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ABSTRACT

Finding the path between two points in a polygon which minimizes the Euclidean distance

of the path has been studied extensively. In this thesis this problem is modified so that

the path contains only a fixed number of orientations, and we wish to find the orientations

which minimize the Euclidean length of the path between the two points. A method of

finding such a set of orientations is given, and for the case where only two orientation are

allowed an algorithm is presented which runs in O(n2logn) time where n is the number of

vertices in the polygon. Finally, previous results concerning the existence of smallest paths

- paths which are minimum in both Euclidean distance and link distance - are generalized

and it is shown that when the path between two points in a polygon is restricted to only

include two orientations, such a path which is smallest always exists.
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1 Introduction

Finding a path connecting two points s and t which minimizes the Euclidean distance

(which will be referred to simply as length) is a well-studied problem. For the case where s,

t and the path connecting them are contained in a simple polygon, the path can be found

in linear time with an algorithm given by Chazelle [2]. In 1986 the problem of finding a

path connecting s and t which minimizes the number of segments in the path (which will

be referred to as link-distance) was solved by Suri [19] who gave a linear time algorithm

for finding such a path which again relied on the triangulation of the polygon.

In this thesis we restrict the problem so that neither s nor t lie on the boundary of

P , and the line segments making up the path between s and t cannot be oriented at

any angle except those contained in O. For example, if we set O = {
π
2 ,π} then the path

connecting s and t must contain only horizontal or vertical line segments. A path containing

only segments with orientations contained in O is said to be an O-path. In this thesis we

explore the problem of finding the set O of m orientations for which the length of the O-path

connecting s to t is minimized.

The concept of such a set O was introduced by Guting [7], and was expanded upon

in 1987 in a doctoral dissertation by Rawlins [17]. This area of Restricted Orientation

Geometry is an attempt to bridge the gap between arbitrarily oriented geometry and rec-

tilinear geometry. While this area still remains relatively unstudied, there have been some

developments concerning shortest paths where the segment orientations of the path are

restricted to some set O. Finding a minimum-length O-path that avoids a set of non-

intersecting polygonal obstacles has been solved by Reich [18] using Steiner vertices to

solve the problem for two allowable orientations, and then generalizing the result to m ori-

entations. Nilsson et al. [16] give a good summary of past results in the area of shortest

paths with restricted orientations, and give an algorithm which for the case of O being con-

strained to three allowable orientations finds a minimum-length O-path which avoids a set

of O-polygonal obstacles. However, Nilsson et al. put heavy constraints on the problem to

accommodate a plane-sweep approach.

In a paper more closely related the work of this thesis, Hershberger and Snoeyink [8]

looked at finding the minimum length O-path between two points in a simple O-polygon

and proved that a smallest path - that is, a path which simultaneously achieves minimum
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Figure 1: The line shown in (a) has orientation α, while the lines in (b) have direction β.

length and minimum link-distance - always exists when there are no more than three di-

rections allowed. However we must be careful to note the difference between the terms

direction and orientation - each orientation corresponds with two directions (see Figure 1).

For example, the rectilinear case has two orientations - horizontal and vertical, but four di-

rections - up, down, left and right. Therefore the proof given by Hershberger and Snoeyink

does not correspond to a proof that there always exists a smallest path for 2 orientations.

More recently, Mitchell et al. [15] revisited the problem of finding minimum-link paths and

provided an algorithm which finds the minimum-link O-path between two points in a simple

polygon.

Before Hershberger and Snoeyink made a first attempt at generalizing the proof of the

existence of a smallest path, there were a number of proofs published showing that a small-

est path always exists if the path is constrained to be rectilinear. In 1989 McDonald [12]

showed that a smallest rectilinear path always exists between any two points in a simple

polygon, and provided an algorithm to find such a path. McDonald’s method of finding the

smallest path consisted of altering the given polygon to remove what he termed unneces-

sary regions, which are regions of the polygon that cannot contain any part of a shortest

path. After removing the unnecessary regions of the polygon he shows the resulting shape

is made up of lines segments and subpolygons, and this allows him to easily find small-

est paths in each of the subpolygons and connect each of the smallest paths together to

create the desired path. In 1991 De Berg [4] independently discovered a similar result

for the less general problem of finding a rectilinear path connecting two points in a simple

rectilinear polygon (as opposed to a simple arbitrarily oriented polygon, as considered by

McDonald). The algorithm given by De Berg for finding a smallest path between two points

s and t is quite different from McDonald’s. First a divide-and-conquer algorithm for finding a

minimum-link path is presented. This algorithm is based on a modified proof of Chazelle’s
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polygon cutting theorem which allows the rectilinear polygon to be divided - by a single

horizontal or vertical line - into two polygons with no more than 2n
3 of the vertices contained

in either polygon. Once the algorithm for finding a minimum-link path was found, it was

shown that it could be modified to ensure the path produced has minimum length as well.

A paper published in 1992 by McDonald and Peters [13] also proved the existence of a

smallest rectilinear path connecting two points in a simple rectilinear polygon. The method

used by McDonald and Peters differed from the algorithm presented in McDonald’s thesis

and first found a path which was shortest in Euclidean distance, then applied a series of

path modifications to ensure the path had minimum link-distance as well. In 1999 Mahesh-

wari and Sack [11] independently discovered yet another algorithm which finds the smallest

rectilinear path between two points in a rectilinear polygon. The algorithm they provided

was similar to the one described in McDonald’s thesis and involved removing unnecessary

regions of the polygon to simplify the process of finding the smallest path.

This thesis further generalizes the results discussed above and proves that for any set

O of two allowable orientations there always exists a smallest O-path connecting any two

points in a simple polygon. Furthermore, it is shown by counterexample that for a set O

containing more than two orientations a smallest path does not always exist.

An extension of the smallest path problem was investigated in 1997 by Yang et al. [21],

who proved that given two pairs of points in a rectilinear polygon there does not always

exist two non-crossing rectilinear paths connecting each pair of points in which both paths

are smallest. Therefore the algorithm they present finds a pair of smallest paths connecting

the two pairs of points only if such a pair of smallest paths exists, and otherwise finds a

pair of paths which minimizes one of length or link-distance. Their paper used the concept

of extreme vertices - vertices that must be contained on any smallest path - which is a key

concept which this thesis elaborates on and uses throughout.

A number of papers have used the idea of finding extreme vertices - vertices that any

minimum-length rectilinear path must contain - as a way to find minimum-length rectilinear

paths [3, 12, 21]. Yang et al. [21] explicitly define what they call an extreme sequence

which is a list of extreme vertices in the order in which they must be traversed between s

and t. In this thesis we find the extreme sequence and find shortest paths between each

pair of extreme vertices that is consecutive in the extreme sequence.

It is worth mentioning that if the smallest path does not exist or is not desired, the
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Figure 2: Path p1 is an s − t path with minimum length, while p2 is a path with minimum
link-distance. Clearly there is no path that has the length of path p1 but with only two links.

shortest path problem can be varied so that we are looking for a path between two points in

a polygon with length no greater than k1 and link-distance no greater than k2. This problem

has been shown to be NP-Complete by Arkin et al. [1], and thus approximation algorithms

have been developed to solve such problems in the plane [1], in arbitrary polygons [14],

and avoiding rectilinear obstacles [5, 10].

The problems of finding minimum-length paths and minimum-length O-paths between

two points in a polygon have both been previously studied, and in this thesis I present a

third type of restriction for which a minimum-length path can be found. Given a number

m of allowable distinct orientations and two points in a simple polygon, find the set of

orientations O for which the O-path connecting the two points is as short as possible. In

the context of this problem, an overall ”smallest path” would exist if and only if there was

some set of orientations O for which the O-path connecting the two points is both as short

as is possible for any set of m orientations and has as few links as is possible for any set of

m orientations. Thus it makes sense to refer to such a set as a smallest set. In this thesis

I show that a smallest set does not always exist (see Figure 2 for an example of such a

case). Since a smallest set is not guaranteed to exist, this thesis focuses on finding a set

O which minimizes the Euclidean length of the path only.

The application of smallest paths can be easily seen in VLSI design where it is desirable

to minimize the number of vias in a path (i.e. the link-distance of the path) along with the

overall length of the path. In the past, VLSI design was restricted to orthogonal orientations,
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but now often allows any number of finite orientations to be used. Thus it is now practical

to define a set O of orientations for which we aim to find smallest O-paths between two

points. Furthermore, if the designer were so inclined they could conceivably choose the

set O to minimize the length of wire needed. Similarly, in the area of motion planning a

robot with limited directions of travel could select these directions to minimize path length.

In this thesis I will prove that for any given pair of orientations O = {θ1, θ2}, there must

exist a smallest path between two points in any arbitrarily oriented polygon (where neither

of the two points are contained on the boundary of P ). Additionally, I give a counterexample

showing that for any number of orientations greater than two, that is |O| ≥ 3, there does

not always exists a smallest path. The main result here is a method of finding a set O of m

orientations for which the O-path between two points s and t in a simple polygon (where

neither s nor t lies on the boundary of P ) has minimum length over all possible sets O.

An explicit algorithm is given for the case where m is 2. The problem is broken up into

subproblems where the length of the s − t path is given by a continuous, differentiable

function and therefore multi-variable calculus may be employed to find the minimum of

such a function. It is proved that when m is two, each subproblem contains at most one

minimum and therefore such a minimum can be found in constant time. Once the minimum

is found for each subproblem, the solution to the problem will be the overall minimum of all

the subproblem minimums found. The algorithm given runs in O(n2logn) time where n is

the number of vertices in the polygon.
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2 Definitions

Definition 1. Let a polygon P be defined by a set of n vertices V = {v1, v2, ..., vn} and a

set of edges E = {e1, e2, ..., en} where

ej =






(vj , vj+1) if j �= n

(vn, v1) otherwise

Let the vertices be labelled in a counterclockwise order around the boundary of P , and P

is closed. Let bd(P ) denote the boundary of P .

Definition 2. A simple polygon P = (V,E) is a polygon where E is not self-intersecting

and no three consecutive vertices are co-linear.

For the sake of limiting repetition, assume that we are always given a simple polygon

P = (V,E) and that O denotes a set of m distinct orientations.

Definition 3. For a point z in the plane, let zx denote the x-coordinate of z, and zy denote

the y-coordinate of z. Let the length of a line segment, denoted �(xy) be the Euclidean

length of the line xy. Let the length of a path, denoted �(S), be the sum of the lengths of

all line segments in S.

Definition 4. A line segment l = uv where uy < vy is α-oriented if α ∈ (0,π] is the coun-

terclockwise angle l makes with the horizontal ray beginning at u travelling in the positive

direction, when measuring in a counterclockwise manner. A line segment l is γ-directed

if γ ∈ (0, 2π] is the counterclockwise angle uv makes with a horizontal ray beginning at u

travelling in the positive direction. See Figure 3. A line segment is said to be O-oriented if

its orientation is contained in O.

For some angle α ∈ (0, 2π], the complementary angle of α is the angle φ = α±π such that

φ ∈ (0, 2π].

Let θ(u, v) denote the orientation of the line uv and let θdir(u, v) denote the direction of the

line uv from u to v.

Definition 5. An (α,β)-path is a path consisting of a finite number of line segments where

each line segment is either α-oriented or β-oriented. An O-path is a path consisting of a
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Figure 3: The orientation of uv is α, that is θ(u, v) = α. The length of uv is also shown.

finite number of line segments where each line segment is O-oriented.

Let �α,β(u, v) denote the length of the shortest (α,β)-path from u to v. Let �O(u, v) denote

the length of the shortest O-path between u and v.

Definition 6. For any v ∈ V and φ ∈ (0, 2π], let the projection point from v onto polygon

P , Prφ(v, P ), be x ∈ bd(P ) such that vx is contained entirely in P , is φ-directed, and is as

long as possible. If Prφ(v, P ) = v the projection point is said to be degenerate. See Figure

4.

Unless stated otherwise, the projection point from v, Prφ(v), means the projection point

from v onto P .

Definition 7. For simple polygon P , a chord is a line segment pq that is contained entirely

in P where p, q ∈ bd(P ). A maximum-chord is a chord that is as long as possible. For any

v ∈ V , let C(v,φ) for φ ∈ (0, 2π] denote the chord in P defined by vp where p = Prφ(v).

See Figure 4.

Definition 8. For a set of line segments S = {s1, s2, ..., sn} which define a path or cycle,

and two points p, q ∈ S, let the path along S from p to q be denoted S(p → q).

If p and q both lie on the same segment, that is ∃si ∈ S, p, q ∈ si, then S(p → q) =

pq. Otherwise p and q are on distinct edges si, sj ∈ S and S(p → q) = {(p, vi+1)} ∪

{si+1, ..., sj−1} ∪ {(vj , q)} where vi+1, vj are the endpoints of si and sj connecting to si+1

and sj−1, respectively. See E(p → q) and E(q → p) in Figure 4.
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u

v

C

C(v, 2π)

p q

E(p → q)

E(q → p)

Figure 4: In the above figure, C(v, 2π) is a chord but is not a maximum-chord, while C
is the π-oriented maximum-chord through u. The points p and q are the projection points
Prπ(u) and Pr2π(u), respectively. Note the projection point Pr 3π

2
(u) would be degenerate.

The boundary of the polygon is made up of two subpaths E(p → q) and E(q → p) as
shown above.

s1

s2

s3

u

v

φ

Figure 5: The segments s1, s2, s3 form a u-turn on the (φ,π)-path from u to v.

Definition 9. A u-turn is a path consisting of three line segments s1, s2, and s3 such that s1

and s3 lie on the same side of the line containing s2. A staircase path is a path containing

no u-turns. See Figure 5.
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3 Smallest Paths

McDonald and Peters [13] showed that there always exists a smallest rectilinear path in a

rectilinear polygon, and McDonald [12] showed that there always exists a smallest rectilin-

ear path between two points in an arbitrary polygon, assuming neither of the two points is

contained on the boundary of P . In this section I will generalize these results and show

that for any two given orientations, that is O = {θ1, θ2}, there always exists a smallest path

between s, t ∈ P −bd(P ) where P is a simple polygon. The proof technique used is a mod-

ification of the one used by McDonald [12]. McDonald proved that for any simple polygon

there exists a smallest rectilinear s − t path. Since he didn’t place any restrictions on the

orientation of the polygon boundary, he actually proved that for any simple polygon there

always exists a smallest orthogonal s − t path (this can be shown by simply rotating the

problem and applying his proof). In this section I generalize this proof further by assum-

ing we are given any two orientations O = {θ1, θ2} and show that a smallest (θ1, θ2)-path

between s and t exists. Most of the lemmas and theorems in this section are direct mod-

ifications of those given by McDonald, changed to accommodate non-orthogonal pairs of

orientations.

Given a set of two orientations O = {θ1, θ2}, the problem can be transformed so that

McDonald’s original proof can be applied directly to show that a smallest (θ1, θ2)-path ex-

ists. In this section we will discuss this transformation as well as give the modified proofs

which directly prove the existence of a smallest (θ1, θ2)-path. It will also be shown via coun-

terexample that for 3 or more given orientations, there does not always exists a smallest

s− t path.

Note that throughout the rest of this thesis when referring to a shortest s − t path, we

are referring to a shortest s− t path that is contained entirely within P .
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3.1 Proof Via Transformation

Here we will use the transformation matrix

T =



 1 0

−cot(α) csc(α)





to transform the simple polygon P , points s, t, and smallest (π,α)-path S from s to t into

a new simple polygon P �, new points s�, t� and smallest path S� from s� to t�. Furthermore

we will show that S� is a (π, π2 )-path and has length equal to S. Thus if there doesn’t exist

a smallest (π,α)-path in P , then there does not exist a smallest (π, π2 )-path in P �. Since

McDonald proved there always exists a smallest (π, π2 )-path in P �, it must be that there

always exists a smallest (π,α)-path in P .

In this section it will be shown that the transformation matrix transforms S into a (π, π2 )-

path while maintaining the length of S.

Lemma 3.1. Using the transformation matrix T , an α-oriented line segment uv will be

transformed into a vertical line segment u�v� where the length of u�v� is equal to the length

of the original line.

Proof.

�
x, y

�


 1 0

−cot(α) csc(α)



 =
�
x− ycot(α), ycsc(α)

�

Thus u� = [ux − uycot(α), uycsc(α)] and v� = [vx − vycot(α), vycsc(α)]. First I will show that

u�x = v�x, and thus u�v� is a vertical line.

u�x − v�x = ux − uycot(α)− vx + vycot(α)

= cot(α)(uxtan(α)− uy − vxtan(α) + vy)

= cot(α)(tan(α)(ux − vx) + vy − uy)

= cot(α)

�
uy − vy
ux − vx

(ux − vx)− (uy − vy)

�

= 0

Now I will show that the length of the new segment u�v� is equal to the length of the original
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line.

sin(α) =
|uy − vy|�

(uy − vy)2 + (ux − vx)2

⇒ csc(α) =

�
(uy − vy)2 + (ux − vx)2

|uy − vy|

�(u�v�) = |u�y − v�y|

= |uycsc(α)− vycsc(α)|

= csc(α)|uy − vy|

=

�
(uy − vy)2 + (ux − vx)2

|uy − vy|
|uy − vy|

=
�
(uy − vy)2 + (ux − vx)2

= �(uv)

Lemma 3.2. Using the transformation matrix T , an horizontal line segment uv will be trans-

formed into a horizontal line segment u�v� where the length of u�v� is equal to the length of

the original line.

Proof.

�
x, y

�


 1 0

−cot(α) csc(α)



 =
�
x− ycot(α), ycsc(α)

�

Thus u� = [ux − uycot(α), uycsc(α)] and v� = [vx − vycot(α), vycsc(α)]. Since uv is a

horizontal line, uy = vy. Now I will show that u�y = v�y.

u�y = uycsc(α)

= vycsc(α)

= v�y

11



Now I will show that the length of u�v� is equal to the length of the original line.

�(u�v�) = |u�x − v�x|

= |ux − uycot(α)− vx + vycot(α)|

= |ux − vx − uycot(α) + vycot(α)|

= |ux − vx|

= �(uv)

Now using the transformation matrix T we can transform the problem of finding a small-

est (α,β)-path into the problem of finding a smallest rectilinear path, and thus use previous

results to show such a path always exists.

Theorem 3.3. For two orientations α,β, there always exists a smallest (α,β)-path from s

to t.

Proof. (direct)

First, w.l.o.g. rotate the problem so that β = π. Now transform the polygon P and points

s and t by the matrix T , and McDonald proved that there exists a smallest rectilinear path

S� from s to t. Now transform P , s, t and the path S� by the inverted matrix T−1 to get

the original problem and a (π,α)-path S that has length equal to S� and consists of the

same number of links as S (by Lemmas 3.1 and 3.2). Thus S has minimum length and a

minimum number of links, and so is a smallest (π,α)-path.

12
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Figure 6: The shaded region is the middle region induced by C(v,π) and C(v, 2π), and the
unshaded regions are the end regions induced by the chords. The vertex v is extreme with
respect to π since s and t are in different end regions.

3.2 Direct Proof

Here we will prove directly that there always exists a smallest (α,β)-path between two

points s, t ∈ P − bd(P ). The proof given in this section is a modified version of the proof

given by McDonald [12].

The concept of an extreme vertex will be defined and it will be shown that all extreme

vertices must be contained on any shortest s− t path. This is a key insight that will be used

throughout this thesis.

Definition 10. For α,β ∈ (0, 2π] where α �= β, and v ∈ V , P is divided into three regions by

the chords C(v,α) and C(v,β) if and only if both Prα(v) and Prβ(v) are non-degenerate. A

region is called the middle region if it is bounded by both chords. The two regions that are

not the middle regions are called the end regions (see Figure 6). The chords themselves

are considered part of the end regions.

For a polygon which is divided into three regions by the chords C(v,α) and C(v,β), let the

end region induced by C(v,α) (C(v,β)) be the end region bounded by C(v,α) (C(v,β)).

Definition 11. A vertex v ∈ V is extreme with respect to orientation α ∈ (0,π] if s and t are

in different end regions induced by C(v,α), C(v,α+ π). See Figure 6.

A vertex v ∈ V is extreme with respect to O if v is extreme with respect to some θi ∈ O.

Definition 12. Given O, consider the sequence θ1, θ2, . . . , θn of all orientations in O or-

dered counterclockwise. Let θi and θj be the orientations in O that are neighbours of φ

with respect to the counterclockwise cyclic order. Then θi and θj are the neighbouring

orientations of φ.

13



Lemma 3.4. For any two points x, y and the two neighbouring orientations of θ(x, y),

θi, θj ∈ O - where if θ(x, y) ∈ O then θi = θj = θ(x, y) - the shortest path (not neces-

sarily in P ) between x and y is a staircase path consisting of segments with orientations θi

and θj .

See Widmayer et al.[20] for a proof.

Lemma 3.5. If S is a shortest path between two points s and t, then for any two points

x, y ∈ S the subpath S(x → y) is a shortest path between x and y.

Proof. (by contradiction)

Recall by Definition 8 the path S(x → y) is the portion of the path S between points x

and y. Say S(x → y) is not a shortest path between x and y, which means there is

some path Q that is the shortest path between x and y. Therefore the length of the path

S(s → x) ∪ Q ∪ S(y → t) must be less than the length of S, which means S was not the

shortest path between s and t.

Theorem 3.6. Extreme Point Theorem

Given points s, t ∈ P , if v ∈ V is an extreme vertex with respect to O then the shortest

O-path from s to t must contain v.

Proof. (direct)

Let S be a shortest O-path from s to t. Since v is extreme, s and t are in different end

regions induced by two chords in P . This means that any path from s to t must pass

through both chords. Let x be the point where S first intersects the first chord, and x� be

the last point where S intersects the second chord. Note that by definition of an extreme

point, the two chords are π apart and both intersect v, so will actually form one large chord

across P . This means the line xx� will lie entirely in P .

Now S is made up of three subpaths: S(s → x), S(x → x�) and S(x� → t). By Lemma 3.5 a

shortest path is made up of shortest subpaths, so S(x → x�) = xx� which clearly contains

v.

Lemma 3.7. For the set of all vertices which are extreme with respect to O, there is exactly

one order in which the vertices are traversed on any shortest O-path from s to t.

14



Proof. (by contradiction)

Since all extreme vertices must be included on any shortest path from s to t, there is clearly

at least one order. Let X be the set of extreme vertices in that order where s, t ∈ X are the

first and last points in X, and let S be a shortest path between s and t.

Take any two consecutive extreme vertices in X, say u, v ∈ X. Since S is a shortest path,

the subpaths S(s → u), S(u → v) and S(v → t) are all shortest subpaths.

Say there exists a shortest path S� that traverses u and v in the opposite order. Then

S�(s → v), S�(v → u) and S�(u → t) are all shortest subpaths. Since S�(s → v) is a

shortest subpath, it is just as short as S(s → u) ∪ S(u → v) and we can construct a

shortest path from s to t that consists of S�(s → v) ∪ S(v → t) that doesn’t contain u.

To prove that there always exists a smallest (θ1, θ2)-path from s to t, we first prove that

there always exists a smallest (θ1, θ2)-path from s to any θ1-oriented or θ2-oriented chord.

Then we will be able to construct a smallest (θ1, θ2)-path from s to t using the smallest path

to a chord containing t. This is the same technique as used in McDonald’s thesis.

Lemma 3.8. For any horizontal maximum-chord C in P , the shortest (π,α)-path from s to

C ends at a unique point.

Proof. (by contradiction)

Assume there are two paths Q,R that are both shortest (π,α)-paths from s to C. Let

q, r ∈ C be the points at which Q and R intersect C, and let m ∈ C be a point between

q and r. Let P � be the polygon (not necessarily simple) as defined by the boundaries

Q ∪ R ∪ qr and let m� be the path projection point Prα(m,P �) or Prα+π(m,P �), whichever

is non-degenerate. We know m� cannot be contained on the line qr since the line qr is not

α-oriented, and therefore m� ∈ Q ∪R. So w.l.o.g. say m� ∈ Q (see Figure 7).

By Lemma 3.4, the length of the shortest (π,α)-path from m� to q is equal to �(m�m)+�(qm).

Let Qs = Q(s → m�), Qq = Q(m� → q) and Qnew denote the path Qs ∪ m�m, which is a
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Figure 7: The configuration described in Lemma 3.8.

(π,α)-path from s to C contained entirely in P . Then the length of Qnew is:

�π,α(Qnew) = �π,α(Qs) + �π,α(m
�,m)

< �π,α(Qs) + �π,α(m
�,m) + �π,α(m, q)

≤ �π,α(Qs) + �π,α(Qq)

= �π,α(Q)

= �π,α(R)

and therefore Qnew is shorter than both Q and R, so neither were shortest paths from s to

C.

Definition 13. In a shortest O-path S between s and t, two points u, v ∈ S are consecutive

extreme vertices if u, v ∈ V are extreme and there is no extreme vertex vmid such that

vmid ∈ S(u → v).

Lemma 3.9. A shortest O-path between s and t intsersects an O-chord in one continuous

piece.

Proof. (by contradiction)

Let S be a shortest O-path between s and t, and let ei = pq be a segment of S contained

entirely on C. Say S intersects C at some point x /∈ ei. S consists of the subpaths

S(s → x) ∪ S(x → p) ∪ S(p → t) (S(s → q) ∪ S(q → x) ∪ S(x → t)). By Lemma

3.5 the subpath S(x → p) (S(q → x)) must be a shortest path from x to p (q to x), and
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Figure 8: Configuration described in Lemma 3.10.

since θ(x, p) ∈ O (θ(q, x) ∈ O) the shortest path is the straight line xp (qx). However, we

assumed x was not part of ei.

Lemma 3.10. For points s, t ∈ P and α ∈ (0,π], let C be the horizontal maximum-chord

containing t and let S be the shortest (π,α)-path from s to C ending at some point x ∈ C

plus the segment xt. All u-turns in S must contain an extreme vertex.

Proof. Let e1 = wy, e2 = yq, and e3 = qz form a u-turn in S and w.l.o.g. rotate and flip

the problem so that qy < yy and qx < zx (see Figure 8). Let β denote the orientation of e2,

which is one of α or π. First I will show that there must be a vertex in e2.

Say there exists some x� ∈ e3 where x� �= q s.t. Prβ(x�) ∈ e1. Let x�� = Prβ(x�), Sa =

S(s → x��), Sb = S(x�� → q), and Snew = x��x�. Since x��x is an β-oriented line connecting

e1 and e3, it must have length exactly equal to e2.

1. e3 � C

In this case the length of the path S(s → x��)∪x��x∪S(x� → x) is less than the length

of S(s → x), so S(s → x) was not a shortest path from s to C.

2. e3 � C

In this case the length of the path S(s → x��)∪x��x is less than the length of S(s → x),

so S(s → x) was not a shortest path from s to C.
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Thus ∀x� ∈ xt, Prβ(x�) hits an edge of P , so there must exist some vertex on e2. Now it

will be shown that for a vertex v ∈ V that is on the middle segment of a u-turn in S, v is

extreme.

Consider the β-oriented chords C1 = C(v,β) and C2 = C(v,β + π). vy ∈ C1 and vq ∈ C2,

so both chords are of non-zero length and divide P into three regions: two end regions

and a middle region. By Lemma 3.9, since e2 ∈ C1 ∪ C2, no other part of S can intersect

C1 ∪ C2. Since e1 lies in the end region of P induced by C1, S(s → y) lies entirely in that

end region. Since e3 lies in the end region of P induced by C2, S(q → t) lies entirely in that

end region. Therefore v is an extreme vertex.

Lemma 3.11. For points s, t ∈ P and α ∈ (0,π], the shortest (π,α)-path from s to the

horizontal maximum-chord containing t plus the straight line to t is a shortest (π,α)-path

from s to t.

Proof. (direct)

Let C be the horizontal maximum-chord containing t and let S be the shortest (π,α)-path

from s to C ending at some point x ∈ C plus the segment xt. Consider R, an arbitrary

shortest (α,π)-path from s to t. If there are no u-turns in S then by Lemma 3.4 S is a

shortest path from s to t. Otherwise S contains at least one u-turn, so let v� be the vertex

contained on the u-turn where S(v� → t) is a staircase path. By Lemma 3.10 we know v�

is extreme w.r.t. one of α or π, so must be contained in R. Since both S(s → x) and R are

shortest paths, they are made up of shortest subpaths (as shown in Lemma 3.5). Thus

both S(s → v�) and R(s → v�) must be shortest paths from s to v� and so are both of equal

length. Furthermore, since S(v� → t) contains no u-turns, it is the shortest (π,α)-path from

v� to t and therefore R(v� → t) is the same length as S(v� → t). Therefore S is a shortest

path from s to t.

Lemma 3.12. For a horizontal maximum-chord C in P , s ∈ P and α ∈ (0,π], there exists a

smallest (π,α)-path from s to C.

Proof. (by induction on the number of bends in the minimum-link path)

Basis:

When the number of links in the minimum-link path from s to C is two or fewer, the theorem

is obviously true.
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Figure 9: The configuration described in Theorem 3.13.

Inductive Hypothesis:

Assume that for all minimum-link paths from s to C with ≤ k links, we can find a smallest

path from s to C.

Inductive Step:

Let Q be the minimum-link path from s to C, where Q has (k + 1) links. The (k + 1)th

segment of Q must be α-oriented, otherwise we would be able to shorten Q be removing

the final link. Therefore the kth segment of Q is π-oriented, and we can draw a maximum-

chord C � that contains the kth segment of Q. By the inductive hypothesis, a smallest path

Q� exists from s to C � with (k− 1) segments. Let q ∈ C � be the point at which Q� ends. See

Figure 9.

Let C �
sub be the set of points on C � such that one α-oriented segment contained entirely in

P can connect C � and C. Note that there is at least one point in C �
sub, which is the point at

which the (k + 1)th segment of Q intersected C �. Furthermore, q /∈ C �
sub since otherwise Q

would not be a minimum-link path. Let x ∈ C �
sub be the closest point to q, and let y be the

point at which the α-oriented segment from x intersects C.

Now consider the path S = (Q� ∪ qx ∪ xy). From the Lemma 3.8, q is the unique point that

is shortest from s to C �, and by Lemma 3.11 we know that the shortest path from s to x

has length equal to the length of Q� plus the length of the segment qx. Additionally, the

distance from C � to C via a single link is constant. Therefore S is a shortest path as well
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as a minimum-link path.

Theorem 3.13. Smallest Path Theorem

For points s, t ∈ P and θ1, θ2 ∈ (0,π], there exists a smallest (θ1, θ2)-path between s and t.

Proof. (by construction)

First, find a minimum-link path from s to t and call this path Q. Let k be the number of links

in Q and let the orientation of the final segment of Q be θ1. Now w.l.o.g. we can rotate the

problem so that θ1 = π.

Let C be a horizontal maximum-chord in P such that the last segment in Q is contained in

C. By Lemma 3.12, there is a smallest path from s to C, say S. The path S has (k − 1)

links and ends at some point x ∈ C. By Lemma 3.11, S ∪ xt is a shortest path from s to t.

Furthermore, S ∪ xt has k links, which is minimum.

For a set of more than 2 orientations, a smallest path does not always exist. To prove

this, I will give a lemma concerning the shortest O-path between two points then provide

examples for all i greater than 3 allowable orientations where a smallest path is not possi-

ble.

Lemma 3.14. For s, t ∈ P and two consecutive extreme vertices u, v ∈ V , if uv is not

contained entirely in P then there exists a vertex z that is extreme w.r.t. θ(u, v) and z lies

between u and v on a shortest path from s to t.

Lemma 3.15. For s, t ∈ P and two consecutive extreme vertices u, v ∈ V , if θ(u, v) ∈ O

then uv must be contained in P .

Proof. (by contradiction)

To simplify the proof, w.l.o.g. we can rotate the problem so that θdir(u, v) = 2π. Let Q be

the shortest arbitrary path from u to v contained in P . If Q is a straight line from u to v then

uv is contained entirely in P . Otherwise Q consists of at least two segments and contains

at least one vertex that has y-value lower or higher than uy (which is equal to vy). Let z be

the point in Q that maximizes |zy − uy|.

Consider the π-oriented maximum-chord through z, say C. Since Q(u → z) is contained

entirely in one end region induced by C and Q(z → v) is contained entirely in the other

end region, s must be contained in one end region while t is contained in the other. Thus
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z is extreme w.r.t. π, which is in O. Furthermore, since z lies on the path Q(u → v), u and

v are not consecutive extreme vertices.

Lemma 3.16. For any two consecutive extreme vertices u, v, the shortest path contained

in P from u to v is either the line uv, if θ(u, v) ∈ O, or a staircase path with two or more

segments consisting of the two orientations in O that are the neighbouring orientations of

θ(u, v).

Proof. (by contradiction)

Let S be the shortest O-path from u to v, which by Lemma 3.4 consists of at most two

orientations which are the neighbouring orientations of θ(u, v), say α,β ∈ O. Note that if

θ(u, v) ∈ O then by Lemma 3.15 the line uv is contained in P and thus the shortest path

in P between u and v is uv. Otherwise α �= β and we are looking for a staircase path in P

from u to v.

By Lemma 3.11, a shortest path R exists that is a shortest path from s to a chord C plus

a line segment on C, and by 3.10 all u-turns in R contain an extreme vertex. Since R and

S are both shortest paths, u and v must be contained on both paths, and since they are

consecutive extreme vertices there is no extreme vertex in R(u → v). Thus there are no

u-turns in R(u → v) and R(u → v) is a staircase (α,β)-path.

Finally by Lemma 3.5, the length of S(u → v) must be equal to the length of R(u → v).

Theorem 3.17. For three or more allowable orientations, there does not always exist a

smallest path from s to t.

Proof. (direct)

For m = 3, see Figure 10 for an example where there is no smallest path from s to t. By

Lemma 3.16, the shortest path from s to v is a staircase (θ1, θ3)-path and the shortest path

from v to t is a staircase (θ2, θ3)-path. Therefore a shortest path from s to t must consist of

at least three segments since there are three orientations. However, as seen in Figure 10,

there is a (θ1, θ2)-path from s to t that consists of two links. Therefore there is no O-path

connecting s and t which minimizes length and link-distance simultaneously.

For m > 3, imagine Figure 10 with θ4. . . θm ∈ Υ. Since the neighbouring orientations of

θ(s, v) and θ(v, t) don’t change, the shortest O-path connecting s and t doesn’t change.
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Figure 10: There is no smallest (θ1, θ2, θ3)-path between s and t. Any path of minimum
length has at least three links.

Similarly, there still exists a 2-link path from s to t. Therefore there is no smallest O-path

connecting s and t for O = {θ1, . . . , θm s.t. ∀i > 3, θi ∈ Υ}.
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Figure 11: The figure on the left shows an interval of orientations where α > β, and the
figure on the right shows an interval of orientations where α < β. Both are considered
single, continuous intervals.

4 Constructing All Extreme Sequences

In order to compute the length of the shortest O-path between s and t, it is useful to know

the extreme sequence of O, which is the set XO of all vertices which are extreme with

respect to O, in order of traversal from s to t. To solve the problem of finding the set O∗ out

of all possible sets O that minimizes the length of the shortest s− t path, it is not possible

to check all possible sets O since the number of such sets is infinite. Instead, we will divide

the problem into a finite set of subproblems which will later be shown to be solvable.

We adopt the usual notation that a square bracket (”[” or ”]”) bracketing a range on one

endpoint implies that the endpoint is included in the range and a parenthesis (”(” or ”)”)

implies that the endpoint is excluded. We also adopt that notation used by Rawlins [17]

that an angle bracket (”�” or ”�”) is used when we wish to make the statements that apply to

either of the cases (i.e. ”�” implies the statement applies to either ”(” or ”[”). Furthermore.

an interval of orientations that contains π - that is, an interval �α,β� where α > β - is

considered a single continuous interval (see Figure 11). Similarly, an interval of directions

that contains 2π is considered a single continuous interval.

In this section we create an extreme interval for each vertex in P , which is the set of

orientations for which v is extreme. It is proved that all extreme intervals that are non-empty

are single continuous intervals, say �α,β�. Using these extreme intervals, we create a set

of Extreme Vertex Sets. An Extreme Vertex Set is a set that contains all extreme vertices

with respect to some orientation α ∈ (0,π]. Thus for some orientation α, the set of vertices

whose extreme intervals contain α will be the Extreme Vertex Set at α. Since all extreme
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Figure 12: The vertex v7 is extreme on the interval [π4 ,
π
2 ], v8 is extreme on the interval

[5π6 , π4 ], and v9 is extreme on the interval [4π6 , 5π6 ].

intervals are continuous, the number of distinct Extreme Vertex Sets is proportional to the

number of extreme intervals. We will discuss this in more detail later in this section.

Note that we are eventually going to want to combine these Extreme Vertex Sets into

extreme sequences, each of which will contain m Extreme Vertex Sets.

Figure 12 shows a polygon P and points s, t ∈ P that will be used as an example

throughout this section.

The method given in this section of finding all possible Extreme Vertex Sets is as fol-

lows:

1. For each vertex vi ∈ V find the interval in which vi is extreme. The intervals for which

v7, v8 and v9 are extreme are shown in Figure 12.

2. Let Φ be the set of all orientations which bound the interval for which some vertex is

extreme. In the example shown in Figure 12, Φ would consist of {π
4 ,

π
2 ,

4π
6 , 5π6 }.

3. Arrange the orientations in Φ from 0 → π, and for each pair of consecutive orienta-

tions σi,σi+1 ∈ Φ let X(σi,σi+1) be the set of all vertices which are extreme for the

interval (σi,σi+1). In our example,

X(π4 ,
π
2 )

= {v7}

X(π2 ,
4π
6 ) = ∅

X( 4π6 , 5π6 ) = {v9}

X( 5π6 ,π4 )
= {v8}

Note that for two consecutive orientations σi,σi+1 ∈ Φ, no vertex changes extremity at any

orientation contained in the interval (σi,σi+1), which implies that the set of extreme vertices
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remains constant within (σi,σi+1).

Let X(α,β) be the set of all extreme vertices with respect to the interval (α,β) and let

Xφ be the set of all extreme vertices with respect to φ. Referring back to the start of

this discussion, we are interested in finding the extreme sequence for O∗. Finding such a

sequence is reduced to finding the union of all sets Xθ∗j
where θ∗j ∈ O∗. Let I(α) denote the

interval (σk,σk+1) containing α. Then the set Xθ∗j
is equal to the set XI(θ∗j )

. This implies

that to construct XO∗ we can find all intervals I(θ∗j ) where θ∗j ∈ O∗, and add XI(θ∗j )
to XO∗ .

A more formal definition of how to construct XO∗ is given in Eq. 1.

XO∗ =
�

θ∗i ∈O∗

XI(θ∗j )
(1)

Since the set O∗ is unknown, the extreme sequence XO∗ is unknown as well. Therefore

we create all possible extreme sequences by considering all possible combinations of m

intervals in Φ, and combining their associated extreme vertex sets.

In our example if we were looking for a set O containing 2 orientations this would mean

constructing the sets

X(π4 ,
π
2 )

∪X(π4 ,
π
2 )

= {v7} X(π2 ,
4π
6 ) ∪X(π2 ,

4π
6 ) = ∅ X( 4π6 , 5π6 ) ∪X( 4π6 , 5π6 ) = {v9}

X(π4 ,
π
2 )

∪X(π2 ,
4π
6 ) = {v7} X(π2 ,

4π
6 ) ∪X( 4π6 , 5π6 ) = {v9} X( 4π6 , 5π6 ) ∪X( 5π6 ,π4 )

= {v8, v9}

X(π4 ,
π
2 )

∪X( 4π6 , 5π6 ) = {v7, v9} X(π2 ,
4π
6 ) ∪X( 5π6 ,π4 )

= {v8}

X(π4 ,
π
2 )

∪X( 5π6 ,π4 )
= {v7, v8} X( 5π6 ,π4 )

∪X( 5π6 ,π4 )
= {v8}

Each of the extreme sequences constructed above represents a subproblem which

we will later prove is solvable. The subproblem corresponding to the extreme sequence

X(π4 ,
π
2 )

∪X(π2 ,
4π
6 ) seen above is of the form: Given θ1 ∈ (π4 ,

π
2 ) and θ2 ∈ (π2 ,

4π
6 ), minimize

the length of the (θ1, θ2)-path between s and t.

In this section we will prove that each vertex is extreme for a single interval (or not at

all), and show that there are O(n) distinct Extreme Vertex Sets. Then for the case of two

allowable orientations, that is m = 2, we prove there are at most 2n2 + n possible extreme

sequences which we must consider.

Definition 14. For any v ∈ V , φ ∈ (0, 2π] is an interior angle of v if Prφ(v) is non-

degenerate. An angle that is not an interior angle is called an exterior angle.
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Figure 13: (a) The two closed intervals, α and β, for which the projections from v are non-
degenerate, as described in Lemma 4.1. (b) The two closed intervals α0 and β0 containing
all undirected orientations for which the projections from v are non-degnerate.

For any v ∈ V , the interior angle interval of v is the set of all interior angles of v. The

exterior angle interval of v is the set of all exterior angles of v.

Definition 15. For a vertex v ∈ V , the incident edges of v are the two edges which have v

as an endpoint.

Lemma 4.1. Double Projection Interval Lemma

For all vi ∈ V the set of directions Φ ⊂ (0, 2π] for which for all α ∈ Φ both Prα(vi) and

Prα+π(vi) are non-degenerate is either a pair of intervals or an empty set. Furthermore, the

set of orientations for which both projection points are non-degenerate is a single interval.

Proof. (by construction)

Let Θ ⊂ (0, 2π] be the interior angle interval of v, and by Definition 14, for every direction

ϕ ∈ Θ, Prϕ(vi) is non-degenerate. Let α = θdir(vi, vi+1) and β = θdir(vi−1, vi). Since the

bounding directions of such an interval will be the directions of the incident edges of vi,

Θ is a closed interval defined by [α,β]. If the interval [α,β] spans less than π then there

is no orientation for which both Prα(v) and Prα+π(v) are non-degenerate, so let Φ = ∅.

Otherwise let α� be the direction opposite of α and let β� be the direction opposite of β.

Then Φ is the pair of intervals [α,β�] and [α�,β]. We now have Φ which is a pair of intervals

or an empty set (see Figure 13(a)).

If one of the intervals in Φ is contained entirely in (0,π] then that interval is the set within

(0,π] for which both projection points are non-degenerate. Otherwise, both intervals are

contained partially in (0,π] (see Figure 13(b)). Let (Θ ∩ (0,π]) be the set for which both

projection points are non-degenerate, which is a single interval.
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Definition 16. For any v ∈ V , a point x ∈ P is said to switch regions of C(v,φ) at φ� ∈

(0, 2π] if for any chord C = C(v,α) where α �= φ�, the region induced by C that contains

C(v,φ�) also contains the point x.

Lemma 4.2. Region Switch Lemma

For any v ∈ V and x ∈ P where x �= v, there is at most one direction φ ∈ (0, 2π] at which x

switches regions of C(v,φ).

Proof. (by contradiction)

Assume there are at least two distinct angles α,β ∈ (0, 2π] at which x switches regions. Let

C1 and C2 be chords C(v,φ�) and C(v,φ��) where φ� �= φ�� such that both lie in the middle

region induced by C(v,α) and C(v,β). Since α and β are distinct, the chords C1 and C2

must exist. Clearly C(v,α) lies in one end region induced by C1 ∪ C2 and C(v,β) lies in

the other. However, this means x lies in both end regions induced by C1 ∪C2, which is not

possible.

Theorem 4.3. Extreme Interval Theorem

For v ∈ V and s, t ∈ P where s �= v and t �= v, v is either never extreme or is extreme for a

single interval in (0,π].

Proof. (direct)

In order for v to have end regions induced at an orientation φ ∈ (0,π], both projection

points Prφ(v) and Prφ+π(v) must be non-degenerate. Let Φ ⊂ (0,π] be the set of all such

orientations. By Lemma 4.1, Φ is a single interval �α,β�.

By Lemma 4.2, there is at most one orientation contained in Φ, say φs ∈ Φ (φt ∈ Φ), where

s (t) switches regions of C(v,φ). If there is no orientation in Φ at which s (t) switches

regions, then s (t) is either in an end region for all of Φ or is never in an end region. We will

now deal with the case where φs (φt) exists.

The orientations in the set {φs(φt),α,β} are the only orientations at which s (t) can switch

into or out of an end region. If φs (φt) is equal to either α or β, then it cannot switch regions

for any orientation in the interval (α,β), which means either s (t) is in an end region for the

whole interval Φ or s (t) is never in an end region.

If φs (φt) is not equal to either α or β, then there are two cases:
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1. p is in an end region at α

Then p will switch to the middle region at φs (φt), and stay in that region until β.

2. p is in the middle region at α

Then p will switch to an end region at φs (φt) and stay in that region until β.

Therefore s (t) is in an end region for a single interval or not at all. If either s or t is never

in an end region, then there can be no orientation at which s and t are both in end regions

and therefore v is never extreme.

Say s is in an end region for �φ,φ��, and t is in an end region for �ϕ,ϕ��. If s and t are in the

same end region, v is never extreme. Otherwise, v is extreme only in �φ,φ�� ∩ �ϕ,ϕ��.

Theorem 4.4. Extreme Set Theorem

Given s, t ∈ P there are less than or equal to 2n2 + n possible extreme vertex sequences

with respect to 2 orientations.

Proof. (direct)

Every v ∈ V has a single interval of orientations for which it is extreme, if it is extreme at all

(by Theorem 4.3). Let Υ be the ordered set of all orientations within (0,π] at which some

vertex changes extremity. There are at most 2n orientations in Υ, so there are at most 2n

possible sets of extreme vertices with respect to one orientation. Each extreme sequence

contains all vertices extreme with respect to O = {θ1, θ2}, so contains all vertices extreme

w.r.t. θ1 and all vertices extreme w.r.t. θ2. Thus each extreme sequence is made up of

the vertices from (at most) 2 extreme vertex sets. The number of possible combinations of

Extreme Vertex Sets is N ≤
�2n
1

�
+

�2n
2

�
, which is equal to 2n2 + n.
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5 Calculating the Length of a Shortest Path

In the last section we showed how to create a finite number of extreme sequences where

each sequence corresponds to a subproblem of the form: Given a multiset of m open

intervals (ρ1, ρ�1), . . . , (ρm, ρ�m) and the set X =
�

(ρi,ρ�i)

X(ρi,ρ�i)
of extreme vertices, find the

set O = {θ1, . . . , θm} where θ1 ∈ (ρ1, ρ�1), . . . , θm ∈ (ρm, ρ�m) which minimizes the length of

the O-path between s and t. In this section we refer to these as s − t subproblems, and

focus on solving an instance of an s− t subproblem.

The main goal of this section is to find a distance function D(O) that gives the length of

the shortest O-path connecting s and t. We will find this function and prove it is continuous

and differentiable, meaning we will be able to use calculus to find the minimum (if it exists).

We will now define some properties and notation that will be used throughout the sec-

tion. Let Υ refer to a multiset of m non-overlapping, but possibly duplicate, ranges

Υ = {(ρ1, ρ
�
1), . . . , (ρm, ρ�m)}

where for all intervals (ρi, ρ�i) there does not exist any φ ∈ (ρi, ρ�i) such that a vertex

changes extremity at φ. Furthermore, let the ranges in Υ be ordered from 0 → π. We

let X refer to the set of {s, t} union with all vertices which are extreme with respect to any

orientation contained in an interval in Υ. More formally, X is the set of all extreme vertices

with respect to some φ ∈ (ρi, ρ�i) where (ρi, ρ�i) ∈ Υ. Since it will be convenient to do so,

we will also create a set Xc of pairs from X where (u, v) ∈ Xc if and only if u and v are

consecutive in X. Note that it makes sense to create Xc since by Lemma 3.7 there is

exactly one order in which the elements in X can be traversed from s to t.

A function D(O) will be defined which gives the distance of the shortest O-path travers-

ing the extreme sequence, which is equivalent to the distance of the shortest O-path from

s to t. We aim to find the set of orientations O∗ = {θ1, θ2, . . . , θm} that minimizes the length

of the s− t path where θi ∈ (ρi, ρ�i).

We label the orientations in O so that θ1 < . . . < θm. If two orientations θi, θj ∈ O are

in the same interval (ρk, ρ�k), then we insist that the θi or θj where the lower index is always

less than the other.

Lemma 5.1. For s, t ∈ P and two consecutive extreme vertices u, v ∈ V , if θ(u, v) ∈
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� x1 x2 . . . xk
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Figure 14: An example of the set XE = {x1, x2, . . . , xk} ordered from u to v.

(ρ1, ρ�1) ∪ . . . ∪ (ρm, ρ�m) then uv must be contained entirely in P .

Proof. (by contradiction)

To simplify the proof, w.l.o.g. we can rotate the problem so that θdir(u, v) = 2π. Let Q be

the shortest arbitrary path from u to v contained in P . If Q is a straight line from u to v then

uv is contained entirely in P . Otherwise Q consists of at least two segments and contains

at least one vertex that has y-value lower or higher than uy (which is equal to vy). Let z be

the point in Q that maximizes |zy − uy|.

Consider the π-oriented maximum-chord through z, say C. Since Q(u → z) is contained

entirely in one end region induced by C and Q(z → v) is contained entirely in the other

end region, s must be contained in one end region while t is contained in the other. Thus

z is extreme w.r.t. π. Furthermore, since z lies on the path Q(u → v), u and v are not

consecutive extreme vertices.

Lemma 5.2. For an extreme vertex v ∈ V , the direction of the final segment containing v

(directed away from v) on the shortest arbitrary path from s to v will be the direction where

s switches regions.

Proof. Let e ∈ S be the segment of S containing v, and let α ∈ (0, 2π] be the direction of

the segment from v to u, the other endpoint of e. Consider the chord C(v,α). Since S is

a shortest path, it cannot cross this chord except at e, so S(s → u) is contained entirely in

one region bounded by C(v,α). Let the region bounded by C(v,α) that contains S(s → u)

be A. Now let β = α± δ for some arbitrary δ > 0.

If there exists a point p ∈ C(v,β) that lies on S, then the path S(v → p) can be replaced

with vp and the new path vp ∪ S(p → s) is shorter than S. This is not possible since S is a

shortest path, and thus the chord C(v,β) does not intersect S.

Let B be the region bounded by C(v,β) that does not contain C(v,α). Since e is contained

on C(v,α) and therefore not contained in B, if any of S were contained in B then at some

point S would have to cross C(v,β) to enter the region B. However this cannot happen
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Figure 15: A representation of the proof described in Theorem 5.3.

since C(v,β) does not intersect S. Therefore no portion of S is contained in B. Since

B contains neither S nor C(v,α), both the point s and the chord C(v,α) lie in the same

region induced by C(v,β). Finally, since β = α ± δ, s and C(v,α) are always contained in

the same region induced by any chord and therefore s switches regions at α (by Definition

16).

Theorem 5.3. For every pair of consecutive extreme vertices u, v ∈ V

θ(u, v) /∈ ((ρ1, ρ
�
1) ∪ . . . ∪ (ρm, ρ�m))

Proof. (by contradiction)

Assume that there exists some pair of consecutive extreme vertices u, v ∈ V where

θ(u, v) ∈ (ρ1, ρ�1) ∪ . . . ∪ (ρm, ρ�m). Let u be extreme w.r.t. α ∈ O and v be extreme

w.r.t. β ∈ O. First, w.l.o.g. rotate the problem so that θdir(u, v) = 2π. See Figure 15 for a

diagram of the configuration described in this proof.

Let S be the shortest O-path from s to t. By Lemma 5.1, uv must be contained entirely

in P , which implies that uv must be contained in an end region induced by C(u,α) and

C(u,α+ π). Let C = C(u,α) ∪ C(u,α+ π).

I will start by proving that neither Prπ(u) nor Pr2π(v) is degenerate.

If π is an exterior angle of u, then a line up where θdir(u, p) = 2π must lie in the middle

region induced by any chord that induces two end regions. But that would mean that v

lies in the middle region induced by C(u,α) ∪C(u,α+ π), which means v cannot be on S.

Similarly, it can be shown that Pr2π(v) is non-degenerate.
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Since both u, v ∈ S, v (u) must be in an end region induced by the α-chord (β-chord)

through u (v). Let A be the end region induced by C(u,π) and B be the end region induced

by C(v, 2π) (see Figure 15).

To ensure that v is in an end region induced by the α-chord through u, the line uv must

be contained in an end region. This means that the entire chord C(u, 2π) (and therefore

the entire region B) will be contained in an end region induced by α. The more important

consequence is that the other end region induced by α is a subset of A. Therefore A con-

tains an end region induced by the α-chord through u. Similarly, B contains an end region

induced by the β-chord through v. Since one of s, t lies in the end region induced by the

α-chord through u, one of s, t lies in A. Similarly, since one of s, t lies in the end region

induced by the β-chord through v, one of s, t lies in B. Since A and B are disjoint, it must

be that one lies in A and the other in B. All that is left is to show that u changes extremity

at θ(u, v). Since one of s or t lies in A, w.l.o.g. say s lies in A.

Consider R, the shortest arbitrarily oriented path from s to v, and let xv be the final seg-

ment of R that ends at v. By Lemma 5.2, s will switch regions at direction θdir(v, x). Since s

lies in A, which is bounded by C(u,π), the path R must intersect C(u,π) to get out of A and

reach v. Thus R must intersect C(u,π) at some point x and xv will be the final segment on

R. Therefore s switches regions at θdir(v, x) which is equal to π.

Since s switches regions at π, v will change extremity at π and therefore π must be one

of the boundary orientations ρi or ρ�i. Finally, this means that θ(u, v) /∈ (ρ1, ρ�1) ∪ . . . ∪

(ρm, ρ�m).

The next lemma will show how to calculate the length of the shortest O-path between

two points assuming there are no obstacles/edges to avoid. This lemma will then be used

to show how to calculate the length of the shortest O-path between s and t.

Lemma 5.4.

�O(x, y) =
�(xy)(|sin(α− θ(x, y))|+ |sin(β − θ(x, y))|)

|sin(β − α)|
(2)

for α,β ∈ O which are the two neighbouring orientations of θ(x, y).

Proof. (by cases)

First by Lemma 3.4, �O(x, y) = �α,β(x, y) for the neighbouring orientations of θ(x, y). Let
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Figure 16: The configuration described in Lemma 5.4.

φ = θ(x, y) and w.l.o.g. assume α < β. By Figure 16 and the sin law,

dα
sin(π − (β − φ))

=
dα

sin(β − φ)
=

dβ
sin(α− φ)

=
�(xy)

sin(β − α)

dα =
�(xy)sin(β − φ)

sin(β − α)
, dβ =

�(xy)sin(α− φ)

sin(β − α)

And obviously the length of the lines dα and dβ cannot be negative, so the total length of

both line segments is

�α,β(x, y) = dα + dβ

=

����
�(xy)sin(β − φ)

sin(β − α)

����+
����
�(xy)sin(α− φ)

sin(β − α)

����

=
�(xy)(|sin(α− φ)|+ |sin(β − φ)|)

|sin(β − α)|

Lemma 5.5. Given an s− t subproblem, the total length of the shortest O-path between s

and t is given by

D(O) =
�

(u,v)∈Xc

�
�(uv)

|sin(θi − θ(u, v))|+ |sin(θj − θ(u, v))|

|sin(θi − θj)|

�

where for each (u, v) ∈ Xc, the orientations θi, θj are θ(u, v)’s neighbouring orientations.

Furthermore, D(O) is a continuous, differentiable function.

Proof. (direct)

33



By Theorem 3.7 there is only one order in which the vertices in X are traversed, and by

Lemma 3.16 the path between each (u, v) ∈ Xc is a staircase path, so
�

(u,v)∈Xc
�O(u, v)

is equal to the length of the shortest O-path from s to t. Now I will show that even though

D(O) includes absolute values, it is still a differentiable function.

By Lemma 5.3, θ(u, v) /∈ (ρi, ρ�i)∪ . . . ∪ (ρm, ρ�m) and therefore sin(θi−θ(u, v)) and sin(θj−

θ(u, v)) cannot change sign. Furthermore θi < θj ⇒ sin(θi − θj) < 0.

Each (u, v) ∈ Xc falls into one of three cases:

1. θi < θ(u, v) < θj

sin(θi − θ(u, v)) < 0 sin(θj − θ(u, v)) > 0

⇒ �O(u, v) = �(uv)
−sin(θi − θ(u, v)) + sin(θj − θ(u, v))

−sin(θi − θj)

2. θ(u, v) < θi

sin(θi − θ(u, v)) > 0 sin(θj − θ(u, v)) > 0

⇒ �O(u, v) = �(uv)
sin(θi − θ(u, v)) + sin(θj − θ(u, v))

−sin(θi − θj)

3. θ(u, v) > θj

sin(θi − θ(u, v)) < 0 sin(θj − θ(u, v)) < 0

⇒ �O(u, v) = �(uv)
sin(θi − θ(u, v)) + sin(θj − θ(u, v))

sin(θi − θj)

Therefore we can write the distance equation as one of the following

�O(u, v) =






�(uv) sin(θi−θ(u,v))+sin(θj−θ(u,v))
sin(θj−θi)

if θ(u, v) < θi < θj

�(uv)−sin(θi−θ(u,v))+sin(θj−θ(u,v))
sin(θj−θi)

if θi < θ(u, v) < θj

−�(uv) sin(θi−θ(u,v))+sin(θj−θ(u,v))
sin(θj−θi)

if θi < θj < θ(u, v)

Thus the distance D(O) is a sum of continuous, differentiable functions and so must be

continuous and differentiable as well.
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6 Minimizing Length for Each Extreme Sequence

In the previous two sections we have shown how to divide our problem into subproblems,

and for each subproblem we have a continuous, differentiable function D(O) that gives

the distance of the shortest O-path between s and t. This section focuses on the problem

allowing two orientations. Just as in the previous section, we are working within the con-

fines of an s − t subproblem, meaning we have a set X of all extreme vertices and two

orientations θ1, θ2 where θ1 ∈ (ρ1, ρ�1) and θ2 ∈ (ρ2, ρ�2).

This section aims to prove that within an s−t subproblem the function D(O) has at most

one minimum for θ1 ∈ (ρ1, ρ�1) and θ2 ∈ (ρ2, ρ�2). This means we can find that minimum in

a finite amount of time, then check the boundary cases where θ1 is equal to ρ1 or ρ�1, or θ2

is equal to ρ2 or ρ�2. When discussing an s − t subproblem, solving the subproblem refers

to finding the set O∗ = {θ∗1, θ
∗
2} where θ∗1 ∈ (ρ1, ρ�1) and θ∗2 ∈ (ρ2, ρ�2) for which D(O∗) is as

small as possible.

First, it is shown that given the set of extreme vertices in the subproblem, the problem

can be represented by two vectors �L1 and �L2 so that the length of the shortest (θ1, θ2)-

path from s to t is equal to the sum of the θ1 and θ2 components of �L1 and �L2. After

the two vectors are found, it is shown the distance function - that is, the sum described

above - contains at most one minimum. Since there is a single minimum, it is clear that

the pair θ∗1, θ∗2 which minimizes the distance function can be found to any degree of desired

accuracy.

Let Xc represent the set of pairs of consecutive extreme vertices (including s and t),

and to simplify the proofs, the problem is rotated so that ρ�2 = π.
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6.1 General Mathematical Lemmas

The following section will give a few mathematical lemmas that will later be used to prove

there is at most one minimum in an s− t subproblem. The full proofs of these lemmas are

given in the appendix.

Lemma 6.1. For edges e1 = (u, v) and e2 = (w, z) where 0 < θdir(u, v) ≤ θdir(w, z) ≤ π,

�(uv)sin(x− θ(u, v)) + �(wz)sin(x− θ(w, z)) =
�

S2
v + S2

hsin

�
x− tan−1

�
Sv

Sh

��

where

Sv = �(uv)sin(θ(u, v)) + �(wz)sin(θ(w, z))

Sh = �(uv)cos(θ(u, v)) + �(wz)cos(θ(w, z))

and tan−1
�
Sv
Sh

�
is contained in the interval [θdir(u, v), θdir(w, z)].

Lemma 6.2.

d

dθ1

�
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)
+

l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)

�

=
l1sin(θ2 − φ1)

1− cos(θ2 − θ1)
+

−l2sin(θ2 − φ2)

1 + cos(θ2 − θ1)

Lemma 6.3.

d

dθ2

�
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)
+

l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)

�

=
−l1sin(θ1 − φ1)

1− cos(θ2 − θ1)
+

−l2sin(θ1 − φ2)

1 + cos(θ2 − θ1)

Lemma 6.4.

d

dϕ

�
l1sin(ϕ− φ1)± l2sin(ϕ− φ2)

l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2)

�
=

±2l1l2sin(φ2 − φ1)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2
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6.2 Simplifying the Subproblem and Minimizing Distance

The idea of this section is the following: take all pairs of consecutive extreme vertices and

sort them into two sets based on the orientation between the pair of vertices. One set will

be all orientations in (0, ρ1) while the other will be all orientations in (ρ�1, ρ2), and these sets

will be referred to as Xa and Xb, respectively.

Xa = {(u, v) ∈ Xc s.t. θ(u, v) ∈ (0, ρ1]}

Xb = {(u, v) ∈ Xc s.t. θ(u, v) ∈ [ρ�1, ρ2]}

We treat each pair of vertices as a vector and for each set we calculate the vector sum

of the pairs. Thus we create two representative vectors �L1 and �L2. See Figure 17 for a

visualization of what will be done.

(b)(a)

ρ1
ρ�1

ρ�2

ρ2

ρ1
ρ�1

ρ2

ρ�2

Figure 17: The solid lines shown in (a) represent the lines uv where u and v are consecutive
extreme vertices. The dotted lines in (b) are the vectors that are created in this section,
which are the vector sums of each set.

Lemma 6.5. If we are given a set of consecutive extreme vertices Y where all pairs of

vertices (u, v) ∈ Y have orientations in the interval (α,β) ⊂ (0,π], then

�

(u,v)∈Y

�O(u, v)sin(x− θ(u, v)) = lsin(x− φ)

for some length l and orientation φ ∈ (α,β).

Proof. (by construction)

First, for any (u, v) ∈ Y where θdir(u, v) > π, reverse the order of the pair so that (v, u)
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is contained in Y and (u, v) is not. Note that this transformation will not change either

�O(u, v) or θ(u, v), so will not change the sum
�

(u,v)∈Y �O(u, v)sin(x− θ(u, v)). Now by

Lemma 6.1 we can calculate the sum by adding two terms at a time, and still maintain that

the resultant orientation φ is within (α,β).

To simplify the proof of Theorem 6.6, for some set of pairs of points Y , let V (Y ) denote

the vertical distance spanned by all the pairs in Y and let H(Y ) denote the horizontal

distance spanned by all the pairs in Y .

V (Y ) =
�

(u,v)∈Y

�(uv)sin(θ(u, v)) H(Y ) =
�

(u,v)∈Y

�(uv)cos(θ(u, v))

Theorem 6.6. The distance of the shortest (θ1, θ2)-path from s to t, D(θ1, θ2), is given by

D(θ1, θ2) =
l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)
+

l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)

for constants l1, l2 ≥ 0, φ1 ∈ (0, ρ1) and φ2 ∈ (ρ�1, ρ2) where

l1 =
�
V (Xa)2 +H(Xa)2 φ1 = tan−1

�
V (Xa)

H(Xa)

�

l2 =
�

V (Xb)2 +H(Xb)2 φ2 = tan−1

�
V (Xb)

H(Xb)

�

Proof. By Theorem 5.3, ∀(u, v) ∈ Xc, θ(u, v) /∈ ((ρ1, ρ�1)∪ (ρ2, ρ�2)) and therefore Xa ∪Xb =

Xc. As shown in Lemma 5.5, the distance of the shortest (θ1, θ2)-path in P from s to t is

given by

�θ1,θ2(Xc)

=
�

(u,v)∈Xc

�
�(uv)

|sin(θ1 − θ(u, v))|+ |sin(θ2 − θ(u, v))|

sin(θ2 − θ1)

�

=
�

(u,v)∈Xa

�
�(uv)

|sin(θ1 − θ(u, v))|+ |sin(θ2 − θ(u, v))|

sin(θ2 − θ1)

�

+
�

(u,v)∈Xb

�
�(uv)

|sin(θ1 − θ(u, v))|+ |sin(θ2 − θ(u, v))|

sin(θ2 − θ1)

�

=
�

(u,v)∈Xa

�
�(uv)

sin(θ1 − θ(u, v)) + sin(θ2 − θ(u, v))

sin(θ2 − θ1)

�
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+
�

(u,v)∈Xb

�
�(uv)

−sin(θ1 − θ(u, v)) + sin(θ2 − θ(u, v))

sin(θ2 − θ1)

�

=
�

(u,v)∈Xa

�
�(uv)sin(θ1 − θ(u, v))

sin(θ2 − θ1)

�
+

�

(u,v)∈Xa

�
�(uv)sin(θ2 − θ(u, v))

sin(θ2 − θ1)

�

−
�

(u,v)∈Xb

�
�(uv)sin(θ1 − θ(u, v))

sin(θ2 − θ1)

�
+

�

(u,v)∈Xb

�
�(uv)sin(θ2 − θ(u, v))

sin(θ2 − θ1)

�

=
1

sin(θ2 − θ1)




�

(u,v)∈Xa

�(uv)sin(θ1 − θ(u, v)) +
�

(u,v)∈Xa

�(uv)sin(θ2 − θ(u, v))

−
�

(u,v)∈Xb

�(uv)sin(θ1 − θ(u, v)) +
�

(u,v)∈Xb

�(uv)sin(θ2 − θ(u, v))





=

�
1

sin(θ2 − θ1)

�
(l1sin(θ1 − φ1) + l1sin(θ2 − φ1)− l2sin(θ1 − φ2) + l2sin(θ2 − φ2))

(by Lemma 6.5)

=
l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)
+

l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)

where by Lemma 6.5, φ1 ∈ (0, ρ1], φ2 ∈ [ρ�1, ρ2] and

l1 =
�
V (Xa)2 +H(Xa)2 φ1 = tan−1

�
V (Xa)

H(Xa)

�

l2 =
�

V (Xb)2 +H(Xb)2 φ2 = tan−1

�
V (Xb)

H(Xb)

�

Now that the distance function is simplified, the aim is to find the two orientations θ∗1, θ
∗
2

where θ∗1 ∈ (ρ1, ρ�1) and θ∗2 ∈ (ρ2, ρ�2) which minimize D(θ1, θ2). It will be shown that there

exists at most one pair θ∗1, θ∗2 which minimizes this distance function, meaning a hill-climbing

algorithm can find such a minimum (if it exists) to any desired degree of accuracy. To prove

there is at most one minimum, it will be shown that there is at most one place where both

the θ1-derivative and the θ2-derivative of D(θ1, θ2) are zero. Note that a place where both

derivatives are zero is a necessary but not sufficient condition for a minimum.
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Let us define the following functions which will be used in the remainder of this section

h1(θ1) =
l1sin(θ1 − φ1) + l2sin(θ1 − φ2)

−l1sin(θ1 − φ1) + l2sin(θ1 − φ2)

h2(θ2) =
−l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

Lemma 6.7. The distance D(θ1, θ2) can be minimized only if the following equations are

both satisfied (i.e. if they intersect)

θ2 = f(θ1) = θ1 + cos−1

�
l1sin(θ1 − φ1) + l2sin(θ1 − φ2)

−l1sin(θ1 − φ1) + l2sin(θ1 − φ2)

�

θ1 = g(θ2) = θ2 − cos−1

�
−l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

�

Proof. (direct)

By Theorem 6.6, the distance of the two lines is given by

D(θ1, θ2) =
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)
+

l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)

If D(θ1, θ2) is minimized then it must be true that d
dθ1

D(θ1, θ2) =
d

dθ2
D(θ1, θ2) = 0. For ease

of notation let L(θ) = l1sin(θ − φ1) and M(θ) = l2sin(θ − φ2). By Lemmas 6.2 and 6.3

d

dθ1
D(θ1, θ2) =

L(θ2)

1− cos(θ2 − θ1)
+

−M(θ2)

1 + cos(θ2 − θ1)

d

dθ2
D(θ1, θ2) =

−L(θ1)

1− cos(θ2 − θ1)
+

−M(θ1)

1 + cos(θ2 − θ1)

By setting the derivatives to zero and rearranging,

L(θ2)

1− cos(θ2 − θ1)
=

M(θ2)

1 + cos(θ2 − θ1)

L(θ1)

1− cos(θ2 − θ1)
=

−M(θ1)

1 + cos(θ2 − θ1)

cos(θ2 − θ1) =
−L(θ2) +M(θ2)

L(θ2) +M(θ2)
cos(θ2 − θ1) =

L(θ1) +M(θ1)

−L(θ1) +M(θ1)

Finally we rearrange again to get

θ2 − θ1 = cos−1

�
−L(θ2) +M(θ2)

L(θ2) +M(θ2)

�

θ1 = θ2 − cos−1

�
−L(θ2) +M(θ2)

L(θ2) +M(θ2)

�
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θ1 = θ2 + cos−1

�
−l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

�

θ2 − θ1 = cos−1

�
L(θ1) +M(θ1)

−L(θ1) +M(θ1)

�

θ2 = θ1 + cos−1

�
L(θ1) +M(θ1)

−L(θ1) +M(θ1)

�

θ2 = θ1 + cos−1

�
l1sin(θ1 − φ1) + l2sin(θ1 − φ2)

−l1sin(θ1 − φ1) + l2sin(θ1 − φ2)

�

Lemma 6.8. The function θ2 = f(θ1) = θ1 + arccos(h1(θ1)) has θ1-derivative > 1, and the

function θ1 = g(θ2) = θ2 − arccos(h2(θ2)) has θ1-derivative < 1.

Proof.

d

dθ1
f(θ1) =

d

dθ1
(θ1 + arccos(h1(θ1)))

= 1 +
−1�

1− h1(θ1)2
∗ d

dθ2
h1(θ1)

= 1 +

�
−1�

1− h1(θ1)2

�

� �� �
<0

∗
�

−2l1l2sin(φ2 − φ1)

(l1sin(θ1 − φ1)− l2sin(θ1 − φ2))2

�

� �� �
<0

> 1

To find the θ1-derivative of g(θ2), first we will find its θ2-derivative.

d

dθ2
g(θ2) =

d

dθ2
(θ2 − arccos(h2(θ2)))

= 1− −1�
1− h2(θ2)2

∗ d

dθ2
(h2(θ2))

= 1−
�

−1�
1− h2(θ2)2

�

� �� �
<0

∗
�

2l1l2sin(φ2 − φ1)

(l1sin(θ2 − φ1) + l2sin(θ2 − φ2))2

�

� �� �
>0

> 1
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Now define the following inverse function

θ1 = g(θ2) ⇒ θ2 = g−1(θ1)

The θ1-derivative of the line, d
dθ1

g−1(θ1), is equal to the inverse of d
dθ2

g(θ2), and d
dθ2

g(θ2) >

1 ⇒ d
dθ1

g−1(θ1) < 1.

Definition 17. A function f(x) over domain X is said to be 1-to-1 if no horizontal or vertical

line intersects f(x) more than once.

Lemma 6.9. The functions

θ2 = f(θ1) = θ1 + arccos(h1(θ1))

θ1 = g(θ2) = θ2 − arccos(h2(θ2))

intersect at most once.

Proof. (direct)

First, I will show that for θ1 ∈ (ρ1, ρ�1) and θ2 ∈ (ρ2, ρ�2) both h1(θ1) and h2(θ2) are continu-

ous, and have ranges contained in [−1, 1].

The functions h1(θ1) and h2(θ2) are made up of continuous functions, so are both con-

tinuous themselves except at the series of points where the denominator is zero. The

denominator of h1(θ1) is

−l1sin(θ1 − φ1)� �� �
<0

+ l2sin(θ1 − φ2)� �� �
<0

and the denominator of h2(θ2) is

l1sin(θ2 − φ1)� �� �
>0

+ l2sin(θ2 − φ2)� �� �
>0

Therefore neither denominator is ever 0, so h1(θ1) and h2(θ2) both are continuous.

By lemma 6.4,

d

dθ1
h1(θ1) =

−2l1l2sin(φ2 − φ1)

(l1sin(θ1 − φ1)− l2sin(θ1 − φ2))2
< 0

d

dθ2
h2(θ2) =

2l1l2sin(φ2 − φ1)

(l1sin(θ2 − φ1) + l2sin(θ2 − φ2))2
> 0
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meaning both derivatives are of constant sign.

The derivative of h1(θ1) is negative so its range is (h1(ρ�1), h1(ρ1)), and since the interval

(ρ1, ρ�1) is contained within (φ1,φ2), the range of h1(θ1) is contained within (h1(φ2), h1(φ1)).

The derivative of h2(θ2) is positive so its range will be (h2(φ2), h2(π)), and since the interval

(ρ2, ρ�2) is contained within (φ2,φ1), the range of h2(θ2) is contained within (h2(φ2), h2(φ1)).

By evaluating the functions at φ1 and φ2 we get

h1(φ2) = −1 h2(φ2) = −1

h1(φ1) = 1 h2(φ1) = 1

so both ranges are contained within (−1, 1). Since arccos(x) is continuous for x ∈ (−1, 1),

arccos(h1(θ1)) and arccos(h2(θ2)) are both continuous.

The value of θ2 − θ1 is always in the interval (0,π), so

θ2 = θ1 + arccos(h1(θ1)) θ1 = θ2 − arccos(h2(θ2))

θ2 − θ1� �� �
∈(0,π)

= arccos(h1(θ1)) θ1 − θ2 = −arccos(h2(θ2))

θ2 − θ1� �� �
∈(0,π)

= arccos(h2(θ2))

which means the values of arccos(h1(θ1)) and arccos(h2(θ2)) are always in the inter-

val (0,π). The function cos−1(x) is 1-to-1 for domain (−1, 1) and range (0,π), so both

arccos(h1(θ1)) and arccos(h2(θ2)) are 1-to-1.

Finally, given that arccos(h1(θ1)) and arccos(h2(θ2)) are continuous and 1-to-1, it is clear

that f(θ1) = θ1+arccos(h1(θ1)) and g(θ2) = θ2−arccos(h2(θ2)) are continuous and 1-to-1.

As shown by Lemma 6.8, the θ1-derivative of f(θ1) is always greater than 1 and the θ1-

derivative of g(θ2) is always less than 1. Consider a point at which f(θ1) and g(θ2) inter-

sect. Since the θ1-derivative of f(θ1) is always greater than the θ1-derivative of g(θ2), the

functions cannot intersect again.

Theorem 6.10. Given an s− t subproblem for two allowable orientations, there is at most

one pair of orientations θ1 ∈ (ρ1, ρ�1) and θ2 ∈ (ρ2, ρ�2) that minimizes D(θ1, θ2).

Proof. (direct)
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l1 = 7

φ1 = 57◦
l2 = 5

φ2 = 103◦
l2 = 5

φ2 = 120◦
l2 = 20

φ2 = 163◦
l1 = 3

φ1 = 34◦
l1 = 0.1

φ1 = 74.5◦

Figure 18: The figures above show the graphs of three distance functions and the ”mini-
mum” point as found by setting both derivatives to 0.

An s − t subproblem where m = 2 contains a multiset of two ranges θ1 ∈ (ρ1, ρ�1) and

θ2 ∈ (ρ2, ρ�2). Lemmas 6.7 and 6.9 prove the theorem.

While it has just been shown that there exists at most one pair of orientations where

D(θ1, θ2) is minimized, but we have not eliminated the possibility that there is no minimum.

The following conjecture predicts such an outcome.

Conjecture 1. FIX! Given an s − t subproblem for two allowable orientations, there is no

pair of orientations θ1 ∈ (ρ1, ρ�1) and θ2 ∈ (ρ2, ρ�2) that minimizes D(θ1, θ2).

In Theorem 6.10 I was able to prove there is at most one minimum by showing that

there is at most one place where both partial derivatives of the distance function are 0.

However, both partial derivatives being 0 is a necessary but not sufficient condition of a

minimum and thus there may not be a minimum at the point found in this section.

When graphing the distance function, the point at which both partial derivatives are 0 looks

to be a saddle point - that is, the point where both partial derivatives are 0 is not a minimum.

Figure 18 shows three such examples, and is zoomed in to highlight the saddle point.
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6.3 More Than Two Allowable Orientations

For three or more allowable orientations, it will be shown that there are m equations of three

variables each that must intersect if there is a minimum at such a point. If these equations

can be shown to intersect in some predictable way an algorithm can be developed to find

the shortest O-path for three or more orientations. This is an open problem in need of

further research.

In this subsection there are m orientations θ1, . . . , θm where θi ∈ [ρi, ρ�i] and θ1 < . . . <

θm.

Lemma 6.11.

d

dθi
D(O) =

lisin(θi−1 − φi)

1 + cos(θi − θi−1)
+

li+1sin(θi+1 − φi+1)

1 + cos(θi+1 − θi)

Proof. Let

X1 = {(u, v) s.t. θ(u, v) ∈ (0, ρ1)}

X2 = {(u, v) s.t. θ(u, v) ∈ (ρ�1, ρ2)}

. . .

Xm = {(u, v) s.t. θ(u, v) ∈ (ρ�m−1, ρm)}

By Theorem 5.3, for all consecutive extreme vertices (u, v) ∈ Xc, θ(u, v) /∈ ((ρ1, ρ�1) ∪ . . . ∪

(ρm, ρ�m)) and therefore X1∪ . . . ∪Xm = Xc. Thus the distance of the shortest O-path from

s to t is given by

D(O) =
�

(u,v)∈Xc

�
�(uv)

|sin(θi − θ(u, v))|+ |sin(θi+1 − θ(u, v))|

sin(θi+1 − θi)

�
(by Lemma 5.5)

=
�

(u,v)∈X1

�
�(uv)

|sin(θ1 − θ(u, v))|+ |sin(θm − θ(u, v))|

sin(θ1 − θm)

�

+
�

(u,v)∈X2

�
�(uv)

|sin(θ2 − θ(u, v))|+ |sin(θ1 − θ(u, v))|

sin(θ2 − θ1)

�

+ . . . +
�

(u,v)∈Xm

�
�(uv)

|sin(θm − θ(u, v))|+ |sin(θm−1 − θ(u, v))|

sin(θm − θm−1)

�

=
�

(u,v)∈X1

�
�(uv)

−sin(θ1 − θ(u, v))− sin(θm − θ(u, v))

sin(θ1 − θm)

�
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+
�

(u,v)∈X2

�
�(uv)

sin(θ2 − θ(u, v))− sin(θ1 − θ(u, v))

sin(θ2 − θ1)

�

+ . . . +
�

(u,v)∈Xm

�
�(uv)

sin(θm − θ(u, v))− sin(θm−1 − θ(u, v))

sin(θm − θm−1)

�

= −
�

(u,v)∈X1

�
�(uv)sin(θ1 − θ(u, v))

sin(θ1 − θm)

�
−

�

(u,v)∈X1

�
�(uv)sin(θm − θ(u, v))

sin(θ1 − θm)

�

+
�

(u,v)∈X2

�
�(uv)sin(θ2 − θ(u, v))

sin(θ2 − θ1)

�
−

�

(u,v)∈X2

�
�(uv)sin(θ1 − θ(u, v))

sin(θ2 − θ1)

�
+ . . .

+
�

(u,v)∈Xm

�
�(uv)sin(θm − θ(u, v))

sin(θm − θm−1)

�
−

�

(u,v)∈Xm

�
�(uv)sin(θm−1 − θ(u, v))

sin(θm − θm−1)

�

= − l1sin(θ1 − φ1)

sin(θ1 − θm)
− l1sin(θm − φ1)

sin(θ1 − θm)
+

l2sin(θ2 − φ2)

sin(θ2 − θ1)
− l2sin(θ1 − φ2)

sin(θ2 − θ1)

+ . . . +
lmsin(θm − φm)

sin(θm − θm−1)
− lmsin(θm−1 − φm)

sin(θm − θm−1)
(by Lemma 6.5)

=
−l1sin(θ1 − φ1)− l1sin(θm − φ1)

sin(θ1 − θm)
+

l2sin(θ2 − φ2)− l2sin(θ1 − φ2)

sin(θ2 − θ1)

+ . . . +
lmsin(θm − φm)− lmsin(θm−1 − φm)

sin(θm − θm−1)

where by Lemma 6.5 φ1 ∈ (0, ρ1),φ2 ∈ (ρ�1, ρ2), . . . ,φm ∈ (ρ�m−1, ρm).

d

dθi
D(O) =

d

dθi

�
−l1sin(θ1 − φ1)− l1sin(θm − φ1)

sin(θ1 − θm)
+ . . .

+
lisin(θi − φi)− lisin(θi−1 − φi)

sin(θi − θi−1)
+

li+1sin(θi+1 − φi+1)− li+1sin(θi − φi+1)

sin(θi+1 − θi)

+. . . +
lmsin(θm − φm)− lmsin(θm−1 − φm)

sin(θm − θm−1)

�

=
d

dθi

�
lisin(θi − φi)− lisin(θi−1 − φi)

sin(θi − θi−1)

+
li+1sin(θi+1 − φi+1)− li+1sin(θi − φi+1)

sin(θi+1 − θi)

�

=
cos(θi − θi−1)(lisin(θi − φi)− lisin(θi−1 − φi))

sin2(θi − θi−1)
+

−licos(θi − φi)

sin(θi − θi−1)

+
−cos(θi+1 − θi)(li+1sin(θi+1 − φi+1)− li+1sin(θi − φi+1))

sin2(θi+1 − θi)

+
−li+1(−cos(θi − φi+1))

sin(θi+1 − θi)

=
−licos(θi − φi)sin(θi − θi−1)) + licos(θi − θi−1)sin(θi − φi)

sin2(θi − θi−1)

− licos(θi − θi−1)sin(θi−1 − φi))

sin2(θi − θi−1)
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+
li+1sin(θi+1 − θi)cos(θi − φi+1)− li+1cos(θi+1 − θi)sin(θi+1 − φi+1)

sin2(θi+1 − θi)

+
li+1sin(θi − φi+1)cos(θi+1 − θi)

sin2(θi+1 − θi)

=
lisin(θi − φi − θi + θi−1)− licos(θi − θi−1)sin(θi−1 − φi)

sin2(θi − θi−1)

+
li+1sin(θi+1 − θi + θi − φi+1)− li+1cos(θi+1 − θi)sin(θi+1 − φi+1)

sin2(θi+1 − θi)

=
lisin(θi−1 − φi)− licos(θi − θi−1)sin(θi−1 − φi)

sin2(θi − θi−1)

+
li+1sin(θi+1 − φi+1)− li+1cos(θi+1 − θi)sin(θi+1 − φi+1)

sin2(θi+1 − θi)

=
lisin(θi−1 − φi)(1− cos(θi − θi−1))

sin2(θi − θi−1)

+
li+1sin(θi+1 − φi+1)(1− cos(θi+1 − θi))

sin2(θi+1 − θi)

=
lisin(θi−1 − φi)(1− cos(θi − θi−1))

(1− cos(θi − θi−1))(1 + cos(θi − θi−1))

+
li+1sin(θi+1 − φi+1)(1− cos(θi+1 − θi))

(1− cos(θi+1 − θi))(1 + cos(θi+1 − θi))

=
lisin(θi−1 − φi)

1 + cos(θi − θi−1)
+

li+1sin(θi+1 − φi+1)

1 + cos(θi+1 − θi)

By Lemma 6.11, finding where the distance function is minimized can be done by find-

ing the point(s) where all derivatives are 0. It may be possible to use calculus to show that

it is never possible for all derivatives to be 0 at the same time, and possibly it is the case

that if they are all 0 there is a 3-D equivalent of a saddle point. Further research is needed

to determine if there can be a point at which all derivatives are 0, and if so how many such

points can exist. Without having a bound on how many local minimums exist, there is no

guarantee that any algorithm can find the minimum set O∗.
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7 Algorithm

In this section an algorithm will be given that finds the two orientations θ∗1, θ
∗
2 for which the

(θ∗1, θ
∗
2)-path between s and t is of minimum length. The general idea is as follows: create

all possible sets of extreme vertices with two allowable orientations, then find the overall

minimum out of all subproblems.

Overall Algorithm Idea:

1. For each vertex v ∈ V find the associated interval (α,β) for which v is extreme.

2. Arrange all extreme interval boundaries on a line and for each interval between con-

secutive boundaries create a list of associated extreme vertices in the order they are

traversed on the s− t path.

3. Create a set of Subproblems that consists of two sets of ordered extreme vertices

and their associated interval boundaries.

4. For each Subproblem:

(a) find θ1, θ2 that minimizes the total length of the path

(b) find the length of the path at the interval boundaries

5. Find the minimum of the lengths reported above.

First I will prove a few lemmas that will allow the algorithm to be run more efficiently.

Lemma 7.1. The projection point Prφ(v) can be determined in O(logn), and a point p can

be determined to be visible from v in O(logn) time.

Proof. (direct)

Guibas et al. [6] proved that the projection point can be calculated in O(logn) time given

O(n) preprocessing and that P is triangulated (which takes O(nlogn) time). If p is contained

on the line between v and the projection point from v then p is visible from v. Otherwise p

is not visible from v.

In the next lemma we will show how to find a point on the boundary of the polygon

which - for all orientations which induce a middle region - is always in the middle region.

See Figure 19 for an example of such a point.
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α
v

p

Figure 19: Any projection point from v in a direction contained in the interval α will result in
a point that is always in the middle region - for all orientation which induce a middle region.
The point p is an example of a point that is always in the middle region.

Lemma 7.2. For any v ∈ V there is always some point on the boundary of the polygon

which - for all orientations which induce a middle region - is always in the middle region.

Furthermore, this point can be found in O(logn) time.

Proof. (direct)

All orientations which induce a middle region are orientations φ ∈ Φ for which both Prφ(v)

and Prφ+π(v) are non-degenerate. By Lemma 4.1 Φ is a pair of intervals Φ1 and Φ2. Since

P is a simple polygon it is clear that v must have at least one direction for which the projec-

tion point from v is degenerate, and let us call this direction ϕ. Let ϕ� be the complementary

angle of ϕ. Since ϕ is degenerate it cannot be in Φ1 or Φ2 and thus ϕ� cannot be in Φ1 or Φ2.

There is a single interval within (0, 2π] for which the projection point from v is non-degenerate,

namely the interior angle interval. Since Φ1 ∪ Φ2 contain only non-degenerate directions

and ϕ is a degenerate direction, Prϕ�(v) must be non-degenerate or the interior angle in-

terval would not be a single interval. Let p = Prϕ�(v).

Consider the boundaries E(p → v) and E(v → p), one of which contains all projection

points from v at directions [ϕ,ϕ�] and the other at directions [ϕ�,ϕ]. Since Φ1 and Φ2 are

intervals which are π apart and neither contains ϕ or ϕ�, Φ1 is contained in one of (ϕ,ϕ�) or

(ϕ�,ϕ) and Φ2 is contained in the other. Since ϕ� cannot induce two end regions, consider

any orientation φq which induces two end regions and let q = Prφq(v) and r = Prφq+π(v).

Since φq and φq + π are π apart, the points q and r cannot both be in the same interval

[ϕ,ϕ�] or [ϕ�,ϕ]. Thus one is in (ϕ,ϕ�) and the other is in (ϕ�,ϕ), which means p is not in

an end region.

To find the point p, we can first find a direction ϕ for which Prϕ(v) is degenerate. Since

the interior angle interval is [θdir(vi, vi+1), θdir(vi, vi−1)], we can find an exterior angle in
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constant time with the following equation:

ϕ =






θdir(vi,vi+1)+θdir(vi,vi−1)
2 if θdir(vi, vi+1) < θdir(vi, vi−1)

θdir(vi,vi+1)+θdir(vi,vi−1)
2 + π otherwise

Then we can find ϕ� in constant time and find the projection point p = Prϕ�(v) in O(logn)

time by Lemma 7.1.

Lemma 7.3. For a vertex v ∈ V which is extreme at some orientation, there are two sets of

disjoint vertices Va and Vb where vertices in Va are always traversed before v and vertices

in Va are always traversed after v. For a point p which is always contained in the middle

region, one of the sets of vertices in E(p → v) or E(v → p) contains the set Va and the

other contains the set Vb.

Proof. (direct)

By Lemma 7.2 let p be the point on E which is always in the middle region. Now consider

E(p → v) and E(v → p). The end regions must be bounded by some subset of the

boundary, say Es ⊂ E and Et ⊂ E. Since p is never in an end region p is not in either

Es or Et, and v is contained on both Es and Et as an endpoint where Es = E(q → v)

and Et = E(v → r) for some points q, r ∈ bd(P ). Thus E(q → v) ⊂ E(p → v) and

E(v → r) ⊂ E(v → p).

Finally, all vertices contained in the end region containing s are traversed before v and all

vertices contained in the end region containing t are traversed after v.

Lemma 7.4. When θ1 (θ2) is fixed, θ2 (θ1) that minimizes the distance function can be found

in O(k) time where k is the number of decimal places θ2 (θ1) is accurate to.

Proof. (direct)

In the proof of Lemma 6.7 it is shown that

d

dθ1
D =

l1sin(θ2 − φ1)

1− cos(θ2 − θ1)
+

−l2sin(θ2 − φ2)

1 + cos(θ2 − θ1)

d

dθ2
D =

−l1sin(θ1 − φ1)

1− cos(θ2 − θ1)
+

−l2sin(θ1 − φ2)

1 + cos(θ2 − θ1)

Now I will show that the second derivatives of both functions are always positive, and so
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the first derivatives can equal 0 at most once.

d2
d2θ1

D =
d

dθ1

�
l1sin(θ2 − φ1)

1− cos(θ2 − θ1)

�
+

d

dθ1

�
−l2sin(θ2 − φ2)

1 + cos(θ2 − θ1)

�

=
−l1sin(θ2 − φ1) ∗ sin(θ2 − θ1) ∗ −1

(1− cos(θ2 − θ1))2
+

−(−l2sin(θ2 − φ2)) ∗ −sin(θ2 − θ1) ∗ −1

(1 + cos(θ2 − θ1))2

=
l1sin(θ2 − φ1)sin(θ2 − θ1)

(1− cos(θ2 − θ1))2
+

l2sin(θ2 − φ2)sin(θ2 − θ1)

(1 + cos(θ2 − θ1))2

> 0 (since φ1 < θ1 < φ2 < θ2)

d2
d2θ2

D =
d

dθ2

�
−l1sin(θ1 − φ1)

1− cos(θ2 − θ1)

�
+

d

dθ2

�
−l2sin(θ1 − φ2)

1 + cos(θ2 − θ1)

�

=
−(−l1sin(θ1 − φ1))sin(θ2 − θ1)

(1− cos(θ2 − θ1))2
+

−1(−l2sin(θ1 − φ2)) ∗ −sin(θ2 − θ1)

(1 + cos(θ2 − θ1))2

=
l1sin(θ1 − φ1)sin(θ2 − θ1)

(1− cos(θ2 − θ1))2
+

−l2sin(θ1 − φ2)sin(θ2 − θ1)

(1 + cos(θ2 − θ1))2

> 0 (since φ1 < θ1 < φ2 < θ2)

Thus if we are given θ1 we can do a binary search on l1sin(θ2−φ1)
1−cos(θ2−θ1)

+ −l2sin(θ2−φ2)
1+cos(θ2−θ1)

to find

where it equals 0 (if it does at all). SInce the answer must be accurate to k decimals, we

need to divide the interval into 10k sub-intervals on which to perform the binary search.

Then the search takes O(log(10k)) = O(k) probes, and on every probe the function
l1sin(θ2−φ1)
1−cos(θ2−θ1)

+ −l2sin(θ2−φ2)
1+cos(θ2−θ1)

can be computed in constant time.

Lemma 7.5. For a vertex v which is extreme for some orientation, two vertices q ∈ V and

r ∈ V can be found in linear time so that V (q → v) contains all vertices which can be

traversed before v and V (v → r) contains all vertices traversed after v (or vice versa).

Proof. From Lemmas 7.2 and 7.3, we can find the point p such that E(p → v) contains

all vertices traversed before (after) v and E(v → p) contains all vertices traversed after

(before) v. Then in linear time we can find the edge e ∈ E on which p is contained. Then

q, r ∈ V are the two vertices bounding e.

By Lemma 7.5, we can find vertices p and q such that V (p → v) contains all vertices

in one end region and V (v → q) contains all vertices in the other end region. Since all

vertices are indexed from 1 → n in a counterclockwise order around P , a vertex vi can be

found to be in or out of the set V (p → v) in constant time by checking to see if the index is
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between p and v. We can find which set bounds the end region containing s and then store

the pair of vertices va, vb where V (va → vb) is equal to one of either V (p → v) or V (v → q),

whichever bounds the region containing s. Similarly we find and store the pair of vertices

vc, vd where V (vc → vd) is the other of V (p → v) or V (v → q).

For the remainder of this section, a sorted list of vertices refers to a list of vertices

sorted in order of traversal from s → t, and any reference to finding, inserting, or removing

a vertex from a sorted list is assumed to be performed in O(logn) time since a binary

search can be used along with a constant time query that determines if a vertex is before

or after another vertex.

For each vertex vi ∈ V , a set Θ(vi) will be created which is guaranteed to contain the

two orientations α,β ∈ (0,π] which bound the extreme interval of vi. The set contains only

four orientations and it will be shown later these orientations can be calculated in O(nlogn)

time. Θ(vi) contains the two orientations φs and φt, which are the orientations where s and

t change regions, and the orientations θ(vi, vi−1) and θ(vi, vi+1).

The list Φ will be created to include all orientations at which a vertex changes extremity.

Two sets of vertices will be associated with each orientation φ ∈ Φ: a set of vertices that

become extreme at φ, and a set of vertices that stop being extreme at φ. These lists will

be denoted V (φ, EX) and V (φ, NEX), respectively.

To summarize, for each vertex vi ∈ V two lists are created which contain the following

information

vi(s) ← (va, vb) s.t. V (va → vb) contains all vertices traversed before vi

vi(t) ← (vc, vd) s.t. V (vc → vd) contains all vertices traversed after vi

There will also be O(n) vertex sets created of the following form

V (φ, EX) ← vertices that become extreme at φ

V (φ, NEX) ← vertices that stop being extreme at φ

and a set Θ(vi) associated with each vertex which contains the orientations

Θ(vi) = {θ(vi, vi−1), θ(vi, vi+1),φs,φt}
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Algorithm 7.1: PREPROCESS(P, s, t)

Triangulate P

VT ← V ∪ {s, t}

Φ ← ∅ comment: set of orientations where some vertex changes extremity

for each vi ∈ V

do






Find Θ(vi)

Find α,β ∈ Θ(vi) s.t. all orientations in (α,β) are extreme

Add α and β to Φ

Add vi to V (α, EX) and to V (β, NEX)

Find vi(s) and vi(t) for the vertex vi

Sort Φ in ascending order

Create a list of extreme vertices, L1, for the first Interval

for each (non-first) consecutive pair of orientations (σi,σi+1) in Φ

do






Li ← Li−1

for each vj ∈ V (σi, EX)

do Add vj to Li

for each vj ∈ V (σi, NEX)

do Remove vj from Li
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Algorithm 7.2: MINIMUMLENGTHPATH(P, s, t)

Preprocess(P, s, t)

comment: Φ is ordered from 0 up to π

Φ = {ω1,ω2. . . ,ωc}

for each i ← c down to 1

do






Rotate problem so that ωi+1 = π

Xc ← {(u, v) s.t. u and v are consecutive vertices in Li}

Xb ← ∅

Xa ← {(u, v) ∈ Xc s.t. θ(u, v) ∈ (0,ωi)}

V (Xb) ← 0, V (Xa) ←
�

(u,v)∈Xa
�(uv)sin(θ(u, v))

H(Xb) ← 0, H(Xa) ←
�

(u,v)∈Xa
�(uv)cos(θ(u, v))

for each j ← (i− 1) down to 1

do






for each v ∈ V (ωj , EX)

do






Find (va, vb) ∈ Xc where v comes between va and vb

removeFromSum((va, vb), i, j)

addToSum((va, v), i, j)

addToSum((v, vb), i, j)

for each v ∈ V (ωj , NEX)

do






Find the two pairs (va, v), (v, vb) ∈ Xc

removeFromSum((va, v), i, j)

removeFromSum((v, vb), i, j)

addToSum((va, vb), i, j)

Recalculate l1, l2, φ1 and φ2

Check distance function for a minimum value

Check boundaries for a minimum value

return (overall minimum)
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Algorithm 7.3: ADDTOSUM((u, v), i, j)

Add (u, v) to Xc

if θ(u, v) ∈ (0,ωj)

then

do






V (Xa) ← V (Xa) + �(uv)sin(θ(u, v))

H(Xa) ← H(Xa) + �(uv)cos(θ(u, v))

Add (u, v) to Xa

else if θ(u, v) ∈ (ωj+1,ωi)

then

do






V (Xb) ← V (Xb) + �(uv)sin(θ(u, v))

H(Xb) ← H(Xb) + �(uv)cos(θ(u, v))

Add (u, v) to Xb

Algorithm 7.4: REMOVEFROMSUM((u, v), i, j)

Remove (u, v) from Xc

if θ(u, v) ∈ (0,ωj)

then

do






V (Xa) ← V (Xa)− �(uv)sin(θ(u, v))

H(Xa) ← H(Xa)− �(uv)cos(θ(u, v))

Remove (u, v) from Xa

else if θ(u, v) ∈ (ωj+1,ωi)

then

do






V (Xb) ← V (Xb)− �(uv)sin(θ(u, v))

H(Xb) ← H(Xb)− �(uv)cos(θ(u, v))

Remove (u, v) from Xb

7.1 Proof of Correctness

In the following section it will be shown that the algorithm given in this thesis correctly

determines the set {θ1, θ2} which minimizes the length of the (θ1, θ2)-path connecting s

and t.
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Theorem 7.6. Algorithm 7.1 correctly constructs O(n) lists of extreme vertices in order

of traversal from s to t, and two sets of vertices associated with every orientation in Φ -

one containing all vertices which become extreme at that orientation and one containing

all vertices which become non-extreme at that orientation. The algorithm also finds two

lists vi(s) = {vs, v�s} and vi(t) = {vt, v�t} where E(vs → v�s) contains all vertices which are

traversed before vi and E(vt → v�t) contains all vertices traversed after vi.

Proof. (direct)

The first for loop correctly constructs the two sets of vertices that become extreme or non-

extreme at each angle in Φ, and also finds the lists vi(s) and vi(t). The details are left out

of the algorithm but can be directly inferred from Lemma 7.5.

Let (α,β) be the single interval in (0,π] for which vi is extreme (by Theorem 4.3 there is

only one interval for which v is extreme). See the proof of Lemma 4.1 to verify that the

orientations bounding the interval where both Prϕ(vi) and Prϕ+π(vi) are non-degenerate

are contained in Θ(vi). Now we will show by contradiction that the orientations bounding

the extreme region must be contained in Θ(vi).

Let α1,β1 ∈ (0,π] be two orientations such that for all φ ∈ [α1,β1] both Prφ(v) and Prφ±π(v)

are non-degenerate, and for all φ /∈ ([α1,β1] at least one of the projections is degenerate.

Within the intervals [α1,β1], the only orientations at which s or t could enter or exit an end

region are φs or φt.

A list Li is then constructed for each consecutive pair of orientations which contains all

vertices that are extreme in the interval. Since we begin with L1 as an ordered list and all

vertices are inserted in order, every list is correctly ordered.

✲❝ ❝
θ1

ωj ωj+1 ❝ ❝
θ2

ωi ωi+1

0 π

Figure 20: An example of the orientations θ1 and θ2 is shown above.

Lemma 7.7. Algorithms 7.2, 7.3, and 7.4 correctly find the two orientations θ1, θ2 which

minimize the length of the (θ1, θ2)-path connecting s and t.

56



Proof. (direct)

The correctness of this algorithm hinges on correctly calculating l1, l2,φ1 and φ2 for each

combination of i and j. First, all combinations of i and j are found by the two for-loops that

are run. For each value of i, we rotate the problem so that ωi+1 = π and thus we have a

set of orientations as shown in Figure 20.

First, we create the sets Xa and Xb with respect to the case where j = i − 1. Therefore

all the pairs of consecutive extreme vertices in Xc will be in the set Xa and none will be

in Xb (remember that Xb = {(u, v) ∈ Xcs.t. θ(u, v) ∈ (ωj+1,ωi)}). Then we calculate

V (Xa), V (Xb), H(Xa), and H(Xb) according to Theorem 6.6.

No pair of extreme vertices (u�, v�) ∈ Xc can change sets from Xa to Xb, since if that were

the case then at j = k − 1 ⇒ θ(u�, v�) ∈ (0,ωj) and at j = k ⇒ θ(u�, v�) ∈ (ωj+1,ωi). Thus

θ(u�, v�) ∈ (0,ωk−1) and θ(u�, v�) ∈ (ωk+1,ωi), which is not possible since ωk−1 ≤ ωk+1.

Thus we only need to concern ourselves with modifying the sums to reflect any vertices

which change extremity.

For each value of j from (i − 1) down to 1 the algorithm goes through all vertices which

change extremity at ωj and modifies the sets Xa, Xb, and Xc, then modifies the summations

V (Xa), V (Xb), H(Xa), and H(Xb) to reflect the new sets Xa and Xb. There are two for

loops which I will now prove modify the summations and sets correctly.

1. v was not extreme in (ωj ,ωj+1) but is extreme in (ωj−1,ωj)

Then v becomes non-extreme at ωj , so v ∈ V (ωj , NEX). Since v is extreme in the

interval we are now considering, we must add v to the list of extreme vertices and

therefore must add v to Xc. So we find the two vertices which come before and

after v on the path traversal from s to t, which are va and vb in the algorithm. Then

we remove (va, vb) from Xc since they are no longer consecutive extreme vertices.

Furthermore, we add (va, v) and (v, vb) to Xc since they are now consecutive extreme

vertices.

2. v was extreme in (ωj ,ωj+1) but is not extreme in (ωj−1,ωj)

Then v becomes extreme at ωj , so v ∈ V (ωj , EX). Since v is not extreme in the

interval we are now considering, we must remove v from the list of extreme vertices

and therefore must remove any pairs containing v from Xc. Once we remove (va, v)

and (v, vb) from Xc, va and vb are now consecutive extreme vertices so we must add
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(va, vb) to Xc.

The implementation of Algorithms 7.3 and 7.4 which add/remove pairs of consecutive ex-

treme vertices from Xc also ensures that the sets Xa and Xb are updated appropriately

and that the summations V (Xa), V (Xb), H(Xa), and H(Xb) reflect the changes to Xa and

Xb.

By Lemma 6.5 and Theorem 6.6, the following equations will give us the two lines we use

to find the minimum distance

l1 =
�

(V (Xa))2 + (H(Xa))2

l2 =
�
(V (Xb))2 + (H(Xb))2

φ1 = tan−1

�
V (Xa)

H(Xa)

�

φ2 = tan−1

�
V (Xb)

H(Xb)

�

Finally the boundary of the interval must be checked as well, in case there is no minimum

within the interval.

7.2 Time Complexity

The time complexity of this algorithm will be shown to be O(n2log(n) + kn2).

Lemma 7.8. For a vertex vi ∈ V the orientations φs and φt can be found in constant time

given linear preprocessing (along with the triangulation of P ).

Proof. (direct)

For any fixed point x in a polygon, Guibas et al. [6] give a linear time algorithm that finds

the shortest paths from x to all vertices of P . A modification of this algorithm can be

made to store the orientation of the final segment of the shortest path (directed towards

the vertex the shortest path ends at). Thus after preprocessing for both s and t, we can

find the orientations of the final segments in constant time, which by Lemma 5.2 are the

orientations at which s and t switch regions.

Lemma 7.9. Algorithm 7.1 runs in O(n2) time.

Proof. (direct)

Triangulation takes O(nlogn) time and the for loop iterates O(n) times. Constructing Θ
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takes constant time given linear time preprocessing (by Lemma 7.8). By Lemma 7.5 find-

ing the lists vi(s) and vi(t) takes linear time. Thus the first for loop takes O(n2) time.

Sorting Φ takes O(nlogn) time since Φ contains O(n) orientations. Constructing the first

list L1 takes O(nlogn) time since we need it sorted.

For all other intervals, each vertex that changes extremity is added or removed from Li.

Adding or removing vj to or from the list Li in takes O(logn) time since ordering is main-

tained. Since each vertex changes extremity at most twice, addition/removal is performed

O(n) times in total and thus adding/removing vertices takes O(nlogn) time in total. Dupli-

cating the list Li−1 to put into Li takes O(n) time and happens O(n) times and thus takes

O(n2) time. Therefore the second for loop takes O(n2) time.

Lemma 7.10. Algorithm 7.2 takes O(n2logn+ kn2) time.

Proof. (direct)

Finding all extreme sets takes O(n2) time by Lemma 7.9. The number of intervals is in

O(n), so the outer for-loop iterates O(n) times. The inner-most for loops are visited O(n2)

times since for each value of i, the inner for-loops are visited only if a vertex is changing

extremity with respect to the current j value. Each vertex changes extremity twice, so for

each value of i the inner for-loops will be visited O(n) times. Algorithms 7.3 and 7.4 take

O(logn) time each since they do insertions and removals from a sorted list and constant

time calculations. Thus the inner for loops take O(n2logn) time during the entire algorithm.

Recalculating l1, l2,φ1 and φ2 takes constant time using the summations. Finding the mini-

mum point (if it exists) can be reduced to finding if two functions intersect. These functions

intersect at most once (by Lemma 6.9), and the θ1-derivative of one function is always

greater than the θ1-derivative of the other (by Lemma 6.8), so before they intersect, one

function has highest value and after they intersect, the other function has highest value.

Thus a binary search of θ1 on the interval (0,π] can be performed to find where the fuctions

intersect. The binary search can be performed in O(log(10k)) = O(k) time where k is the

number of decimals the answer is accurate to. Calculating the boundary minimums can be

done in O(k) time by Lemma 7.4. Thus the j for loop takes O(kn) time.

Rotating the problem and constructing Xa, Xb and Xc all take linear time. Calculating

V (Xa), H(Xa), V (Xb) and H(Xb) can be done in linear time as well. Therefore the i loop

takes O(kn2) time.
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8 Conclusion

Previous research in the area of restricted orientation geometry has focused on allowing a

predetermined set of orientations and constructing geometric objects allowing only those

orientations. In this thesis a new area of restricted orientation geometry was investigated

in which the set of orientations is not given and instead only the number of orientations

is limited. Previous results concerning smallest - that is, shortest in both Euclidean and

link distance - paths were generalized and it was shown that for any two orientations θ1, θ2

there always exists a smallest (θ1, θ2)-path between s and t in any simple polygon P. This

unifies previous research ([4], [13], [8]) which focused on finding smallest paths given any

two rectilinear orientations. For three or more orientations, it was shown that there does

not always exists such a smallest path.

It was also proved that when allowing two orientations of travel, an s − t path can be

found which minimizes the length of the shortest path. Furthermore, an algorithm to find

such a path was given that runs in O(n2logn+n2k) time where n is the number of vertices

in P and k is the number of decimals θ1, θ2 (which produce a minimum) are accurate to. A

conjecture was given that the single ”minimum” point found is actually a saddle point and

therefore not a minimum. If the conjecture can be shown to be true, it would imply that one

of the orientations for which the shortest path is minimized must be an orientation between

two vertices in P . Thus only one of θ1 or θ2 would need to be varied at a time, resulting in

a simpler algorithm.

The problem of finding the set of orientations which minimizes the shortest path for

more than two allowable orientations was defined, and a series of m equations (where m

is the number of allowable orientations) is given which must all intersect for at any point

which is a minimum. Further research may show these equations intersect either once,

not at all, or in some predictable way that can be analyzed. Currently, any algorithm given

to find a minimum for m ≥ 3 cannot be guaranteed to run in any finite amount of time

since there is no bound on the number of minimums possible. Furthermore, a good upper

bound is needed for the number of combinations of m extreme vertex sets (with duplicates

allowed).

This thesis was a first attempt at defining minimum distance paths for a restricted num-

ber of orientations, and there are many unsolved variations of the problems looked at. More
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specifically, there are three common version of the s − t path problem [16]: the one-shot

problem where s and t are given and the task is to find a path between the two points; the

semi-query problem where only t is given and the task is to preprocess the environment

so that for any s the path between s and t can be found as fast as possible; and finally the

full-query problem where neither point is given and the task is to preprocess the environ-

ment so that finding a path between any s and t can be done as fast as possible. Only

the one-shot problem was addressed in this thesis, while the other two are left as open

problems. Further open problems include varying the distance metric used to define the

shortest path, for example finding the orientations which minimize the link-distance of the

s − t path. This problem may prove to be difficult (or even impossible) due to the fact that

link distance is a discreet value while solving the problem in the method described in this

thesis required taking derivatives over continuous functions. An entirely different approach

may be needed to solve the problem with respect to link distance.

It was shown via counterexample that there does not always exists a smallest path for

m ≥ 3, but no conditions were given upon which a smallest path does or does not exist. It

is possible that placing restrictions on the problem could result in a smallest path always

existing. For example, restricting the polygon to be an O-polygon may be a restriction

worth investigating. Similarly, a counterexample was given to show that it is not always

possible to choose a set of orientations that simultaneously minimizes both the Euclidean

and link distance of the s − t path, and putting restrictions on the problem may remove

the possibility of such a counterexample. Lastly, the algorithm developed in this thesis

has a running time that may not be optimal, so proving the optimality of this algorithm or

improving its running time are both problems of interest.
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A

Lemma A.1.

Sv =
�
S2
v + S2

hsin

�
tan−1

�
Sv

Sh

��

Sh =
�
S2
v + S2

hcos

�
tan−1

�
Sv

Sh

��

Proof. By Figure 21 we can see that

tan−1

�
Sv

Sh

�
= α sin(α) =

Sv�
S2
v + S2

h

cos(α) =
Sh�

S2
v + S2

h

⇒ sin

�
tan−1

�
Sv

Sh

��
=

Sv�
S2
v + S2

h

⇒ cos

�
tan−1

�
Sv

Sh

��
=

Sh�
S2
v + S2

h

Lemma 6.1. For edges e1 = (u, v) and e2 = (w, z) where 0 < θdir(u, v) ≤ θdir(w, z) ≤ π,

�(uv)sin(x− θ(u, v)) + �(wz)sin(x− θ(w, z)) =
�

S2
v + S2

hsin

�
x− tan−1

�
Sv

Sh

��

where

Sv = �(uv)sin(θ(u, v)) + �(wz)sin(θ(w, z))

Sh = �(uv)cos(θ(u, v)) + �(wz)cos(θ(w, z))

and tan−1
�
Sv
Sh

�
is contained in the interval [θdir(u, v), θdir(w, z)].

Proof.

�(uv)sin(x− θ(u, v)) + �(wz)sin(x− θ(w, z))

= �(uv)(sin(x)cos(θ(u, v))− sin(θ(u, v))cos(x))

+ �(wz)(sin(x)cos(θ(w, z))− sin(θ(w, z))cos(x))

= sin(x)(�(uv)cos(θ(u, v)) + �(wz)cos(θ(w, z)))
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Sh

Sv

α

Figure 21: As used in Lemma A.1.

− cos(x)(�(uv)sin(θ(u, v)) + �(wz)sin(θ(w, z)))

= sin(x)Sh − cos(x)Sv

=
�
S2
v + S2

h

�
sin(x)cos

�
tan−1

�
Sv

Sh

��
− cos(x)sin

�
tan−1

�
Sv

Sh

���
(by Lem A.1)

=
�
S2
v + S2

hsin

�
x− tan−1

�
Sv

Sh

��

Therefore the two edges can be considered vectors and the line found with length
�
S2
v + S2

h

and orientation tan−1
�
Sv
Sh

�
is the vector sum of the two edges.

Using the parallelogram law of vector addition, if e1 and e2 form two adjacent edges of a

parallelogram, then the sum vector must begin where the two edges meet and end at the

opposite corner of the parallelogram. By translating e2 = (w, z) so that w = u, e1 and e2

form two adjacent edges of a parallelogram, and the sum vector lies in that parallelogram.

Thus the resultant vector has orientation between e1 and e2, meaning between θdir(u, v)

and θdir(w, z).

Lemma 6.2.

d

dθ1

�
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)
+

l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)

�

=
l1sin(θ2 − φ1)

1− cos(θ2 − θ1)
+

−l2sin(θ2 − φ2)

1 + cos(θ2 − θ1)

Proof.

d

dθ1

�
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)
+

l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)

�
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=
d

dθ1

�
− l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ1 − θ2)
− l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ1 − θ2)

�

= − d

dθ1

�
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ1 − θ2)

�
− d

dθ1

�
l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ1 − θ2)

�

= −
�

d

dθ1
(sin(θ1 − θ2))

−1

�
∗ (l1sin(θ2 − φ1) + l2sin(θ2 − φ2))

− 1

sin(θ1 − θ2)
∗
�

d

dθ1
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

�

−
�

d

dθ1
(sin(θ1 − θ2))

−1

�
∗ (l1sin(θ1 − φ1)− l2sin(θ1 − φ2))

− 1

sin(θ1 − θ2)

�
d

dθ1
(l1sin(θ1 − φ1)− l2sin(θ1 − φ2))

�

= −
�
−1 ∗ cos(θ1 − θ2)

sin2(θ1 − θ2)

�
∗ (l1sin(θ2 − φ1) + l2sin(θ2 − φ2))

− 0

−
�
−1 ∗ cos(θ1 − θ2)

sin2(θ1 − θ2)

�
∗ (l1sin(θ1 − φ1)− l2sin(θ1 − φ2))

− 1

sin(θ1 − θ2)
(l1cos(θ1 − φ1)− l2cos(θ1 − φ2))

=
cos(θ1 − θ2)(l1sin(θ2 − φ1) + l2sin(θ2 − φ2))

sin2(θ1 − θ2)

+
cos(θ1 − θ2)(l1sin(θ1 − φ1)− l2sin(θ1 − φ2))

sin2(θ1 − θ2)

− sin(θ1 − θ2)(l1cos(θ1 − φ1)− l2cos(θ1 − φ2))

sin2(θ1 − θ2)

=
l1cos(θ1 − θ2)sin(θ1 − φ1)− l1sin(θ1 − θ2)cos(θ1 − φ1) + l1cos(θ1 − θ2)sin(θ2 − φ1)

sin2(θ1 − θ2)

+
−l2cos(θ1 − θ2)sin(θ1 − φ2) + l2sin(θ1 − θ2)cos(θ1 − φ2) + l2cos(θ1 − θ2)sin(θ2 − φ2)

sin2(θ1 − θ2)

=
l1(sin(θ1 − φ1)cos(θ1 − θ2)− sin(θ1 − θ2)cos(θ1 − φ1)) + l1cos(θ1 − θ2)sin(θ2 − φ1)

sin2(θ1 − θ2)

+
−l2(sin(θ1 − φ2)cos(θ1 − θ2)− sin(θ1 − θ2)cos(θ1 − φ2)) + l2cos(θ1 − θ2)sin(θ2 − φ2)

sin2(θ1 − θ2)

=
l1sin(θ1 − φ1 − θ1 + θ2) + l1cos(θ1 − θ2)sin(θ2 − φ1)

sin2(θ1 − θ2)

+
−l2sin(θ1 − φ2 − θ1 + θ2) + l2cos(θ1 − θ2)sin(θ2 − φ2)

sin2(θ1 − θ2)

=
l1sin(θ2 − φ1) + l1cos(θ1 − θ2)sin(θ2 − φ1)

sin2(θ1 − θ2)
+

−l2sin(θ2 − φ2) + l2cos(θ1 − θ2)sin(θ2 − φ2)

sin2(θ1 − θ2)

=
l1sin(θ2 − φ1)(1 + cos(θ2 − θ1))

sin2(θ2 − θ1)
+

−l2sin(θ2 − φ2)(1− cos(θ2 − θ1))

sin2(θ2 − θ1)

=
l1sin(θ2 − φ1)(1 + cos(θ2 − θ1))

(1 + cos(θ2 − θ1))(1− cos(θ2 − θ1))
+

−l2sin(θ2 − φ2)(1− cos(θ2 − θ1))

(1 + cos(θ2 − θ1))(1− cos(θ2 − θ1))
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=
l1sin(θ2 − φ1)

1− cos(θ2 − θ1)
+

−l2sin(θ2 − φ2)

1 + cos(θ2 − θ1)

Lemma 6.3.

d

dθ2

�
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)
+

l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)

�

=
−l1sin(θ1 − φ1)

1− cos(θ2 − θ1)
+

−l2sin(θ1 − φ2)

1 + cos(θ2 − θ1)

Proof.

d

dθ2

�
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)
+

l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)

�

=
d

dθ2

�
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)
+

l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)

�

=
d

dθ2

�
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

sin(θ2 − θ1)

�
+

d

dθ2

�
l1sin(θ1 − φ1)− l2sin(θ1 − φ2)

sin(θ2 − θ1)

�

=

�
d

dθ2
(sin(θ2 − θ1))

−1

�
∗ (l1sin(θ2 − φ1) + l2sin(θ2 − φ2))

+
1

sin(θ2 − θ1)
∗
�

d

dθ2
l1sin(θ2 − φ1) + l2sin(θ2 − φ2)

�

+

�
d

dθ2
(sin(θ2 − θ1))

−1

�
∗ (l1sin(θ1 − φ1)− l2sin(θ1 − φ2))

+
1

sin(θ2 − θ1)

�
d

dθ2
(l1sin(θ1 − φ1)− l2sin(θ1 − φ2))

�

=

�
−1 ∗ cos(θ2 − θ1)

sin2(θ2 − θ1)

�
∗ (l1sin(θ2 − φ1) + l2sin(θ2 − φ2))

+
1

sin(θ2 − θ1)
∗ (l1cos(θ2 − φ1) + l2cos(θ2 − φ2))

+

�
−1 ∗ cos(θ2 − θ1)

sin2(θ2 − θ1)

�
∗ (l1sin(θ1 − φ1)− l2sin(θ1 − φ2))

+
1

sin(θ2 − θ1)
∗ 0

=
−cos(θ2 − θ1)(l1sin(θ2 − φ1) + l2sin(θ2 − φ2))

sin2(θ2 − θ1)

+
sin(θ2 − θ1)(l1cos(θ2 − φ1) + l2cos(θ2 − φ2))

sin2(θ2 − θ1)

− cos(θ2 − θ1)(l1sin(θ1 − φ1)− l2sin(θ1 − φ2))

sin2(θ2 − θ1)

=
−l1cos(θ2 − θ1)sin(θ2 − φ1) + l1sin(θ2 − θ1)cos(θ2 − φ1)− l1cos(θ2 − θ1)sin(θ1 − φ1)

sin2(θ2 − θ1)
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+
−l2cos(θ2 − θ1)sin(θ2 − φ2) + l2sin(θ2 − θ1)cos(θ2 − φ2) + l2cos(θ2 − θ1)sin(θ1 − φ2)

sin2(θ2 − θ1)

=
−l1(sin(θ2 − φ1)cos(θ2 − θ1)− sin(θ2 − θ1)cos(θ2 − φ1))− l1cos(θ2 − θ1)sin(θ1 − φ1)

sin2(θ2 − θ1)

+
−l2(sin(θ2 − φ2)cos(θ2 − θ1)− sin(θ2 − θ1)cos(θ2 − φ2)) + l2cos(θ2 − θ1)sin(θ1 − φ2)

sin2(θ2 − θ1)

=
−l1sin(θ2 − φ1 − θ2 + θ1)− l1cos(θ2 − θ1)sin(θ1 − φ1)

sin2(θ2 − θ1)

+
−l2sin(θ2 − φ2 − θ2 + θ1) + l2cos(θ2 − θ1)sin(θ1 − φ2)

sin2(θ2 − θ1)

=
−l1sin(θ1 − φ1)− l1cos(θ2 − θ1)sin(θ1 − φ1)

sin2(θ2 − θ1)

+
−l2sin(θ1 − φ2) + l2cos(θ2 − θ1)sin(θ1 − φ2)

sin2(θ2 − θ1)

=
−l1sin(θ1 − φ1)(1 + cos(θ2 − θ1))

sin2(θ2 − θ1)
+

−l2sin(θ1 − φ2)(1− cos(θ2 − θ1))

sin2(θ2 − θ1)

=
−l1sin(θ1 − φ1)(1 + cos(θ2 − θ1))

(1 + cos(θ2 − θ1))(1− cos(θ2 − θ1))
+

−l2sin(θ1 − φ2)(1− cos(θ2 − θ1))

(1 + cos(θ2 − θ1))(1− cos(θ2 − θ1))

=
−l1sin(θ1 − φ1)

1− cos(θ2 − θ1)
+

−l2sin(θ1 − φ2)

1 + cos(θ2 − θ1)

Lemma 6.4.

d

dϕ

�
l1sin(ϕ− φ1)± l2sin(ϕ− φ2)

l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2)

�
=

±2l1l2sin(φ2 − φ1)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

Proof.

d

dϕ

�
l1sin(ϕ− φ1)± l2sin(ϕ− φ2)

l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2)

�

=
l1cos(ϕ− φ1)± l2cos(ϕ− φ2)

l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2)

+ (−1) ∗ (l1sin(ϕ− φ1)± l2sin(ϕ− φ2))(l1cos(ϕ− φ1)∓ l2cos(ϕ− φ2))

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

=
(l1cos(ϕ− φ1)± l2cos(ϕ− φ2))(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

− (l1sin(ϕ− φ1)± l2sin(ϕ− φ2))(l1cos(ϕ− φ1)∓ l2cos(ϕ− φ2))

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

=
l2sin(ϕ− φ1)cos(ϕ− φ1)∓ l1l2sin(ϕ− φ2)cos(ϕ− φ1)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

+
±l1l2sin(ϕ− φ1)cos(ϕ− φ2)− l22sin(ϕ− φ2)cos(ϕ− φ2)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2
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− l2sin(ϕ− φ1)cos(ϕ− φ1)∓ l1l2sin(ϕ− φ1)cos(ϕ− φ2)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

− ±l1l2sin(ϕ− φ2)cos(ϕ− φ1)− l22sin(ϕ− φ2)cos(ϕ− φ2)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

=
∓l1l2sin(ϕ− φ2)cos(ϕ− φ1)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2
+

±l1l2sin(ϕ− φ1)cos(ϕ− φ2)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

− ∓l1l2sin(ϕ− φ1)cos(ϕ− φ2)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2
− ±l1l2sin(ϕ− φ2)cos(ϕ− φ1)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

=
∓2l1l2sin(ϕ− φ2)cos(ϕ− φ1)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2
+

±2l1l2sin(ϕ− φ1)cos(ϕ− φ2)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

=
∓2l1l2(sin(ϕ− φ2)cos(ϕ− φ1)− sin(ϕ− φ1)cos(ϕ− φ2))

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

=
∓2l1l2sin(φ1 − φ2)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2

=
±2l1l2sin(φ2 − φ1)

(l1sin(ϕ− φ1)∓ l2sin(ϕ− φ2))2
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