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Abstract

Many application problems in networks can be modeled as optimization problems in a

graph G. For example, the maximum path coloring (Max-PC) problem, described next is

an abstract model for many routing problems: Given a set P of paths in G and k colors,

find a maximum subset of P and assign a color to each path of the subset such that the

paths with the same color are edge-disjoint. One approach for solving an optimization

problem in G is to decompose G into subgraphs, find partial solutions in each subgraph

and combine the partial solutions into a solution of the problem. A carving-decomposition

(branch-decomposition) of G is a system of edge-cuts (vertex-cuts) which decomposes G into

subgraphs with each edge (vertex) a minimal subgraph. We give a carving-decomposition

based exact algorithm and 1.58-approximation algorithm for the Max-PC problem. Let

L be the maximum number of paths in P on any edge of G and let γ be the maximum

cardinality of any edge-cut in a given carving-decomposition. Our exact algorithm and

approximation algorithm run in O((L+ 1)1.5kγn2) and O((L+ 1)1.5γkn2) time, respectively.

Our computational study shows that the exact algorithm can solve the Max-PC problem for

small k and γ in a practical time and the approximation algorithm gives solutions close to

optimal ones for practical values of k and L, and small γ. We also conduct a computational

study on a branch-decomposition based exact algorithm for the maximum edge degree-

bounded connected subgraph (MEDBCS) problem. Our result shows that the MEDBCS

problem of vertex-degree bounded by 3 can be solved for graphs with small branchwidth in

a practical time.

Keywords: Branch-decomposition, carving-decomposition, edge-disjoint paths, bidi-

mensionality theory, grid minors
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Chapter 1

Introduction

Graphs are well used models for computer and communication networks. A graph G(V,E)

consists of a set V (G) of vertices and a set E(G) of edges. A network can be represented

by a graph G with vertices of G for network nodes and edges of G for network links. Many

application problems in networks can be modeled as optimization problems in graphs, for

example, some resource allocation problems as domination problems in graphs, routing

problems in networks as disjoint path problems in graphs, and so on. A vast class of problems

in graphs with wide and important applications, including those mentioned above, are NP-

hard. A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). One approach for

solving an optimization problem in a graph G is to decompose G into subgraphs, find partial

solutions of the problem in subgraphs and combine the partial solutions into a solution of

the problem. Two methods for graph decompositions, branch-decompositions and carving-

decompositions, have received much attention in the research of algorithms for NP-hard

problems in graphs.

The notions of branchwidth/branch-decomposition are introduced by Robertson and

Seymour [35]. The notions of carvingwidth/carving-decomposition are introduced by Sey-

mour and Thomas in relation to branchwidth/branch-decomposition [39]. In this thesis,

we denote by G an undirected graph and by ~G a directed graph. Informally, a carving-

decomposition TC of G is a system of edge-cut sets of G represented as edges of a tree with

every leaf of the tree assigned a distinct vertex of G. The width of a carving-decomposition

is the size of a maximum edge-cut in the decomposition. The carvingwidth cw(G) of G

is the minimum width of all possible carving-decompositions of G. Informally, a branch-

decomposition TB of G is a system of vertex-cut sets of G represented as edges of a tree with

1



CHAPTER 1. INTRODUCTION 2

every leaf of the tree assigned a distinct edge of G. The width of a branch-decomposition

is the size of a maximum vertex-cut in the decomposition. The branchwidth bw(G) of G

is the minimum width of all possible branch-decompositions of G. Formal definitions of

carving-decomposition, carvingwidth, branch-decomposition and branchwidth are given in

Chapter 2.

The carving-decomposition/branch-decomposition based algorithms are designed to solve

many optimization problems. The framework of these algorithms consists of two major steps.

The first step is to compute a carving-decomposition/branch-decomposition of the given

graph. The second step is to solve the problem by a dynamic programing approach, based

on the decomposition computed in the first step. Usually the carving-decomposition/branch-

decomposition based algorithms run in polynomial time in the size of G and exponential time

in the width of the decomposition computed in the first step. Many NP-hard problems in

G can be solved efficiently if the branchwidth or the carvingwidth of G is small. In the case

of branch-decomposition based algorithms, if bw(G) is large, the theory of bidimensionality

has been developed to deal with the problem.

A fundamental routing problem in computer and communication networks is that given

a set of connection requests (source-destination pairs) in a network, find a path for each

request and assign each path a channel such that the paths assigned the same channel do

not share any communication link in the network. An important optimization goal for the

routing problem is to accommodate as many requests as possible with a given number of

channels. This optimization problem can be modeled as the maximum routing and path

coloring (Max-RPC) problem in graphs: Given a set of source-destination vertex pairs in a

graph G and k colors, find a path connecting a source-destination pair and assign the path

one of the k colors for as many paths as possible such that the paths with the same color do

not share any edge of G. When k = 1, the Max-RPC problem is known as the maximum

edge-disjoint path (MEDP) problem. An important variant of the Max-RPC problem is the

maximum path coloring (Max-PC) problem: Given a set P of paths in a graph G and k

colors, select a maximum subset of P and assign each path in the subset a color such that

the paths with the same color are edge-disjoint. When k = 1 the Max-PC problem is known

as the maximum edge-disjoint paths with pre-specified paths (MEDPwPP) problem.

The Max-RPC and Max-PC problems have important applications in all-optical net-

works (and more generally circuit-switched networks) [13, 28, 31]. An optical network is
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called all-optical if the optical signals from a source are transmitted to a destination with-

out opto-electronic conversions at the intermediate node. Wavelength Division Multiplexing

(WDM) is a widely used technology in optical networks to allow multiple requests to be

carried on a same optical fiber by assigning a distinct wavelength to each request. The

routing and wavelength assignment (RWA) problem is a fundamental problem in WDM

optical networks: given k wavelengths and a set of connection requests in a network, find

a path for each request and assign each path a wavelength such that the paths with the

same wavelength do not share a communication link in the network. When the routing

paths are given, the RWA problem becomes the wavelength assignment (WA) problem. The

Max-RPC problem and Max-PC problem are mathematical models for the RWA problem

and WA problem, respectively.

The Max-PC problem is a classical NP-hard problem. Given a set P of paths in a graph

G, the conflict graph associated with P is the graph Gc(P,Ec) with the vertex set P such

that each vertex of Gc corresponds to a path in P and two vertices of Gc are adjacent if

and only if the corresponding paths in P share an edge of G. The MEDPwPP problem

(a special case of the Max-PC problem) in G is equivalent to the independent set problem

in the conflict graph Gc. The independent set problem is NP-hard [18]. For any constant

ε > 0 it is not feasible to approximate the independent set problem in an arbitrary graph

of n vertices within a factor of n1−ε unless P = NP [24]. Restricted to specific classes

of graphs, a polynomial time exact algorithm is known for chains [7], for the MEDPwPP

and Max-PC problems. Garg et al. in [20] propose an exact algorithm to solve the MEDP

problem in undirected trees. Erlebach and Jansen design a 1.58-approximation algorithm

for the Max-PC problem in undirected trees [14] by using the exact algorithm for the MEDP

problem by Garg et al. [20]. Erlebach and Jansen prove that the MEDP problem is NP-hard

in directed trees [16]. A (5/3 + ε)-approximation algorithm is given in [16] for the MEDP

problem in directed trees, where ε can be chosen arbitrarily small. The Max-PC problem

in undirected and directed trees with k > 1 is studied in [13]. Erlebach use the iterative

greedy approach to obtain 1.58-approximation algorithm for bounded degree directed trees

and a 2.22-approximation algorithm for directed trees [13]. For path coloring problem, the

best known algorithm for directed trees that colors a given set of paths with maximum

load L using at most (5/3)L colors [25, 26, 28, 31]. The Max-PC problem in undirected

stars is NP-hard [15, 34]. For undirected and directed rings, the MEDPwPP problem can

be solved in polynomial time, since the conflict graph is a circular-arc graph in this case,
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and the maximum independent set problem is polynomial for circular-arc graphs [23]. For

graphs as simple as rings, the Max-PC problem remains NP-hard [19]. For the Max-PC

problem in rings, a 1.5-approximation algorithm is known [33]. Many heuristics including

the first-fit, random-fit, most-used, and least-used have been developed for the Max-PC

problem [2, 9, 32].

Little is known about exact algorithms for the Max-PC problem for arbitrary graphs.

The Max-PC problem and a special case of the problem, the MEDPwPP problem, in planar

graphs have been studied in [4]. More specifically, a carving-decomposition based exact

algorithm for the MEDPwPP problem is developed in [4]. Given a set P of paths in a

planar graph G of n vertices with L the maximum number of paths in P on any edge of G,

the algorithm solves the MEDPwPP problem in O((L+ 1)1.5cw(G)n2 + n3) time. Based on

the MEDPwPP algorithm, a 1.58-approximation O((L+ 1)1.5cw(G)kn2 +n3) time algorithm

is given in [4] for the Max-PC problem in planar graphs. It is also mentioned in [4] that the

MEDPwPP algorithm can be generalized to solve the Max-PC problem in planar graphs

in O((L + 1)1.5kcw(G)n2 + n3) time. We extended the work of [4] by giving a carving-

decomposition based exact algorithm for the Max-PC problem in arbitrary graphs. We also

gave a 1.58-approximation algorithm for the Max-PC problem in arbitrary graphs. Our

algorithms work not only for undirected graphs but also for directed graphs. We performed

a computational study to evaluate the practical performances of our algorithms.

A path in G is a sequence v0e1v1...ekvk, where v0, vi ∈ V (G), ei = {vi−1, vi} ∈ E(G)

for 1 ≤ i ≤ k and no vertex is repeated in the sequence. This sequence is called a cycle if

v0 = vk. The length of the path (cycle) is the number of edges in the path (cycle). The

longest path (cycle) problem is the problem of finding a path (cycle) of maximum length in

a given graph. The decision version of the longest path (cycle) problem is NP-complete.

A Hamiltonian path is a path in an undirected graph that visits each vertex exactly once.

A Hamiltonian cycle is a cycle in an undirected graph that visits each vertex exactly once

and also returns to the starting vertex. The longest path (cycle) problem is a generalization

of Hamiltonian path (cycle) problem. In this thesis, we performed a computational study

of the maximum edge degree-bounded connected subgraph (MEDBCS) problem, which is a

generalization of the longest path problem and the Hamiltonian cycle problem.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). The maximum

edge degree-bounded connected subgraph (MEDBCS) problem is that: given a graph G, a

positive integer d ≤ |V (G)|, and a positive integer k ≤ |E(G)|, decide if there is a connected
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subgraph H of G such that E(H) ≥ k and every vertex of H has degree at most d. The

optimization version of the MEDBCS problem is to find a largest connected subgraph H of

G with vertex degree upper bounded by d. The longest path (cycle) problem is a special

case of the MEDBCS problem with d ≤ 2 (d = 2).

A graph parameter P is a function mapping graphs to positive integers. A graph H

is a minor of G, if H is obtained by zero or more edge contractions on a subgraph of G.

A (r × r)-grid graph is a two-dimensional graph with r2 vertices and edges between these

vertices differ by ±1 in exactly one coordinate. We denote by gm(G) the largest integer r

such that G contains a (r × r)-grid as a minor. A problem is bidimensional, if the value

of the parameter P depends on the (r × r)-grid and P (H) ≤ P (G), where H is a minor of

G. The aim is to decide if P (G) ≥ k for given G and k. In bidimensionality theory based

algorithms, one first computes bw(G). If bw(G) is larger than some threshold value, then

P (G) ≥ k may be concluded from gm(G). Otherwise, a branch-decomposition based exact

algorithm is used to solve the problem optimally by a dynamic programing approach. The

MEDBCS problem is an example of bidimensional problems and one of the classical NP-hard

problems listed in [18]. Recently it has been proved that it is not in APX for any fixed d ≥ 2

[1]. The MEDBCS problem is a generalization of the longest path problem, where d ≤ 2

and Hamiltonian cycle problem, where d = 2. Without the connectivity constraint, the

problem can be solved in polynomial time using matching techniques [29]. Sau and Thilikos

in [38] give the bidimensionality theory based subexponential parametrized algorithm for

the MEDBCS problem. Sau and Thilikos in [38] use a sphere-cut decomposition of G and

a non-crossing property of planar graphs. They show that the MEDBCS problem can be

solved in O(2log(5(d+1))6
√
k/δ
√
kn+ n3) time for planar graphs, where d is the degree and δ

is a constant which depends on d. In this thesis, we performed a computational study on

the bidimensionality theory based algorithm for the MEDBCS problem in planar graphs.

1.1 Contributions

1.1.1 Algorithms for the Max-PC problem and computational study

The Max-PC problem has important practical applications such as the routing in all-optical

networks (and more generally circuit-switched networks) [13, 28, 31]. Recently, there have

been increasing interests in developing exact algorithms for many NP-hard problems in
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graphs. We give a carving-decomposition based exact algorithm, called Algorithm ALG-

PC, for the Max-PC problem in G [3]. An input instance to Algorithm ALG-PC consists of

a graph G, a set P of paths on G and k colors. We call a subset Q ⊆ P a feasible solution if

each path of Q can be assigned one of k colors and the paths with the same color are edge-

disjoint. The algorithm outputs a maximum feasible solution Q ⊆ P . There are two major

steps in Algorithm ALG-PC: (I) Compute a carving-decomposition TC of small width for the

graph G. (II) Use a dynamic programming approach based on TC to compute a maximum

feasible solution Q ⊆ P . Assume that Step (I) computes a carving-decomposition of width

γ in f(n) time, our algorithm solves the Max-PC problem in O((L+ 1)1.5kγn2 + f(n)) time,

where L is the maximum number of paths in P on any edge of G. When k = 1, the the Max-

PC problem is reduced to the MEDPwPP problem. We also give a carving-decomposition

based exact algorithm called Algorithm ALG-ED that solves the MEDPwPP problem in

O((L+ 1)1.5γn2 + f(n)) time. Based on the iterative greedy approach and Algorithm ALG-

ED for the MEDPwPP problem, we give a 1.58-approximation O((L + 1)1.5γkn2 + f(n))

time algorithm for the Max-PC problem for k > 1: Find a maximum edge-disjoint subset of

paths P by Algorithm ALG-ED and assign the paths in the subset one color; remove the

subset from P and the assigned color; repeat the above process until no color is available or

all paths of P have been colored.

It is NP-hard to compute an optimal carving-decomposition for arbitrary graphs [21].

For planar graphs, an optimal carving-decomposition (of width cw(G)) can be computed in

O(n3) time [21, 39]. By using this result, our exact algorithm solves the Max-PC problem in

O((L+1)1.5kcw(G)n2 +n3) time and approximation algorithm runs in O((L+1)1.5cw(G)kn2 +

n3) time for a planar graph G.

Many practical networks are modeled as directed graphs and the routing paths are

directed. For example, an optical link between a pair of network nodes usually consists

of a pair of directed optical fibers, one in each direction. Such a network is modeled as a

directed graph with a pair of directed edges, one in each direction. Our algorithm works

for directed graphs as well. Let ~G be a directed graph consisting of a set V (~G) of vertices

and a set E(~G) of edges, where each edge is an ordered pair (u, v) of vertices. Edge (u, v)

is called an edge from u to v. In the Max-PC problem on directed graphs, P is a set of

directed paths. For a directed graph ~G, the underline graph H ~G of ~G is an undirected graph

with V (H ~G) = V (~G) and {u, v} ∈ E(H ~G) if (u, v) ∈ E(~G) or (v, u) ∈ E(~G). For a directed

graph ~G, assume that Step (I) computes a carving-decomposition of H ~G with width γ in
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f(n) time. Our exact algorithm runs in O((L+1)3kγn2 +f(n)) time and the approximation

algorithm runs in O((L+ 1)3γkn2 + f(n)) time for the Max-PC problem in ~G. For a simple

directed planar graph ~G, our exact algorithm runs in O((L + 1)3kcw(H~G
)n2 + n3) time and

the approximation algorithm runs in O((L+ 1)3cw(H~G
)kn2 + n3) time.

A ring is a well used topology in optical networks. An undirected ring is the graph

C(V,E) with V (C) = {u|0 ≤ u < n} and E(C) = {{u, v}|u ≡ (v ± 1) mod n}. It is easy

to see that cw(C) = 2 and a carving-decomposition of C with width 2 can be constructed

in linear time. For undirected ring, our exact algorithm solves the Max-PC problem in

O((L + 1)3kn) time and the approximation algorithm runs in O((L + 1)3kn) time. The

directed ring is a well used topology in optical networks. A directed ring is the graph
~C(V,E) with V (~C) = {u|0 ≤ u < n} and E(~C) = {(u, v), (v, u)|u ≡ (v ± 1) mod n}. The

directed ring ~C consists of two directed cycles, one in the clockwise direction and the other

in the counter clockwise direction. The Max-PC problem on ~C can be solved on each of the

cycles independently and the problem on each cycle can be viewed as the problem on the

undirected ring. Therefore, our exact algorithm solves the Max-PC problem in O((L+1)3kn)

time and the approximation algorithm runs in O((L+ 1)3kn) time for the directed rings.

We also conducted a computational study of our algorithms. We tested our algorithms

on the graphs which are abstract models of a 16-node NSFNET (see Figures 3.2), a 24-

node ARPANET (see Figure 3.3) and on the ring C. Our study shows that the practical

performances of the algorithms coincide with the theoretical analysis, the exact algorithm is

efficient for the instances with small k and L on graphs with small cw(G) (e.g, NSFNET and

rings) but it is time consuming if one of k, L and cw(G) is large. An alternative approach

is the approximation algorithm which computes near optimal solutions for the Max-PC

problem efficiently even for large k and L with small cw(G).

We also implemented the first-fit, random-fit, most-used and least-used heuristics [2, 9,

32]. For the NSFNET, we compared the results of our 1.58 approximation algorithm with

the results of heuristics. It is observed that, in the NSFNET, for the Max-PC problem

our approximation algorithm colors more paths than the heuristics. We also implemented

the 1.5-approximation algorithm (NPZ algorithm) [33] for the Max-PC problem on rings.

For the ring, we compared the results of our 1.58-approximation algorithm with the results

of 1.5-approximation algorithm (NPZ algorithm) and the heuristics. We showed that the

1.58-approximation algorithm is also efficient for the the Max-PC problem on the ring with

practical values of k and L. The NPZ algorithm achieved the best known approximation

lib M-Scan7
Typewritten Text
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ratio (1.5) for the Max-PC problem on the ring. The results show that, for the ring, our 1.58-

approximation algorithm has a similar performance in the number of paths colored as the

NPZ algorithm and colors more paths than the first-fit, random-fit, most-used and least-

used heuristics. On the other hand, the 1.58-approximation algorithm works for general

graphs and has a comparable performance as that of NPZ algorithm on the ring.

1.1.2 Computational study for the MEDBCS problem

The longest path problem and Hamiltonian cycle problem are NP-hard. In [12] Dorn

et al. give a branch-decomposition based algorithm which solves Hamiltonian path like

problems in planar graphs in 2O(bw(G))nO(1) time. Based on the sphere-cut decomposition

(sc-decomposition), which is a special type of branch-decomposition, and the non-crossing

property of planar graphs embedded on a sphere, they show that the planar longest path

problem can be solved in O(23.404bw(G)nO(1) + n3) time [12]. They also show that planar

Hamiltonian cycle problem can be solved in O(26.903
√
n) time.

We performed a computational study on the bidimensionality theory based algorithm

for the MEDBCS problem [38] which is a generalization of the longest path problem, where

d ≤ 2 or the Hamiltonian cycle problem, where d = 2. We implemented the branch-

decomposition based algorithm for solving the MEDBCS problem. In the first step we

compute sphere-cut decomposition (sc-decomposition). It is known that an optimal sc-

decomposition of a planar graph embedded on a sphere, can be computed in O(n3) [21, 39].

We used the tools for computing bw(G) and optimal branch-decomposition of G, reported

in [5, 6].

After finding bw(G), there are two cases: If bw(G) ≤ 3
√
k/δ, where δ is a constant

depending on the bounded degree d: for d = 2 δ = 1, for d = 3 δ =
√

3/2 and for d ≥ 4

δ =
√

2, the value of the MEDBCS is computed in O(2log(5(d+1))6
√
k/δ
√
kn) time by using

the dynamic programing algorithm [38] . Otherwise, the value of the MEDBCS problem is

computed from the largest grid minor. For computing the largest grid minors, we use the

tool reported in [41] called GT tool. The GT tool is an implementation of Gu and Tamaki’s

algorithm, proposed in [22]. The GT tool finds a (g × h)-cylinder minor, where g ≥ 3 and

h ≥ 1. Notice that a (g × h)-cylinder contains a (g × h)-grid as a minor. It is shown in [22]

that for a planar graph G, a (g × g/2)-cylinder minor with g ≥ bw(G)/2, can be computed

efficiently. From this, we could conclude that for the MEDBCS problem P (G) ≥ c(bw(G))

for some constant c > 0.
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1.2 Thesis outline

The rest of the thesis is organized as follows. In Chapter 2, we give the preliminaries of the

thesis. In Chapter 3, algorithms and a computational study for the Max-PC problem are

introduced. We present a computational study for bidimensionality theory based algorithm

for the maximum edge bounded-degree connected subgraph (MEDBCS) problem in Chapter

4. The final chapter concludes the thesis.



Chapter 2

Preliminaries

We denote by G an undirected simple graph which consists of a set V (G) of vertices and

a set E(G) of edges, where each edge e of E(G) is a subset of V (G) with two elements. A

graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a subset U ⊆ V (G)

(E′ ⊆ E(G)), we denote by G[U ] (G[E′]) the subgraph of G induced by U(E′).

The notions of carvingwidth and carving-decomposition are introduced by Seymour and

Thomas in relation to branchwidth and branch-decomposition [39]. A carving-decomposition

of G is a tree TC where each internal node of TC has degree 3 and each leaf node of TC
is associated with a distinct vertex of G. Removing a link e of TC separates TC into two

subtrees T1 and T2. Let V ′ and V ′′ be the sets of leaves of the two subtrees. The middle set

denoted by Emid(e) is the set of edges with an end vertex in V ′ and an end vertex in V ′′.

The width of the link e is |Emid(e)|. We define the width of the carving-decomposition TC

to be the maximum width of all links of TC . The carvingwidth of G, denoted by cw(G), is

the minimum width of all carving-decompositions of G. Figure 2.1 gives an example of a

carving-decomposition of a graph G.

The notions of branchwidth and branch-decomposition were introduced by Robertson

and Seymour [35]. A branch-decomposition of G is a tree TB where each internal node of TB
has degree 3 and set of leaves of TB is associated with the edge set of G. For every link e of

TB, let T1 and T2 be the two connected components obtained after removing a link e from

TB. Let G1 and G2 be the subgraphs induced by the edge sets of T1 and T2, respectively.

The middle set denoted by Vmid(e) is the intersection of the vertex sets of G1 and G2. The

width of the link e is |Vmid(e)|. We define the width of the branch-decomposition TB to

be the maximum width of all links of TB. The branchwidth of G, denoted by bw(G), is

10
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Figure 2.1: (a) A graph G, (b) a carving-decomposition TC of G. The number on each link
e of TC is |Emid(e)| for that link. TC has width 4 and (c) two subgraphs of G induced by V ′

and V ′′. The edge-cut induced by link e of TC is Emid(e) = {e3, e4, e5, e7}.
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the minimum width of all branch-decompositions of G. Figure 2.2 gives an example of a

branch-decomposition of a graph G.

A carving-decomposition TC (resp. branch-decomposition TB) of G can be converted

to a binary tree with root r by replacing an internal link e = {x, y} with three links

{x, z}, {z, y}, {r, z}, where z and r are new nodes to TC (resp. TB), r is the root, and {z, r}
is an internal link. For every internal link e of TC (resp. TB), e has two children links

incident to e. For every link e of TC (resp. TB), let Te be the subtree of TC (resp. TB)

consisting of all descendant links of e. Let He be the subgraph of G induced by the vertices

(resp. edges) at leave nodes of Te.

We denote by ~G a directed graph consisting of a set V (~G) of vertices and a set E(~G)

of edges, where each edge is an ordered pair (u, v) of vertices. Edge (u, v) is called an

edge from u to v. For a directed simple graph ~G, we define the underline graph H ~G of ~G

to be an undirected graph with V (H ~G) = V (~G) and {u, v} ∈ E(H ~G) if (u, v) ∈ E(~G) or

(v, u) ∈ E(~G).

A path in G (resp. ~G) is a sequence v0e1v1...ekvk, where v0, vi ∈ V (G) (resp. v0, vi ∈
V (~G)), ei = {vi−1, vi} ∈ E(G) (resp. ei = (vi−1, vi) ∈ E(~G)) for 1 ≤ i ≤ k and no vertex

is repeated in the sequence. This sequence is called a cycle if v0 = vk. The length of the

path (cycle) is the number of edges in the path (cycle). The distance between two vertices

in a graph is the length of the shortest path between them. We say a path is on an edge, if

the edge appears in the sequence of the path. Given a set A of edges and a set P of paths

in a graph, we say P is on A, if every path of P is on some edges of A. Given a set P of

paths in a graph and an edge e of the graph, we denote by L(e) the number of paths in P

that are on e. We call L(e) the load of P on e. The load of the graph, denoted by L, is the

maximum L(e) of any edge e in the graph. The degree of a vertex v of G denoted by deg(v),

is the number of edges incident to v.

An undirected ring is the graph C(V,E) with V (C) = {u|0 ≤ u < n} and E(C) =

{{u, v}|u ≡ (v ± 1) mod n}. It is easy to see that cw(C) = 2 and a carving-decomposition

of C with width 2 can be constructed in linear time. A directed ring is the graph ~C(V,E)

with V (~C) = {u|0 ≤ u < n} and E(~C) = {(u, v), (v, u)|u ≡ (v ± 1) mod n}. The directed

ring is a well used topology in optical networks. The directed ring ~C consists of two directed

cycles, one in the clockwise direction and the other in the counter clockwise direction. A

graph is planar if it can be drawn on a sphere without crossing edges.

Given an edge e ofG which is between u and v, where {u, v} ∈ V (G), the edge contraction
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Figure 2.2: (a) A graph G, (b) a branch-decomposition TB of G. The number on each link
e of TB is |Vmid(e)| for that link. TB has width 3 and (c) two subgraphs G1 and G2 of G.
The vertex-cut induced by link e of TB is Vmid(e) = {v1, v4, v5}.
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is to remove the edge e from G and u, v are merged into a new vertex w, where w /∈ V (G),

whose incident edges are the edges that were incident to u or v other than e. A graph H

which is obtained by a sequence of zero or more edge contractions is said to be a contraction

of G. A graph H is a minor of G, if H is obtained by zero or more edge contractions of a

subgraph of G. Checking whether H is a minor of G is solvable in O(n3) [36]. An (r×r)-grid

is a planar graph with r2 vertices {(a, b)|1 ≤ a, b ≤ r} with edges between vertices differing

by ±1 in exactly one coordinate. The size of the largest grid minor of G, denoted by gm(G),

is the largest integer r such that G contains a (r × r)- grid as a minor. A (g × h)-cylinder

is a graph on vertex set {(i, j)|0 ≤ i < g, 0 ≤ j < h, i, j : integer} such that vertices (i, j)

and (i′, j′) are adjacent if and only if i′ ≡ (i± 1) mod g and j′ = j or i′ = i and |j− j′| = 1.

Notice that a (g × h)-cylinder contains a (g × h)-grid as a minor. Let cm(G) denote the

largest integer g such that G contains a (g × g/2)-cylinder as a minor. Gu and Tamaki

show that for a planar graph G, bw(G) ≤ 2cm(G) and they also design an algorithm that

computes a (g × h)-cylinder minor of G [22].

An isomorphism from a graph G to a graph H is a bijection f : V (G) → V (H) such

that {u, v} ∈ E(G) if and only if {f(u), f(v)} ∈ E(H). A graph property is defined to be

a property preserved under all possible isomorphisms of a graph. In other words, it is a

property of the graph itself, not of a specific drawing or representation of the graph. A

graph property is minor-closed if for each graph with a specific property, it holds that all its

minors also have that specific property. For example, planarity of a graph is minor closed.

Let Σ be a sphere. A set S of points in Σ is a topological segment of Σ, if it is home-

omorphic to an open segment {(x, 0)|0 < x < 1} in the sphere. For a topological segment

S, the closure of S is denoted by S and bd(S) = S \ S. We call the two elements of bd(S)

the end points of S. A planar embedding of a graph G is a mapping φ from V (G) ∪ E(G)

to Σ ∪ 2Σ, satisfying the following properties:

1. for v ∈ V (G), φ(v) is a point of Σ and for distinct (u, v) ∈ V (G), φ(u) 6= φ(v),

2. for each edge e ∈ E(G), where e = {u, v}, φ(e) is a topological segment with two end

points φ(u), φ(v), and

3. for two distinct edges e1, e2 ∈ E(G), φ(e1) ∩ φ(e2) = {φ(u)|u ∈ e1 ∩ e2}.

If a graph has planar embedding then the graph is called planar. The planar embedding

(G,φ) of graph G is called a plane graph. In what follows, we also denote by G a plane
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graph (G,φ), leaving φ implicit. A region of a plane graph is a connected component of

Σ \ (E(G) ∪ V (G)). Let G be a plane graph. A curve in Σ is the image of a continuous

function f : [0, 1]→ Σ. A curve is G-normal if it does not intersect with itself and meets G

only at vertices of G. A curve is closed if f(0) = f(1). A closed G-normal curve is a noose.

The length of the noose is the number of vertices it meets. Let O be a noose of G that

separates G into two regions R1 and R2. Then O induces a separation (A,A) of G where

A = {e ∈ E(G)|φ(e) ⊆ R1} and A = {e ∈ E(G)|φ(e) ⊆ R2}. A separation is called noose

induced, if it is induced by some noose.

A branch-decomposition TB is a sphere-cut decomposition or sc-decomposition, if every

separation induced by a link of TB is noose induced [12]. Formally, a sphere-cut decompo-

sition TB, is a special kind of branch decomposition, for every edge e of TB there exists a

noose Oe bounding the two open disks ∆1 and ∆2 such that Gi ⊆ ∆i ∪Oe, 1 ≤ i ≤ 2. Thus

Oe meets G only in Vmid(e) and its length is |Vmid(e)|. A clockwise traversal of Oe in the

drawing of G defines the cyclic ordering π of Vmid(e) and the vertices of every middle set are

enumerated according to π. A sc-decomposition can be computed in time O(n3) [21, 39].

The maximum routing and path coloring (Max-RPC) problem in graphs is: Given a

set of source-destination vertex pairs in a graph G and k colors, find a path connecting a

source-destination pair and assign the path one of the k colors for as many paths as possible

such that the paths with the same color do not share any edge of G. When k = 1, the Max-

RPC problem is known as the maximum edge-disjoint path (MEDP) problem. An important

variant of the Max-RPC problem is the maximum path coloring (Max-PC) problem: Given

a set P of paths in a graph G and k colors, select a maximum subset of P and assign each

path in the subset a color such that the paths with the same color are edge-disjoint. When

k = 1 the Max-PC problem is known as the maximum edge-disjoint paths with pre-specified

paths (MEDPwPP) problem.

The maximum edge degree-bounded connected connected subgraph (MEDBCS) problem

is that: given a graph G, a positive integer d ≤ |V (G)|, and a positive integer k ≤ |E(G)|,
decide if there is a connected subgraph H of G such that E(H) ≥ k and every vertex of

H has degree at most d. The optimization version of the MEDBCS problem is to find a

largest connected subgraph H of G with vertex degree upper bounded by d. The longest

path (cycle) problem is a special case of the MEDBCS problem with d ≤ 2 (d = 2).

A parameter P is a function mapping graphs to positive integers. For example the num-

ber of vertices of a graph and the number of edges of the graph. A problem is bidimensional



CHAPTER 2. PRELIMINARIES 16

if the value of the parameter P depends on the size of the grid and P (H) ≤ P (G), where

H is minor of G. The aim is to decide if P (G) ≤ k for given G and k. Bidimensionality is

defined by Demaine et al. in [11] as follows: A parameter P is minor bidimensional with

density δ if

1. P is closed under taking minors

2. for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2)

A parameter P is contraction bidimensional with density δ if

1. P is closed under contractions

2. for any partially triangulated (r × r)-grid R, P (R) = (δRr)2 + o((δRr)2)

3. δ is the smallest δR among all partially triangulated (r × r)-grid

The parameter P is called bidimensional either it is minor bidimensional or contraction

bidimensional. The parameter is called h(r)-bidimensional, if it is at least h(r) in a grid,

where h(r) is a function that depends on (r × r)-grid. A parameter P is minor-closed

(resp. contraction-closed) if for every graph H, which is a minor (resp. a contraction) of

G, P (H) ≤ P (G). The density is usually 0 < δ ≤ 1. For example a vertex cover problem.

A parameter vertex cover is minor-bidimensional and for a (r × r)-grid, the size of vertex

cover is at least r2/2. Therefore, a parameter vertex cover has density 1/
√

2.

A parametrized problem is fixed parameter tractable (FPT) with respect to k if there

exists an algorithm that computes the solution in f(k).nO(1) time, where n is the size of the

graph and f is a computable function of k which is independent of n [17]. For example a

vertex cover of size k can be found in O(1.2745kk4 + kn) time [8]. If f(k) is subexponential

in k, may be f(k) = 2O(
√
k), then the algorithm is called a subexponential parametrized

algorithm that solves the parametrized problem in 2O(
√
k).nO(1) time.

In the bidimensionality theory based algorithms, the relationship between the branch-

width and the size of the largest grid minor gm(G) is important. Robertson, Seymour

and Thomas show that gm(G) ≤ bw(G) ≤ 202gm(G)(gm(G)+1)4 [37] for arbitrary graphs and

gm(G) ≤ bw(G) ≤ 4gm(G) for planar graphs [37]. For planar graphs, Gu and Tamaki

improve the result to bw(G) ≤ 3gm(G) for a (r× r)-grid minor [22]. For a (g × h)-cylinder

minor, bw(G) ≤ 2cm(G) [22], where cm(G) is size of the largest cylinder minor. In the

bidimensionality theory based algorithms, first computes bw(G). If bw(G) is larger than



CHAPTER 2. PRELIMINARIES 17

some threshold value, then P (G) ≤ k may be concluded from gm(G) or cm(G). Otherwise,

P (G) is computed optimally by using the dynamic programing approach.



Chapter 3

Algorithms for the Max-PC

Problem

In this Chapter, we describe algorithms for the MEDPwPP problem and Max-PC problem.

To explain the steps of both of the algorithms, we need some definitions.

A network is modeled as an undirected graph G. A request in G is given by a path with

a source node and destination node. A set of requests in a network is represented by a set

of pre-specified paths P in a graph G. Given a path p ∈ P in the graph G, we say p is on an

edge e ∈ E(G), if p contains e. Given a set of edges E′ ⊆ E(G) and a set of paths P ′ ⊆ P ,

we say P ′ is on E′, if every path of P ′ contains an edge of E′. Given a set P of paths in G,

for each edge e of G let LP (e) = |{p|p ∈ P and p is on e}|, LP= maxe∈E(G)LP (e). In the

rest of the thesis, L(e) will be used for LP (e) and L for LP , where L is called the load of

the graph.

3.1 Algorithm for the edge-disjoint path problem

A special case of the Max-PC problem is the MEDPwPP problem, where k = 1. In this

section, we first describe a carving-decomposition based exact algorithm called Algorithm

ALG-ED, for the MEDPwPP problem.

An input instance to Algorithm ALG-ED consists of a graph G, a set P of paths on

G. We call a subset P ′ ⊆ P a feasible solution if all paths of P ′ are edge-disjoint. The

algorithm outputs a maximum feasible solution P ′ ⊆ P . There are two major steps in

18
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Algorithm ALG-ED: (I) Compute a carving-decomposition TC of small width for the graph

G. (II) Use a dynamic programming approach based on TC to compute a maximum feasible

solution P ′ ⊆ P . Step (II) has exponential time in the width of TC computed in Step

(I). So finding a carving-decomposition of small width is critical in reducing the running

time of the algorithm. For a planar graph G, an optimal carving-decomposition can be

computed in O(n3) time [21, 39]. Notice that for any graph G and a subgraph G′ of G with

V (G′) = V (G), a carving-decomposition of G′ is also a carving-decomposition of G. From

this fact, for a non-planar G, we can find a planar subgraph G′ of G with V (G′) = V (G)

and compute an optimal carving-decomposition T ′ of G′ as a carving-decomposition of G.

For small graphs, the planar subgraphs may be found by hand. However, for large graphs,

one may rely on some heuristics to find planar subgraphs. Since G has more edges than G′,

T ′ may not be an optimal carving-decomposition of G. However, T ′ is very close to optimal

if G is close to planar (this often happens in practice). One may use other heuristics in Step

(I) for non-planar graphs.

In Step (II), the carving decomposition TC is first converted to a rooted binary tree by

replacing an internal link e = {x, y} with three {x, z}, {z, y}, {r, z} links. In these links

z and r are new nodes added in TC , where r is the root and {z, r} is an internal link.

For every internal link e of TC , e has two child links incident to e. Let Te be the subtree

of TC consisting of all the descendant links of e and He be the subgraph of G induced

by the vertices at the leaf nodes of Te. The dynamic programming step finds the partial

solutions of He for every subtree Te of TC from leaves to the root in a bottom-up way. The

partial solutions of He for each leaf link e is empty and the solutions for an internal link

e is computed by merging the partial solutions for the child links of e, that are already

computed.

For an internal link e of TC , we use Pe to denote the set of all subsets of edge disjoint

paths in P on Emid(e). For a set of edge disjoint paths P ′e ∈ Pe, we define f(e, P ′e) as

|Qe|, where Qe is a maximum subset of paths in He such that P ′e ∪ Qe is edge disjoint.

Initially f(e, P ′e) is set to 0 for all links e of TC and for every possible subset P ′e ∈ Pe. For

a leaf link, no computation is needed. An internal link e of TC has two child links f and

g. Let X1 = Emid(e) ∩ Emid(f), X2 = Emid(e) ∩ Emid(g) and X3 = Emid(f) ∩ Emid(g). Then

X1 ∪X2 = Emid(e), X1 ∪X3 = Emid(f) and X2 ∪X3 = Emid(g).

For an internal link e, we have two dynamic programing tables corresponding to the child

links f and g. For each edge h of Emid(f) and Emid(g), every path on h is given a unique
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Figure 3.1: Subsets of cut sets Emid(e), Emid(f), Emid(g).

label from {1, 2, 3, ...., L}, where L is the maximum number of paths of P on any edge of

G. We assume that Emid(f) = {e1, e2, ......, e|Emid(f)|} and Emid(g) = {e1, e2, ......, e|Emid(g)|}.
We use Pf and Pg to denote the set of all subsets of edge disjoint paths in P on Emid(f)

and Emid(g), respectively. A set of edge disjoint paths P ′f ∈ Pf is represented by λf (h) =

{l1, l2, ......, l|Emid(f)|} where li ∈ {0, 1, ......, L} with li = 0 denoting that no path on ei

appears in P ′f and li = j ∈ {1, ......, L} denoting the path on ei is assigned a label j

appears in P ′f . Similarly, a set of edge disjoint paths P ′g ∈ Pg is represented by λg(h) =

{l1, l2, ......, l|Emid(g)|} where li ∈ {0, 1, ......, L} with li = 0 denoting that no path on ei

appears in P ′g and li = j ∈ {1, ......, L} denoting the path on ei is assigned a label j appears

in P ′g. While merging the solutions, again we have a table for the internal link e with the

combinations of labels of the paths. We say a label λe is formed from a label λf and a label

λg if

• for h ∈ X1, λe(h) = λf (h),

• for h ∈ X2, λe(h) = λg(h), and

• for h ∈ X3, λf (h) = λg(h).

It is important to mention here that while merging the solutions, reordering of the edges

according to recently calculated X1,X2 and X3 might be needed.

As mentioned earlier, we use Pe to denote the set of all subsets of edge disjoint paths in

P on Emid(e). For every P ′e ∈ Pe, f(e, P ′e) is computed from f(f, P ′f ) and f(g, P ′g). Let P ′′

be a set of all possible subsets of edge disjoint paths from the corresponding set of subsets
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P ′f and set of subsets P ′g and these paths are on the edges of Emid(f) ∪ Emid(g). For every

P ′′ ∈ P ′′, let P ′′e ⊆ P ′′ , P ′′f ⊆ P ′′ and P ′′g ⊆ P ′′ are sets of paths on some edges in Emid(e),

Emid(f) and Emid(g), respectively. We initialize f(e, P ′′e ) to 0. For every P ′′, first we compute

|(P ′′f ∪ P ′′g )\ P ′′e |. Then the values |(P ′′f ∪ P ′′g ) \ P ′′e |, f(f, P ′′f ) and f(g, P ′′g ) are added up. If

this value is greater than the previous value of f(e, P ′′e ), then f(e, P ′′e ) is updated to this

value. Thus, f(e, P ′e) takes the maximum over all f(e, P ′′e ). If both f and g are the leaves of

TC then f(f, P ′′f ) and f(g, P ′′g ) are 0. At the root link of TC the maximum value of f(e, P ′e)

over all P ′e is the solution for a maximum edge disjoint path problem.

In order to calculate the running time of Algorithm ALG-ED, for Step (I) assume that

Algorithm ALG-ED computes a carving decomposition TC of G with width γ in f(n) time,

and Step (II) plays a major role in the time complexity. For each internal link e of TC , there

are (L + 1)|X1|+|X2| or (L + 1)|Emid(e)| possible subsets of partial solutions to store. Since

Emid(e) is bounded by the carvingwidth of the graph G γ, each edge of Emid(e) has a load

bounded by L and each subset of partial solution contains at most one path on each edge of

Emid(e). Therefore, there are at most (L+ 1)γ possible subsets of partial solutions to store.

While merging, we only need to consider the paths on X1, X2 and the paths on X3. Since

|X1∪X2∪X3| ≤ (1.5γ) there are at most (L+1)1.5γ cases to consider. The time complexity

to process one link would be O((L+ 1)1.5γn) and the memory requirement is O((L+ 1)γ).

Total time complexity and memory requirement would be O(((L + 1)1.5γn2) + n3) and

O((L+ 1)γn) respectively, where n represents number of vertices in the graph G.

For planar graph G, the carvingwidth of the graph G, cw(G) can be computed in O(n3)

time [21, 39]. Therefore, the time complexity and memory requirement for planar graphs

would be O(((L+ 1)1.5cw(G)n2) +n3) and O((L+ 1)cw(G)n) respectively, where n represents

number of vertices in the planar graph G. The running time and memory requirement are

polynomial in the input parameters, when cw(G) is bounded by a constant.

3.2 Exact algorithm for the Max-PC problem

The algorithm for the MEDPwPP problem described in the previous section can be gen-

eralized to an exact algorithm for the Max-PC problem, called Algorithm ALG-PC. An

input instance to Algorithm ALG-PC consists of a graph G, a set P of paths on G and k

colors. We call a subset Q ⊆ P a feasible solution if each path of Q can be assigned a color

and the paths with the same color are edge-disjoint. The algorithm outputs a maximum
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feasible solution Q ⊆ P . There are two major steps in Algorithm ALG-PC: (I) Compute a

carving-decomposition TC of small width for the graph G. (II) Use a dynamic programming

approach based on TC to compute a maximum feasible solution Q ⊆ P .

To solve the Max-PC problem or an instance of the Max-PC problem, first the carving

decomposition TC , which is computed in Step (I), is converted into a rooted binary tree,

as done in the case of the exact algorithm for the MEDPwPP problem in section 3.1. The

dynamic programming step finds the partial solutions of He for every subtree Te of TC from

leaves to the root in a bottom-up way.

The following observation is useful for understanding the dynamic programming step.

Observation 3.2.1 For a maximum feasible solution Q ⊆ P and a link e in a carving-

decomposition TC of G, let Qe = Q′e ∪ Q′′e be the subset of Q such that each path of Qe is

on an edge of Emid(e) ∪ E(He), where Q′e is the set of paths on an edge of Emid(e) and Q′′e

is the set of paths on an edge of He but not on any edge of Emid(e). Then

1. each edge of Emid(e) appears in at most k paths of Q′e and

2. Q′′e is a maximum subset of P such that each path of Q′′e is on an edge of He but not

on any edge of Emid(e), and Q′e ∪Q′′e is a feasible solution.

We call a subset Qe of P satisfying (1) and (2) in Observation 3.2.1 a candidate w.r.t.

Emid(e). Notice that for a fixed Q′e, there may be multiple sets of Q′′e satisfying (2). However,

any such a Q′′e can be used to form a candidate Qe w.r.t. Emid(e) because a path of Q′′e does

not intersect with any path which is not on an edge of He and only the cardinality of Q′′e
affects the size of a final solution. Therefore, the candidates w.r.t. Emid(e) can be identified

by the sets Q′e satisfying (1). We further identify every set Q′e satisfying (1) by assigning

labels to the edges of Emid(e): For each edge h of Emid(e), we give every path on h a unique

index w.r.t. h from {1, 2, ..., L}, where L is the maximum number of paths of P on any

edge of G. Since there are at most L paths on any edge of Emid(e), the indexing above

can be done. There are
k∑
i=0

(
L
i

)
subsets of {1, 2, ...., L}. For coloring schemes, select only

those subsets having cardinality at most i. For each subset with cardinality i, there are(
k
i

)
i! coloring schemes. Since there are

k∑
i=0

(
L
i

)
subsets of {1, 2, ...., L}, the total number of

coloring schemes for paths on one edge of Emid(e) is
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k∑
i=0

(
L

i

)(
k

i

)
i! =

k∑
i=0

L(L− 1).......(L− i+ 1)
i!

× (i!)×
(
k

i

)

≤
k∑
i=0

Li
(
k

i

)
= (L+ 1)k

Therefore, for a Q′e satisfying (1), each edge h of Emid(e) is given a label λ(h) ∈ (L+1)k.

When λ(h) = 0, it indicates that no path exist on edge h, with no color scheme. For all the

edges of Emid(e), each Q′e satisfying (1) (and thus each candidate w.r.t. Emid(e)) is identified

by a unique label λ ∈ (L+ 1)k|Emid(e)|.

Algorithm ALG-PC first computes all candidates w.r.t. Emid(e) for every link e of TC in a

bottom-up way: For each leaf link e = {x, y}, the candidates are computed by enumeration:

Since He is a single vertex, for any candidate Qe w.r.t. Emid(e), Q′′e is empty. So we can

find all candidates w.r.t. Emid(e) by enumerating all Q′e satisfying (1). The labels and the

associated candidates are kept in a table.

For an internal link e of TC , let f and g be the children links of e. For each child

link f and g, we have two dynamic programing tables. For each edge h of Emid(f) and

Emid(g), every path on h is given a unique label. We denote by λe, λf , and λg the labels

for the candidates w.r.t. Emid(e), Emid(f), and Emid(g), respectively. For every label λe, we

compute the candidate associated to λe from the candidates associated to labels λf and

λg. Let X1 = Emid(e) ∩ Emid(f), X2 = Emid(e) ∩ Emid(g), and X3 = Emid(f) ∩ Emid(g).Then

Xi∩Xj = ∅ for 1 ≤ i 6= j ≤ 3, X1∪X2 = Emid(e), X1∪X3 = Emid(f), and X2∪X3 = Emid(g).

We say a label λe is formed from a label λf and a label λg if

• for h ∈ X1, λe(h) = λf (h),

• for h ∈ X2, λe(h) = λg(h), and

• for h ∈ X3, λf (h) = λg(h).

For a coloring λe formed from λf and λg, let Qe(f, g) = Qf ∪Qg, where Qf and Qg are the

candidates associated with λf and λg, respectively. The candidate associated to λe is the

maximum Qe(f, g) for all pairs of λf and λg which form λe.

We use Qe to denote the set of all subsets of feasible solution in P on Emid(e). For every

Q′e ∈ Qe, Q′′e is computed from Q′′f and Q′′g . Let Q′ be a set of all possible subsets of feasible
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solutions from the corresponding set of subsets Q′f and set of subsets Q′g and these paths

are on the edges of Emid(f)∪Emid(g). For every Q′ ∈ Q′, let Q′e ⊆ Q′, Q′f ⊆ Q′ and Q′g ⊆ Q′

are the set of feasible solution on some edges in Emid(e), Emid(f) and Emid(g), respectively.

We initialize Q′′e to 0. If both f and g are the leaves of TC then Q′′f and Q′′g are 0. For every

Q′, first we compute |(Q′f ∪ Q′g) \ Q′e|. Then the values |(Q′f ∪ Q′g) \ Q′e|,Q′′f and Q′′g are

added up. If this value is greater than the previous value of Q′′e , then Q′′e is updated to this

value. Thus, Q′e takes the maximum over all Q′′e .

Assume that Algorithm ALG-PC computes a carving-decomposition TC of G with width

γ in f(n) time. In Step (II), Algorithm ALG-PC computes the candidates w.r.t. Emid(e) for

every link e of TC . For each internal link e of TC , there are (L+1)k|X1|+|X2| or (L+1)k|Emid(e)|

possible subsets of partial solutions to store. Since Emid(e) is bounded by γ and each edge

of Emid(e) has a load bounded by L and each subset of partial solution contains at most

k paths on each edge of Emid(e). Therefore, there are at most (L + 1)kγ possible subsets

of partial solutions to store. While merging, we only need to consider the paths on X1,

X2 and the paths on X3. Since |X1 ∪ X2 ∪ X3| ≤ 1.5γ, there are at most (L + 1)k1.5γ

cases to consider. The time complexity to process one link is O((L + 1)k1.5γn) and the

memory requirement is O((L+ 1)kγ). The total time complexity and memory requirement

are O((L+ 1)k1.5γn2 + f(n)) and O((L+ 1)kγn) respectively, where n represents number of

vertices in the graph G. The running time and memory requirement are polynomial in the

input parameters, when γ is bounded by a constant.

For a planar graph G, an optimal carving-decomposition TC of G can be computed in

O(n3) time [21, 39]. Algorithm ALG-PC solves the Max-PC problem inO((L+1)1.5kcw(G)n2+

n3) time and O(((L+ 1)kcw(G)n) memory space for G.

A ring is a well used topology in optical networks. The carving width of an undirected

ring is 2 and a carving-decomposition with width 2 can be constructed in linear time in Step

(I). Step (II) takes O((L+1)3kn) time and O(((L+1)2kn) memory space. Therefore for rings,

Algorithm ALG-PC solves the Max-PC problem in O((L+ 1)3kn) time and O((L+ 1)2kn)

memory space.

3.3 Exact algorithm for directed graphs

In many practical applications, communication links are directed and networks are modeled

by directed graphs. Algorithm ALG-PC can be used to solve the Max-PC problem on
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directed graphs as well. Let ~G be a directed graph and H ~G be the underline graph of ~G. In

Step (I), we find a carving-decomposition TC of small width for H ~G. In Step (II), we compute

a solution of the problem using the dynamic programming approach based on TC . For a link

e of TC , since each edge of the cut-set Emid(e) of H ~G may correspond to two directed edges in
~G, the cut-set of ~G corresponding to Emid(e) can have as many as 2|Emid(e)| edges. From this,

Algorithm ALG-PC solves the Max-PC problem in O((L+1)3kγn2+f(n)) time, assume Step

(I) finds a carving-decomposition of H ~G with width γ in f(n) time. For a simple directed

planar ~G, Algorithm ALG-PC solves the Max-PC problem in O((L + 1)3cw(H~G
)n2 + n3)

time.

The directed ring consists of two directed cycles, one in the clockwise direction and the

other in the counter clockwise direction. The Max-PC problem on directed rings can be

solved on each of the cycles independently and the problem on each cycle can be viewed

as the problem on the undirected ring. Therefore, our exact algorithm solves the Max-PC

problem in O((L+ 1)3kn) time for the directed rings.

3.4 Approximation algorithm

When k is large, Algorithm ALG-PC may not be practical. One can observe that the

Algorithm ALG-ED is a special case of ALG-PC, where k = 1. Using Algorithm ALG-ED

as a subroutine, we can have an approximation algorithm for the Max-PC problem using the

iterative greedy approach: Find a maximum edge-disjoint subset of P by Algorithm ALG-

ED and assign the paths in the subset one color; remove the subset from P and the assigned

color; repeat the above process until no color is available or all paths of P have been colored.

It is shown in [40], the interactive greedy approach gives an approximation ratio of 1.58.

Since the Algorithm ALG-ED solves the MEDPwPP problem, in O((L + 1)1.5γn2 + f(n))

time for arbitrary graphs and in O((L+1)1.5cw(G)n2 +n3) time for planar graphs. Therefore,

the approximation algorithm runs in O((L + 1)1.5γkn2 + f(n)) time for arbitrary graphs,

O((L+ 1)1.5cw(G)kn2 + n3) time for planar graphs and O((L+ 1)3kn) time for rings.

3.5 Approximation algorithm for directed graphs

Using Algorithm ALG-ED as a subroutine and using the iterative greedy approach, we can

also have an approximation algorithm for the Max-PC problem for the directed graphs.



CHAPTER 3. ALGORITHMS FOR THE MAX-PC PROBLEM 26

The algorithm runs in O((L + 1)3γkn2 + f(n)) time for arbitrary graph ~G and O((L +

1)3cw( ~G)kn2 + n3) time for simple planar graph ~G. Since the directed ring consists of two

directed cycles as described earlier, therefore, the approximation algorithm for directed rings

runs in O((L+ 1)3kn) time.

3.6 Computational study

We generate the sets of paths as follows, given a positive integer α and an allowable max-

imum load L of the α paths. First generate α source-destination pairs in the given graph,

randomly. Then find the shortest path between these pairs. If there are multiple shortest

paths between source-destination nodes of a pair, then choose an arbitrary one. Consider

only those shortest paths having path length greater than one. The load L of G is computed

by using these set of paths. If this load L is more than L, discard the generated paths and

start over again. Note that: (i) The set of pairs may contain multiple source-destination

pairs which have the same source and destination nodes or may have the same sets of paths,

(ii) If L is small and α is large, it might not be possible to generate a set of α paths with

maximum load L.

We implemented the exact algorithm and the 1.58-approximation algorithm for the Max-

PC problem and tested our implementations on the abstract models of a 16-node NSFNET

(Figures 3.2), a 24-node ARPANET (Figure 3.3) and on the rings. We also implemented

the 1.5-approximation algorithm (NPZ Algorithm) [33] for the Max-PC problem on rings.

We also implemented the first-fit, random-fit, most-used, and least-used heuristics [2, 9, 32]

for the Max-PC problem and tested these implementations on the NSFNET and the ring.

For the NSFNET, we compared the results of our 1.58-approximation algorithm with the

results of the first-fit, random-fit, most-used, and least-used heuristics. For the ring, we

also implemented the 1.5-approximation algorithm (NPZ Algorithm) and compared the the

results of our 1.58-approximation algorithm with the results of the NPZ Algorithm and with

the results of the above mentioned heuristics. The computer used has an AMD Athlon(tm)

64 X2 Dual Core Processor 4600+ (2.4GHz) and 3GByte of internal memory. The operating

system is SUSE Linux 10.2 and the programming language used is C++.

The computational results of the exact algorithm ALG-PC and 1.58-approximation

algorithm for the NSFNET and ARPANET are reported in Tables 3.1 and 3.2, respectively.

In the tables, k is the number of colors; |P | is the number of paths; L is the maximum
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Figure 3.2: A 16-node NSFNET

Figure 3.3: A 24-node ARPANET
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number of paths on any edge; Nopt, topt, and Mopt are the number of paths found, the time

used, and the memory space required by the exact algorithm ALG-PC, respectively; Napp,

tapp and Mapp are the number of paths found, the time used and the memory required by

the approximation algorithm, respectively. The time is in seconds and the memory space

is in MBytes, respectively. The time less than one second and memory less than 1 MBytes

are denoted by < 1. We use symbol ∗ to denote the fact that no solution is obtained due

to memory constraint. For each instance, we repeat the computation 7-10 times and report

the average of these results. Notice that the NSFNET and ARPANET are not planar but

very close to planar. In particular, removing the edges represented by bold segments in

Figures 3.2 and 3.3 makes the graphs planar. For a non-planar graph G, we first compute a

planar subgraph G′ by removing the bold edges and then an optimal carving-decomposition

TC of G′ is computed. We use TC as the carving-decomposition of G. The width of TC for

G is at most cw(G′) + 2. More specifically, the width of TC is 5 for NSFNET and 10 for

ARPANET.

As shown in Table 3.1, the exact algorithm ALG-PC can solve the Max-PC problem on

the NSFNET of γ = 5 for small k and L (e.g., k = 3, L = 4 and k = 2, L = 8) in a practical

time and memory. When the load L is large, ALG-PC fails to solve the problem on a

machine with 3GBytes memory. Algorithm ALG-ED can solve the MEDPwPP problem on

the NSFNET for practical values of L. The ALG-ED based 1.58-approximation algorithm

computes near optimal solutions for the Max-PC problem on the NSFNET for practical

values of k and L.

The results in Table 3.2 show that ALG-PC can only solve the Max-PC problem on the

ARPANET for k = 2 and L = 4. This is because the ARPANET has a larger carvingwidth

γ = 10 than that of the NSFNET. Algorithm ALG-ED can solve the MEDPwPP problem

for L = 19 in a practical time and memory space. The approximation algorithm gives near

optimal solutions for the Max-PC problem with k and L as large as 16 and 15, respectively.

From Tables 3.1 and 3.2, we can see that the exact algorithm ALG-PC can solve the

Max-PC problem for small k, L and γ in a practical time and memory space. If one of

these parameters is large, ALG-PC may not be practical. In this case, the approximation

algorithm is a good alternative. It gives solutions close to optimal, for practical values of k

and L.

The computational results of 1.58-approximation algorithm and the first-fit, random-fit,

most-used and least-used heuristics for the NSFNET are reported in Table 3.3. In this table,
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Table 3.1: Results for the 16-node NSFNET backbone, where γ = 5

k |P | L Nopt topt Mopt Napp tapp Mapp

2 20 4 12 < 1 < 1 11 < 1 < 1
3 20 4 15 3.915 261 15 < 1 < 1
4 20 4 * * * 18 < 1 < 1
2 25 6 11 1.756 55 11 < 1 < 1
4 25 6 * * * 19 < 1 < 1
2 30 8 15 8.067 907 12 < 1 < 1
4 30 8 * * * 23 < 1 < 1
2 90 18 * * * 17 < 1 < 1
4 90 18 * * * 33 < 1 < 1
8 90 18 * * * 55 < 1 < 1
16 90 18 * * * 73 < 1 < 1
1 200 49 8 4.88 210 8 2.893 171
2 200 49 * * * 19 4.77 748
4 200 49 * * * 35 7.793 1253
8 200 49 * * * 64 9.176 1523
16 200 49 * * * 100 10.495 1715
32 200 49 * * * 117 11.341 1753
1 350 64 10 7.45 1455 10 5.765 1010
2 350 64 * * * 19 10.908 2671
1 400 77 10 15.24 2999 10 9.996 2673

Mff , Mrf , Mmu and Mlu are the number of paths colored by the first-fit, the random-fit,

the most-used and the least-used heuristics, respectively. Other symbols are interpreted in

a same way as that in Table 3.1, 3.2. Note that, for this table, we repeat the computation

for each instance 5-7 times and report the average of the results. From Table 3.3, we can

see that the approximation algorithm gives better solution than all heuristics.

Table 3.4 gives the results for the NSFNET when we view the NSFNET as the outline

graph of a directed network with each edge of the graph corresponding to two directed

links, one in each direction in the network. For this table, we repeat the computation for

each instance 5-7 times and report the average of the results. Similar to the undirected

graphs, Algorithm ALG-PC can solve the Max-PC problem when γ, k and L are small.

The 1.58-approximation algorithm is an efficient alternative for the exact algorithm. The

directed NSFNET network has carving width 10 and the undirected ARPANET network

also has carving width 10. Since both directed NSFNET network and undirected ARPANET

network have the same carvingwidth, therefore the results of directed NSFNET network can
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Table 3.2: Results for the 24-node ARPANET backbone, where γ = 10

k |P | L Nopt topt Mopt Napp tapp Mapp

2 20 4 15 9.875 1037 14 < 1 < 1
4 20 4 * * * 19 < 1 < 1
1 80 15 15 9.88 1010 15 7.36 783
2 80 15 * * * 28 12.245 1394
4 80 15 * * * 47 16.806 2142
8 80 15 * * * 63 20.004 2412
16 80 15 * * * 72 19.436 2410
1 100 19 18 38.11 3001 18 20.996 2859

be almost same as that of undirected ARPANET network.

The computational results of our exact algorithm ALG-PC, the 1.58-approximation

algorithms for a ring of 30 nodes are reported in Table 3.5. This table also includes the

results of the NPZ Algorithm, the first-fit and the random-fit heuristics. Notice that we only

report the first-fit and the random-fit heuristics in the table because they color more paths

than the least-used and most-used ones for the instances on the ring. In the table, Nnpz

is the number of paths colored by the NPZ Algorithm. Other symbols are interpreted in a

same way as that in Table 3.1, 3.2 and 3.3. For these results, we repeat the computation

for each instance 7-10 times and report the average of the results.

Because the ring has a small carvingwidth (γ = 2), the exact algorithm ALG-PC can

solve the Max-PC problem on the ring for larger k and L (e.g., k = 8, L = 6; k = 4, L = 10

and k = 2, L = 18) in a practical time and memory space than those in NSFNET and

ARPANET. Algorithm ALG-ED can solve the MEDPwPP problem on the ring for large

L efficiently. The 1.58-approximation algorithm is also efficient for the Max-PC problem

on the ring with practical values of k and L. The NPZ algorithm achieves the best known

approximation ratio (1.5) for the Max-PC problem on the ring. The results show that the

NPZ algorithm and the 1.58 approximation algorithm for the Max-PC problem on the ring

has a similar performance in the number of paths colored. Both approximation algorithms

color more paths than the heuristics. On the other hand, Our 1.58-approximation algorithm

works for general graphs and has a comparable performance as that of the NPZ algorithm

on the ring.

The run time and memory space of the algorithms increase very quickly when the path

load L, the number of colors k or the carvingwidth increases, particularly for the exact
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Table 3.3: Comparison of 1.58 approximation algorithm with the first-fit, random-fit, most-
used and least-used heuristics for the 16-node NSFNET

k |P | L Napp Nff Nrf Nmu Nlu

2 100 17 19 19 18 19 17
4 100 17 33 33 33 33 32
8 100 17 55 54 52 54 52
16 100 17 77 69 68 69 68
17 100 17 78 69 69 69 69
2 150 30 20 20 20 19 20
4 150 30 35 34 35 33 35
8 150 30 64 59 58 56 55
16 150 30 89 81 79 79 78
32 150 30 101 84 84 84 84
40 150 30 104 84 84 84 84
44 150 30 104 84 84 84 84
1 250 45 12 11 11 11 11
2 250 45 23 22 22 22 22
4 250 45 40 38 38 38 38
8 250 45 64 59 61 59 61
16 250 45 104 90 90 90 91
32 250 45 142 112 112 112 112
40 250 45 146 112 112 112 112
44 250 45 160 112 113 112 112

algorithm ALG-PC. This coincides with the theoretical analysis: the exact algorithm is

efficient for graphs with small carvingwidth when the load is not too large and number

of colors used is small, but time and memory consuming if one of these parameters is

large. The memory requirement seems a bottleneck for Algorithm ALG-PC to solve the

Max-PC problems for large carvingwidth, large link load or large number of colors. The

1.58-approximate algorithm is more practical in time and memory requirement as compared

to the exact algorithm and generate results close to the optimal ones.
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Table 3.4: Results for a 16-node NSFNET backbone (directed case), where 2γ = 10

k |P | L Nopt topt Mopt Napp tapp Mapp

2 8 2 7 11.318 1310 7 < 1 < 1
2 10 3 10 21.415 2299 10 < 1 < 1
2 16 4 8 51.012 2881 8 < 1 < 1
1 60 9 15 33.34 2877 15 23.341 2223
2 60 9 * * * 33 30.764 2780
4 60 9 * * * 45 31.079 2891
8 60 9 * * * 50 32.214 2893
16 60 9 * * * 50 32.304 2890

Table 3.5: Comparison of the exact algorithm, 1.58 approximation algorithm, NPZ algo-
rithm, first-fit and random-fit heuristics for a ring of 30 nodes

k |P | L Nopt Napp Nnpz Nff Nrf

1 30 6 12 12 12 4 4
2 30 6 21 19 20 9 9
4 30 6 26 25 24 22 22
6 30 6 28 28 27 27 27
8 30 6 30 29 29 27 27
1 60 10 15 12 12 4 4
2 60 10 25 23 24 9 9
4 60 10 40 39 40 22 22
8 60 10 * 53 53 27 27
16 60 10 * 59 60 27 27
1 120 18 15 13 12 10 10
2 120 18 25 23 24 15 15
4 120 18 * 47 48 24 23
8 120 18 * 80 81 27 27
16 120 18 * 103 105 27 27
32 120 18 * 118 120 27 27
1 240 47 22 19 19 9 9
2 240 47 * 26 25 18 18
4 240 47 * 36 37 30 31
8 240 47 * 70 72 45 47
16 240 47 * 135 134 72 70
32 240 47 * 192 194 79 79
40 240 47 * 206 206 79 79
44 240 47 * 206 210 80 80



Chapter 4

Algorithm for the MEDBCS

Problem

In this chapter, we describe an implementation of a bidimensionality theory based algorithm

for the maximum edge degree-bounded connected subgraph (MEDBCS) problem, which is

described in [38]. The MEDBCS problem is a generalization of the longest path or longest

cycle problem where d ≤ 2 and d = 2, respectively. In [38], the bidimensionality theory

based algorithm for the MEDBCS problem is discussed, however the dynamic programming

step is not discussed in detail. We give a detailed description of the dynamic programming

step of the bidimensionality theory based algorithm. We also perform a computational study

of the algorithm for planar graphs.

4.1 Non-crossing property

A non-crossing partition is a partition τ(h) = {τ1, ..., τm} of a cyclically ordered set S =

{1, ..., h} such that there are no numbers a < b < c < d where a, c ∈ τi, and b, d ∈ τj with

i 6= j. A partition can be visualized by a circle with n equidistant vertices on its border,

where every set of the partition is represented by the convex polygon with its elements

as endpoints. A partition is non-crossing if these polygons do not overlap. Non-crossing

partitions were introduced by Kreweras [27], who showed that the number of non-crossing

partitions over n vertices is equal to the n-th Catalan number:

33
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CN(n) =
1

n+ 1
(

2n
n

)
∼ 4n

√
πn

3
2
≈ 4n (4.1)

In [12], it is proved that, dynamic programing algorithms for a planar graph can be

speed up by using a non-crossing property.

4.2 Algorithm for the MEDBCS problem

A parameter P is a function mapping graphs to positive integers. A problem is bidimensional

if the value of the parameter P depends on the size of the grid and P (H) ≤ P (G), where

H is minor of G. The aim is to decide if P (G) ≤ k for given G and k. Demaine et al. in

[11] defined bidimensionality as: A parameter P is minor bidimensional with density δ if

P is closed under taking minors, for (r × r)-grid R, P (R) = (δr)2 + o((δr)2). A parameter

P is contraction bidimensional with density δ if P is closed under contractions, for any

partially triangulated (r× r)-grid R, P (R) = (δRr)2 + o((δRr)2). The parameter P is called

bidimensional either it is minor bidimensional or contraction bidimensional. Notice that a

minor bidimensional problem is also a contraction bidimensional but the inverse may not be

true. The density is usually 0 < δ ≤ 1. For example a vertex cover problem. A parameter

vertex cover is minor-bidimensional and for a (r× r)-grid, the size of vertex cover is at least

r2/2. Therefore, a parameter vertex cover has density 1/
√

2.

The maximum edge degree-bounded connected subgraph (MEDBCS) problem is an ex-

ample of bidimensional problems and one of the classical NP-hard problems [18]. The

MEDBCS problem is a generalization of the longest path problem, where d ≤ 2 and the

Hamiltonian cycle problem, where d = 2. The bidimensionality theory based subexponential

parametrized algorithm for the MEDBCS problem is given by Sau and Thilikos in [38]. It

is proved in [38] that the parameter for the MEDBCS problem is bidimensional by showing

that the parameter the MEDBCS is minor closed and from the following lemma.

Lemma 4.2.1 [38] For any d ≥ 2 and for any planar graph G it holds that bw(G) ≤
3/δ.

√
MEDBCS(G)+O(1), with δ = 1, if d = 2, δ =

√
3/2, if d = 3 and δ =

√
2, if d ≥ 4.

Once it is the proved that the problem is bidimensional, next step is to solve the prob-

lem by using a bidimensionality theory based algorithm. A bidimensionality theory based

algorithm has two major steps. Step (I) is to find the branch-decomposition and Step (II) is
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to check either bw(G) is larger or smaller than some threshold value. If bw(G) is larger than

some threshold value then P (G) is computed from gm(G). Otherwise, P (G) is computed

optimally by the dynamic programing approach. For the MEDBCS problem, in Step (II),

we have to check either bw(G) > 3
√
k/δ, where δ is a constant depending on the bounded

degree d: for d = 2 δ = 1, for d = 3 δ =
√

3/2 and for d ≥ 4 δ =
√

2. If bw(G) ≤ 3
√
k/δ,

then the value of the MEDBCS is computed, by using a dynamic programing algorithm, in

O(2log(5(d+1))6
√
k/δ
√
kn) time [38]. Otherwise, the value of the MEDBCS is computed from

gm(G) or cm(G).

For the MEDBCS problem, an input instance to the algorithm consists of a graph G,

a degree d. Let the subset E ⊆ E(G) is a feasible solution such that the subgraph having

the edge set E is connected and degree of the vertices in the subgraph is bounded by

d. The algorithm outputs a maximum feasible solution. For Step (I) we find the branch

decomposition. In [39], it is proved that for a planar graph G of branchwidth h, there exists

an sc-decomposition of G with width h.

Theorem 4.2.1 [39] Let G be a planar graph of branchwidth at most h without vertices of

degree one embedded on a sphere. Then there exists an sc-decomposition of G of width at

most h.

It is further shown that an optimal sc-decomposition can be computed in O(n)3 time

[21, 39]. For computing bw(G) and an optimal branch-decomposition of G, we use the tools

reported in [5, 6]. After finding bw(G), we check that either bw(G) < 3
√
k/δ, if it is not,

then the answer to the MEDBCS problem is ”NO“ and we find the value of the MEDBCS

parameter from cm(G). Since a (g×h)-cylinder contains a (r×r)-grid as a minor, therefore,

the value of cm(G) is computed from large (g × h)-cylinder minors. For computing large

cylinder minors, we use the tool reported in [41]. This tool finds the (g × h)-cylinder with

g ≥ bw(G)/2. Otherwise, the MEDBCS problem is solved by using the dynamic programing

approach.

Branch-decomposition based algorithms are proposed for special cases of the MEDBCS

problem, the longest path and Hamiltonian cycle problems, in planar graphs [12]. A bidi-

mensional algorithm for the general MEDBCS problem is discussed in [38] without much

detail of the dynamic programming step. Next, we give a detailed description of the dy-

namic programming step for the algorithm in [38] for the MEDBCS problem. Much of the

description is based on the algorithm given in [12].
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In Step (II), for the dynamic programing approach, the branch decomposition TB is first

converted to a rooted binary tree by replacing an internal link e = {x, y} with three {x, z},
{z, y}, {r, z} links. In these links z and r are new nodes added in TB, where r is the root

and {z, r} is an internal link. For every internal link e of TB, e has two child links f and

g incident to e. Let Te be the subtree of TB consisting of all the descendant links of e and

T ′e be the subtree of TB consisting of all the rest of the links which are not descendant of

e. Let Ge be the subgraph of G induced by the edges at the leaf nodes of Te and G′e be

the subgraph of G induced by the edges at the leaf nodes of T ′e. The dynamic programming

step finds the partial solutions of Ge for every subtree Te of TB from leaves to the root in a

bottom-up way.

For an internal link e of TB and Ge, that is the subgraph of G induced by the edges

associated with the leaves of the Te, let Oe be the corresponding noose in Σ. The noose Oe
partitions Σ into two discs and separate Ge from G′e. Let V (Oe) denote the set of vertices

on Oe, which is = Vmid(e). Each child link f and g has a corresponding noose. Let Of and

Og be the noose corresponding to the separation induced by the links f and g, respectively.

Let V (Of ) and V (Og) denote the set of vertices on Of and Og, respectively, which are

= Vmid(f) and = Vmid(g), respectively. The set Vmid(f) ∪ Vmid(g) ∪ Vmid(e) is partitioned into

four subsets as illustrated in Figure 4.1:

X1 = Vmid(e)\Vmid(g)

X2 = Vmid(e)\Vmid(f)

X3 = Vmid(e) ∩ Vmid(g) ∩ Vmid(g)

X4 = (Vmid(f) ∩ Vmid(g))\Vmid(e)

Given a labeling Le : E(Ge)→ {0, 1}, on each edge of Ge. For every vertex v of Ge, we

define the degLe(v) to be the sum of the labels on the edges incident to v. Let GLe be the

subgraph induced by the edges with label ’1’. Let CGLe = {CGLe1.....CGLek} be the set of

connected components in GLe. Le is called a valid partial solution of the MEDBCS problem

if all the edges of CGLei ∈ CGLewith label ’1’ are connected and degLe(v) for each vertex of

the CGLei is ≤ d. For instance, for a partial solution of the MEDBCS problem with d ≤ 2,

each connected component of GLe is a cycle if degLe(v) is exactly 2 for all the vertices, or a

path if degLe(v) is ≤ 2 . The size of the partial solution is defined as the number of edges

with label ’1’ in CGLe such that degLe(v) for each vertex of CGLe is bounded by d.
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Figure 4.1: Subsets of cut sets Vmid(f), Vmid(g) and Vmid(e)

Let π be the clockwise or counter clockwise order of vertices of Vmid(e), starting with an

arbitrary vertex. We color each vertex v ∈ Vmid(e), in the order π. The color assignment is

done by using following five basic colors.

• 0: v does not exist in any connected component.

• 1[: v is the starting vertex of the connected component as computed in the order π.

• 1]: v is the ending vertex of the same connected component in which 1[ is found, and

it is also computed according to the order π.

• 1?: v is the somewhere in the middle of the connected component which has already

1[ and 1] vertics.

• 1: v is the only one vertex which is found in the order π for the connected component.

Since degLe for each vertex of Vmid(e) is bounded by degree d, therefore each of the

basic colors except 0, is further categorized by degree d. Therefore, each of the basic

color is further assigned colors from 1, 2......d. For example, for 1[, there would be set of d

colors {1[1, ......1[d}. For color 1, there could be the possibility that only one vertex exist

with degLe(v) zero. For four basic colors, where each color is bounded by degree d, there

are {1[1, ......1[d} set of d colors for each basic color, therefore, total number of colors are

(4× d) + 2.
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During dynamic programing, for every internal link e, all possible partial solutions are

computed based on Emid(f) and Emid(g). For an internal link e, while merging the solutions,

let f and g be the child links, which are already processed. For a link e and the corresponding

noose Oe, the state of the dynamic programing is specified by an ordered l-tuple te :=

(v1, .....vl). The variables v1, ...., vl correspond to the vertices of Oe ∩ V (G) taken according

to the cyclic order π. Each of vi takes one of the (4 × d) + 2 colors. Hence, there are at

most O(((4×d) + 2)|V (G)|) states. For every state, a value Ee is computed which keeps the

maximum size of the valid partial solutions that can be represented by this state.

We perform the dynamic programming over the middle set Vmid(e), starting at the leaves

of TB and working bottom-up towards the root edge. For each leaf link of TB, the corre-

sponding edge of G has two adjacent vertices of G. We set the value of Ee = 1, if both

vertices exist with degLe(v) = 1, otherwise the value of Ee = 0. For each internal link, we

merge the partial solutions. The connected components which intersect are fused and the

degrees of the vertices are updated. For each edge of the branch decomposition, the tables

of our dynamic programing algorithm store all the partial solutions to the problem in the

graph processed so far. Partial solutions may have several connected components, there-

fore, we need to keep track of them too. Along with, we also need to control the degrees of

the vertices in the partial solutions, in order to assure that maximum degree of the output

subgraph is bounded by d. At the root node, we get the output subgraph that should be

connected and bounded by d. Let CGLf and CGLg be the set of components from child

links f and g respectively. For merging the components, there are two steps. First, we have

to check either the specific component CGLf i ∈ CGLf can be merged with CGLgj ∈ CGLg
or not. If it can be merged then in the second step, we have to check, either the degLe(v)

for all the vertices of CGLem ∈ CGLe is bounded by d or not. If both the conditions are

true then merge the specific components. Suppose CGLf i ∈ CGLf can be merged with

CGLgj ∈ CGLg. While merging these components, follow the following merging rules.

degLe(v) = degLf (v), if v ∈ X1

degLe(v) = degLg(v), if v ∈ X2

degLe(v) = degLf (v) + degLf (v), if v ∈ X3, X4
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Figure 4.2: Catalan structures in the Vmid(e) of a sc-decomposition

After merging the components, find a state by assigning colors to the vertices of Vmid(e)

according to the cyclic order π and degrees of vertices. If the corresponding state has already

some solution set, then compare the recent results with the previous one. It is important

to mention here, that while comparing the results, we have to compare all the components.

After comparing, for the specific state, keep the solution having maximum number of edges

in all the components.

Sau and Thilikos in [38] proved that the MEDBCS problem can be solved in (d +

1)2h.24h.logh.h.n steps for an arbitrary graph G of branchwidth at most h. For detailed

analysis of the algorithm readers are referred to [38]. When the input graph G is restricted

to a planar graph, the running time can be reduced by using the sc-decomposition and

non-crossing property [12]. Non-crossing partitions speed up the dynamic programming

approach when it is applied to planar graphs. For the MEDBCS problem, when the input

graph G is restricted to be planar, then the subgraph (connected components) obtained

by the intersection of a partial solution of the child links is also planar. Each connected

component can be drawn inside a cycle such that they touch the cycle on its vertics and they

do not intersect, as illustrated in Figure 4.2. Since the number of non-crossing partitions

over Vmid(e) vertices, is equal to the Catalan number equation 4.1. Therefore, for every

planar graph G, the MEDBCS problem is computed in O((d + 1)2h.52h.h.n) steps and for

any d ≥ 2, the MEDBCS problem is solvable is O(2log(5(d+1))6
√
k/δ
√
kn+n3) time [38] time.
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Table 4.1: Computational results of dynamic programming algorithm for the MEDBCS
problem

CLASS |V (G)| |E(G)| bw(G) d |Max− E| tMax−E MMax−E

I

350 1044 4 2 287 2.215 512
3 435 18.16 1262

500 1494 4 2 363 3.613 1050
3 623 60.819 2640

800 2394 4 2 578 8.403 2644
3 * * *

900 2694 4 2 * * *

II

50 139 5 2 50 0.955 28
3 74 2.98 122

100 288 6 2 100 5.16 238
3 149 11.53 1414

III

153 248 4 2 131 0.249 56
3 194 4.948 87

257 433 5 2 225 1.67 727
3 323 11.10 1325

495 852 5 2 426 9.751 295
3 698 15.98 1255

4.3 Computational study

We test the bidimensionality theory based algorithm for the MEDBCS problem on three

classes of graphs. Class I is a collection of random maximal planar graphs which are gener-

ated by LEDA [30]. Class II is a collection of triangulation graphs which are also generated

by LEDA. Class III is a collection of random planar graphs which are generated by PIGALE

library [10].

The computer we used has an AMD Athlon(tm) 64 X2 Dual Core Processor 4600+

(2.4GHz) and 3GByte of internal memory. The operating system is SUSE Linux 10.2 and

the programming language used is C++.

The computational results of the dynamic programing algorithm for the above mentioned

three classes of graphs are reported in Table 4.1. In the table, for the given instance, |V (G)|
is the number of vertices in the given graph, |E(G)| is the number of edges in the given

graph G, bw(G) is the branchwidth of the given graph, d is the input degree, |Max − E|
is the maximum number of edges obtained for the MEDBCS problem, tMax−E is the time
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to solve the MEDBCS problem for the given graph and MMax−E is the memory required

by the algorithm. It is necessary to mention here that time is in seconds and memory is in

MBytes. We use symbol ∗ to denote the fact that no solution is obtained due to memory

constraint. Note that, we repeat the computation five times for every particular instance

and only report the best possible result.

As shown in Table 4.1, the algorithm can solve the MEDBCS problem on graphs with

small bw(G), as in class I, in a practical time and memory. When d is 2, the algorithm

can solve the problem for large graphs efficiently. When d is increased to 3, the running

time increases and more memory is used as compared to d = 2 and the algorithm cannot

solve the problem for larger graphs even when the branchwidth is 4. For class II, the graphs

have branchwidth larger than other classes I and III, the algorithm can solve the problem

within practical time and memory for smaller graphs. For larger graphs, the algorithm can

solve the problem for d = 2, but it quickly goes out of memory, when d > 2. Therefore,

the running time of the algorithm depends on the branchwidth of the graph, the size of the

graph and on d.

It is necessary to mention here that, we get the results for d = 2 and d = 3, because when

d > 3, the running time increases very quickly and also due to limited available memory,

we cannot get the results even for graphs of smaller size. However, if the memory is not

the issue, our algorithm can solve the MEDBCS problem even for large d. When either the

bw(G) or d is large, the algorithm fails to solve the problem on a machine with 3GBytes

memory. In conclusion, the bidimensionality theory based algorithm for the MEDBCS

problem can solve the problem, for graphs with small bw(G) and d, in practical time and

memory space.

When the branchwidth, bw(G) of the given planar graph G is large, the dynamic pro-

graming algorithm is not practical for solving the MEDBCS problem. According to the

bidimensionality theory, we can find an approximate solution of the MEDBCS problem from

the largest grid minor. For computing the largest grid minors, we use the tool reported in

[41], named GT tool. The GT tool is an implementation of the algorithm designed by Gu

and Tamaki in [22], to compute an approximation of the largest cylinder minor. The GT

tool finds the (g × h)-cylinder minor, where g ≥ 3 and h ≥ 1. cm(G) denote the largest

integer g such that G contains a (g × g/2)-cylinder as a minor. It is shown in [22] that

for a planar graph G, a (g × g/2)-cylinder minor with g ≥ bw(G)/2, can be computed ef-

ficiently. Therefore, for a given planar graph G with large bw(G), we can compute a large
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cylinder minor of G. From the large cylinder minor of G, we can find a solution of the

MEDBCS problem with the number of edges close to the number of edges in the cylinder

minor. Using cylinder minors, we can find a lower bound on the size of solutions for the

MEDBCS problem. For the MEDBCS problem with d ≤ 2, the problem is a generaliza-

tion of the longest path problem, a (g × h) cylinder minor of G implies a path of length

≥ (g × h) − 1. The MEDBCS problem with d exactly 2, the problem is a generalization

of the Hamiltonian cycle problem, a (g × h) cylinder minor of G implies a cycle of length

≥ (g × h). For the MEDBCS problem with d at most 3, and d ≥ 4, a (g × h)-cylinder

minor of G implies the solution of size ≥ [{g(h− 1) + 2}+ {h(g − 1)− bg−1
2 c(h− 2)}] and

≥ [{g(h−1))+(h(g−1)}], respectively. Therefore, for the MEDBCS problem with d exactly

2, the lower bound is (g × h), for d ≤ 2, the lower bound is (g × h)− 1 and for d at most 3,

the lower bound is [{g(h− 1) + 2}+ {h(g− 1)−bg−1
2 c(h− 2)}]. For d ≥ 4, the lower bound

is [{g(h− 1)) + (h(g − 1)}].
It is necessary to mention here that GT tool generates different results at every execution,

because it starts from an arbitrary edge. For branchwidth at most 6, we can find the exact

solution of the MEDBCS problem by using the dynamic programing approach, in practical

time and memory, as shown in Table 4.1. In the case of branchwidth > 6, we use GT tool

to find an approximate solution for the MEDBCS problem. We use the GT tool on classes

II and III, mentioned above, because it contain graphs of large branchwidth 7 and 8. The

results are reported in Table 4.2, where cm(G) is the size of the cylinder minor found by

GT tool. LB is the lower bound for the solution of the MEDBCS problem implied by the

cylinder minor. Other symbols are interpreted in the same way as in Table 4.1. In order to

get an approximation of the largest grid minor, we run the GT tool for each graph instance

many times.
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Table 4.2: Computational results of GT tool for the MEDBCS problem

CLASS |V (G)| |E(G)| bw(G) cm(G) d LB

II

1000 1491 8 (6 × 5) ≤2 29
=2 30
≤3 45

2000 5977 8 (6 × 4) ≤2 23
=2 24
≤3 36

III

2009 3369 7 (7 × 4) ≤2 27
=2 28
≤3 41

3586 6080 8 (6 × 5) ≤2 29
=2 30
≤3 45



Chapter 5

Conclusion and Future Work

In this thesis, we focus on two graph optimization problems, maximum path coloring

(Max-PC) problem and maximum edge degree-bounded connected subgraph (MEDBCS)

problem. We use two graph decomposition methods, branch-decomposition and carving-

decomposition, to design and describe the algorithms for the problems. For the Max-PC

problem, we proposed a carving-decomposition based exact algorithm ALG-PC. Based on

this algorithm, we also developed 1.58-approximation algorithms for the problem. We also

performed a computational study of both of the algorithms. The computational results

show that the exact algorithm is practical when the given carving-decomposition has small

width γ, the number of colors k is small and the link load L is not large. The approximation

algorithm give solutions close to optimal ones and is an efficient alternative for the exact

algorithm when one of γ, k and L is large. Both of the algorithms not only work for undi-

rected graphs but also for directed graphs. The computational study shows that the memory

requirement is a major bottleneck for our algorithms to solve the problem instances with

large γ, k or L. We also implemented the well used first-fit, random-fit, most-used and least

used heuristics for the Max-PC problem and compared the results with our approximation

algorithm. We found that our approximation algorithm always gives better solution than

the heuristics. We also implemented the 1.5-approximation algorithm (NPZ Algorithm) for

the ring network and compared the results of our 1.58-approximation algorithm with those

of NPZ Algorithm. It is shown that the 1.58-algorithm has a similar performance as that of

NPZ Algorithm. Both algorithms find solutions close to optimal ones and are efficient for

the Max-PC problem with practical values of k and L on the ring network. Both NPZ Algo-

rithm and the 1.58-approximation algorithm color more paths than the heuristics studied.

44



CHAPTER 5. CONCLUSION AND FUTURE WORK 45

It is worth to consider how to reduce the memory requirement by the algorithms.

For MEDBCS problem, we implemented a bidimensionality theory based algorithm de-

scribed in [38]. The bidimensionality theory based algorithm has two major ingredients

branch-decomposition and the largest grid minor. We implemented a branch-decomposition

based algorithm for MEDBCS problem and give a detailed description of the dynamic pro-

graming step. We also perform a computational study of the algorithm on planar graphs

and found that practical results coincide with the theoretical results. The computational

results show that the algorithm can solve the problem for graphs with small branchwidth

and with small d in practical time and memory. Our algorithm can also solves the problem

for larger instances if memory is not a hurdle and the running time might be in hours.

One may find new techniques to reduce the memory usage of the algorithm. We performed

a computational study in planar graphs, one can extend the implementation for arbitrary

graphs.
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[30] K. Mehlhorn and S. Näher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 1999.

[31] M. Mihail, C. Kaklamanis, and S. Rao. Efficient access to optical bandwidth. In
Proceedings of the 36th Annual Symposium on Foundations of Computer Science, FOCS
’95, pages 548–557, 1995.

[32] A. Mokhtar and M. Azizoglu. Adaptive wavelength routing in all-optical networks.
IEEE/ACM Transactions on Networking, 6:197–206, 1998.

[33] C. Nomikos, A. Pagourtzis, and S. Zachos. Satisfying a maximum number of pre-routed
requests in all-optical rings. Computer Networks, 42:55–63, 2003.

[34] P. Raghavan and E. Upfal. Efficient routing in all-optical networks. In Proceedings of
the twenty-sixth annual ACM symposium on Theory of computing, STOC ’94, pages
134–143, 1994.

[35] N. Robertson and P. D. Seymour. Graph minors: X. obstructions to tree-decomposition.
Journal of Combinatorial Theory, Series B, 52:153–190, 1991.

[36] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92:325–357, 2004.

[37] N. Robertson, P. D. Seymour, and R. Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 62:323–348, 1994.

[38] I. Sau and D. M. Thilikos. Subexponential parameterized algorithms for degree-
constrained subgraph problems on planar graphs. Journal of Discrete Algorithms,
8:330–338, 2010.



BIBLIOGRAPHY 49

[39] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica,
14(2):217–241, 1994.

[40] P.J. Wan and L. Liu. Maximal throughput in wavelength-routed optical networks.
Discrete Mathematics and Theoretical Computer Science, 46:15–26, 1998.

[41] C. Wang and Q. P. Gu. Computational study on bidimensionality theory based algo-
rithm for longest path problem. In Proceedings of the 22nd International Symposium
on Algorithms and Computation, pages 364–373, 2011.




