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Abstract

Detecting malicious URLs is an essential task in network security intelligence. In this

thesis, we make two new contributions beyond the state-of-the-art methods on malicious

URL detection. First, instead of using any pre-defined features or fixed delimiters for

feature selection, we propose to dynamically extract lexical patterns from URLs. Our novel

model of URL patterns provides new flexibility and capability on capturing malicious URLs

algorithmically generated by malicious programs. Second, we develop a new method to

mine our novel URL patterns, which are not assembled using any pre-defined items and

thus cannot be mined using any existing frequent pattern mining methods. Our extensive

empirical study using the real data sets from Fortinet, a leader in the network security

industry, clearly shows the effectiveness and efficiency of our approach. The data sets are

at least two orders of magnitudes larger than those reported in literature.
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“Knowledge talks, wisdom listens.”
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Chapter 1

Introduction

A web threat refers to any threat that uses the internet to facilitate cybercrime [15]. In

practice, web threats may use multiple types of malware and fraud. A common feature is

that web threats all use HTTP or HTTPS protocols, though some threats may additionally

use other protocols and components, such as links in emails or IMs, or malware attachments.

Through web threats, cyber-criminals often steal private information or hijack computers as

bots in botnets. It has been well realized that web threats lead to huge risks, including finan-

cial damages, identity thefts, losses of confidential information and data, thefts of network

resources, damaged brand and personal reputation, and erosion of consumer confidence in

e-commerce and online banking. For example, Gartner [2] estimated that phishing attacks

alone caused 3.6 million adults losing 3.2 billion US dollars in the period from September

2006 to August 2007, and the global cost of spam in 2007 was about 100 billion US dollars.

The cost of spam management in the U.S. alone was estimated 71 billion dollars in 2007 [4].

In Web 2.0 applications, users are even more vulnerable to web threats due to the increasing

online interactivity.

1.1 Malicious URL Detection

Although the exact adversary mechanisms behind web criminal activities may vary, they

all try to lure users to visit malicious websites by clicking a corresponding URL (Uniform

Resource Locator). A URL is called malicious (also known as black) if it is created in a

malicious purpose and leads a user to a specific threat that may become an attack, such as

spyware, malware, and phishing. Malicious URLs are a major risk on the web. Therefore,

1
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detecting malicious URLs is an essential task in network security intelligence.

In practice, malicious URL detection faces several challenges.

• Realtime detection. To protect users effectively, a user should be warned before she/he

visits a malicious URL. The malicious URL detection time should be very short so

that users would not have to wait for long and suffer from poor user experience.

• Detection of new URLs. To avoid being detected, attackers often create new malicious

URLs frequently. Therefore, an effective malicious URL detection method has to be

able to detect new, unseen malicious URLs. In practice, the capability of detecting

new, unseen malicious URLs is of particular importance, since emerging malicious

URLs often have high hit counts, and may cause serious harms to users.

• Effective detection. The detection should have a high accuracy. When the accuracy is

of concern, the visit frequency of URLs should also be considered. From a user’s point

of view, the accuracy of a detection method is the number of times that the detection

method classifies a URL correctly versus the number of times that the method is

consulted. Please note that a URL may be sent to a detection method multiple times,

and should be counted multiple times in the accuracy calculation. Therefore, detecting

frequently visited URLs correctly is important.

Similarly, it is highly desirable that a malicious URL detection method should have

a high recall so that many malicious URLs can be detected. Again, when recall is

calculated in this context, the visit frequency of URLs should be considered.

To meet the above challenges, the latest malicious URL detection methods try to build

a classifier based on URLs. A foundamental assumption is that a clean training sample

of malicious URL and good URL samples is available. Such methods segment a URL into

tokens using some delimiters, such as “/” and “?”, and use such tokens as features. Some

methods also extract additional features, such as WHOIS data and geographic properties

of URLs. Then, machine learning methods are applied to train a classification model from

the URL sample.
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1.2 Bussiness Backgroud

Most network security enterprises do malicious URL detection by rating engines which are

powered by various techniques, such as manual labeling, user feedback, and web content

analysis. Although these rating engines can capture a large portion of the malicious URLs

on the web, some malicious URLs, especially the new ones, are still not detected and can be

harmful to the users. Method to further increase the detection coverage is highly desirable

for enterprises. In this thesis, we introduce an approach to promote the detection coverage

of rating engines by mining patterns from the URL log data.

1.3 Lexical Features of URLs

Besides URLs, people also do classification using lexical features in some other areas, such

as text mining and pattern mining in bioinformatics. The lexical features of URLs are

different from those features in other areas. In bioinformatics, lexical features are composed

of a small number of elements and they can be very long, while the features of URLs are

much shorter. In addition, lexical features in URLs are more likely to be some meaningful

tokens which are real words or similar to some real words. On the other hand, comparing

to the features in text mining, there are no clear separators, such as space or punctuations,

between features in URLs.

Due to those differences, it may not be effective to directly use the lexical feature ex-

traction methods from other areas on URLs. For example, Sittichai et al. [5] conducted

biological entity classification using n-grams as lexical features. These fixed n-grams, how-

ever, may not be able to extract the flexible meaningful tokens in URLs effectively.

1.4 Contributions

In this thesis, we make two new contributions beyond the state-of-the-art methods on mali-

cious URL detection. First, instead of using any pre-defined features or fixed delimiters for

feature selection, we propose to dynamically extract lexical patterns from URLs. Our novel

model of URL patterns provides new flexibility and capability on capturing malicious URLs

algorithmically generated by malicious programs. For example, our method can extract

patterns like “*07db0*/get2.php” where ∗ is a wildcard symbol. Second, we develop a new

method to mine our novel URL patterns, which are not assembled using any pre-defined
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items and thus cannot be mined using any existing frequent pattern mining methods. Our

extensive empirical study using the real data sets from Fortinet, a leader in the network

security industry, clearly shows the effectiveness and efficiency of our approach. The data

sets are at least two orders of magnitudes larger than those reported in literature.

1.5 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we review the state-of-the-art

methods and point out how our method is different from them. We discuss our lexical feature

extraction method in Chapter 3, and devise our pattern mining method in Chapter 4. We

report our empirical study results in Chapter 5, and conclude the thesis in Chapter 6.



Chapter 2

Related Work

The existing work on malicious URL detection can be divided into three categories, namely

the blacklist based methods, the content based methods, and the URL based methods.

The blacklist based methods maintain a blacklist of malicious URLs. During detec-

tion, a URL is reported as malicious if it is in the blacklist. Most of the current com-

mercial malicious URL detection systems, such as Google Safebrowsing (http://www.

google.com/tools/firefox/safebrowsing/index.html), McAfee SiteAdvisor (http://

www.siteadvisor.com), Websense ThreatSeeker Network (http://www.websense.com/

content/threatseeker.asp), and Fortinet URL lookup tool (http://www.fortiguard.

com/ip_rep.php), use some blacklist based methods. In such detection methods, the black-

lists may be created and maintained through various techniques, such as manual labeling,

honeyports, user feedbacks and crawlers. The blacklist based methods are simple and have

a high accuracy. At the same time, they are incapable of detecting new, unseen malicious

URLs, which often cause big harms to users.

The content based methods analyze the content of the corresponding web page of a

URL to detect whether the URL is malicious. Web page content provides rich features for

detection. For example, Provos et al. [13] detected malicious URLs using features from the

content of the corresponding URLs, such as the presence of certain javascript and whether

iFrames are out of place. Moshchuk et al. [11] used anti-spyware tools to analyze downloaded

trojan executables in order to detect malicious URLs. The content based methods are

useful for offline detection and analysis, but are not capable of online detection. For online

detection, the content based methods often incur significant latency, because scanning and

analyzing page content often costs much computation time and resource.

5
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Most recently, the URL based methods use only the URL structures in detection, even

without using any external information, such as WHOIS, blacklists or content analysis.

McGrath and Gupta [10] analyzed the differences between normal URLs and phishing URLs

in some features, such as the URL length, domain name length, number of dots in URLs.

Such features can be used to construct a classifier for phishing URL detection. Yadav et

al. [16] examined more features, such as the differences in bi-gram distribution of domain

names between normal URLs and malicious ones. Their study confirmed that normal URLs

and malicious ones indeed have distinguishable differences in the features extracted from

URLs themselves alone. Their study, however, did not propose any classifier for malicious

outlier detection. Ma et al. [8] applied machine learning methods to construct classifiers

for malicious URL detection. They used two kinds of features. The host-based features

are related to the host information such as IP addresses, WHOIS data, and the geographic

properties of the URLs. Those features are highly valuable for classification, but they may

cause non-trivial latency in detection. To this extent, their method is not completely URL

based. The second group of features they used is the lexical features, which include numerical

information, such as lengths of features, number of delimiters, and existence of tokens in

the hostname and in the path of the URL. Le et al. [7] showed that using only the lexical

features still can retain most of the performance in phishing URL detection.

Our method proposed in this thesis is URL based, and uses only the lexical features.

Our method differs from [8, 7] on two aspects: how to select the lexical features and how to

use the features in malicious URL detection.

In the previous studies [8, 7], the lexical features are the tokens in the URL strings

delimited by characters “/”, “?”, “.”, “=”, “-”, and “ ”. Tokens extracted using those

delimiters may not be effective. For example, the previous method may not be able to

identify pattern “*biz*main.php” from malicious URL segments “mybiz12832main1.php”

and “godbiz32421main2.php”. To tackle the problem, we develop a method to extract

lexical features automatically and dynamically. Our method is more general than the exist-

ing methods in lexical feature extraction, and can use more flexible and informative lexical

features.

The previous studies [8, 7] treated lexical features as binary ones, and simply applied

machine learning methods on those features to construct classifiers. They cannot be scalable

on large training data sets due to the large number of features. The training samples used in

those studies are at the scale of tens of thousands URLs. To tackle the scalability problem,
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we propose a pattern mining approach. Please note that the traditional frequent pattern

mining methods [3] do not work well here, since the items, which are lexical features, cannot

be predefined. We devise a method to combine pattern mining and lexical feature mining

that can scale up to large training data sets. We report our experimental results on real

data sets with more than one million URLs, which are two orders of magnitudes larger than

those reported in literature.



Chapter 3

Extracting Lexical Features

A URL can be regarded as a sequence of URL segments, where a URL segment is a

domain name, a directory name, or a file name. As discussed in Chapter 2, the previous

studies [8, 7] often treat a segment as a token in mining patterns and extracting features for

malicious URL detection. Simply treating each URL segment as a token, however, may limit

the detection of malicious URLs. For example, suppose we have malicious URLs containing

segments “mybiz12832main1.php” and “lucybiz32421main2.php”. If we treat a segment

in whole as a token, we cannot extract the meaningful common substrings “biz” and “main”

in those two segments.

In this chapter, we discuss how to extract the common substrings as lexical features in

URLs that may be generated by the same malicious program. Such patterns will be the

building blocks later for malicious URL detection. We start from URL segments, and then

extend to segment sequences and URLs.

3.1 URL Segment Patterns

A URL segment is a string of predefined characters, as specified in the URL specification

(http://www.w3.org/Addressing/URL/url-spec.txt). We define a URL segment pattern

as follows.

Definition 1 (Segment pattern). A URL segment pattern (or a segment pattern for

short) is a string s = c1 · · · cl, where ci (1 ≤ i ≤ l) is a normal character defined by the URL

specification, or ci = ∗ where ∗ is a wildcard meta-symbol. Denote by |s| = l the length of

8
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the segment pattern, and by s[i] = ci the i-th character in the segment pattern. We constrain

that for any i (1 ≤ i < l), if ci = ∗, then ci+1 6= ∗.
For two URL segment patterns s = c1 · · · cl and s′ = c′1 · · · c′m, s is said to cover s′,

denoted by s w s′, if there is a function f : [1,m]→ [1, l] such that

1. f(j) ≤ f(j + 1) for (1 ≤ j < m); and

2. for any i (1 ≤ i ≤ l), if ci 6= ∗, then there exists a unique j (1 ≤ j ≤ m) such that

f(j) = i, and c′j = ci.

Trivially, a URL segment itself is a segment pattern that contains no “*” symbols.

Example 1 (URL segment pattern). “*biz*main*. php ” is a segment pattern. It cov-

ers URL segment “godbiz32421main2. php ”. Segment pattern “abc*xyz ” does not cover

“xyzabc ”, and “abc*abc ” does not cover “abc ”.

The cover relation on all possible segment patterns form a partial order.

Property 1. Let S be the set of all possible segment patterns. w is a partial order on S.

Proof. (Reflexivity) s w s holds for any segment pattern s by setting f(i) = i for 1 ≤ i ≤ |s|.
(Antisymmetry) Consider two segment patterns s = c1 · · · cl and s′ = c′1 · · · c′m. Suppose

s w s′ under function f : [1,m] → [1, l] and s′ w s under function f ′ : [1, l] → [1,m]. We

show ci = c′i where 1 ≤ i ≤ m by induction.

(The basis step) If c1 6= ∗, then there exists a unique j1 (1 ≤ j1 ≤ m) such that f(j1) = 1

and c′j1 = c1. If j1 > 1, then f(j1 − 1) < f(j1) = 1, a contradiction to the assumption that

f : [1,m]→ [1, l]. Thus, c1 = c′1.

If c1 = ∗, we assume c′1 6= ∗. Then, there exists a unique i1 (1 ≤ i1 ≤ l) such that

f ′(i1) = 1 and ci1 = c′1. Since c1 = ∗ 6= c′1, i1 > 1. This leads to f ′(i1 − 1) < f(i1) = 1, and

a contradiction to the assumption that f ′ : [1, l]→ [1 : m]. Thus, c′1 = ∗ = c1.

(The inductive step) Assume that ci = c′i for 1 ≤ i ≤ k (1 ≤ k < m). We consider two

cases. First, if ck 6= ∗ and thus c′k 6= ∗, then, using an argument similar to that in the basis

step, we can show c′k+1 = ck+1. Second, if ck = c′k = ∗, then ck+1 6= ∗ and c′k+1 6= ∗. There

exists a unique jk+1 (k + 1 ≤ jk+1 ≤ m such that f(jk+1) = k + 1 and c′jk+1
= ck+1. If

jk+1 > k + 1, then f(jk+1 − 1) < f(jk+1) = k + 1. This leads to a contradiction to the

assumption that ci = c′i for 1 ≤ i ≤ k and ck 6= ∗. Thus, jk+1 = k + 1, and ck+1 = c′k+1.
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(Transitivity) Consider three URL segment patterns s = c1 · · · cl, s′ = c′1 · · · c′m, and

s′′ = c′′1 · · · c′′n. Suppose s w s′ under function f : [1,m] → [1, l] and s′ w s′′ under function

f ′ : [1, n] → [1,m]. We can construct a function g : [1, n] → [1, l] by g = f ◦ f ′. For any

1 ≤ i < n, since f ′(i) ≤ f ′(i+ 1), f(f ′(i)) ≤ f(f ′(i+ 1)), that is, g(i) ≤ g(i+ 1). Moreover,

for any j (1 ≤ j ≤ l), if cj 6= ∗, then there exists a unique k (1 ≤ k ≤ m) such that c′k = cj

and f(k) = j. Since c′k 6= ∗, there exists a unique i (1 ≤ i ≤ n) such that c′′i = c′k = cj and

f ′(i) = k. Thus, f(f ′(i)) = f(k) = j. Under function g, s w s′′.

Definition 2 (Maximal segment patterns). Given a set of URL segments or URL segment

patterns S = {s1, . . . , sn}, a URL segment pattern s covers S, denoted by s w S, if for each

si ∈ S, s w si.

Segment pattern s is called a maximal segment pattern with respect to S if s w S

and there exist no other segment pattern s′ w S such that s w s′ and s 6= s′. Denote by

MAX(S) = {s|s is a maximal segment pattern with respect to S} the set of maximal seg-

ment patterns.

Example 2 (Maximal segment patterns). Consider S = {abcabc , abcaabc }. Segment

pattern “abc*abc ” is maximal with respect to S. Although ab*abc w S, it is not a maximal

segment pattern, since ab*abc w abc*abc and ab*abc 6= abc*abc .

Interestingly, given a set of segments, there may exist more than one maximal segment

patterns. For example, “abca*bc ” is another maximal segment pattern with respect to S.

MAX(S) = {abc*abc , abca*bc }.

3.2 Finding Maximal Segment Patterns

Given a set S of segments extracted from a set of malicious URLs, how can we compute

MAX(S)? If S contains only two segments, the problem is similar to the longest common

subsequence (LCS) problem and the longest common substring problem [9, 1]. Following

from the known results on those problems, we can use dynamic programming to compute

the maximal segment patterns.

Let D be a set of segment patterns, we define a function Ω(D) = {s|s ∈ D,@s′ ∈ D, s w
s′, s 6= s′}, which selects the maximal segment patterns from a set. Moreover, for a segment

s = c1 · · · cl, we write the prefix s[1, i] = c1 · · · ci for 1 ≤ i ≤ l. Trivially, when i > l,

s[1, i] = s.
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We also write s�c a sequence where a character c is appended to the end of s. Specifically,

if a * is appended to a sequence ended by a *, only one * is kept at the end of the sequence.

For example, abc � * = abc* and abc* � * = abc*. Moreover, for a set of segment patterns

D, we write D � c = {s � c|s ∈ D}.
Given two URL segments s and s′, denote by MAXs,s′(i, j) the set of maximal segment

patterns in the set {s[1, i], s′[1, j]}. Apparently, MAXs,s′(|s|, |s′|) = MAX({s, s′}). We can

compute the function using dynamic programming by

MAXs,s′(i, j) =


∅ if i = 0 or j = 0

Ω({MAXs,s′(i− 1, j − 1) � s[i],
MAXs,s′(i− 1, j) � ∗,MAXs,s′(i, j − 1) � ∗}) if s[i] = s′[j]

Ω({MAXs,s′(i− 1, j),MAXs,s′(i, j − 1)}) � ∗ if si 6= s′j

Consider two segment patterns s and s′. Without loss of generality, assume |s| ≥ |s′|. At

each step of computing MAXs,s′(i, j), function Ω is called once, which takes time O(|D|2(i+
j)), where D is the set of segment patterns where the maximal segment patterns are derived.

Since D is often small, at most 2 in our experiments, we treat |D| as a constant. Thus, the

complexity of the dynamic programming algorithm is
∑

1≤i≤|s|,1≤j≤|s′|(i + j) = O(|s|2|s′|).
To compute the maximal segment patterns on a set of URL segments, we have the

following result.

Theorem 1. Let S = {s1, . . . , sn} (n > 2) be a set of URL segments.

MAX(S) = Ω(
⋃

s∈MAX(S−{sn})

MAX({sn, s}))

Proof. Consider a segment pattern s′ ∈ MAX(S). Apparently, s′ w sn and s′ w S − {sn}.
Thus, there exists at least one segment pattern s′′ ∈ Ω(

⋃
s∈MAX(S−{sn})MAX({sn, s}) such

that s′ w s′′. For each segment pattern s′′ ∈ Ω(
⋃

s∈MAX(S−{sn})MAX({sn, s}), s′′ w S.

If s′ 6= s′′, then s′ is not a maximal segment pattern. This contradicts to the assumption

s′ ∈ MAX(S). Therefore, MAX(S) ⊆ Ω(
⋃

s∈MAX(S−{sn})MAX({sn, s}). Moreover, due

to the Ω function, MAX(S) = Ω(
⋃

s∈MAX(S−{sn})MAX({sn, s}).

To avoid some segment patterns that are too general to be useful in malicious URL

detection, such as “*a*”, we constrain that the non-* substrings in a segment pattern must

have at least 3 characters of numbers or letters.
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3.3 URL Segment Sequential Patterns

We can treat a URL as a sequence of URL segments.

Definition 3 (URL segment sequential pattern). A URL segment sequential pattern

(or sequential pattern for short) u = 〈s1, . . . , sl〉 is a sequence of URL segment patterns.

|u| = l is the length of the sequential pattern.

For two sequential patterns u = 〈s1, . . . , sl〉 and u′ = 〈s′1, . . . , s′m〉, u is said to cover u′,

denoted by u w u′, if m ≥ l and there is a function f : [1, l] → [1,m] such that si w s′f(i)

(1 ≤ i ≤ l), and f(j) < f(j + 1) (1 ≤ j < l).

Please note that, to keep our discussion simple, we do not have a wildcard meta-symbol

at the sequential pattern level. When u covers u′, the segment patterns in u cover the

segment patterns in a subsequence of u′ one by one.

Example 3 (URL segment sequential pattern). 〈20207db*. deanard. * , file4 , get*.

php 〉 is a segment sequential pattern. It covers 〈20207db09. deanard. com , dir , file4 ,

get2. php 〉. Sequential pattern 〈20207db* , *deanard* 〉 does not cover 〈20207db09.
deanard. com 〉.

Similar to segment patterns, the cover relation on all possible sequential patterns form

a partial order.

Property 2. Let U be the set of all possible URL segment sequential patterns. w is a partial

order on U .

Proof. (Reflexivity) u w u holds for any sequential pattern u by setting f(i) = i for 1 ≤ i ≤
|u|.

(Antisymmetry) Consider two sequential patterns u = 〈s1, . . . , sl〉 and u′ = 〈s′1, . . . , s′m〉.
Suppose u w u′ under function f : [1, l] → [1,m] and u′ w u under function f ′ : [1,m] →
[1, l]. Apparantly, |u| = |u′|, otherwise the longer sequential pattern cannot cover the shorter

sequential pattern. Since f(i) < f(i + 1) and |u| = |u′|, for any 1 ≤ i ≤ l, f(i) = i, si w s′i.

In the same way, for any 1 ≤ i ≤ m, s′i w si. By the antisymmetry in property 1, si = s′i.

(Transitivity) Consider three sequential patterns u = 〈s1 . . . sl〉, u′ = 〈s′1 . . . s′m〉, and

u′′ = 〈s′′1 . . . s′′n〉. Suppose u w u′ under function f : [1, l] → [1,m] and u′ w u′′ under

function f ′ : [1,m] → [1, n]. We can construct a function g : [1, l] → [1, n] by g = f ◦ f ′.
For any 1 ≤ i < l, since f(i) < f(i + 1), f ′(f(i)) < f ′(f(i + 1)), that is, g(i) < g(i + 1).
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Moreover, for any 1 ≤ i ≤ l, si w s′f(i), and for any 1 ≤ f(i) ≤ m, s′f(i) w s′′f ′(f(i)), by the

transitivity in property 1, si w s′′f ′(f(i)). Under function g, u w u′′.

We can also define maximal sequential patterns.

Definition 4 (Maximal URL segment sequential pattern). Given a set of URL segment

sequential patterns U = {u1, . . . , un}, a URL segment sequential pattern u is said to cover

U , denoted by u w U , if for each ui ∈ U , u w ui.

A URL segment sequential pattern u is called a maximal URL segment sequential

pattern (or maximal sequential pattern for short) with respect to U if u w U and there

exists no other sequential pattern u′ w U such that u w u′ and u 6= u′.

Example 4 (Maximal sequential patterns). Consider U = {〈abcabc,index 〉, 〈abcaabc,
index 〉}. Sequential pattern 〈abc*abc,index 〉 is maximal with respect to U . Although

〈ab*abc,index 〉 w U , it is not maximal, since 〈ab*abc,index 〉 w 〈abc*abc,index 〉.
Given a set of sequential patterns, there may exist more than one maximal sequential

patterns. For example, 〈abca*bc,index 〉 is another maximal sequential pattern with respect

to U .

Similar to mining maximal segment patterns, we can use dynamic programming to

compute maximal sequential patterns. We denote by seqMAX(U) the set of maximal

sequential patterns with respect to a set of sequential patterns U .

Let E be a set of sequential patterns, we define a function Ω(E) = {u|u ∈ E,@u′ ∈
E, u w u′, u 6= u′}, which selects the maximal sequential patterns from a set. Moreover, for

a sequential pattern u = 〈s1, . . . , sl〉, we write the prefix u[1, i] = 〈s1 · · · si〉 for 1 ≤ i ≤ l.

Trivially, when i > l, u[1, i] = u. We also write u[i] = si and u′[i] = s′i.

Given two URL sequential patterns u and u′, denote by seqMAXu,u′(i, j) the set of

maximal sequential patterns in the set {u[1, i], u′[1, j]}. Apparently, seqMAXu,u′(|u|, |u′|) =

seqMAX({u, u′}). We can compute the function by

seqMAXu,u′(i, j) =


∅ if i = 0 or j = 0⋃
s∈MAX(u[i],u′[j])

(seqMAXu,u′(i− 1, j − 1), s) if MAX(u[i], u′[j]) 6= ∅

Ω({seqMAXu,u′(i− 1, j), seqMAXu,u′(i, j − 1)}) if MAX(u[i], u′[j]) = ∅

To compute the maximal sequential pattern on a set of segment sequences, we have the

following result.
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Theorem 2. Let U = {u1, . . . , un} (n > 2) be a set of sequential patterns. Then,

seqMAX(U) = seqMAX(seqMAX(U − {un}) ∪ {un}).

Proof. Consider a sequential pattern u′ ∈ seqMAX(U). Apparently, u′ w un and u′ w
U − {un}. Thus, there exists at least one sequential pattern u′′ ∈ seqMAX(seqMAX(U −
{un}) ∪ {un}) such that u′ w u′′. For each segment pattern u′′ ∈ seqMAX(seqMAX(U −
{un}) ∪ {un}), u′′ w U . If u′ 6= u′′, then u′ is not a maximal sequential pattern.

This contradicts to the assumption u′ ∈ seqMAX(U). Therefore, seqMAX(U) ⊆
seqMAX(seqMAX(U − {un}) ∪ {un}). Moreover, due to the seqMAX function,

seqMAX(U) = seqMAX(seqMAX(U − {un}) ∪ {un}).

3.4 URL Patterns

Although we can treat a URL as a sequence of URL segment patterns, due to the big

differences among the roles of domain name, directories, and file name in a URL, we clearly

distinguish those three parts in our definition of URL patterns.

Definition 5 (URL pattern). A URL pattern is a tuple p = (h, d, f), where h is a URL

segment pattern corresponding to the domain name, d = 〈s1, . . . , sn〉 is a URL sequential

pattern corresponding to the directory path, and f is a URL segment pattern represent the

file name.

For two URL pattern p = (h, d, f) and p′ = (h′, d′, f ′), p is said to cover p′, denoted by

p w p′, if h covers h′, f covers f ′, and d covers d′.

Definition 6 (Maximal URL pattern). Given a set of URL patterns P = {p1, . . . , pn}, a

URL pattern p covers P , denoted by p w P , if for each pi ∈ P , p w pi.

A URL pattern p is called a maximal URL pattern with respect to P if p w P and

there exists a URL pattern p′ w P such that p w p′ and p 6= p′. We denote by urlMAX(P )

the set of maximal URL patterns with respect to P .

Based on all the previous discussion and Theorems 1 and 2, we have the following result

immediately.

Theorem 3. Let P = {p1, . . . , pn} (n > 1) be a set of URL patterns. urlMAX({p1, p2}) =

{(h, d, f)|h ∈ MAX(h1, h2), d ∈ seqMAX(d1, d2), f ∈ MAX(f1, f2)}. When n > 2,

urlMAX(P ) = urlMAX(urlMAX(P − {pn}) ∪ pn).



Chapter 4

Mining Patterns

In Chapter 3, we discuss how to extract patterns as features from a set of URLs generated

by a common malicious mechanism. Given a set of malicious URLs that are generated by

different mechanisms, how can we extract meaningful patterns for detection? One funda-

mental challenge is that URL patterns are generated from URLs, and cannot be assembled

using any pre-defined elements, such as a given set of items in the conventional frequent

pattern mining model. Thus, all existing frequent pattern mining methods cannot be used.

In this chapter, we develop new methods to mine URL patterns. We start with a baseline

method that finds all URL patterns. Then, we present a heuristic method that finds some

patterns that are practically effective and efficient.

4.1 The Complete Pattern Set Algorithm (CA)

As discussed, a URL pattern can be generated by a set of URLs. Given a set of URLs,

the complete set of URL patterns are the maximal URL patterns from different subsets of

the URLs. To search the complete set of URL patterns systematically, we can conduct a

bottom-up search, as illustrated in Figure 4.1. We first compute the maximal URL patterns

on every pair of malicious URLs, and add the generated valid URL patterns into a result

pattern set. Then, we further compute the maximal patterns on the resulting URL patterns,

and repeat this process until we can not generate new URL patterns. The pseudocode is

shown in Algorithm 1, and the algorithm is called the complete pattern set algorithm

(CA).

Depending on different situations, the definition of “valid patterns” may be different. In

15
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URL Patterns
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Figure 4.1: Bottom-up search of URL patterns

our system, the patterns contain only “*” (empty) or only a full domain name are invalid,

because the former are too general, and the latter appear only in one malicious domain, and

are ineffective in detecting unseen URLs. Some other heuristics can also be applied. For

example, pattern contains only a file type like “.jpg” should be removed.

We formally justify the correctness of the algorithm.

Theorem 4. Algorithm 1 outputs the complete set of maximal URL patterns.

Proof. Apparently, every pattern output by Algorithm 1 is a maximal pattern on some

subsets of P . Let p be a valid maximal URL pattern generated from a subset P ′ ⊆ P . We

only need to show that Algorithm 1 outputs p. Since p is valid, every patterns p′ such that

p w p′ must also be valid.

We show that a valid pattern generated from a subset of l URLs will be included into

A in the algorithm no later than the (l − 1)-th iteration by mathematical induction.

(The basis step) The first iteration generates all valid patterns on every pair of URLs.

(The inductive step) Assume that all valid patterns generated by subsets of k URLs are

included into P in the algorithm in no later than the (k − 1)-th iteration. Consider a valid

pattern p that is generated by a subset of (k+ 1) URLs P ′ = {r1, . . . , rk, rk+1}. Clearly, the

patterns p1 generated from {r1, . . . , rk} and p2 generated from {r2, . . . , rk+1} are generated

in the same iteration. If pattern p has not been generated using p1 and p2 in a previous

iteration, it is generated in the k-th iteration.

The complexity of the CA algorithm is exponential to the number of input malicious
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Algorithm 1 Complete Pattern Set Algorithm (CA)

P ← malicous URLs set; . P is the training URL pattern set
A← ∅; . A is the result URL pattern set
repeat

R← ∅; . R is a intermediate URL pattern set
for all pattern p ∈ P do

for all pattern p′ ∈ P − {p} do
pattern set Q← urlMAX({p, p′});
for all pattern q ∈ Q do

if q is valid and q /∈ A then
R← R ∪ {q}, A← A ∪ {q};

end if
end for

end for
end for
P ← R;

until R = ∅;
return A;

URLs.

4.2 Quality of URL Patterns

Many URL patterns are generated from a large training data set of malicious URLs. Thus,

we need a method to assess the quality of the URL patterns and select the effective ones.

Based on the assumption that an effective pattern in malicious URL detection should appear

frequently in different malicious domains and be infrequent in the white websites, we use two

criteria: the malicious frequency and white frequency to estimate the quality of it. Please

note that our white data set still may contain malicious URLs.

For a URL pattern p, the malicious frequency of p is the number of unique domains

it covers in the malicious training data, and the white frequency of p is the number of

unique domains it covers in the white data set. Later we will use Sc(p) to present the quality

score of a URL pattern p. In this thesis, we use malicious probability ratio as quality score.

Definition 7 (Malicious probability ratio). For a pattern p, the malicious probability of

p is p’s malicious frequency
nb

, where nb is the number of unique malicious domains in the malicious

data set. The white probability of p is p’s white frequency
nw

, where nw is the number of unique
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white domains in the white data set. If p’s white frequency is 0, we assign the probability of

it a small number. In this thesis, we use 0.1/nw.

The malicious probability ratio of p is p’s malicious probability
p’s white probability .

4.3 The Greedy Selection Algorithm (GA)

In real applications, the size of training data (malicious URLs) can be huge. The CA

algorithm can be very costly. In the CA algorithm, we compare every malicious URL with

all other URLs to extract all patterns. Consequently, one URL may be covered by many

URL patterns. Although those patterns are different, they may heavily overlap with each

other. In other words, there may be many redundant features in the result URL pattern

set.

In our real data sets, the major features of a URL can be captured well after a small

number of patterns are extracted. Moreover, one malicious URL generation mechanism

is often represented by a non-trivial number of URLs in the training data set. Thus, we

develop a greedy algorithm. At each stage, if a URL generates a valid URL pattern, then we

remove the URL. We intersect two URLs (or URL patterns) only if the quality of resulting

URL patterns increase. This algorithm is called the greedy selection algorithm(GA),

as shown in Algorithm 2.

4.4 Indexing

The space of malicious URLs is very sparse. Most of the URLs do not share any common

features. Thus, we can build an index on the URLs to facilitate the retrieval of similar

URLs so that meaningful URL patterns can be mined.

In the system, we build an inverted index ILfile on the trigrams of file names in mali-

cious URLs. Similarly, we also build an inverted index ILdir on the trigrams of directory

names, and an inverted index ILdomain on the trigrams of domain names. We also build the

corresponding inverted lists on white URL data, including ILwfile, ILwdir, and ILwdomains.

To avoid many meaningless trigrams such as “jpg”, “com”, “htm”, and “www”, we remove

the top 2% most frequent trigrams of white data set from the malicious trigram inverted

indexes. This step is similar to the well recognized stop-word removal in information re-

trieval. After building the indexes, when running our algorithms, we only need to compute
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Algorithm 2 Greedy Pattern Selection Algorithm

P ← malicous URLs set; . P is the training URL pattern set
A← ∅; . A is the result URL pattern set
repeat

R← ∅; . R is a intermediate URL pattern set
for all pattern p ∈ P do

for all pattern p′ ∈ P − {p} do
pattern set Q← urlMAX({p, p′});
for all pattern q ∈ Q do

if q is valid and q /∈ A and Sc(q) > Max(Sc(p), Sc(p′)) then
. Sc(q) is the quality score of pattern q

R← R ∪ {q}, A← A ∪ {q};
P ← P − {p, p′};

end if
end for

end for
end for
P ← R;

until R = ∅;
return A;

the common pattern between those URLs sharing at least one trigram.



Chapter 5

Experimental Results

In this chapter, we report an extensive empirical study to evaluate our approach.

5.1 Data Sets

We use the real data from Fortinet. In Forinet, the rating of a URL is a category, such as

malware, phishing, or sports, there are 79 such categories so far (http://www.fortiguard.

com/webfiltering/webfiltering.html).

We use two data sets in training: a malicious data set where we extract the malicious

URL patterns, and a white data set that is used to measure the quality of result patterns.

The malicious data set contains 1.14 million URLs that are rated as malware, spyware

or phishing from the Fortinet’s log files in September and October in 2011. Table 5.1

summarizes the statistics of unique domain names, directory names and file names in the

malicious data set. The most frequent domain name is “www.tns-counter.ru”, whose hit

count is 191, 983. The most frequent directory name is “ru” with a hit count of 185, 286.

The most frequent file name is “favicon.ico”, which appears 6, 282 times. On average,

each URL consists of 4.1 URL segments.

For the white URL data set, there are 1.45 million URLs, not labeled as malicious by the

existing detection method. Those URLs are randomly sampled from the Fortinet’s log files

in September and October in 2011. In the sampling process, in order to gather more diverse

URL samples, we remove the URLs from the top 100 popular websites (http://toolbar.

netcraft.com/stats/topsites), because those URLs contribute most of the counts in the

log files. Table 5.2 shows the statistics of unique domain names, directory names and file

20
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Unique counts

File names 0.8 million

Directory names 0.16 million

Domain names 0.06 million

URLs 1.14 million

Table 5.1: Some statistics of the malicious data set

names in the white data set. The most frequent domain name is “profile.ak.fbcdn.net”,

whose hit count is 52, 284. The most frequent directory name is “images” with a hit count

of 174, 299. The most frequent file name is “default.jpg”, which appears 11, 892 times.

One URL in the white data set on average has 4.4 segments.

Unique counts

File names 1.13 million

Directory names 0.52 million

Domain names 0.24 million

URLs 1.45 million

Table 5.2: Some statistics of the white data set

To avoid some meaningless patterns from being extracted, we remove the top 2% most

frequent directory names and file names in the white URL data set from the malicious

data set. Some examples of these “stop words” are “default.jpg”, “index.html”, and

“images”.

Every day, there are a few billions of URLs be verified by Fortinet, most of them (over

95%) can be rated properly into some categories, but there is still a small percentage of URLs

are unrated. We sampled 3 million unrated URLs in Fortinet’s log files from September and

October. Although these 3 million URLs are unrated in September and October 2011, some

of them can be rated now since the blacklist is updated.

We obtain our test data as follows. We first use the Fortinet URL look up tool to

rate those 3 million URLs. As a result, 10, 234 of them are rated as malicious, 606, 273

are rated as benign, 1, 828, 060 are still unrated, and the rest of them are rated as porn,

illegal, unethical or other categories that “between malicious and white”. We remove those

“unclear” URLs because they sometimes may be rated as malicious and sometimes may not
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be, depending on the categorization method. Finally, we got a test data set consisting of

10, 234 malicious URLs and 606, 273 white URLs.

5.2 Effectiveness of URL Patterns

After running the GA algorithm on the malicious data set, we get a set of 78, 873 URL

patterns. We first use all these URL patterns to do detection in the test data set. As a

result, there are 45,538 URL patterns that cover at least one URL in the test data set, 4,574

of them cover only malicious URLs, 27,820 patterns only cover white URLs, and the rest

of them cover both malicious URLs and white URLs. Those 45,538 URL patterns cover

527,335 URLs in the test data set (8,771 malicious). The 4,574 URL patterns that only

cover malicious URLs cover 2,482 malicious ones. We can not use all those URL patterns

in detection efficiently, since there are many noise patterns among them, and the precision

is low.

How can we select the right URL patterns? We use the malicious probability ratio as

defined in chapter 4. We first rank those URL patterns by malicious probability ratio.

Figure 5.1 shows the distribution of URL patterns with respect to different ratio, as we can

see, most patterns’ ratio is between 0.1 to 100. Interestingly, there is a gap around ratio

1000. Later we will explain that the patterns on the right of this gap have a high precision

in detecting malicious URLs.

The left of Table 3 shows some of the top ranking patterns found by our algorithm. These

top patterns capture rich features, including segment patterns of domains, full directory

names, full file names, and file name segment patterns. The right of Table 3 lists some of

the bottom ranking patterns. These patterns rank low because they are too general, thus

can not distinguish malicious against normal URLs well.

5.3 Effectiveness of Malicious Probability Ratio Threshold

In this section, a malicious probability ratio threshold is used to choose patterns. We show

how this ratio threshold affects the performance of detection. To measure the performance

of detection, we use three criteria: precision, recall and F1.

The result is shown in Figure 5.2(a). As the ratio threshold increases, the precision

increases quickly because more and more low-quality URL patterns are filtered out. At the
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Figure 5.1: Malicious probability ratio distribution of URL patterns

Top Ranking Patterns

*07db*.com/*

*survery*/offers/*

*/*dmVyPT*hawQ9*

*/lmg/am1.rar

*/d/*2h1o

*/finance-journal/*

*.my2/ut.php?m=

*/esubmit/*bizopp main*

*.loxblog*.com/*

*/d/mli2n1277

*807db*.com/files4/*

*onlinewebshop*.net/*

. . .

Bottom Ranking Patterns

. . .
*download*.com/*

*/music

*/Common/*

*/2.0/*

*/feeds/*

*motor*.com/*

*/blogs/*

*ding/*

*/150/*

*/52.jpg

*/br/*

*/gp/*

Table 5.3: Some top ranking and bottom ranking malicious URL patterns
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Top patterns Number of matched URLs

*/*dmVyPT*hawQ9* 95
*/*ZiaWQ9*mc2lK* 66

*/finance-journal/* 63
*/worms.jar 26

*/*OfferImageo* 23
*survery*/offers/* 17

. . . . . .

Table 5.4: Some malicious URL patterns

same time, the recall also decreases quickly. The reason is that the number of patterns used

in detection decreases dramatically, as shown in Figure 5.2(b).

To look deeply into the pattern detection performance, we conduct a detailed analysis

at the point where ratio threshold is set to 800. There are 5,716 out of 78,873 patterns used

in the detection. Among those 5,716 patterns, 1,951 detect at least one truely malicious

URLs from the test data set.

The total number of URLs covered by these patterns is 1,365, among them, 1,305 is

indeed malicious URLs. The precision is 0.95. In Figure 5.3, we show the number of

patterns that cover different numbers of malicious URLs. Most URL patterns only detect

very few URLs, and a small percentage of patterns detect most of the malicious URLs. On

average, each URL pattern covers 3.96 URLs, each URL in the test data set is covered by

17.39 patterns, which indicates that there are still some overlaps in the pattern set produced

by the GA algorithm.

In Table 5.4, we list some URL patterns that detect malicious URLs, and some of these

malicious URLs are shown in Table 5.5. We can clearly see some mechanisms behind the

malicious URLs, and our URL patterns indeed capture some effective features of these

mechanisms.

5.4 The CA Algorithm and the GA Algorithm

In this section, we compare the runtime and detection performance of the CA and GA

algorihtm.

Figure 5.4(a) compares the runtime of the CA and GA algorithm with respect to different
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Figure 5.2: Detection under different malicious probability ratio thresholds
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Malicious URLs detected in test data set

. . .
1rbyyj3swwmvlkry3.com/6AG0m63dmVyPTQuMiZiaWQ9ZkZjQ · · · GVmOWQ9NjY2N=18Z
all1incks--4this.com/yab3rb5p7p7m2Lo2dmVyPTQuMCZia · · · MDAmc2lECR0J

crozybanner.com/ck12tS7l8p4MttO7dmVyPTMuOTYmYmlkPW5v · · · cpdmVycw==16A
g00o00gle.com/1aq0DX1E8b6xLRS1dmVyPTQuMCZiaWQ9MC.9MzAw · · · CZlbmc9d3N.LTQsN

. . .
aeybgxpzbnhyjt.cu.cc/content/worms.jar

wqtszgiqfnnlob.cu.cc/worms.jar

129.121.66.16/home/content/worms.jar

. . .
save.lmyn312oincidence.com/OfferImageo5829ojpg

sjiu112oawhile.com/OfferImageo5243ogif

cmad232ohuman.com/OfferImageo4256opng

bwgp11o.com/OfferImageo4910gif

. . .
365-job.net/finance-journal/hpproof.html

business9journal.net/finance-journal/images/gplex.jpg

work15home.net/finance-journal/

home22solutions.com/finance-journal/images/banner.jpg

. . .
easysurveyguide.com/media/offers/16146 2.jpg

onlinesurveyguide.com/media/offers/15342 2.jpg

funsurveyonline.com/offers/15893 2.jpg

supersurverysite.com/offers/e2r044823

. . .
internetquizsite.com/d/w2h1o80792

quizfindtraffic.com/d/w2h1o80792

quizfungam.com/d/gfx/902.gif

quiztakeonline.com/d/s1b8il7482

. . .

Table 5.5: Some malicious URLs covered by malicious URL patterns
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Figure 5.3: Malicious URL hit count distribution

training data set size. Figure 5.4(b) shows the number of URL patterns found. Apparently,

the CA algorithm takes much more time and generates much more URL patterns than the

GA algorithm. How do the patterns generated by the CA and GA algorithm, respectively,

perform in detection?

In Figure 5.5, we compare the detection performance of the CA and GA algorithm by

setting the training data set size to 10K. Although the CA algorithm generates much more

URL patterns, the performance is not much better than the GA algorithm. The reason

is that the patterns generated by the CA algorithm have heavy overlaps with each other.

Many URL patterns actually point to the same feature, and most patterns cannot detect any

malicious URLs. For example, when the ratio threshold is 800, the GA algorithm generates

915 patterns over the threshold, and each pattern on average covers 28 malicious URLs in

the test data set, while the CA algorithm generates 17,438 patterns over the threshold, but

each pattern covers only 3 malicious URLs in the test data set.

In summary, the GA algorithm uses much less time and still captures important features

from the training data.
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Figure 5.4: Comparison between the CA and GA algorithm in different malicious data sets



CHAPTER 5. EXPERIMENTAL RESULTS 29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100  1000

Ratio threshold

GA Precision
GA Recall

GA F1
CA Precision

CA Recall
CA F1

Figure 5.5: Comparison between the CA and GA algorithm

5.5 Effect of Training Data Set Size

As mentioned, we have two training data sets: a malicious URL data set to extract URL

patterns, and a white URL data set to rate and select patterns. In this section, we test how

the training data set size can affect the detection performance.

5.5.1 White training dataset

Figure 5.6 shows the precision using different sizes of white training data sets, where the

size of malicious data set is fixed to 1000K. The detection precision using a small white

training data set is much lower than that of using a larger data set. When the white data

set is small, many noise URL patterns cannot be filtered out. Therefore, a large white URLs

training data set is critical in selecting effective patterns for detection.

5.5.2 Malicious training dataset

To verify the efficiency of the GA algorithm, we run it on malicious training data sets of

different size. Figure 5.7 shows the runtime and the number of URL patterns generated with

respect to the size of malicious training data set. Due to the cost in dynamic programming,

the runtime of the GA algorithm increases substantially as the malicious training data set
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Figure 5.6: The GA algorithm in different white training data sets

becomes large.

To understand the performance of detection, we show the ROC curves of the GA algo-

rithm using different malicious training data sets in Figure 5.8. When the malicious training

set size increases, we can get a higher true positive rate with a stable false positive rate.

That means when we use more malicious URLs, we can detect more malicious URLs from

the test data set without sacrificing the precision.

5.6 Effect of Dynamic Feature Extraction

As mentioned in chapter 3, our algorithm uses an automatic lexical feature extraction

method instead of using pre-defined delimiters. In this section we test how these lexical

features work in detection. In Figure 5.9, we compare the GA algorithm and a variation of

the GA algorithm where we only use the features extracted by using “/” as the delimiter.

Without dynamic feature extraction, the precision is a little higher. That is because more

general patterns using dynamic features may mismatch some URLs. However, we get a

much higher recall when using dynamically extracted features. Those features indeed help

to detect much more malicious URLs.
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Figure 5.7: Runtime and number of patterns in different malicious training data sets
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Figure 5.8: ROC curve of the GA algorithm in different malicious training data sets

5.7 Comparison with Machine Learning Methods

Chapter 2 reviews some machine learning based methods [8, 7] for classification on URLs.

Without the original implementations, we use WEKA [14], an open source software con-

taining a collection of machine learning algorithms for data mining tasks, to compare with

our approach.

For the lexical feature extraction, we implement in the same way as [8, 7], that is, we

treat each token (strings delimited by ‘/’, ‘?’, ‘.’, ‘-’, ‘=’, and ‘ ’) in URLs as a binary

feature. Then, we use two classification models in WEKA: Näıve Bayes and SMO [12, 6], a

support vector classifier. The training data set consists of 50K malicious URLs and 200K

white URLs. There are 592, 829 binary lexical features in this training data set. For testing,

we use a data set containing 1, 028 malicious URLs and 60, 680 white URLs. As for the GA

algorithm, we set the malicious probability ratio threshold to 800.

Figure 5.10 shows the result. The GA algorithm takes much less training and testing

time, and still gets good detection performance. We notice that the training and testing

time of Näıve Bayes and SMO are extremely high. The possible reason is that the feature

vectors are too long, about 592, 829 in the experiments, and it takes too much time to do

preprocessing. Although the SMO algorithm gains a higher recall than the GA algorithm,

it sacrifices much on precision. In real applications, a high precision is critical for malicious
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URL detection because most URLs are not malicious in real data flow. Our algorithm

captures more lexical features than the pre-defined delimiters method in the Näıve Bayes

model, and has a higher recall.

The recall of all those three algorithms are low in our experiments, while [8, 7] reports a

recall above 0.8. The possible reasons are as follows. First, in [8, 7], the training data and

test data are just different splits of the same data source, but in our experiments, the test

data is from the unknown URLs set and the training data is from the rated URLs set. Thus,

the training data and test data in our case may follow very different distribution. Many

malicious URLs in the test data set do not contain any malicious lexical features available

in the training data set. Our test data is closer to reality because in the real applications,

the model should be able to detect malicious URLs from unknown URLs. Second, the data

in [8, 7] is typical malicious URLs and white URLs, while our URLs are from the real daily

URL flows, where the data is much sparser.

In summary, comparing to the machine learning approaches, our algorithm is more

practical and more efficient, and the detection performance is competitive.



Chapter 6

Conclusions

In this thesis, we tackle the problem of malicious URL detection and make two new con-

tributions beyond the state-of-the-art methods. We propose to dynamically extract lexical

patterns from URLs, which can provide new flexibility and capability on capturing mali-

cious URLs algorithmically generated by malicious programs. We develop a new method

to mine our novel URL patterns, which are not assembled using any pre-defined items and

thus cannot be mined using any existing frequent pattern mining methods. Our extensive

empirical study using the real data sets from Fortinet clearly shows the effectiveness and

efficiency of our approach. The data sets are at least two orders of magnitudes larger than

those reported in literature.

As future work, there are following directions we can further work on.

• Better methods to select patterns for detection are needed, because the malicious

probability ratio threshold method used in our experiments may filter out not only

noise patterns but also some useful patterns. More sophisticated methods to assess

the quality of a URL pattern can be applied. For example, some heuristic laws can

be used in the assessment.

• Our algorithm may generate too many URL patterns when the training data is huge.

As we can see from the experiments, even in GA algorithm, the URL patterns still

overlap with each other. In other words, there may be many redundant features in

the result URL pattern set. How to remove those overlaps is a problem need to be

solved.

36
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• How to further increase the recall of malicious detection is also critical. To increase the

recall, more lexical features beyond the common substrings can be used in the detec-

tion, such as the statistics of segments, and the meaning of segments (e.g., numerical

or letter).

• All our algorithms in this thesis are batch based algorithms, but in the real application,

the training data is updated everyday. Online algorithms can be developed to handle

the evolving features over time.
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