c
−
1 (e) + F22c

+
1 (e)

F13c
−
1 (e) + F23c

+
1 (e)

...

F1Kc
−
1 (e) + F2Kc

+
1 (e)



T

if x1 ≤ e ≤ x2,



F21c
−
2 (e) + F31c

+
2 (e)

a−2 (e) + F22c
−
2 (e) + F32c

+
2 (e)

a+2 (e) + F23c
−
2 (e) + F33c

+
2 (e)

F24c
−
2 (e) + F34c

+
2 (e)

...

F2Kc
−
2 (e) + F3Kc

+
2 (e)



T

if x2 ≤ e ≤ x3,

...

F(k−1)1c
−
K−1(e) + FK1c

+
K−1(e)

F(k−1)2c
−
K−1(e) + FK2c

+
K−1(e)

...

a−K−1(e) + FK−1K−1c
−
K−1(e) + FKK−1c

+
K−1(e)

a+K−1(e) + FK−1Kc
−
K−1(e) + FKKc

+
K−1(e)



T

if xK−1 ≤ e ≤ xK ,

(B2)
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where

a+k (e) =
(xk+1 − e)

tk
,

a−k (e) =
(e− xk)

tk
,

c+k (e) =
1

6

[
(xk+1 − e)3

tk
− tk(xk+1 − e)

]
,

and

c−k (e) =
1

6

[
(e− xk)3

tk
− tk(e− xk)

]
.

The K ×K matrix F can be defined as

F =

 01×K

B−1D

01×K

 ,
where the (K − 2)× (K − 2) band matrix B and the (K − 2)×K matrix D are

defined as, respectively,

B =



t1 + t2
3

t2
6

t2
6

t2 + t3
3

t3
6

. . . . . . . . .

tk−1
6

tk−1 + tk
3

tk
6

. . . . . . . . .

tK−3
6

tK−3 + tK−2
3

tK−2
6

tK−2
6

tK−2 + tK−1
3



,

and

D =



1

t1
− 1

t1
− 1

t2

1

t2
. . . . . . . . .

1

tk−1
− 1

tk−1
− 1

tk

1

tk
. . . . . . . . .

1

tK−2
− 1

tK−2
− 1

tK−1

1

tK−1


.
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B.3 Smoothing parameter estimation: computa-

tion details

For smoothing parameter estimation, we search for the values of λ1 and λ2 that min-

imize the generalized AIC function (3.13), using a grid search algorithm. Empirical

results (not shown) suggested that minimizing the AIC function over one smoothing

parameter is independent of minimizing the function over the other smoothing param-

eter. These results suggest that we can use an algorithm with two one-dimensional

grid searches rather than one with a two-dimensional search and hence save compu-

tation time. To further save the computation time, we restrict the search for λh over

a fixed number κh of grid points for fh(e), h = 1, 2.

In order to select ‘good’ κh grid points, we use the smoothing parameter esti-

mates λ∗h obtained by applying a likelihood approach that makes inference of G×E
conditional on Gp, E and partial information on G (Duke, 2007). The estimates are

computed by fitting two one-dimensional generalized additive models using the gam()

function of the ‘mgcv’ package in R. Assuming that λ∗h is close to the true value of the

smoothing parameter λh, we choose grid points based on a truncated normal distri-

bution for log(λh) ∼ TN(µh, ah, bh, σh), with mean µh, endpoints ah and bh (ah < bh)

and standard deviation σh.

The mean µh of the truncated normal distribution is set to be log(λ∗h), allowing

for higher probability mass to the points in the neighbourhood of log(λ∗h). The lower

endpoints ah, h = 1, 2 are set to be −20 since exp(−20) is effectively −∞. Similarly,

the upper endpoints bh, h = 1, 2 are set to be 20 since exp(20) is effectively +∞. The

standard deviation is set to be σh = min
(

log(λ∗h)−ah, bh−log(λ∗h)
)
. Then, the κh grid

points for log(λh) can be chosen throughout the range [−20, 20] using the quantiles

of the truncated normal distribution. For example, as a default, we choose κh = 6

points that include log(λ∗h), 25th, 50th and 75th percentiles of the truncated normal

distribution and the two endpoints ah and bh (i.e., the 0th and 100th percentiles,

respectively).

With the chosen grid points, we obtain the optimal values of λ1 and λ2 by finding

λ1j, for j = 1, 2, ..., κ1, that yields the minimum score of the generalized AIC function

in (3.13) for a fixed value of λ2 (e.g., λ∗2) and λ2j for j = 1, 2, ..., κ2, that yields the

minimum AIC score for the optimal value of λ1 found in the first step.

Note that some power loss may occur when the proposed permutation test is

carried out since we restrict each grid search to a small number (e.g., 6) of grid points.

We could improve power by considering a finer grid for each smoothing parameter
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but this would be computationally expensive.

B.4 ALL-mimicking data-simulation

In this section, we present the details showing how we generated the data used in

Section 3.5 to illustrate the proposed smoothing approach.

We assumed a homogeneous population since about 91% of the 1030 cases in the

original data set had both parents of European ethnicity. We set the allele frequency

of the NQO1 C609T variant allele to be q = 0.19, which is the one estimated in the

CEPH sample (Database of Single Nucleotide Polymorphisms (dbSNP), build 135).

The parental mating types Gp were simulated assuming HWP and mating symmetry.

Then, the child genotypes G were simulated given a pair of parents under Mendel’s

law. The ages E for children in the population meeting the age selection criteria of

0–15 years were simulated using a uniform distribution from ages 0–15.

For simulating disease status D, we used the disease risk model (4.1), whose

parameter values were set as follows. For the baseline parameter k, we chose an

arbitrary value since it does not affect the analysis of G×E. For the main effect

term ξ(e) for the non-genetic factor, we let exp(ξ(e)) be a function proportional to a

gamma distribution estimated from the observed E in cases with reference genotype

G = 0 since

exp
(
ξ(e)

)
∝ P (D = 1 | E = e,G = 0) ∝ P (E = e | D = 1, G = 0).

For the GRR-related parameters, their values were set to the estimated values ob-

tained from fitting the original data set with 288 informative trios. Boundary knots

were placed at E = 0 and 15 years of age in order to ensure that f1(e) and f2(e)

were defined at any values of E = e that were generated. Figure 3.5 shows the re-

sulting theoretical log-GRR curves with parameterizations γ1 = 0.23, γ2 = −0.56,

f1(e) = −0.23 b11(e) + 0.03 b12(e) + 0.10 b13(e) + 0.06 b14(e)− 0.54 b15(e), and f2(e) =

0.72 b21(e) + 0.30 b22(e) + 0.07 b23(e)− 0.22 b24(e)− 1.03 b25(e).

The natural cubic spline basis functions bhk(e) can be constructed using the defi-

nition (B2). Note that in this definition, all terms depend on the GRR-function index

h = 1, 2. For example, for f1(e) with a covariate value located between the first and
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the second knot (i.e., x11 ≤ e ≤ x12 ), we can construct the basis function vector as

X1(e) = [b11(e), ..., b15(e)] =


a−11(e) + F1,11c

−
11(e) + F1,21c

+
11(e)

a+11(e) + F1,12c
−
11(e) + F1,22c

+
11(e)

F1,13c
−
11(e) + F1,23c

+
11(e)

F1,14c
−
11(e) + F1,24c

+
11(e)

F1,15c
−
11(e) + F1,25c

+
11(e)



T

,

where

a+11(e) =
(x12 − e)

t11
,

a−11(e) =
(e− x11)

t11
,

c+11(e) =
1

6

[
(x12 − e)3

t11
− t11(x12 − e)

]
,

and

c−11(e) =
1

6

[
(e− x11)3

t11
− t11(e− x11)

]
.



Appendix C

We first derive the GRRs for G′ assuming no G×E. As these depend on E, there is

spurious interaction. We then show how spurious interaction can be avoided by ad-

justing the risk model involving G′ to allow separate genetic main effects for each value

of the grouping variable X. Recall that X distinguishes groups of sub-populations

with different E distributions. Throughout this appendix the focus is on avoiding

spurious interaction and so we are interested in the risk model without G× E.

C.1 GRRs for G′

The no-interaction risk model specifies P (D = 1 | G = g, E = e) ∝ ψ(g) exp(η(e)),

where ψ(g) = exp(z1(g)β1 + z2(g)β2). However, the model we fit is based on P (D =

1 | G′ = g, E = e). Assuming disease risk does not depend on G′ once G is known,

the law of total probability gives

P (D = 1 | G′ = g, E = e)

=
∑
g∗

P (D = 1 | G = g∗, G′ = g, E = e)P (G = g∗ | G′ = g, E = e)

=
∑
g∗

P (D = 1 | G = g∗, E = e)P (G = g∗ | G′ = g, E = e)

∝
∑
g∗

ψ(g∗) exp(η(e))P (G = g∗ | G′ = g, E = e)

= exp(η(e))
∑
g∗

ψ(g∗)P (G = g∗ | G′ = g, E = e).

The GRRs for G′ are thus

P (D = 1 | G′ = 1, E = e)

P (D = 1 | G′ = 0, E = e)
=

∑
g∗ ψ(g∗)P (G = g∗ | G′ = 1, E = e)∑
g∗ ψ(g∗)P (G = g∗ | G′ = 0, E = e)

93
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and
P (D = 1 | G′ = 2, E = e)

P (D = 1 | G′ = 1, E = e)
=

∑
g∗ ψ(g∗)P (G = g∗ | G′ = 2, E = e)∑
g∗ ψ(g∗)P (G = g∗ | G′ = 1, E = e)

and depend on E only through P (G = g∗ | G′ = g, E = e).

If P (G = g∗ | G′ = g, E = e) doesn’t depend on E then neither will the GRRs.

However, this does not hold in our example. To see why, write

P (G | G′, E) =
P (G,E | G′)
P (E | G′)

=

∑
S P (G,E | G′, S)P (S | G′)∑
S P (E | G′, S)P (S | G′)

(i)
=

∑
S P (G | G′, S)P (E | G′, S)P (S | G′)∑

S P (E | G′, S)P (S | G′)
(ii)
=

∑
S P (G | G′, S)P (E | S)P (S | G′)∑

S P (E | S)P (S | G′)

where the third and fourth lines of the equation use the example-specific identities

(i) P (G,E | G′, S) = P (G | G′, S)P (E | G′, S), and (ii) P (E | G′, S) = P (E | S),

respectively. These identities follow from E and (G,G′) being conditionally indepen-

dent given S. Now it can be seen that E will only cancel out of the final expression

if either P (E | S) or P (G | G′, S) can be factored out of the summations. That is, if

either P (E | S) = P (E) (the distribution of E does not depend on sub-population)

or P (G | G′, S) = P (G | G′) (the joint distribution of G and G′ does not depend

on sub-population). However, neither of these are true under the population strati-

fication we consider. Therefore, P (G | G′, E) does depend on E. These calculations

highlight that subpopulation-specific variation in GG′ haplotype distributions is a

driver of spurious interaction, not variation in patterns of linkage disequilibrium per

se (Zaykin and Shibata, 2008).

C.2 Adjustment for X

Recall that X is a variable describing groups of sub-populations with different E

distributions. If X were available for each subject we could adjust for it in analysis
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of G′, as follows.

P (D = 1 | G′ = g, E = e,X = x)

=
∑
g∗

P (D = 1 | G = g∗, G′ = g, E = e,X = x)P (G = g∗ | G′ = g, E = e,X = x)

=
∑
g∗

P (D = 1 | G = g∗, E = e)P (G = g∗ | G′ = g, E = e,X = x). (C1)

Assuming that E is conditionally independent of (G,G′) given X, we have

P (G = g∗ | G′ = g, E = e,X = x)

=
P (G = g∗, G′ = g, E = e,X = x)

P (G′ = g, E = e,X = x)

=
P (E = e | G = g∗, G′ = g,X = x)P (G = g∗, G′ = g,X = x)

P (E = e | G′ = g,X = x)P (G′ = g,X = x)

=
P (E = e | X = x)P (G = g∗, G′ = g,X = x)

P (E = e | X = x)P (G′ = g,X = x)

= P (G = g∗ | G′ = g,X = x).

Thus, equation (C1) reduces to

P (D = 1 | G′ = g, E = e,X = x)

=
∑
g∗

P (D = 1 | G = g∗, E = e)P (G = g∗ | G′ = g,X = x).

And, under the no-interaction risk model P (D = 1 | G = g, E = e) ∝ ψ(g) exp(η(e)),

we obtain X-adjusted GRRs for G′ of

GRRi(x) =
P (D = 1 | G′ = i, E = e,X = x)

P (D = 1 | G′ = i− 1, E = e,X = x)

=

∑
g∗ ψ(g∗)P (G = g∗ | G′ = i,X = x)∑

g∗ ψ(g∗)P (G = g∗ | G′ = i− 1, X = x)
; i = 1, 2.

Each of the two GRRs for G′ take on as many different values as there are values

of X. In other words, in analyses of G′, there are as many genetic main effects as

there are values of X. For the case of a binary X, this is achieved by the GRRs in

equation (4.2).


