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Abstract

Leavitt path algebras are a natural generalization of the Leavitt algebras, which are a class
of algebras introduced by Leavitt in 1962. For a directed graph F, the Leavitt path algebra
Li(F) of E with coefficients in K has received much recent attention both from algebraists
and analysts over the last decade, due to the fact that they have some immediate structural
connections with graph C*-algebras.

So far, some of the algebraic properties of Leavitt path algebras have been investigated,
including primitivity, simplicity and being Noetherian. We explicitly describe two-sided
ideals in Leavitt path algebras associated to an arbitrary graph. Our main result is that
any two-sided ideal I of a Leavitt path algebra associated to an arbitrary directed graph is
generated by elements of the form (v+ Y7 | Aig")(v—>_ g ee*), where g is a cycle based at
vertex v, and S is a finite subset of s~*(v). We first use this result to describe the necessary
and sufficient conditions on the arbitrary-sized graph F, such that the Leavitt path algebra
associated to E satisfies two-sided chain conditions. Then we show that this result can be
used to unify and simplify many known results for Leavitt path algebras some of which have
been proven by using established methodologies from C*-algebras.

Keywords:

Leavitt path algebras; generators of two-sided ideals; Noetherian rings; Artinian rings
Subject Terms:

algebra; noncommutative algebras; Leavitt path algebras; two-sided ideals; two-sided chain

conditions; graph algebras
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Chapter 1

Introduction

Leavitt path algebras over a field K are the focus of this thesis. Let E be a directed graph,
that is a collection of vertices and directed edges connecting them. The Leavitt path algebra
associated to F is formed by taking the K-algebra generated by the set of vertices and edges
of a graph E and then adding relations involving them. Leavitt path algebras are a natural
generalization of Leavitt algebras, defined by Leavitt in 1962 [29]. The goal of Leavitt was
to find rings which do not have Invariant Basis Number (IBN), that is, for which there
exist isomorphic free modules of different ranks. This class of K-algebras are called Leavitt
algebras and are denoted by Lx (m,n).

Cuntz, almost 10 years later, constructed related C*-algebras (also called Cuntz algebras)
denoted by O,, for n > 1 [20]. In his paper, Cuntz investigated these C*-algebras and showed
that they are simple besides having many other C*-algebraic properties. Although the work
of Cuntz was independent of that of Leavitt, the algebras share strong connections. For
example L¢(1,7n) is a dense subalgebra of O,,. In other words, if K is the field of complex
numbers, O,, can be seen as a completion of Lk (1,n) in an appropriate norm.

Cuntz and Krieger [21] generalized the definition of O, by constructing a C*-algebra
from a finite matrix A whose entries consists of Os and 1s, and every row and every column
of A is non-zero. The assumption that the entries consisting of 0s and 1s was only for
convenience. They showed that all constructions and results also extend to matrices with
entries in Z,. With this definition, the algebras O,, discussed above arise in this way from
the 1 x 1 matrix [n], or, equivalently, from the n x n matrix all of whose entries are 1s.
These algebras are denoted by Q4 where A is a (finite) square matrix.

Kumjian et al. [27] noticed that relations given in the definition of O4 also make sense
for infinite matrices A whenever the rows of A contain only finitely many 1s. These matrices

can also be seen as the adjacency matrices of row-finite directed graphs, in which there are
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only finitely many edges emanating from each vertex. Hence they expanded the definition
of Oy to C*-algebras associated to row-finite graphs, and these are denoted by C*(FE) for
a row-finite graph E. Later the definition was generalized to C*-algebras over arbitrary
graphs in [31], and have been the subject of much investigation since. For example, to
better understand the algebraic properties of these algebras, Ara et al. [10] constructed
algebraic analogues of 04, and they denoted these by CK4(K). In the case that A is the
n X n matrix all whose entries consist of 1s, CK4(K) gives exactly Lx(1,n).

In 2005, Abrams and Aranda-Pino [1] constructed Leavitt path algebras (please see
2.4.1 for the definition). When K = C, L¢(F) is the algebra described in [30], where it is

presented as

span{S,S,, | u,v are paths in E, s(u) = s(v)}.

This C-algebra along with certain rules for forming products was used by Raeburn to
investigate the C*-algebra C*(F) by completing this algebra with respect to an appropriate
norm. One major difference between Lc(E) and C*(E) is that the elements of L¢(E) can
be seen as linear combinations of elements of the form pq*, where p and ¢ are paths in F,
unlike the situation in C*(E) [17].

Other than this major difference, the two classes of algebras share amazing similarities.
These two classes of algebras have some immediate structure-theoretic connections, and
many theorems in one class have analogues in the other. For most of the known results,
the graph-theoretical properties on the directed graph E that characterize C*(FE) satisfies
a C*-algebraic property are exactly the same that are needed for the Leavitt path algebra
Lk (F) to satisfy the corresponding purely algebraic property. For example, the necessary
and sufficient conditions on the underlying graph E such that C*(F) is simple (respectively,
purely infinite simple, finite-dimensional) in the category of graph C*-algebras are precisely
the same with the conditions such that Ly (E) is simple (respectively, purely infinite simple,
finite-dimensional) in the category of K-algebras [9]. Moreover, the results for Leavitt path
algebras are independent of base field K, and hence hold for C in particular.

This intimate relationship between the two classes of algebras has been mutually bene-
ficial: the results found in graph C*-algebras help to determine which results may be true
for Leavitt path algebras and to identify which direction should be taken to prove them,
and Leavitt path algebras help to identify the sort of things one should expect to hold for
graph C*-algebras. In addition, both of the classes are associated to directed graphs, pro-
viding one with graph-theoretic tools that can be used to study both classes of algebras.

Graphs, which are combinatorial objects, give visual representations of these algebras, and
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make it easier to find examples and counter-examples. These are the reasons why Leavitt
path algebras have been drawing attention both from algebraists and analysts since their
introduction in 2005 [2, 11, 24].

Many properties of Leavitt path algebras have been investigated with respect to the
underlying graph. These properties include, but are not limited to, being simple [1], be-
ing purely infinite simple [2], being finite-dimensional [4], being exchange [14], and being
Noetherian (equivalently locally finite) [5]. In addition, the ideal structure has been inves-
tigated in terms of defining the lattice of ideals [35]. Our aim is to complete the algebraic
picture by characterizing the generators of two-sided ideals in Leavitt path algebras. Our

main result is the following.

Theorem 3.2.1. Let I be any two-sided ideal of L (F). Then there exists a generating set

for I consisting of elements of I of the form

m
(v+ Z Mg (v — Z ee*)
k=2 eeS
where v € E° Xo,...,Am € K, 7a,...,7m are positive integers, S is a finite (possibly
empty) subset of E' consisting of edges with source vertex v, and, whenever Ay # 0 for

some 2 < k <m, g is the unique cycle based at v.

This result says that one can have an idea what the generators might be for any two-
sided ideal in a Leavitt path algebra by observing the vertices of the graph. In addition,
we see that we may omit the second factor, v — ) . ee”, in case the graph has no vertices

emitting infinitely many edges. We make this precise.

Theorem 3.1.5. Let E be a row-finite graph. Let I be any two-sided ideal of Ly (F). Then
I is generated by elements of the form v+ > ", \eg®, where v € EY, g is a cycle at v and
Ay ooy A € K.

In addition, we use these two results to give necessary and sufficient conditions on
the directed graph E so that the associated Leavitt path algebra satisfies two-sided chain
conditions, namely being two-sided Noetherian and two-sided Artinian.

Noetherian rings, in which any ascending chain of left (or right) ideals terminate, lie in
the core of ring theory, since they give an idea about the complexity of the ring, as we will
see in Chapter 2. Artinian rings are analogues of Noetherian rings with the requirement
any descending chain of left (or right) ideals must terminate. These two chain conditions
together give a great deal of information about the structure of the ring. We see that, for

Leavitt path algebras, the two-sided chain conditions depend on the hereditary saturated
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subsets of the vertices (defined in Chapter 2, Section 2.2), and also upon the vertices emitting
infinitely many edges.

We start Chapter 2 with some useful background information about chain conditions.
In Section 2.1, we give some definitions and facts on the ring theoretical properties that we
will use to prove our results. In Sections 2.3 and 2.4, we will define Leavitt algebras and
Leavitt path algebras. We give two possible approaches for the definition of Leavitt path
algebras. Even though they are equivalent, both uses have appeared in the literature, and
one makes Leavitt path algebras a direct algebraic analogue of graph C'*-algebras, whereas
the other approach sees a Leavitt path algebra as a quotient of a path algebra. To better
understand Leavitt path algebras, we will state and prove some known results about them
in Section 2.5. Most of these results are algebraic versions of results in graph C*-algebras
given in [30].

In Chapter 3, we prove Theorem 3.1.5 and Theorem 3.2.1, which characterize the gen-
erators of two-sided ideals in Leavitt path algebras. We first consider row-finite graphs in
Section 3.1, and then arbitrary graphs in Section 3.2, by using the ideas of the former. In
Section 3.3, we give some examples of graphs and ideals to demonstrate the tools we used
to prove these results.

In Chapter 4, we give the necessary and sufficient conditions on the graph so that the
corresponding Leavitt path algebra satisfies the two-sided chain conditions described above.
First, in Section 4.1, we give some background. Then in Section 4.2, first we prove some
results by using Theorem 3.2.1. Then we characterize two-sided Noetherian Leavitt path
algebras. Once again, we will first consider row-finite graphs (Theorem 4.2.5), and later give
the general version (Theorem 4.2.12), by using similar ideas. In Section 4.3, we give the
necessary and sufficient conditions to be a two-sided Artinian Leavitt path algebra. Finally,
in Section 4.4, we offer some explicit examples.

In Chapter 5, we show some of the well-known results in the theory of Leavitt path
algebras that can be deduced by using Theorem 3.2.1. We show that many known results
can be unified and simplified in terms of giving shorter and simpler proofs.

In Chapter 6, we explicitly define graph C*-algebras, and give examples for the structure
similarities and differences between the two classes of graph algebras. We conclude this
section with giving Question 6.1.15, and we show that our main result, namely Theorem

3.2.1, cannot be translated into the class of graph C*-algebras via an example.



Chapter 2

Preliminaries

2.1 Ring Theory

We give some background in ring theory. We follow the approaches of [25, 26, 32].
We begin with defining Noetherian rings, which are named after Emmy Noether. As we
will see in Theorem 2.1.3, Noetherian rings play an important role in ring theory, as they

give an idea about the complexity of the ring.

Definition 2.1.1. An algebra is said to be left Noetherian if it satisfies the ascending chain

conditions (a.c.c.) on its left ideals; that is, given any chain of left ideal
LCLC - CL,Cly1 C---
there exists a positive integer k such that
Iy =ITpp1=-.

We make the remark that one can define right Noetherian rings analogously.
Definition 2.1.2. An algebra that is both left and right Noetherian is called Noetherian.

The next theorem gives a useful characterization for Noetherian algebras.
Theorem 2.1.3. Let A be an algebra. The following are equivalent:

(i) A is a left (right) Noetherian algebra;

(ii) every non-empty set of left (right) ideals of A contains a mazimal element under

inclusion;

(i1i) every left (right) ideal of A is finitely generated.
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The proof is analogous to the proof for Noetherian modules given in [23, Theorem 1].

Proof. (i) = (ii): Assume A is a left Noetherian algebra. Let S be a non-empty set of ideals
of A. Choose any ideal I; in S. If I; is maximal element of .S, then we are done. So assume
that I is not maximal. Then there is some I5 in S such that Iy C I>. If I5 is maximal, then
(7i) holds and we are done. Proceeding this way we can see that if (i7) fails we can create
an infinite strictly increasing chain of elements of S, contradicting ().

(73) = (4i7): Assume every non-empty set of ideals of A contains a maximal element
under inclusion. Let I be any left ideal of A, and let S be the collection of all finitely
generated left ideals of I. Note that {0} is in S, hence S is non-empty. By assumption, S
contains a maximal element, say J. If J # I, then there exists z € I\ J. Since J € S, it is
finitely generated by assumption. Hence the left ideal generated by J and x is also finitely
generated. However, this contradicts the maximality of J, implying I = J and all left ideals
are finitely generated.

(791) = (7): Assume every left ideal of A is finitely generated. Let
LHCLC---

be a chain of left ideals of A. Let -
J=JI
i=1

and note that J is a left ideal of A. By the assumption, J is finitely generated by, say,
Z1,%2,...,%Tp. Since z; is in J for all 7, each x; lies in some left ideal I;,. Let m =
max{j1, j2,--.,Jn}, and note that z; € I, for every i. Hence the left ideal generated by
T1,...,Ty is contained in I,,, that is, J C I,,. Note that this implies I,,, = J = I} for all
k > m, which proves that A is a left Noetherian algebra. O

Let us consider some examples first before proceeding with the definition of two-sided

Noetherian algebras.

Example 2.1.4. The set of integers, Z, is a Noetherian ring, since it is a Principal Ideal

Domain, that is, all of its ideals are generated by single element.

a b
R:{( >‘a€%@c€@}
0 c

The ring R is right Noetherian, but not left Noetherian.

Example 2.1.5. Let
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Proof. To show that it is right Noetherian, we will use Theorem 2.1.3 and show that any

right ideal I of R is finitely generated.

b
First assume that ( E)L ) € [ for some a € Z\ {0}, b, ¢ € Q. Then note that
c

a b 10 a 0 . .
= € I. We see that the right ideal of R generated by
0 ¢ 0 0 0 0

0
elements in I of the form ( “ ) is finitely generated by Example 2.1.4.
00

0 b 0 b
Now consider elements in I of the form ( 0 ) Let 1 = ( 0 ! ) and o =
c C2

0 b 00
( 0 2 > be two elements in I such that x1 # x2 ( 0 for some r € QQ, as otherwise
Co r

the right ideal generated by xo is the same with the right ideal generated by x;.

0 by 0 0 0 b\ [0 bi2—b
0 ¢ 0 2 0 ¢ 0 0 '

0 O
Note that by # bli—f, otherwise z1 = x» ( 0 )

c2

We compute

C1

0 b 0 1
Hence we get ( 0 0 >, where b is not zero, and this implies both ( 0 0 ) and

0 0
( 01 ) are in I. Thus, the right ideal of R generated by elements of I of the form

0 b
( 0 ) is also finitely generated, implying that I is finitely generated.
c

0 L
To see that R is not left Noetherian, first let z; = ( 0 78' ), where p; is the i*? prime.

Then note that the ascending chain

(x1) C(x1,29) C -+ C{x1, X2, ..., Tp) C -~
clearly does not terminate. ]

By using the definition of Noetherian algebras on left or right ideals, we can define an

analogous algebraic property by using two-sided ideals.
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Definition 2.1.6. An algebra is said to be two-sided Noetherian if it satisfies the ascending

chain condition (a.c.c.) on two-sided ideals.

We note that the two-sided Noetherian condition is weaker than the Noetherian condi-
tion: two-sided ideals can also be considered as left or right ideals, hence if the set of left
ideals or right ideals satisfy the ascending chain condition, then two-sided ideals satisfy it
as well, implying that a Noetherian algebra is also a two-sided Noetherian algebra. As it
can be easily seen, these two concepts coincide for commutative algebras.

Now we analogously define Artinian rings, which are named after Emil Artin. While
Noetherian rings deal with ascending chains of ideals, Artinian rings deal with descending

chains of ideals.

Definition 2.1.7. An algebra is said to be left (right) Artinian if it satisfies the descending
chain condition (d.c.c.) on left (right) ideals; that is, given any chain of left (right) ideal

L2221, 21412
there exists a positive integer k such that
Iy =Ig41 =+ .
Definition 2.1.8. An algebra that is both left and right Artinian is called Artinian.
Example 2.1.9. Any division ring is Artinian, as it has no nontrivial right or left ideals.
Example 2.1.10. The ring of n X n matrices over a division ring is Artinian.

The following result is analogous to Theorem 2.1.3 which is stated for Noetherian alge-

bras.
Proposition 2.1.11. The following are equivalent:
(i) A is a left (right) Artinian algebra;

(ii) every nonempty set of left (right) ideals of A contains a minimal element under inclu-

ston.

As in the case with Noetherian algebras, we can define two-sided Artinian algebras in a

similar fashion.

Definition 2.1.12. An algebra is said to be two-sided Artinian if it satisfies the descending

chain condition (d.c.c.) on two-sided ideals.
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The ascending chain condition and the descending chain condition are also known to-
gether as chain conditions, and they are connected in the following way: A consequence of
the Akizuki-Hopkins-Levitzki Theorem shows that a left (right) Artinian ring is also a left
(right) Noetherian ring [28]. Next, we give examples of rings and check the chain conditions

for them.

Example 2.1.13. Consider the polynomial ring K[x] where K is a field. Then the residue
ring K|x]/(x™) is both Artinian and Noetherian for all positive integers n since it is a finite

dimensional vector space of dimension n.

Example 2.1.14. The ring Z is Noetherian, but not Artinian. All rings with a finite
number of ideals, like Z/nZ for n € Z, and fields are Artinian and Noetherian.

Example 2.1.15. The polynomial ring Z[x1,x2, . ..] is not Noetherian since it contains the
infinite chain

(x1) C (x1,29) C -~

of ideals. It is not Artinian either since

(x1) D <x%> D <:U:f> D
s a chain that doesn’t terminate.
We next define graded algebras, which arise when there is a natural notion of degree.

Definition 2.1.16. An algebra A is called a graded algebra if it is the direct sum of additive
subgroups:

A=PA=AdA o

neN
such that A;A; C A;4; for all 7,5 > 0. The elements of Aj are said to be homogeneous of
degree k, and Ay is called the homogeneous component of A of degree k.
More generally, one can replace N by a monoid or semigroup G. In which case, A is
called G-graded algebra.
An ideal I of the graded algebra A is called a graded ideal if I = @72 (I N Ay).

Example 2.1.17. The polynomial ring K [x], where K is a field, is an N-graded K -algebra.

Example 2.1.18. Let V' be a n-dimensional vector space over a field K. The exterior
algebra A(V') over V is defined as the quotient algebra of the tensor algebra by the two-sided
ideal I generated by all elements of the form x @ x such that x € V, i.e., A(V) =T(V)/I,
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where T(V') is the tensor algebra of V.. The product on this algebra is called the exterior
product or the wedge product, denoted by A, and defined as x Ny =z ®y (mod I).

We let A¥(V') be the subspace of A(V) spanned by elements of the form x1 Axg A--- Ay,
where x; € V fori=1,....k. Then it is known that

AV)=A"WMya Al(V)@ - @ A™(V),

and this makes the exterior algebra a graded algebra, as (A*(V)) A (A(V)) € ATH (V).

2.2 Graph Theory

In this section we give some graph-theoretic definitions and properties.

A directed graph E = (E°, E',r, s) consists of two sets E°, E' and functions r,s : E' —
E°. The elements of E° are called vertices and the elements of E' are called edges. For each
e € E', r(e) is the range of e and s(e) is the source of e. If s(e) = v and r(e) = w, then we
say that v emits e and that w receives e. A vertex which emits no edges is called a sink. A
graph is called finite if EV is a finite set. A graph is called row-finite if every vertex is the
source of at most finitely many edges. A vertex that emits infinitely many edges is called
an infinite emitter. If a vertex is either a sink or an infinite emitter, we call it a singular
verter. If a vertex is not singular, then we call it a reqular vertez.

A path p in a graph E is a sequence of edges p = ej - -- e, such that r(e;) = s(ej+1)
for i = 1,...,n — 1. We define the source of p by s(u) := s(e1) and the range of u by
r(u) :=r(e,). An edge e € E' is an ewit to the path p = u1 ... i, if there exists i such that
s(e) = s(u;) and e # p;.

If we have r(p) = s(pu) = v and s(e;) # s(e;) for every i # j, then p is called a cycle
based at v.

A closed path based at v is a path u = e1---e,, with e; € E', n > 1 and such that
s(p) = r(u) = v. We denote the set of all such paths by CP(v). A closed simple path based
at v is a closed path based at v, it = €1 - - - ey, such that s(e;) # v for j > 1. We denote the
set of all such paths by CSP(v).

Note that a cycle is a closed simple path based at any of its vertices. However the
converse may not be true, as a closed simple path based at v may visit some of its vertices

(but not v) more than once.

Example 2.2.1. Consider the graph given in Figure 2.1. Note that the path xyz is a closed
path based at v, but not a closed simple path as s(y) = v. In addition, note that zxy is a
closed simple path based at w, but not a cycle as v is visited twice. The only cycles in this

graph are x and yz both based at v, and zy based at w.
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Figure 2.1: The graph defined in Example 2.2.1.

Let v be a vertex in E°. If there is no cycle based at v, then we let ¢ = v and call it
a trivial cycle based at v. If g is a cycle based at v of length at least 1, then ¢ is called a
non-trivial cycle.

For a given graph E we define a preorder > on the vertex set E° by: v > w if and only if
v = w or there is a path u such that s(i) = v and r(u) = w. We say that a subset H C E°
is hereditary if w € H and w > v imply v € H. We say a set H is saturated if whenever
0 < [s71(v)| < oo and {r(e) | s(e) =v} C H, then v € H.

In words, H is saturated in case whenever v is a vertex having the property that v emits
at least one but at most finitely many edges, and all of the vertices to which the edges
emanating from v point are in H, then v is in H as well.

The hereditary saturated closure of a set X C EY is defined as the smallest hereditary
and saturated subset of EV containing X. For the hereditary saturated closure of X we use
the notation given in [3]: X = (72, An(X), where

Ao(X) :={v e E° | z > v for some = € X}, and for n > 1,
A(X):={y € E° | 0<|s (y)] < ooand r(s (y)) € Ap_1(X)}UA, 1(X).

Example 2.2.2. Consider the graph E given in the Figure 2.2. We find the hereditary
saturated closure of uz, hence we let X = {ua}. First we see that Ao(X) = {ua, us,u, ...},
as ug > u; for i > 2. Next we get Ay(X) = {ur} U {uz,us,...}, as uy emits only one edge
and the range of that edge is ug which is in Ag(X). Note that even though the ranges of the
edges emanating from the v;’s are in A1, the v;’s are emitting infinitely many edges. Thus
we are done, and we also have {us} = {uy,us,...}. We can also see that this is the smallest

nontrivial hereditary saturated subset of E°.
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Figure 2.2: Graph defined in Example 2.2.2.

We say the graph E satisfies Condition (L) in case every cycle in E has an exit, while
the graph E satisfies Condition (K) in case no vertex in F is the base of exactly one cycle.
Note that Condition (K) implies Condition (L) [24]. To see this, let g =e; - - - €, be a cycle
based at some vertex v. Condition (K) implies that there is a cycle h = f1--- fi,, # g also
based at v. We cannot have e; = f; for all i < min{m,n}, as that would imply that the
longer of p or ¢ would visit v twice, and hence cannot be a cycle. Thus, let j be the least

index such that e; # f;. Then we get s(e;) = s(f;), and f; is an exit for p.

2.3 Leavitt Algebras

Leavitt path algebras can be considered as a natural generalization of Leavitt algebras.

Definition 2.3.1. Given a field K and a nonnegative integer n, the Leavitt K-algebra
L(1,n) of type (1,n) is the algebra with generators z;, y;, 0 < 4, j < n, and defining
relations which, in matrix form, can be written as

)T

($07"‘7xn)(y07"'7yn :17 (y(]?""yn)T(mO?"'?xn) = n+17

where I, denotes the identity matrix of size r x r.

Leavitt algebras were constructed by Leavitt in 1960s to give examples of rings without

invariant basis number [29].

Definition 2.3.2. A ring R is said to have invariant basis number (IBN) if whenever the

free left R-module R™ is isomorphic to R™ with m, n € N, then m = n.

IBN can be seen as the analogue of the Dimension Theorem for vector spaces, as it

implies that any two bases for a free module over an IBN ring have the same cardinality.
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2.4 Leavitt Path Algebras

In this section we define Leavitt path algebras and give preliminary results about them.

Definition 2.4.1. Let E = (E°, E',r, s) be any directed graph, and let K be a field. We
define the Leavitt path K-algebra Ly (F) associated with E as the K-algebra generated by
a set B0 together with a set {e, e*|e € E'}, which satisfy the following relations:

1. v’ = §, v for all v, € E°.

2. s(e)e=er(e) =eforallec E'.

3. r(e)e* =e*s(e) = e* forall e € E'.

4. (The “CK1 relations”) e*f = & ¢r(e) for all e, f € E'.

5. (The “CK2 relations”) v = 2{6€E1|8(e)zv} ee* for every regular v € EY.

The elements of E' are called real edges, while for e € E! we call e* a ghost edge. The
set {e*|e € E'} is denoted by (E')*. We let r(e*) denote s(e), and we let s(e*) denote 7(e).
We say that a path in L (F) is a real path (resp., a ghost path) if it contains no terms of
the form e* (resp., e).

The conditions CK1 and CK2 are called the Cuntz-Krieger relations, and are inherited
from graph C*-algebras.

We note that this algebra can be seen as the free K-algebra K[E° U E' U (E')*] with
the given relations, hence the multiplication is defined by concatenation of elements of
EYU E'U (EY)* with coefficients from K.

The length of a real path (resp., ghost path) u, denoted by |u|, is the number of edges
it contains. The length of v € EY is 0.

Another way of looking at Leavitt path algebras is as a quotient of the path algebra over
the extended graph of E. First we recall the definition of a path algebra over an arbitrary
graph E.

Definition 2.4.2. Let E = (E°, E' r, s) be any directed graph, and let K be a field. The
path K -algebra over E is defined as the free K-algebra K[E? U E'] with the relations:

e vv' =6, 0 for every v,0v’ € EV.
e ¢ =cr(e) = s(e)e for every e € E'.

This algebra is denoted by A(E).
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Next we define the extended graph over FE.

Definition 2.4.3. Given a graph E we define the extended graph of E as the new graph
E = (E° E' U (EY)*,1,s') where (E')* = {e* | e € E'} and the function r’ and s are
defined as

g =1, §'|p =s, r'(e*) = s(e) and §'(e*) = r(e).

Now we can define the Leavitt path algebra of E with coefficients in K as the path
algebra over the extended graph E:

Definition 2.4.4. Let £ = (E°, E',r, s) be any directed graph, and let K be a field. We
define the Leavitt path K-algebra Ly (F) associated with E as the path algebra over the
extended graph E, with relations:

1. e*f = 4. sr(e) for every e € E' and f* € (E')*.
2. v = E{eEE’l | s(e)=o} ee* for every regular v € EV.

Many well-known algebras are of the form Ly (E) for some graph E. Here we give some

examples to demonstrate this point.

1. The matrix algebra M, (K): Let E be the graph defined by E° = {vy,...,v,}, B! =
{e1,...,en, }, s(ei) = vi, 7(e;) = viy1 for i = 1,...,n — 1. The fact that M, (K) =
Lg(F) can be seen by defining a map ¢ : L (E) — M, (K) such that ¢(v;) = e(i,1),
¢(e;) = e(i,i+ 1), and ¢(e) = e(i + 1,4), where e(i,j) denotes the standard (i, j)-
matrix unit in M, (K).

2. The Leavitt algebra A = L(1,n) for n > 2: Let E be the graph defined by EY = {v},
E' = {ey,..., ey} such that s(e;) = r(e;) = v for every i. Then L(1,n) = Li(E).

3. Laurent polynomial algebras K[z, 2~ !]: Consider the graph E defined by E° = {v},
E! = {e} such that s(e) = r(e) = v. Then clearly K[z,77 1] = L(E).
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2.5 Preliminary Results

The following are algebraic analogues of the results given in [30]. Most of the results given

here are straightforward, but we state and prove them here for the sake of completeness.

Lemma 2.5.1. Suppose that E is an arbitrary directed graph and Ly (FE) is the Leavitt path
algebra of E. Then:

1. Ifef #0, then r(e) = s(f);
2. Ifef* #0, then r(e) = r(f).
Proof. We use the relations (1), (2) and (3) given in the definition of Leavitt path algebra.
L ef = (er())(s()f) = e(r(e)s(£))f = 0 unless r(c) = s(f).
2. ef* = (er(e)(s(f)f*) = e(r(e)r(£))f* = 0 unless r(e) = r(f).
]

Definition 2.5.2. Suppose F is an arbirary directed graph and n € NU {0}. Then E™
denotes the set of paths of length n. Moreover, we let E* := Unzo E™.

Notation. We extend the range and source maps to E* by setting r(v) = v = s(v) for

v e EY.
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Remark 2.5.3. Note that p*pu = r(u) where p = x1...x, is a real path. To see this

consider the following calculations.

o= (rixe...2p) w122 ... Ty
=z, ... x5(z]z)Te .. . Ty
=y ... .x57(T1)T2 ... Ty

o xas(xe)Ta .. Ty

=z, ... 05(r5w2)x3 ... Ty

= r(an) = r(n).

The relation (4) in the definition of Leavitt path algebra and Lemma 2.5.1 extends to
the paths as follows.

Corollary 2.5.4. Suppose E is an arbitrary directed graph and Lk (E) be the Leavitt path
algebra of . Let u, v € E*. Then:

ES

w* if p=uvy for some y' € E*
L p'v=<¢v if v=puv' for some v € E*
0 otherwise;
2. if pv # 0, then pv is a path in E;
3. if pv* # 0, then s(p) = s(v).
Proof. For (1), first assume that n := |u| < |v|, and write v = a// where |a| = n. Then

*

W= p(a) = (n o).

If 4 = «, then by Remark 2.5.3 we get

If p # «, then write p = e1...en, @ = f1... fn, and let i be the smallest integer such
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that e; # f;- Then using the idea in Remark 2.5.3 yields

uv = ()

— (e fifan . fu)V
coef(el el fim) fio falV
coefr(ei—) fi oo falV

:[e:...e?fi---fn]yl

o o
S % S %

This gives (1) when |u| < |v|. Note that if |u| > |v|, we can use the same idea by writing
p=pBu.
Parts (2) and (3) follow from (1) and (2), respectively, of Lemma 2.5.1. O

Corollary 2.5.5. Suppose E is an arbitray graph and Lk (E) is the Leavitt path algebra of
E. Ifu, v, a, p € E*, then we have

pa!B*if a=vd
(n)(aB*) = § u(pv)* if v=av
0 otherwise.

In particular, it follows that every non-zero finite product of the real and ghost edges has

the form pv* for some p, v € E* with r(u) = r(v).

Proof. The formula part follows from part (1) of Corollary 2.5.4. To see the last statement,
let « be a non-zero monomial, that is, a product of finitely many e’s and f*’s.

Any adjacent e’s can be combined into one single term . Since x is non-zero, we get
that p is a path. Similarly, we can combine any adjacent f*’s into one single term v*. Hence
we see that x is a product of terms of the form uv* where u, v € E*. The formula above
implies that we can combine this product into one term of the same form, hence the result
follows. O

We see that Corollary 2.5.5 describes the monomials spanning Ly (E). For convenience,

we give a detailed list for these monomials the way it is stated in [1].
Corollary 2.5.6. Li(F) is spanned as a K -vector space by monomials
1. kv with k € K and v € E°, or

2. key---eqff - fy wherek € K;a,b>0,a+b>0, €1y €ar f1,.-., fr € EL.
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<

Figure 2.3: Graph of the Leavitt path algebra defined in Example 2.5.7.
Notation. We extend the range and source maps to the set of monomials of Lx(E) by
setting r(uv*) = r(v*) = s(v) and s(pv*) = s(p) for p and v in E*.

We give an example which demonstrates Corollary 2.5.6.

Example 2.5.7. Let E be the graph given in Figure 2.3. Note that Lk (E) is spanned as a
K -vector space by the monomials {u,v,w,e, f, g,e*, f*, g*, ge,gef*, ef*, fe*, fe*g*, ff* e*g*}.

Next, we present some results from [1] involving closed simple paths.
Lemma 2.5.8. Let u, v € CSP(v). Then p*v = 6,,v.

Proof. Let p and v be two arbitrary paths, and let u=-e1...ep and v = fi ... fin.
Case I: Assume n = m, but p # v. Let i be the first index where p and v differ, that is,

ej = f; for j < i and e; # f;. Then we get

pwv=en...elfi...fm =20 pi€n...e5r(e1)fa... fm
:5eg,f2€:;~-€§f2~-fm:"’:5eg,f2~-5ei,fi€;'~e;<fi~-fm:0-

Case II: Let u = v. By following the same procedure above, we get

/L*V = 561,f1562,f2 e 5en7fn’l”(€n).

Case III: Now consider the case where u, v € CSP(v) with n # m. Without loss of
generality we may assume that n < m. Let v = vjv5 where v; and 1o are real paths and
1] = |p|. If p = w1, then r(pu) = r(v1) = s(v2), but this contradicts with v being closed
simple path based at v. So u # v1, and by Case I, we obtain p*v = u*vive = 0. O

Lemma 2.5.9. For every p € CP(v) there exist unique p1, ..., 1n € CSP(v) such that
= p1- -
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Proof. Let p =e1...ep, and T = {t € {1,...,n} | r(e;) = v}. Label all the elements of
T so that T = {t1,...,t,} so that t; < to < -+ < t, = m. Then ¢; = ej...¢e;, and
¢ =et,_, ...e for 1 <i < n prove existence.

To prove uniqueness, let ;= ¢1...¢, = di...ds where ¢;, dj € CSP(v). Multiply all
sides by ¢j, and we get 0 # vey...c, = cjd; ...ds. By using Lemma 2.5.8, we get ¢; = d;.

Then we use induction to show that the statement holds. O

For the rest of the section, we will give results concerning the algebraic properties of
Leavitt path algebras. These results mostly depend on the underlying directed graph E.
The first result we give is regarding the units of Leavitt path algebras, but let us give

some definitions first.

Definition 2.5.10. An algebra A is said to be an unital algebra, if A has an unit, that is,
an element 1 with the property 1z = 1 = z for all x € A.

Definition 2.5.11. An algebra A is called an algebra with local units if for every finite set

S of elements in A, there exists e € A such that ex = xe = x for every z € S.

We note that Lx (FE) might be a unital algebra or an algebra with local units depending
on the size of the graph E:

Lemma 2.5.12. If E° is finite then Ly (E) is a unital K-algebra. If E° is infinite, then
L(E) is an algebra with local units (specifically, the set generated by finite sums of distinct
elements of E°).

Proof. First suppose that E is finite. Hence let E® = {vy,...,v,}. We claim that Y"1, v;
is the unit element of the algebra. Note that (3.7, vi)v; = > i jv; = vj. Next, let

e € EY and compute
n

(Z v;)e = Zvis(e)e =s(e)e =e.
i=1

i=1
Similarly, ", v;f* = f* for f* € (E')*. Since Lk (E) is generated by E° U E' U (E1)*,
we conclude that Y ;" v,z =z for all x € Lg(FE). Analogously, we obtain 2 1 ; v; = x as
well.
Now suppose that E? is infinite. Let {z;}!_; be a finite collection of elements in Lk (E).

We use Lemma 2.5.6 to write

n; m;
x; = E vl + g K ay,
j=1 k=1
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where )\;, ky € K\ {0}, and a}, are monomials of type (2). Let

t
V= U{v;-,s(az),r(ai) li=1,...,n5 7=1,...m;},
=1

and then by using the same idea above, one can easily show that ) .y v is a finite sum of

vertices such that ) i, va; = a; Y, oy v = a; for every i. O
Next we prove that Li(E) is a Z-graded algebra for any graph E.

Lemma 2.5.13. Let E be an arbitary graph. Then Lk (E) is a Z-graded algebra, with
grading induced by

deg(v) = 0 for all v € E°; deg(e) = 1 and deg(e*) = —1 for all e € E*.

That is, L(E) = @®,,cz L(E)n, where L(E)y = KE® + Ao, L(E),, = Ay, for n # 0 where

AnZZ{kel...eaff...fg\a—l—b>0, ei, f; € B', k€ K,a—b=n}.

Proof. The fact that Lx(E) = >, .y Lx(E), follows from Lemma 2.5.6. The grading on
Ly (E) follows directly from the fact that A(E) is Z-graded, and that the relations CK1

and CK2 are homogeneous in this grading.
O

Definition 2.5.14. We call an ideal I of Lk (F) graded in case, whenever z = > "

j=-m

.TjGI

for homogeneous elements x; of Li (E) of degree j, then z; € I for all —m < j < n.

Remark 2.5.15. IfY is a set of homogeneous elements in a Z-graded ring, then the ideal
I =(Y) generated by Y is a graded ideal.

The following are from [3]. The first result does not depend on the underlying graph.

Proposition 2.5.16. If I is an ideal of L (E), then I N E° is a hereditary and saturated
subset of EV.

Proof. If I N E° is empty, then it is both hereditary and saturated, and we are done. So
assume I N EY is not empty.

To show that I N E° is hereditary, let v,w € EY be in I and v < w. Then by the
definition of the preorder, we can find a path p = ej ...e, such that s(u) = s(e;) = v and
r(p) = r(en) = w. Note that ejve; = efe; = r(e1) = s(ez) isin I. If we repeat the argument

n times, we get r(e,) = w € 1.
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To show that I N E° is saturated, consider v € E° such that 0 < [s7'(v)] < oo
and {r(e) | s(e) = v} C I. Since v is not a sink or an infinite emitter, we get v =
D_{ecB? | s(e)=v} €€"- Note that for e € E' with s(e), we have r(e) € I. So er(e)e* = ee* € I,
and v € I. O

The next result gives a characterization of the underlying graph F so that the associated
Leavitt path algebra is simple. We will omit the original proof now, and give a shorter proof

by using Theorem 3.2.1 in the Applications Chapter.

Theorem 2.5.17. Let E be an arbitrary graph. The Leavitt path algebra Lk (E) is simple
if and only if E satisfies the following conditions.

i) The only hereditary and saturated subsets of E° are ) and E°.
(i) y Y

(i1) E satisfies Condition (L).



Chapter 3

Two-Sided Ideals

In this Chapter we will give a description for the generators of two-sided ideals of Leavitt
path algebras. We will give the proof for Leavitt path algebras associated to row-finite
graphs first. Then we will prove the case for arbitrary graphs. This two-step approach is
fairly common in this area: Theorems are usually first developed for the row-finite graphs,
and then extended to the arbitrary case. We will also show how to get the first result as the
corollary of the second one. In the final section, we will use some examples to demonstrate
the tools used. The material from the first section, “T'wo-Sided Ideals for the Row-Finite
Case”, appears in [18], and the material from the second section, “Two-Sided Ideals for

Arbitrary Case”, appears in [6].

3.1 Two-Sided Ideals for the Row-Finite Case

With the introductory remarks now complete, we begin our discussion of the main result

with the following important observation.

Remark 3.1.1. Let I be an ideal of L (E) and let pn = Ajpg + -« -+ + Appin, be in I, where
U1y -y b are Teal paths in I and Ai,..., A\, are in K. Note that s(u;)pr(p;) is in I and

every surviving real path has the same source and the same range. Also note that

p=> " v,

wERVES

where R = {r(p1),...,7(n)}, S = {s(p1),...,5(un)} C EY. Hence pu can be written as

V1 + -+ vy, where

1. vi,...,vm €1,

22
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Figure 3.1: Graph of the Leavitt path algebra defined in Example 3.1.2.

2. for 1 < i < m, v; is a sum of monomials whose sources are all the same and whose

ranges are all the same.

Example 3.1.2. Consider the directed graph given in Figure 3.1. Consider an ideal I of
Ly (E) with xyz + yz + xy + 2% + 2 € I. Then by using Remark 3.1.1, we see that

p1 = v(xyz + yz + 2y + 2% + 2)v = 22,

p2 = v(xyz +yz + ay + 2 + 2)w = wyz +yz +ay € 1,
3 = w(ryz +yz +xy + 22 + 2)w =z € I, and

zyz 4+ yz +xy + 22 + 2=y + po + ps.

Notation. Let Li(E)r (resp., Lx(E)g) be the subring of elements in Ly (E) whose terms

involve only real edges (resp., only ghost edges).

Lemma 3.1.3. Let I be a two-sided ideal of Lix(E) and I = I N L (E)r. Then ILieq is
the two-sided ideal of L (E)r generated by elements of Iyea having the form v+ "7 \ig’,
where v € E°, g is a cycle based at v and \; € K for 1 <i <n.

Proof. Let J be the ideal of Li(E)r generated by elements in I e, of the indicated form.
Our claim is J = I ¢y. Towards a contradiction, suppose Ieq \ J # 0; choose p € Tea \ J
of minimal length. By Remark 3.1.1, we can write u = 7 + --- + 7,, where each 7; is in
Iiea1 and is the sum of those paths whose sources are all the same and whose ranges are
all the same. Since u & J, one of the 7; ¢ J. Replacing u by 7;, we may assume that
W= A1p1 + -+ Appn, where all the p; have the same source and the same range. First we
claim that one of the p; must have length 0, i.e., y; = v for some vertex v € E°. Suppose

not. Then for each i we can write u; = e;i; where e; € E. So p = Z?:l Nieiv;. Now

efu = Z )\jVj € Lieal
{ilej=ei}
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and has smaller length than ;. So e € J and hence clearly e;ef i € J. Then

w= Z eiejpu € J,
distinct e;
a contradiction. So we can assume without loss of generality that pu; = v, with v a vertex.
Since all the terms in p have the same source and the same range, each p; is a closed path
based at v. Multiplying by a scalar if necessary we can write = v + Agpg + -+ - + Apfbn-

Case I: There exists no, or exactly one, closed simple path at v. If there are no closed
simple paths at v then we get u € J, a contradiction. If there is exactly one closed simple
path g based at v then necessarily ¢ must be a cycle. Furthermore, the only paths in E
which have source and range equal to v are powers of g. Then p=v+>" , \ig™ € J, a
contradiction.

Case II: There exist at least two distinct closed simple paths g1 and g9 based at wv.
Without loss of generality, we may assume that g; is a cycle. As g1 # g2 and neither is
a subpath of the other, g5g1 = 0 = gjg2. Without loss of generality assume |ug| > --- >
|ttn] > 1. Then for some k € N, |g§| > |uz|. Multiplying by (g7)* on the left and g} on the
right, we get .

= (g1) u(g0)® = v+ Nilgh)Fpai(ar)®.
=2
If (g7)*ui(g1)* = 0 for every i, then we get p/ = (97)*u(g1)* =v € J. Then pu = pv € J,
a contradiction. Note that if 0 # (g7)*ui(g1), then (g7)*u; # 0. Since |gF| > |ui|, we get
gf = pipt; for some path pf. Since the p; are closed paths based at the vertex v, one gets
from the equation (g1)* = p; that pu; = (g1)" for some integer r < k. So u; commutes
with (g1)* and thus each non-zero term (g7)*ui(g1)* = pi.

Since g5g1 = 0, g5u; = 0 for every i € {2,...,n} such that (g%)*u;(g1)* # 0 and so we

get g3’ g2 = g3vga = v € INLK (E)R = Ireal, which implies that v isin J. Then p = pv € J,

a contradiction. O

It can be easily shown that the analogue of Lemma 3.1.3 is true for oot = INLg(E)q.

We state this for the sake of completeness.

Lemma 3.1.4. Let I be a two-sided ideal of Lx(E). Then Ighos s the two-sided ideal of
Li(E)c generated by elements of the form v+ Y 1, Ni(g*)", where v € E°, g is a cycle at
vand \; € K for1 <i<n.

Now we are ready to prove Theorem about the generators of two-sided ideals in Leavitt

path algebras associated to row-finite graphs.
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Theorem 3.1.5. Let E be a row-finite graph. Let I be any two-sided ideal of Ly (F). Then
I is generated by elements of the form v+ ", \eg®, where v € E°, g is a cycle at v and
A,y A € K.

Proof. Let J be the two-sided ideal of Li(F) generated by Ie,. By Lemma 3.1.3, it is
enough if we show that I = J. Suppose not. Choose x = Ele Aipiv} in I\ J, where
d is minimal and py,..., g, v1,. .., are real paths in Lix(E)g. By Remark 3.1.1, z =
aq+- -+ oy, where each o € I and is a sum of those monomials all having the same source
and same range. Since x € J, a;j € J for some j. By the minimality of d, we can replace x
by a;. Thus we we can assume that « = Zgzl Aipivy, where for all 4, j, s(uiv)) = s(p;v;)
and r(p;v]) = r(pv;) =w € E°. Among all such z = E?:l Aipiv} € I\ J with minimal d,
select one for which (|v1], ..., |vg|) is the smallest in the lexicographic order of (Z%)?. First
note that we have |v;| > 0 for some 4, otherwise z is in I ea C J. Let e be in E'. Then note
that

d &
we =Y Npvie =y Npi(v)*
i=1 i=1
either has fewer terms (d' < d), or d = d" and (|v//],...,|V}|) is smaller than (|v1],...,|val).

Then by minimality, we get xe is in J for every e € E'. Since |v;| > 0 for some 4, w is not

a sink and emits finitely many edges. Hence we have

r=zw==x Z eje; = Z (zej)ej € J.

{e;€E! | s(ej)=w} {e;eEr | s(ej)=w}

Our assumption was that x € I\ J, hence we get a contradiction, so the result follows. [

Remark 3.1.6. We note that the Theorem does not hold for arbitrary graphs. An example
is the “infinite clock” (Figure 3.2: Let E° = {v,wi,wa,...} and E* = {ey,ea,...} with
r(e;) = w; and s(e;) = v. Then the two-sided ideal generated by v — e1e] is not generated

by the elements of the desired form.

3.2 Two-Sided Ideals for the Arbitrary Case

We are already in position to present the main result.

Theorem 3.2.1. Let I be any ideal of Lix(E). Then there exists a generating set for I

consisting of elements of I of the form

(- E)-5)
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Figure 3.2: Graph of the Leavitt path algebra defined in Example 3.1.6.

where v € Eg, Aay...,A\m € K, 19,...,1y are positive integers, S is a finite (possibly
empty) subset of E consisting of edges with source vertex v, and, whenever Ay # 0 for

some 2 < k <m, g is the unique cycle based at v.

Proof. Let J be the ideal of Li (F) generated by all the elements of I which have the form
described in the statement of the Theorem 3.2.1. We want to show that I = J. We note
that I N Ey C J (by choosing Ay =0 for 2 < k < m, and S = ().

First we prove a specific case of the general result: namely, that any element of I of the

form

(AMay + Aoag + - -+ + Agag) (U — Z ee*>

ecS
is in .J, where S is a finite subset of s71(v), each \; € K, and each a; is assumed to be a real
path in F. Towards a contradiction, suppose not. That is, suppose that there are elements in
I\J. Over all possible vertices w € Ey , all finite subsets T of s~!(w), and all possible k; € K
(1 <i<n)find an element of I\ J of the form (k1a1 + K2az + -+ + knan)(w — > cree”)

for which n is minimal; let 2 denote this minimal value. So we have

x = (Aar + Aag + -+ + Apag) (v—Zee") eI\J
eceS
for some v € E° , \; € K (1 <i<k),and S a finite (possibly empty) subset of s~1(v).
We argue by contradiction on the minimality of k& that no such element exists.
Since for w € EY we have w(v — Y g €€*) = 0puw(v — 3 cg €€*), we may assume that
each a; has r(a;) = v.
Let S, denote the set {s(a;) | \; # 0}. For each w € S, we have wz € I. But

T =) s, WT, 50w & J gives wr ¢ J for some w. Since wx has the correct form, we
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conclude by the minimality of k£ that wa; # 0 for all 1 <+¢ < k. Thus we may assume that
each of the paths a;, 1 < i < k, has the common source vertex.

Rephrased, we may assume that = (Aja1 + Agaz + -+ + Agag) (v — D cgee”), where
for all 4, j, s(a;) = s(a;), and r(a;) = r(aj)(= v). Among all such z with minimal &, select
one for which (|ay], -, |ag|) is smallest in the lexicographic order of (ZT)*. Multiplying by

A1 ! if necessary, we may assume that

x = (a1 + A2az + -+ + A\pag) (U—Z€€*>.

eesS
We analyze the various possible cases for x, and show in each case we are led to a
contradiction.

In the first case, suppose |a;| > 0 for every i € {1,...,k}. Let A denote the set
{f € EY| ffa; # 0 for some 1 <i < k}.

Note that A is finite. Furthermore, we see that f*x is in J for every f € A, as f*x is of

the correct form (since |a;| > 0 for all 7), and either f*z has fewer terms than x does, or

f*z has the same number of terms as x, in which case (|f*a1],...,|f*ax|) is smaller than
(lal, ..., |ax|). But then ff*x € J for all f € A, which yields that

Y ffrwed

feA

But this last expression is precisely z (by again using |a;| > 0 for all ¢), so we have z € J,
a contradiction.

In the other case, suppose |a;| = 0 for some i. By the minimality assumed on
(la1], ..., |ax|), this gives |a1| = 0. Since the a; are real paths, this means that a; is a
vertex, necessarily a; = v. Since all of the a; are assumed to start and end at the same
vertex as each other, we get that each a; is in fact a closed path starting and ending at v
(Note that each a; for i > 2 is a nontrivial closed path based at v, otherwise we would have
combined v with such a; to get a shorter expression.). There are three subcases to consider;
we obtain a contradiction in each.

First, suppose there are no simple closed paths based at v. Then necessarily there are
no closed paths at all based at v, so that the sum a; + A2as + -+ + A\pax reduces to the
expression a; = v, so that z = (v+0)(v — > cgee”) is in J, contradicting the assumption
that z € I\ J.

Secondly, suppose there is exactly one simple closed path at v. Then necessarily this

path g must be a cycle, and is the unique cycle based at v. But then any closed path based
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at v must be a power of this cycle, i.e., for each 2 < i < k we have a; = ¢"* for some positive
integer 7;, so that x in this case has the indicated form, so = € J, again contradicting the
assumption that x € T\ J.
Finally, suppose there are at least two distinct simple closed paths based at v. Consider
the set
F={fcE"| ffa; #0 for some 2 < i < k}.

There are two subcases here. Suppose first that F'NS # (). Let f € F'N.S. Now note that

FIre = (FF* 4 hef fraz + -+ Nf far) ( -y )

e€eS

(v g+ (Sara) (- 5

eeS ecS
But f € S yields that the first summand is zero; thus

k
fffe= (Z )\iff*ai> (v — Zee*) .
=2 ecsS
Note that ff*a; is either 0 or a; (since a; # v), so the displayed expression for ff*x has
the correct form, so that ff*x € J by the minimality of k. Furthermore,

z—fffzx=|v+ Z Ajaj (v—Zee*)
{a;j|f*a;=0} ecs
is also of the correct form, and the left hand factor has fewer than k nonzero terms (since
f € F gives f*a; =0 for some 2 < i < k), so that x — ff*z € J by the minimality of k. So
we have

x=ffe+(x— fffx)=x€J,

again a contradiction.

For the second of the two subcases, which will complete the proof, suppose F NS = 0.
Then in particular as is a closed path based at v, for which e*as = 0 for all e € S. Write
az = fal, for some edge f and real path a}, (possibly of length zero). Among all closed
paths based at v having initial edge f, choose one of minimal length, call it g;. Then g is
necessarily a cycle, and, since it has the same initial edge as does ao, we have e*g; = 0 for

all e € S. In particular, this gives that

(5o

eeS
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By the hypotheses of this subcase, there exists a second simple closed path go based at
v. In particular, g5g1 = 0. Pick an integer ¢ for which |g}| > |ag|. Let y denote the element

(9%)*zg} of Li(E). Since x € I we have y € I. Using (v — Y, .gee*)g1 = g1, we get

y = (91) xgl = v+ Xa(g]) azgi + - + Mi(g]) “argl

is in I. We now argue exactly as in the proof of Case II of Theorem 3.1.5, as follows. If
(gh)*a;gt # 0, then (g¢)*a; # 0. Since |gt| > |a;|, this gives that a; is an initial segment of
g, ie., gt = a;b; for some real path b; . Since the a; are closed paths based at v, and g; is a
cycle, we get from the equation g} = a;b; that a; = ¢|' for some integer r;. In particular, each
a; commutes with g¢, which yields that whenever a term of the form (g})*a;g} is nonzero,
then necessarily it equals a;, so that (g¢)*a;g} # 0 implies (g})*a;g} = g|' for some positive
integer r;.

Thus we may write the element y of I as

y=v+ 022972+ + O Mgt

where §; = 1 if \;(¢%)*a;g} # 0, and ~; = 0 otherwise. Since g5g; = 0 this yields that

95992 = gavge =,

sothat v € I. But INE? C J, sov € J, so that z = vz € J, the final contradiction required
to establish the “real part” part of the proof.

To summarize, we have shown that any element of I of the form

(AMar + Aeag + -+ - + Agag) (U — Z 66*) )

eeS

where S is a finite subset of EF4, each a; is a real path in F, and )\; € K, is in the ideal
generated by elements of I of the indicated form.
Now we prove that any arbitrary element of [ is in J. Again working towards a contra-

diction, suppose that I\ J # ), and let

r = (A1a1b] + -+ + A\panby,) (v — Zee*) el\J,
eeS
where each a; and b; is a real path in E, and n is minimal. As above, we may choose A\; = 1,
and we may assume that s(a;) = s(a;) and r(b7) = r(b;)(= v) for every i and j. Among all

such z, select one for which (|b1],...,|bs|) is smallest in the lexicographic order of (Z1)".
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Suppose |b;| > 0 for some i. Write b; = e;b, for some edge e; and some real path ¥/

(possibly of length 0). If e; € S, then

f(v—Zee) b'*f(v—Zee)z — (b))*ef =0.
ecS eesS
So we may assume that if |b;| > 0 in the indicated expression for x, then e; € S.

First, suppose |b;| > 0 for every i. As above, let e; denote the initial edge of b;, and
write b; = e;}; then as shown in the previous paragraph, we may assume e; ¢ S. Note that
for any edge f € s71(v)\ S we have (v -3, gee*)f = f. So for any f € s7*(v)\ S we have

zf = (a1b + - + Apanb (v—Zee ) f= Z)\azb*f— > Nai(b
e€S {iles=f}

We note that, since fr(f) = f, this expression is of the correct form. So if the number
of monomial terms in z f is less than n, then xf € J. If the number of monomial terms in
xf is n, then since (|0}],...,|0]) < (|b1],--.,|bn]), the minimality condition implies zf € J.
So either case gives xf € J. In particular, for each e; which appears as the initial edge of

some b; in the expression for z, we have zeje; € J. But this in turn yields

T = Z me]e € J,

{distinct e; | 1<j<n}

a contradiction.

On the other hand, suppose |b;| = 0 for some 1 < j < n. So one of the b;, say by, is of
the form v for some v € Ey. Without loss of generality, assume that |by| = -+ = |by| =0
for some u > 1, and that |b;| > 0 for j > v+ 1. Then we have

x = (a1 + Aoag + -+ + M@y + Aug1au1bj 41 + - + Ananby,) <v - Z ee*) :
eeS

Let
T={feFE"|bf+#0for someu+1<i<n};

so T is the set of edges which appear as the initial edge of some real path b;, u+1 <17 < n.
Note that T is finite. As indicated above, minimality implies that S N7 = (. Again using

minimality, an argument analogous to one used previously yields that xf is in J for all

f €T, hence
S affrel

feT
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Write b; = f;b] for each u+1 <4 < n. Then for f € T we have b} f f* = 0 unless f = f;,
in which case by f f* = bj. This yields that b7 (v — >_cp ff*) = 0 for u+1 < i < n, which

in turn implies that

.CI}—Z:Bff*:(a1+)\2a2+"'+)\uau) U—fo*

Jer fer
We are now in position to invoke the result established in the first part of the proof:
since each a; (1 < i < u) is a real path, the displayed expression is in J. Thus we have both
= jerxff*and 3 pcpaff* are in J, which gives z € J, the final contradiction needed

to establish our main result. O

Not surprisingly, the description of the generating sets for ideals of Leavitt path algebras
in the row-finite case will follow from the description of the generating sets in the general
case. However, this conclusion is not completely immediate. Specifically, to establish the
row-finite case from the general case we must show that in the row-finite case, any ideal
generated by an element of the form (v+ 31" 5 Aig") (v — Y cq €€*) can in fact be generated
by some collection of vertices, together with elements of the form f(h) = w + Zf:z rih?,
where k; € K and h is a cycle based at w.

We first prove a lemma.

Lemma 3.2.2. Let E be any graph. Let v € EV be a finite emitter, and let S denote any
subset of s~1(v). Then these two ideals of L (E) are equal:

<v—zee*> ={r(f) | fes )\ S}).

ecS
Proof. For convenience we let i denote v—3___gee*, A denote (y), and B denote the second
displayed ideal. Note that, since v is a finite emitter, then for S = s~ (v) we get the trivial
statement that the ideal {0} is generated by the empty set. So we consider the situation
where s71(v) \ S is nonempty.
Let f € s 1(v)\ S. Since f & S we get yf = vf = f, so that f*yf = f*f =r(f). Thus
each r(f) in the generating set for B is in A, so B C A.

Conversely, since v is a finite emitter, the CK2 relation at v gives

v = Z ee*:Zee*—i— Z Ire,

e€s—1(v) e€sS fes—(w)\S
so that
y=v—> e = > fff= > fr(f)f eB.
eesS fes—L(w)\S fes~1(w)\S

So y € B, so that A C B. O
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Proposition 3.2.3. Let E be an arbitrary graph, let v be a finite emitter, let S be a subset
of s71(v), and let g be a cycle based at v having initial edge e1. Write g = e1p for some real
path p in E. Let w denote r(e1), and let g,, denote the cycle pey based at w (so that gy, is
the cycle g, shifted to be based at w rather than v). Let

1. If ey € S, then (z) = ({r(f) | f€s'(v)\S}).
2. Ife1 €5, then (z) = (w+ Y"1 Nighy).
Proof. We use throughout that ejelg = g. For convenience we let t(z) = > | \ia® € K[x].

1. We compute

ere]z = ere](v +t(g)) (U — Z ee*) = (e1e] +1(g)) (v - Zee*) :

eeS eeS

But e; € S gives e1e](D_.cgee”) = ere], so that expanding the last term in the display

gives

=ere] —ere] +t(g) —t(g) Z ee’ =t(g) <v - Z ee*) .

ecS ecS
So erejz = t(g)(v — D .cge€”) € (2), so that

z—ejejz=2z—1t(g) (v — Zee*)

e€eS
= (v+t(g)) (v — Z ee*) —t(g) (U — Z ee*>
eeS ecS

— <U—Zee*> € (2).

eeS

Now using Lemma 3.2.2, we get that ({r(f) | f € s7*(v) \ S}) C (2).

Conversely, since
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we get v — > cgee” is in the ideal generated by the indicated vertices, hence so is z,

so that
(z) S{r(N) | fes(v)\S})

as well.

2. Since ey ¢ S we have (v — ) .gee*)er = e1 Clearly ejze; € (2). Now compute

ejze; = ej(v+t(g)) <v — Z ee*) e1 =ej(v+t(g))er =ejer +ejt(g)er.
eeS

But if w denotes r(eq), this last expression is precisely w + t(gy,), so that

<w + Z /\igf;,> = (w +t(gw)) C (2).

On the other hand, writing g = e1p, we have that v + ¢(g) = p*(w + t(gw))p, so that
v+ t(g), and therefore

2= (Ww+t(g)) (—Z)

eeS

are in (w + t(gw)) as desired.
O

We now get as a consequence of Theorem 3.1.5 the analogous result for the row-finite

case.

Alternative Proof of Theorem 3.1.5 . By Theorem 3.2.1, I has a generating set consisting

But since F is row-finite, Proposition 3.2.3 yields that the ideal generated by any element

of elements of the type

of this type can in fact be generated by elements of the desired form. O

3.3 Examples

In this section we will give a couple of examples of two-sided ideals for different types of
graphs, and show that they are generated by elements of the desired form. Our goal is to

break down the given polynomials into smaller components.
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Figure 3.3: Graph of the Leavitt path algebra defined in Example 3.3.1 and 3.3.2.

Example 3.3.1. Let E be the directed graph given in Figure 3.3. Consider the two-sided
ideal I in Lk (F) generated by jp = v + e19g*e] — eaes. Then

eiper = r(e1) + 99" =w+gg" € I.

Here we consider two cases with respect to the field K.

Case I: If K has characteristic 2, then note that w + gg* = w — gg* € I and

p="uv+egg el — eze;
=v—eje] +eje] —erggte] — exes
= (v —e1€e] — ezen) + (e1€] — e1gg™ey)
= (v —ere] = e2e3) +e1(w — gg*)e.
Hence (u) = (v — ere] — eael, w — gg*).
Case II: If K is any other field, then (w+ gg*)g = 2g € I and hence g € I. Then g*g =

w € I, and eygg*e} € I. Note that p — e1gg*e} = v — ezes. We get that (1) = (v — ezed, w)

Example 3.3.2. Let E be the directed graph given in Figure 3.3. Consider the two-sided
ideal I in Lk (F) generated by u =v — e1gg*ej. Then

eiper = r(e1) —gg" =w —gg* € I.

Note that

e1(w— gg*)e] =ere] —e1gg*el € I and

ere] —e1gge] —pu=v—ere] €1.
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Figure 3.4: Graph of the Leavitt path algebra defined in Example 3.3.3.

Now we have
p=v—eigge] = er(w — gglel + (v —ere}).

Hence (p) = (w — gg*,v — e1e}).

Example 3.3.3. Let E be the directed graph given in Figure 3.4. Consider the two-sided
ideal T in Lic(E) generated by p = v + e1eig” — eses — g. Then ereip = ere] + erejg” € I.
Note that

w—eejp=v—ee] —eze; —gel.

We then have
g* (1 —erejp)g=v—g el and

x:=ere] +exe; € I.

We see that ejze; = r(e1) € I and esxes = r(ea) € 1. As a result, we obtain (u)

(r(e1),r(e2),v —g).



Chapter 4

Two-Sided Chain Conditions

In this chapter, we will give the necessary and sufficient conditions on the directed graph E
so that the associated Leavitt path algebra satisfies two-sided chain conditions by using the
main theorems from previous section. In the first section, we will state some preliminary
concepts and results. In the next two sections, we will characterize two-sided Noetherian
Leavitt path algebras and two-sided Artinian Leavitt path algebras with respect to the
underlying directed graph. In the final section, we will present some examples to illustrate

the results we have found. The results we demonstrate here appear in [18] and [6].

4.1 Preliminaries

In this section we classify those Leavitt path algebras which satisfy the ascending chain
condition (resp., descending chain condition) on two-sided ideals. To do so, we first recall

some notation.

Definition 4.1.1. If H is a hereditary subset of E°, then the breaking vertices of H is
defined to be the set

By = {v € E°\ H | v is an infinite emitter, and 0 < |s~*(v) Nr~ 1 (E°\ H)| < oo}

and, for any v € By, we let

ol = — E ee”.

s(e)=v,r(e)¢H

Example 4.1.2. We consider the graph given in Figure 2.2. Let H = {uy,ua,...}, and by
Ezample 2.2.2, we know that H is hereditary subset of E°. Let f; be the edge with s(f;) = v;
and r(f;) = vit1. We make the following observation. We see that vy € EY\ H, and v;

36
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is an infinite emitter. In addition, |s~'(v) Nr~Y(E°\ H)| consists of one edge; fi. Hence,
v1 € By, Similarly, we see that v; is in By for each i € N, hence By is infinite.
We also get that

v =w; — Z ee* =v; — fif]
s(e)=wv;,r(e)¢H
for each i € N.

Definition 4.1.3. A pair (H,S) is called an admissible pair if H is a hereditary saturated
subset of E® and S C By.

We let L denote the set of admissible pairs of E, and order these elements by setting
(H,S) < (H',S") incase HC H' and S C H'US".

Definition 4.1.4. If H is a hereditary saturated subset of EY and S C By, then I(H, S)
denotes the ideal of Ly (E) generated by {v | v e H} U {v | v e S}.

Definition 4.1.5. If H is a saturated hereditary subset of E° and S C By , let Iiys)
denote the ideal in Lk (E) generated by {v | ve H} U{vy | v e S}.

For any admissible pair (H,S) we define the graph E'\ (H,S) by setting:
(E\ (H,9))° = (E°\H)U{v' | ve By \ S}, and
(E\(H,S)' ={ecE'|r(e)¢ H}U{e | ec E',r(e) € By \ S}.

Here the symbols v' and e’ denote symbols not in the original graph E. The range and

source functions r and s are extended to E'\ (H, S) by defining s(e’) = s(e) and r(e’) = r(e)’.

Example 4.1.6. Consider the graph given in Figure 4.1, and let H = {w} which is hered-
itary saturated subset of E°. There are no infinite emitters in this graph, hence By = 0.
Consider the admissible pair (H,D). Then

(E\ (H,0)° = {v,u}, and
(B\ (H,0)! = {xz,t}.

The resulting graph is given in Figure 4.2.

Example 4.1.7. Consider the graph given in Figure 2.2, and let H = {uy,ua,...,}. In
Ezample 2.2.2, we showed that By = {vi,ve,...}. Let S = {vi} C By, hence (H,S) is an
admissible pair. Once again, let f; be the edge with s(f;) = v; and r(f;) = viy1. Then

(E\ (H,9))° = {v1,v2,... }U{vh,v},...}, and
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Figure 4.1: Graph for Example 4.1.6.

Figure 4.2: The graph of E \ (H, () in Example 4.1.6.

(E\(Hvs))l :{f17f27}u{f{7fév}
where s(f{) = s(fi) = vi and v(f]) = v(f;)" = vi, . The resulting graph is given in Figure
4.3,

VI VZ V3

5 fr 3 L £ _
I \f; 3

([ ([ ] o

V,I V} V’3

Figure 4.3: The graph of E \ (H,S) in Example 4.1.7.

A theorem of Tomforde [35, Theorem 5.7], stated for countable graphs, plays a central
role in the current discussion. The key result upon which the proof of [35, Theorem 5.7] relies
is the so-called “Graded Uniqueness Theorem” [35, Theorem 4.8]. The Graded Uniqueness
Theorem was extended from countable graphs to graphs of arbitrary size in both [24, Theo-

rem 3.2] and [12, Theorem 3.5]. (Indeed, one can also show that all of the machinery which
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supports the proof of [35, Theorem 4.8] holds verbatim for arbitrary graphs as well.) With
the appropriate extension of the Graded Uniqueness Theorem in hand, a close examination
of the remainder of the proof of [35, Theorem 5.7] yields that the following result holds for

graphs of arbitrary size.

Theorem 4.1.8. (Eztension of [35, Parts (1) and (2) of Theorem 5.7] to graphs of arbitrary
size.) Let E be a directed graph.

(i) The map (H,S) = Iz s is a lattice isomorphism from the lattice Lr of admissible
pairs to the lattice HE of graded ideals of Lk (E).

(ii) For any admissible pair (H,S) there is an isomorphism of K-algebras

Lx(E)/Ims) = Lx(E\ (H,S)).

4.2 Two-Sided Noetherian Leavitt Path Algebras

Now the Theorems are in hand, we are going to put the pieces together to get the two-sided
Noetherian results. First we will do this for row-finite graphs by using Theorem 3.1.5, and
then for the arbitrary graphs by using 3.2.1

First we need some preliminary results that we get as consequences of Theorem 3.2.1.

Lemma 4.2.1. Let I be a two-sided ideal of Ly (FE), where E is an arbitrary graph. Suppose
g, h are two non-trivial cycles based at distinct vertices u, v respectively. Suppose u +
> arg” =p(g) and v+ bsh® = q(h) both belong to I, where p(x) and q(x) are polynomials
of smallest positive degree in K|[x] with p(0) =1 = q(0) such that p(g) € I and q(h) € I. If
u > v, then v > u and (p(g)) = (q(h)).

Proof. Let the non-trivial cycle g be given by the edge sequence e - - - e, with r(e;) = w; for
all ¢ and that w, = u. For any i, let g; = e;11 - - - ; be the shifted non-trivial cycle based at
w; and p(g;) = w; + Y arg;. Clearly, p(x) is a polynomial of smallest positive degree such
that p(g;) € I.

Let p be a path from u to v. We claim that v must lie on the cycle g. Because
otherwise, p*g = 0 and so p*p(g)p = p*up + > arp*g"pw = v € I. This contradicts the fact
that degq(xz) > 0. So we can write g = uv where v is the part of g from v to w. Thus, in
particular, v > u. We claim that the cycle h = vu. Indeed, if A contains an edge f with
s(f) = w; for some i and f # e;41, then f*g; = 0 and we get f*p(g;)f = ffw;f = w41 € I,
contradicting the fact that degp(z) > 0. Hence h = vu. Since p*gu = h, we get u*p(g)p =
p(h) € I. By the minimality of ¢(z), we have ¢(z) is a divisor of p(x) in K[z]. Similarly,
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since v*q(h)v = q(g) € I, we conclude that p(z) is a divisor of ¢(x). Thus ¢(z) = kp(x) for
some k € K. Since p(0) =1 = ¢(0), ¢(z) = p(z). Hence q(h) = p*p(g)n € (p(g)). Likewise,
p(g) = v*q(h)v € (q(h)). Hence (p(g)) = (q(h)). O

The next Lemma and its proof are implicit in the proof of Lemma 7 in [2].

Lemma 4.2.2. Let E be an arbitrary graph and S C E°. Ifv € S, and there is a non-trivial

cycle based at v, then u > v for some u € S.

Proof. We recall that S = Unso An(S). Let k be the smallest non-negative integer such that
v € Ag(S). We prove the statement by induction on k, the statement being true by definition
when k = 0. Assume k > 0 and that the statement holds when k =n — 1. Let kK = n. Since
v € Ap(S)\ Ap_1(S), 0 < [s71(v)] < 0o and {w1,...,wn} = r(s7(v)) € An_1(S). Since
v is the base of a non-trivial cycle g, one of the vertices, say, w; lies on the cycle g and so
w; > v. Since wj € A,—1(S) and is the base of a cycle, by induction there is a u € S such

that v > w;. Then u > v, as desired. O

Remark 4.2.3. If p(z) € K|[z] is the polynomial of smallest degree > 0 such that p(g) € I
and p(0) = 1, then for any polynomial q(x) € K|x| satisfying q(g) € I we must have
p(z)|q(x). First we use the division algorithm and get q(x) = p(x)s(z) + r(x) where either
degr(z) < degp(x) or r(x) = 0. In either case, we see that r(g) € I. We claim that
r(z) = 0. Otherwise, then write r(g) = Aov + A1g + -+ - + Ang", and let k be the smallest
index such that A\, # 0. Then note that

r(9) = (1/A)(g") r(9) = v+ Nepag + -+ Ng" P € L.
Hence we get degr'(z) < degp(x), r'(g9) € I and r'(0) =1, a contradiction.

We also need the following Lemma, whose proof is given in the first paragraph of the
proof of Theorem 5.7 in [35].

Lemma 4.2.4. Let E be an arbitrary graph and let H be a hereditary and saturated subset
of vertices in E. If I is the two-sided ideal generated by H, then INE° = H.

Theorem 4.2.5. Let E be a row-finite graph. Then the following are equivalent:
(i) Lix(E) has a.c.c. on two-sided ideals;
(i) Li(E) has a.c.c. on two-sided graded ideals;

(iii) The hereditary saturated closures of the subsets of the vertices in E° satisfy a.c.c.
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Proof. (iii) = (i) Suppose the ascending chain condition holds on the hereditary saturated
closures of the subsets of E°. Let I be a two-sided ideal of Ly (F). By Theorem 3.1.5 and
by Remark 4.2.3, I is generated by the set

T= {v+>, Mg =plg)€l|veE’gisacycle (may be trivial) based at v and

p(x) € K[z] is a polynomial of smallest degree such that p(g) € I and p(0) = 1}.

It is well known that two-sided Noetherian is equivalent to every two-sided ideal being
finitely generated, so we wish to show that [ is generated by a finite subset of T

Suppose, towards a contradiction, there are infinitely many p;(g;) = vi + > A\rgf € T
with ¢ € H, where H is an infinite set. Assume that for each i, g; is a non-trivial cycle
based at v; and that degp;(z) > 0. By Lemma 4.2.1, we may assume that for any two
i, j with @ # j, v; # vj. Well-order the set H and consider it as the set of all ordinals
less than an infinite ordinal x. Define S; = v1 and for any a < s, define S, = UgSp if
a is a limit ordinal, and define S, = Sg U {vgy1} if a is a non-limit ordinal of the form
B 4+ 1. By the hypothesis the ascending chain of hereditary saturated closures of subsets
S1 C Sy C---C 8, C - becomes stationary after a finite number of steps. So there
is an integer n such that S, = S,41 = ---. Now v,41 € Spi1 = S, and by Lemma
4.2.2, there is a v; € S, such that v; > wv,11. This is a contradiction. Hence the set
W = {pi(gi) € T | degpi(x) > 0} is finite.

So by the previous paragraph, if there are only finitely many p;(g;) in 7' with deg p;(x) =
0, that is, only finitely many vertices in 7', then we are done. We index the vertices v, in
T by ordinals o < k, where k is an infinite ordinal. Then as before, we get a well-ordered
ascending chain of hereditary saturated closure of subsets S,CS,C-.-CS,C--- (a < R)
where S; = {v;} and the S, are inductively defined as before. Since, by hypothesis, this
chain becomes stationary after a finite number of steps, there is an integer n such that
Sa =8, for all @ > n. Thus {v, | @ < k} C S,,. Since the ideal generated by the finite set
S, = {v1,...,v,} contains S, we conclude that the ideal I is generated by the finite set
W U S,,. Thus the Leavitt path algebra is two-sided Noetherian.

(i) = (iii) Conversely, suppose L (FE) is two-sided Noetherian. Consider an ascending
chain of hereditary saturated closures of subsets of vertices S; C Sy C --- in E°. Consider
the corresponding ascending chain of two-sided ideals I; C Is C --- |, where for each integer
i, I; is the two-sided ideal generated by S;. By hypothesis, there is an integer n such that
I, = I; for all i > n. We claim that S; = S, for all i > n. Otherwise, we can find a
vertex w € S; \ S, and since w € I; = I,, w € I, N E* = S,, by Lemma 4.2.4 and this is a

contradiction.
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Figure 4.4: Graph of the Leavitt path algebra defined in Example 4.2.8.

(ii) < (iii) This follows directly from [11], Theorem 5.3. O

Remark 4.2.6. We note that this result only shows that the a.c.c. on graded ideals is
sufficient to get a.c.c. on all ideals, and that we are not proving that every ideal in a two-
sided Noetherian Leavitt path algebra is graded. As an example we can consider K|z, ™,
which s the Leavitt path algebra of the graph with one vertex and one loop. Note that
although this Leavitt path algebra has infinitely many ideals, it is nonetheless Noetherian,

but has only the trivial graded ideals.
Now we easily obtain the following result.

Corollary 4.2.7. Every Leavitt path algebra with a finite graph is two-sided Noetherian.
We conclude by presenting another example of a non-Noetherian Leavitt path algebra.

Example 4.2.8. Let E = (E°, E',r, s) be the directed graph where E° = {v,wy, ws, w3, ...}
and B' = {e1,e2,...} U{f1, fo,...} is such that v(e;) = v and s(e;) = 7(f;) = s(fi) = w;.
The graph of this Leavitt path algebra is given in Figure 4.4.

Note that if we let S; = {w1,...,w;}, then S1C Se C .- is a non-terminating ascending
chain of hereditary saturated closures of sets in E°. Hence by Theorem 4.2.5, L (E) is not

two-sided Noetherian. Indeed, (w1) C (wi,ws) C -+ is a non-terminating ascending chain
of ideals in Lk (E).

The current goal is to show how Theorem 3.2.1 allows us to identify the two-sided
Noetherian Leavitt path algebras for arbitrary graphs. In our verification of the following
useful result, we will use 2.5.16 which says that if I is an ideal of L (E), then E°N 1T is a

hereditary saturated subset of EV.



CHAPTER 4. TWO-SIDED CHAIN CONDITIONS 43

Proposition 4.2.9. Let E be an arbitrary graph and let I be an ideal of Lx(E). Let H
denote the hereditary saturated subset I N EY of EY, and let L denote the ideal of Ly (F)
generated by H U C, where C is the collection of elements of I of the form

k
w + Z /iihi
=1

where h is a cycle based at the verter w, and k; € K.

Suppose = = (v 4+ ¥ Nigh) (v — Y ecgee’) €1,
(i) If v is an infinite emitter, then either
v € By (in case s~ (v) Nr Y (E°\ H) # (), or
(z,L) = (v,L) = L (in case s~ '(v) Nr~H(E°\ H) = ().
(i1) If v is a finite emitter, then (x,L) = (v, L) = L.

Proof. (i) First assume that g is not a trivial cycle, and let e; denote the initial edge of g.
If f € s7H(v)\(SU{e1}), then f*g = 0, and e*f = 0 for all e € S. If g is trivial, then let
f €5 Hv)\ S. In either case, we get f*zf = f*of =r(f) € INE? = H. So if v is an
infinite emitter, we have shown that the range vertices of all edges emitted by v, except
perhaps for those in the finite set S U {e1}, are in H. So [s~!(v)Nr 1 (E°\ H)| < co.
Thus if 0 < |s~1(v) Nr~1(E\ H)|, then v € By by definition. If on the other hand
we have 0 = [s~1(v) Nr~1(E?\ H)|, then r(e;) € H and r(e) € H for all e € S. Since
x € I this gives v € I, so that (v, L) C (x, L). Since the reverse containment is clear,

we get the desired conclusion.

(ii) follows directly from Proposition 3.2.3.
O

We now relate the chain conditions on the set of admissible pairs to the chain conditions

on the hereditary saturated subsets and sets of breaking vertices.
Lemma 4.2.10. Let E be an arbitrary graph. Then the following are equivalent.

(i) The lattice Lr of admissible pairs (H,S) of E satisfies the a.c.c. with respect to the

partial order indicated above.

(i) The lattice Hg of all hereditary saturated subsets of E satisfies the a.c.c. (under set
inclusion), and, for each H € Hp, the corresponding set By of breaking vertices is
finite.
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Proof. Suppose the a.c.c. holds in Lg . Let
Hy CHy C---

be an ascending chain of hereditary saturated subsets of vertices in . Then we get an

ascending chain of admissible pairs
(Hy,0) < (Ho,0) <--- in Lp
(where () is the empty set). By hypothesis, there is an integer n such that
(Hp,0) = (Hn41,0) = - -

This implies that
Hy=Hypy =",

showing that a.c.c holds in Hg . Let H € Hg. Then the corresponding set By of breaking
vertices of H must be finite, since otherwise By would contain an infinite ascending chain

of subsets indexed by positive integers
S C--C8, Cen
and this would then give rise to a proper ascending chain
(H,51)<---<(H,S,) <-- in Lg,

contradicting the fact that a.c.c. holds in L.
Conversely, suppose the a.c.c. holds in Hg, and that By is a finite set for each H € Hp.

Consider an ascending chain of admissible pairs
(H1,51) < (Hg,8) <--- in Lg.

This gives rise to an ascending chain

Hi CHyC---inHg

and so there is an integer k such that H; = Hy, for all ¢ > k. So from the k™ term onwards,

the given chain of admissible pairs is of the form
(Ha Sk?) < (H7Sk+1) <y

where Sy, Sgi1,... are subsets of By. Observe that since By N H = (), it follows from the

definition of < on Lg that we have an ascending chain

Sk C Sk41 S0
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Since By is a finite set, there is a positive integer m such that Sk, = Sktrm+i for all ¢ > 0.
This establishes the a.c.c. in Lg. O

By a completely analogous argument, we get the following result as well.
Lemma 4.2.11. Let E be an arbitrary graph. Then the following are equivalent.

(i) The lattice Lr of admissible pairs (H,S) of E satisfies the d.c.c. with respect to the

partial order indicated above.

(i) The lattice Hg of all hereditary saturated subsets of E satisfies the d.c.c. (under set
inclusion), and, for each H € Hp, the corresponding set By of breaking vertices is

finite.
Here now is our main consequence of Theorem 3.2.1.

Theorem 4.2.12. Let E be an arbitrary graph and K any field. Then the following are

equivalent:
(i) Li(E) is two-sided noetherian;
(i) Li(E) is two-sided graded noetherian;

(i) The a.c.c. holds in the set Hg of all hereditary saturated subsets of E (under set
inclusion), and, for each H € Hpg , the corresponding set By of breaking vertices is

finite.

Proof. (iii) = (i) Let I be an ideal of Li(E). We seek to show that I is finitely generated.
To this end, let H = I N E° . Then as noted previously, H is a hereditary saturated subset
of EY. Let J; C I be the ideal of Lg (E) generated by H.

By considering the hereditary saturated closures of finite subsets of H, the a.c.c. con-
dition in Hp implies that H = M, the hereditary saturated closure of a finite subset M.
Thus J; is the ideal generated by the finite set M.

Let J2 be the ideal generated by the set

n

C= {U + Z)\igi €I |veE" and g is a nontrivial cycle based at v} .
i=1

We will follow the ideas in the proof of Theorem 4.2.5 to show that J, is finitely generated.

By Lemma 4.2.1, we can assume that Jo is generated by a subset T" of C' with the property

that for any two v + > 1 \ig',w + >t wih! in T, v # w and w # v. We claim that T

is a finite set. Suppose, by way of contradiction, 7" has infinitely many elements. Denote
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a countably infinite number of elements of T' by vy, + Y %, )\ig,i, k € N. For each positive
integer n define T;, = {v1,...,v,}, and let T, be its hereditary saturated closure. By

hypothesis, the ascending chain
T,<---CT,C---

becomes stationary after a finite number of terms, say, T, = Tyy1 = --- for some integer
m. Then v,41 € Tyni1 = Thyp. But then, by Lemma 4.2.2, there is a vj € {v1,...,vm} such
that v; > vp41, a contradiction. Thus 7" is a finite set and J is finitely generated (by T).
Let L = J; 4+ Jo and thus L is the ideal generated by the finite set M UT.
By Theorem 3.2.1, the ideal I has a set of generators for which each element in the

generating set has the form

k
T = (v—i—Z)\igi) (v - Zee*) ,
i=1 eeS

where S(z) is some finite subset of s~!(v). By the previous paragraph, to show that I is
finitely generated it suffices to show that there exists a finite set x1, x2, ..., x, of elements of
I for which, for each expression z in I having the displayed form, (x, L) C (x1,x2,..., 2y, L) .

So let z = (v + Zi?:l Aig") (v — Y .cqee’) € I. If v is a finite emitter, then (z, L) =
(v, L) = L by Proposition 4.2.9(ii). So L itself already captures all of the expressions having
v a finite emitter.

Now let v be an infinite emitter. By Proposition 4.2.9(i), either (x, L) = (v, L) = (L),
or v € By. Thus we need only consider those vertices v in By.

Since By is finite by hypothesis, this yields that there are only finitely many infinite

emitters w in F for which there exists an expression of the form

k
T = <w+2)\igi> w— Z ee*
i=1

eeS(x)
in 7. Call this finite set W.
Let w € W , and suppose (w + Zle Aig)(w =Y, cgee”) € I. We claim that (z, L) =
(o', L), where o’ = (w—l—zle )\Z-gi)(w—ZeeT(x) ee*)eTand T(x) C{ec S(x)|r(e) & H}.
But this is straightforward: for each £ € s~!(w) having r(¢) € H, we have £¢* = (r(£)¢* €
L, so that

k
x:<w+2)\igi> w— Z 74
i=1

teS(x)\{LeS(x)|r(t)eH}

k
- (w + Z)\igi> >
=1

{0eS(z)|r(0)cHY}
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Since the second summand is in L, we get the desired conclusion.

To complete the proof, we thus need only establish that for each of the finitely many w €
By for which there exists an expression of the form x = (w+2f:1 )\igi)(w—zees(m) ee*) €1,
and each of the finitely many corresponding (finite) subsets U(z) C {e € S(z) | r(e) € H},
that there exist finitely many elements x1,...,x, of I for which any element of the form
x=(w+ Zle \ig®)(w — D ecu(z) €€7) is in the ideal (z1,...,zn, L). For a given choice of
w and U(x), let p(t) € KJt| be a polynomial of smallest degree with the properties that
p(0) =1 and z = p(g)(w — X .cpy(y) €€) € I, where p(g) denotes (w + Z?Zl Aig'). We note
that p(t) could possibly have degree 0, i.e., p(g) = w is allowed.

We claim that the ideal (x, L) contains every other expression of the form z = (w +
S g (w — > ecU(x) €€") € I, where where U(z) is a finite subset of s~ (w) for which
Ux) = U(z)\ {e € U(z) | r(e) € H}, and q(t) = Y. "quit" € K[t] is some polynomial
with ¢(g) = w+ > 1%, pig'. That we may eliminate the edges e in U(z) for which r(e) € H
is a result of the process described previously. This yields z € (L,2’), where 2/ = (w +
S gt (w — > ces(zy€€’) € I. By the minimality of the degree of p(t), a standard
division algorithm argument yields that ¢(t) = p(t)pi(t) for some pi(t) € K]Jt], so that
2 =p1(g9)p(9) = p1(9)x € (x) C (x, L), as desired.

In conclusion, we have shown that if we denote by x1, o, ..., x, the elements

{P(Q) (w - Z€€*> | we By, S C{eecs H(w)]|r(e) ¢ H}, and p(t) is the

e€eS

monic polynomial of smallest degree for which p(g) (w — Z ee*> el } ,
ecS

then (z, L) C (x1, 22, ...,xy, L), thus establishing the result.

That (i) = (ii) is obvious.

Finally, (ii) = (iii) follows from the lattice isomorphism between the lattice L of ad-
missible pairs of £ and the lattice Hg of graded ideals of Ly (E) established in Theorem
4.1.8(i), together with Lemma 4.2.10. O

We note that the result established in Theorem 4.2.12 for arbitrary-sized graphs imme-
diately yields the identical result established for row-finite graphs in Theorem 4.2.5.

4.3 Two-Sided Artinian Leavitt Path Algebras

With the two-sided Noetherian result now in hand, we begin to build the machinery which
will allow us to achieve the two-sided Artinian result for Leavitt path algebras. Of use will

be the following two results.
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Proposition 4.3.1. [14, Proposition 1.17] Let E be an arbitrary graph. Suppose E satisfies
Condition (L) but does not satisfy Condition (K). Then there exists a hereditary saturated
subset H of E° for which the graph E\ (H, () does not satisfy Condition (L).

Proof. Since Condition (K) does not hold in E, there is a vertex v which is the base of
exactly one simple closed path ¢ = e; - - - e, with e; € E'. By Condition (L), c has exits. Let
A={f e FE'| fanexit of ¢}, and let B = {r(f) | f € A}. Let H denote the hereditary
saturated closure of B in E, and let ¢ denote the vertices of ¢, i.e., ¢® = {r(e;) | 1 <1i < n}.
We claim that H N c? = (). Indeed if there is a vertex w € H N c”, then by Lemma 4.2.1
there exists u € B such that v > w. This would then give rise to another simple closed path
based at v, a contradiction. Hence H N c® = (). If we consider the graph E \ (H,0), we get
by definition that ¢ C (E\ (H,1))°, {e1,...,en} C (E\ (H,0))!, and thus ¢ is a cycle in
E\ (H,0) with no exits. Therefore Condition (L) does not hold in E'\ (H, ), as desired. [

We immediately use Proposition 4.3.1 to get the following.

Proposition 4.3.2. Let E be an arbitrary graph and K any field. Suppose P is a ring-
theoretic property such that:

(i) if a ring R has P, then any factor ring of R also has P, and

(ii) for any Leavitt path algebra Lk (E), if Lx(E) satisfies P then E satisfies Condition
(L).

Then for any Leavitt path algebra L (E) which satisfies P, the graph E satisfies Condition
(K).

Proof. Suppose L (FE) has property P. By Proposition 4.3.1, if E' does not satisfy Condition
(K) then we may find a hereditary saturated subset H of E? for which £\ (H, ) does not
satisfy Condition (L). But Li(E \ (H,0)) = Lx(E)/I(z,) by Theorem 4.1.8(ii), so that by
hypothesis (i) Lx(E \ (H,0)) satisfies P, and thus by hypothesis (ii) yields Condition (L)
on E\ (H,0), a contradiction. O

We are now ready to prove the two-sided Artinian result.

Theorem 4.3.3. Let E be an arbitrary graph and K any field. Then Ly (E) is two-sided
Artinian if and only if the graph E satisfies Condition (K), the d.c.c. holds for hereditary
saturated subsets of E°, and for each hereditary saturated subset H, the corresponding set

By of breaking vertices is finite.
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Proof. Suppose Lk (FE) is two-sided Artinian. We first show that E satisfies Condition (L).
Suppose, on the contrary, Condition (L) does not hold. Then there is a cycle ¢ based at
a vertex v for which ¢ has no exits. Consider the following descending chain of ideals of
Lk (E):

(v—1c) 2 <U—62> 2---2 <v—02n> D

By hypothesis, there is an integer k& such that <v — 62k> = <U — 02k+1>. So in particular we
can write .
k k+1
v—c? = Z N Bi (v — & )yids,
i=1
where «;, 8;,7; and §; are paths in £. Multiplying both expressions on the left and right by

v, we conclude that if a term vo; 37 (v — c2k+1)

7v;0;v is nonzero, then v = s(a;) = s(8;) =
s(vi) = s(6;) and further r(ay) = r(5;) and r(vy;) = r(d;). Since ¢ has no exits, we argue
as in the proof of Proposition 5.1.5 that ;3 = ¢ and ;6 = c“ for some t;, u; € Z. In

particular, all factors in the sum commute, and we may write
n
k k+1 .
v—c* = E \v— 2 v,
=1

But then arguing on both the smallest and largest degrees in the right hand expression we

k“) for some A € K, which is

see that w; = 0 for all 1 < ¢ <n. So we have v—c2 = Av—c?
impossible, again by a comparison of degrees of homogeneous terms. Hence Condition (L)
holds in E.

But any homomorphic image of a two-sided Artinian ring is again two-sided Artinian.
Thus, using the previous paragraph, we may invoke Proposition 4.3.2 (where P is “two-sided
Artinian”) to conclude that E satisfies Condition (K).

Furthermore, since Ly (FE) satisfies the d.c.c. on all ideals it necessarily satisfies the
d.c.c. on graded ideals. Then by Lemma 4.2.11 this yields the desired properties on the
hereditary saturated subsets of E' and the sets of breaking vertices in F.

Conversely, if Condition (K) holds then by Theorem 5.1.1 we have that every ideal of
Li(F) is graded. In particular, the lattice of all ideals is the same as the lattice of graded
ideals. But the indicated conditions on the hereditary saturated subsets of E and the sets
of breaking vertices in F/ implies that the lattice of graded ideals has the d.c.c. by Lemma
4.2.11. Thus Lk (F) is two-sided Artinian. O

We note that in fact we have proven that the d.c.c. on principal ideals of Lg(F) is
equivalent to Li(FE) being two-sided Artinian, since the d.c.c. on principal ideals was

sufficient to establish that Condition (K) holds in E.



CHAPTER 4. TWO-SIDED CHAIN CONDITIONS 50

The following observation compares and contrasts the Artinian result Theorem 4.3.3
with its Noetherian counterpart Theorem 4.2.12. While two-sided Noetherian is equivalent
to being graded two-sided Noetherian, not all ideals in a Noetherian Leavitt path algebra are
necessarily graded. Indeed, K[z, 27 '] = Ly (Ry), where R; is the directed graph consisting
of one vertex v and one edge e such that s(e) = r(e) = v, is graded Noetherian (there
are no nontrivial graded ideals), and therefore Noetherian, but all of the (infinitely many)
nontrivial ideals of K[z, z~!] are nongraded. On the other hand, two-sided Artinian is not
equivalent to being graded two-sided Artinian, as the same K[z, 27!] example demonstrates.
However, in a two-sided Artinian Leavitt path algebra, every ideal is necessarily graded (as
Condition (K) holds in such algebras). We note that in order to achieve the Noetherian
result, we invoked the explicit description of the generating sets of arbitrary ideals afforded
by Theorem 3.2.1. However, we did not need to directly use the result of Theorem 3.2.1 for
the Artinian result. (We did utilize Theorem 5.1.1, a consequence of Theorem 3.2.1, in the
proof of the Artinian result; however, we could have instead simply invoked [24, Theorem

3.8] in its place.)

4.4 Examples

We now offer some explicit examples which we hope will help the reader to clarify these
ideas.

If Lg(F) is two-sided Artinian, it need not be two-sided Noetherian, and, likewise, the
two-sided Noetherian condition does not imply the two-sided Artinian condition.

Clearly K[z,77 '] = Li(R;) provides an example of the latter. For the former, consider

the following example.

Example 4.4.1. Let P, = |J,,cy P be the “pyramid” graph of length w described in [13] and
pictorially represented here (Figure 4.5). Specifically, for n > 1, P, denotes the subgraph of
P, consisting of vertices in the first n “rows”, together with all edges they emanate. This
graph is acyclic, so Condition (K) is vacuously satisfied. The hereditary saturated subsets
of P,, correspond exactly to the subgraphs P,; these clearly do not satisfy a.c.c., but do
satisfy d.c.c. Since there are no infinite emitters in P,,, the sets of breaking vertices By are
empty. Hence by Theorem 4.3.3 the Leavitt path algebra Ly (P,) is two-sided Artinian, but,
by Theorem 4.2.12, not two-sided Noetherian.

Example 4.4.2. Consider the graph E in Figure 4.6.

So in particular for each j € N, there is an edge from v; to every u;, ¢ € N.
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Figure 4.5: Graph of the Leavitt path algebra defined in Example 4.4.1.

Since there is only one edge which emanates from each w;, if H is a hereditary saturated
subset of E° which contains some uj, then H contains u; for alli € N (For i > j use the
hereditary property, and for i < j use the saturated property.). With this observation in
mind, it then follows easily that E° contains precisely three hereditary saturated subsets: (),
{u; | i € N}, and E°. If we denote {u; | i € N} by H, then each of the infinitely many v;
are breaking vertices for H. Therefore, even though there are very few hereditary saturated

subsets in E°, Ly (E) does not satisfy either chain condition by Theorems 4.2.12 and 4.3.3.

- - o

Yy
SO -0

Figure 4.6: Graph of the Leavitt path algebra defined in Example 4.4.2.
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Applications

5.1 Some Applications of the Main Theorem

We now give some applications of Theorem 3.2.1. We will give shorter and simpler proofs
for some of the known results in Leavitt path algebras. The results presented here also
appear in [6].

We start with the following result, which was established for arbitrary-sized graphs in

[24, Theorem 3.8], using techniques significantly different than we will use here.

Theorem 5.1.1. Let E be an arbitrary graph, and K any field. Then E satisfies Condition
(K) if and only if every ideal of Li (F) is graded.

Before beginning the proof, we note that a similar result for countable graphs is presented
as [35, Theorem 6.16]. Although the statement of [35, Theorem 6.16] indeed holds also for
arbitrary graphs, the tools used in its proof relies on the desingularization process, a process

which may be utilized only for countable graphs (see e.g. [7]).

Proof. Let I be an ideal of Li(FE). If E satisfies Condition (K) then there is no vertex in
E which is the base of a unique cycle. So, by Theorem 3.2.1, I has a generating set of the
form
{U—Zee* lveV CEYSC s_l(v)}.
ecsS

But any element of the form v — ) __gee* is homogeneous of degree 0. So I is an ideal
generated by homogeneous elements (of degree 0), hence is graded by Remark 2.5.15.

Conversely, if E does not satisfy Condition (K) then by [35, Proposition 6.12] there
is a graph F' which does not satisfy Condition (L), and an onto ring homomorphism ¢ :

Lk (E) — Lk (F) for which ¢ preserves the respective gradings. (We give the proof of this

52
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result in Proposition 4.3.1) But for a graph F' which does not satisfy Condition (L) one can
build a non-graded ideal in Lx (F') (specifically, the ideal (v + ¢) where ¢ is a cycle without

exits based at v), which implies the existence of a non-graded ideal in Lg(F). O

In addition, we may use Theorem 3.2.1 to obtain information about generating sets for
the graded ideals of the Leavitt path algebra Ly (FE) for any graph E. In particular, this
allows us (in the implication (1) = (3)) to give a more direct proof of the key piece of [35,
Theorem 5.7(1)].

Theorem 5.1.2. Let E be an arbitrary graph and K any field. Then the following are
equivalent for an ideal I of Ly (E):

(i) I is a graded ideal;

(it) I is generated by elements of the form v — Y .qee* € I, where v € E and S is a
finite (perhaps empty) subset of s~1(v);

(iii) I is generated by the subset H UY, where H = INE° and Y = {v—
266571(1,)7 r(e)gH ee* € I, with v € By}.

Proof. (i) = (i) By Theorem 3.2.1, I is generated as an ideal by elements in I of the form

n n
x = (v — Z)\kgk> (v - Zee*) = (v - Zee*) - Z/\kgk <v — Zee*) ,
k=1 e€S e€S k=1 ecS

where S is a finite subset of s7!(v). Let m denote the number of edges in the cycle g. Since
I is graded, each of the graded components of x is in I. Since deg(v — > gee*) = 0, we
have that the degree 0 component of x is v — ) g ee*, while the degree mk component of
z for k > 1is A\pg"(v — Y .cgee*). This implies that z belongs to the ideal generated by
elements in I of the form v — ) g ee, as desired.

(ii) = (i7i) Consider a generator y = v — >  .gee* € I. If S is empty, then y = v €
INE®= H. Suppose y ¢ (H), the ideal generated by H. Then v & H. If r(e) € H for any
e € S, then e = er(e) € (H) and so ee* € (H). Subtracting from y all those terms ee* for
which r(e) € H (and thus removing such e from S), we may assume that r(e) ¢ H for every
e € S. Observe that this process will not exhaust all of S, since otherwise, > .gee* € (H)
andv =y —> cqgee* €N E° = H, a contradiction. If there is an f € E' with s(f) = v
and r(f) ¢ H, then f must belong to S, because, otherwise,

z:(v—ff*)(v—Zee*):v—ff*—Zee*EI,

eeS eeS
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which implies that y — z = ff* € I. From this we get »(f) = f*(ff*)f €e INE’ = H, a
contradiction. Thus the finite set S is precisely the set {e € s71(v) | r(e) € H}. If v is a

finite emitter, then

y=v-Y e*= Y  ff'= > ffre(H).
ecS fes—H(w)\S fes—(v), r(f)eH
If on the other hand v is an infinite emitter, then v is a breaking vertex of H and so
y=uv—7 cgee* €Y. This proves (iii).
(791) = (i) As noted in Remark 2.5.15, any ideal generated by homogeneous elements
(here, of degree 0) is graded. O

Corollary 5.1.3. Let E be an arbitrary graph, and K any field. Then every nonzero graded

ideal of L (F) contains a vertex.

Proof. Let I be a nonzero graded ideal of Li(FE). By Theorem 5.1.2, I is generated by
elements of the form v — ) _gee* € I, where v € E° and S is a finite (perhaps empty)
subset of s71(v). If S = ) for some such v then we are done. If v is a finite emitter, then
S # s71(v) (since otherwise the expression v — > g ee* is zero); if v is an infinite emitter,
then S # s~ 1(v) as well, as S is finite. Thus in either case there exists f € s71\ 9, and we
get

rf)=1f=r <v—zee*> fer

ecS
]

We make a final observation regarding the graded ideals of Lk (F) for arbitrary E. Since
any element of the form v — Y _qee* for any finite subset S of s7!(v) is an idempotent,

condition (2) of Theorem 5.1.2 yields the following

Corollary 5.1.4. Let E be any graph, K any field, and I any graded ideal of Ly (FE). Then
I?=1.

With Theorem 5.1.1 and Corollary 5.1.4 in mind, the following result follows almost

immediately.

Proposition 5.1.5. Let E be any graph and K be any field. Then I? = I for every ideal I
of Lk (E) if and only if E satisfies Condition (K).

Proof. Suppose 1?2 = I for every ideal of Lx(FE). We first claim that E must satisfy Con-

dition (L). Because, on the contrary, there would be a cycle ¢ in E based at a vertex v for
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which ¢ has no exits; we show that this would yield that the ideal I = (v — ¢) has I% # I.
Since I2 = I, v — ¢ can be written as a K-linear combination of non-zero elements of the

form
7= aB*(v — c)pg* (v — )"

for suitable paths in E. Moreover, as v(v — ¢)v = v — ¢, we may assume that vzv = z,
and that v = s(a) = s(8) = s(p) = s(q) = s(y) = 5(9), r(a) = r(f), r(p) = r(q) and
r(y) = r(8). Since ¢ has no exits, the expressions a8*, pg*, and v§* must be of the form ¢/
for some j € Z. In particular, each of these expressions commutes with v — ¢, and so we
get x = (v — ¢)?c! for some integer ¢t. This then yields v —c = (v —¢)> > 1", k;ic'i for some
k; € K, t; € Z. But this is not possible by comparing degrees on both sides.

Thus we have shown that E satisfies Condition (L). Since the property that I? = I for
every ideal I is preserved under homomorphic images, we conclude from Proposition 4.3.2
that E satisfies Condition (K).

Conversely, suppose E satisfies the Condition (K). By Theorem 5.1.1, every ideal I of
Lk (E) is graded and so I? = I by Corollary 5.1.4. O

Remark 5.1.6. In [16, Theorem 3.15] it was shown that an arbitrary graph E satisfies
Condition (K) if and only if I? = I for every left (or right) ideal of L (E). We thus obtain
from Proposition 5.1.5 that in a Leavitt path algebra Ly (E), I? = I for every (two-sided)
ideal I if and only if I*> = I for every one-sided ideal I.

Lastly, we conclude this Chapter by noting that many known properties of Leavitt
path algebras derive almost immediately from Theorem 3.2.1. Indeed, with Theorem 3.2.1
in hand, we may re-establish a number of results in a manner different from the proofs

originally provided in the literature. We offer the proof of one such result.

Proposition 5.1.7. If the graph E satisfies Condition (L), then every nonzero ideal I of

Ly (FE) contains a vertex.

Proof. By Theorem 3.2.1, I is generated by elements of the form

belonging to I where v € E°, g is a cycle based at v, and S is a finite subset of s~1(v).
Since some such z is necessarily nonzero, for this x we have that S must be a proper subset
of s71(v); let f € s7!(v) \ S. Let e; denote the initial edge of g, so that g = e;p for a path
p with r(p) = v.
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If f+# e, then f*g =0 and we get f*xf = f*vf =r(f) € I and we are done.

If f = e, then f*gf = pf = h, a cycle based at r(f) = w. Since (3_,.gee*)f =0,
we get ffaf = ffof + > ke f*¢"f = w+ > k:h" € I. Now by Condition (L), h
has an exit ¢/, which we can assume to be at w (Indeed, if the €’ is an exit at a vertex
u on h, and if p is the path from w to w and v is the path from u to w along h, then
pH(w+ Yo ke h ) = prop 4+ Y kepth = u+ >0 ked” € I where ¢ = vy is the
cycle based at u). As (¢/)*h = 0, the element (¢/)*(w + >, k.h")e’ = (¢/)*ve’ + 0 = r(¢)

and belongs to I. Hence I contains a vertex in this case as well. O

Additional results for arbitrary graphs which follow from Proposition 5.1.7 and Corollary
5.1.3 include the Graded Uniqueness Theorem [35, Theorem 4.6], the Cuntz-Krieger Unique-
ness Theorem [35, Theorem 6.8], and the Simplicity Theorem [3, Theorem 3.1]. Please see

[12, Sec. 3] for a complete description.



Chapter 6

Graph C*-algebras

6.1 Extending the Results to Graph Cx-algebras

In this section we give the relationship between graph C*-algebras and Leavitt path algebras.
The definitions here can also be found in [17, 19, 33].
We first define graph C*-algebras.

Definition 6.1.1. A x-algebra is an associative algebra A over the complex numbers C with
an involution: a map a — a* from A to A such that (Aa + ub)* = Xa* + mb*, (a*)* = a and
(ab)* = b*a*.

Definition 6.1.2. A C*-algebra is a x-algebra A with norm a — |lal| : A — [0, 00) which
satisfies the usual axioms for a norm on a vector space:

labll < Jlaf[[[b] and [|a]* = [la*a] (the C*—identity),

and for which the normed space (A4, | - ||) is complete in the sense that Cauchy sequences

converge.

Definition 6.1.3. Let A be a C*-algebra. An element ¢ in A for which a*a is a projection

is called a partial isometry.

Definition 6.1.4. An element h of a C*-algebra A is said to be self-adjoint if h* = h. An

element a of A is said to be positive if a = h? for some self-adjoint element h € A.

We can introduce a partial order on the self-adjoint elements of a C*-algebra by defining

S<Tifand only if T — S <0.

Definition 6.1.5. If F is a graph we define a Cuntz-Krieger E-family to be a set of mutually
orthogonal projections {p, | v € E°} and a set of partial isometries {s. | e € E'} with

orthogonal ranges which satisfy the Cuntz-Krieger relations:

o7
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1. sgse = pp(e) for every e € E'
2. sesy < py(e) for every e € E',
3. Pu = D g(e)=y SeSe for every v € E° with 0 < |s71(v)| < c0.

The graph C*-algebra C*(E) is defined to be the C*-algebra generated by a universal Cuntz-
Krieger E-family.

As it can be seen, the relations 4. and 5. in the definition of Leavitt path algebra are
inherited from the definition of C*(F), and makes Leavitt path algebras a purely algebraic
analog of the graph C*-algebras.

We have already stated the necessary and sufficient conditions on the graph so that the
associated Leavitt path algebra is simple in 2.5.17. To make the comparison, we state the

graph C*-algebra version as well. The following result appears in [17, Theorem 2.1.23].

Theorem 6.1.6. Let E be a row-finite graph. Then C*(E) is simple if and only if E
satisfies Condition (L) and E° has no saturated hereditary subsets other than () and E°.

We note that the conditions on the graph E are precisely the same for both C*(E) and
Lk (F) to be simple.

In addition, we present results about purely infinite and simple (purely infinite simple)
Leavitt path algebras and graph algebras as another example of the relationship between
the two classes.

Before stating these results, let us define purely infinite simple rings and purely infinite

simple C*-algebras.

Definition 6.1.7. An idempotent e in a ring R is called infinite if eR is isomorphic as a
right R-module to a proper direct summand of itself. R is called purely infinite in case every
nonzero right ideal of R contains an infinite idempotent. R is purely infinite simple, if it is

both purely infinite and simple.

Definition 6.1.8. A (C*-algebra A is purely infinite simple if every nonzero hereditary

subalgebra of A contains an infinite projection.

Definition 6.1.9. Let E be a directed graph. If g is a cycle in F, and v is a vertex in EY,

then we say that v connects to cycle g if v > w for some vertex w in g.
The next result appears as [3, Theorem 4.3].

Theorem 6.1.10. Let E be a directed graph. Then L(E) is purely infinite simple if and
only if E has the following properties.
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(i) The only hereditary saturated subsets of E° are E° and 0);
(ii) Every cycle in E has an exit;
(iii) Every vertex connects to a cycle.

The next Theorem describes purely infinite simple graph C*-algebras. We combine [22,
Corollary 2.14], [22, Remark 2.16] and [17, Theorem 2.1.13] for an easier comparison.

Theorem 6.1.11. Let E be a directed graph. Then C*(E) is purely infinite simple if and
only if E satisfies the following properties.

(i) The only hereditary and saturated subsets of E° are E° and ();
(i) Every vertex in E has an exit;
(iii) Every vertex connects to a cycle.

It has been also noted that simple Leavitt path algebras and graph algebras share the
same dichotomy [17]:

Theorem 6.1.12. Let E be a row-finite directed graph. If Li(E) is simple, then either
1. Lk (F) is purely infinite simple, or
2. Li(E) is a limit of finite dimensional matriz rings.

For the C*(FE) version, we need the definition of an approximately finite-dimensional
C*-algebra. The approximately finite-dimensional property for C*-algebras corresponds to

being a limit of finite dimensional matrix rings for rings.

Definition 6.1.13. A C*-algebra is an approximately finite-dimensional (AF-algebra) if it
can be written as the closure of the increasing union of finite-dimensional C*-algebras; or,

equivalently, if it is the direct limit of a sequence of finite-dimensional C*-algebras.

The corresponding graph C*-algebra result can be obtained by combining [22, Corollary
2.13], [22, Remark 2.16] and [17, Theorem 2.1.13].

Theorem 6.1.14. Let E be a directed graph. If C*(E) is simple, then either
(i) C*(E) is an AF-algebra (if E contains no cycles); or

(i) C*(E) is purely infinite (if E contains a cycle).
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As it can be seen, these two classes of algebras share a close relationship. Thus, it is

natural to ask to following question.

Question 6.1.15. Is it also possible to give characterization for the closed two-sided ideals
in C*(E)?

By considering Theorem 3.2.1, one may naively think that these ideals could be generated

by elements of the form

m
<pv + Z >\ng%> (pv - 2 Se5;> )

k=2 e€X
where v € E, \; € C, X is a finite (possibly empty) subset of s~!(v), ¢ is the unique cycle
based at v, and r, € N. However, Pere Ara pointed out to us that this is not the case.
To see this we consider the directed graph E consisting of one vertex v € E° and one edge
x such that s(z) = r(z) = v. Then C*(FE) becomes the universal C*-algebra generated
by the unitary element S,. Recall that this C*-algebra is the algebra of complex-valued
continuous functions on the unit circle, and it is well-known that this algebra is generated
by trigonometric polynomials [34, Theorem 4.25]. This together with the fact that the
graph is row-finite reduce the question to the following. Is any closed two-sided ideal of the

continuous functions on the unit circle generated by elements of the form

N
1+ Z )\ieikaz,
k=1

where \; € C?
We let C be a proper closed interval in the unit circle, and let I be the closed two-sided
ideal consisting of continuous functions vanishing on C'. This ideal cannot be expressed as

T

the closure of the ideal generated by an elements of the form 1 + chvzl N\;etk as such an

element has at most finitely many zeros in C.
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