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Abstract

Leavitt path algebras are a natural generalization of the Leavitt algebras, which are a class

of algebras introduced by Leavitt in 1962. For a directed graph E, the Leavitt path algebra

LK(E) of E with coefficients in K has received much recent attention both from algebraists

and analysts over the last decade, due to the fact that they have some immediate structural

connections with graph C∗-algebras.

So far, some of the algebraic properties of Leavitt path algebras have been investigated,

including primitivity, simplicity and being Noetherian. We explicitly describe two-sided

ideals in Leavitt path algebras associated to an arbitrary graph. Our main result is that

any two-sided ideal I of a Leavitt path algebra associated to an arbitrary directed graph is

generated by elements of the form (v+
∑n

i=1 λig
i)(v−

∑
e∈S ee

∗), where g is a cycle based at

vertex v, and S is a finite subset of s−1(v). We first use this result to describe the necessary

and sufficient conditions on the arbitrary-sized graph E, such that the Leavitt path algebra

associated to E satisfies two-sided chain conditions. Then we show that this result can be

used to unify and simplify many known results for Leavitt path algebras some of which have

been proven by using established methodologies from C∗-algebras.

Keywords:

Leavitt path algebras; generators of two-sided ideals; Noetherian rings; Artinian rings

Subject Terms:

algebra; noncommutative algebras; Leavitt path algebras; two-sided ideals; two-sided chain

conditions; graph algebras
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Chapter 1

Introduction

Leavitt path algebras over a field K are the focus of this thesis. Let E be a directed graph,

that is a collection of vertices and directed edges connecting them. The Leavitt path algebra

associated to E is formed by taking the K-algebra generated by the set of vertices and edges

of a graph E and then adding relations involving them. Leavitt path algebras are a natural

generalization of Leavitt algebras, defined by Leavitt in 1962 [29]. The goal of Leavitt was

to find rings which do not have Invariant Basis Number (IBN), that is, for which there

exist isomorphic free modules of different ranks. This class of K-algebras are called Leavitt

algebras and are denoted by LK(m,n).

Cuntz, almost 10 years later, constructed related C∗-algebras (also called Cuntz algebras)

denoted by On for n ≥ 1 [20]. In his paper, Cuntz investigated these C∗-algebras and showed

that they are simple besides having many other C∗-algebraic properties. Although the work

of Cuntz was independent of that of Leavitt, the algebras share strong connections. For

example LC(1, n) is a dense subalgebra of On. In other words, if K is the field of complex

numbers, On can be seen as a completion of LK(1, n) in an appropriate norm.

Cuntz and Krieger [21] generalized the definition of On by constructing a C∗-algebra

from a finite matrix A whose entries consists of 0s and 1s, and every row and every column

of A is non-zero. The assumption that the entries consisting of 0s and 1s was only for

convenience. They showed that all constructions and results also extend to matrices with

entries in Z+. With this definition, the algebras On discussed above arise in this way from

the 1 × 1 matrix [n], or, equivalently, from the n × n matrix all of whose entries are 1s.

These algebras are denoted by OA where A is a (finite) square matrix.

Kumjian et al. [27] noticed that relations given in the definition of OA also make sense

for infinite matrices A whenever the rows of A contain only finitely many 1s. These matrices

can also be seen as the adjacency matrices of row-finite directed graphs, in which there are

1



CHAPTER 1. INTRODUCTION 2

only finitely many edges emanating from each vertex. Hence they expanded the definition

of OA to C∗-algebras associated to row-finite graphs, and these are denoted by C∗(E) for

a row-finite graph E. Later the definition was generalized to C∗-algebras over arbitrary

graphs in [31], and have been the subject of much investigation since. For example, to

better understand the algebraic properties of these algebras, Ara et al. [10] constructed

algebraic analogues of OA, and they denoted these by CKA(K). In the case that A is the

n× n matrix all whose entries consist of 1s, CKA(K) gives exactly LK(1, n).

In 2005, Abrams and Aranda-Pino [1] constructed Leavitt path algebras (please see

2.4.1 for the definition). When K = C, LC(E) is the algebra described in [30], where it is

presented as

span{SµS∗ν | µ, ν are paths in E, s(µ) = s(ν)}.

This C-algebra along with certain rules for forming products was used by Raeburn to

investigate the C∗-algebra C∗(E) by completing this algebra with respect to an appropriate

norm. One major difference between LC(E) and C∗(E) is that the elements of LC(E) can

be seen as linear combinations of elements of the form pq∗, where p and q are paths in E,

unlike the situation in C∗(E) [17].

Other than this major difference, the two classes of algebras share amazing similarities.

These two classes of algebras have some immediate structure-theoretic connections, and

many theorems in one class have analogues in the other. For most of the known results,

the graph-theoretical properties on the directed graph E that characterize C∗(E) satisfies

a C∗-algebraic property are exactly the same that are needed for the Leavitt path algebra

LK(E) to satisfy the corresponding purely algebraic property. For example, the necessary

and sufficient conditions on the underlying graph E such that C∗(E) is simple (respectively,

purely infinite simple, finite-dimensional) in the category of graph C∗-algebras are precisely

the same with the conditions such that LK(E) is simple (respectively, purely infinite simple,

finite-dimensional) in the category of K-algebras [9]. Moreover, the results for Leavitt path

algebras are independent of base field K, and hence hold for C in particular.

This intimate relationship between the two classes of algebras has been mutually bene-

ficial: the results found in graph C∗-algebras help to determine which results may be true

for Leavitt path algebras and to identify which direction should be taken to prove them,

and Leavitt path algebras help to identify the sort of things one should expect to hold for

graph C∗-algebras. In addition, both of the classes are associated to directed graphs, pro-

viding one with graph-theoretic tools that can be used to study both classes of algebras.

Graphs, which are combinatorial objects, give visual representations of these algebras, and
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make it easier to find examples and counter-examples. These are the reasons why Leavitt

path algebras have been drawing attention both from algebraists and analysts since their

introduction in 2005 [2, 11, 24].

Many properties of Leavitt path algebras have been investigated with respect to the

underlying graph. These properties include, but are not limited to, being simple [1], be-

ing purely infinite simple [2], being finite-dimensional [4], being exchange [14], and being

Noetherian (equivalently locally finite) [5]. In addition, the ideal structure has been inves-

tigated in terms of defining the lattice of ideals [35]. Our aim is to complete the algebraic

picture by characterizing the generators of two-sided ideals in Leavitt path algebras. Our

main result is the following.

Theorem 3.2.1. Let I be any two-sided ideal of LK(E). Then there exists a generating set

for I consisting of elements of I of the form

(v +
m∑
k=2

λkg
rk)(v −

∑
e∈S

ee∗)

where v ∈ E0, λ2, . . . , λm ∈ K, r2, . . . , rm are positive integers, S is a finite (possibly

empty) subset of E1 consisting of edges with source vertex v, and, whenever λk 6= 0 for

some 2 ≤ k ≤ m, g is the unique cycle based at v.

This result says that one can have an idea what the generators might be for any two-

sided ideal in a Leavitt path algebra by observing the vertices of the graph. In addition,

we see that we may omit the second factor, v−
∑

e∈S ee
∗, in case the graph has no vertices

emitting infinitely many edges. We make this precise.

Theorem 3.1.5. Let E be a row-finite graph. Let I be any two-sided ideal of LK(E). Then

I is generated by elements of the form v +
∑m

k=1 λkg
k, where v ∈ E0, g is a cycle at v and

λ1, . . . , λm ∈ K.

In addition, we use these two results to give necessary and sufficient conditions on

the directed graph E so that the associated Leavitt path algebra satisfies two-sided chain

conditions, namely being two-sided Noetherian and two-sided Artinian.

Noetherian rings, in which any ascending chain of left (or right) ideals terminate, lie in

the core of ring theory, since they give an idea about the complexity of the ring, as we will

see in Chapter 2. Artinian rings are analogues of Noetherian rings with the requirement

any descending chain of left (or right) ideals must terminate. These two chain conditions

together give a great deal of information about the structure of the ring. We see that, for

Leavitt path algebras, the two-sided chain conditions depend on the hereditary saturated
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subsets of the vertices (defined in Chapter 2, Section 2.2), and also upon the vertices emitting

infinitely many edges.

We start Chapter 2 with some useful background information about chain conditions.

In Section 2.1, we give some definitions and facts on the ring theoretical properties that we

will use to prove our results. In Sections 2.3 and 2.4, we will define Leavitt algebras and

Leavitt path algebras. We give two possible approaches for the definition of Leavitt path

algebras. Even though they are equivalent, both uses have appeared in the literature, and

one makes Leavitt path algebras a direct algebraic analogue of graph C∗-algebras, whereas

the other approach sees a Leavitt path algebra as a quotient of a path algebra. To better

understand Leavitt path algebras, we will state and prove some known results about them

in Section 2.5. Most of these results are algebraic versions of results in graph C∗-algebras

given in [30].

In Chapter 3, we prove Theorem 3.1.5 and Theorem 3.2.1, which characterize the gen-

erators of two-sided ideals in Leavitt path algebras. We first consider row-finite graphs in

Section 3.1, and then arbitrary graphs in Section 3.2, by using the ideas of the former. In

Section 3.3, we give some examples of graphs and ideals to demonstrate the tools we used

to prove these results.

In Chapter 4, we give the necessary and sufficient conditions on the graph so that the

corresponding Leavitt path algebra satisfies the two-sided chain conditions described above.

First, in Section 4.1, we give some background. Then in Section 4.2, first we prove some

results by using Theorem 3.2.1. Then we characterize two-sided Noetherian Leavitt path

algebras. Once again, we will first consider row-finite graphs (Theorem 4.2.5), and later give

the general version (Theorem 4.2.12), by using similar ideas. In Section 4.3, we give the

necessary and sufficient conditions to be a two-sided Artinian Leavitt path algebra. Finally,

in Section 4.4, we offer some explicit examples.

In Chapter 5, we show some of the well-known results in the theory of Leavitt path

algebras that can be deduced by using Theorem 3.2.1. We show that many known results

can be unified and simplified in terms of giving shorter and simpler proofs.

In Chapter 6, we explicitly define graph C∗-algebras, and give examples for the structure

similarities and differences between the two classes of graph algebras. We conclude this

section with giving Question 6.1.15, and we show that our main result, namely Theorem

3.2.1, cannot be translated into the class of graph C∗-algebras via an example.



Chapter 2

Preliminaries

2.1 Ring Theory

We give some background in ring theory. We follow the approaches of [25, 26, 32].

We begin with defining Noetherian rings, which are named after Emmy Noether. As we

will see in Theorem 2.1.3, Noetherian rings play an important role in ring theory, as they

give an idea about the complexity of the ring.

Definition 2.1.1. An algebra is said to be left Noetherian if it satisfies the ascending chain

conditions (a.c.c.) on its left ideals; that is, given any chain of left ideal

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ In+1 ⊆ · · ·

there exists a positive integer k such that

Ik = Ik+1 = · · · .

We make the remark that one can define right Noetherian rings analogously.

Definition 2.1.2. An algebra that is both left and right Noetherian is called Noetherian.

The next theorem gives a useful characterization for Noetherian algebras.

Theorem 2.1.3. Let A be an algebra. The following are equivalent:

(i) A is a left (right) Noetherian algebra;

(ii) every non-empty set of left (right) ideals of A contains a maximal element under

inclusion;

(iii) every left (right) ideal of A is finitely generated.

5
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The proof is analogous to the proof for Noetherian modules given in [23, Theorem 1].

Proof. (i)⇒ (ii): Assume A is a left Noetherian algebra. Let S be a non-empty set of ideals

of A. Choose any ideal I1 in S. If I1 is maximal element of S, then we are done. So assume

that I1 is not maximal. Then there is some I2 in S such that I1 ⊂ I2. If I2 is maximal, then

(ii) holds and we are done. Proceeding this way we can see that if (ii) fails we can create

an infinite strictly increasing chain of elements of S, contradicting (i).

(ii) ⇒ (iii): Assume every non-empty set of ideals of A contains a maximal element

under inclusion. Let I be any left ideal of A, and let S be the collection of all finitely

generated left ideals of I. Note that {0} is in S, hence S is non-empty. By assumption, S

contains a maximal element, say J . If J 6= I, then there exists x ∈ I \ J . Since J ∈ S, it is

finitely generated by assumption. Hence the left ideal generated by J and x is also finitely

generated. However, this contradicts the maximality of J , implying I = J and all left ideals

are finitely generated.

(iii)⇒ (i): Assume every left ideal of A is finitely generated. Let

I1 ⊆ I2 ⊆ · · ·

be a chain of left ideals of A. Let

J =

∞⋃
i=1

Ii

and note that J is a left ideal of A. By the assumption, J is finitely generated by, say,

x1, x2, . . . , xn. Since xi is in J for all i, each xi lies in some left ideal Iji . Let m =

max{j1, j2, . . . , jn}, and note that xi ∈ Im for every i. Hence the left ideal generated by

x1, . . . , xn is contained in Im, that is, J ⊆ Im. Note that this implies Im = J = Ik for all

k ≥ m, which proves that A is a left Noetherian algebra.

Let us consider some examples first before proceeding with the definition of two-sided

Noetherian algebras.

Example 2.1.4. The set of integers, Z, is a Noetherian ring, since it is a Principal Ideal

Domain, that is, all of its ideals are generated by single element.

Example 2.1.5. Let

R =

{(
a b

0 c

) ∣∣∣ a ∈ Z, b, c ∈ Q} .
The ring R is right Noetherian, but not left Noetherian.
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Proof. To show that it is right Noetherian, we will use Theorem 2.1.3 and show that any

right ideal I of R is finitely generated.

First assume that

(
a b

0 c

)
∈ I for some a ∈ Z \ {0}, b, c ∈ Q. Then note that(

a b

0 c

)(
1 0

0 0

)
=

(
a 0

0 0

)
∈ I. We see that the right ideal of R generated by

elements in I of the form

(
a 0

0 0

)
is finitely generated by Example 2.1.4.

Now consider elements in I of the form

(
0 b

0 c

)
. Let x1 =

(
0 b1

0 c2

)
and x2 =(

0 b2

0 c2

)
be two elements in I such that x1 6= x2

(
0 0

0 r

)
for some r ∈ Q, as otherwise

the right ideal generated by x2 is the same with the right ideal generated by x1.

We compute(
0 b1

0 c1

)(
0 0

0 c2
c1

)
−

(
0 b2

0 c2

)
=

(
0 b1

c2
c1
− b2

0 0

)
.

Note that b2 6= b1
c2
c1

, otherwise x1 = x2

(
0 0

0 c2
c1

)
.

Hence we get

(
0 b

0 0

)
, where b is not zero, and this implies both

(
0 1

0 0

)
and(

0 0

0 1

)
are in I. Thus, the right ideal of R generated by elements of I of the form(

0 b

0 c

)
is also finitely generated, implying that I is finitely generated.

To see that R is not left Noetherian, first let xi =

(
0 1

pi

0 0

)
, where pi is the ith prime.

Then note that the ascending chain

〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · · ⊂ 〈x1, x2, . . . , xn〉 ⊂ · · ·

clearly does not terminate.

By using the definition of Noetherian algebras on left or right ideals, we can define an

analogous algebraic property by using two-sided ideals.
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Definition 2.1.6. An algebra is said to be two-sided Noetherian if it satisfies the ascending

chain condition (a.c.c.) on two-sided ideals.

We note that the two-sided Noetherian condition is weaker than the Noetherian condi-

tion: two-sided ideals can also be considered as left or right ideals, hence if the set of left

ideals or right ideals satisfy the ascending chain condition, then two-sided ideals satisfy it

as well, implying that a Noetherian algebra is also a two-sided Noetherian algebra. As it

can be easily seen, these two concepts coincide for commutative algebras.

Now we analogously define Artinian rings, which are named after Emil Artin. While

Noetherian rings deal with ascending chains of ideals, Artinian rings deal with descending

chains of ideals.

Definition 2.1.7. An algebra is said to be left (right) Artinian if it satisfies the descending

chain condition (d.c.c.) on left (right) ideals; that is, given any chain of left (right) ideal

I1 ⊇ I2 ⊇ · · · ⊇ In ⊇ In+1 ⊇ · · ·

there exists a positive integer k such that

Ik = Ik+1 = · · · .

Definition 2.1.8. An algebra that is both left and right Artinian is called Artinian.

Example 2.1.9. Any division ring is Artinian, as it has no nontrivial right or left ideals.

Example 2.1.10. The ring of n× n matrices over a division ring is Artinian.

The following result is analogous to Theorem 2.1.3 which is stated for Noetherian alge-

bras.

Proposition 2.1.11. The following are equivalent:

(i) A is a left (right) Artinian algebra;

(ii) every nonempty set of left (right) ideals of A contains a minimal element under inclu-

sion.

As in the case with Noetherian algebras, we can define two-sided Artinian algebras in a

similar fashion.

Definition 2.1.12. An algebra is said to be two-sided Artinian if it satisfies the descending

chain condition (d.c.c.) on two-sided ideals.
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The ascending chain condition and the descending chain condition are also known to-

gether as chain conditions, and they are connected in the following way: A consequence of

the Akizuki-Hopkins-Levitzki Theorem shows that a left (right) Artinian ring is also a left

(right) Noetherian ring [28]. Next, we give examples of rings and check the chain conditions

for them.

Example 2.1.13. Consider the polynomial ring K[x] where K is a field. Then the residue

ring K[x]/(xn) is both Artinian and Noetherian for all positive integers n since it is a finite

dimensional vector space of dimension n.

Example 2.1.14. The ring Z is Noetherian, but not Artinian. All rings with a finite

number of ideals, like Z/nZ for n ∈ Z, and fields are Artinian and Noetherian.

Example 2.1.15. The polynomial ring Z[x1, x2, . . . ] is not Noetherian since it contains the

infinite chain

〈x1〉 ⊂ 〈x1, x2〉 ⊂ · · ·

of ideals. It is not Artinian either since

〈x1〉 ⊃
〈
x21
〉
⊃
〈
x31
〉
⊃ · · ·

is a chain that doesn’t terminate.

We next define graded algebras, which arise when there is a natural notion of degree.

Definition 2.1.16. An algebra A is called a graded algebra if it is the direct sum of additive

subgroups:

A =
⊕
n∈N

An = A0 ⊕A1 ⊕ · · ·

such that AiAj ⊆ Ai+j for all i, j ≥ 0. The elements of Ak are said to be homogeneous of

degree k, and Ak is called the homogeneous component of A of degree k.

More generally, one can replace N by a monoid or semigroup G. In which case, A is

called G-graded algebra.

An ideal I of the graded algebra A is called a graded ideal if I = ⊕∞k=0(I ∩Ak).

Example 2.1.17. The polynomial ring K[x], where K is a field, is an N-graded K-algebra.

Example 2.1.18. Let V be a n-dimensional vector space over a field K. The exterior

algebra Λ(V ) over V is defined as the quotient algebra of the tensor algebra by the two-sided

ideal I generated by all elements of the form x ⊗ x such that x ∈ V , i.e., Λ(V ) = T (V )/I,
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where T (V ) is the tensor algebra of V . The product on this algebra is called the exterior

product or the wedge product, denoted by ∧, and defined as x ∧ y = x⊗ y (mod I).

We let Λk(V ) be the subspace of Λ(V ) spanned by elements of the form x1∧x2∧· · ·∧xk,

where xi ∈ V for i = 1, . . . .k. Then it is known that

Λ(V ) = Λ0(V )⊕ Λ1(V )⊕ · · · ⊕ Λn(V ),

and this makes the exterior algebra a graded algebra, as (Λi(V )) ∧ (Λj(V )) ⊂ Λi+j(V ).

2.2 Graph Theory

In this section we give some graph-theoretic definitions and properties.

A directed graph E = (E0, E1, r, s) consists of two sets E0, E1 and functions r, s : E1 →
E0. The elements of E0 are called vertices and the elements of E1 are called edges. For each

e ∈ E1, r(e) is the range of e and s(e) is the source of e. If s(e) = v and r(e) = w, then we

say that v emits e and that w receives e. A vertex which emits no edges is called a sink. A

graph is called finite if E0 is a finite set. A graph is called row-finite if every vertex is the

source of at most finitely many edges. A vertex that emits infinitely many edges is called

an infinite emitter. If a vertex is either a sink or an infinite emitter, we call it a singular

vertex. If a vertex is not singular, then we call it a regular vertex.

A path µ in a graph E is a sequence of edges µ = e1 · · · en such that r(ei) = s(ei+1)

for i = 1, . . . , n − 1. We define the source of µ by s(µ) := s(e1) and the range of µ by

r(µ) := r(en). An edge e ∈ E1 is an exit to the path µ = µ1 . . . µn if there exists i such that

s(e) = s(µi) and e 6= µi.

If we have r(µ) = s(µ) = v and s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle

based at v.

A closed path based at v is a path µ = e1 · · · en, with ej ∈ E1, n ≥ 1 and such that

s(µ) = r(µ) = v. We denote the set of all such paths by CP (v). A closed simple path based

at v is a closed path based at v, µ = e1 · · · en, such that s(ej) 6= v for j > 1. We denote the

set of all such paths by CSP (v).

Note that a cycle is a closed simple path based at any of its vertices. However the

converse may not be true, as a closed simple path based at v may visit some of its vertices

(but not v) more than once.

Example 2.2.1. Consider the graph given in Figure 2.1. Note that the path xyz is a closed

path based at v, but not a closed simple path as s(y) = v. In addition, note that zxy is a

closed simple path based at w, but not a cycle as v is visited twice. The only cycles in this

graph are x and yz both based at v, and zy based at w.
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Figure 2.1: The graph defined in Example 2.2.1.

Let v be a vertex in E0. If there is no cycle based at v, then we let g = v and call it

a trivial cycle based at v. If g is a cycle based at v of length at least 1, then g is called a

non-trivial cycle.

For a given graph E we define a preorder ≥ on the vertex set E0 by: v ≥ w if and only if

v = w or there is a path µ such that s(µ) = v and r(µ) = w. We say that a subset H ⊆ E0

is hereditary if w ∈ H and w ≥ v imply v ∈ H. We say a set H is saturated if whenever

0 < |s−1(v)| <∞ and {r(e) | s(e) = v} ⊆ H, then v ∈ H.

In words, H is saturated in case whenever v is a vertex having the property that v emits

at least one but at most finitely many edges, and all of the vertices to which the edges

emanating from v point are in H, then v is in H as well.

The hereditary saturated closure of a set X ⊆ E0 is defined as the smallest hereditary

and saturated subset of E0 containing X. For the hereditary saturated closure of X we use

the notation given in [3]: X =
⋃∞
n=0 Λn(X), where

Λ0(X) := {v ∈ E0 | x ≥ v for some x ∈ X}, and for n ≥ 1,

Λn(X) := {y ∈ E0 | 0 < |s−1(y)| <∞ and r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X).

Example 2.2.2. Consider the graph E given in the Figure 2.2. We find the hereditary

saturated closure of u2, hence we let X = {u2}. First we see that Λ0(X) = {u2, u3, u4, . . . },
as u2 ≥ ui for i ≥ 2. Next we get Λ1(X) = {u1} ∪ {u2, u3, . . . }, as u1 emits only one edge

and the range of that edge is u2 which is in Λ0(X). Note that even though the ranges of the

edges emanating from the vi’s are in Λ1, the vi’s are emitting infinitely many edges. Thus

we are done, and we also have {u2} = {u1, u2, . . . }. We can also see that this is the smallest

nontrivial hereditary saturated subset of E0.
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Figure 2.2: Graph defined in Example 2.2.2.

We say the graph E satisfies Condition (L) in case every cycle in E has an exit, while

the graph E satisfies Condition (K) in case no vertex in E is the base of exactly one cycle.

Note that Condition (K) implies Condition (L) [24]. To see this, let g = e1 · · · en be a cycle

based at some vertex v. Condition (K) implies that there is a cycle h = f1 · · · fm 6= g also

based at v. We cannot have ei = fi for all i ≤ min{m,n}, as that would imply that the

longer of p or q would visit v twice, and hence cannot be a cycle. Thus, let j be the least

index such that ej 6= fj . Then we get s(ej) = s(fj), and fj is an exit for p.

2.3 Leavitt Algebras

Leavitt path algebras can be considered as a natural generalization of Leavitt algebras.

Definition 2.3.1. Given a field K and a nonnegative integer n, the Leavitt K-algebra

L(1, n) of type (1, n) is the algebra with generators xi, yj , 0 ≤ i, j ≤ n, and defining

relations which, in matrix form, can be written as

(x0, . . . , xn)(y0, . . . , yn)T = 1, (y0, . . . , yn)T (x0, . . . , xn) = In+1,

where Ir denotes the identity matrix of size r × r.

Leavitt algebras were constructed by Leavitt in 1960s to give examples of rings without

invariant basis number [29].

Definition 2.3.2. A ring R is said to have invariant basis number (IBN) if whenever the

free left R-module Rm is isomorphic to Rn with m, n ∈ N, then m = n.

IBN can be seen as the analogue of the Dimension Theorem for vector spaces, as it

implies that any two bases for a free module over an IBN ring have the same cardinality.
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2.4 Leavitt Path Algebras

In this section we define Leavitt path algebras and give preliminary results about them.

Definition 2.4.1. Let E = (E0, E1, r, s) be any directed graph, and let K be a field. We

define the Leavitt path K-algebra LK(E) associated with E as the K-algebra generated by

a set E0 together with a set {e, e∗|e ∈ E1}, which satisfy the following relations:

1. vv′ = δv,v′v for all v, v′ ∈ E0.

2. s(e)e = er(e) = e for all e ∈ E1.

3. r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.

4. (The “CK1 relations”) e∗f = δe,fr(e) for all e, f ∈ E1.

5. (The “CK2 relations”) v =
∑
{e∈E1|s(e)=v} ee

∗ for every regular v ∈ E0.

The elements of E1 are called real edges, while for e ∈ E1 we call e∗ a ghost edge. The

set {e∗|e ∈ E1} is denoted by (E1)∗. We let r(e∗) denote s(e), and we let s(e∗) denote r(e).

We say that a path in LK(E) is a real path (resp., a ghost path) if it contains no terms of

the form e∗ (resp., e).

The conditions CK1 and CK2 are called the Cuntz-Krieger relations, and are inherited

from graph C∗-algebras.

We note that this algebra can be seen as the free K-algebra K[E0 ∪ E1 ∪ (E1)∗] with

the given relations, hence the multiplication is defined by concatenation of elements of

E0 ∪ E1 ∪ (E1)∗ with coefficients from K.

The length of a real path (resp., ghost path) µ, denoted by |µ|, is the number of edges

it contains. The length of v ∈ E0 is 0.

Another way of looking at Leavitt path algebras is as a quotient of the path algebra over

the extended graph of E. First we recall the definition of a path algebra over an arbitrary

graph E.

Definition 2.4.2. Let E = (E0, E1, r, s) be any directed graph, and let K be a field. The

path K-algebra over E is defined as the free K-algebra K[E0 ∪ E1] with the relations:

• vv′ = δv,v′v for every v, v′ ∈ E0.

• e = er(e) = s(e)e for every e ∈ E1.

This algebra is denoted by A(E).
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Next we define the extended graph over E.

Definition 2.4.3. Given a graph E we define the extended graph of E as the new graph

Ê = (E0, E1 ∪ (E1)∗, r′, s′) where (E1)∗ = {e∗ | e ∈ E1} and the function r′ and s′ are

defined as

r′|E1 = r, s′|E1 = s, r′(e∗) = s(e) and s′(e∗) = r(e).

Now we can define the Leavitt path algebra of E with coefficients in K as the path

algebra over the extended graph Ê:

Definition 2.4.4. Let E = (E0, E1, r, s) be any directed graph, and let K be a field. We

define the Leavitt path K-algebra LK(E) associated with E as the path algebra over the

extended graph Ê, with relations:

1. e∗f = δe,fr(e) for every e ∈ E1 and f∗ ∈ (E1)∗.

2. v =
∑
{e∈E1 | s(e)=v} ee

∗ for every regular v ∈ E0.

Many well-known algebras are of the form LK(E) for some graph E. Here we give some

examples to demonstrate this point.

1. The matrix algebra Mn(K): Let E be the graph defined by E0 = {v1, . . . , vn}, E1 =

{e1, . . . , en1}, s(ei) = vi, r(ei) = vi+1 for i = 1, . . . , n − 1. The fact that Mn(K) ∼=
LK(E) can be seen by defining a map φ : LK(E)→ Mn(K) such that φ(vi) = e(i, i),

φ(ei) = e(i, i + 1), and φ(e∗i ) = e(i + 1, i), where e(i, j) denotes the standard (i, j)-

matrix unit in Mn(K).

v

e

1 2 3
n-1 n

v v v v

e e1 2 n

2. The Leavitt algebra A = L(1, n) for n ≥ 2: Let E be the graph defined by E0 = {v},
E1 = {e1, . . . , en} such that s(ei) = r(ei) = v for every i. Then L(1, n) ∼= LK(E).

3. Laurent polynomial algebras K[x, x−1]: Consider the graph E defined by E0 = {v},
E1 = {e} such that s(e) = r(e) = v. Then clearly K[x, x−1] ∼= L(E).
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2.5 Preliminary Results

The following are algebraic analogues of the results given in [30]. Most of the results given

here are straightforward, but we state and prove them here for the sake of completeness.

Lemma 2.5.1. Suppose that E is an arbitrary directed graph and LK(E) is the Leavitt path

algebra of E. Then:

1. If ef 6= 0, then r(e) = s(f);

2. If ef∗ 6= 0, then r(e) = r(f).

Proof. We use the relations (1), (2) and (3) given in the definition of Leavitt path algebra.

1. ef = (er(e))(s(f)f) = e(r(e)s(f))f = 0 unless r(e) = s(f).

2. ef∗ = (er(e)(s(f∗)f∗) = e(r(e)r(f))f∗ = 0 unless r(e) = r(f).

Definition 2.5.2. Suppose E is an arbirary directed graph and n ∈ N ∪ {0}. Then En

denotes the set of paths of length n. Moreover, we let E∗ :=
⋃
n≥0E

n.

Notation. We extend the range and source maps to E∗ by setting r(v) = v = s(v) for

v ∈ E0.
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Remark 2.5.3. Note that µ∗µ = r(µ) where µ = x1 . . . xn is a real path. To see this

consider the following calculations.

µ∗µ = (x1x2 . . . xn)∗x1x2 . . . xn

= x∗n . . . x
∗
2(x
∗
1x1)x2 . . . xn

= x∗n . . . x
∗
2r(x1)x2 . . . xn

= x∗n . . . x
∗
2s(x2)x2 . . . xn

= x∗n . . . x
∗
3(x
∗
2x2)x3 . . . xn

= · · ·

= r(xn) = r(µ).

The relation (4) in the definition of Leavitt path algebra and Lemma 2.5.1 extends to

the paths as follows.

Corollary 2.5.4. Suppose E is an arbitrary directed graph and LK(E) be the Leavitt path

algebra of E. Let µ, ν ∈ E∗. Then:

1. µ∗ν =


µ∗ if µ = νµ′ for some µ′ ∈ E∗

ν ′ if ν = µν ′ for some ν ′ ∈ E∗

0 otherwise;

2. if µν 6= 0, then µν is a path in E;

3. if µν∗ 6= 0, then s(µ) = s(ν).

Proof. For (1), first assume that n := |µ| ≤ |ν|, and write ν = αν ′ where |α| = n. Then

µ∗ν = µ∗(αν ′) = (µ∗α)ν ′.

If µ = α, then by Remark 2.5.3 we get

µ∗ν = r(µ)ν ′ = s(ν ′)ν ′ = ν ′.

If µ 6= α, then write µ = e1 . . . en, α = f1 . . . fn, and let i be the smallest integer such
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that ei 6= fi. Then using the idea in Remark 2.5.3 yields

µ∗ν = (µα)ν

= (e∗n . . . e
∗
1f1f2 . . . fn)ν ′

= [e∗n . . . e
∗
i (e
∗
i−1 . . . e

∗
1f1 . . . fi−1)fi . . . fn]ν ′

= [e∗n . . . e
∗
i r(ei−1)fi . . . fn]ν ′

= [e∗n . . . e
∗
i fi . . . fn]ν ′

= 0.

This gives (1) when |µ| ≤ |ν|. Note that if |µ| > |ν|, we can use the same idea by writing

µ = βµ′.

Parts (2) and (3) follow from (1) and (2), respectively, of Lemma 2.5.1.

Corollary 2.5.5. Suppose E is an arbitray graph and LK(E) is the Leavitt path algebra of

E. If µ, ν, α, β ∈ E∗, then we have

(µν∗)(αβ∗) =


µα′β∗ if α = να′

µ(βν ′)∗ if ν = αν ′

0 otherwise.

In particular, it follows that every non-zero finite product of the real and ghost edges has

the form µν∗ for some µ, ν ∈ E∗ with r(µ) = r(ν).

Proof. The formula part follows from part (1) of Corollary 2.5.4. To see the last statement,

let x be a non-zero monomial, that is, a product of finitely many e’s and f∗’s.

Any adjacent e’s can be combined into one single term µ. Since x is non-zero, we get

that µ is a path. Similarly, we can combine any adjacent f∗’s into one single term ν∗. Hence

we see that x is a product of terms of the form µν∗ where µ, ν ∈ E∗. The formula above

implies that we can combine this product into one term of the same form, hence the result

follows.

We see that Corollary 2.5.5 describes the monomials spanning LK(E). For convenience,

we give a detailed list for these monomials the way it is stated in [1].

Corollary 2.5.6. LK(E) is spanned as a K-vector space by monomials

1. kv with k ∈ K and v ∈ E0, or

2. ke1 · · · eaf∗1 · · · f∗b where k ∈ K; a, b ≥ 0, a+ b > 0, e1, . . . , ea, f1, . . . , fb ∈ E1.
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Figure 2.3: Graph of the Leavitt path algebra defined in Example 2.5.7.

Notation. We extend the range and source maps to the set of monomials of LK(E) by

setting r(µν∗) = r(ν∗) = s(ν) and s(µν∗) = s(µ) for µ and ν in E∗.

We give an example which demonstrates Corollary 2.5.6.

Example 2.5.7. Let E be the graph given in Figure 2.3. Note that LK(E) is spanned as a

K-vector space by the monomials {u, v, w, e, f, g, e∗, f∗, g∗, ge, gef∗, ef∗, fe∗, fe∗g∗, ff∗, e∗g∗}.

Next, we present some results from [1] involving closed simple paths.

Lemma 2.5.8. Let µ, ν ∈ CSP(v). Then µ∗ν = δµ,νv.

Proof. Let µ and ν be two arbitrary paths, and let µ = e1 . . . en and ν = f1 . . . fm.

Case I: Assume n = m, but µ 6= ν. Let i be the first index where µ and ν differ, that is,

ej = fj for j < i and ei 6= fi. Then we get

µ∗ν = e∗n . . . e
∗
1f1 . . . fm = δe1,f1e

∗
n . . . e

∗
2r(e1)f2 . . . fm

= δe2,f2e
∗
n . . . e

∗
2f2 . . . fm = · · · = δe2,f2 . . . δei,fie

∗
n . . . e

∗
i fi . . . fm = 0.

Case II: Let µ = ν. By following the same procedure above, we get

µ∗ν = δe1,f1δe2,f2 . . . δen,fnr(en).

Case III: Now consider the case where µ, ν ∈ CSP(v) with n 6= m. Without loss of

generality we may assume that n < m. Let ν = ν1ν2 where ν1 and ν2 are real paths and

|ν1| = |µ|. If µ = ν1, then r(µ) = r(ν1) = s(ν2), but this contradicts with v being closed

simple path based at v. So µ 6= ν1, and by Case I, we obtain µ∗ν = µ∗ν1ν2 = 0.

Lemma 2.5.9. For every µ ∈ CP (v) there exist unique µ1, . . . , µm ∈ CSP (v) such that

µ = µ1 · · ·µm.
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Proof. Let µ = e1 . . . en and T = {t ∈ {1, . . . , n} | r(et) = v}. Label all the elements of

T so that T = {t1, . . . , tn} so that t1 < t2 < · · · < tn = m. Then c1 = e1 . . . et1 , and

ci = eti−1 . . . eti for 1 < i < n prove existence.

To prove uniqueness, let µ = c1 . . . cr = d1 . . . ds where ci, dj ∈ CSP(v). Multiply all

sides by c∗1, and we get 0 6= vc2 . . . cr = c∗1d1 . . . ds. By using Lemma 2.5.8, we get c1 = d1.

Then we use induction to show that the statement holds.

For the rest of the section, we will give results concerning the algebraic properties of

Leavitt path algebras. These results mostly depend on the underlying directed graph E.

The first result we give is regarding the units of Leavitt path algebras, but let us give

some definitions first.

Definition 2.5.10. An algebra A is said to be an unital algebra, if A has an unit, that is,

an element 1 with the property 1x = x1 = x for all x ∈ A.

Definition 2.5.11. An algebra A is called an algebra with local units if for every finite set

S of elements in A, there exists e ∈ A such that ex = xe = x for every x ∈ S.

We note that LK(E) might be a unital algebra or an algebra with local units depending

on the size of the graph E:

Lemma 2.5.12. If E0 is finite then LK(E) is a unital K-algebra. If E0 is infinite, then

L(E) is an algebra with local units (specifically, the set generated by finite sums of distinct

elements of E0).

Proof. First suppose that E0 is finite. Hence let E0 = {v1, . . . , vn}. We claim that
∑n

i=1 vi

is the unit element of the algebra. Note that (
∑n

i=1 vi)vj =
∑n

i=1 δi,jvi = vj . Next, let

e ∈ E0 and compute

(

n∑
i=1

vi)e =

n∑
i=1

vis(e)e = s(e)e = e.

Similarly,
∑n

i=1 vif
∗ = f∗ for f∗ ∈ (E1)∗. Since LK(E) is generated by E0 ∪ E1 ∪ (E1)∗,

we conclude that
∑n

i=1 vix = x for all x ∈ LK(E). Analogously, we obtain x
∑n

i=1 vi = x as

well.

Now suppose that E0 is infinite. Let {xi}ti=1 be a finite collection of elements in LK(E).

We use Lemma 2.5.6 to write

xi =

ni∑
j=1

λijv
i
j +

mi∑
k=1

κika
i
k
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where λij , κ
i
k ∈ K \ {0}, and aik are monomials of type (2). Let

V =
t⋃
i=1

{vij , s(aik), r(aik) | i = 1, . . . , ni; j = 1, . . .mi},

and then by using the same idea above, one can easily show that
∑

v∈V v is a finite sum of

vertices such that
∑

v∈V vai = ai
∑

v∈V v = ai for every i.

Next we prove that LK(E) is a Z-graded algebra for any graph E.

Lemma 2.5.13. Let E be an arbitary graph. Then LK(E) is a Z-graded algebra, with

grading induced by

deg(v) = 0 for all v ∈ E0; deg(e) = 1 and deg(e∗) = −1 for all e ∈ E1.

That is, L(E) =
⊕

n∈Z L(E)n, where L(E)0 = KE0 +A0, L(E)n = An for n 6= 0 where

An =
∑
{ke1 . . . eaf∗1 . . . f∗b | a+ b > 0, ei, fj ∈ E1, k ∈ K, a− b = n}.

Proof. The fact that LK(E) =
∑

n∈Z LK(E)n follows from Lemma 2.5.6. The grading on

LK(E) follows directly from the fact that A(Ê) is Z-graded, and that the relations CK1

and CK2 are homogeneous in this grading.

Definition 2.5.14. We call an ideal I of LK(E) graded in case, whenever x =
∑n

j=−m xj ∈ I
for homogeneous elements xj of LK(E) of degree j, then xj ∈ I for all −m ≤ j ≤ n.

Remark 2.5.15. If Y is a set of homogeneous elements in a Z-graded ring, then the ideal

I = 〈Y 〉 generated by Y is a graded ideal.

The following are from [3]. The first result does not depend on the underlying graph.

Proposition 2.5.16. If I is an ideal of LK(E), then I ∩ E0 is a hereditary and saturated

subset of E0.

Proof. If I ∩ E0 is empty, then it is both hereditary and saturated, and we are done. So

assume I ∩ E0 is not empty.

To show that I ∩ E0 is hereditary, let v, w ∈ E0 be in I and v ≤ w. Then by the

definition of the preorder, we can find a path µ = e1 . . . en such that s(µ) = s(e1) = v and

r(µ) = r(en) = w. Note that e∗1ve1 = e∗1e1 = r(e1) = s(e2) is in I. If we repeat the argument

n times, we get r(en) = w ∈ I.
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To show that I ∩ E0 is saturated, consider v ∈ E0 such that 0 < |s−1(v)| < ∞
and {r(e) | s(e) = v} ⊆ I. Since v is not a sink or an infinite emitter, we get v =∑
{e∈E1 | s(e)=v} ee

∗. Note that for e ∈ E1 with s(e), we have r(e) ∈ I. So er(e)e∗ = ee∗ ∈ I,

and v ∈ I.

The next result gives a characterization of the underlying graph E so that the associated

Leavitt path algebra is simple. We will omit the original proof now, and give a shorter proof

by using Theorem 3.2.1 in the Applications Chapter.

Theorem 2.5.17. Let E be an arbitrary graph. The Leavitt path algebra LK(E) is simple

if and only if E satisfies the following conditions.

(i) The only hereditary and saturated subsets of E0 are ∅ and E0.

(ii) E satisfies Condition (L).



Chapter 3

Two-Sided Ideals

In this Chapter we will give a description for the generators of two-sided ideals of Leavitt

path algebras. We will give the proof for Leavitt path algebras associated to row-finite

graphs first. Then we will prove the case for arbitrary graphs. This two-step approach is

fairly common in this area: Theorems are usually first developed for the row-finite graphs,

and then extended to the arbitrary case. We will also show how to get the first result as the

corollary of the second one. In the final section, we will use some examples to demonstrate

the tools used. The material from the first section, “Two-Sided Ideals for the Row-Finite

Case”, appears in [18], and the material from the second section, “Two-Sided Ideals for

Arbitrary Case”, appears in [6].

3.1 Two-Sided Ideals for the Row-Finite Case

With the introductory remarks now complete, we begin our discussion of the main result

with the following important observation.

Remark 3.1.1. Let I be an ideal of LK(E) and let µ = λ1µ1 + · · · + λnµn be in I, where

µ1, . . . , µn are real paths in I and λ1, . . . , λn are in K. Note that s(µi)µr(µi) is in I and

every surviving real path has the same source and the same range. Also note that

µ =
∑
w∈R

∑
v∈S

vµw,

where R = {r(µ1), . . . , r(µn)}, S = {s(µ1), . . . , s(µn)} ⊂ E0. Hence µ can be written as

ν1 + · · ·+ νm, where

1. ν1, . . . , νm ∈ I,

22



CHAPTER 3. TWO-SIDED IDEALS 23

v

x

w

z

y

Figure 3.1: Graph of the Leavitt path algebra defined in Example 3.1.2.

2. for 1 ≤ i ≤ m, νi is a sum of monomials whose sources are all the same and whose

ranges are all the same.

Example 3.1.2. Consider the directed graph given in Figure 3.1. Consider an ideal I of

LK(E) with xyz + yz + xy + x2 + z ∈ I. Then by using Remark 3.1.1, we see that

µ1 := v(xyz + yz + xy + x2 + z)v = x2,

µ2 := v(xyz + yz + xy + x2 + z)w = xyz + yz + xy ∈ I,

µ3 := w(xyz + yz + xy + x2 + z)w = z ∈ I, and

xyz + yz + xy + x2 + z = µ1 + µ2 + µ3.

Notation. Let LK(E)R (resp., LK(E)G) be the subring of elements in LK(E) whose terms

involve only real edges (resp., only ghost edges).

Lemma 3.1.3. Let I be a two-sided ideal of LK(E) and Ireal = I ∩ LK(E)R. Then Ireal is

the two-sided ideal of LK(E)R generated by elements of Ireal having the form v+
∑n

i=1 λig
i,

where v ∈ E0, g is a cycle based at v and λi ∈ K for 1 ≤ i ≤ n.

Proof. Let J be the ideal of LK(E)R generated by elements in Ireal of the indicated form.

Our claim is J = Ireal. Towards a contradiction, suppose Ireal \ J 6= ∅; choose µ ∈ Ireal \ J
of minimal length. By Remark 3.1.1, we can write µ = τ1 + · · · + τm where each τi is in

Ireal and is the sum of those paths whose sources are all the same and whose ranges are

all the same. Since µ 6∈ J , one of the τi 6∈ J . Replacing µ by τi, we may assume that

µ = λ1µ1 + · · ·+ λnµn where all the µi have the same source and the same range. First we

claim that one of the µi must have length 0, i.e., µi = v for some vertex v ∈ E0. Suppose

not. Then for each i we can write µi = eiνi where ei ∈ E1. So µ =
∑n

i=1 λieiνi. Now

e∗iµ =
∑

{j|ej=ei}

λjνj ∈ Ireal
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and has smaller length than µ. So e∗iµ ∈ J and hence clearly eie
∗
iµ ∈ J . Then

µ =
∑

distinct ei

eie
∗
iµ ∈ J,

a contradiction. So we can assume without loss of generality that µ1 = v, with v a vertex.

Since all the terms in µ have the same source and the same range, each µi is a closed path

based at v. Multiplying by a scalar if necessary we can write µ = v + λ2µ2 + · · ·+ λnµn.

Case I: There exists no, or exactly one, closed simple path at v. If there are no closed

simple paths at v then we get µ ∈ J , a contradiction. If there is exactly one closed simple

path g based at v then necessarily g must be a cycle. Furthermore, the only paths in E

which have source and range equal to v are powers of g. Then µ = v +
∑n

i=2 λig
mi ∈ J , a

contradiction.

Case II: There exist at least two distinct closed simple paths g1 and g2 based at v.

Without loss of generality, we may assume that g1 is a cycle. As g1 6= g2 and neither is

a subpath of the other, g∗2g1 = 0 = g∗1g2. Without loss of generality assume |µ2| ≥ · · · ≥
|µn| ≥ 1. Then for some k ∈ N, |gk1 | > |µ2|. Multiplying by (g∗1)k on the left and gk1 on the

right, we get

µ′ = (g∗1)kµ(g1)
k = v +

n∑
i=2

λi(g
∗
1)kµi(g1)

k.

If (g∗1)kµi(g1)
k = 0 for every i, then we get µ′ = (g∗1)kµ(g1)

k = v ∈ J . Then µ = µv ∈ J ,

a contradiction. Note that if 0 6= (g∗1)kµi(g1)
k, then (g∗1)kµi 6= 0. Since |gk1 | > |µi|, we get

gk1 = µiµ
′
i for some path µ′i. Since the µi are closed paths based at the vertex v, one gets

from the equation (g1)
k = µiµ

′
i that µi = (g1)

r for some integer r ≤ k. So µi commutes

with (g1)
k and thus each non-zero term (g∗1)kµi(g1)

k = µi.

Since g∗2g1 = 0, g∗2µi = 0 for every i ∈ {2, . . . , n} such that (g∗1)kµi(g1)
k 6= 0 and so we

get g∗2µ
′g2 = g∗2vg2 = v ∈ I∩LK(E)R = Ireal, which implies that v is in J . Then µ = µv ∈ J ,

a contradiction.

It can be easily shown that the analogue of Lemma 3.1.3 is true for Ighost = I ∩LK(E)G.

We state this for the sake of completeness.

Lemma 3.1.4. Let I be a two-sided ideal of LK(E). Then Ighost is the two-sided ideal of

LK(E)G generated by elements of the form v +
∑n

i=1 λi(g
∗)i, where v ∈ E0, g is a cycle at

v and λi ∈ K for 1 ≤ i ≤ n.

Now we are ready to prove Theorem about the generators of two-sided ideals in Leavitt

path algebras associated to row-finite graphs.
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Theorem 3.1.5. Let E be a row-finite graph. Let I be any two-sided ideal of LK(E). Then

I is generated by elements of the form v +
∑m

k=1 λkg
k, where v ∈ E0, g is a cycle at v and

λ1, . . . , λm ∈ K.

Proof. Let J be the two-sided ideal of LK(E) generated by Ireal. By Lemma 3.1.3, it is

enough if we show that I = J . Suppose not. Choose x =
∑d

i=1 λiµiν
∗
i in I \ J , where

d is minimal and µ1, . . . , µd, ν1, . . . , νd are real paths in LK(E)R. By Remark 3.1.1, x =

α1+ · · ·+αm, where each αj ∈ I and is a sum of those monomials all having the same source

and same range. Since x 6∈ J , αj 6∈ J for some j. By the minimality of d, we can replace x

by αj . Thus we we can assume that x =
∑d

i=1 λiµiν
∗
i , where for all i, j, s(µiν

∗
i ) = s(µjν

∗
j )

and r(µiν
∗
i ) = r(µjν

∗
j ) = w ∈ E0. Among all such x =

∑d
i=1 λiµiν

∗
i ∈ I \ J with minimal d,

select one for which (|ν1|, . . . , |νd|) is the smallest in the lexicographic order of (Z+)d. First

note that we have |νi| > 0 for some i, otherwise x is in Ireal ⊆ J. Let e be in E1. Then note

that

xe =
d∑
i=1

λiµiν
∗
i e =

d′∑
i=1

λiµ
′
i(ν
′
i)
∗

either has fewer terms (d′ < d), or d = d′ and (|ν ′i|, . . . , |ν ′d|) is smaller than (|ν1|, . . . , |νd|).
Then by minimality, we get xe is in J for every e ∈ E1. Since |νi| > 0 for some i, w is not

a sink and emits finitely many edges. Hence we have

x = xw = x
∑

{ej∈E1 | s(ej)=w}

eje
∗
j =

∑
{ej∈E1 | s(ej)=w}

(xej)e
∗
j ∈ J.

Our assumption was that x ∈ I \ J , hence we get a contradiction, so the result follows.

Remark 3.1.6. We note that the Theorem does not hold for arbitrary graphs. An example

is the “infinite clock” (Figure 3.2: Let E0 = {v, w1, w2, . . . } and E1 = {e1, e2, . . . } with

r(ei) = wi and s(ei) = v. Then the two-sided ideal generated by v − e1e∗1 is not generated

by the elements of the desired form.

3.2 Two-Sided Ideals for the Arbitrary Case

We are already in position to present the main result.

Theorem 3.2.1. Let I be any ideal of LK(E). Then there exists a generating set for I

consisting of elements of I of the form(
v +

m∑
k=2

λkg
rk

)(
v −

∑
e∈S

ee∗

)
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v

Figure 3.2: Graph of the Leavitt path algebra defined in Example 3.1.6.

where v ∈ E0, λ2, . . . , λm ∈ K, r2, . . . , rm are positive integers, S is a finite (possibly

empty) subset of E1 consisting of edges with source vertex v, and, whenever λk 6= 0 for

some 2 ≤ k ≤ m, g is the unique cycle based at v.

Proof. Let J be the ideal of LK(E) generated by all the elements of I which have the form

described in the statement of the Theorem 3.2.1. We want to show that I = J . We note

that I ∩ E0 ⊆ J (by choosing λk = 0 for 2 ≤ k ≤ m, and S = ∅).
First we prove a specific case of the general result: namely, that any element of I of the

form

(λ1a1 + λ2a2 + · · ·+ λkak)

(
v −

∑
e∈S

ee∗

)
is in J , where S is a finite subset of s−1(v), each λi ∈ K, and each ai is assumed to be a real

path in E. Towards a contradiction, suppose not. That is, suppose that there are elements in

I\J . Over all possible vertices w ∈ E0 , all finite subsets T of s−1(w), and all possible κi ∈ K
(1 ≤ i ≤ n) find an element of I \ J of the form (κ1a1 + κ2a2 + · · ·+ κnan)(w −

∑
e∈T ee

∗)

for which n is minimal; let x denote this minimal value. So we have

x = (λ1a1 + λ2a2 + · · ·+ λkak)

(
v −

∑
e∈S

ee∗

)
∈ I \ J

for some v ∈ E0 , λi ∈ K (1 ≤ i ≤ k), and S a finite (possibly empty) subset of s−1(v).

We argue by contradiction on the minimality of k that no such element exists.

Since for w ∈ E0 we have w(v −
∑

e∈S ee
∗) = δv,w(v −

∑
e∈S ee

∗), we may assume that

each ai has r(ai) = v.

Let Sx denote the set {s(ai) | λi 6= 0}. For each w ∈ Sx we have wx ∈ I. But

x =
∑

w∈Sx
wx, so x 6∈ J gives wx 6∈ J for some w. Since wx has the correct form, we
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conclude by the minimality of k that wai 6= 0 for all 1 ≤ i ≤ k. Thus we may assume that

each of the paths ai, 1 ≤ i ≤ k, has the common source vertex.

Rephrased, we may assume that x = (λ1a1 + λ2a2 + · · · + λkak)(v −
∑

e∈S ee
∗), where

for all i, j, s(ai) = s(aj), and r(ai) = r(aj)(= v). Among all such x with minimal k, select

one for which (|a1|, · · · , |ak|) is smallest in the lexicographic order of (Z+)k. Multiplying by

λ1
−1 if necessary, we may assume that

x = (a1 + λ2a2 + · · ·+ λkak)

(
v −

∑
e∈S

ee∗

)
.

We analyze the various possible cases for x, and show in each case we are led to a

contradiction.

In the first case, suppose |ai| > 0 for every i ∈ {1, . . . , k}. Let A denote the set

{f ∈ E1 | f∗ai 6= 0 for some 1 ≤ i ≤ k}.

Note that A is finite. Furthermore, we see that f∗x is in J for every f ∈ A, as f∗x is of

the correct form (since |ai| > 0 for all i), and either f∗x has fewer terms than x does, or

f∗x has the same number of terms as x, in which case (|f∗a1|, . . . , |f∗ak|) is smaller than

(|a1|, . . . , |ak|). But then ff∗x ∈ J for all f ∈ A, which yields that∑
f∈A

ff∗x ∈ J.

But this last expression is precisely x (by again using |ai| > 0 for all i), so we have x ∈ J ,

a contradiction.

In the other case, suppose |ai| = 0 for some i. By the minimality assumed on

(|a1|, . . . , |ak|), this gives |a1| = 0. Since the ai are real paths, this means that a1 is a

vertex, necessarily a1 = v. Since all of the ai are assumed to start and end at the same

vertex as each other, we get that each ai is in fact a closed path starting and ending at v

(Note that each ai for i ≥ 2 is a nontrivial closed path based at v, otherwise we would have

combined v with such ai to get a shorter expression.). There are three subcases to consider;

we obtain a contradiction in each.

First, suppose there are no simple closed paths based at v. Then necessarily there are

no closed paths at all based at v, so that the sum a1 + λ2a2 + · · · + λkak reduces to the

expression a1 = v, so that x = (v + 0)(v −
∑

e∈S ee
∗) is in J , contradicting the assumption

that x ∈ I \ J .

Secondly, suppose there is exactly one simple closed path at v. Then necessarily this

path g must be a cycle, and is the unique cycle based at v. But then any closed path based
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at v must be a power of this cycle, i.e., for each 2 ≤ i ≤ k we have ai = gri for some positive

integer ri, so that x in this case has the indicated form, so x ∈ J , again contradicting the

assumption that x ∈ I \ J .

Finally, suppose there are at least two distinct simple closed paths based at v. Consider

the set

F = {f ∈ E1 | f∗ai 6= 0 for some 2 ≤ i ≤ k}.

There are two subcases here. Suppose first that F ∩ S 6= ∅. Let f ∈ F ∩ S. Now note that

ff∗x = (ff∗ + λ2ff
∗a2 + · · ·+ λkff

∗ak)

(
v −

∑
e∈S

ee∗

)

= ff∗

(
v −

∑
e∈S

ee∗

)
+

(
k∑
i=2

λiff
∗ai

)(
v −

∑
e∈S

ee∗

)
.

But f ∈ S yields that the first summand is zero; thus

ff∗x =

(
k∑
i=2

λiff
∗ai

)(
v −

∑
e∈S

ee∗

)
.

Note that ff∗ai is either 0 or ai (since ai 6= v), so the displayed expression for ff∗x has

the correct form, so that ff∗x ∈ J by the minimality of k. Furthermore,

x− ff∗x =

v +
∑

{aj |f∗aj=0}

λjaj

(v −∑
e∈S

ee∗

)

is also of the correct form, and the left hand factor has fewer than k nonzero terms (since

f ∈ F gives f∗ai = 0 for some 2 ≤ i ≤ k), so that x− ff∗x ∈ J by the minimality of k. So

we have

x = ff∗x+ (x− ff∗x) = x ∈ J,

again a contradiction.

For the second of the two subcases, which will complete the proof, suppose F ∩ S = ∅.
Then in particular a2 is a closed path based at v, for which e∗a2 = 0 for all e ∈ S. Write

a2 = fa′2 for some edge f and real path a′2 (possibly of length zero). Among all closed

paths based at v having initial edge f , choose one of minimal length, call it g1. Then g1 is

necessarily a cycle, and, since it has the same initial edge as does a2, we have e∗g1 = 0 for

all e ∈ S. In particular, this gives that(
v −

∑
e∈S

ee∗

)
g1 = g1.
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By the hypotheses of this subcase, there exists a second simple closed path g2 based at

v. In particular, g∗2g1 = 0. Pick an integer t for which |gt1| > |ak|. Let y denote the element

(gt1)
∗xgt1 of LK(E). Since x ∈ I we have y ∈ I. Using (v −

∑
e∈S ee

∗)g1 = g1, we get

y = (gt1)
∗xgt1 = v + λ2(g

t
1)
∗a2g

t
1 + · · ·+ λk(g

t
1)
∗akg

t
1

is in I. We now argue exactly as in the proof of Case II of Theorem 3.1.5, as follows. If

(gt1)
∗aig

t
1 6= 0 , then (gt1)

∗ai 6= 0. Since |gt1| > |ai|, this gives that ai is an initial segment of

gt1, i.e., gt1 = aibi for some real path bi . Since the ai are closed paths based at v, and g1 is a

cycle, we get from the equation gt1 = aibi that ai = gri1 for some integer ri. In particular, each

ai commutes with gt1, which yields that whenever a term of the form (gt1)
∗aig

t
1 is nonzero,

then necessarily it equals ai, so that (gt1)
∗aig

t
1 6= 0 implies (gt1)

∗aig
t
1 = gri1 for some positive

integer ri.

Thus we may write the element y of I as

y = v + δ2λ2g
r2
1 + · · ·+ δkλkg

rk
1 ,

where δi = 1 if λi(g
t
1)
∗aig

t
1 6= 0, and γi = 0 otherwise. Since g∗2g1 = 0 this yields that

g∗2yg2 = g∗2vg2 = v,

so that v ∈ I. But I∩E0 ⊆ J , so v ∈ J , so that x = vx ∈ J , the final contradiction required

to establish the “real part” part of the proof.

To summarize, we have shown that any element of I of the form

(λ1a1 + λ2a2 + · · ·+ λkak)

(
v −

∑
e∈S

ee∗

)
,

where S is a finite subset of E1, each ai is a real path in E, and λi ∈ K, is in the ideal

generated by elements of I of the indicated form.

Now we prove that any arbitrary element of I is in J . Again working towards a contra-

diction, suppose that I \ J 6= ∅, and let

x = (λ1a1b
∗
1 + · · ·+ λnanb

∗
n)

(
v −

∑
e∈S

ee∗

)
∈ I \ J,

where each ai and bi is a real path in E, and n is minimal. As above, we may choose λ1 = 1,

and we may assume that s(ai) = s(aj) and r(b∗i ) = r(b∗j )(= v) for every i and j. Among all

such x, select one for which (|b1|, . . . , |bn|) is smallest in the lexicographic order of (Z+)n.
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Suppose |bi| > 0 for some i. Write bi = eib
′
i for some edge ei and some real path b′i

(possibly of length 0). If ei ∈ S, then

b∗i

(
v −

∑
e∈S

ee∗

)
= (b′i)

∗e∗i

(
v −

∑
e∈S

ee∗

)
= (b′i)

∗e∗i − (b′i)
∗e∗i = 0.

So we may assume that if |bi| > 0 in the indicated expression for x, then ei 6∈ S.

First, suppose |bi| > 0 for every i. As above, let ei denote the initial edge of bi, and

write bi = eib
′
i; then as shown in the previous paragraph, we may assume ei 6∈ S. Note that

for any edge f ∈ s−1(v)\S we have (v−
∑

e∈S ee
∗)f = f . So for any f ∈ s−1(v)\S we have

xf = (a1b
∗
1 + · · ·+ λnanb

∗
n)

(
v −

∑
e∈S

ee∗

)
f =

n∑
i=1

λiaib
∗
i f =

∑
{i|ei=f}

λiai(b
′
i)
∗ ∈ I.

We note that, since fr(f) = f , this expression is of the correct form. So if the number

of monomial terms in xf is less than n, then xf ∈ J . If the number of monomial terms in

xf is n, then since (|b′1|, . . . , |b′n|) < (|b1|, . . . , |bn|), the minimality condition implies xf ∈ J .

So either case gives xf ∈ J . In particular, for each ej which appears as the initial edge of

some bj in the expression for x, we have xeje
∗
j ∈ J . But this in turn yields

x =
∑

{distinct ej | 1≤j≤n}

xeje
∗
j ∈ J,

a contradiction.

On the other hand, suppose |bj | = 0 for some 1 ≤ j ≤ n. So one of the bj , say b1, is of

the form v for some v ∈ E0. Without loss of generality, assume that |b1| = · · · = |bu| = 0

for some u ≥ 1, and that |bj | > 0 for j ≥ u+ 1. Then we have

x = (a1 + λ2a2 + · · ·+ λuau + λu+1au+1b
∗
u+1 + · · ·+ λnanb

∗
n)

(
v −

∑
e∈S

ee∗

)
.

Let

T = {f ∈ E1 | b∗i f 6= 0 for some u+ 1 ≤ i ≤ n};

so T is the set of edges which appear as the initial edge of some real path bi, u+ 1 ≤ i ≤ n.

Note that T is finite. As indicated above, minimality implies that S ∩ T = ∅. Again using

minimality, an argument analogous to one used previously yields that xf is in J for all

f ∈ T , hence ∑
f∈T

xff∗ ∈ J.
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Write bi = fib
′
i for each u+ 1 ≤ i ≤ n. Then for f ∈ T we have b∗i ff

∗ = 0 unless f = fi,

in which case b∗i ff
∗ = b∗i . This yields that b∗i (v −

∑
f∈T ff

∗) = 0 for u+ 1 ≤ i ≤ n, which

in turn implies that

x−
∑
f∈T

xff∗ = (a1 + λ2a2 + · · ·+ λuau)

v −∑
f∈T

ff∗

 .

We are now in position to invoke the result established in the first part of the proof:

since each ai (1 ≤ i ≤ u) is a real path, the displayed expression is in J . Thus we have both

x−
∑

f∈T xff
∗ and

∑
f∈T xff

∗ are in J , which gives x ∈ J , the final contradiction needed

to establish our main result.

Not surprisingly, the description of the generating sets for ideals of Leavitt path algebras

in the row-finite case will follow from the description of the generating sets in the general

case. However, this conclusion is not completely immediate. Specifically, to establish the

row-finite case from the general case we must show that in the row-finite case, any ideal

generated by an element of the form (v+
∑m

i=2 λig
i)(v−

∑
e∈S ee

∗) can in fact be generated

by some collection of vertices, together with elements of the form f(h) = w +
∑`

i=2 κih
i,

where κi ∈ K and h is a cycle based at w.

We first prove a lemma.

Lemma 3.2.2. Let E be any graph. Let v ∈ E0 be a finite emitter, and let S denote any

subset of s−1(v). Then these two ideals of LK(E) are equal:〈
v −

∑
e∈S

ee∗

〉
=
〈
{r(f) | f ∈ s−1(v) \ S}

〉
.

Proof. For convenience we let y denote v−
∑

e∈S ee
∗, A denote 〈y〉, and B denote the second

displayed ideal. Note that, since v is a finite emitter, then for S = s−1(v) we get the trivial

statement that the ideal {0} is generated by the empty set. So we consider the situation

where s−1(v) \ S is nonempty.

Let f ∈ s−1(v) \ S. Since f 6∈ S we get yf = vf = f , so that f∗yf = f∗f = r(f). Thus

each r(f) in the generating set for B is in A, so B ⊆ A.

Conversely, since v is a finite emitter, the CK2 relation at v gives

v =
∑

e∈s−1(v)

ee∗ =
∑
e∈S

ee∗ +
∑

f∈s−1(v)\S

ff∗,

so that

y = v −
∑
e∈S

ee∗ =
∑

f∈s−1(v)\S

ff∗ =
∑

f∈s−1(v)\S

fr(f)f∗ ∈ B.

So y ∈ B, so that A ⊆ B.
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Proposition 3.2.3. Let E be an arbitrary graph, let v be a finite emitter, let S be a subset

of s−1(v), and let g be a cycle based at v having initial edge e1. Write g = e1p for some real

path p in E. Let w denote r(e1), and let gw denote the cycle pe1 based at w (so that gw is

the cycle g, shifted to be based at w rather than v). Let

z =

(
v +

m∑
i=1

λig
i

)(
v −

∑
e∈S

ee∗

)
.

1. If e1 ∈ S, then 〈z〉 =
〈
{r(f) | f ∈ s−1(v) \ S}

〉
.

2. If e1 6∈ S, then 〈z〉 =
〈
w +

∑m
i=1 λig

i
w

〉
.

Proof. We use throughout that e1e
∗
1g = g. For convenience we let t(x) =

∑m
i=1 λix

i ∈ K[x].

1. We compute

e1e
∗
1z = e1e

∗
1(v + t(g))

(
v −

∑
e∈S

ee∗

)
= (e1e

∗
1 + t(g))

(
v −

∑
e∈S

ee∗

)
.

But e1 ∈ S gives e1e
∗
1(
∑

e∈S ee
∗) = e1e

∗
1, so that expanding the last term in the display

gives

= e1e
∗
1 − e1e∗1 + t(g)− t(g)

∑
e∈S

ee∗ = t(g)

(
v −

∑
e∈S

ee∗

)
.

So e1e
∗
1z = t(g)(v −

∑
e∈S ee

∗) ∈ 〈z〉, so that

z − e1e∗1z = z − t(g)

(
v −

∑
e∈S

ee∗

)

= (v + t(g))

(
v −

∑
e∈S

ee∗

)
− t(g)

(
v −

∑
e∈S

ee∗

)

= v

(
v −

∑
e∈S

ee∗

)

=

(
v −

∑
e∈S

ee∗

)
∈ 〈z〉 .

Now using Lemma 3.2.2, we get that
〈
{r(f) | f ∈ s−1(v) \ S}

〉
⊆ 〈z〉 .

Conversely, since

v −
∑
e∈S

ee∗ =
∑

f∈s−1(v)\S

ff∗ =
∑

f∈s−1(v)\S

fr(f)f∗,
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we get v −
∑

e∈S ee
∗ is in the ideal generated by the indicated vertices, hence so is z,

so that

〈z〉 ⊆
〈
{r(f) | f ∈ s−1(v) \ S}

〉
as well.

2. Since e1 6∈ S we have (v −
∑

e∈S ee
∗)e1 = e1 Clearly e∗1ze1 ∈ 〈z〉. Now compute

e∗1ze1 = e∗1(v + t(g))

(
v −

∑
e∈S

ee∗

)
e1 = e∗1(v + t(g))e1 = e∗1e1 + e∗1t(g)e1.

But if w denotes r(e1), this last expression is precisely w + t(gw), so that〈
w +

m∑
i=1

λig
i
w

〉
= 〈w + t(gw)〉 ⊆ 〈z〉 .

On the other hand, writing g = e1p, we have that v + t(g) = p∗(w + t(gw))p, so that

v + t(g), and therefore

z = (v + t(g))

(
v −

∑
e∈S

ee∗

)
,

are in 〈w + t(gw)〉 as desired.

We now get as a consequence of Theorem 3.1.5 the analogous result for the row-finite

case.

Alternative Proof of Theorem 3.1.5 . By Theorem 3.2.1, I has a generating set consisting

of elements of the type (
v −

m∑
i=1

λig
i

)(
v −

∑
e∈S

ee∗

)
.

But since E is row-finite, Proposition 3.2.3 yields that the ideal generated by any element

of this type can in fact be generated by elements of the desired form.

3.3 Examples

In this section we will give a couple of examples of two-sided ideals for different types of

graphs, and show that they are generated by elements of the desired form. Our goal is to

break down the given polynomials into smaller components.
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Figure 3.3: Graph of the Leavitt path algebra defined in Example 3.3.1 and 3.3.2.

Example 3.3.1. Let E be the directed graph given in Figure 3.3. Consider the two-sided

ideal I in LK(E) generated by µ = v + e1gg
∗e∗1 − e2e∗2. Then

e∗1µe1 = r(e1) + gg∗ = w + gg∗ ∈ I.

Here we consider two cases with respect to the field K.

Case I: If K has characteristic 2, then note that w + gg∗ = w − gg∗ ∈ I and

µ = v + e1gg
∗e∗1 − e2e∗2

= v − e1e∗1 + e1e
∗
1 − e1gg∗e∗1 − e2e∗2

= (v − e1e∗1 − e2e∗2) + (e1e
∗
1 − e1gg∗e∗1)

= (v − e1e∗1 = e2e
∗
2) + e1(w − gg∗)e∗1.

Hence 〈µ〉 = 〈v − e1e∗1 − e2e∗2, w − gg∗〉.
Case II: If K is any other field, then (w+ gg∗)g = 2g ∈ I and hence g ∈ I. Then g∗g =

w ∈ I, and e1gg
∗e∗1 ∈ I. Note that µ− e1gg∗e∗1 = v − e2e∗2. We get that 〈µ〉 = 〈v − e2e∗2, w〉

Example 3.3.2. Let E be the directed graph given in Figure 3.3. Consider the two-sided

ideal I in LK(E) generated by µ = v − e1gg∗e∗1. Then

e∗1µe1 = r(e1)− gg∗ = w − gg∗ ∈ I.

Note that

e1(w − gg∗)e∗1 = e1e
∗
1 − e1gg∗e∗1 ∈ I and

e1e
∗
1 − e1gg∗e∗1 − µ = v − e1e∗1 ∈ I.
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Figure 3.4: Graph of the Leavitt path algebra defined in Example 3.3.3.

Now we have

µ = v − e1gg∗e∗1 = e1(w − gg∗)e∗1 + (v − e1e∗1).

Hence 〈µ〉 = 〈w − gg∗, v − e1e∗1〉.

Example 3.3.3. Let E be the directed graph given in Figure 3.4. Consider the two-sided

ideal I in LK(E) generated by µ = v + e1e
∗
1g
∗ − e2e∗2 − g. Then e1e

∗
1µ = e1e

∗
1 + e1e

∗
1g
∗ ∈ I.

Note that

µ− e1e∗1µ = v − e1e∗1 − e2e∗2 − g ∈ I.

We then have

g∗(µ− e1e∗1µ)g = v − g ∈ I and

x := e1e
∗
1 + e2e

∗
2 ∈ I.

We see that e∗1xe1 = r(e1) ∈ I and e∗2xe2 = r(e2) ∈ I. As a result, we obtain 〈µ〉 =

〈r(e1), r(e2), v − g〉.



Chapter 4

Two-Sided Chain Conditions

In this chapter, we will give the necessary and sufficient conditions on the directed graph E

so that the associated Leavitt path algebra satisfies two-sided chain conditions by using the

main theorems from previous section. In the first section, we will state some preliminary

concepts and results. In the next two sections, we will characterize two-sided Noetherian

Leavitt path algebras and two-sided Artinian Leavitt path algebras with respect to the

underlying directed graph. In the final section, we will present some examples to illustrate

the results we have found. The results we demonstrate here appear in [18] and [6].

4.1 Preliminaries

In this section we classify those Leavitt path algebras which satisfy the ascending chain

condition (resp., descending chain condition) on two-sided ideals. To do so, we first recall

some notation.

Definition 4.1.1. If H is a hereditary subset of E0, then the breaking vertices of H is

defined to be the set

BH = {v ∈ E0 \H | v is an infinite emitter, and 0 < |s−1(v) ∩ r−1(E0 \H)| <∞}

and, for any v ∈ BH , we let

vH = v −
∑

s(e)=v,r(e)6∈H

ee∗.

Example 4.1.2. We consider the graph given in Figure 2.2. Let H = {u1, u2, . . . }, and by

Example 2.2.2, we know that H is hereditary subset of E0. Let fi be the edge with s(fi) = vi

and r(fi) = vi+1. We make the following observation. We see that v1 ∈ E0 \ H, and v1

36
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is an infinite emitter. In addition, |s−1(v) ∩ r−1(E0 \H)| consists of one edge; f1. Hence,

v1 ∈ BH . Similarly, we see that vi is in BH for each i ∈ N, hence BH is infinite.

We also get that

vi
H = vi −

∑
s(e)=vi,r(e) 6∈H

ee∗ = vi − fif∗i

for each i ∈ N.

Definition 4.1.3. A pair (H,S) is called an admissible pair if H is a hereditary saturated

subset of E0 and S ⊆ BH .

We let LE denote the set of admissible pairs of E, and order these elements by setting

(H,S) ≤ (H ′, S′) in case H ⊆ H ′ and S ⊆ H ′ ∪ S′.

Definition 4.1.4. If H is a hereditary saturated subset of E0 and S ⊆ BH , then I(H,S)

denotes the ideal of LK(E) generated by {v | v ∈ H} ∪ {vH | v ∈ S}.

Definition 4.1.5. If H is a saturated hereditary subset of E0 and S ⊆ BH , let I(H,S)

denote the ideal in LK(E) generated by {v | v ∈ H} ∪ {vH | v ∈ S}.

For any admissible pair (H,S) we define the graph E \ (H,S) by setting:

(E \ (H,S))0 = (E0 \H) ∪ {v′ | v ∈ BH \ S}, and

(E \ (H,S))1 = {e ∈ E1 | r(e) 6∈ H} ∪ {e′ | e ∈ E1, r(e) ∈ BH \ S}.

Here the symbols v′ and e′ denote symbols not in the original graph E. The range and

source functions r and s are extended to E\(H,S) by defining s(e′) = s(e) and r(e′) = r(e)′.

Example 4.1.6. Consider the graph given in Figure 4.1, and let H = {w} which is hered-

itary saturated subset of E0. There are no infinite emitters in this graph, hence BH = ∅.
Consider the admissible pair (H, ∅). Then

(E \ (H, ∅))0 = {v, u}, and

(E \ (H, ∅))1 = {x, t}.

The resulting graph is given in Figure 4.2.

Example 4.1.7. Consider the graph given in Figure 2.2, and let H = {u1, u2, . . . , }. In

Example 2.2.2, we showed that BH = {v1, v2, . . . }. Let S = {v1} ⊂ BH , hence (H,S) is an

admissible pair. Once again, let fi be the edge with s(fi) = vi and r(fi) = vi+1. Then

(E \ (H,S))0 = {v1, v2, . . . } ∪ {v′2, v′3, . . . }, and



CHAPTER 4. TWO-SIDED CHAIN CONDITIONS 38

v

u

w

x

y
z

t

Figure 4.1: Graph for Example 4.1.6.
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Figure 4.2: The graph of E \ (H, ∅) in Example 4.1.6.

(E \ (H,S))1 = {f1, f2, . . . } ∪ {f ′1, f ′2, . . . }

where s(f ′i) = s(fi) = vi and r(f ′i) = r(fi)
′ = v′i+1. The resulting graph is given in Figure

4.3.

v v v1

1 2

2 3

3v’ v’v’

f’ f’ f’1 2 3

f f1 2

Figure 4.3: The graph of E \ (H,S) in Example 4.1.7.

A theorem of Tomforde [35, Theorem 5.7], stated for countable graphs, plays a central

role in the current discussion. The key result upon which the proof of [35, Theorem 5.7] relies

is the so-called “Graded Uniqueness Theorem” [35, Theorem 4.8]. The Graded Uniqueness

Theorem was extended from countable graphs to graphs of arbitrary size in both [24, Theo-

rem 3.2] and [12, Theorem 3.5]. (Indeed, one can also show that all of the machinery which
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supports the proof of [35, Theorem 4.8] holds verbatim for arbitrary graphs as well.) With

the appropriate extension of the Graded Uniqueness Theorem in hand, a close examination

of the remainder of the proof of [35, Theorem 5.7] yields that the following result holds for

graphs of arbitrary size.

Theorem 4.1.8. (Extension of [35, Parts (1) and (2) of Theorem 5.7] to graphs of arbitrary

size.) Let E be a directed graph.

(i) The map (H,S) 7→ I(H,S) is a lattice isomorphism from the lattice LE of admissible

pairs to the lattice HE of graded ideals of LK(E).

(ii) For any admissible pair (H,S) there is an isomorphism of K-algebras

LK(E)/I(H,S) ∼= LK(E \ (H,S)).

4.2 Two-Sided Noetherian Leavitt Path Algebras

Now the Theorems are in hand, we are going to put the pieces together to get the two-sided

Noetherian results. First we will do this for row-finite graphs by using Theorem 3.1.5, and

then for the arbitrary graphs by using 3.2.1

First we need some preliminary results that we get as consequences of Theorem 3.2.1.

Lemma 4.2.1. Let I be a two-sided ideal of LK(E), where E is an arbitrary graph. Suppose

g, h are two non-trivial cycles based at distinct vertices u, v respectively. Suppose u +∑
arg

r = p(g) and v+
∑
bsh

s = q(h) both belong to I, where p(x) and q(x) are polynomials

of smallest positive degree in K[x] with p(0) = 1 = q(0) such that p(g) ∈ I and q(h) ∈ I. If

u ≥ v, then v ≥ u and 〈p(g)〉 = 〈q(h)〉.

Proof. Let the non-trivial cycle g be given by the edge sequence e1 · · · en with r(ei) = wi for

all i and that wn = u. For any i, let gi = ei+1 · · · ei be the shifted non-trivial cycle based at

wi and p(gi) = wi +
∑
arg

r
i . Clearly, p(x) is a polynomial of smallest positive degree such

that p(gi) ∈ I.

Let µ be a path from u to v. We claim that v must lie on the cycle g. Because

otherwise, µ∗g = 0 and so µ∗p(g)µ = µ∗uµ+
∑
arµ
∗grµ = v ∈ I. This contradicts the fact

that deg q(x) > 0. So we can write g = µν where ν is the part of g from v to u. Thus, in

particular, v ≥ u. We claim that the cycle h = νµ. Indeed, if h contains an edge f with

s(f) = wi for some i and f 6= ei+1, then f∗gi = 0 and we get f∗p(gi)f = f∗wif = wi+1 ∈ I,

contradicting the fact that deg p(x) > 0. Hence h = νµ. Since µ∗gµ = h, we get µ∗p(g)µ =

p(h) ∈ I. By the minimality of q(x), we have q(x) is a divisor of p(x) in K[x]. Similarly,
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since ν∗q(h)ν = q(g) ∈ I, we conclude that p(x) is a divisor of q(x). Thus q(x) = kp(x) for

some k ∈ K. Since p(0) = 1 = q(0), q(x) = p(x). Hence q(h) = µ∗p(g)µ ∈ 〈p(g)〉. Likewise,

p(g) = ν∗q(h)ν ∈ 〈q(h)〉. Hence 〈p(g)〉 = 〈q(h)〉.

The next Lemma and its proof are implicit in the proof of Lemma 7 in [2].

Lemma 4.2.2. Let E be an arbitrary graph and S ⊆ E0. If v ∈ S, and there is a non-trivial

cycle based at v, then u ≥ v for some u ∈ S.

Proof. We recall that S =
⋃
n≥0 Λn(S). Let k be the smallest non-negative integer such that

v ∈ Λk(S). We prove the statement by induction on k, the statement being true by definition

when k = 0. Assume k > 0 and that the statement holds when k = n− 1. Let k = n. Since

v ∈ Λn(S) \ Λn−1(S), 0 < |s−1(v)| < ∞ and {w1, . . . , wm} = r(s−1(v)) ⊆ Λn−1(S). Since

v is the base of a non-trivial cycle g, one of the vertices, say, wj lies on the cycle g and so

wj ≥ v. Since wj ∈ Λn−1(S) and is the base of a cycle, by induction there is a u ∈ S such

that u ≥ wj . Then u ≥ v, as desired.

Remark 4.2.3. If p(x) ∈ K[x] is the polynomial of smallest degree > 0 such that p(g) ∈ I
and p(0) = 1, then for any polynomial q(x) ∈ K[x] satisfying q(g) ∈ I we must have

p(x)|q(x). First we use the division algorithm and get q(x) = p(x)s(x) + r(x) where either

deg r(x) < deg p(x) or r(x) = 0. In either case, we see that r(g) ∈ I. We claim that

r(x) = 0. Otherwise, then write r(g) = λ0v + λ1g + · · · + λng
n, and let k be the smallest

index such that λk 6= 0. Then note that

r′(g) := (1/λk)(g
∗)kr(g) = v + λ′k+1g + · · ·+ λ′ng

n−k ∈ I.

Hence we get deg r′(x) < deg p(x), r′(g) ∈ I and r′(0) = 1, a contradiction.

We also need the following Lemma, whose proof is given in the first paragraph of the

proof of Theorem 5.7 in [35].

Lemma 4.2.4. Let E be an arbitrary graph and let H be a hereditary and saturated subset

of vertices in E. If I is the two-sided ideal generated by H, then I ∩ E0 = H.

Theorem 4.2.5. Let E be a row-finite graph. Then the following are equivalent:

(i) LK(E) has a.c.c. on two-sided ideals;

(ii) LK(E) has a.c.c. on two-sided graded ideals;

(iii) The hereditary saturated closures of the subsets of the vertices in E0 satisfy a.c.c.
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Proof. (iii) ⇒ (i) Suppose the ascending chain condition holds on the hereditary saturated

closures of the subsets of E0. Let I be a two-sided ideal of LK(E). By Theorem 3.1.5 and

by Remark 4.2.3, I is generated by the set

T = {v +
∑

r λrg
r = p(g) ∈ I | v ∈ E0, g is a cycle (may be trivial) based at v and

p(x) ∈ K[x] is a polynomial of smallest degree such that p(g) ∈ I and p(0) = 1}.

It is well known that two-sided Noetherian is equivalent to every two-sided ideal being

finitely generated, so we wish to show that I is generated by a finite subset of T .

Suppose, towards a contradiction, there are infinitely many pi(gi) = vi +
∑
λrg

r
i ∈ T

with i ∈ H, where H is an infinite set. Assume that for each i, gi is a non-trivial cycle

based at vi and that deg pi(x) > 0. By Lemma 4.2.1, we may assume that for any two

i, j with i 6= j, vi � vj . Well-order the set H and consider it as the set of all ordinals

less than an infinite ordinal κ. Define S1 = v1 and for any α < κ, define Sα = ∪β<αSβ if

α is a limit ordinal, and define Sα = Sβ ∪ {vβ+1} if α is a non-limit ordinal of the form

β + 1. By the hypothesis the ascending chain of hereditary saturated closures of subsets

S1 ⊆ S2 ⊆ · · · ⊆ Sα ⊆ · · · becomes stationary after a finite number of steps. So there

is an integer n such that Sn = Sn+1 = · · · . Now vn+1 ∈ Sn+1 = Sn and by Lemma

4.2.2, there is a vi ∈ Sn such that vi ≥ vn+1. This is a contradiction. Hence the set

W = {pi(gi) ∈ T | deg pi(x) > 0} is finite.

So by the previous paragraph, if there are only finitely many pi(gi) in T with deg pi(x) =

0, that is, only finitely many vertices in T , then we are done. We index the vertices vα in

T by ordinals α < κ, where κ is an infinite ordinal. Then as before, we get a well-ordered

ascending chain of hereditary saturated closure of subsets S1 ⊆ S2 ⊆ · · · ⊆ Sα ⊆ · · · (α < κ)

where S1 = {v1} and the Sα are inductively defined as before. Since, by hypothesis, this

chain becomes stationary after a finite number of steps, there is an integer n such that

Sα = Sn for all α > n. Thus {vα | α < κ} ⊆ Sn. Since the ideal generated by the finite set

Sn = {v1, . . . , vn} contains Sn, we conclude that the ideal I is generated by the finite set

W ∪ Sn. Thus the Leavitt path algebra is two-sided Noetherian.

(i) ⇒ (iii) Conversely, suppose LK(E) is two-sided Noetherian. Consider an ascending

chain of hereditary saturated closures of subsets of vertices S1 ⊆ S2 ⊆ · · · in E0. Consider

the corresponding ascending chain of two-sided ideals I1 ⊆ I2 ⊆ · · · , where for each integer

i, Ii is the two-sided ideal generated by Si. By hypothesis, there is an integer n such that

In = Ii for all i > n. We claim that Si = Sn for all i > n. Otherwise, we can find a

vertex w ∈ Si \ Sn and since w ∈ Ii = In, w ∈ In ∩ E0 = Sn by Lemma 4.2.4 and this is a

contradiction.
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Figure 4.4: Graph of the Leavitt path algebra defined in Example 4.2.8.

(ii) ⇔ (iii) This follows directly from [11], Theorem 5.3.

Remark 4.2.6. We note that this result only shows that the a.c.c. on graded ideals is

sufficient to get a.c.c. on all ideals, and that we are not proving that every ideal in a two-

sided Noetherian Leavitt path algebra is graded. As an example we can consider K[x, x−1],

which is the Leavitt path algebra of the graph with one vertex and one loop. Note that

although this Leavitt path algebra has infinitely many ideals, it is nonetheless Noetherian,

but has only the trivial graded ideals.

Now we easily obtain the following result.

Corollary 4.2.7. Every Leavitt path algebra with a finite graph is two-sided Noetherian.

We conclude by presenting another example of a non-Noetherian Leavitt path algebra.

Example 4.2.8. Let E = (E0, E1, r, s) be the directed graph where E0 = {v, w1, w2, w3, . . . }
and E1 = {e1, e2, . . . } ∪ {f1, f2, . . . } is such that r(ei) = v and s(ei) = r(fi) = s(fi) = wi.

The graph of this Leavitt path algebra is given in Figure 4.4.

Note that if we let Si = {w1, . . . , wi}, then S1 ( S2 ( · · · is a non-terminating ascending

chain of hereditary saturated closures of sets in E0. Hence by Theorem 4.2.5, LK(E) is not

two-sided Noetherian. Indeed, 〈w1〉 ( 〈w1, w2〉 ( · · · is a non-terminating ascending chain

of ideals in LK(E).

The current goal is to show how Theorem 3.2.1 allows us to identify the two-sided

Noetherian Leavitt path algebras for arbitrary graphs. In our verification of the following

useful result, we will use 2.5.16 which says that if I is an ideal of LK(E), then E0 ∩ I is a

hereditary saturated subset of E0.
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Proposition 4.2.9. Let E be an arbitrary graph and let I be an ideal of LK(E). Let H

denote the hereditary saturated subset I ∩ E0 of E0, and let L denote the ideal of LK(E)

generated by H ∪ C, where C is the collection of elements of I of the form

w +
k∑
i=1

κih
i

where h is a cycle based at the vertex w, and κi ∈ K.

Suppose x = (v +
∑k

i=1 λig
i)(v −

∑
e∈S ee

∗) ∈ I.

(i) If v is an infinite emitter, then either

v ∈ BH (in case s−1(v) ∩ r−1(E0 \H) 6= ∅), or

〈x, L〉 = 〈v, L〉 = L (in case s−1(v) ∩ r−1(E0 \H) = ∅).

(ii) If v is a finite emitter, then 〈x, L〉 = 〈v, L〉 = L.

Proof. (i) First assume that g is not a trivial cycle, and let e1 denote the initial edge of g.

If f ∈ s−1(v)\(S∪{e1}), then f∗g = 0, and e∗f = 0 for all e ∈ S. If g is trivial, then let

f ∈ s−1(v) \S. In either case, we get f∗xf = f∗vf = r(f) ∈ I ∩E0 = H. So if v is an

infinite emitter, we have shown that the range vertices of all edges emitted by v, except

perhaps for those in the finite set S ∪ {e1}, are in H. So |s−1(v) ∩ r−1(E0 \H)| <∞.

Thus if 0 < |s−1(v) ∩ r−1(E0 \H)|, then v ∈ BH by definition. If on the other hand

we have 0 = |s−1(v) ∩ r−1(E0 \H)|, then r(e1) ∈ H and r(e) ∈ H for all e ∈ S. Since

x ∈ I this gives v ∈ I, so that 〈v, L〉 ⊆ 〈x, L〉. Since the reverse containment is clear,

we get the desired conclusion.

(ii) follows directly from Proposition 3.2.3.

We now relate the chain conditions on the set of admissible pairs to the chain conditions

on the hereditary saturated subsets and sets of breaking vertices.

Lemma 4.2.10. Let E be an arbitrary graph. Then the following are equivalent.

(i) The lattice LE of admissible pairs (H,S) of E satisfies the a.c.c. with respect to the

partial order indicated above.

(ii) The lattice HE of all hereditary saturated subsets of E satisfies the a.c.c. (under set

inclusion), and, for each H ∈ HE, the corresponding set BH of breaking vertices is

finite.
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Proof. Suppose the a.c.c. holds in LE . Let

H1 ⊆ H2 ⊆ · · ·

be an ascending chain of hereditary saturated subsets of vertices in E. Then we get an

ascending chain of admissible pairs

(H1, ∅) ≤ (H2, ∅) ≤ · · · in LE

(where ∅ is the empty set). By hypothesis, there is an integer n such that

(Hn, ∅) = (Hn+1, ∅) = · · · .

This implies that

Hn = Hn+1 = · · · ,

showing that a.c.c holds in HE . Let H ∈ HE . Then the corresponding set BH of breaking

vertices of H must be finite, since otherwise BH would contain an infinite ascending chain

of subsets indexed by positive integers

S1 ( · · · ( Sn ( · · · ,

and this would then give rise to a proper ascending chain

(H,S1) < · · · < (H,Sn) < · · · in LE ,

contradicting the fact that a.c.c. holds in LE .

Conversely, suppose the a.c.c. holds in HE , and that BH is a finite set for each H ∈ HE .

Consider an ascending chain of admissible pairs

(H1, S1) ≤ (H2, S2) ≤ · · · in LE .

This gives rise to an ascending chain

H1 ⊆ H2 ⊆ · · · in HE

and so there is an integer k such that Hi = Hk for all i ≥ k. So from the kth term onwards,

the given chain of admissible pairs is of the form

(H,Sk) ≤ (H,Sk+1) ≤ · · · ,

where Sk, Sk+1, . . . are subsets of BH . Observe that since BH ∩H = ∅, it follows from the

definition of ≤ on LE that we have an ascending chain

Sk ⊆ Sk+1 ⊆ · · · .
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Since BH is a finite set, there is a positive integer m such that Sk+m = Sk+m+i for all i ≥ 0.

This establishes the a.c.c. in LE .

By a completely analogous argument, we get the following result as well.

Lemma 4.2.11. Let E be an arbitrary graph. Then the following are equivalent.

(i) The lattice LE of admissible pairs (H,S) of E satisfies the d.c.c. with respect to the

partial order indicated above.

(ii) The lattice HE of all hereditary saturated subsets of E satisfies the d.c.c. (under set

inclusion), and, for each H ∈ HE, the corresponding set BH of breaking vertices is

finite.

Here now is our main consequence of Theorem 3.2.1.

Theorem 4.2.12. Let E be an arbitrary graph and K any field. Then the following are

equivalent:

(i) LK(E) is two-sided noetherian;

(ii) LK(E) is two-sided graded noetherian;

(iii) The a.c.c. holds in the set HE of all hereditary saturated subsets of E (under set

inclusion), and, for each H ∈ HE , the corresponding set BH of breaking vertices is

finite.

Proof. (iii) ⇒ (i) Let I be an ideal of LK(E). We seek to show that I is finitely generated.

To this end, let H = I ∩E0 . Then as noted previously, H is a hereditary saturated subset

of E0. Let J1 ⊆ I be the ideal of LK(E) generated by H.

By considering the hereditary saturated closures of finite subsets of H, the a.c.c. con-

dition in HE implies that H = M , the hereditary saturated closure of a finite subset M .

Thus J1 is the ideal generated by the finite set M .

Let J2 be the ideal generated by the set

C =

{
v +

n∑
i=1

λig
i ∈ I | v ∈ E0, and g is a nontrivial cycle based at v

}
.

We will follow the ideas in the proof of Theorem 4.2.5 to show that J2 is finitely generated.

By Lemma 4.2.1, we can assume that J2 is generated by a subset T of C with the property

that for any two v +
∑n

i=1 λig
i, w +

∑m
i=1 µih

i in T , v � w and w � v. We claim that T

is a finite set. Suppose, by way of contradiction, T has infinitely many elements. Denote
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a countably infinite number of elements of T by vk +
∑nk

i=1 λig
i
k, k ∈ N. For each positive

integer n define Tn = {v1, . . . , vn}, and let Tn be its hereditary saturated closure. By

hypothesis, the ascending chain

T 1 ⊆ · · · ⊆ Tn ⊆ · · ·

becomes stationary after a finite number of terms, say, Tm = Tm+1 = · · · for some integer

m. Then vm+1 ∈ Tm+1 = Tm. But then, by Lemma 4.2.2, there is a vj ∈ {v1, . . . , vm} such

that vj ≥ vm+1, a contradiction. Thus T is a finite set and J2 is finitely generated (by T ).

Let L = J1 + J2 and thus L is the ideal generated by the finite set M ∪ T .

By Theorem 3.2.1, the ideal I has a set of generators for which each element in the

generating set has the form

x =

(
v +

k∑
i=1

λig
i

)(
v −

∑
e∈S

ee∗

)
,

where S(x) is some finite subset of s−1(v). By the previous paragraph, to show that I is

finitely generated it suffices to show that there exists a finite set x1, x2, . . . , xn of elements of

I for which, for each expression x in I having the displayed form, 〈x, L〉 ⊆ 〈x1, x2, . . . , xn, L〉 .
So let x = (v +

∑k
i=1 λig

i)(v −
∑

e∈S ee
∗) ∈ I. If v is a finite emitter, then 〈x, L〉 =

〈v, L〉 = L by Proposition 4.2.9(ii). So L itself already captures all of the expressions having

v a finite emitter.

Now let v be an infinite emitter. By Proposition 4.2.9(i), either 〈x, L〉 = 〈v, L〉 = 〈L〉,
or v ∈ BH . Thus we need only consider those vertices v in BH .

Since BH is finite by hypothesis, this yields that there are only finitely many infinite

emitters w in E for which there exists an expression of the form

x =

(
w +

k∑
i=1

λig
i

)w − ∑
e∈S(x)

ee∗


in I. Call this finite set W .

Let w ∈ W , and suppose (w +
∑k

i=1 λig
i)(w −

∑
e∈S ee

∗) ∈ I. We claim that 〈x, L〉 =

〈x′, L〉, where x′ = (w+
∑k

i=1 λig
i)(w−

∑
e∈T (x) ee

∗) ∈ I and T (x) ⊆ {e ∈ S(x) | r(e) 6∈ H}.
But this is straightforward: for each ` ∈ s−1(w) having r(`) ∈ H, we have ``∗ = `r(`)`∗ ∈

L, so that

x =

(
w +

k∑
i=1

λig
i

)w − ∑
`∈S(x)\{`∈S(x)|r(`)∈H}

``∗


−

(
w +

k∑
i=1

λig
i

) ∑
{`∈S(x)|r(`)∈H}

``∗

 .
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Since the second summand is in L, we get the desired conclusion.

To complete the proof, we thus need only establish that for each of the finitely many w ∈
BH for which there exists an expression of the form x = (w+

∑k
i=1 λig

i)(w−
∑

e∈S(x) ee
∗) ∈ I,

and each of the finitely many corresponding (finite) subsets U(x) ⊆ {e ∈ S(x) | r(e) 6∈ H},
that there exist finitely many elements x1, . . . , xn of I for which any element of the form

x = (w +
∑k

i=1 λig
i)(w −

∑
e∈U(x) ee

∗) is in the ideal 〈x1, . . . , xn, L〉. For a given choice of

w and U(x), let p(t) ∈ K[t] be a polynomial of smallest degree with the properties that

p(0) = 1 and x = p(g)(w −
∑

e∈U(x) ee
∗) ∈ I, where p(g) denotes (w +

∑k
i=1 λig

i). We note

that p(t) could possibly have degree 0, i.e., p(g) = w is allowed.

We claim that the ideal 〈x, L〉 contains every other expression of the form z = (w +∑m
i=1 µig

i)(w −
∑

e∈U(z) ee
∗) ∈ I, where where U(z) is a finite subset of s−1(w) for which

U(x) = U(z) \ {e ∈ U(z) | r(e) ∈ H}, and q(t) =
∑m

i=0 µit
i ∈ K[t] is some polynomial

with q(g) = w +
∑m

i=1 µig
i. That we may eliminate the edges e in U(z) for which r(e) ∈ H

is a result of the process described previously. This yields z ∈ 〈L, z′〉, where z′ = (w +∑m
i=1 µig

i)(w −
∑

e∈S(z′) ee
∗) ∈ I. By the minimality of the degree of p(t), a standard

division algorithm argument yields that q(t) = p(t)p1(t) for some p1(t) ∈ K[t], so that

z′ = p1(g)p(g) = p1(g)x ∈ 〈x〉 ⊆ 〈x, L〉, as desired.

In conclusion, we have shown that if we denote by x1, x2, . . . , xn the elements{
p(g)

(
w −

∑
e∈S

ee∗

)
| w ∈ BH , S ⊆ {e ∈ s−1(w) | r(e) 6∈ H}, and p(t) is the

monic polynomial of smallest degree for which p(g)

(
w −

∑
e∈S

ee∗

)
∈ I

}
,

then 〈x, L〉 ⊆ 〈x1, x2, . . . , xn, L〉, thus establishing the result.

That (i) ⇒ (ii) is obvious.

Finally, (ii) ⇒ (iii) follows from the lattice isomorphism between the lattice LE of ad-

missible pairs of E and the lattice HE of graded ideals of LK(E) established in Theorem

4.1.8(i), together with Lemma 4.2.10.

We note that the result established in Theorem 4.2.12 for arbitrary-sized graphs imme-

diately yields the identical result established for row-finite graphs in Theorem 4.2.5.

4.3 Two-Sided Artinian Leavitt Path Algebras

With the two-sided Noetherian result now in hand, we begin to build the machinery which

will allow us to achieve the two-sided Artinian result for Leavitt path algebras. Of use will

be the following two results.
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Proposition 4.3.1. [14, Proposition 1.17] Let E be an arbitrary graph. Suppose E satisfies

Condition (L) but does not satisfy Condition (K). Then there exists a hereditary saturated

subset H of E0 for which the graph E \ (H, ∅) does not satisfy Condition (L).

Proof. Since Condition (K) does not hold in E, there is a vertex v which is the base of

exactly one simple closed path c = e1 · · · en with ei ∈ E1. By Condition (L), c has exits. Let

A = {f ∈ E1 | f an exit of c}, and let B = {r(f) | f ∈ A}. Let H denote the hereditary

saturated closure of B in E, and let c0 denote the vertices of c, i.e., c0 = {r(ei) | 1 ≤ i ≤ n}.
We claim that H ∩ c0 = ∅. Indeed if there is a vertex w ∈ H ∩ c0, then by Lemma 4.2.1

there exists u ∈ B such that u ≥ w. This would then give rise to another simple closed path

based at v, a contradiction. Hence H ∩ c0 = ∅. If we consider the graph E \ (H, ∅), we get

by definition that c0 ⊂ (E \ (H, ∅))0, {e1, . . . , en} ⊂ (E \ (H, ∅))1, and thus c is a cycle in

E \ (H, ∅) with no exits. Therefore Condition (L) does not hold in E \ (H, ∅), as desired.

We immediately use Proposition 4.3.1 to get the following.

Proposition 4.3.2. Let E be an arbitrary graph and K any field. Suppose P is a ring-

theoretic property such that:

(i) if a ring R has P, then any factor ring of R also has P, and

(ii) for any Leavitt path algebra LK(E), if LK(E) satisfies P then E satisfies Condition

(L).

Then for any Leavitt path algebra LK(E) which satisfies P, the graph E satisfies Condition

(K).

Proof. Suppose LK(E) has property P. By Proposition 4.3.1, if E does not satisfy Condition

(K) then we may find a hereditary saturated subset H of E0 for which E \ (H, ∅) does not

satisfy Condition (L). But LK(E \ (H, ∅)) ∼= LK(E)/I(H,∅) by Theorem 4.1.8(ii), so that by

hypothesis (i) LK(E \ (H, ∅)) satisfies P, and thus by hypothesis (ii) yields Condition (L)

on E \ (H, ∅), a contradiction.

We are now ready to prove the two-sided Artinian result.

Theorem 4.3.3. Let E be an arbitrary graph and K any field. Then LK(E) is two-sided

Artinian if and only if the graph E satisfies Condition (K), the d.c.c. holds for hereditary

saturated subsets of E0, and for each hereditary saturated subset H, the corresponding set

BH of breaking vertices is finite.
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Proof. Suppose LK(E) is two-sided Artinian. We first show that E satisfies Condition (L).

Suppose, on the contrary, Condition (L) does not hold. Then there is a cycle c based at

a vertex v for which c has no exits. Consider the following descending chain of ideals of

LK(E):

〈v − c〉 ⊇
〈
v − c2

〉
⊇ · · · ⊇

〈
v − c2n

〉
⊇ · · ·

By hypothesis, there is an integer k such that
〈
v − c2k

〉
=
〈
v − c2k+1

〉
. So in particular we

can write

v − c2k =
n∑
i=1

λiαiβ
∗
i (v − c2k+1

)γiδ
∗
i ,

where αi, βi, γi and δi are paths in E. Multiplying both expressions on the left and right by

v, we conclude that if a term vαiβ
∗
i (v − c2k+1

)γiδ
∗
i v is nonzero, then v = s(αi) = s(βi) =

s(γi) = s(δi) and further r(αi) = r(βi) and r(γi) = r(δi). Since c has no exits, we argue

as in the proof of Proposition 5.1.5 that αiβ
∗
i = cti and γiδ

∗
i = cui for some ti, ui ∈ Z. In

particular, all factors in the sum commute, and we may write

v − c2k =
n∑
i=1

λiv − c2
k+1

cwi .

But then arguing on both the smallest and largest degrees in the right hand expression we

see that wi = 0 for all 1 ≤ i ≤ n. So we have v−c2k = λ(v−c2k+1
) for some λ ∈ K, which is

impossible, again by a comparison of degrees of homogeneous terms. Hence Condition (L)

holds in E.

But any homomorphic image of a two-sided Artinian ring is again two-sided Artinian.

Thus, using the previous paragraph, we may invoke Proposition 4.3.2 (where P is “two-sided

Artinian”) to conclude that E satisfies Condition (K).

Furthermore, since LK(E) satisfies the d.c.c. on all ideals it necessarily satisfies the

d.c.c. on graded ideals. Then by Lemma 4.2.11 this yields the desired properties on the

hereditary saturated subsets of E and the sets of breaking vertices in E.

Conversely, if Condition (K) holds then by Theorem 5.1.1 we have that every ideal of

LK(E) is graded. In particular, the lattice of all ideals is the same as the lattice of graded

ideals. But the indicated conditions on the hereditary saturated subsets of E and the sets

of breaking vertices in E implies that the lattice of graded ideals has the d.c.c. by Lemma

4.2.11. Thus LK(E) is two-sided Artinian.

We note that in fact we have proven that the d.c.c. on principal ideals of LK(E) is

equivalent to LK(E) being two-sided Artinian, since the d.c.c. on principal ideals was

sufficient to establish that Condition (K) holds in E.
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The following observation compares and contrasts the Artinian result Theorem 4.3.3

with its Noetherian counterpart Theorem 4.2.12. While two-sided Noetherian is equivalent

to being graded two-sided Noetherian, not all ideals in a Noetherian Leavitt path algebra are

necessarily graded. Indeed, K[x, x−1] = LK(R1), where R1 is the directed graph consisting

of one vertex v and one edge e such that s(e) = r(e) = v, is graded Noetherian (there

are no nontrivial graded ideals), and therefore Noetherian, but all of the (infinitely many)

nontrivial ideals of K[x, x−1] are nongraded. On the other hand, two-sided Artinian is not

equivalent to being graded two-sided Artinian, as the same K[x, x−1] example demonstrates.

However, in a two-sided Artinian Leavitt path algebra, every ideal is necessarily graded (as

Condition (K) holds in such algebras). We note that in order to achieve the Noetherian

result, we invoked the explicit description of the generating sets of arbitrary ideals afforded

by Theorem 3.2.1. However, we did not need to directly use the result of Theorem 3.2.1 for

the Artinian result. (We did utilize Theorem 5.1.1, a consequence of Theorem 3.2.1, in the

proof of the Artinian result; however, we could have instead simply invoked [24, Theorem

3.8] in its place.)

4.4 Examples

We now offer some explicit examples which we hope will help the reader to clarify these

ideas.

If LK(E) is two-sided Artinian, it need not be two-sided Noetherian, and, likewise, the

two-sided Noetherian condition does not imply the two-sided Artinian condition.

Clearly K[x, x−1] = LK(R1) provides an example of the latter. For the former, consider

the following example.

Example 4.4.1. Let Pω =
⋃
n∈N Pn be the “pyramid” graph of length ω described in [13] and

pictorially represented here (Figure 4.5). Specifically, for n ≥ 1, Pn denotes the subgraph of

Pω consisting of vertices in the first n “rows”, together with all edges they emanate. This

graph is acyclic, so Condition (K) is vacuously satisfied. The hereditary saturated subsets

of Pω correspond exactly to the subgraphs Pn; these clearly do not satisfy a.c.c., but do

satisfy d.c.c. Since there are no infinite emitters in Pω, the sets of breaking vertices BH are

empty. Hence by Theorem 4.3.3 the Leavitt path algebra LK(Pω) is two-sided Artinian, but,

by Theorem 4.2.12, not two-sided Noetherian.

Example 4.4.2. Consider the graph E in Figure 4.6.

So in particular for each j ∈ N, there is an edge from vj to every ui, i ∈ N.
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Figure 4.5: Graph of the Leavitt path algebra defined in Example 4.4.1.

Since there is only one edge which emanates from each ui, if H is a hereditary saturated

subset of E0 which contains some uj, then H contains ui for all i ∈ N (For i > j use the

hereditary property, and for i < j use the saturated property.). With this observation in

mind, it then follows easily that E0 contains precisely three hereditary saturated subsets: ∅,
{ui | i ∈ N}, and E0. If we denote {ui | i ∈ N} by H, then each of the infinitely many vi

are breaking vertices for H. Therefore, even though there are very few hereditary saturated

subsets in E0, LK(E) does not satisfy either chain condition by Theorems 4.2.12 and 4.3.3.

v v v v

u u u u

1

1 2

2 3

3

4

4

Figure 4.6: Graph of the Leavitt path algebra defined in Example 4.4.2.
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Applications

5.1 Some Applications of the Main Theorem

We now give some applications of Theorem 3.2.1. We will give shorter and simpler proofs

for some of the known results in Leavitt path algebras. The results presented here also

appear in [6].

We start with the following result, which was established for arbitrary-sized graphs in

[24, Theorem 3.8], using techniques significantly different than we will use here.

Theorem 5.1.1. Let E be an arbitrary graph, and K any field. Then E satisfies Condition

(K) if and only if every ideal of LK(E) is graded.

Before beginning the proof, we note that a similar result for countable graphs is presented

as [35, Theorem 6.16]. Although the statement of [35, Theorem 6.16] indeed holds also for

arbitrary graphs, the tools used in its proof relies on the desingularization process, a process

which may be utilized only for countable graphs (see e.g. [7]).

Proof. Let I be an ideal of LK(E). If E satisfies Condition (K) then there is no vertex in

E which is the base of a unique cycle. So, by Theorem 3.2.1, I has a generating set of the

form {
v −

∑
e∈S

ee∗ | v ∈ V ⊆ E0, S ⊆ s−1(v)

}
.

But any element of the form v −
∑

e∈S ee
∗ is homogeneous of degree 0. So I is an ideal

generated by homogeneous elements (of degree 0), hence is graded by Remark 2.5.15.

Conversely, if E does not satisfy Condition (K) then by [35, Proposition 6.12] there

is a graph F which does not satisfy Condition (L), and an onto ring homomorphism φ :

LK(E)→ LK(F ) for which φ preserves the respective gradings. (We give the proof of this

52
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result in Proposition 4.3.1) But for a graph F which does not satisfy Condition (L) one can

build a non-graded ideal in LK(F ) (specifically, the ideal 〈v + c〉 where c is a cycle without

exits based at v), which implies the existence of a non-graded ideal in LK(E).

In addition, we may use Theorem 3.2.1 to obtain information about generating sets for

the graded ideals of the Leavitt path algebra LK(E) for any graph E. In particular, this

allows us (in the implication (1)⇒ (3)) to give a more direct proof of the key piece of [35,

Theorem 5.7(1)].

Theorem 5.1.2. Let E be an arbitrary graph and K any field. Then the following are

equivalent for an ideal I of LK(E):

(i) I is a graded ideal;

(ii) I is generated by elements of the form v −
∑

e∈S ee
∗ ∈ I, where v ∈ E0 and S is a

finite (perhaps empty) subset of s−1(v);

(iii) I is generated by the subset H ∪ Y , where H = I ∩ E0 and Y = {v −∑
e∈s−1(v), r(e)6∈H ee

∗ ∈ I, with v ∈ BH}.

Proof. (i)⇒ (ii) By Theorem 3.2.1, I is generated as an ideal by elements in I of the form

x =

(
v −

n∑
k=1

λkg
k

)(
v −

∑
e∈S

ee∗

)
=

(
v −

∑
e∈S

ee∗

)
−

n∑
k=1

λkg
k

(
v −

∑
e∈S

ee∗

)
,

where S is a finite subset of s−1(v). Let m denote the number of edges in the cycle g. Since

I is graded, each of the graded components of x is in I. Since deg(v −
∑

e∈S ee
∗) = 0, we

have that the degree 0 component of x is v −
∑

e∈S ee
∗, while the degree mk component of

x for k ≥ 1 is λkg
k(v −

∑
e∈S ee

∗). This implies that x belongs to the ideal generated by

elements in I of the form v −
∑

e∈S ee
∗, as desired.

(ii) ⇒ (iii) Consider a generator y = v −
∑

e∈S ee
∗ ∈ I. If S is empty, then y = v ∈

I ∩E0 = H. Suppose y 6∈ 〈H〉, the ideal generated by H. Then v 6∈ H. If r(e) ∈ H for any

e ∈ S, then e = er(e) ∈ 〈H〉 and so ee∗ ∈ 〈H〉. Subtracting from y all those terms ee∗ for

which r(e) ∈ H (and thus removing such e from S), we may assume that r(e) 6∈ H for every

e ∈ S. Observe that this process will not exhaust all of S, since otherwise,
∑

e∈S ee
∗ ∈ 〈H〉

and v = y −
∑

e∈S ee
∗ ∈ I ∩ E0 = H, a contradiction. If there is an f ∈ E1 with s(f) = v

and r(f) 6∈ H, then f must belong to S, because, otherwise,

z = (v − ff∗)(v −
∑
e∈S

ee∗) = v − ff∗ −
∑
e∈S

ee∗ ∈ I,
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which implies that y − z = ff∗ ∈ I. From this we get r(f) = f∗(ff∗)f ∈ I ∩ E0 = H, a

contradiction. Thus the finite set S is precisely the set {e ∈ s−1(v) | r(e) 6∈ H}. If v is a

finite emitter, then

y = v −
∑
e∈S

ee∗ =
∑

f∈s−1(v)\S

ff∗ =
∑

f∈s−1(v), r(f)∈H

ff∗ ∈ 〈H〉 .

If on the other hand v is an infinite emitter, then v is a breaking vertex of H and so

y = v −
∑

e∈S ee
∗ ∈ Y . This proves (iii).

(iii) ⇒ (i) As noted in Remark 2.5.15, any ideal generated by homogeneous elements

(here, of degree 0) is graded.

Corollary 5.1.3. Let E be an arbitrary graph, and K any field. Then every nonzero graded

ideal of LK(E) contains a vertex.

Proof. Let I be a nonzero graded ideal of LK(E). By Theorem 5.1.2, I is generated by

elements of the form v −
∑

e∈S ee
∗ ∈ I, where v ∈ E0 and S is a finite (perhaps empty)

subset of s−1(v). If S = ∅ for some such v then we are done. If v is a finite emitter, then

S 6= s−1(v) (since otherwise the expression v −
∑

e∈S ee
∗ is zero); if v is an infinite emitter,

then S 6= s−1(v) as well, as S is finite. Thus in either case there exists f ∈ s−1 \ S, and we

get

r(f) = f∗f = f∗

(
v −

∑
e∈S

ee∗

)
f ∈ I.

We make a final observation regarding the graded ideals of LK(E) for arbitrary E. Since

any element of the form v −
∑

e∈S ee
∗ for any finite subset S of s−1(v) is an idempotent,

condition (2) of Theorem 5.1.2 yields the following

Corollary 5.1.4. Let E be any graph, K any field, and I any graded ideal of LK(E). Then

I2 = I.

With Theorem 5.1.1 and Corollary 5.1.4 in mind, the following result follows almost

immediately.

Proposition 5.1.5. Let E be any graph and K be any field. Then I2 = I for every ideal I

of LK(E) if and only if E satisfies Condition (K).

Proof. Suppose I2 = I for every ideal of LK(E). We first claim that E must satisfy Con-

dition (L). Because, on the contrary, there would be a cycle c in E based at a vertex v for
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which c has no exits; we show that this would yield that the ideal I = 〈v − c〉 has I2 6= I.

Since I2 = I, v − c can be written as a K-linear combination of non-zero elements of the

form

x = αβ∗(v − c)pq∗(v − c)γδ∗

for suitable paths in E. Moreover, as v(v − c)v = v − c, we may assume that vxv = x,

and that v = s(α) = s(β) = s(p) = s(q) = s(γ) = s(δ), r(α) = r(β), r(p) = r(q) and

r(γ) = r(δ). Since c has no exits, the expressions αβ∗, pq∗, and γδ∗ must be of the form cj

for some j ∈ Z. In particular, each of these expressions commutes with v − c, and so we

get x = (v − c)2ct for some integer t. This then yields v − c = (v − c)2
∑m

i=1 kic
ti for some

ki ∈ K, ti ∈ Z. But this is not possible by comparing degrees on both sides.

Thus we have shown that E satisfies Condition (L). Since the property that I2 = I for

every ideal I is preserved under homomorphic images, we conclude from Proposition 4.3.2

that E satisfies Condition (K).

Conversely, suppose E satisfies the Condition (K). By Theorem 5.1.1, every ideal I of

LK(E) is graded and so I2 = I by Corollary 5.1.4.

Remark 5.1.6. In [16, Theorem 3.15] it was shown that an arbitrary graph E satisfies

Condition (K) if and only if I2 = I for every left (or right) ideal of LK(E). We thus obtain

from Proposition 5.1.5 that in a Leavitt path algebra LK(E), I2 = I for every (two-sided)

ideal I if and only if I2 = I for every one-sided ideal I.

Lastly, we conclude this Chapter by noting that many known properties of Leavitt

path algebras derive almost immediately from Theorem 3.2.1. Indeed, with Theorem 3.2.1

in hand, we may re-establish a number of results in a manner different from the proofs

originally provided in the literature. We offer the proof of one such result.

Proposition 5.1.7. If the graph E satisfies Condition (L), then every nonzero ideal I of

LK(E) contains a vertex.

Proof. By Theorem 3.2.1, I is generated by elements of the form

x =

(
v +

n∑
r=1

krg
r

)(
v −

∑
e∈S

ee∗

)
.

belonging to I where v ∈ E0, g is a cycle based at v, and S is a finite subset of s−1(v).

Since some such x is necessarily nonzero, for this x we have that S must be a proper subset

of s−1(v); let f ∈ s−1(v) \ S. Let e1 denote the initial edge of g, so that g = e1p for a path

p with r(p) = v.
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If f 6= e1, then f∗g = 0 and we get f∗xf = f∗vf = r(f) ∈ I and we are done.

If f = e1, then f∗gf = pf = h, a cycle based at r(f) = w. Since (
∑

e∈S ee
∗)f = 0,

we get f∗xf = f∗vf +
∑n

r=1 krf
∗grf = w +

∑n
r=1 krh

r ∈ I. Now by Condition (L), h

has an exit e′, which we can assume to be at w (Indeed, if the e′ is an exit at a vertex

u on h, and if µ is the path from w to u and ν is the path from u to w along h, then

µ∗(w +
∑n

r=1 krh
r)µ = µ∗wµ +

∑n
r=1 krµ

∗hrµ = u +
∑n

r=1 krc
r ∈ I where c = νµ is the

cycle based at u). As (e′)∗h = 0, the element (e′)∗(w +
∑n

r=1 krh
r)e′ = (e′)∗ve′ + 0 = r(e′)

and belongs to I. Hence I contains a vertex in this case as well.

Additional results for arbitrary graphs which follow from Proposition 5.1.7 and Corollary

5.1.3 include the Graded Uniqueness Theorem [35, Theorem 4.6], the Cuntz-Krieger Unique-

ness Theorem [35, Theorem 6.8], and the Simplicity Theorem [3, Theorem 3.1]. Please see

[12, Sec. 3] for a complete description.



Chapter 6

Graph C∗-algebras

6.1 Extending the Results to Graph C∗-algebras

In this section we give the relationship between graph C∗-algebras and Leavitt path algebras.

The definitions here can also be found in [17, 19, 33].

We first define graph C∗-algebras.

Definition 6.1.1. A ∗-algebra is an associative algebra A over the complex numbers C with

an involution: a map a 7→ a∗ from A to A such that (λa+ µb)∗ = λa∗ + µb∗, (a∗)∗ = a and

(ab)∗ = b∗a∗.

Definition 6.1.2. A C∗-algebra is a ∗-algebra A with norm a 7→ ‖a‖ : A → [0,∞) which

satisfies the usual axioms for a norm on a vector space:

‖ab‖ ≤ ‖a‖‖b‖ and ‖a‖2 = ‖a∗a‖ (the C∗−identity),

and for which the normed space (A, ‖ · ‖) is complete in the sense that Cauchy sequences

converge.

Definition 6.1.3. Let A be a C∗-algebra. An element a in A for which a∗a is a projection

is called a partial isometry.

Definition 6.1.4. An element h of a C∗-algebra A is said to be self-adjoint if h∗ = h. An

element a of A is said to be positive if a = h2 for some self-adjoint element h ∈ A.

We can introduce a partial order on the self-adjoint elements of a C∗-algebra by defining

S ≤ T if and only if T − S ≤ 0.

Definition 6.1.5. If E is a graph we define a Cuntz-Krieger E-family to be a set of mutually

orthogonal projections {pv | v ∈ E0} and a set of partial isometries {se | e ∈ E1} with

orthogonal ranges which satisfy the Cuntz-Krieger relations:

57
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1. s∗ese = pr(e) for every e ∈ E1,

2. ses
∗
e ≤ ps(e) for every e ∈ E1,

3. pv =
∑

s(e)=v ses
∗
e for every v ∈ E0 with 0 < |s−1(v)| <∞.

The graph C∗-algebra C∗(E) is defined to be the C∗-algebra generated by a universal Cuntz-

Krieger E-family.

As it can be seen, the relations 4. and 5. in the definition of Leavitt path algebra are

inherited from the definition of C∗(E), and makes Leavitt path algebras a purely algebraic

analog of the graph C∗-algebras.

We have already stated the necessary and sufficient conditions on the graph so that the

associated Leavitt path algebra is simple in 2.5.17. To make the comparison, we state the

graph C∗-algebra version as well. The following result appears in [17, Theorem 2.1.23].

Theorem 6.1.6. Let E be a row-finite graph. Then C∗(E) is simple if and only if E

satisfies Condition (L) and E0 has no saturated hereditary subsets other than ∅ and E0.

We note that the conditions on the graph E are precisely the same for both C∗(E) and

LK(E) to be simple.

In addition, we present results about purely infinite and simple (purely infinite simple)

Leavitt path algebras and graph algebras as another example of the relationship between

the two classes.

Before stating these results, let us define purely infinite simple rings and purely infinite

simple C∗-algebras.

Definition 6.1.7. An idempotent e in a ring R is called infinite if eR is isomorphic as a

right R-module to a proper direct summand of itself. R is called purely infinite in case every

nonzero right ideal of R contains an infinite idempotent. R is purely infinite simple, if it is

both purely infinite and simple.

Definition 6.1.8. A C∗-algebra A is purely infinite simple if every nonzero hereditary

subalgebra of A contains an infinite projection.

Definition 6.1.9. Let E be a directed graph. If g is a cycle in E, and v is a vertex in E0,

then we say that v connects to cycle g if v ≥ w for some vertex w in g.

The next result appears as [3, Theorem 4.3].

Theorem 6.1.10. Let E be a directed graph. Then L(E) is purely infinite simple if and

only if E has the following properties.
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(i) The only hereditary saturated subsets of E0 are E0 and ∅;

(ii) Every cycle in E has an exit;

(iii) Every vertex connects to a cycle.

The next Theorem describes purely infinite simple graph C∗-algebras. We combine [22,

Corollary 2.14], [22, Remark 2.16] and [17, Theorem 2.1.13] for an easier comparison.

Theorem 6.1.11. Let E be a directed graph. Then C∗(E) is purely infinite simple if and

only if E satisfies the following properties.

(i) The only hereditary and saturated subsets of E0 are E0 and ∅;

(ii) Every vertex in E has an exit;

(iii) Every vertex connects to a cycle.

It has been also noted that simple Leavitt path algebras and graph algebras share the

same dichotomy [17]:

Theorem 6.1.12. Let E be a row-finite directed graph. If LK(E) is simple, then either

1. LK(E) is purely infinite simple, or

2. LK(E) is a limit of finite dimensional matrix rings.

For the C∗(E) version, we need the definition of an approximately finite-dimensional

C∗-algebra. The approximately finite-dimensional property for C∗-algebras corresponds to

being a limit of finite dimensional matrix rings for rings.

Definition 6.1.13. A C∗-algebra is an approximately finite-dimensional (AF-algebra) if it

can be written as the closure of the increasing union of finite-dimensional C∗-algebras; or,

equivalently, if it is the direct limit of a sequence of finite-dimensional C∗-algebras.

The corresponding graph C∗-algebra result can be obtained by combining [22, Corollary

2.13], [22, Remark 2.16] and [17, Theorem 2.1.13].

Theorem 6.1.14. Let E be a directed graph. If C∗(E) is simple, then either

(i) C∗(E) is an AF-algebra (if E contains no cycles); or

(ii) C∗(E) is purely infinite (if E contains a cycle).
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As it can be seen, these two classes of algebras share a close relationship. Thus, it is

natural to ask to following question.

Question 6.1.15. Is it also possible to give characterization for the closed two-sided ideals

in C∗(E)?

By considering Theorem 3.2.1, one may naively think that these ideals could be generated

by elements of the form (
pv +

m∑
k=2

λiSgrk

)(
pv −

∑
e∈X

SeS
∗
e

)
,

where v ∈ E0, λi ∈ C, X is a finite (possibly empty) subset of s−1(v), g is the unique cycle

based at v, and rk ∈ N. However, Pere Ara pointed out to us that this is not the case.

To see this we consider the directed graph E consisting of one vertex v ∈ E0 and one edge

x such that s(x) = r(x) = v. Then C∗(E) becomes the universal C∗-algebra generated

by the unitary element Sx. Recall that this C∗-algebra is the algebra of complex-valued

continuous functions on the unit circle, and it is well-known that this algebra is generated

by trigonometric polynomials [34, Theorem 4.25]. This together with the fact that the

graph is row-finite reduce the question to the following. Is any closed two-sided ideal of the

continuous functions on the unit circle generated by elements of the form

1 +
N∑
k=1

λie
ikx,

where λi ∈ C?

We let C be a proper closed interval in the unit circle, and let IC be the closed two-sided

ideal consisting of continuous functions vanishing on C. This ideal cannot be expressed as

the closure of the ideal generated by an elements of the form 1 +
∑N

k=1 λie
ikx as such an

element has at most finitely many zeros in C.
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