
MEASURING TRENDS AND REPETITIONS IN DATA

STREAMS

by

Hossein Jowhari

M.S., Sharif University of Technology, 2005

B.S., Teacher Training University, 2002

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Science

c© Hossein Jowhari 2012

SIMON FRASER UNIVERSITY

Spring 2012

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for ”Fair Dealing”. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.

APPROVAL

Name: Hossein Jowhari

Degree: Doctor of Philosophy

Title of Thesis: Measuring Trends and Repetitions In Data Streams

Examining Committee: Dr. Cenk Sahinalp

Chair

Dr. Funda Ergun, Senior Supervisor

Associate Professor

Dr. Gábor Tardos, Supervisor

Professor

Dr. Petra Berenbrink, SFU Examiner

Associate Professor

Dr. Ronitt Rubinfeld, External Examiner

Professor, CSAIL, MIT

Date Approved: April 10, 2012

ii

Partial Copyright Licence

Abstract

This thesis is concerned with the study of problems related to the measurement of disorder

in the data stream model where the input, accessed in sequential manner, is a long sequence

and there are strict memory limitations. In particular, we study sublinear-space algorithms

for the following problems.

• Measuring sortedness. In this category, we study the problem of approximating the

length of the longest increasing subsequence of a stream. Its dual problem, known as

distance to monotonicity, is another measure that is considered in this work.

• Measuring periodicity. We study detecting periodicity and estimating closedness to

periodicity in time-series data streams.

• Finding duplicates. In contrast to periodicity which concerns consecutive repetitions,

we study standard notion of repetition as well and give algorithms for reporting a

duplicate in data streams.

In this thesis, algorithms and lower bounds on the memory requirements are presented

for the above problems. In particular, in our main contributions, a tight lower bound on

the space complexity of deterministic estimation of the length of the longest increasing

subsequences is shown; a streaming algorithm for pattern matching and computing the

period of a sequence are given, and finally we show tight bounds on the space complexity of

finding duplicates in long streams. To accomplish the latter, we have designed an efficient

streaming samplers that works in a general setting and has broad applications in processing

dynamic data streams.

iii

Socrates: you see, Meno; I am not teaching the boy anything. All I do is question him.

And now he thinks he knows the length of the line on which an eight square foot figure is

based.

iv

Acknowledgements

I would like to express my utmost gratitude to my thesis advisor, Funda Ergun. From

the beginning of my studies at SFU, Funda has encouraged and helped me to shape my

research directions and focus on more important problems. Funda has been a wonderful

collaborator, a patient listener and I have to say rather tolerant with my mumblings and

unintelligible talk. Thanks to her continuous and unconditional support, I have enjoyed a

comfortable flexibility in pursuing my interests and ideas. I feel incredibly indebted to her.

I have also been very fortunate to have Gábor Tardos as my supervisor and co-author.

Gábor’s mathematical precision and brilliance has been a joyous inspiration for me. Many

thanks to Cenk Sahinalp for numerous insights and discussions on research questions, spe-

cially on the edit distance problem (unfortunately I ended up disappointing him by doing

very little progress there.) I should also thank Ronitt Rubinfeld for kindly hosting my visit

to MIT and serving as the external examiner in my thesis defence.

Special thanks to my co-author Mert Sağlam. Some of the results in this thesis are

obtained owing to the fresh wave of enthusiasm he brought to our little group. I also thank

him for allowing me to use some material of his own thesis.

During my studies I have benefited from the enlightening insights and the help of many

researchers. Thanks to Mohammad Ghodsi, Morteza Monemizadeh, Ravi Sundaram, Ravi

Kumar, David Woodruff, Seshadhri Comandur, Petra Berenbrink, Artur Czumaj, Piotr

Indyk and Alexandr Andoni. In particular my gratitude to Koods (Ravi Sundaram) for the

opportunity of the collaboration while I was a master student at Sharif University and later

his assistance with my admission to SFU.

This thesis would not have been possible without my friends at SFU and Vancouver.

Thanks to Majid Bagheri, Lisa Brunner, Sophie Burrill, Bradley Coleman, Phuong Dao,

v

Faraz Hach, Iman Hajirasouliha, Alireza Hajkhodabakhshi, Farhad Hormozdiari, Fereydoun

Hormozdiari, Basti Koya, Marjan Marzban, Azhvan Sheikhahmady, Shilo StCyr, Fazil Sul-

tan, Kouhyar Tavakolian and Alexander Zaganas.

Finally I would like to thank my parents, Amineh and Abdullah, my brothers and

sisters for their love and support. I am grateful to my brother in law Hamed Rahimi for his

generous support and encouragement in pursuing my studies.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgements vi

Contents vii

1 Introduction 1

1.1 Data Stream Model . 2

1.1.1 A brief overview of streaming results. 3

1.2 Measuring disorder in data streams . 4

1.2.1 Estimating sortedness . 5

1.2.2 Distance to periodicity . 7

1.2.3 Our Contributions on Measuring Disorder 7

1.2.4 Previous Works on Measuring Disorder 8

1.3 Finding duplicates and Lp samplers . 11

1.3.1 Our contributions . 12

1.3.2 Previous Works . 12

1.4 Organization . 13

2 Preliminaries 14

2.1 Data stream and communication complexity 14

vii

2.2 Probability . 17

2.3 Information theory . 18

2.4 Concentration bounds . 20

3 Estimating Sortedness 22

3.1 Approximating the distance to monotonicity 22

3.1.1 An improved estimator . 23

3.1.2 Approximating the estimator . 24

3.2 Space lower bound for approximating LIS 27

3.2.1 The framework of Gopalan et al. 28

3.2.2 An alternative proof . 30

4 Detecting Periodicity 34

4.1 Few preliminaries . 34

4.2 Streaming pattern matching . 36

4.3 Finding the period . 38

4.4 Frequency moments over substrings . 42

4.5 Approximating the distance to periodicity 44

4.5.1 A (2 + ε) algorithm . 45

4.5.2 A (1 + ε) algorithm . 46

5 Finding Duplicates and Lp-Samplers 53

5.1 The Lp Sampler . 53

5.1.1 Preliminaries and definitions . 53

5.1.2 The sampler algorithm . 55

5.2 The L0 Sampler . 60

5.3 Algorithms for finding a duplicate . 61

5.3.1 A Θ(log2 n) space bound for DUPLICATE 62

5.3.2 Finding duplicates in short streams 64

5.4 Lower bounds for Lp samplers . 66

5.4.1 Augmented Indexing problem . 67

5.4.2 Universal Relation problem . 69

viii

Bibliography 71

ix

List of Figures

3.1 Description of the Red-Test procedure. 26

3.2 General description of the algorithm for approximating ed(σ). 27

3.3 A (0,1)-matrix with a monotone path shown in grey color. 30

4.1 A sample run of the algorithm in Section 4.3. 41

4.2 Description of ϕ(Bi) . 48

4.3 Description of the sampling procedure. 50

5.1 Our Lp-sampler with both success probability and relative error Θ(ε) 58

x

Chapter 1

Introduction

In the past few decades, we have witnessed an explosive growth in the size of the data

sets. In many areas such as meteorology, genomics, complex physics simulations, internet

research, finance and business informatics, there are nowadays data sets with terabytes,

exabytes and soon zettabytes of data. Further, besides the increase in the volume, data sets

are generated and stored in various forms and fashions which has made the conventional

algorithms and data access models inefficient and at cases even obsolete. In particular,

challenges and limitations in handling large amount of data has stretched the traditional

notions of polynomial time algorithms into linear and sublinear algorithms with probabilistic

guarantees and loose approximations. Accordingly processing massive data sets has been

the subject of extensive research in the past two decades.

Data streams are ubiquitous these days. Many data sources generate data from ob-

servations that evolve over time. Further these sources generate data series which require

on-demand processing either due to the storage limitations or the pressing requirements of

the application. For example, financial databases depict stock prices continuously to assist

investors and answer global demands. Telecommunication and network databases generate

numerous data series derived from the usage of the network links such as the duration of the

calls and web traffic statistics. These data series can bring about useful information for the

providers that seek to balance the load on their servers. Popular websites are flooded with

endless streams of queries which require immediate service. Common to all these applica-

tions is a demand for data processing tools and algorithms that tackles with huge volume

1

CHAPTER 1. INTRODUCTION 2

and rapid data rates.

Identification and measurement of patterns and trends capture valuable insights about

the data. For instance, in stock market data, one might be interested in detecting an

increasing pattern of investments of a certain stock over a given time interval. Similarly, in

a network monitoring application, one may be interested in detecting a fixed consecutive

pattern or a near-periodic trend for the sake of intrusion detection and security reasons.

Commercial mega websites are interested in finding duplicates and frequent patterns in

their click-streams to better advertise their products. In some applications that handle

large amount of data, algorithms are often engineered to employ a combination of different

methods. For instance, smart engineering of sorting algorithms often can take advantage of

information about the the amount of disorder in a sequence [ECW92].

Numerous studies, on detection and measurement of trends in data streams, (often

applied) has been done by Database and Data Mining community (e.g. [IKM00, EAE06,

RLG+10].) These works however are either domain-specific or do not take storage and

access limitations into account. In this thesis, we examine some basic notions of trends in

data streams from a theoretical standpoint that takes space limitations into account. We

study three notions of trends: monotonicity, periodicity and duplicity. Our studies are in

the theme of typical theoretical works in data stream model.

In this section we start with an introduction to the data stream model along with a

quick recap of its history. Then we introduce our problems, our contributions and previous

works. We conclude this chapter with a brief map of the thesis.

1.1 Data Stream Model

In this thesis we study finite data streams. A typical problem defined in data stream model

takes as input a stream or equivalently a sequence of elements s1, . . . , sn from a certain

domain. Depending on the application, the domain of the input could be a set of positive

integers, pairs of IP addresses, or edges of a massive graph. For extensive discussions and

examples on types of data streams, we refer the reader to the survey [Mut05].

A streaming algorithm is a randomized algorithm that reads the input stream once (or

few times) in sequential manner and outputs a correct answer with some constant probability

CHAPTER 1. INTRODUCTION 3

greater than 1/2. What is accepted as a correct answer (or an approximate answer) varies

depending on the definition the problem. In particular, in this thesis and frequently in the

literature, we are interested in randomized relative error approximations. Namely, assuming

z as the right answer, the algorithm is required to output some z′ where |z − z′| ≤ εz with

probability at least 1 − δ. For exact algorithms the error parameter ε is zero while for

deterministic algorithms δ is zero.

The space complexity of a streaming algorithm is the main criterion in our studies. The

space is measured as the maximum number of bits used by the algorithm taken over all dif-

ferent input streams and random coins. Naturally we require that the streaming algorithms

to work in sublinear space, preferably in polylogarithmic space. Another important crite-

rion for streaming algorithms is per-item running time which is defined as the maximum

processing time of a stream item taken over all possible inputs and random coins. Num-

ber of passes over the stream is another measure that is common in classifying streaming

algorithms.

1.1.1 A brief overview of streaming results.

The celebrated paper of Alon, Matias and Szegedy [AMS96], marks the official birth of

a long series of streaming results lasting to this day (although the terms ”data stream

model” and ”streaming algorithms” were coined later.) Motivated by certain database

applications, [AMS96] studied the streaming complexity of approximating certain functions

known as the frequency moments. These functions include some basic statistical inquiries

such as the number of distinct elements in a sequence (known as F0) and the the second

frequency moment F2 =
∑
|xi|2.

Following the work of Alon et al, various problems were studied or revisited under the

streaming framework. Some notable results include problems with statistical flavour such

as approximation of Lp norms [Ind00, FKSV02, IW05, KNPW11], most frequent elements

and iceberg queries [KSP03, CCFC04], median and quantile estimations [GM06, CCM08]

and histogram constructions [GGI+02, MS03], problems over geometric data such as clus-

tering and classifications of points [GMMO00, COP03, FS05], estimating the diameter of a

point set, bichromatic matching and minimum spanning tree on the plane [FKZ04, FIS05],

CHAPTER 1. INTRODUCTION 4

graph problems including finding near-maximum matchings and approximate shortest path

[McG05, FKM+08], sequence problems such as longest increasing subsequence [LNVZ05,

GJKK07, GG07, EJ08], and pattern matching and periodicity [PP09, EJS10, CM11]

In parallel with algorithms, lower bounds for space complexity of streaming problems

have also been given considerable attention. In fact, some recent advances in communi-

cation complexity (e.g information theoretic methods [BYJKS02]) are motivated by data

stream applications. In this direction, communication complexity of the multi-player set-

disjointness [BYJKS02, CKS03] and the Gap-Hamming problem [CR11, BC09], with appli-

cation in lower bounding Lp norm estimations, are prominent examples.

Since its inception, the streaming model has undergone various developments and ex-

tensions. The sliding window model [DGIM02, BO07] is essentially identical with the data

stream model with the difference that the algorithm is required to compute some func-

tion over a recent window of the stream. In probabilistic streams [JMMV07] the input is

assumed to be generated with respect to some known distribution. In contrast, in random-

order model [GM09], the order of the data-items is assumed to be random. In distributed

streams and sensor networks [GT01, GK04, CMY08] sketches collected from various sources

are combined and processed to culminate in a final aggregate for the entire network. Private

streaming algorithms is another new direction that takes privacy and security matters into

account [MMNW11, Woo11].

The data stream model has interacts with various neighbouring branches of computer sci-

ence. Sublinear time and sampling algorithms [RS11, BYKS01], property testing [GGR98],

low distortion embeddings [Ind00], sparse recovery and compressed sensing [IR08] have had

a close connection with the field.

1.2 Measuring disorder in data streams

In this thesis, we investigate two natural notions of order: monotonicity (aka sortedness) and

periodicity. In our main approach, we are interested in measuring the amount of disorder

in data streams. More precisely, let the set of sequences ORDER represent our idea of order

and let d be a distance function defined on pair of sequences. Measures for closeness to

ORDER can be defined as minimum distance toward this set. In other words, for sequence x,

CHAPTER 1. INTRODUCTION 5

the amount of disorder measured with respect to d is defined as

min {d(x, y) | y ∈ ORDER}.

In this thesis, we study algorithms for computing the above distance. On the other

hand, we are interested in reconsigning a pattern of monotonicity (e.g. a longest increasing

subsequence) or a pattern of periodicity (a periodic substring) in the given stream. In

what follows, we lay out the formal definitions and introduce our results for measuring

monotonicity and periodicity.

Before we proceed, we remark that in this section by a sequence or stream we mean a

series of elements from a finite discrete alphabet such as {0, 1, . . . ,m}. Although a total

order on our domain is not always required, we assume this is the case since it does not

effect the generality of our ideas.

1.2.1 Estimating sortedness

In this section we study algorithms that estimate how close a sequence is to being sorted.

Following our general framework introduced in the previous section, here our target set

representing order is defined as

SORTED = {x ∈ Σn | x(i) ≥ x(i− 1) ∀i ∈ [n]}.

In the following we present some well-known measure and distance functions in connection

with sortedness.

Lp based distances. For p ≥ 0, distance to sortedness under Lp is defined as

min{ ||x− y||pp | y ∈ SORTED}.

In this category, the most and (perhaps) only known example is the Spearman’s footrule

distance defined for permutations. Here p = 1 and SORTED is restricted to the identity

permutation. Namely F (x) =
∑n

i=1 |x(i) − i|. Computation of F (x) is straightforward in

data streams. Diaconis and Garaham [DG77] have shown that the Spearman’s footrule

estimates the number of inversions in a permutation within a factor of two (see below.)

CHAPTER 1. INTRODUCTION 6

Kendall tau distance. Kendall distance between two sequences is the number of dis-

agreements in the order of their pair of elements. Formally we have

K(x, y) = | { (i, j)i<j | (xi − xj)(yi − yj) < 0 }|.

It can be verified that distance to sortedness under Kendall is equivalent with counting

inversions in a sequence. Namely,

K(x) = min {K(x, y) | y ∈ SORTED} = |{ (i, j)i<j | xi < xj }|.

Edit distance. Standard edit distance (or Levenshtein distance) between x and y is

defined as the minimum number of insertions, deletions and substitution operations needed

to convert x to y. Due to the wide range of applications, efficient algorithms for edit distance

has been the subject of extensive research (see [AKO10] for the most recent development.) In

our context, distance to sortedness under edit distance is known as distance to monotonicity

and is defined as

ed(x) = min {ed(x, y) | y ∈ SORTED}.

Similar to the Kendall distance, there is an alternative definition of ed(x) which is the

minimum number of deletion operations needed to turn x into a sorted sequence. Since one

way to accomplish this is by keeping a longest increasing subsequence and deleting the rest,

ed(x) equals |x| − lis(x) where lis(x) is the length of the longest increasing subsequence of

x.

Variants of edit distance. In addition to the insertion and deletion of single characters

as operation, one can consider more general operations such as moving or copying a block

of characters or reversing the order of a block. For instance under edit distance with moves

[CM02], in addition to single character operations of standard edit distance, moving an

entire block to any location has a unit cost.

Longest increasing subsequence An increasing subsequence in x is a subsequence i1 <

. . . < ik such that xi1 ≤ . . . ≤ xik . Let lis(x) denote the length of the longest increasing

subsequence in x. Here we study streaming algorithms for the following problems. Given

CHAPTER 1. INTRODUCTION 7

x as a stream, the problem k -LIS asks whether lis(x) ≤ k or not; the problem ε-LIS is to

output 1 + ε approximation of lis(x).

1.2.2 Distance to periodicity

Formally, a sequence s of length n is said to be p-periodic if s[i] = s[i + p] for all i =

1, . . . , |s| − p. The smallest p > 0 for which s is p-periodic is referred to as the period of s.

By convention, if the length of the period of s is at most n/2, then s is said to be periodic,

otherwise it is aperiodic. We define (p)-PERIODIC to be the set of all p-periodic sequences

of length n. Let PERIODIC be the set of all periodic sequences:

PERIODIC =

n/2⋃
p=1

(p)-PERIODIC.

All the measures previously defined for sortedness (with the exception of Kendall dis-

tance which is more suitable for sortedness) can be extended to measuring the distance

to periodicity as well. Here we consider Lp based distances, and in particular Hamming

distance, for measuring closeness to periodicity. Formally for k ≥ 0 and sequence x, let

Dk,p(x) = min { ||x− y||kk | y ∈ (p)-PERIODIC}.

In the same manner, let Dk(x) denote distance the distance of x to the closest periodic

sequence under Lk. In our formulation, the Hamming distance corresponds to the case

k = 0 which is simply equivalent to the number the number of substitutions needed to

make a sequence p-periodic.

1.2.3 Our Contributions on Measuring Disorder

In the first contribution of this thesis, a streaming algorithm for approximating distance

to monotonicity is shown. Specifically, a deterministic streaming algorithm which approxi-

mates ed(x) within a factor of (2 + ε) using O(1
ε2

log2 εn) space is presented (Theorem 3.1);

this improves the previous 4 + ε factor randomized approximation algorithm of [GJKK07].

This algorithm uses an improved version of the estimator used in [ACCL07, GJKK07] and

is based on the characterization of distance to monotonicity by inversions.

Next, a lower bound of Ω(
√
n/ε) for approximating the length of LIS within 1+ ε factor

is given (Theorem 3.7). The proof of this result is obtained by showing a lower bound

CHAPTER 1. INTRODUCTION 8

for multi-player communication complexity of LIS via a direct-sum approach suggested in

[GJKK07].

On the measures related to periodicity, a streaming algorithm is given for estimating

distance to p-periodicity under Hamming distance. For this problem, two streaming algo-

rithms with different guarantees and space usage is given. The first algorithm is obtained

by reducing the problem to computing Hamming distance of two vectors that are generated

on the fly. This algorithm approximates D0,p(x) within 2 + ε factor using Õ(1
ε2

) bits of

space (Theorem 4.9). The second algorithm returns a 1 + ε approximation using Õ(1
ε10.5

)

space (Theorem 4.12). This result is obtained through a combination of the first algorithm,

sampling, and exact sparse recovery.

Further on the periodicity trend, a polylog space algorithm is shown for computing the

shortest period. Given the reciprocal relation between periodicity and pattern matching,

this result is derived from a randomized streaming algorithm for pattern matching. After

a single pass over a pattern of m characters, our pattern matching algorithm finds all

occurances of the pattern in a stream of length n using only O(log n logm) bits (Theorem

4.1). This algorithm is built on deployment of KR-fingerprints and ideas from the work of

[PP09]. Equipped with such an algorithm as a black box, the shortest period algorithm

makes a single pass over stream x and uses O(log2 n) space to find the period of x granted

that x is periodic, otherwise it reports that x is aperiodic (Theorem 4.3). The limitation in

computing the period for aperiodic sequences turns out to be necessary as we later prove

that computing the period in 1-pass for aperiodic sequences requires linear space (Theorem

4.4). On the other hand it is shown that an additional pass will give us a O(log2 n) space

solution for periods of any length.

In addition to periodicity, the given pattern matching algorithm enables us to get sub-

linear solutions for frequency moments defined over substrings. In particular a Õ(1/ε
√
n)

space streaming algorithm is shown for counting distinct substrings of length d.

1.2.4 Previous Works on Measuring Disorder

First we review the works on the estimation of sortedness. In this direction, Chan and

Pătraşcu [CP10] have given a O(n
√

log n)-time algorithm for counting inversions in a per-

CHAPTER 1. INTRODUCTION 9

mutation. In general sequences, the best algorithm runs in O(n log n/ log lg n) [Die89]. In

[AJKS02] Ajtai et al have studied estimating K(x) in the context of data streams. It has

been shown that for the permutations, K(x) can be approximated within a 1 + ε factor

by a deterministic algorithm that uses only O(1
ε log log n) space. In a subsequent work,

Gupta and Zane [GZ03] have given a O(1
ε3

log3 n) space randomized streaming algorithm

for general sequences.

Distance to monotonicity has been studied in the context of property testing. In

[EKK+00] the authors have given a O(1
ε log n) sampling algorithms that distinguishes be-

tween sorted sequence and sequences with distance to monotonicity bigger than εn. Assum-

ing ed(x) = εfn and some fixed δ > 0, Ailon et al [ACCL07] have given another sampling

algorithm that returns a value in the interval [(1/2− δ)ε, ε] that encloses εf by probing the

sequence in O(1/εf log log(1/εf) log n) locations. Later [GJKK07] adapts the solution of

[ACCL07] to data streams and derives a 4 + ε randomized approximation algorithms using

O(1
ε3

log2 n) space.

Cormode, Muthukrishnan and Sahinalp [CMS01, CM02] has shown streaming algo-

rithms for approximating edM (x, y) (edit distance of with moves) where both x and y are

given as a stream in arbitrary order. One can obtain an algorithm for estimating distance

of x to sortedness under edM by feeding their algorithm the input stream x and the identity

permutation. This however works only for permutations.

There is a classical O(n log n)-time deterministic algorithm for computing lis(x) which

is the outcome of a method for sorting cards called the patience sort. (see [AD99] for

backgrounds and extensive discussions.) The patience algorithm gives an O(k logM) space

streaming algorithm for k -LIS. Liben-Nowell, Vee and Zhu [LNVZ05] were the first to

study LIS in data stream model. They showed that any streaming algorithm for k -LIS

requires Ω(n1/2) space. Later Gopalan et al [GJKK07] gave a O(
√

n
ε logM) space deter-

ministic algorithm for ε-LIS. Their algorithm works through prunning the patience sort

array at roughly O(
√
n) stages. Following this work, Gal and Gopalan in [GG07], in paral-

lel with a similar result in this thesis and via a different proof, has shown a lower bound of

Ω(
√

n
ε log(M/(εN))) for ε-LIS.

In [PP09], Porat and Porat presented a polylogarithmic space randomized algorithm for

CHAPTER 1. INTRODUCTION 10

pattern matching that does not require the storage of the entire pattern [PP09]. Briefly,

given a pattern u of length m and a text of length n, in an off-line step, they preprocess u

and build O(log n) bit sketches for logm prefixes of u (of geometrically increasing lengths)

and use them to find occurrences of the pattern in the length n stream. This algorithm is

not fully streaming in the sense that it requires an off-line processing stage over the pat-

tern. Independent of our work on pattern matching [EJS10], Breslauer and Galil [BG11]

have gavin a O(log n logm) bits pattern matching algorithm with worst case O(1) per-item

processing time and one-sided error guarantee. In specific their algorithm never misses a

match, whereas our algorithm may miss some occurrences with polynomially small proba-

bility. In comparison, the algorithm presented in this thesis takes O(logm) time per item,

hence is slower.

Distance to periodicity has been studied in random access model [LS93, AELL11]. How-

ever this thesis is the first to study periodicity in the context of data stream model. Subse-

quent to our results [EJS10], Crouch et al. studied the distance periodicity problem [CM11];

although their choice of the distance function is the `2 norm. They give one pass streaming

algorithms that compute (1+ε) approximation to distance periodicity using O(ε−2 polylog n)

space.

In a related direction, Ergün et al. [EMS04] gave an O(
√
n) tester for distinguishing

periodic strings from highly aperiodic ones under the Hamming distance in the property

testing model. Subsequently Lachish and Newman [LN05] showed a lower bound of Ω(
√
n)

for testing periodicity in the query model. With a focus on time complexity, Czumaj and

Gasieniec [CG00] presented an average case analysis for computing the exact period.

Bar-Yossef et al. [BYJKK04] studied the sketching complexity of pattern matching. The

work of Indyk et al. [IKM00] focuses on mining periodic patterns and trends in data streams

while reading data in large chunks from secondary memory. Numerous studies have been

done in the data mining community for detecting periodicity in time-series databases and

online data (e.g., see [EAE06]), typically with quite different space considerations than in

our model.

CHAPTER 1. INTRODUCTION 11

1.3 Finding duplicates and Lp samplers

The problem of finding the most frequent element in data streams and variations of it

have been studied extensively (See the recent survey [CH10] for references.) It is known

that finding the most common element or even deceting a repetition requires linear space

[AMS96]. However under the assumption that input sequence is long enough to contain at

least a repetition, the lower bounds do not hold. Therefore one may ask whether there is a

sublinear algorithm for finding duplicates in long sequences. More precisely, in this thesis

we study the streaming complexity of the following problem.

Definition 1. The DUPLICATE Problem: Given a sequence x1, x2, . . . , xn+1 where each xi ∈

[n] report an item that appears at least twice in the input.

Observe that by the pigeon-hole principle, the existence of such an item is guaranteed.

The goal here is to design algorithms for DUPLICATE that use small space and make one

pass over the input sequence. In this thesis, we give such an algorithm. Toward this result,

we reduce the problem of DUPLICATE to sampling from dynamic streams (a sequence of

insertions and deletions of data items.) To give a flavour of the idea, let f = (f1, . . . , fn) be

the vector associated with the frequency of each element in the stream. We are interested

in outputting some i ∈ [n] such that fi > 1. Now let f ′ = (f1 − 1, f2 − 1, . . . , fn − 1).

Alternatively we are now interested in finding a strictly positive f ′i . One way to achieve this

is to sample the coordinates of f ′ (under addition and subtraction of the coordinates) so that

the i-th coordinate is sampled proportional to its weight, and hence no zero coordinate is

picked. More formally, given a stream of updates to the coordinates of an underlying vector

x ∈ Rn, we need an algorithm that processes the stream (using sublinear space) and outputs

a sample coordinate of x where the i-th coordinate is picked with probability proportional

to |xi|. In [MW10] Monemizadeh and Woodruff introduced the idea of Lp samplers which

is a generalization of the setting that we just described. Roughly speaking, given non-zero

x ∈ Rn, an approximate Lp-sampler is a streaming algorithm that outputs the index i with

probability (1 ± ε)|xi|p/‖x‖pp ± n−c, where c is an arbitrary constant. Observe that this

guarantee is essentially enough for our purpose.

CHAPTER 1. INTRODUCTION 12

1.3.1 Our contributions

In this thesis, an Lp-sampler is given that requires only O(ε−p log2 n) space for p ∈ (1, 2).

For p ∈ (0, 1), the space bound is O(ε−1 log2 n), while for the p = 1 case we have an

O(log(1/ε)ε−1 log2 n) space algorithm (Theorem 5.1). Similar to the precision sampling

algorithm in [AKO10], the generic idea is to scale the input vector with random coefficients

so that the i-th coordinate becomes the maximum with probability roughly proportional to

|xi|p. Moreover the maximum (heaviest) coordinate is found through a small-space heavy

hitter algorithm.

Additionally, it is shown that sampling from 0, ±1 vectors requires Ω(log2 n) space.

In this special case p is not relevant for Lp-sampling, hence this shows that the proposed

L0-sampling algorithm uses the optimal space up to constant factors, and our Lp-sampler

for p ∈ (0, 2) has the optimal space (up to constant factors) for ε > 0 a constant.

With the application of the L1 sampler developed in this thesis wet get an optimal space

streaming algorithm for the DUPLICATE problem. This algorithm uses one pass and works

in O(log2 n) space (Theorem 5.3). Subsequently here it is also shown that any algorithm

for outputting a repeated element requires Ω(log2 n) space.

1.3.2 Previous Works

Finding duplicates in streams was first considered in the context of fraud detection in

click streams [MAA05]. Muthukrishnan in [Mut] also listed the above solutions and asked

whether there exists an algorithm which uses polylog n space while simultaneously taking a

constant number of passes. In [Tar07], Tarui showed that any p-pass deterministic algorithm

must use Ω(n1/(2p−1)) space to find a duplicate, thereby answering Muthukrishnan’s question

negatively for deterministic algorithms. Observe that this lower bound comes quite close

to the p-pass upper bound, however there is still a gap of p versus 2p− 1 in the exponent,

which likely comes from the limitations of 2-player games used in the lower bound proof. In

[GR09] a one-pass randomized algorithm with O(log3 n) space was presented which outputs

a duplicate with constant probability.

In [MW10], it was observed that Lp-samplers lead to alternative algorithms for many

known streaming problems, including heavy hitters and frequency moment estimation. Our

CHAPTER 1. INTRODUCTION 13

Lp samplers work and often give better space performance for all applications listed in

[MW10]. We refer the reader to [AKO10, AGM12] for further applications of Lp-samplers.

In [BDM02, BOZ09], the authors have studied sampling from sliding windows, and

the recent paper of Cormode et al. [CMYZ10] generalizes the classical reservoir sampling

to distributed streams. These works only consider insertion streams. The basic idea of

random scaling used in [AKO10] and in our paper has appeared earlier in the priority

sampling technique [DLT07, CDK+09], where the focus is to estimate the weight of certain

subsets of a vector, defined by a sequence of positive updates.

1.4 Organization

The following chapter explains some preliminary concepts and required backgrounds for

the results in this thesis. Each subsequent chapter reflects the results of a published paper.

Chapter 3 studies the problem of estimating sortedness and it is based on the work Ergun

and Jowhari [EJ08]. Following that in Chapter 4, we present our results on periodicity and

pattern matching. The content of this chapter is from the paper Ergun, Jowhari and Sağlam

[EJS10] with the exception of Theorem 4.12 which is from unpublished material. Finally in

Chapter 5 we present our algorithms for Lp samplers, finding duplicates and related lower

bounds. These results are mainly from the work Jowhari, Sağlam and Tardos [JST11].

Chapter 2

Preliminaries

Throughout this thesis [n] denotes the set of integers {1, 2, . . . , n}. While [a, b] represents

the real interval between a and b, here by [a . . . b] we mean the set {a, a + 1, . . . , b} where

a ≤ b are two integers. A string is a finite length sequence x1, . . . , xn, where xi ∈ Σ for

some set Σ. In this thesis, we use strings and sequences interchangeably. We denote by Σ∗

the set of all strings over Σ. The length of a string x is denoted by |x|. We denote the

concatenation of x and y by x ◦ y. If x and y have the same length, then we speak of the

Hamming distance between the two strings, which equals the number of positions in which

x and y differ and is denoted Ham(x, y). In the case we have Σ = {0, . . . , q − 1} for some

integer q, the weight of x ∈ Σ∗ is defined, which equals to the number of non-zero positions

in x and is denoted by wt(x).

2.1 Data stream and communication complexity

Specifically we are interested in a general class of data streams known as turnstile streams

which are series of pairs, i.e

(i1, u1), . . . , (im, um),

where (i, u) translates to an addition of u to the i-th coordinate of some initially zero

vector x ∈ Rn. This setting can encode various sorts of problems. For example, time-series

data in one-dimensional case, is essentially a sequence of integers; here the indices of the

pairs, coming in increasing order, represent the time-stamp (or the order) of the data-item.

14

CHAPTER 2. PRELIMINARIES 15

This setting particularly is suitable for sequence problems where the ordering of the input

is relevant. In slightly more general setting, the pair (i, u) can encode the insertion of u

occurrences of character i while the vector x represents the frequency of the characters.

In this case, where the updates are restricted to positive values, the model is known as

the cash-register model or insertion-only streams. When the final value of the coordinates

(after the application of updates) are promised to be non-negative, it is referred to as strict

turnstile model. For a more extensive discussion and examples, we refer the reader to the

survey [Mut05].

A streaming algorithm is a randomized algorithm that reads the input stream once (or

few times) in sequential manner and outputs a correct answer with some constant probability

greater than 1/2. What is accepted as a correct answer (or an approximate answer) varies

depending on the definition the problem. In particular, in our thesis and frequently in the

literature, we are interested in (ε, δ)- approximations. Namely, assuming z as the right

answer, the algorithm is required to output some z′ where |z − z′| ≤ εz with probability

at least 1 − δ. For exact algorithms the error parameter ε is zero while for deterministic

algorithms δ is zero.

The space complexity of a streaming algorithm is the main criterion in our studies. The

space is measured as the maximum number of bits used by the algorithm taken over all

different input streams and random coins.

Definition 2. Given problem Q in the data stream model, we define the δ-error streaming

complexity of Q, denoted by SCδ(Q), as the minimum taken over all the space complexities

of δ-error streaming algorithms for Q.

Naturally we require that the streaming algorithms to work in sublinear space, preferably

in polylogarithmic space. Another important criterion for streaming algorithms is per-item

running time which is defined as the maximum processing time of a stream item taken over

all possible inputs and random coins. Number of passes over the stream is another measure

that is common in the classification of the streaming algorithms.

Communication complexity, introduced in [Yao79] by Yao, studies the communication

requirements of computing a function whose input is distributed among several parties. In-

tuitively, communication complexity abstracts away the time requirements of computation,

CHAPTER 2. PRELIMINARIES 16

allowing us to prove lower bounds for computational problems by exploiting information

transfer barriers and space bottlenecks.

In the most basic and standard setting, two players, referred to as Alice and Bob,

receive different inputs and are required to answer some function defined over both inputs

through communicating messages. More generally in a multi-player communication game,

k players P1, . . . , Pk hold x1, . . . , xk respectively where they are required to find out the

answer to f(x1, . . . , xk) for some function f by communicating messages. The players

take turns communicating bit strings according to a predetermined protocol. The form of

communication in two player games is somewhat straightforward. The players take turn in

sending messages to each other. However when there are more than two players, the form

of communication may vary and requires clarifications. There are some general classes of

protocols for multi-player games. Here we review two main classes that are relevant to the

data stream model.

In blackboard protocols, also known as public message protocols, each player writes his

message on a common blackboard seen by all. Moreover the players write in rounds. Each

round starts with P1 speaking and ends with Pk’s message. The games terminates when Pk

announces the answer in the last round. In private message protocols, the player Pi sends

private messages to Pi+1 mod (k). Let f be function associated with a k-player game. The

communication complexity of a deterministic protocol for f is defined as the maximum total

number of bits exchanged taken over all different inputs. Similarly in a δ-error randomized

protocol for f , the last players outputs f(x1, . . . , xk) with probability at least 1 − δ. The

communication complexity of this protocol is the maximum total number of bits written on

the blackboard taken over all inputs and random bits. It is assumed that the players use a

shared source of randomness.

Definition 3. The deterministic communication complexity of f under the blackboard

model, denote by CC(f), is defined as the minimum taken over the communication com-

plexity of all blackboard deterministic protocols for f . Similarly CCPRIVATE(f) is defined for

private communication complexity of f . In the same manner, we define the δ-error com-

munication complexity of f and it is denote by CCδ(f). In this case it is the minimum

taken over the communication complexity of all δ-error blackboard protocols for f . Like-

CHAPTER 2. PRELIMINARIES 17

wise, CCPRIVATEδ (f) denotes the δ-error communication complexity of f for private message

protocols.

Clearly CCδ(f) is a lower bound on CCPRIVATEδ (f). Same can be said about the deter-

ministic communication complexity. There is a rich theory on communication complexity

of various functions and methods for obtaining lower bounds on CCδ(f). We refer the

interested reader to the book by Kushilevitz and Nisan [KN97].

The connection between data stream model and multi-player communication games

should be clear. Informally speaking, we reduce the problem Q in data stream model into

a k-player communication game Qcck where the input stream x is divided among k players.

The game Qcck asks for a communication protocol where the players exchange information in

order to output the answer to problem Q over instance x. The main observation here that

(abusing the notation) CCPRIVATE(Qcck), and consequently CC(Qcck), provide a lower bound

on SC(Q). Hence by obtaining a lower bound on the communication complexity of the

multi-player games associated with Q, we get a lower bound for its streaming complexity.

2.2 Probability

A probability distribution µ is a function µ : S → R for some countable set S, such that

µ(s) ≥ 0 for all s ∈ S and
∑

s∈S µ(s) = 1. We say that S is the support of µ and

write S = supp(µ). A random variable is, roughly speaking, a variable which equals x

with probability µ(x) for each x ∈ supp(µ), where µ is a probability distribution. We say

that X is distributed according to µ and write dist(X) = µ. Further, we let supp(X) :=

supp(dist(X)), i.e., the support of a random variable is defined to be the support of its

distribution.

A distribution is called Bernoulli if it is supported on the set {0, 1}. We say that a

random variable is real-valued if its support is a subset of R. For a real-valued random

variable X, the expectation of X, denoted E[X], is defined as

E[X] =
∑
s∈S

sµ(s).

where µ = dist(X). For any linear (univariate) function f , by the above fact, we have

E[f(X)] = f(E[X]). The reader may expect that E[f(X)] ≥ f(E[X]) holds whenever f is a

CHAPTER 2. PRELIMINARIES 18

convex function. This is indeed true as shown by Jensen’s inequality.

Lemma 2.1 (Jensen [Jen06]). Let X be real-valued random variable and f be convex func-

tion. We have E[f(X)] ≥ f(E[X]).

2.3 Information theory

Let µ and ν be two probability distributions, supported on the same set S. The Kullback-

Leibler divergence between µ and ν is denoted by D(µ ‖ ν) and defined as

D(µ ‖ ν) =
∑
s∈S

µ(s) log
µ(s)

ν(s)
.

Here, we take 0 log 0 to be 0. The divergence is undefined if there is an s ∈ S such that

µ(s) > 0 and ν(s) = 0. Some properties of the divergence are given in the next lemma.

Lemma 2.2. Let X,Y, U, V be arbitrary random variables such that supp(X) = supp(U)

and supp(Y) = supp(V) and E be an event determined by X. Set µ = dist(X) and ν =

dist(U). The following hold.

(i) D(µ ‖ ν) ≥ 0.

(ii) D(dist(X |E) ‖ dist(X)) = − log Pr[E].

(iii) D(dist(X,Y) ‖ dist(U, V)) = D(µ ‖ ν) + Ex∼X
[
D(dist(Y |X = x) ‖ dist(V |U = x))

]
Let X and Y be two random variables. The mutual information between X and Y ,

denoted I(X : Y), is defined as

I(X : Y) = D(dist(X,Y) ‖ dist(X) dist(Y)).

The mutual information of a random variable with itself, i.e., the quantity I(X : X) is called

the self information or the Shannon entropy of X, which plays a central role information

and coding theory, among other areas.

Shannon entropy is also denoted by H(X) and can be extended to a conditional version

in the usual way:

H(X |Y) = Ey∼Y
[
H(X |Y = y)

]
.

CHAPTER 2. PRELIMINARIES 19

It satisfies the following useful properties, whose proofs can be found in Section 2.1 in

[CT06].

Lemma 2.3. Let X and Y random variables. The following hold.

(i) H(X) ≥ 0, with equality if and only if X is fixed to a single value.

(ii) H(X) ≤ log | supp(X)|, with equality if and only if X is uniformly distributed on its

support.

(iii) H(X,Y) = H(X |Y) + H(Y). This is called the chain rule for entropy.

(iv) H(X |Y) ≤ H(X).

(v) H(X | f(Y)) ≥ H(X |Y), for any function f . This is called the data processing in-

equality.

For convenience, we also introduce the following two functions. Let p ∈ [0, 1] and

q ∈ (0, 1) be two reals. Define

D2(p ‖ q) = p log
p

q
+ (1− p) log

1− p
1− q

H2(p) = p log
1

p
+ (1− p) log

1

1− p
= 1−D2(p ‖ 1/2)

where 0 log 0 is taken to be 0 as above. We will also need the following lemma, which is

often referred to as Fano’s inequality.

Lemma 2.4 (Fano [Fan61]). Let X and Y be two random variables and let f : supp(Y)→

supp(X) be a function. Define δ = Pr[f(Y) 6= X]. It holds that

H2(δ) + δ log(| supp(X)| − 1) ≥ H(X |Y).

Proof. Let F be the indicator random variable for the event f(Y) 6= X. By Lemma 2.3 we

have

H(X |Y) ≤ H(X,F |Y)

= H(X |Y, F) + H(F |Y)

≤ H(X | f(Y), F) + H(F |Y) (by Lemma 2.3 (v))

= δH(X | f(Y), F = 1) + (1− δ) H(X | f(Y), F = 0) + H(F |Y)

CHAPTER 2. PRELIMINARIES 20

Note that conditioned on F = 0, we have X = f(Y) and hence the middle term in the

above sum is zero. Thus,

H(X |Y) ≤ δH(X | f(Y), F = 1) + H(F |Y)

≤ δ log(| supp(X)| − 1) + H2(δ)

where the last inequality follows from Lemma 2.3 (ii), (iii) and (iv).

2.4 Concentration bounds

Let X1, . . . , Xn be random variables such that E[Xi] = ε for some 0 ≤ ε ≤ 1. Define

X = X1 + · · ·+Xn. By linearity of expectation we have E[X] = εn. The classical results of

Chernoff [Che52] and Hoeffding [Hoe63] state that if each Xi is chosen independently, then

X is tightly concentrated around its expectation and the exact quantification is as follows.

Theorem 2.1 (Chernoff [Che52]). Let X = X1 + · · · + Xn, where Xi for i ∈ [n] are

independent binary random variables with expectation ε. Then for any ε ≤ γ ≤ 1 we have

Pr [X ≥ γn] ≤ 2−nD2(γ ‖ ε).

The following result is standard, although the specific constants stated in the theorem

follows from Stanica’s relatively recent lower bound on the binomial coefficients.

Theorem 2.2 (Stanica [Sta01]). Let X = X1+· · ·+Xn, where Xi for i ∈ [n] are independent

binary random variables with expectation ε. Let 0 ≤ k ≤ n be an integer and define γ = k/n.

We have Pr [X = k] ≥ 2−nD2(γ ‖ ε)/
√
γ(1− γ)cn, where c = 2πe1/4n.

Theorem 2.1 will be enough to argue concentration in all of our impossibility results.

In these settings, there is no limit to the randomness we can use hence we enjoy the full

power of Theorem 2.1. However, in our streaming algorithms, we often do not have enough

space to store the random bits required to generate fully independent random variables. In

such cases k-wise independence comes in handy. Recall that random variables X1, . . . , Xn

are called k-wise independent if for any I = {i1, . . . , it} ⊆ [n] having at most k elements,

Xi1 , . . . , Xit are distributed according to the product of their marginals. In [SSS95], Schmidt

et al. give analogous results to Theorem 2.1 for k-wise independent random variables. We

will use the following result (see Lemma 3 and Theorem 4 in [SSS95]).

CHAPTER 2. PRELIMINARIES 21

Theorem 2.3 (Schmidt et al. [SSS95]). Let X = X1 + · · · + Xn, where X1, . . . , Xn are

k-wise independent binary random variables, each having expected value ε.

(i) For any ε ≤ γ ≤ ε+ (1− ε)k/n we have Pr[X ≥ γn] ≤ 2−nD2(γ ‖ ε).

(ii) For any ε+ (1− ε)k/n ≤ γ ≤ 1 we have Pr[X ≥ γn] ≤ (eε/γ)k.

We will also need concentration bounds for continuous random variables. Intuitively,

among all random variables Y with expectation ε that take values in the real interval

[0, 1], Bernoulli variables have the most spread out distribution. Hence it is plausible that

above concentration bounds hold for sum of arbitrary variables supported on [0, 1] too.

This intuition is verified in the following theorem, which is immediate from Theorem 5 in

[SSS95].

Theorem 2.4 (Schmidt et al. [SSS95]). Let X = X1 + · · · + Xn, where X1, . . . , Xn are

k-wise independent real valued random variables such that supp(Xi) = [0, 1] and E[Xi] = ε

for i ∈ [n]. Then for any 2ε+ ek/n ≤ γ ≤ 1 we have Pr[X ≥ γn] ≤ e−bk/2c.

Chapter 3

Estimating Sortedness

In this chapter we present two results on the streaming complexity of estimating the sort-

edness of a sequence. First we present an algorithm for estimating distance to monotonicity

and then we show a lower bound for the space of complexity of approximating the length

of LIS in data streams. Both of our results concern deterministic algorithms.

3.1 Approximating the distance to monotonicity

In this section we present a deterministic algorithm for approximating distance to mono-

tonicity. Given a sequence σ, we show a streaming algorithm that approximates ed(σ)

within a factor of (2 + ε) and uses O(1
ε2

log2 εn) space.

Our general approach. We first define an estimator which approximates ed(σ), then

design an algorithm which approximates the value of the estimator itself. On a high level,

our estimator, which is based on a modification to an estimator in [GJKK07], identifies a

set of disjoint non-increasing subsequences in σ and uses the sum of the lengths of these

sequences as a lower bound for ed(σ). The following lemma shows the relationship between

these non-increasing subsequences and ed(σ).

Lemma 3.1. Let P = {σ1, ..., σt} be a set of disjoint and non-increasing subsequences in

σ. We have ed(σ) ≥ (
∑t

i=1 |σi|)− t.

22

CHAPTER 3. ESTIMATING SORTEDNESS 23

Proof. Let π be a longest increasing subsequence in σ. It is easy to see that in any non-

increasing subsequence of length k in σ, at least k − 1 of the items do not belong to π.

Later, we show how to estimate the sum of lengths of these subsequences and how to

use this to bound ed(σ).

3.1.1 An improved estimator

We now design an estimator which gives a 2-approximation to ed(σ). Let σ be a sequence

of length n. Let inv(i) be the set of indices j < i such that σ(j) > σ(i). We say R ⊂ [n] is

a red set for σ if ∀i ∈ R at least one of the following is true:

(i) i− 1 ∈ inv(i), or,

(ii) there is an interval I = [j, i− 1] such that |inv(i) ∩ I| > |R ∩ I|.

When i ∈ R we say i is a red index; every red index has a witness in the form of another

index (if (i) is satisfied) or an interval (if (ii) is satisfied). We call the red set R total if

∀i 6∈ R, i does not have a witness. The above definition is similar to the definition used in

[?] except that the membership of an index in R depends not only on inversions but also

on the number of red indices to its left in σ. Our main observation is the following lemma,

which links the size of the red set to the distance to monotonicity.

Lemma 3.2. Let R be a red set for the sequence σ. We have |R| ≤ ed(σ). Moreover if R

is total then |R| ≥ 1
2ed(σ).

Proof. For the first part, suppose the set R = {j1, ..., jt} is a red set for σ. Let G = (V,E)

be a graph where V = {σ(1), ..., σ(n)}. We now introduce an inductive procedure that

defines the edge set E. Initially E = ∅. We scan σ from left to right, and for every index

i which is in R, find some k < i such that k ∈ inv(i) and the indegree of σ(k) is zero in

G. We then add a directed edge (σ(i), σ(k)) to G. By induction over the indices in R, we

prove that this procedure is possible at every step. The base case is trivial and we can add

an arbitrary edge (σ(j1), σ(j′1)) to E when j′1 ∈ inv(j1). Suppose the claim is true for up

to jr−1. Consider the index jr. Since jr ∈ R, by definition, we are in one of two cases. The

first case is when jr−1 ∈ inv(jr), in which case we can add the edge (σ(jr), σ(jr−1)) to E.

CHAPTER 3. ESTIMATING SORTEDNESS 24

The second is when there exists an interval I = [l, jr − 1] such that |inv(jr) ∩ I| > |R ∩ I|.

Suppose for ∀x ∈ I ∩ inv(jr), indegree(x) is nonzero. This is not possible since the edges

only originate from the vertices that belong to R and this implies that |R∩I| ≥ |I∩ inv(jr)|

which contradicts our assumption. Therefore we will be able to add an edge starting from

jr as well.

Now consider the graph G = (V,E) at the end of the above process and make the

edges undirected (with a little notational abuse, we call the new graph G as well). It is

easy to observe that G is composed of a set of disjoint paths. Consider any maximal path

p = (σ(ji), ..., σ(ji+k)); p represents a decreasing subsequence of length k. Additionally, we

have {ji+1, ..., ji+k} ∈ R. By using Lemma 3.1, we can conclude that |R| is a lower bound

for ed(σ).

Now we prove the second part of the lemma. Let R be a total red set for σ. We define an

iterative pruning procedure that deletes at most 2|R| elements from σ and leaves a sorted

sequence, similar to that used in [?] for showing the lower bound. First let i = n + 1 and

σ(n+ 1) = m where m is larger than all of the elements in the sequence. Then iteratively

do the following until σ is exhausted: If i − 1 /∈ R then proceed to i − 1 and repeat. If

i− 1 ∈ R; let j be the largest index such that j < i and j /∈ R ∪ inv(i). Prune the interval

[j + 1, i− 1], proceed to j, and repeat.

It is easy to see that at the end of this procedure the resulting sequence is sorted. To

bound the number of elements pruned, observe that when we delete an interval, at least half

of the elements in the interval belong to R. Thus in total we delete at most 2|R| elements.

The proof follows.

3.1.2 Approximating the estimator

We now show a deterministic algorithm for approximating our estimator. Even though the

estimator has similarities to that in [GJKK07], due to its definition involving the compari-

son of |inv(i)∩ I| with |R∩ I|, we must design a novel algorithm to compute it. Notice that

the exact computation of this quantity can be quite costly if the two quantities are close

to each other, or are very small. We show below that an efficient deterministic algorithm

which gives an inexact estimate of the quantities suffices to construct a good approximation

CHAPTER 3. ESTIMATING SORTEDNESS 25

algorithm. To be precise, we use an algorithm, which, instead of comparing |inv(i)∩ I| and

|R ∩ I|, checks for two conditions: whether the number of inversions is in the majority and

the red indices are far from being majority in an interval. If the test for i passes for any

one interval then we make the index i a red index. The detected red set might not be total,

however we show that it is large enough to give us a 2 +O(ε) approximation.

The majority test. Given some x and an interval I, we want to check whether the number

of elements in I that are larger than x is more than |I|/2 or not. One can perform this test

by comparing x with the median of the elements in I. Since we only require a relaxed version

of the majority test, we can use an approximate median for this purpose. The problem of

finding the approximate median (and other quantiles) deterministically in a stream is well

studied in the literature. Since we need to obtain the approximate median for all widow

sizes over the stream, we use a special algorithm from Lin et al [LLXY04], whose properties

we describe below.

Let S be a set with N elements. A φ-quantile (φ ∈ (0, 1]) of S is the element of rank

dφNe. An element is said to be ε-approximate φ-quantile if its rank is in [d(1− ε)φNe, d(1+

ε)φNe]. The below lemma is a modified version of the theorem of [LLXY04]

Lemma 3.3. [LLXY04] There is a deterministic streaming algorithm which, given an input

stream of length N , using O(1
ε2

log2(εN)) space forms a sketch of the stream and can output

on demand, using this sketch, an ε-approximate quantile of the n most recent elements of

the given stream in for any n.

Let A be the algorithm described in the above theorem. Our algorithm will be making

queries to A as follows. Let the output of A(S, k, φ) be an ε-approximation for the φ-quantile

of the k most recent elements in stream S. While going over the sequence, we assume that

we generate a binary sequence that represents the red elements detected so far. let R′ be

the sequence of these elements, i.e. R′(i) = 1 if and only if the algorithm has identified ith

element as a red element. We apply the subroutine A to both the input stream (σ) and the

sequence R′. We present the algorithm below for a particular interval size i− j.

In the following lemma, we analyze the procedure RedTest.

CHAPTER 3. ESTIMATING SORTEDNESS 26

Procedure RedTest(j, i)

1. Let a = A(σ, i− j, 1
2 − ε).

2. If a ≤ σ(i) return FALSE.

3. Let a′ = A(R′, i− j, 1
2 + ε).

4. If a′ = 0 then return TRUE otherwise return FALSE.

Figure 3.1: Description of the Red-Test procedure.

Lemma 3.4. Let I = [j, i − 1]. If the majority of elements in I are not in inv(i) then

RedTest(j, i) returns FALSE. If more than (1
2 + 2ε)|I| of the elements in I are in inv(i)

and the number of (detected) red elements in I is less than (1
2 − 2ε)|I| then RedTest(j, i)

returns TRUE.

Proof. First part: if the majority of the elements in I are not in inv(i) then the median

of I is at most σ(i) and since the rank of a is in the range (1
2 − 2ε, 1

2)|I| then we should

have a ≤ σ(i); the test returns FALSE. Second part: since more than (1
2 + 2ε) fraction of I

are in inv(i) and the rank of a is in the range (1
2 − 2ε, 1

2)|I|, it follows that a > σ(i). Also

since the rank of a′ is in the range (1
2 ,

1
2 + 2ε)|I|, we should have a′ = 0 and the test returns

TRUE.

We now give the main algorithm shown in Figure 3.1.2.

Lemma 3.5. At the end of Main Algorithm we have (1
2 −O(ε))ed(σ) ≤ d ≤ ed(σ).

Proof. Let i ∈ R′. By Lemma 3.4 there exists an interval I = [j, i−1] such that |inv(i)∩I| >

|R′ ∩ I|. It follows that this interval is a witness for i and hence R′ is a red set for σ. By

Lemma 3.2 d = |R′| ≤ ed(σ).

Now we show the lower bound. The set R′ is not necessarily total. However we show

that it is big enough to be bigger than (1
2 − 2ε)ed(σ). We use the same pruning procedure

that we used in the proof of Lemma 3.2. Consider the point where i /∈ R′ and we eliminate

the interval I = [j, i − 1]. By definition of pruning procedure, the elements in I are either

in inv(i) or in R′. Suppose |I ∩R′| < (1
2 − 2ε). Then we should have |inv(i)∩ I| > (1

2 + 2ε)

and hence by Lemma 3.4 RedTest(j, i) should output TRUE. This contradicts i /∈ R′. It

CHAPTER 3. ESTIMATING SORTEDNESS 27

Main Algorithm.

Upon arrival of element σ(i) do the following.

1. For each j ∈ [1, i− 1], do RedTest(j, i). If there exists j such that RedTest(j, i) =

TRUE then let d = d+ 1 and R′(i) = 1; otherwise R′(i) = 0

2. Proceed to i+ 1st element.

At the end, output d.

Figure 3.2: General description of the algorithm for approximating ed(σ).

follows that in every interval that we delete, the fraction of red elements is at least 1
2 − 2ε

and hence in total we delete at most 2 +O(ε)|R′| elements from the sequence and we get a

sorted subsequence. This proves the lower bound.

Improving the running time. The running time of the above algorithm is Õ(n) per-

item because the algorithm checks every interval. An observation shows that for some

small enough ε1 < 1, checking O(1
ε1

log n) number of intervals is enough. To see this,

note that an ε1-approximate φ-quantile of an interval with length |I| is also an (ε1 + ε2)-

approximate φ-quantile for all intervals with lengths |I|+ 1, ..., (1 + ε2)|I|. Hence with the

appropriate choice of ε1 and ε2 (where ε1 + ε2 < ε) and by checking only intervals of length

1, 2, ..., (1+ ε′)i, (1+ ε′)i+1, ..., n, we can obtain an ε-approximate quantile for every interval.

Given this, we can state the following theorem.

Theorem 3.1. Given a sequence σ of length n, there a deterministic streaming algo-

rithm that outputs a 2 + O(ε) approximation of ed(σ) and uses space O(1
ε2

log2(εn)) and

O(1
ε2

log3 n) per-item running time.

3.2 Space lower bound for approximating LIS

In this section we prove a lower bound of Ω(
√
n) for the space complexity of deterministic

streaming algorithms that approximate the length of LIS within a small constant factor.

Our proof is derived through establishing a lower bound for a multi-player communication

game ombined via a direct-sum approach that is suggested in [GJKK07]. Before we begin

with the details, we briefly describe the initial framework and an the outline an alternative

CHAPTER 3. ESTIMATING SORTEDNESS 28

proof by Gal and Gopalan [GG07] which directly uses this framework.

3.2.1 The framework of Gopalan et al.

Toward deriving a lower bound for the streaming complexity of ε-LIS, Gopalan et al.

[GJKK07] studied a t-player communication ε-LISGJKK which is defined as follows. First

we define the input to the problem. Let t and r be two integers so that n = rt. Let

T = T0 ∪ T1 ⊂ Σrt be the union of two disjoint sets satisfying the following conditions. To

simplify the definition, we represent the input sequence x ∈ Σrt by an r × t matrix A. The

elements of x are listed in Ax through a column-ordering fashion.

Ax =



x(1) x(r + 1) . . . x(tr − r + 1)

x(2) x(r + 2) . . . x(tr − r + 2)
...

...
...

x(i) x(r + i) . . . x(tr − r + i)
...

...
...

x(r) x(2r) . . . x(tr)


.

Let xi denote a subsequence of x that occupies the i-th row of Ax. The first condition

is that for each x ∈ T , the columns of the corresponding matrix are strictly increasing, i.e.

x(kr+ i) > x(kr+ i−1) for 0 ≤ k ≤ t−1 and i ∈ [r]. Second, for all x ∈ T0, every row of Ax

is strictly decreasing while in contrast, in every x ∈ T1 there exists i such that lis(xi) ≥ εt.

Given this definition, it is easy to verify that the length of LIS of every sequence in T1 is at

most r while it is at least r + (εt− 2) in T2.

The communication game ε-LISGJKK consists of t players such that the i-th player holds

the i-th column of Ax for x ∈ T . The objective is to distinguish between inputs from T1

and T2 via communication between the players. The following fact is immediate from the

definitions.

Fact 3.2. SC(ε-LIS) ≥ 1
t CC(ε-LISGJKK).

To show a lower bound for ε-LISGJKK, Gopalan et al proposes a direct-sum approach.

Namely, ε-LISGJKK is expressed as a boolean function g which is defined as the disjunction

CHAPTER 3. ESTIMATING SORTEDNESS 29

(OR) of t instances of a primitive function h where g = ∨ti=1h(xi). The primitive function

h is defined as follows.

 h(xi) = 1 if lis(xi) ≥ εt

h(xi) = 0 otherwise.

Clearly from the above definitions, it follows that g is zero on T0 while it is one over T1.

A (direct-sum) lower bound for g is proved via showing a lower bound for h and then

arguing that g needs to solve all the instances h(x1) . . . h(xr) simultaneously to get the

correct answer. Clearly dealing with h is a simpler task and it turned out to be the right

approach. However in deploying this framework, Gopalan et al. only succeeded in obtain-

ing a lower bound of Ω(rt) for communication complexity of g restricted to a subclass of

protocols named Natural protocols. As result it implies a lower bound of Ω(t) for ε-LIS

through the so called Natural algorithms which are one-pass streaming algorithms that can

only store some subset of input symbols and nothing else with additional few auxiliary bits

(see [GJKK07]).

Gal and Gopalan’s proof. Subsequently in [GG07], Gal and Gopalan showed a lower

bound for ε-LISGJKK through restricting the communication between the players to only pri-

vate messages.

Fact 3.3. CCPRIVATE(ε-LISGJKK) = Ω(rt log(m/n)).

Given this fact and the connection between streaming and communication (see Section

2.1), the result below follows.

Corollary 3.4. [GG07] SC(ε-LIS) = Ω(
√
n/ε log(m/n)).

In the next section we use the general (direct-sum) framework of Gopalan et al. [GJKK07]

and we derive an alternative proof for lower bounding ε-LIS. The idea behind our proof is

defining a new primitive function h which admits a large fooling set (defined below). We

show the existence of such fooling set through probabilistic method. Finally we show that

the fooling set for h can be extended to create a large fooling set for g.

CHAPTER 3. ESTIMATING SORTEDNESS 30

0 0 0 0 0 0 1 0 0 1

0 0 1 1 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 1

0 0 1 0 1 1 0 1 0 1

1 1 1 1 0 0 0 1 0 0

0 0 1 1 0 1 1 1 1 0

0 0 0 0 0 1 1 1 0 0

0 0 1 1 1 0 1 0 0 0

0 1 1 1 0 1 0 1 0 1

Figure 3.3: A (0,1)-matrix with a monotone path shown in grey color.

3.2.2 An alternative proof

In this section we focus on a certain variant of LIS expressed in the language of (0, 1)-

matrices. Let A be a (0, 1)-matrix with r rows and t columns where rt = n. We define

Pxy(A) as the set of all monotone paths starting from the location x and ending at the

location y. A monotone path is a sequence of locations that nevers goes downward or to

the left. An example is given in Figure 3.2.2. Now let

ξ(A) = max {w(p) | p ∈ P(r,1)(1,t)(A) },

where w(p) is the number of 1-cells in p. Similar to ε-LISGJKK, We define the t-player game

ε-LISEJ, where i-th player has the possession of the i-th column of A. The objective of the

game is to distinguish between two set of inputs which we introduce next.

We define the sets H0, H1 ⊂ {0, 1}t as follows.

H0 = {x ∈ {0, 1}t | x(1) = x(t) = 1 and x(i) + x(i+ 1) ≤ 1 ∀i ∈ [t− 1] },

H1 = {x ∈ {0, 1}t | x(1) = x(t) = 1 and w(x) ≥ 0.6t }.

In words, H0 contains only sequences with no consecutive 1s while every sequence in H1 has

weight at least 0.6t. Now Let H = H0 ∪H1. We define the boolean function h : H → {0, 1}

where h is 0 on H0 and 1 on H1. Now let g : Hr → {0, 1} where g(X) = ∨ri=1h(Xi). Note

CHAPTER 3. ESTIMATING SORTEDNESS 31

that X ∈ Hr is a (0,1)-matrix with r rows and t columns. An important observation about

the function g is that it separates matrices with low ξ from matrices with longer monotone

paths. To be precise, we have if g(X) = 0 then ξ(X) ≤ r + 0.5t otherwise ξ(X) ≥ r + 0.6t.

This gives us the following fact.

Proposition 3.5. Let ε ≤ 0.1t
r+0.6t . We have SC(ε-LIS) ≥ CC(ε-LISEJ).

In the following we show a lower bound on C(ε-LISEJ). To prove this bound, we establish

the existence of a large fooling set for h and this consequently gives us a large fooling set

for g. First we need few definitions.

Let U be some finite universe. Let R ∈ Uk×t. Let Cj(R) be the set of distinct elements

that appear in the jth column of R. We define

Span(R) = { y ∈ U t | ∀i ∈ [t] yi ∈ Ci(R) }

and we call it the span of the matrix R. Now we define the notion of a k-fooling set for

function f : U t → {0, 1} which is a generalization of a standard fooling set definition (cf

[?]).

Definition 4. Let S ⊂ U t and let k be a positive integer. S is a k-fooling set for f iff f is

c ∈ {0, 1} on S but for each subset of S′ of S with cardinality k, Span(S′) contains y such

that f(y) ∈ {0, 1}/{c}.

We have the following fact regarding the k-fooling sets.

Fact 3.6. Let S be a k-fooling set for f : U t → {0, 1}. Let F be the t-player game

corresponding to f . We have C(F) ≥ log(|S|/(k − 1)).

In the following lemma, we show the existence of a large fooling set for function h and

consequently a large fooling set for g. The latter part is the direct-sum section of our proof

strategy.

Lemma 3.6. There is a k-fooling set for function h of size ct−4 where c ≥ (1− 1
k2

) exp 1
100k .

Moreover let F be a k-fooling set for h. Then F r is a kr-fooling set for g.

Proof. (First part) We show the existence of a large S ⊂ U t where h(x) = 0 for all x ∈ S

and the span of any k elements in S contains a sequence y such that h(y) = 1. We use

CHAPTER 3. ESTIMATING SORTEDNESS 32

probabilistic method to prove the existence of such collection of inputs. Let t′ = t − 4.

We pick x ∈ {0, 1}t′ randomly where xi = 1 with probability p and independent of other

coordinates. Let b(t′) be the probability that no two consecutive xi and xi+1 are 1 together.

When a sequence satisfies this property we refer to it as a good sequence. Using induction

we can show that

b(t′) ≥ (1− p2)t
′
.

To see the above, consider the recurrence b(t′) = (1 − p)b(t′ − 1) + p(1 − p)b(t′ − 2) where

b(1) = 1 and b(2) = 1 − p2. Now suppose we pick L binary sequences in this manner

and let the random variable Z represent the number of good sequences. It follows that

E(Z) = (1− p2)t
′
L.

Now we need to find a upper bound on the probability that the span of k random se-

quences contains a sequence with weight at least 0.6t′. Let J1, ..., Jk be k random sequences.

We can view these binary sequences as representatives of the subsets of [t′]. Note that i ∈ [t′]

is included in J = J1 ∪ J2 ∪ ... ∪ Jk with probability γ = 1− (1− p)k. Hence the expected

size of J is γt′. Since the inclusion of the elements are independent, we can use Chernoff

bound to bound the probability that |J | < 0.6t′.

Pr(|J | < (γ − α)t′) ≤ δ = e(−α
2γ
2

)t′ .

We now set p = 1
k . Since γ > 1−1/e setting α ≤ 1−1/e−0.6 satisfies our requirement.

Now since we demand the union of any k random subsets to cover α fraction of the universe,

using the union bound, if
(
L
k

)
δ < 1 then with a positive probability there are (1−p2)t

′
L many

good sequences. We append 10 and 01 to the beginning and the end of these sequences

and that would be the set S, our k-fooling set for h. By plugging in the values we get

(1 − 1
k2

)t
′
(1
δ)

1
k = (e

α2γ
2k (1 − 1

k2
))t
′

many good subsets. One can inspect that this is bigger

than ((1− 1
k2

) exp 1
100k)t

′
. This completes the proof.

(Second part) Note that the members of F are (0,1)-matrices with r rows and t columns.

First of all, by the definition of fooling set for h and the definition of g, we have that g(B) = 0

for all B ∈ F r. Now let F ′ be an arbitrary collection of kr members of F r. Let Hi be the

set of elements from Fi that appear in F ′. Note that Hi is a subset of inputs for hi. Since

the size of F ′ is at least kr there exists some j ∈ [t] such that |Hj | ≥ k. Now let W be

CHAPTER 3. ESTIMATING SORTEDNESS 33

some subset of k members of F ′ that cover Hj . Here we regard W as a set of k matrices of

order r× t. (Note that g is defined as the OR of h’s applied to the rows of those matrices).

Consider Span(W). Note that in each B ∈ Span(W), the ith column of B is picked from

the ith column of the one of the matrices in W . From the fact that Fj is a fooling set for

hj , it follows that there exists y ∈ Span(Hj) (the span of Hj) such that hj(y) = 1. It

implies that there exists some B ∈ Span(W) such that g(B) = 1. We conclude that F r is

a kr-fooling set for g.

From the above lemma and the preceding discussion we derive the following theorem.

Theorem 3.7. Let ε ∈ (0, 1/6). We have SC(ε-LIS) = Ω(
√

n
ε).

Proof. To finish the proof of the Theorem 3.7, consider that by Fact 3.6, Lemmas 3.6, and

k = O(1), we get

C(ε-LISEJ) ≥ log
|F |r

kr
= Ω(tr) = Ω(n).

Consequently we get SC(ε-LIS) ≥ 1
t CC(ε-LISEJ) = Ω(n/t), where ε ≤ 0.1t2

n+0.6t2
. By substi-

tuting t = O(
√
εn), we derive the theorem.

Chapter 4

Periodicity and Consecutive

Repetitions

In this section we present our results on measuring the repetitiveness of a data stream in

terms of periodicity and closedness to being periodic. We start with some preliminaries

and tools that are needed for our algorithms. Then we present a streaming algorithm

for pattern matching which is our main component in computing the period of a sequence.

After presenting our result on computing the exact short period, we investigate approximate

periodicity in terms of measuring closedness to being periodic under substations (Hamming

distance).

4.1 Few preliminaries

In this chapter we represent the length of a string s with |s|, the ith element of s with s[i],

and the substring of s between locations i and j (inclusive) with s[i, j]. A d-substring is

a substring of length d. The concatenation of two sequences (or vectors) u, v is written as

u ◦ v or sometimes uv if concatenation is understood from the context. In this chapter we

denote by ui the concatenation of i instances of u.

The following lemma is well-known and a proof of it can be found in [LS62, FW65].

Lemma 4.1 (Lyndon et al. [LS62]). If s is both p-periodic and q-periodic where p+ q ≤ |s|,

then s is also gcd(p, q)-periodic.

34

CHAPTER 4. DETECTING PERIODICITY 35

We denote by Ms(t) the set of all positions in s where an exact occurrence of string

t starts; i.e., Ms(t) = {i | s[i, i + |t| − 1] = t}. The following lemma shows the relation

between per(t) and Ms(t).

Lemma 4.2. Let i ∈Ms(t) and let U = Ms(t) ∩ [i, i+ |t| − 1]. The following are true.

(i) Let j ∈ U where j > i and there is no k ∈ U such that i < k < j. If |i − j| ≤ |t|/2

then |i− j| = per(t).

(ii) There is at most one j ∈ U such that |i − j| is not a multiple of per(t). Moreover if

|i− j| is not a multiple of per(t), then j = max (U).

Proof. First we prove claim (i). Let p = per(t). By the definition of period, t is |i − j|-

periodic. This implies that p ≤ |i − j|. Suppose p < |i − j|. We prove that there exists

a k ∈ Ms(t) where i < k < j. Since |i − j| ≤ 1/2|t|, by Lemma 4.1, we get that t is

gcd(p, |i−j|)-periodic and thus |i−j| is a multiple of p. This means that all the consecutive

blocks

s[i, i+ p− 1], s[i+ p, i+ 2p− 1], . . . , s[j − p, j − 1], s[j, j + p− 1]

are equal. Take k = j − p. Clearly k ∈ Ms(t). This contradicts with our assumption and

proves the first claim.

To prove the second claim, we proceed as follows. Let |t| = lp+ r, where l is an integer

and 0 ≤ r < p. Define i0 = i+ |t| − r− p. If j ∈ U and j < i0, then |j − i| is a multiple of p

by applying Lemma 4.1 twice. Suppose for contradiction that there are j1 < j2 in U such

that both |j1− i| and |j2− i| are indivisible by p. From the previous sentence j1 ≥ i0. Also,

by definition of period |j1 − j2| ≥ p. Let s1 = s[i0, i + |t| − 1]. Since s1 is both |j1 − i0|-

and p-periodic and |j1 − i0| + p ≤ |s1|, by Lemma 4.1 s1 is gcd(|j1 − i0|, p)-periodic. In

particular, s[i, i + p − 1] = s[i0, i0 + p − 1] = um for some m > 1, a contradiction. This

proves that there can be at most one j ∈ U such that |i− j| is not divisible by p.

Now we show j1 = max (U) if |i − j1| is not divisible by p. Assume for contradiction

that there is a j2 ∈ U such that j2 > j1. From the previous paragraph, |j2− i| is a multiple

of p and j1 > i0. Hence j2 = i0 + p. This means that t is (j2 − j1)-periodic, which is a

contradiction since |j2 − j1| < p.

CHAPTER 4. DETECTING PERIODICITY 36

Fingerprints. In Section 4.2 we use Rabin-Karp fingerprints [KR87], a standard sketching

tool which allows us to compare strings of arbitrary length in constant time. Fix an integer

alphabet Σ. Let q > |Σ| be a prime and r ∈ Z∗q be arbitrary. The Rabin-Karp fingerprint

of a string s ∈ Σ∗ is defined as

Φq,r(s) =

|s|∑
i=1

s[i] · ri−1 (mod q).

The following facts are well-known and the reader is referred to [KR87, PP09, BG11] for

the proofs.

(P1) Φq,r(s) can be computed in one pass over s using O(log q) bits of space.

(P2) Let s 6= t be two strings and l = max(|s|, |t|). Prr[Φq,r(s) = Φq,r(t)] ≤ l
q−1 .

(P3) Given Φq,r(s) and Φq,r(t), we can obtain Φq,r(s ◦ t) by constant arithmetic operations

in Zq.

(P4) Given Φq,r(s ◦ t) and Φq,r(s), we can obtain Φq,r(t) by constant arithmetic operations

in Zq.

From now on, we set q = Θ(n4) and assume that r is chosen uniformly at random from

Z∗q at the beginning of the respective algorithm. We also omit the subscripts and denote

the fingerprint of s by Φ(s).

4.2 Streaming pattern matching

We assume the input stream is the concatenation of the pattern u of length m and the text

s of length n. Here we present a 1-pass streaming algorithm that generates the starting

positions of the matches of u in s (equivalently, Ms(u)), on the fly using logarithmic space

and per-item time. To be precise, if s[i −m + 1, i] = u, after receiving s[i] our algorithm

reports a match with high probability. Also, the probability that our algorithm reports a

match where there is no occurrence of u is bounded by n−1.

While it is easy to generate Ms(u) when u is small, the problem is non-trivial for large u.

The following lemma implies that given a streaming algorithm that finds length-m patterns,

by taking advantage of the Rabin-Karp fingerprints, we can obtain a streaming algorithm

for length-cm patterns using only O(c log n) extra space.

CHAPTER 4. DETECTING PERIODICITY 37

Lemma 4.3. Let k be an integer greater than m. Let A be a 1-pass algorithm that generates

Ms(u) using O(g) bits space. Given A and Φ(u), there is a 1-pass algorithm that outputs

Φ(s[i, i+ k]) at position i+ k for all i ∈Ms(u) using space O(g + k
m log n) bits.

Proof. The algorithm partitions the sequence of positions in Ms(u) (as generated by A)

into maximal contiguous subsequences where in each subsequence the distance between

consecutive positions is at most m
2 . To do this we only need to keep track of the last

position in Ms(u). If the next position is more than m
2 characters apart then we start a new

maximal subsequence, otherwise the new position is appended to the last subsequence.

Now let a1, a2, . . . , ah ∈Ms(u) be a maximal sequence of consecutive positions in Ms(u)

where |al+1−al| ≤ 1
2m for all l ∈ [h−1]. We claim that for this sequence we need to maintain

at most four fingerprints to generate Φ(s[al, al+k]) for all l ∈ [h]. To do this, first we launch

an individual process to generate Φ(s[a1, a1 + k]) and Φ(s[a2, a2 + k]). By Property (P3)

from Section 4.1, this can be done by adding Φ(s[a1, a1 +m− 1]) and Φ(s[a1 +m, a1 + k]).

Now if h < 3, our claim is proved. So suppose h ≥ 3.

First we note that by Lemma 4.2, we should have |al+1− al| = per(u) for all l ∈ [h− 1].

As a result, when we reach the position a2 +m− 1, we have obtained the value of per(u).

Now let x = u[1,per(u)]. We show that it is possible to compute Φ(x) when we reach

a3 + m − 1. To this end, when we are in a1 + m − 1, starting from the next character

we build a fingerprint until we reach a2 + m − 1. This gives us Φ(s[a1 + m, a2 + m − 1]).

Note that if per(u) divides m, then s[a1 +m, a2 +m− 1] = x and we are done. Otherwise

s[a1+m, a2+m−1] is x shifted r times to the left (cyclic shift), where r = m (mod per(u)).

Therefore

s[a1 +m, a2 +m− 1] = x[r + 1, per(u)] ◦ x[1, r].

Likewise, we have s[a2 + m, a3 + m − 1] = x[r + 1,per(u)] ◦ x[1, r]. Therefore, at location

a2 +m, we know the value of r and per(u), and consequently using this information, we can

build the fingerprints Φ(x[r+1, per(u)]) and Φ(x[1, r]) when we go over s[a2 +m, a3 +m−1].

Note that here we have used the properties (P3) and (P4) from Section 4.1. It follows that

we are able to construct Φ(x) when we get to a3 +m− 1.

Now observe that s[al, al+k] is equivalent to the substring s[al−1, al−1+k] after removing

a block of length per(u) from the left-end of it and adding s[al−1 +k, al−1] to the right-end.

CHAPTER 4. DETECTING PERIODICITY 38

Therefore we can generate Φ(s[al, al+k]) by having Φ(s[al−1, al−1+k]), Φ(s[al−1+k, al−1]),

and Φ(x). This proves our claim.

It should be clear that at each point in time, we run at most 4k
m parallel fingerprint

computations. Each fingerprint takes O(log n) space. This finishes the proof of the lemma.

Our pattern matching algorithm is the result of a recursive application of Lemma 4.3.

First as we go over u, we build Φ(u[1, 2i]) for all i ∈ [logm]. By Property (P1) this can

be done in 1-pass and using O(logm log n) bits of space. Let Ai be an algorithm that

generates Ms(u[1, 2i]) in space gi. When i < c where c is a small constant, we can use the

naive solution of storing the entire pattern which gives gi = O(log n). By Lemma 4.3, we

get an algorithm Ai+1 for Ms(u[1, 2i+1]) in space O(gi + log n) by fingerprint comparisons.

Applying this O(log |u|) times we obtain an algorithm for Ms(u) using space O(log |u| log n)

bits. The success probability is at least 1− logm/n2 and this is due to the Property (P2) in

Section 4.1 and the observation that we make at most O(n log |u|) fingerprint comparisons.

Theorem 4.1. There is a 1-pass streaming algorithm that generates Ms(u) in O(log |u| log n)

bits of space and O(log |u|) per-item processing time. The error probability is bounded by

n−1.

Since our pattern matching algorithm only requires the fingerprints of a small set of

prefixes of the pattern, it can be used to generate Ms(s[1,m]) (where the pattern itself is

a prefix of the text) in one pass and in space O(logm log n) bits. This property of our

algorithm will be essential in Section 4.4. In addition to Ms(u), our algorithm generates

Ms(u[1, 2i]) for each i = 1, . . . , logm, which leads to further space economy in our periodicity

algorithms in the next section.

4.3 Finding the period

Testing whether the sequence s is periodic or not is equivalent to testing if there is a suffix

of s of length at least n
2 that matches a prefix of s. Hence for finding the period of s,

we just need to check the positions that match a certain prefix of s. Our algorithms for

testing periodicity has two stages. In the first stage, which we call the searching stage, the

CHAPTER 4. DETECTING PERIODICITY 39

algorithm finds the positions where they match the first half of s. This is done by using

the pattern matching algorithm of the previous section. Then, in the second stage, which

we call the verification stage, we check if the detected position can be the start of a suffix

that matches a prefix of s. However these stages are performed in parallel as the search and

verification of different positions might overlap. In the following, to demonstrate the idea,

first we present a weaker bound and then we handle the general case.

Let T = Ms(s[1, n/2]). 1 By definition, s is periodic if there exists i ∈ T where s[i+1, n] =

s[1, n − i]. Now if i ≤ n/4, we can build both Φ(s[i + 1, n]) and Φ(s[1, n − i]) in one pass

over s and thus we can test whether per(s) ≤ n/4 or not as follows.

Run the pattern matching algorithm to find i = min (T ∩ [1, n/4]). Build Φ(s[i+ 1, n])

and Φ(s[1, n − i]). If Φ(s[i + 1, n]) = Φ(s[1, n − i]) then per(s) = i otherwise output that

per(s) > n/4.

The reason that we only perform the test for min (T ∩ [1, n/4]) is a consequence of

Lemma 4.2. We do not need to check whether s[i+ 1, n] = s[1, n− i] for i = cmin (T) when

c is an integer greater than 1 as, in this case, s[1, i] would be of the form u ◦ . . . ◦u (a cyclic

string) and thus can not be the period of s. From these observations we get the following

lemma.

Lemma 4.4. There is a 1-pass streaming algorithm that decides whether per(s) ≤ n/4 or

not in space O(log2 n) bits. The algorithm also outputs the exact period if per(s) ≤ n/4.

For i > n/4, checking whether s[i + 1, n] = s[1, n − i] is not straightforward. This is

because when we find out i ∈ T , we have already crossed the point n − i and lost the

opportunity to build Φ(s[1, n − i]). To solve this problem we conservatively maintain a

superset of T and prune it as we learn more about the input stream. First observe that, for

i ∈ T , since s[1, n− i] = s[1, n/2]◦ s[n/2 + 1, n− i], it is enough to build Φ(s[n/2 + 1, n− i]).

Now for i ∈ [1, n/2], let si = s[n/2 + 1, n − i]. Roughly speaking, at each point in time,

we maintain a dynamic set of positions R that will contain T and for each i ∈ R we collect

enough information to be able to construct Φ(si). Also in parallel we run a pattern matching

process to generate T . Finally for each position in {i ∈ R ∩ T | i 6= cmin (T) for c ∈ N} we

check whether Φ(s[i + 1, n]) = Φ(s[1, n − i]). If Φ(s[i + 1, n]) = Φ(s[1, n − i]) holds in one

1To make the presentation simpler, we assume n is a power of 2.

CHAPTER 4. DETECTING PERIODICITY 40

case, then we declare s to be periodic, otherwise it is reported aperiodic.

The dynamic set Let Ik = [n/2−2k+1, n/2−2k−1] and let H = H1∪H2∪ . . .∪Hlog(n/4)

where Hk = Ms(s[1, 2
k])∩Ik. In other words, Hk is the positions of all occurrences of s[1, 2k]

that start within the interval Ik. Clearly T ⊆ H. In what follows, for a fixed k we show

how to compute Rk ⊆ Hk and, more importantly, how to maintain Φ(si) for each i ∈ Rk.

Also we guarantee that every member of T will be added to R = R1∪ . . .∪Rlog(n/4) at some

point. Initially all Rk are empty. First we distinguish two main cases. In both cases, we use

the pattern matching algorithm described in Section 4.2 to get the sequence of positions in

H. Also, when we detect i ∈ Hk, we add it to Rk. However, we might prune Rk and remove

some unnecessary elements. In the following let p = per(s[1, 2k]).

The case p > 1
42k. By Lemma 4.2, we get |Hk| < 4. Moreover, we detect i ∈ Hk before

reaching the end of si, and thus, we can build Φ(si) at the right time. In this case we let

Rk = Hk. Clearly we can maintain R and the associated fingerprints in O(log n) space.

The case p ≤ 1
42k. Here things get a bit complicated. In this case Hk could be large

and if we maintain Φ(si) for each i ∈ Hk individually, this might take linear space. To

solve this problem, first we note that, by Lemma 4.2, the positions in Hk have a succinct

representation as the distance between consecutive positions is exactly p. As result, we can

encode Rk using O(log n) space. Further, we take advantage of the periodic structure of

s[1, 2k] and possibly the substring s[2k +1, 2k+1]. Consider that for i ∈ Hk, si is a substring

of s[i, i+2k+1−1]. Now, loosely speaking, if the substrings {si} fall in a periodic region, we

can maintain all Φ(si) by saving a constant number of fingerprints. On the other hand, if

the substring s[i, i+2k+1−1] is not periodic then we use the period information of s[1, 2k+1]

to prune Rk. To do this, we collect the following information when we process the first half

of the stream.

• Using the tester from Lemma 4.4, we compute p. If it is reported that p > 1
42k, then

Ik falls into the previous case. We also compute Φ(s[1, p]) and Φ(s[2k − p+ 1, 2k]).

• Let u1 ◦ u2 ◦ . . . ◦ ut ◦ u′ be a decomposition of s[2k + 1, 2k+1] into consecutive blocks

CHAPTER 4. DETECTING PERIODICITY 41

︷ ︸︸ ︷Ik

n
2

n
2−2k−1n

2−2k+1 n
2 +2k−1 n

2 +2k

q
b1

q
b2

q
b3

q
br−1

q
br

p p p q q q q q a
eb1

a
eb2

aaa
ebr

s[br+2k,n/2+2k]︷ ︸︸ ︷

Figure 4.1: A sample run of the algorithm in Section 4.3.

of length p except possibly for the last block. Let x to be the maximum j such that

s[1, 2k] ◦ u1 ◦ . . . ◦ uj is p-periodic. We compute x.

Now let b1, b2, . . . , br be the elements of Hk in increasing order. Since |Ik| ≤ 1
22k, we

have |bi+1 − bi| = p for all i ∈ [r − 1]. Let v1 ◦ v2 ◦ . . . ◦ vl ◦ v′ be a decomposition of the

substring s[br+2k, n/2+2k] into consecutive blocks of length p except possibly the last block

(see Figure 1 for a pictorial presentation of the substrings). Now let y be the maximum j

such that s[br, br + 2k − 1] ◦ v1 ◦ . . . ◦ vj is p-periodic. We consider two cases. If y = l then

{si | i ∈ Hk} are substrings of a periodic interval. Let eb1 be the right endpoint of sb1 , i.e.

eb1 = n−b1. Note that we have eb1 > eb2 > . . . > ebr . In this case, all the following substrings

(except possibly the last one) are equal: s[ebr + 1, ebr−1], s[ebr−1 + 1, ebr−2], . . . , s[eb2 + 1, eb1].

Therefore to compute Φ(sbj), we just need to maintain Φ(sb1) and Φ(s[eb2 + 1, eb1]). We

compute Φ(sb1) individually. So in this case Rk = Hk. In the other case, we have y < l.

We make the following claim.

Claim 4.2. If y < l and |r − j|+ y 6= x then bj /∈ T .

By Claim 4.2, |Hk ∩ T | ≤ 1. Consequently it is enough to maintain Φ(sbj) where

|j − r|+ y = x and Φ(sb1). So in this case |Rk| ≤ 2.

It remains to state how to compute x and y. To compute x, we need to know p and

Φ(s[2k − p + 1, 2k]). This information can be obtained in one pass (see the observations

before Lemma 4.4). Computation of y is similar to x. Finally, given the above discussion,

for each k ∈ {1, 2, . . . , log(n/4)}, we need to keep O(1) number of fingerprints to maintain

CHAPTER 4. DETECTING PERIODICITY 42

Rk and its associated fingerprints which makes the total space O(log2 n) bits. Hence, we

get the following result.

Theorem 4.3. There is a 1-pass randomized streaming algorithm that given s ∈ Σn outputs

per(s) if s is periodic, otherwise it reports that s is aperiodic. The algorithm uses O(log2 n)

bits of space and has O(log n) per-item running time. The error probability is at most

O(n−1).

The following theorem shows that in general finding the period in one pass requires

linear space.

Theorem 4.4. Every 1-pass randomized algorithm that computes per(s) requires Ω(n)

space.

Proof. Consider the communication game between Alice and Bob, respectively holding

strings a and b, both of length n, where the goal of the game is to compute per(a ◦ b).

We show that any one-way protocol that computes per(a ◦ b) requires Ω(n) communication

by a reduction from the Augmented Indexing problem (see Section 5.4.1). Suppose Alice

and Bob are given an instance of AINDn
2 . In this problem Alice gets an x ∈ {0, 1}n, and

Bob gets an index i ∈ [n − 1] and y ∈ {0, 1}i with the promise that y = x[1, i − 1]. Alice

sets a = x ◦ 2 and Bob sets b = 0n−i ◦ y ◦ 1. Clearly, per(a ◦ b) = i if and only if x[i+ 1] = 1.

Hence by Theorem 5.9 an Ω(n) communication bound holds for any 1-way protocol. The

claim of the theorem follows by noting that any 1-pass algorithm that computes per(s) can

be converted to a protocol for the above communication game.

4.4 Frequency moments over substrings

Let s be a string of length n, and k ≥ 0, d ≤ n be integers. We define the kth frequency

moment of d-substrings of s as

Fk,d(s) =
∑
u∈Σd

|Ms(u)|k.

To approximate Fk,d, one can create a fingerprint for each d-substring and feed this

stream of fingerprints to a standard Fk algorithm. Thus, using the algorithms of [KNW10a,

CHAPTER 4. DETECTING PERIODICITY 43

KNW10b, Gan11] we can (1 + ε)-approximate Fk,d with Õ(d+ n1−2/k) space and Õ(1) per

item processing time for any k ≥ 0. It is not possible to obtain a o(d) algorithm however,

if we insist on constructing a fingerprint for each d-substring2. We note that by replacing

the reservoir sampling procedure of [AMS96] with the pattern matching algorithm above,

one can (1 + ε)-approximate Fk,d using space Õ(1
ε2
n1−1/k), in particular independent of d.

Unfortunately, the estimator of [AMS96] does not give a bound for F0,d which is perhaps

the most commonly used moment for substrings, also known as the q-gram measure. Here

we present an Õ(1
ε

√
n) space randomized algorithm that (1 + ε)-approximates F0,d.

Theorem 4.5. There exists a 1-pass streaming algorithm that (1 + ε)-approximates F0,d

using Õ(1
ε

√
n) space.

Proof. Let s ∈ Σn be the stream. Let K be the set of all d-substrings of s and n′ = n−d+1.

Our basic estimator X is defined as follows. Let i be random position between 1 and n′.

We set X = 0 if there exists a j > i such that s[i, i+ d− 1] = s[j, j + d− 1], we set X = n′

otherwise. We have E[X] = 1
n′
∑

w∈K n
′ = F0,d. Also, Var(X) ≤ E[X2] = 1

n′
∑

w∈K n
′2 ≤

n · F0,d. Let Y be the average of 3
ε

√
n repetitions of X. By Chebyshev’s inequality,

Pr[|Y − F0,d| ≥ εF0,d] ≤
Var(Y)

ε2F 2
0,d

≤
√
n

3εF0,d
.

Right hand side is smaller than 1/3 when F0,d ≥ 1
ε

√
n. Note that we can compute each X

in O(log n log d) space in one pass using the pattern matching algorithm of Section 4.2.

Now we show that F0,d can be computed exactly using space Õ(F0,d). First we show for

|s| ≤ 2d, how to build the fingerprints of every distinct d-substrings of s in O(F0, d(s) log2 n)

bits of space, and handle the general case afterwards. Suppose |s| ≤ 2d. We claim that s

can be divided into three substrings s = u1 ◦ u2 ◦ u3, where |u1| and |u3| are O(F0,d(s))

and per(u2) ≤ F0,d. Assume F0,d(s) < d/4, otherwise the claim is trivially true. Now

let t = F0,d(s) + 1 and let s1, . . . , sh be the consecutive d-substrings of s. By assumption

there exists si and sj such that i < j ≤ t and si = sj . Again by assumption there exists

sk and sl where (j + d − 3t − 1) ≤ k < l ≤ (j + d − 2t) and sk = sl. This implies that

sl overlaps with sj in at least 2t − 1 characters. Moreover both per(sj) and per(sl) are

2An easy information theoretic observation shows that sliding a fingerprint for d-substrings that preserves

equality with high probability requires Ω(d) space.

CHAPTER 4. DETECTING PERIODICITY 44

less than or equal to t − 1. Using Lemma 4.1, it can be shown that any r-substring of

a string with the period p, has period p if r ≥ 2p. By this fact, we conclude that the

last 2t − 1 characters of sj has period per(sj). Consequently per(sj) = per(sl). Therefore

per(s[j, l + d − 1]) = per(sj) ≤ t − 1 = F0,d(s). We let u1 = s[1, j − 1], u2 = s[j, l + d − 1],

and u3 = s[l + d, |s|]. This proves our claim.

For |s| > 2d, we divide s into blocks of length at most 2d where each d-substring of s

belongs to exactly one block and moreover constant number of blocks intersect with each

other. We handle each block separately but we keep a unique storage for all the fingerprints.

Since constant number of blocks overlap and clearly the number of distinct substrings in a

block is less than F0,d(s), we use at most O(F0,d(s) log2 n) space.

Hence we compute 3
ε

√
n estimates for X, while we run the exact algorithm in parallel.

If at any point in the stream the exact algorithm detects that F0,d ≥ 1
ε

√
n we terminate it

and output the sampling estimate, otherwise we output the value computed by the exact

algorithm.

4.5 Approximating the distance to periodicity

Recall that D0,p(s) is the minimum number of character changes on s ∈ Σn to make it

p-periodic. Assume WLOG that p divides n where n = dp, and view s as a p × d matrix

A where A(i, j) = s[(i − 1)p + j]. If p does not divide n, s can be represented by two

matrices. Then, D0,p(s) is the the minimum number of substitutions in A to make every

row consist of d repetitions of the same character. Also, D0,p(s) = L1 ◦ F res(1)
1 (A) =∑p

i=1 F
res(1)
1 (Ai). It is challenging to compute this quantity since we receive A in the column

order: A(1, 1), . . . , A(p, 1), A(1, 2), . . . , A(p, 2), . . . To compute L1 ◦ F res(1)
1 (A) exactly, one

can compute the residual tail of each row in parallel using independent counters, in O(|Σ|p)

words of space. On the other hand, one can estimate F
res(1)
i (Ai) within 1 − ε factor in

O(1/ε) words of space in several ways. For instance, using the Heavy Hitters algorithms in

[MG82, BKMT03] we can approximate F∞(Ai) with additive error εF
res(1)
1 (Ai), giving the

following bound.

Theorem 4.6. There is a deterministic streaming algorithm that approximates D0,p(s)

within 1− ε factor using O(pε) words of space.

CHAPTER 4. DETECTING PERIODICITY 45

Now we turn our attention to randomized algorithms. In the following, to simplify

notation, we use F (Ai) = F
res(1)
1 (Ai) and F (A) = L1 ◦ F res(1)

1 (A).

4.5.1 A (2 + ε) algorithm

The idea of this algorithm is to reduce F (A) to L0 of a vector where each item in s represents

a set of updates to this vector. Let fi(a) be the number of occurrences of a ∈ [m] in Ai.

We first observe the following.

Fact 4.7. F (Ai) ≥ 1
d

∑
a<b fi(a)fi(b) ≥ 1

2F (Ai).

Proof. Notice that 1
d

∑
a<b fi(a)fi(b) = 1

2(d−1
d

∑
a f

2
i (a)). Clearly 1

d

∑
a f

2
i (a) ≤ max{fi(a)}.

This proves the right hand side inequality. To prove the left inequality, we need to show d ≥

2 max{fi(a)}− 1
d

∑
a f

2
i (a). This is true because the RHS is maximized when max{fi(a)} =

d.

One way to produce
∑

a<b fi(a)fi(b) is to compare each location of Ai with all other

locations and sum up the mismatches. To express this in terms of L0, let vi be an all zero

vector of length d2 with a coordinate for each (j, k) ∈ [d] × [d]. Given Ai(j) = l, add l to

vi(j, k) and subtract l from vi(k, j) for all k ∈ [d]. Then, L0(vi) = 2
∑

a<b fi(a)fi(b). We

generate the updates to vector v = v1 ◦ . . . ◦ vp as we go over A and estimate L0 using the

following result by Kane et al. [KNW10a].

Theorem 4.8. [KNW10a] Let x = (x1, . . . , xn) be an initially zero vector. Let the input

stream be a sequence of t updates to the coordinates of x of the form (i, u) where u ∈

{−M, . . . ,M} for an integer M and i is an index. There is a 1-pass streaming algorithm for

(1 + ε)-approximating L0(x) using space O(1/ε2 log n(log(1/ε) + log log(tM))), with success

probability 7/8, and with O(1) per-item processing time.

By Theorem 4.8 and Fact 4.7, we get a 2 + ε approximation for F (A) using space

O(1/ε2 log(1/ε) log(n)) bits. However, per-item processing time is Ω(d). To overcome this,

we pick a random subset S from [d] of size O(1
ε2

log p) and, for j ∈ S, we compare Ai(j)

with all the coordinates of Ai. Now this gives us a vector v′i with dimension d|S|. Fix an

i and consider random variable L0(v′i). Let Yj be an indicator random variable which is 1

CHAPTER 4. DETECTING PERIODICITY 46

iff j ∈ S. We have E[L0(v′i)] =
∑d

j=1 E[Yj]
∑d

k=1 Ham(Ai(j), Ai(k)) = 2|S|
d

∑
a<b fi(a)fi(b).

Since {Yj} are independent, using Chernoff bounds,

Pr
[
|L0(v′i)− E[L0(v′i)| > εE[L0(v′i)

]
≤ 1

8p
.

By the union bound, the probability that L0(v′)
2|S| is away from 1

d

∑p
i=1

∑
a<b fi(a)fi(b) by a

factor of ε is at most 1/8. Given this and the fact that the underlying L0 estimation itself

gives a 1+ε approximation we get a (1+ε)2 = 1+θ(ε) approximation using polylogarithmic

space and O(1/ε2 log p) per-item processing time.

Theorem 4.9. Let ε > 0. There is a 1-pass randomized streaming algorithm that approxi-

mates L1 ◦ F res(1)
1 (A) within 2 + ε factor using O(1/ε2 log(1/ε)) words of space. The error

probability is at most 1/4.

4.5.2 A (1 + ε) algorithm

We start by making few observations that are crucial to the algorithm in this section. Then

we proceed with the description of our algorithm. Let F ′(Ai) = 1/d
∑

a<b fi(a)fi(b). Recall

that, in the previous algorithm, we used F ′(Ai) as an approximation for F (Ai). The worst

case for this approximation happens when F (Ai) is maximized, i.e., F∞(Ai) = d/F0(Ai).

On the other hand, when F (Ai) is low, the above quantity gives us a good estimate. This

is because F ′(Ai) is lower bounded by 1
d(d− F∞(Ai))F∞(Ai) which implies the following.

Fact 4.10. Let ε ≥ 0. Suppose F (Ai) ≤ εd. We have F ′(Ai) ≥ (1− ε)F (Ai).

Define F ′(A) =
∑p

i=1 F
′(Ai). From the definitions, we get

F ′(A) +
1

2d

p∑
i=1

(F (Ai)
2 + F

res(1)
2 (Ai)) = F (A). (4.1)

Now let F ′′(Ai) = F (Ai)−F ′(Ai) = 1
2d(F (Ai)

2 +F
res(1)
2 (Ai)). From (4.1), it follows that if

we are given an estimate of F ′′(A) =
∑p

i=1 F
′′(Ai), by using the algorithm described in the

previous section, we get a 1 + Θ(ε) approximation for F (A). On the other hand, Fact 4.10

tells us that we only need to compute F ′′(Ai) for rows with high contribution. For t ≤ d

define Ht to be the set {j | F res(1)
1 (Aj) ≥ t}. The following is a consequence of Fact 4.10

CHAPTER 4. DETECTING PERIODICITY 47

and (4.1).

F (A) ≥ F ′(A) +
∑
i∈Hεd

F ′′(Ai) ≥ (1− ε)F (A). (4.2)

To estimate
∑

i∈Hεd F
′′(Ai), we estimate |Hεd| and we also take uniform samples from

the rows in Hεd. Now if the contribution of Hεd in F (A) is high, our samples give us a good

estimate of F ′′(Hεd), otherwise we can neglect the contribution of these rows.

Our algorithm has two main threads running in parallel. In one thread, we run the 2+ ε

approximation algorithm over A and in the other thread we run the sampling procedure

which we describe below. At the end, we add up the outcome of these threads and that

is the final output. In the following, we present our sampling procedure along with the

analysis of its correctness. However before that we need to give a brief description of a

sparse recovery procedure that we use in the main algorithm.

Sparse Recovery. Given an update stream that implicitly defines a vector x ∈ Rn, we

are interested in space efficient algorithm that recovers the non-zero coordinates of x. We

need such an algorithm as a subroutine in our main algorithm of this section. Generally

it is known that when it is guaranteed that x will have at most r non-zero coordinates, a

O(r log n) space sparse recovery algorithm exists. In our case, since the updates are limited

(at most 2 updates to each coordinate), we use the following result by Lipsky and Porat

that gives a time and space efficient algorithm for the limited case that we are interested

in.

Theorem 4.11 (Lipsky et al. [PL07]). Let x, y ∈ Σn. There is a randomized 1-pass

streaming algorithm that, given the coordinates of x and y in arbitrary order, can check

if Ham(x, y) > r or not using O(r(log n+ log |Σ|)) bits of space and O(log n) per-item time.

Moreover in case Ham(x, y) ≤ r, the algorithm finds all pairs (x[i], y[i]) where x[i] 6= y[i].

The probability of error is at most n−1.

Having the above result, for positive integer k and n by n′ matrix A with entries from

[m], we define a randomized procedure SRr(A) as follows. Given the entries of A in a

column-order fashion, SRr(A) outputs all the content of the rows that contain two entries

that are different. If A has more than r number of such rows, with high probability SRr(A)

CHAPTER 4. DETECTING PERIODICITY 48

Let Bi〈1〉, . . . , Bi〈2 log n〉 be a random partitioning of the characters in Bi into 2 log n

equal-size sets, (note that each Bi〈j〉 is a string with k′ = 16
δ2

log n length.) Now for

j = 1, . . . , 2 log n, let

• αi,j = d2

2(t2)

∑
a fBi〈j〉(a)(fBi〈j〉(a)− 1).

• ϕi,j = 1
2d(F (Bi〈j〉⊕

d
k′)2 + 1

2d(αi,j − F 2
∞(Bi〈j〉⊕

d
k′)

Let ϕ(Bi) be the median of {ϕi,1, . . . , ϕi,2 logn}.

Figure 4.2: Description of ϕ(Bi)

rejects the input. Given the above result, we can implement SRr(A) in O(r(log n+n′ logm))

bits.

The sampling procedure. Our sampling procedure is described two main phases. In the

first phase, we downsize the input matrix A, by picking a random subset of columns of size

k = O(1
δ2

log2 n). Let B be the projection of A over the random columns. We define function

ϕ(Bi) which gives an estimate for F ′′(Ai). The description of this function is given in Figure

4.5.2. Let x⊕t denote the string resulted from x by repeating each character t times. We

use F ((Bi)
⊕ d
k) to estimate F (Ai), where k = |Bi|. Now let Gεd = {i|F ((Bi)

⊕ d
k) ≥ εd}. In

the second phase of our sampling procedure, we take samples from Gεd. We do this step,

by devising an exact sparse recovery procedure. In the following we give a brief description.

While we take sample i ∈ Gεd, we also compute ϕ(Bi). Finally we use these samples to

estimate
∑

i∈Gεd ϕ(Bi). The detailed steps of our algorithm is given in Figure 4.3.

We analyse the correctness of our algorithm in the following lemmas. In the next lemma,

we show that the matrix B, with high probability, satisfies two important properties. First,

the sum
∑

i∈Gεd ϕ(Bi)), added with F ′(A), gives a good estimate of F (A). Second, the rows

in Gεd comprise a large enough fraction of the non-uniform rows in B. The latter fact helps

us in getting an efficient sampler for Gεd.

Lemma 4.5. Let δ < 1
10ε

2. With probability at least 1/8, the followings are the case.

1. |F (A)− F ′(A)−
∑

i∈Gεd ϕ(Bi)| ≤ 2εF (A).

CHAPTER 4. DETECTING PERIODICITY 49

2. Let γ = F (H2εd)
F (A) . We have |G0| ≤ 16k

γ |Gεd| where G0 is the set of non-uniform rows in

B.

Proof. First we prove for all i ∈ [p], with high probability, |F (Ai) − F ((Bi)
⊕ d
k)| ≤ δd and

|F ′′(Ai)−ϕ(Bi)| ≤ 5δd. Fix an i. By Chernoff bounds, for a ∈ Σ, with probability at least

1− 1
8n3 ,

|f
(Bi)

⊕ d
k

(a)− fAi(a)| ≤ δd.

Consequently, using union bound, with probability at least 1 − 1
8n2 , we have |F (Ai) −

F ((Bi)
⊕ d
k)| ≤ δd.

Now for the second part, fix some j ∈ [2 log n] and consider the term ϕi,j . With proba-

bility at least 1− 1
8n2 we have

|f
Bi〈j〉

⊕ d
k′

(a)− fAi(a)| ≤ δd.

Therefore, with probability at least 1− 1
8n , the error of the first term in ϕj,i, i.e., 1

2d(F (Bi〈j〉⊕
d
k′)2,

is bounded by 2δd. To bound the error of the second term in ϕi,j , we use Chebyshev bound

and the variance analysis of [BYKS01] (cf. Lemma 5.3) to estimate F2. From [BYKS01], we

have E[αi,j] = F2(Ai) and Var(αi,j) ≤ d
t (F2(Ai))

3/2. Using Chebyshev’s inequality, we get

Pr[|αi,j − F2(Ai)| > δd2] ≤ (F2(Ai))
3/2

δ2k′d3
.

Given that k′ = 16
δ2

log n, this probability is bounded by 1/(16 log n). It follows that with

probability at least 1 − 1/(16 log n), the second term of ϕi,j has error at most 3δd. Since

ϕi is the median of 2 log n outcomes, with probability at least 1− 1/(n2 log n)− 1/16n, we

have |ϕ(Bi)− F ′′(Ai)| < 5δd.

Proof of (I): Following the above argument and using union bound, with probability at

least 1− p/(8n),

H(ε+δ)d ⊆ Gεd, ([p] \H(ε−δ)d) ∩Gεd = ∅ (4.3)

Since δ < 1
10ε

2, we get 5δd ≤ ε(ε− δ)d and hence for all i ∈ G, ϕi is away from F ′′(Ai) by

at most εF (Ai). Putting these observations, (4.2), and (4.3) together we get the desired

statement.

CHAPTER 4. DETECTING PERIODICITY 50

We pick k = 32
δ2

log2 n random columns of A and let B be the projection of A over

sampled columns. Run the following in parallel for j = 1, . . . , 1
ε log p. Set l = 128k

ε1.5
.

1. Repeat the following for u = 1, . . . , (t = 128
ε4

log2 n) in parallel. The output of the

u-th thread is the pair (zj,u, vj,u).

(a) Select a function h(x) = (ax+ b mod q) by picking a and b randomly from

the field Fq where q is the smallest prime ≥ p.

(b) Let Sj,u = {i|h(i) ≤ q
(1+ε)j

}.

(c) Run the SRl procedure over the projection of B over the rows in Sj,u. If

|Sj,u ∩ G0| > l or Sj,u ∩ Gεd = ∅, then stop and output zj,u = 0, vj,u = 0.

Otherwise let zj,u = |Sj,u ∩ Gεd| and vj,u = ϕ(BiR) where iR is randomly

selected from i ∈ Sj,u ∩Gεd. Output the pair (zj,u, vj,u).

2. Let zj =
∑t

u zj,u. Partition the interval [t] into t1 = t
16 logn blocks of equal size,

T1, . . . , Tt1 . For c ∈ [t1], let Tj,c = {u|vj,u > 0, u ∈ Tc}. Select v̄j,c randomly from

the set of vj,u’s where u ∈ Tj,c. If Tj,c = ∅, then we set v̄j,c = 0. Set vj =
∑t1

c v̄j,c.

Let xj be the number of non-empty sets Tj,c where c ∈ [t1]. Output the triple

(zj , vj , xj).

Let ĵ the largest j such that |zj − t| ≤ 2εt and xj = t1. The final output of this phase

is v = (1 + ε)ĵ
vĵ
t1

. If there is no such j then we then output v = 0.

Figure 4.3: Description of the sampling procedure.

CHAPTER 4. DETECTING PERIODICITY 51

Proof of (II): We have E[F (B)] ≤ k
dF (A). Since always F (B) > |G0|, by Markov inequal-

ity, we have Pr[|G0| > 16k
d F (A)] < 1/16. Assuming the event |G0| ≤ 16k

d F (A), by definition

of γ and the fact that F (H2εd) ≤ d|H2εd| we have |G0| ≤ 16k
γ |H2εd|. At the other hand,

from (4.3) it follows that H2εd ⊆ Gεd. This implies that |H2εd| ≤ |Gεd| and consequently

our statement is correct.

The following lemma implies that the outcome of the sampling procedure has small

error.

Lemma 4.6. Let W =
∑

i∈Gεd ϕ(Bi). With probability at least 1 − o(1
n), the following

statements are the case.

1. v ≤ (1 + Θ(ε))W .

2. If F ′′(H2εd) ≥ εF (A), then v ≥ (1−Θ(ε))W .

Proof. First, we observe that if |Gεd| = 0 then always v = 0, and hence the above statements

are satisfied. Therefore in the following we assume |Gεd| > 0. To prove (I), fix j ∈ [1
ε log p]

and u ∈ [t]. Let βj = |Gεd|
(1+ε)j

. Consider the random variable zj,u. Since the hash function h

is uniform, E[zj,u] ≤ βj . By linearity of expectation, we have E[zj] ≤ βjt. Since the threads

are independent, we get Pr(zj > (1+ε)βjt) < exp(− ε2βjt
4|Gεd|) < exp(− ε2t

4) < 1
n2 . Now let j′ be

the smallest j such that βj ≥ 1. It follows that, by applying union bound, with probability

at least 1− log p
εn2 , we have ĵ ≤ j′ + 3 and consequently,

(1 + ε)ĵ < (1 + Θ(ε))|Gεd| (4.4)

On the other hand, vĵ is the sum of t1 independent uniform samples from {ϕ(Bi)}i∈Gεd . By

Chernoff bound and the fact that ϕ(Bi) ≥ ε2

2 d, we get

Pr(|vĵ −
t1
|Gεd|

∑
i∈Gεd

ϕ(Bi)| > ε
t1
|Gεd|

∑
i∈Gεd

ϕ(Bi)) < exp(−ε
4t1
8

) <
1

n2
. (4.5)

This and (4.4) proves the statement of (I). To prove (II), we show that, given the

assumption of the statement, with high probability, we have ĵ ≥ j′ and xj′ = t1. This,

combined with (4.4) and (4.5), proves our claim. Consider the random variable rj′,u =

|Rj′,u|. Since the hash function h is uniform, we have E[rj′,u] = |G0|
(1+ε)j′

. Also since h

CHAPTER 4. DETECTING PERIODICITY 52

is pairwise independent, Var[rj′,u] = E[rj′,u] + 1
q−1 E

2[rj′,u]. As result, using Chebyshev

bound, we get

Pr
(
|rj′,u − E[rj′,u]| > sE[rj′,u]

)
≤ 1

s2
(
(1 + ε)j

′

|G0|
+

1

q − 1
). (4.6)

Now we observe that, by part (II) in Lemma 4.5, E[rj′,u] ≤ 32k
ε . After plugging this in

(4.6) and using the fact that |G0| ≥ |Gεd|, we get Pr
(
|rj′,u − E[rj′,u]| > 32ks

ε) ≤ 2
s2

, and

consequently by setting s =
√

2
ε ,

Pr
(
rj′,u >

128k

ε1.5
) ≤ ε.

Now since l > 128k
ε1.5

, by linearity of expectation, E[zj′] > (1 − ε)t and therefore, by

Chernoff bound, Pr(zj′ < (1− 2ε)t) < exp(− ε2t
8).

It remains to show xj′ = t1 with high probability. For c ∈ [t1], let Xc be the indicator

variable for the event Tj′,c 6= ∅. By definition, xj′ =
∑t1

c Xc. Let Zc =
∑

u∈Tc zj′,u. We

have Pr(Xc) = Pr(Zc ≥ 1). By E[Zc] ≥ t
t1

(1 − ε), and Chernoff bound, we get Pr(Zc <

1) < exp(−(t
4t1

)2). It follows that Pr(Xc) = 1−exp(−(t
4t1

)2). Therefore, by applying union

bound, we get Pr(xj′ = t) ≥ 1− t1 exp(−(t
4t1

)2) > 1− t1
n2 .

Putting the statement of part (I) in Lemma 4.5, Lemma 4.6, and (4.2) give us our

main theorem in this section. Considering the parallel repetitions, the space usage of the

algorithm is governed by O(1
ε lt log n log p) which amounts to O(1

ε10.5
log5 n) after plugging

the values. Finally, assuming n is large enough, we get the following theorem.

Theorem 4.12. There is a randomized 1-pass streaming algorithm that outputs a 1 ± ε

approximation of D0,p(s) with probability at least 3/4 using O(1
ε10.5

log5 n) words of space.

Chapter 5

Finding Duplicates and

Lp-Samplers

In this chapter first we present our Lp sampler algorithms and then we give our results

for finding duplicates. Our duplicate detection algorithm uses the L1 sampler as a black

box. Further we show lower bounds on the space complexity of finding duplicates and Lp

samplers.

5.1 The Lp Sampler

In this section, we present our Lp sampler algorithm. In the following, we assume p ∈ (0, 2).

This particular method does not seem to be applicable for the p = 2 case and we know of

no O(log2 n) space L2-sampling algorithm. We treat the p = 0 case separately later.

5.1.1 Preliminaries and definitions

Recall that an update stream is a sequence of pairs (i, u), where i ∈ [n] and u ∈ F for

some field F. The stream of updates implicitly define an n-dimensional vector x ∈ Fn as

follows. Initially, x is the zero vector. An update of the form (i, u) adds u to the coordinate

xi of x (leaving the other coordinates unchanged). Roughly speaking, given a stream of

updates (additions and subtraction) to the coordinates of an underlying vector x ∈ Rn,

an Lp-sampler processes the stream and outputs a sample coordinate of x where the i-th

53

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 54

coordinate is picked with probability proportional to |xi|p.

Definition 5. Let x ∈ Rn be a non-zero vector. For p > 0 we call the Lp distribution

corresponding to x the distribution on [n] that takes i with probability

|xi|p

‖x‖pp
,

with ‖x‖p = (
∑n

i=1 |xi|p)1/p. For p = 0, the L0 distribution corresponding to x is the

uniform distribution over the non-zero coordinates of x.

We call a streaming algorithm a perfect Lp-sampler if it outputs an index according to

this distribution and fails only if x is the zero vector. An approximate Lp-sampler may fail

but the distribution of its output should be close to the Lp distribution. In particular, we

speak of an ε relative error Lp-sampler if, conditioned on no failure, it outputs the index i

with probability (1 ± ε)|xi|p/‖x‖pp ± n−c, where c is an arbitrary constant. For p = 0 the

corresponding formula is (1 ± ε)/k ± n−c, where k is the number of non-zero coordinates

in x. Unless stated otherwise we assume that the failure probability is at most 1/2. In the

above definition one can consider c to be 2, but all existing constructions of Lp-samplers

work for an arbitrary c with just a constant factor increase in the space, so we will not

specify c in the following and ignore errors of probability n−c. A sampler that outputs an

approximation of xi along with a sample coordinate i is called an augmented sampler. In

specific, we say that an algorithm is ε relative error augmented sampler if it outputs a value

x̂i that is within (1± ε)xi.

In this chapter we present our upper bounds as linear maps L : Fn → Fm where we

set F = R for the highest generality. Such linear maps can be converted to streaming

algorithms assuming that all the updates are integers (u ∈ Z) and the coordinates of the

vector x throughout the stream remain bounded by some value M = poly(n). Under these

assumptions, we can set F = Zp for some p > 2M and map the integers {−M, . . . ,M} to

elements of Zp. This way, maintaining L(x) requires updating m counters over Zp and takes

O(m log n) bits with fast update time (especially since the matrices we consider are sparse).

This discretization step is standard and thus we omit most details.

We say an event happens with low probability if the probability can be made less than

n−c. Here c > 0 is an arbitrary constant, for example one can set c = 2. The actual value of

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 55

c has limited effect on the space of our algorithm: it changes only the unspecified constants

hidden in the O notation. We will routinely ignore low probability events, sometimes even

O(n) of them, which is not a problem as we leave c unspecified. Events complementary to

low probability events are referred to as high probability events.

For 0 ≤ m ≤ n we call the vector x ∈ Rn m-sparse if all but at most m coordinates of

x are zero. We define Errm2 (x) = min ‖x− x̂‖2, where x̂ ∈ Rn ranges over all the m-sparse

vectors.

5.1.2 The sampler algorithm

We start by stating the properties of the two streaming algorithms we are going to use.

Both are based on maintaining L(x) for a well chosen random linear map L : Rn → Rn′

with n′ < n.

The count-sketch algorithm [CCFC04] is so simple we cannot resist the temptation to

define it here. For parameter m, the count-sketch algorithm works as follows. It selects

independent samples hj : [n] → [6m] and gj : [n] → {1,−1} from pairwise independent

uniform hash families for j ∈ [l] and l = O(log n). It computes the following linear function

of x for j ∈ [l] and k ∈ [6m]: yk,j =
∑

i∈[n],hj(i)=k
gj(i)xi. Finally it outputs x∗ ∈ Rn as an

approximation of x with

x∗i = median
j∈[l]

gj(i)yh(i),j

for i ∈ [n]. The performance guarantee of the count-sketch algorithm is as follows. (For a

compact proof see a recent survey by Gilbert and Indyk [GI10].)

Lemma 5.1 (Charikar et al. [CCFC04]). For any x ∈ Rn and m ≥ 1 we have |xi − x∗i | ≤

Errm2 (x)/m1/2 for all i ∈ [n] with high probability, where x∗ is the output of the count-sketch

algorithm with parameter m. As a consequence we also have

Errm2 (x) ≤ ‖x− x̂‖2 ≤ 3 Errm2 (x)

with high probability, where x̂ is the m-sparse vector best approximating x∗ (i.e., x̂i = x∗i for

the m coordinates i with |x∗i | highest and is x̂i = 0 for the remaining n−m coordinates).

We will also need the following result for the estimation of Lp norms.

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 56

Lemma 5.2 (Kane et al. [KNW10a]). For any p ∈ (0, 2] there is a streaming algorithm

based on a random linear map L : Rn → Rl with l = O(log n) that outputs a value r

computed solely from L(x) that satisfies ‖x‖p ≤ r ≤ 2‖x‖p with high probability.

Our streaming algorithm on Figure 5.1.2 makes use of a single count-sketch and two norm

estimation algorithms. The count-sketch is for the randomly scaled version z of the vector x.

One of the norm approximation algorithms is for ‖x‖p, the other one approximates Errm2 (z)

through the almost equal value ‖z − ẑ‖2. A standard L2 approximation for z works if we

modify z by subtracting ẑ in the recovery stage. One can get arbitrary good approximations

of Errm2 (x) this way.

First we estimate the probability that the algorithm aborts at the step 5 of the recovery

stage because s > βm1/2r. This depends on the scaling that resulted in z and it will be

important for us that the bound holds even after conditioning on any one scaling factor.

Lemma 5.3. Conditioned on an arbitrary fixed value t of ti for a single index i ∈ [n] we

have Pr[s > βm1/2r | ti = t] = ε+ n−c.

Proof. First note that by Lemma 5.2 we have r ≥ ‖x‖p and s ≤ 2‖z − ẑ‖2 with high

probability. By Lemma 5.1 we have ‖z − ẑ‖ ≤ 3 Errm2 (z) also with high probability. We

may therefore assume that all of these inequalities hold, and in particular r ≥ ‖x‖p and

s ≤ 6 Errm2 (z). It is therefore enough to bound the probability that 6 Errm2 (z) > βm1/2‖x‖p.

For simplicity (and without loss of generality) we assume that the fixed scalar is tn = t

and will freely use i for indexes in [n− 1].

Let T = β‖x‖p. For each i ∈ [n − 1] we define two variables z′i and z′′i determined

by zi as follows. The indicator variable z′i = 1 if |zi| > T and 0 otherwise. We set

z′′i = z2
i (1 − z′i)/T

2 ∈ [0, 1]. Let S′ =
∑

i∈[n−1] z
′
i and S′′ =

∑
i∈[n−1] z

′′
i . Note that

T 2S′′ = ‖z − w‖22, where w is defined by wi = ziz
′
i for i ∈ [n − 1] and wn = zn. Here w

is (S′ + 1)-sparse, so we have Errm2 (z) ≤ TS′′1/2 unless S′ ≥ m. It is therefore enough to

bound the probabilities of the events S′ ≥ m and S′′ > mβ2‖x‖2p/(6T)2 = m/36, each with

ε/2.

We have E[z′i] = |xi|p/T p, E[S′] ≤ β−p = ε1−p. Since z1, . . . , zi−1 are k-wise independent,

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 57

by concentration bounds of Schmidt et al. (see Theorem 2.3) we have

Pr[S′ ≥ m] < (eε1−p/m)k < ε/2

k = 2dlog(2/ε)e. The calculation for S′′ is similar. We have

E[z′′i] <

∫ ∞
|xi|p/T p

x2
i t
−2/pT−2dt =

p

2− p
|xi|pT−p.

Thus E[S′′] ≤ p
2−p‖x‖

p
pT−p = p

2−pε
1−p. Note that the z′′i are k-wise independent random

variables from [0, 1] and hence by Theorem 2.4 we get

Pr[S′′ > m/36] < e−bkc/2 ≤ ε/2

by our choice of k. This completes the proof of the lemma.

The fact that our algorithm is an approximate Lp-sampler with both relative error and

success probability ε follows from the following lemma.

Lemma 5.4. The probability that the algorithm of Figure 5.1.2 outputs the index i ∈ [n]

conditioned on a fixed value for r ≥ ‖x‖p is (ε± ε2)|xi|p/rp±n−c. The relative error of the

estimate for xi is at most ε with high probability.

Proof. Optimally, we would output i ∈ [n] if |zi| > ε−1/pr. This happens if ti < ε|xi|p/rp

and has probability exactly ε|xi|p/rp. We have to estimate the probability that something

goes wrong and the algorithm outputs i when this simple condition is not met or vice versa.

Three things can go wrong. First, if s > m1/2βr the algorithm fails. This is only a

problem for our calculation if it should, in fact, output the index i. Lemma 5.3 bounds the

conditional probability of this happening.

Having dealt with the s > βm1/2r case we may assume now s ≤ βm1/2r. We also make

the assumptions (high probability by Lemma 5.2) that ‖z − ẑ‖2 ≤ s and thus Errm2 (z) ≤

‖z − ẑ‖2 ≤ s ≤ βm1/2r. Finally, we also assume |z∗i − zi| ≤ Errm2 (z)/m1/2 ≤ βr for all

i ∈ [n]. This is satisfied with high probability by Lemma 5.1.

A second source of error comes from this βr possible difference between z∗i and zi. This

can only make a problem if ti is close to the threshold, namely (ε−1/p + β)−p|xi|p/rp ≤ ti ≤

(ε−1/p−β)−p|xi|p/rp. The probability of selecting ti from this interval isO(β/ε1+1/p|xi|p/rp) =

O(ε2|xi|p/rp) as required.

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 58

Initialization Stage:

1. Set k = 2dlog(2/ε)e.

2. For p = 1, set m = O(log 1/ε) and for p 6= 1, set m = O(ε−max(0,p−1)) with large

enough constants.

3. Set β = ε1−1/p and l = O(log n) with a large enough constant factor.

4. Select k-wise independent uniform scaling factors ti ∈ [0, 1] for i ∈ [n].

5. Select the appropriate random linear functions for the execution of the count-sketch

algorithm and L and L′ for the norm estimations in the processing stage.

Processing Stage:

1. Use count-sketch with parameter m for the scaled vector z ∈ Rn with zi = xi/t
1/p
i .

2. Maintain a linear sketch L(x) as needed for the Lp norm approximation of x.

3. Maintain a linear sketch L′(z) as needed for the L2 norm estimation of z.

Recovery Stage:

1. Compute the output z∗ of the count-sketch and its best m-sparse approximation ẑ.

2. Based on L(x) compute a real r with ‖x‖p ≤ r ≤ 2‖x‖p.

3. Based on L′(z − ẑ) compute a real s with ‖z − ẑ‖2 ≤ s ≤ 2‖z − ẑ‖2.

4. Find i with |z∗i | maximal.

5. If s > βm1/2r or |z∗i | < ε−1/pr output FAIL.

6. Output i as the sample and z∗i t
1/p
i as an approximation for xi.

Figure 5.1: Our Lp-sampler with both success probability and relative error Θ(ε)

Finally, the third source of error comes from the possibility that i should be output based

on |zi| > ε−1/pr, yet we output another index i′ 6= i because z∗i′ ≥ z∗i . In this case we must

have ti′ < (ε−1/p − β)−p|xi|p/rp. This has probability O(ε|xi′ |p/rp). By the union bound

the probability that such an index i′ exists is O(ε‖x‖pp/rp) = O(ε). Pairwise independence

is enough to conclude that the same bound holds after conditioning on |zi| > ε−1/pr. This

finishes the proof of the first statement of the lemma.

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 59

The algorithm only outputs an index i if s ≤ βm1/2r and |z∗i | ≤ ε−1/pr. The first

implies that the absolute approximation error for zi is at most βr, while the second lower

bounds the absolute value of the approximation itself by ε−1/pr, thus ensuring a βε1/p = ε

relative error approximation. Our approximation for xi = zit
1/p
i is z∗i t

1/p, so the relative

error is the same. Note that the inverse polynomial error probability comes from the various

low probability events we neglected. The same is true for the additive error term in the

distribution.

The next theorem describes our final Lp-sampling algorithm as well as its space and

error bounds.

Theorem 5.1. For δ > 0 and ε > 0, 0 < p < 2 there is an O(ε) relative error one

pass augmented Lp-sampling algorithm with failing probability at most δ and having low

probability that the relative error of the estimate for the selected coordinate is more than ε.

The algorithm uses Op(ε
−max(1,p) log2 n log(1/δ)) space for p 6= 1 while for p = 1 the space

is O(ε−1 log(1/ε) log2 n log(1/δ)).

Proof. Using Lemma 5.4 and the fact that ‖x‖p ≤ r ≤ 2‖x‖p with high probability one

obtains that the failure probability of the algorithm in Figure 5.1.2 is at most 1−ε/2p+n−c.

Conditioning on obtaining an output, returning i has probability (1 + O(ε))|xi|p/‖x‖pp +

n−c. Clearly, the latter statement remains true for any number of repetitions and the

failure probability is raised to power v for v repetitions. Thus using v = O(log(1/δ)/ε)

repetitions (taking the first non-failing output), the algorithm is an O(ε) relative error δ

failure probability Lp-sampling algorithm. Here we assume v < n as otherwise recording

the entire vector x is more efficient.

The low probability of more than ε relative error in estimating xi also follows from

Lemma 5.4. In one round, the algorithm on Figure 5.1.2 uses O(m log n) counters for the

count-sketch and this dominates the counters for the norm estimators. Using standard

discretization this can be turned into an O(m log2 n) bit algorithm. For the discretization

we also have to keep our scaling factors polynomial in n. Recall that in the continuous

model these factors t
−1/p
i were unbounded. But we can safely declare failure if t−1

i > nc

for some i ∈ [n] as this has low probability n1−c. We have to do the v repetitions of the

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 60

algorithm in parallel to obtain a single pass streaming algorithm. This increases the space

to O(vm log2 n) which is the same as the one claimed in the theorem.

Note that the hidden constant in the space bound of the theorem depends on p, especially

that 1/(2 − p), 1/p and 1/|1 − p| factors come in. The last can always be replaced by a

log(1/ε) factor but the former ones are harder to handle. For p = 2 an extra log n factor

seems to be necessary for an algorithm along these lines, see [AKO10].

As we will see in Theorem 5.7, our space bound is tight for ε and δ constants. Note that

the lower bound holds even if we only require the overall distribution of the Lp-sampler to

be close to the Lp distribution as opposed to the much more strict definition of ε relative

error sampling.

5.2 The L0 Sampler

For p near zero, the method of precision sampling becomes intractable. This is because

our scaling factors are t
−1/p
i which clearly rules out p = 0. In the following we present a

L0-sampler using a different approach.

Theorem 5.2. There exists a zero relative error L0 sampler which uses O(log2 n log(1/δ))

bits and outputs a coordinate i ∈ [n] with probability at least 1− δ.

Proof. We first present our algorithm assuming a random oracle, and then we remove this

assumption through the use of the pseudo-random generator of Nisan [Nis90]. Let Ik for

k = 1, . . . , blog nc be subsets of [n] of size 2k chosen uniformly at random and I0 = [n]. For

each k we run the sparse recovery procedure of Theorem 4.11 on the vector x restricted

to the coordinates in Ik with s set to d4 log(1/δ)e. We return a uniform random non-zero

coordinate from the first recovery that gives a non-zero s-sparse vector. The algorithm fails

if each recovery algorithm returns zero or DENSE.

Let J be the set of coordinates i with xi 6= 0 (the support of x). Disregarding the

low probability error of the procedure in Theorem ?? this procedure returns each index

i ∈ J with equal probability and never returns an index outside J . To bound the failure

probability we observe that for |J | ≤ s failure is not possible, while for |J | > s one has

k ∈ [blog nc] such that E[|Ik ∩ J |] = 2k|J |/n is between s/3 and 2s/3. For this k alone

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 61

1 ≤ |Ik ∩ J | ≤ s is satisfied with probability at least 1 − δ by the Chernoff bound limiting

failure probability by δ.

To get rid of the random oracle we use Nisan’s generator [Nis90] that produces the

random bits for the algorithm (including the ones describing Ik and the ones for the eventual

random choice from Ik ∩ J) from an O(log2 n) length seed. It fools every logspace tester

including the one that tests for a fixed set J ⊆ [n] and i ∈ [n] if the algorithm (assuming

correct reconstruction) would return i. Thus this version of the algorithm, now using

O(log2 n) random bits and O(log2 log(1/δ)) total space, is also a zero relative error L0-

sampler with failure probability bounded by δ +O(n−c).

As we shall see in Section 5.4, this space bound is also tight for δ a constant and better

sampling is not possible even if we allow constant relative error or a small overall distance

of the output from the L0 distribution.

5.3 Algorithms for finding a duplicate

Recall that the DUPLICATE problem asks to report a repeating item in the array x1, . . . , xn+1

where all xi ∈ [n]. A duplicate can be found using O(log n) bits of space in O(log n) passes

deterministically as follows. Let h = dn/2e and in the first pass count the number of i such

that ai ∈ [h]. This can be done using O(log n) space simply by incrementing a counter

whenever the new item is no bigger than h. If the final count is bigger than h, by the

pigeon-hole principle, there exists a duplicate in the array which is between 1 and h. Hence

in the subsequent passes, we can safely discard elements bigger than h. Otherwise, there

are more than n− h items in [h+ 1, n] and in the subsequent passes we disregard elements

that are in [h]. Bisecting the alphabet [n] in each pass similarly gives us a duplicate after

O(log n) rounds.

This algorithm can be generalized to work in only p passes while takingO(n1/p log1−1/p n)

space as follows. In each of the first p−1 passes, divide the alphabet into K = d(n/ log n)1/pe

blocks and count how many items appear in the stream from each of these blocks. By the

pigeon-hole principle, there exists a block b which has more than K + 1 appearances in the

stream. In the next pass define the alphabet to be the items in block b. It can be verified

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 62

that after pass p − 1, the size of the alphabet has been reduced to O(K log n). In the last

pass, we can simply keep a bit vector of size O(K log n) to find a duplicate. Overall, we use

O(n1/p log1−1/p n) bits in each pass as desired. In the following we show that randomization

can help to get exponentially better bounds for detecting a duplicate.

5.3.1 A Θ(log2 n) space bound for DUPLICATE

In this section we show a O(log2 n) space algorithm via a direct application of our L1

sampler for the duplicate problem.

Let x be an n-dimensional vector, initially zero at each coordinate. We run the L1-

sampler of Theorem 5.1 on x, with both relative error and failure probability set to 1/2.

Before we start processing the stream, we subtract 1 from each coordinate of x; i.e., we

feed the updates (i,−1) for i = 1, . . . n to the L1 sampling algorithm. When a stream item

i ∈ [n] comes, we increase xi by 1; i.e., we generate the update (i, 1).

Observe that when the stream is exhausted, we have xi ≥ 1 for items i that have at least

two occurrences in the stream, xi = 0 for items that appear once, and xi = −1 for items

that do not appear. Note that our L1-sampler, if it does not fail, outputs an index i and

an approximation x∗ of xi. If x∗ is positive, we output i, if it is negative or the L1-sampler

fails, we output FAIL. We have
∑n

i=1 xi = 1, hence a perfect L1 sample from x is positive

with more than half probability. Taking into account that our L1-sampler has 1/2 relative

error and failure probability (and neglecting for a second the chance that x∗ has different

sign from xi) we conclude that we output a duplicate with probability at least 1/4. The

event that x∗ does not have the same sign as xi (and thus the relative error is at least 1) has

low probability. This low probability can increase the failure probability and/or introduce

error when we output non-duplicate items.

Repeating the algorithm O(log(1/δ)) times in parallel and accepting the first non-failing

output reduces the failure rate to δ but keeps the error rate low.

Theorem 5.3. For any δ > 0 there is a O(log2 n log(1/δ)) space one-pass algorithm which,

given a stream of length n + 1 over the alphabet [n], outputs an i ∈ [n] or FAIL, such that

the probability of outputting FAIL is at most δ and the algorithm outputs a letter i ∈ [n]

that is no duplicate with low probability.

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 63

This space bound is best possible for δ < 1 a constant, as shown in the following theorem.

Theorem 5.4. Any one-pass streaming algorithm that outputs a duplicate with constant

probability uses Ω(log2 n) space. This remains true even if the stream is not allowed to have

an element repeated more than twice.

Proof. We show our claim by a reduction from the universal relation problem (see Sec-

tion 5.4.2). Each of Alice and Bob is given a binary string of length n, respectively x and y.

Further, the players are guaranteed that x 6= y. Alice sends a message to Bob, after which

Bob must output an index i ∈ [n] such that xi 6= yi. By Theorem 5.10, solving this problem

with any constant error probability requires Ω(log2 n) bits for one-way communication. The

players solve the given instance of universal relation problem using a small space finding

duplicates algorithm as follows. Alice constructs the set S = {2i − 1 + xi | i ∈ [n]} ⊆ [2n]

and Bob constructs T = {2i− yi | i ∈ [n]} ⊆ [2n]. Observe that |S| = |T | = n and xi 6= yi

if and only if either 2i or 2i− 1 is in both S and T .

Next, using the shared randomness, players pick a random subset P of [2n] of size n.

We have

Pr[|S ∩ P |+ |T ∩ P | ≥ n+ 1] > 1/8.

To see this, let i ∈ S ∩ T and j ∈ [2n] \ (S ∩ T). We have |P ∩ {i, j}| = 1 with probability

more than 1/2. The sets P satisfying this can be partitioned into classes of size four by

putting Q ∪ {i}, Q ∪ {j} and their complements in the same class for any Q ⊆ [2n] \ {i, j},

|Q| = n−1. Clearly, at least one of the four sets P in each class satisfies |S∩P |+|T∩P | > n.

Given a streaming algorithm A for finding duplicates, Alice feeds the elements of S ∩P

to A and sends the memory contents over to Bob, along with the integer |S ∩ P |. If

|S ∩ P | + |T ∩ P | < n + 1, Bob outputs FAIL. Otherwise, feeds arbitrary n + 1 − |S ∩ P |

elements of T ∩ P to A. Note that no element repeats more than twice.

On the other hand |P | = n and we always give n + 1 elements of P to the algorithm.

Also with constant probability, Bob finds an a ∈ S ∩ T , which in turn reveals an i such

that xi 6= yi. Therefore by Theorem 5.10, any algorithm for finding duplicates must use

Ω(log2 n) bits.

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 64

5.3.2 Finding duplicates in short streams

Now we turn our attention to finding duplicates under weaker guarantees than above. As-

sume that we have a stream of length n−s ≤ n over the alphabet [n] and we want to output

a duplicate, if one exists. For this problem, Gopalan et al. [GR09] gave a O(s log3 n) space

algorithm which finds a duplicate if one exists or reports that none exists with constant

error probability. Further, they showed that any such algorithm must use Ω(s) bits of space.

When s = Ω(n) the problem requires Ω(n) bits by the former bound and a matching upper

bound can be achieved by recording the entire stream in memory. Hence from now on, for

simplicity, we assume s ≤ n1−ε for some ε > 0.

In this section, we give an algorithm for this problem which uses O(s log n + log2 n)

space and finds a duplicate, if one exists, with constant probability. If there is no duplicate,

our algorithm reports so with probability 1. Moreover, we prove in Theorem 5.6 that the

space bound of our algorithm is best possible.

Theorem 5.5. For any δ > 0 there is an O(s log n + log2 n log(1/δ)) space one-pass algo-

rithm which, given a stream of length n− s over the alphabet [n], outputs NO-DUPLICATE

with probability 1 if the input sequence has no duplicates, otherwise it outputs i ∈ [n] or

reports FAIL. The returned number is a duplicate with high probability while the probability

of returning FAIL is at most δ.

Proof. Let x be an n-dimensional vector updated according to the description in the proof

of Theorem 5.3; i.e., xi is one less than the number of times i appears in the stream. In

parallel, we run the exact recovery procedure of Theorem 4.11 with parameter 5s and the

1/2 relative error L1-sampler of Theorem 5.1 with failure rate 1/2, both on the vector x.

If the recovery algorithm returns a vector (as opposed to DENSE) we proceed and output

a positive coordinate of the vector assuming the sparse recovery algorithm did not err. On

the other hand, if the sparse recovery algorithm outputs DENSE, we consider the output

of the sampling algorithm. If it is (i, x∗) with x∗ > 0 we report i as a duplicate otherwise

(if x∗ ≤ 0 or the sampling algorithm fails) we output FAIL. Define

‖x‖+1 =
∑
i:xi>0

|xi| and ‖x‖−1 =
∑
i:xi<0

|xi|.

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 65

Note that ‖x‖+1 −‖x‖
−
1 =

∑n
i=1 xi = −s. If ‖x‖+1 +‖x‖−1 ≤ 5s, then x is 5s-sparse, thus the

sparse recovery procedure outputs x and the algorithm makes no error. Note that the no

repetition case falls into this category. If, however, ‖x‖+1 + ‖x‖−1 > 5s, then the probability

that a perfect L1 sample from x is positive is ‖x‖+1 /‖x‖1 > 2/5. Taking into account the

relative error and failing probability (but ignoring the low probability event of the sampler

outputting a wrong sign or sparse recovery algorithm reporting a vector), we conclude that

with probability at least 1/10 we get a positive sample and a correct output, otherwise

we output FAIL. The failure probability can be decreased to δ by O(log(1/δ)) independent

repetitions of the sampler. Note that the sparse recovery does not have to be repeated as

it has low error probability.

The sparse recovery procedure takes O(s log n) bits by Theorem 4.11 for s > 0 (it takes

O(log n) bits for s = 0) and each instance of the L1-sampler requires O(log2 n) bits by

Theorem 5.4, totalling O(s log n+ log2 n log(1/δ)) bits.

We remark the upper bounds given in the above theorem and Theorem 5.3 can be

stated in a bit more general form. Instead of considering repetitions in data streams one

can consider the problem of finding an index i with xi > 0 for a vector x ∈ Zn given by

an update stream. Let s = −
∑n

i=1 xi. If s < 0, then a positive coordinate exists and the

algorithm of Theorem 5.3 finds one using O(log2 n log(1/δ)) space with low error and at

most δ failure probability. If s ≥ 0 a positive coordinate does not necessarily exist, but the

algorithm of Theorem 5.1 finds one, report none exists or fails, with the error and failure

bounds claimed there using O(s log n+ log2 n log(1/δ)) bits.

In the next theorem we show that our algorithm for length n−s streams is best possible.

Theorem 5.6. Any one-pass streaming algorithm that outputs a duplicate in a length n−s

stream uses Ω(s log n + log2 n) space. This remains true even if the stream is not allowed

to have an element repeated more than twice.

Proof. Observe that an instance of size n − s − 1 of the original duplicates problem is an

instance of the duplicate problem with length n−s streams. Therefore, Theorem 5.4 implies

a Ω(log2(n− s)) bound, which is Ω(log2 n) by our assumption s ≤ n1−ε.

We obtain the Ω(s log n) bound by a reduction from the FCEms problem, where we set

2m + s = n. In FCEms , two players, Alice and Bob are given m-subsets S, T ∈ [2m + s].

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 66

A streaming algorithm A for the duplicates problem at hand can be used to solve FCE as

follows. Alice feeds the elements of S to A and passes memory contents to Bob. Bob feeds

the elements of T to A which, in turn, outputs duplicate. Therefore Bob learns an element

in S ∩T and since R1(FCEms) = Ω(s log(m/s)) (cf. [Mer]) and hence the algorithm A must

use Ω(s log n) bits of space, by our assumption s ≤ n1−ε. Observe that no item is given

more than twice to the algorithm. This completes the proof.

5.4 Lower bounds for Lp samplers

Our first result in this section is a Ω(log2 n) lower bound for Lp-sampling for all p. This

result implies that our L0 sampler is optimal (up to constant factors) when δ < 1 a constant

and that our Lp sampler is optimal for δ, ε < 1 constants. Our lower bounds are obtained

via reduction from two known 2-player communication games: Augmented Indexing and

Universal relations. For more elaborate discussions and corresponding upper bounds on

these problems, we refer the reader to the thesis [Mer].

Theorem 5.7. Any one pass Lp-sampler with an output distribution, whose variation dis-

tance from the Lp distribution corresponding to x is at most 1/3, requires Ω(log2 n) bits of

memory. This holds even when all the coordinates of x are guaranteed to be −1, 0 or 1.

For constants δ < 1 and ε < 1 the same lower bound holds for any ε relative error

Lp-sampler with failure probability δ.

Proof. We establish the correctness of the claim by a reduction from the Universal Relation

problem. In this problem two players Alice and Bob are given bit strings u, v ∈ {0, 1} and

are required to output an i such that ui 6= vi.

Given a one-pass Lp-sampler with space S, the players can solve the universal relation

by communicating S bits in one-round as follows. For each j ∈ [n] such that uj = 1, Alice

feeds the update (j, 1) to the streaming algorithm. Then she sends the memory contents of

the algorithm to Bob. Bob resumes the algorithm with the memory Alice sent and for each

j ∈ [n] for which vj = 1, he feeds the update (j,−1). Let x be the vector implicitly defined

by the update stream. Treating u, v as vectors in Zn, we have x = u − v. Note that the

Lp distribution for x puts weight only on coordinates where u and v differ. Hence, if the

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 67

streaming algorithm at hand is an ε-relative error Lp-sampler or has an output distribution

with small variation distance to Lp-distribution of x, Bob learns an i such that ui 6= vi with

constant probability. Hence by Theorem 5.4, S = Ω(log2 n), as required.

The next theorem shows that the 1/εp factor in the space usage of our augmented Lp

sampler is unavoidable.

Theorem 5.8. Any one pass augmented Lp-sampler with ε relative error requires Ω(ε−p log n)

space.

Proof. We show the claim by a reduction from the binary augmented indexing problem.

Assume Alice is given a 0-1 vector u of length n and Bob is given an integer i ∈ [n] and a

0-1 vector v such that vj = uj for j < i and vj = 0 for j ≥ i. The goal of Bob is to find out

ui.

Suppose we have a one-pass ε relative error augmented Lp-sampling algorithm which uses

S bits of space. Using this algorithm we give a one-round S bits protocol for the augmented

indexing problem. Let n = st and consider the coordinates of u and v as partitioned into

s blocks of size t. Set b = d21/pe. For each j = 1, . . . , s, Alice multiplies the coordinates

of u in block j by bs−j and Bob multiplies the coordinates of v in block j by bs−j . Then

Alice she generates the updates (j, uj) for j ∈ [n] and sends the memory contents of the

algorithm to Bob. Bob generates the updates (j,−vj) for j ∈ [n] so as to make first i − 1

coordinates of x zero. Then Bob generates the update (i, 3bs−di/tet1/p). Let x be the vector

defined by the updates. By construction, with constant probability, the ith coordinate will

be sampled. Furthermore, if the algorithm returns a (1± t−1/p) approximation to xi, Bob

can recover the initial value of ui. Hence by Theorem 5.9, S = Ω(st). Setting s = logb n

and t = ε−p completes the proof, as p is constant.

5.4.1 Augmented Indexing problem

Consider the following two-player communication game. The first player, Alice, is given a

string x ∈ [m]n and the second player, Bob, is given an integer i ∈ [n] and the copies of xj

for j < i. The players exchange messages, with Alice sending the first message, and the last

player to receive a message should output xi. We refer to this problem as the augmented

indexing and denote it by AINDn
m.

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 68

The augmented indexing problem is well studied for binary alphabets, i.e., for the m = 2

case. This case was first investigated in [MNSW95] by Miltersen et al.1 who showed that

any one-round randomized protocol for the problem must communicate Ω(n) bits. Later

on in [BYJKK04], Bar-Yossef et al. gave the optimal (1 − H2(δ))n bits lower bound for

one-round protocols.

Here we show a lower bound of Ω((1− δ)n logm) on the δ-error randomized communi-

cation complexity of AINDn
m.

Theorem 5.9. For m ≥ 3 and 0 ≤ δ < 1− e/m1−ε for some ε > 0, we have R1
δ(AINDn

m) =

Ω((1− δ)n logm).

Proof. Our hard distribution is as follows. We give Alice a string X chosen uniformly at

random from [m]n. We give Bob a uniformly random integer I from [n] and the prefix of

X of length I − 1. Assume there is an δ-error randomized protocol for this problem. Let

M denote the message Alice sends when the inputs are drawn from our hard distribution.

Note that M is a random variable and the randomness is over both the input distribution

and the shared random string R. By Fano’s inequality (see Lemma 2.4)

H2(δ) + δ log(m− 1) ≥ H(XI |M,R,X1X2 . . . XI−1, I) (5.1)

=
1

n

n∑
i=1

H(XI |M,R,X1X2 . . . XI−1, I = i) (5.2)

=
1

n

n∑
i=1

H(Xi |M,R,X1X2 . . . Xi−1) (5.3)

=
1

n
H(X |M,R) (5.4)

≥ 1

n

(
H(X |R)−H(M)

)
. (5.5)

In steps (5.4) and (5.5) we have used the chain rule for entropy (cf. Lemma 2.3 (iii)). Since

X is an element of [m]n chosen uniformly at random and independently from R, we have

H(X |R) = n logm. Arranging, we obtain

R1
δ(AINDn) ≥ H(M) ≥ n logm− δn log(m− 1)−H2(δ)n (5.6)

as desired.
1We note that they study the much more powerful round-elimination concept, however their results imply

non-trivial lower bounds for augmented indexing when m is a constant only.

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 69

5.4.2 Universal Relation problem

Consider the following two player communication game. Alice gets a string x ∈ {0, 1}n, and

Bob gets y ∈ {0, 1}n with the promise that x 6= y. The players exchange messages and the

last player to receive a message should output an index i ∈ [n] such that xi 6= yi. We call

this the universal relation communication problem and denote it by URn.

This relation has been studied in detail for deterministic communication, as it naturally

arises in the context of Karchmer-Wigderson games [KW88, Kar89]. We note however that

our definition is slightly unusual: in most settings both players must obtain the same index

i such that xi 6= yi, whereas we are satisfied with the last player to receive a message

learning such an i. Clearly, the stronger requirement can be met in dlog ne additional bits

and one additional round. The additional bits are needed in the deterministic case [TZ97]

but we are not concerned with O(log n) terms for our bounds, so the two models are almost

equivalent up to the shift of one in the number of rounds.

Note that, we can trivially obtain a n + dlog ne bits protocol for URn in which both

players learn a difference. Alice simply sends her entire input to Bob and Bob replies with

the index of a difference. It turns out, however, one can do significantly better. The best

deterministic protocol for URn is due to Tardos and Zwick [TZ97]. Improving a previous

result by Karchmer [Kar89], they gave a 3 round deterministic protocol using n+ 2 bits of

communication with both players learning the same index i and showed that n + 1 bits is

necessary for such a protocol. They also gave an n− blog nc+ 2 bit 2 round deterministic

protocol for our weaker version of the problem, which is also tight except for the +2 term.

They also gave an n − blog nc + 4 bit 4 round protocol, where both players find an index

where x and y differ—but not necessarily the same index. It follows that finding the same

difference is harder for deterministic communication.

We conclude this section with a lower bound on the randomized complexity of the

universal relation problem. For an almost matching lower bounds see [Mer].

Theorem 5.10. For any δ < 1 we have R1
δ(URn) = Ω((1− δ) log2 n).

Proof. Suppose Alice and Bob want to solve the Augmented Indexing problem with Alice

receiving z ∈ [2t]s and Bob getting i ∈ [s] and zj for j < i.

CHAPTER 5. FINDING DUPLICATES AND LP -SAMPLERS 70

Let them construct real vectors u and v as follows. Let eq ∈ R2t be the standard

unit vector in the direction of coordinate 1 ≤ q ≤ 2t. Alice forms the vectors wj by

concatenating 2s−j copies of ezj , then she forms u by concatenating these vectors wj for

j ∈ [s]. The dimension of u is n = (2s − 1)2t. Bob obtains v by concatenating the same

vectors wj for j ∈ [i− 1] (these are known to him) and then concatenating enough zeros to

reach the same dimension n.

Then, using the shared randomness, the players pick a length n permutation π uniformly

at random and permute the coordinates of their vectors according to π. Now Alice and Bob

perform the R1
δ(URn)-length δ-error one-round protocol for URn. Suppose the protocol

does not err and it returns the coordinate r. By construction, π−1(r) is a uniform random

index where u and v differ. Note that each such index reveals one coordinate zj ∈ [2t] to

Bob for j ≥ i. As zj is revealed by 2s−j such indices, more than half the time when the

URn protocol does not err Bob learns the correct value of zi. This yields a R1
δ(URn)-length

one-way protocol for the augmented indexing problem with error probability (1 + δ)/2. By

Theorem 5.9 we have R1
δ(URn) = Ω((1− δ)st). Choosing s = t proves the theorem.

Bibliography

[ACCL07] Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu, Estimating

the distance to a monotone function, Random Struct. Algorithms 31 (2007),

no. 3, 371–383.

[AD99] David Aldous and Persi Diaconis, Longest increasing subsequences: from pa-

tience sorting to the baik-deift-johansson theorem, Bull. Amer. Math. Soc. 36

(1999), no. 3, 413–432.

[AELL11] Amihood Amir, Estrella Eisenberg, Avivit Levy, and Noa Lewenstein, Closest

periodic vectors in l p spaces, ISAAC, 2011, pp. 714–723.

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor, Analyzing graph struc-

ture via linear measurements, SODA, 2012, pp. 459–467.

[AJKS02] Miklós Ajtai, T. S. Jayram, Ravi Kumar, and D. Sivakumar, Approximate

counting of inversions in a data stream, STOC, 2002, pp. 370–379.

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak, Polylogarithmic

approximation for edit distance and the asymmetric query complexity, FOCS,

2010, pp. 377–386.

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy, The space complexity of approxi-

mating the frequency moments, Proceedings of the twenty-eighth annual ACM

symposium on Theory of computing (New York, NY, USA), STOC ’96, ACM,

1996, pp. 20–29.

71

BIBLIOGRAPHY 72

[BC09] Joshua Brody and Amit Chakrabarti, A multi-round communication lower

bound for gap hamming and some consequences, IEEE Conference on Compu-

tational Complexity, 2009, pp. 358–368.

[BDM02] Brian Babcock, Mayur Datar, and Rajeev Motwani, Sampling from a moving

window over streaming data, SODA, 2002, pp. 633–634.

[BG11] Dany Breslauer and Zvi Galil, Real-time streaming string-matching, CPM,

2011, pp. 162–172.

[BKMT03] Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang, Bounds for

frequency estimation of packet streams, SIROCCO, 2003, pp. 33–42.

[BO07] Vladimir Braverman and Rafail Ostrovsky, Smooth histograms for sliding win-

dows, FOCS, 2007, pp. 283–293.

[BOZ09] Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo, Optimal sampling

from sliding windows, PODS, 2009, pp. 147–156.

[BYJKK04] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar, The

sketching complexity of pattern matching, APPROX-RANDOM, 2004, pp. 261–

272.

[BYJKS02] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar, An information

statistics approach to data stream and communication complexity, FOCS, 2002,

pp. 209–218.

[BYKS01] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar, Sampling algorithms: lower

bounds and applications, Proceedings of the thirty-third annual ACM sympo-

sium on Theory of computing (New York, NY, USA), STOC ’01, ACM, 2001,

pp. 266–275.

[CCFC04] Moses Charikar, Kevin Chen, and Martin Farach-Colton, Finding frequent

items in data streams, Theor. Comput. Sci. 312 (2004), no. 1, 3–15.

[CCM08] Amit Chakrabarti, Graham Cormode, and Andrew McGregor, Robust lower

bounds for communication and stream computation, STOC, 2008, pp. 641–650.

BIBLIOGRAPHY 73

[CDK+09] Edith Cohen, Nick G. Duffield, Haim Kaplan, Carsten Lund, and Mikkel Tho-

rup, Stream sampling for variance-optimal estimation of subset sums, SODA,

2009, pp. 1255–1264.

[CG00] Artur Czumaj and Leszek Gasieniec, On the complexity of determining the

period of a string, CPM, 2000, pp. 412–422.

[CH10] Graham Cormode and Marios Hadjieleftheriou, Methods for finding frequent

items in data streams, VLDB J. 19 (2010), no. 1, 3–20.

[Che52] Herman Chernoff, A measure of asymptotic efficiency for tests of a hypothe-

sis based on the sums of observations, Annals of Mathematical Statistics 23

(1952), 409–507.

[CKS03] Amit Chakrabarti, Subhash Khot, and Xiaodong Sun, Near-optimal lower

bounds on the multi-party communication complexity of set disjointness, IEEE

Conference on Computational Complexity, 2003, pp. 107–117.

[CM02] Graham Cormode and S. Muthukrishnan, The string edit distance matching

problem with moves, SODA, 2002, pp. 667–676.

[CM11] Michael S. Crouch and Andrew McGregor, Periodicity and cyclic shifts via

linear sketches, APPROX-RANDOM, 2011, pp. 158–170.

[CMS01] Graham Cormode, S. Muthukrishnan, and Süleyman Cenk Sahinalp, Permu-

tation editing and matching via embeddings, ICALP, 2001, pp. 481–492.

[CMY08] Graham Cormode, S. Muthukrishnan, and Ke Yi, Algorithms for distributed

functional monitoring, SODA, 2008, pp. 1076–1085.

[CMYZ10] Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang, Optimal sam-

pling from distributed streams, PODS, 2010, pp. 77–86.

[COP03] Moses Charikar, Liadan O’Callaghan, and Rina Panigrahy, Better streaming

algorithms for clustering problems, STOC, 2003, pp. 30–39.

BIBLIOGRAPHY 74

[CP10] Timothy M. Chan and Mihai Patrascu, Counting inversions, offline orthogonal

range counting, and related problems, SODA, 2010, pp. 161–173.

[CR11] Amit Chakrabarti and Oded Regev, An optimal lower bound on the commu-

nication complexity of gap-hamming-distance, in Fortnow and Vadhan [FV11],

pp. 51–60.

[CT06] Thomas M. Cover and Joy A. Thomas, Elements of information theory (2.

ed.), Wiley, 2006.

[DG77] Persi Diaconis and Ron Graham, Spearman’s footrule distance as a measure of

disarray, J. of Royal Statistical Society 39 (1977), no. 2, 262–268.

[DGIM02] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani, Maintain-

ing stream statistics over sliding windows (extended abstract), SODA, 2002,

pp. 635–644.

[Die89] Paul F. Dietz, Optimal algorithms for list indexing and subset rank, WADS,

1989, pp. 39–46.

[DLT07] Nick G. Duffield, Carsten Lund, and Mikkel Thorup, Priority sampling for

estimation of arbitrary subset sums, J. ACM 54 (2007), no. 6.

[EAE06] Mohamed G. Elfeky, Walid G. Aref, and Ahmed K. Elmagarmid, Stagger:

Periodicity mining of data streams using expanding sliding windows, Proceed-

ings of the Sixth International Conference on Data Mining (Washington, DC,

USA), ICDM ’06, IEEE Computer Society, 2006, pp. 188–199.

[ECW92] Vladimir Estivill-Castro and Derick Wood, A survey of adaptive sorting algo-

rithms, ACM Comput. Surv. 24 (1992), no. 4, 441–476.

[EJ08] Funda Ergün and Hossein Jowhari, On distance to monotonicity and longest

increasing subsequence of a data stream, SODA, 2008, pp. 730–736.

[EJS10] Funda Ergün, Hossein Jowhari, and Mert Saglam, Periodicity in streams,

APPROX-RANDOM, 2010, pp. 545–559.

BIBLIOGRAPHY 75

[EKK+00] Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh

Viswanathan, Spot-checkers, J. Comput. Syst. Sci. 60 (2000), no. 3, 717–751.

[EMS04] Funda Ergün, S. Muthukrishnan, and Süleyman Cenk Sahinalp, Sublinear

methods for detecting periodic trends in data streams, LATIN, 2004, pp. 16–28.

[Fan61] Robert M. Fano, Transmission of information: A statistical theory of commu-

nication, MIT Press, March 1961.

[FIS05] Gereon Frahling, Piotr Indyk, and Christian Sohler, Sampling in dynamic

data streams and applications, Symposium on Computational Geometry, 2005,

pp. 142–149.

[FKM+08] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and

Jian Zhang, Graph distances in the data-stream model, SIAM J. Comput. 38

(2008), no. 5, 1709–1727.

[FKSV02] Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh

Viswanathan, An approximate l1-difference algorithm for massive data

streams, SIAM J. Comput. 32 (2002), no. 1, 131–151.

[FKZ04] Joan Feigenbaum, Sampath Kannan, and Jian Zhang, Computing diameter

in the streaming and sliding-window models, Algorithmica 41 (2004), no. 1,

25–41.

[FS05] Gereon Frahling and Christian Sohler, Coresets in dynamic geometric data

streams, STOC, 2005, pp. 209–217.

[FV11] Lance Fortnow and Salil P. Vadhan (eds.), Proceedings of the 43rd acm sym-

posium on theory of computing, stoc 2011, san jose, ca, usa, 6-8 june 2011,

ACM, 2011.

[FW65] N. J. Fine and H. S. Wilf, Uniqueness theorems for periodic functions, Pro-

ceedings of The American Mathematical Society 16 (1965), 109–109.

[Gan11] Sumit Ganguly, Polynomial estimators for high frequency moments, CoRR

abs/1104.4552 (2011).

BIBLIOGRAPHY 76

[GG07] Anna Gál and Parikshit Gopalan, Lower bounds on streaming algorithms for

approximating the length of the longest increasing subsequence, FOCS, 2007,

pp. 294–304.

[GGI+02] Anna C. Gilbert, Sudipto Guha, Piotr Indyk, Yannis Kotidis, S. Muthukr-

ishnan, and Martin Strauss, Fast, small-space algorithms for approximate his-

togram maintenance, STOC, 2002, pp. 389–398.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron, Property testing and its

connection to learning and approximation, J. ACM 45 (1998), no. 4, 653–750.

[GI10] Anna Gilbert and Piotr Indyk, Sparse recovery using sparse matrices, Pro-

ceeding of IEEE, 2010.

[GJKK07] Parikshit Gopalan, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar,

Estimating the sortedness of a data stream, SODA, 2007, pp. 318–327.

[GK04] Michael Greenwald and Sanjeev Khanna, Power-conserving computation of

order-statistics over sensor networks, PODS, 2004, pp. 275–285.

[GM06] Sudipto Guha and Andrew McGregor, Approximate quantiles and the order of

the stream, PODS, 2006, pp. 273–279.

[GM09] , Stream order and order statistics: Quantile estimation in random-

order streams, SIAM J. Comput. 38 (2009), no. 5, 2044–2059.

[GMMO00] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan, Clus-

tering data streams, FOCS, 2000, pp. 359–366.

[GR09] Parikshit Gopalan and Jaikumar Radhakrishnan, Finding duplicates in a data

stream, Proceedings of the twentieth Annual ACM-SIAM Symposium on Dis-

crete Algorithms (Philadelphia, PA, USA), SODA ’09, Society for Industrial

and Applied Mathematics, 2009, pp. 402–411.

[GT01] Phillip B. Gibbons and Srikanta Tirthapura, Estimating simple functions on

the union of data streams, SPAA, 2001, pp. 281–291.

BIBLIOGRAPHY 77

[GZ03] Anupam Gupta and Francis Zane, Counting inversions in lists, SODA, 2003,

pp. 253–254.

[Hoe63] Wassily Hoeffding, Probability inequalities for sums of bounded random vari-

ables, Journal of the American Statistical Association 58 (1963), no. 301, 13–

30.

[IKM00] Piotr Indyk, Nick Koudas, and S. Muthukrishnan, Identifying representative

trends in massive time series data sets using sketches, Proceedings of the 26th

International Conference on Very Large Data Bases (San Francisco, CA, USA),

VLDB ’00, Morgan Kaufmann Publishers Inc., 2000, pp. 363–372.

[Ind00] Piotr Indyk, Stable distributions, pseudorandom generators, embeddings and

data stream computation, FOCS, 2000, pp. 189–197.

[IR08] Piotr Indyk and Milan Ruzic, Near-optimal sparse recovery in the l1 norm,

FOCS, 2008, pp. 199–207.

[IW05] Piotr Indyk and David P. Woodruff, Optimal approximations of the frequency

moments of data streams, STOC, 2005, pp. 202–208.

[Jen06] J. Jensen, Sur les fonctions convexes et les ingalits entre les valeurs moyennes,

Acta Mathematica 30 (1906), 175–193, 10.1007/BF02418571.

[JMMV07] T. S. Jayram, Andrew McGregor, S. Muthukrishnan, and Erik Vee, Estimating

statistical aggregates on probabilistic data streams, PODS, 2007, pp. 243–252.

[JST11] Hossein Jowhari, Mert Saglam, and Gábor Tardos, Tight bounds for lp sam-

plers, finding duplicates in streams, and related problems, PODS, 2011, pp. 49–

58.

[Kar89] Mauricio Karchmer, A new approach to circuit depth, Ph.D. thesis, MIT, 1989.

[KN97] Eyal Kushilevitz and Noam Nisan, Communication complexity, Cambridge

University Press, 1997.

BIBLIOGRAPHY 78

[KNPW11] Daniel M. Kane, Jelani Nelson, Ely Porat, and David P. Woodruff, Fast mo-

ment estimation in data streams in optimal space, in Fortnow and Vadhan

[FV11], pp. 745–754.

[KNW10a] Daniel M. Kane, Jelani Nelson, and David P. Woodruff, On the exact space

complexity of sketching and streaming small norms, SODA, 2010, pp. 1161–

1178.

[KNW10b] Daniel M. Kane, Jelani Nelson, and David P. Woodruff, An optimal algo-

rithm for the distinct elements problem, Proceedings of the twenty-ninth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of database systems of

data (New York, NY, USA), PODS ’10, ACM, 2010, pp. 41–52.

[KR87] Richard M. Karp and Michael O. Rabin, Efficient randomized pattern-matching

algorithms, IBM J. Res. Dev. 31 (1987), 249–260.

[KSP03] Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou, A sim-

ple algorithm for finding frequent elements in streams and bags, ACM Trans.

Database Syst. 28 (2003), 51–55.

[KW88] Mauricio Karchmer and Avi Wigderson, Monotone circuits for connectivity re-

quire super-logarithmic depth, Proceedings of the twentieth annual ACM sym-

posium on Theory of computing (New York, NY, USA), STOC ’88, ACM,

1988, pp. 539–550.

[LLXY04] Xuemin Lin, Hongjun Lu, Jian Xu, and Jeffrey Xu Yu, Continuously main-

taining quantile summaries of the most recent n elements over a data stream,

ICDE, 2004, pp. 362–373.

[LN05] Oded Lachish and Ilan Newman, Testing periodicity, APPROX-RANDOM,

2005, pp. 366–377.

[LNVZ05] David Liben-Nowell, Erik Vee, and An Zhu, Finding longest increasing and

common subsequences in streaming data, COCOON, 2005, pp. 263–272.

BIBLIOGRAPHY 79

[LS62] R. C. Lyndon and M. P. Schutzenberger, The equation am=bncp in a free

group.

[LS93] Gad M. Landau and Jeanette P. Schmidt, An algorithm for approximate tan-

dem repeats, CPM, 1993, pp. 120–133.

[MAA05] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi, Duplicate detection

in click streams, WWW, 2005, pp. 12–21.

[McG05] Andrew McGregor, Finding graph matchings in data streams, APPROX-

RANDOM, 2005, pp. 170–181.

[Mer] Sağlam Mert, Master’s thesis.

[MG82] Jayadev Misra and David Gries, Finding repeated elements, Tech. report,

Ithaca, NY, USA, 1982.

[MMNW11] Darakhshan J. Mir, S. Muthukrishnan, Aleksandar Nikolov, and Rebecca N.

Wright, Pan-private algorithms via statistics on sketches, PODS, 2011, pp. 37–

48.

[MNSW95] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson, On

data structures and asymmetric communication complexity, Proceedings of the

twenty-seventh annual ACM symposium on Theory of computing (New York,

NY, USA), STOC ’95, ACM, 1995, pp. 103–111.

[MS03] S. Muthukrishnan and Martin Strauss, Rangesum histograms, SODA, 2003,

pp. 233–242.

[Mut] S. Muthukrishnan, Data streams: Algorithms and applications.

[Mut05] S. Muthukrishnan, Data streams: Algorithms and applications, Foundations

and Trends in Theoretical Computer Science 1 (2005), no. 2.

[MW10] Morteza Monemizadeh and David P. Woodruff, 1-pass relative-error lp-

sampling with applications, Proceedings of the Twenty-First Annual ACM-

SIAM Symposium on Discrete Algorithms (Philadelphia, PA, USA), SODA

’10, Society for Industrial and Applied Mathematics, 2010, pp. 1143–1160.

BIBLIOGRAPHY 80

[Nis90] N. Nisan, Pseudorandom generators for space-bounded computations, Proceed-

ings of the twenty-second annual ACM symposium on Theory of computing

(New York, NY, USA), STOC ’90, ACM, 1990, pp. 204–212.

[PL07] Ely Porat and Ohad Lipsky, Improved sketching of hamming distance with

error correcting, CPM, 2007, pp. 173–182.

[PP09] Benny Porat and Ely Porat, Exact and approximate pattern matching in the

streaming model, Proceedings of the 2009 50th Annual IEEE Symposium on

Foundations of Computer Science (Washington, DC, USA), FOCS ’09, IEEE

Computer Society, 2009, pp. 315–323.

[RLG+10] Chotirat Ann Ratanamahatana, Jessica Lin, Dimitrios Gunopulos, Eamonn J.

Keogh, Michail Vlachos, and Gautam Das, Mining time series data, Data

Mining and Knowledge Discovery Handbook, 2010, pp. 1049–1077.

[RS11] Ronitt Rubinfeld and Asaf Shapira, Sublinear time algorithms, Electronic Col-

loquium on Computational Complexity (ECCC) 18 (2011), 13.

[SSS95] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan, Chernoff-hoeffding

bounds for applications with limited independence, SIAM J. Discret. Math. 8

(1995), 223–250.

[Sta01] Pantelimon Stanica, Good lower and upper bounds on binomial coefficients, J.

Inequalities in Pure and Applied Math. 2 (2001), no. 3.

[Tar07] Jun Tarui, Finding a duplicate and a missing item in a stream, Theory and

Applications of Models of Computation (Jin-Yi Cai, S. Cooper, and Hong

Zhu, eds.), Lecture Notes in Computer Science, vol. 4484, Springer Berlin /

Heidelberg, 2007, pp. 128–135.

[TZ97] Gabor Tardos and Uri Zwick, The communication complexity of the universal

relation, Proceedings of the 12th Annual IEEE Conference on Computational

Complexity (Washington, DC, USA), IEEE Computer Society, 1997, pp. 247–.

BIBLIOGRAPHY 81

[Woo11] David P. Woodruff, Near-optimal private approximation protocols via a black

box transformation, in Fortnow and Vadhan [FV11], pp. 735–744.

[Yao79] Andrew Chi-Chih Yao, Some complexity questions related to distributive com-

puting(preliminary report), Proceedings of the eleventh annual ACM sympo-

sium on Theory of computing (New York, NY, USA), STOC ’79, ACM, 1979,

pp. 209–213.

	Approval
	Abstract
	Dedication
	Acknowledgements
	Contents
	Introduction
	Data Stream Model
	A brief overview of streaming results.

	Measuring disorder in data streams
	Estimating sortedness
	Distance to periodicity
	Our Contributions on Measuring Disorder
	Previous Works on Measuring Disorder

	Finding duplicates and Lp samplers
	Our contributions
	Previous Works

	Organization

	Preliminaries
	Data stream and communication complexity
	Probability
	Information theory
	Concentration bounds

	Estimating Sortedness
	Approximating the distance to monotonicity
	An improved estimator
	Approximating the estimator

	Space lower bound for approximating LIS
	The framework of Gopalan et al.
	An alternative proof

	Detecting Periodicity
	Few preliminaries
	Streaming pattern matching
	Finding the period
	Frequency moments over substrings
	Approximating the distance to periodicity
	A (2+) algorithm
	A (1+) algorithm

	Finding Duplicates and Lp-Samplers
	The Lp Sampler
	Preliminaries and definitions
	The sampler algorithm

	The L0 Sampler
	Algorithms for finding a duplicate
	A (log2n) space bound for DUPLICATE
	Finding duplicates in short streams

	Lower bounds for Lp samplers
	Augmented Indexing problem
	Universal Relation problem

	Bibliography
	PCL_Declaration_2012_p.iii.pdf
	Partial Copyright Licence

