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Abstract

DNA replication in higher organisms starts at many places across the genome and through-

out S (synthesis) phase. In order to understand replication in eukaryotes, one needs to know

not only how the replicative machinery functions on the molecular level but also how the

machinery is organized genome wide to ensure complete duplication. Over the past fifteen

years, advances in technology have allowed researchers to perform genome-wide experi-

ments that probe the state of replication in many organisms. These datasets make possible

quantitative modelling of the replication process.

The kinetics of DNA replication is formally analogous to a physical phase-transformation

process. In replication, the DNA is transformed from a “non-replicated” phase to a “repli-

cated” phase, just as freezing water is transformed from a liquid phase to a solid phase.

Using this analogy, we map the replication process onto a stochastic nucleation-and-growth

model introduced in statistical physics to describe first-order phase transitions. Extending

the model, we develop a mathematical framework that is flexible enough to describe the

kinetics of replication in eukaryotes.

We present three applications of our theory: 1) We apply the theory to a recent dataset

on budding yeast to extract its genome-wide replication program. Based on this study, we

give the first proposal to explain how the temporal aspect of the replication program can

be controlled mechanistically. 2) We address the “random-completion problem,” which

asks how replication-completion times can be controlled when replication starts at random

places and times. We find that the strategy adopted in frog embryos to solve the problem

also nearly minimizes the use of certain replicative machinery. 3) We study possible ways

to extract information from a popular technique used to probe replication in multicellular

eukaryotes, ranging from worms to humans. We show preliminary results that can be

extended to real experiments in the near future.
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Chapter 1

Introduction

Faithful and timely DNA replication is essential for the normal development of life. Un-

faithful and uncontrolled replication of the genome—for example, mis-replication, re-

replication, and partial replication—can lead to chromosomal instability that activates pro-

grammed cell death or oncogenes [1, 2]. Decades of intense research has revealed the key

molecular players and biochemical processes [3, 4, 5]. This understanding has led to a

complete description of the replication kinetics in bacteria: DNA synthesis starts at a sin-

gle, sequence-specific site, proceeds bidirectionally from it, and finishes the duplication

at another sequence-specific region [6]. In this case, the genome-wide regulation of the

replication process is deterministic and strictly governed by biochemical reactions. (The

reactions themselves, of course, are stochastic in this and all cases.)

Eukaryotic replication is more complex. The kinetics depends not only on the proper-

ties of the replicative proteins but also on their genome-wide coordination and organization

[7]. Over the past fifteen years, advances in technology have allowed genome-scale ex-

periments that probe the state of replication. With such datasets comes the potential to

construct a complete and detailed picture of how replication occurs and is regulated [8].

In this thesis, I will develop a mathematical formalism that describes the eukaryotic repli-

cation kinetics, facilitates logical information extraction from experiments, and addresses

apparent contradictions and robustness issues arising from the stochastic nature of replica-

tion.

1



CHAPTER 1. INTRODUCTION 2

1.1 Overview of replication

Common to all organisms is their unique ability to reproduce. This is true for the most

basic building block of an organism, a cell. The life of a cell, from its “birth” to its duplica-

tion, is governed by a cell cycle (Fig. 1.1). The cell cycle for somatic cells is composed of

four phases: the Gap 1 (G1) phase, where cells grow in size and prepare the necessary bio-

chemical environment for DNA replication; the synthesis (S) phase, where DNA synthesis

takes place to duplicate the genome; the Gap 2 (G2) phase, where cells continue to grow

and prepare the environment for dividing; and the mitosis (M) phase, where a cell divides

into two cells, each carrying a copy of the original genome. The embryonic cell cycle is

shortened with the omission of G1 and G2 phases. By stockpiling the necessary proteins in

a large egg, the organism can develop more quickly.

ORC
cdc6

MCM

MCM

cdt1

MCM

GINS

Polcdc45

5’ 3’

3’ 5’

leading-
strand

lagging-
strand

M G1

Nucleus

Licensing
Initiation

Elongation

DNA

2 copies of DNA

S G2

1 copy of DNA

Figure 1.1: A schematic diagram of the cell cycle and the major molecular processes in
DNA replication.
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DNA is composed of four kinds of bases, or nucleotides: A (adenine), T (thymine), C

(cytosine), and G (guanine). The DNA that encodes genetic information in a cell’s nucleus

is in a double-stranded form, where an A/C on one strand is complemented by a T/G on the

other strand. The matching of the letters is called complementary base pairing. In order to

duplicate a molecule of double-stranded DNA (dsDNA), the dsDNA is unwound into two

single-stranded DNA (ssDNA). Replication proteins then bind the ssDNA to synthesize a

new complementary second strand until the whole molecule is copied. Below, we explain

in more detail the major steps involved in DNA replication [4, 5]:

Licensing. Licensing establishes “potential origins” along the DNA, which can initi-

ate replication. The licensing process involves the formation of pre-replicative com-

plexes (pre-RC). Each complex is first formed when a single group of six proteins,

the origin recognition complex (ORC), binds to the DNA. Each ORC, with the help

of two additional proteins (Cdc6 and Cdt1) recruits minichromosome maintenance

(MCM) 2-7 hexamer rings onto the chromosome (Fig. 1.1). A pair of head-to-head

MCM rings can function as a potential origin [9, 10]. Licensing in somatic cells

is restricted to M and G1 phase of the cell cycle by the requirement of low cyclin-

dependent kinase (CDK) activity.

Initiation. After licensing and upon entering S phase, a potential origin can be ac-

tivated by the phosphorylation of CDK and Dbf4-dependent kinase (DDK) and by

the recruitment of various proteins, such as Cdc45 and the GINS complex. Once an

origin is activated, the pre-RC disassembles. The pair of MCM2-7 rings, with Cdc45

and GINS, moves bidirectionally outward from the origin as helicases to unwind the

double-stranded DNA, forming two symmetrically propagating replication “forks”

(Fig. 1.1). The term “fork” is used at the unwinding front because the geometry

of the dsDNA unzipped into two ssDNA is fork-shaped. Throughout the thesis, the

verbs “activate,” “initiate,” and “fire” are used to describe this event. Usually, these

three terms are equivalent; however, in Chapter 4, a distinction needs to be made.

The word “activate” is associated with an activator, which is freely diffusing in the

nucleus, while the words “initiate” and “fire” are associated with an origin, which is

on the DNA.
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Elongation∗. Following the unwinding of the dsDNA into ssDNA, polymerases are

recruited. Polymerases can synthesize nucleotides in only one direction, from the 5′

end of the DNA to the 3′ end. Since the newly synthesized strand is complemen-

tary to the old, the old strand that is oriented in the 3′–5′ direction (leading-strand)

is replicated continuously. The other strand, which is oriented in the 5′–3′ direction

(lagging-strand), is replicated discontinuously with Okizaki fragments (Fig. 1.1). Re-

views of the important proteins involved can be found in [11, 12].

Coalescence. When two replication forks travelling in opposite directions meet, the

helicases disassemble, and the two growing strands of newly synthesized DNA are

joined together by DNA ligases.

In eukaryotic cells, the processes of origin initiation, fork progression (with tightly cou-

pled replication machinery), and domain coalescence take place at multiple sites throughout

S phase until the whole genome is duplicated. Re-replication is prevented because pre-RCs

are licensed only in M and G1 phases and not in S phase. (If licensing were allowed in S

phase, the pre-RCs could be licensed on replicated DNA to re-replicate it.) When potential

origins initiate or are passively replicated by other replication forks†, pre-RCs disassemble

and are inhibited from reassembling on the DNA throughout the current S phase, thereby

preventing re-initiation and re-replication [4].

As mentioned previously, the replication process depends not only on the proper func-

tioning of the protein complexes but also on how they are organized. More specifically,

the positional organization of potential origins in licensing, the temporal organization of

initiation in S phase, and the velocity of the fork movements need to be regulated to ensure

complete and timely duplication of the genome. The collection of these elements and the

resulting coalescences are referred to as “replication kinetics.” As we will discuss later, the

work presented here focuses on a scenario where the fork velocity is constant. In this case,

the replication kinetics is essentially determined by the licensing position and the initiation

time. We refer to this spatiotemporal organization as the “replication program.”

∗An animation of the elongation process by biomedical animator Drew Berry can be found on YouTube
<http://www.youtube.com/watch?v=OjPcT1uUZiE>.
†There is a distinction between the protein complex and the site at which the complex is loaded, though

both are sometimes referred to as origins. In this thesis, initiation relates to the complex, while replication
(or passive replication) relates to the site.
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We first review licensing, the spatial aspect of the replication program, in different

organisms. The best-understood eukaryote is Saccharomyces cerevisiae (budding yeast).

In this single-cell organism, licensing occurs at the ACS (ARS consensus sequence), an

11-basepair (bp) sub-sequence in the roughly 100-bp domain known as the autonomously

replicating sequence (ARS) [5]. Because licensing is sequence specific, the origin positions

are well defined and are considered to be deterministic. In contrast, the licensing in budding

yeast’s distant relative Schizosaccharomyces pombe (fission yeast) is not determined by any

particular sequence but takes place in kilo-basepair-sized (kb-sized), AT-rich, intergenic

regions [13]. The licensing in this case may be considered stochastic, as an origin can lie

anywhere within these kb-sized regions with high probability and probably within other

regions also with lower probability. For multicellular organisms, genome-wide studies

in Drosophila melanogaster (fruit flies) suggest that licensing occurs in domains that are

roughly 10 kb in size and that these domains have complex sequence features that relate

to open chromatin structure [14, 15]. Analyses of human replication experiment show that

licensing occurs in roughly 100-kb zones that correspond to gene-rich and transcriptionally

active regions [16, 17]. The most stochastic case is found in the embryos of Xenopus

laevis (African clawed frog), where licensing seems possible everywhere along the genome

[18]. A more recent study shows that licensing is uniform only up to mega-basepair (Mb)

domains [19].

The temporal aspect of the replication program is more confusing. Bulk or population

experiments probing replication show that some parts of the genome replicate, on average,

earlier than others, forming a replication timing pattern [14, 16, 20]. A common interpre-

tation of this result is that initiations are temporally ordered to ensure controlled duplica-

tion. An origin is thus often classified as early or late in the literature. This description

implies a roughly deterministic view that a particular origin on a particular site (or in a

particular zone) would initiate at a particular time in every cell. However, single-molecule

experiments have shown that the initiation of origins is stochastic; i.e., a nominally late

origin can fire early with non-negligible probability [21, 22]. In this thesis, we focus on

budding yeast and frog embryos, which are at the two extremes of the range of licensing

behaviour. In exploring the timing behaviour in these two organisms, we hope to 1) clarify

the stochastic nature of the temporal aspect of replication in all eukaryotes and 2) elucidate

the yet unknown mechanism for controlling origin-initiation and genome-duplication time
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with stochastic initiators.

1.2 Overview of modelling

Genome duplication is a complex process that can be modelled at different scales. On the

molecular level, most models concern the structural mechanism and biochemical steps in-

volved in the function of replicative machinery. These steps form a molecular network that

can be analyzed on a systems level. Recently, Brummer et al. modelled the major molec-

ular events using a system of coupled ordinary differential equations. Using this systems

approach, they demonstrated how the interaction network can lead to re-replication when

the activator CDK is upregulated too early in S phase [23]. Our modelling is on a coarser

scale: we group all the molecular steps involved in replication into three kinetic elements:

the position and time of initiation (or the replication program), the fork velocity, and the

position and time of coalescences. As we will show in this thesis, such a coarse-grained

approach connects well to large-scale experimental data and provides a good description of

the replication kinetics in eukaryotes.

Modelling the replication process using simple kinetic processes is not a new idea. An

early effort by Bertuzzi et al. presented a deterministic model where every cell replicates

at the same rate [24]. Their model has been recently used to extract the fraction of cells in

S phase at a given time and the length of S phase from flow-cytometry data [25]. A more

sophisticated approach where the licensing and initiation are modelled as Poisson processes

was developed by Cowan [26]. Using the Poisson model, he investigated many aspects of

replication, such as the genome duplication time, the number of origins used in each S

phase (not all potential origins initiate because of passive replication), and the statistics of

Okizaki fragments. Though rich in content, Cowan’s work was only marginally connected

with experiments. In this thesis, we develop similar but more-general models and focus on

their application to recent experimental data.

Our modelling started with the realization that the DNA replication process is for-

mally equivalent to a one-dimensional version of the stochastic nucleation-and-growth

model introduced in statistical physics to describe first-order phase transitions (Fig. 1.2).

This model, often referred to as the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory

of phase-change kinetics [27, 28, 29, 30, 31, 32], captures three aspects of phase trans-
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Figure 1.2: Schematic analogy between a nucleation-and-growth model and DNA replica-
tion. A. A one-dimensional nucleation-and-growth model that describes the phase trans-
formation kinetics from Phase 1 to Phase 2. B. The DNA replication process. Darker lines
correspond to unreplicated DNA; lighter bubbles correspond to replicated DNA.

formation: nucleation of the transformed phase, growth of the nucleated domains, and

coalescence of impinging domains. Making a formal analogy between phase transfor-

mations and DNA replication, we map the kinetics of the DNA replication onto a one-

dimensional KJMA model with three corresponding elements: initiation of potential ori-

gins, growth of replicated domains, and coalescence of replicated domains. The use of a

two-state phase-transformation model implicitly incorporates the observation that, ordinar-

ily, re-replication is prevented. That is, only two states (replicated and unreplicated) are

allowed. Re-replication, which can occur in cancer cells, leads to additional states and is

thus not considered in the present model.

Bechhoefer and Jun extended the KJMA model to include arbitrary temporal variations

in the initiation rate and applied it to molecular-combing data from frog embryos to extract

quantities such as the rate of origin initiation [33, 34, 35]. Such information has led to

an appreciation of the role of stochastic effects in initiation [36], to models highlighting

searching and binding kinetics in initiation timing [37], and to suggestions that initiation
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patterns may be universal across species [38]. In this thesis, we extend the formalism

further to include arbitrary spatial distributions of initiation, providing a flexible formalism

for describing eukaryotic replication.

The formalism that we will develop here is less biased than popular empirical analyses

[20, 39], as it accounts for the effects of stochasticity and passive replication. Because it

is analytic, it is also faster than simulation-based models [40, 41, 42]. Most importantly,

it allows us to construct models that capture the complete replication kinetics quantita-

tively from experimental replication profiles. This ability makes possible a more complete

understanding of the replication kinetics in budding yeast and frog embryos and leads to

insights about the open question of initiation timing. While the licensing properties of the

two organisms, as mentioned above, are at the two extremes of the deterministic-to-random

spectrum, their initiation properties are very similar. The mechanism that seems to underlie

the initiation of individual origins in budding yeast also ensures timely genome duplication

in frog embryos. We will develop this theme in more detail throughout the thesis.

In the bigger picture, we hope that our work can eventually contribute to medical ad-

vances in replication-related diseases such as cancer. A hallmark of cancer is genome in-

stability, which includes mutations and gross abnormality in chromosome structures [43].

Most tumourgenesis models attribute the cause of cancer to mutation and hyperactivity in

genes known as oncogenes [2, 44]. These oncogenes are associated with kinetic elements

such as re-replication [2] and stalled forks [44], which can cause DNA breakage and lead

to gross chromosome structures [45]. Since the development of cancer relates to abnormal

kinetic elements, one can incorporate these into the model. A recent work that included

fork stalling suggests that the density of stalled forks could be an indicator of whether a

cell is normal or cancerous [46]. That work illustrates the usefulness of quantitative mod-

elling in understanding cancer. More elaborate and careful studies using such models can

lead to quantitative comparisons between replication in cancer and normal cells and may

reveal novel and specific targets for diagnosis and treatment.

1.3 Overview of experimental techniques

Our main motivation in developing new theory is to extract quantitative information from

experiments in a rigorous and logical way. Among the many experiments that probe dif-



CHAPTER 1. INTRODUCTION 9

ferent aspects of replication (e.g., the genome-wide distribution of ORC [15, 47] and the

spatiotemporal distribution of forks [48]), we focus on those that measure the variation of

DNA content during S phase. These DNA measurements are usually easier than measure-

ments of protein occupancy because DNA is much more abundant. Mathematically, we

describe the variation of DNA content in S phase by the replication fraction f(x, t), which

is defined, at a population level, as the fraction of cells in a culture that has genome posi-

tion x replicated at time t after the start of S phase. At the single-cell level, f(x, t) can be

interpreted as the cumulative probability of having the site x replicated at time t after the

start of S phase.

How does the replication fraction f(x, t) connect to our kinetic picture? As shown in

Fig. 1.2, the position and timing of initiation plus the growth velocity of replicated do-

mains determine the progress of replication. Our picture is that although each realization

of genome duplication in a cell is stochastic [21, 22], all cells in the population follow

the same underlying replication program. We characterize this program by a spatiotem-

poral initiation rate I(x, t) (defined later in Sec. 2.1.1) and a fork velocity v, which is

well approximated as a constant in several organisms (also discussed in Sec. 2.1.1). Thus,

the replication fraction f(x, t) is a functional of I(x, t) and v. Below, we present some

of the recent experimental techniques that probe the replication fraction. In general, the

techniques can be labelled with four properties:

Genome mappability. We define “mappable” to mean that the measurement can be

mapped to a specific genome position x. Such measurements provide spatial infor-

mation about f(x, t). Methods of mapping include fluorescence in situ hybridization

(FISH), complementary base pairing (used in microarrays), and sequence alignment

(used in deep sequencing).

Temporal synchronization. We define “synchronized” to mean that the measure-

ment can be associated with a particular time in S phase. Such measurements provide

temporal information about f(x, t), where t is the time relative to the start of S phase.

In practice, this involves synchronizing a population of cells so that one can release

all cells in the culture to enter S phase at the same lab time (Fig. 1.3A, left plot).

In doing so, one can assign a well-defined time in the cell cycle to a measurement.

Such an assignment is not possible for an asynchronous cell culture, as the cells are
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distributed throughout the cell cycle time at any lab time (Fig. 1.3A, right plot). Syn-

chronization methods for yeasts include the use of alpha-factor, temperature-sensitive

strands, and elutriation [49]. Multicellular organisms are generally more difficult to

synchronize.

Single molecule. We define “single molecule” to mean that the measurement is

from a single DNA fibre (Fig. 1.3B). Such measurements can provide different statis-

tics of the replication fraction, such as its mean, variance, and covariance, whereas

the bulk/population measurements provide only the mean. In this thesis, we focus

on f(x, t), which is the mean of the replication fraction. If larger single-molecule

datasets were available, one could extend the analysis in the thesis to incorporate

additional statistics. Older single-molecule techniques include electron microgra-

phy [50] and DNA fibre autoradiography [51]; more modern methods include DNA

combing, which uses fluorography. As the names suggest, autoradiography involves

labelling the DNA with radioactive substances, while fluorography involves labelling

the DNA with fluorophores. The autoradiography assay is time consuming and has

been replaced by the more efficient and economical fluorography.

Spatial coverage. We define “spatial coverage” to mean the domain size of x in

f(x, t) covered by the dataset. Single-molecule techniques often provide mega-

basepair (Mb) coverage. For organisms with short genomes (≈ 10 Mb) such as

budding yeast, this can mean chromosome-wide coverage. Microarray and sequenc-

ing techniques can provide genome-wide coverage, regardless of the size of the

genome. The ability to cover large parts of the genome is a major technological ad-

vance, as this allows a global comparison of origin properties. By contrast, the older,

time-consuming techniques such as two-dimensional gel electrophoresis, which tests

definitively whether a particular sequence can function as an origin, are suitable for

probing only a handful of genome locations [52].

The above properties indicate the type of information that the experimental techniques

can provide. Table 1.1 lists the techniques that are most relevant to our studies. In dis-

cussing the techniques’ advantages and limitations below, we hope to give a general view

of the technological status of the field.
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Figure 1.3: A schematic diagram for the “synchronization” and “single molecule” proper-
ties of experimental techniques. A. Synchronous vs. asynchronous cell culture. B. Single
molecule vs. bulk measurements. On the left, lines correspond to unreplicated DNA; bub-
bles correspond to replicated DNA, as in Fig. 1.2B. On the right, the unreplicated parts have
replication fraction f = 0, while the replicated parts have f = 1. A bulk/population mea-
surement is ideally equivalent to an average of the single-molecule replication fractions.

Technique Map Sync Single Mole. Coverage
FACS [53] × ×X × Genome
DNA combing [54] × X X Genome
FISH-combing [55, 21, 22] X ×X X Mb
Time-course microarray [20, 56, 57] X X × Genome
FACS-microarray/seq [16, 53, 58] X × × Genome

Table 1.1: Examples of replication experiments and their properties. The symbol “×X”
denotes that either outcomes is possible.
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Fluorescence-activated cell sorting (FACS). This technique probes DNA content by

flowing cells through a channel one by one and measuring the fluorescence intensity from

the cell’s stained nuclear DNA (Fig. 1.4A) [59]. The detected intensity is proportional

to the amount of DNA in the cell. The method is typically applied to an asynchronous

cell culture in which a cell’s DNA content varies between 1 copy and 2 copies of DNA,

depending on its “position” in the cell cycle (Fig. 1.1). By sorting the cells with respect to

their intensity, one can select cells that are in a particular phase of the cell cycle (Fig. 1.4B).

The intensity histogram, shown schematically in Fig. 1.4B, can be used to construct

the replication fraction f(t) and initiation rate I(t) as a function of time. (The histogram

provides no spatial information because the intensity is summed over the cell’s genome.)

An analysis of FACS histograms is provided in Chapter 5. The main advantage of this tech-

nique is that it is easy, fast and economical. Generally, the setup of flowing and counting

cells is known as flow cytometry∗.

DNA combing. In this technique, one labels DNA replicated before a predetermined

time point with modified nucleotides, stretches out the DNA fibres in a controlled way

onto a substrate, and detects the replication patterns with fluorescent antibodies (Fig. 1.5)

[36, 60, 61]. Figure 1.5B shows a typical result. The fibres are “snapshots” that show

replicated and unreplicated domains of the replicating DNA at tp. The snapshots can be

used to infer the initiation rate and the fork velocity [34, 35, 54]. As an illustration, from

the combed DNA fibres, Herrick et al. compiled statistics for the size of replicated domains,

the size of unreplicated domains, and the distance between centres of replicated domains

as a function of time [54]. Since these fibres are sampled from across the genome, the

statistics can be used to infer the fork velocity v and the genome-averaged initiation rate

I(t) as a function of time [34, 35, 54]. The inferred I(t) and v for frog embryos in [54] are

important quantities in the analysis presented in Chapter 6. Note that the combed fibres are

not mapped to particular positions along the genome in this technique.

Advantages of DNA combing include low noise and the possibility to find correlations

among initiations (e.g., [62]). The main disadvantage is that the size of combed fragments is

small (100 kb to 1 Mb) relative to the typical size of mammalian genomes (O(102)–O(103)

∗Throughout the thesis, we do not distinguish between “FACS” and “flow cytometry.” Strictly speaking,
the histogram in Fig. 1.4B is a flow cytometric histogram and not a FACS histogram, since only the flow but
not the sorting is needed to generate the histogram. The sorting, however, is crucial for the FACS-microarray
mentioned below; thus, “FACS-microarray” is the correct name there.
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Figure 1.4: A schematic diagram of fluorescence-activated cell sorting (FACS). A. The
setup. Cells are flowed one by one through a narrow channel. A laser beam excites the
fluorophores incorporated into the cell’s DNA. The detector gathers the fluorescence sig-
nals. Cells are flowed to different storage chambers depending on the detected signal. B.
Histogram of detected fluorescence signal. The fluorescence intensity is proportional the
cells’ DNA content, which ranges from 1 copy (1C) to 2 copies (2C) of DNA.

Mb). The limitation in fibre size complicates analysis [63] and does not give information

about large-scale spatial variations of the replication kinetics. Another disadvantage is the

lack, to date, of an effective automated system to identify fibres. Due to this shortage,

fibres have been studied mostly manually under the microscope, and only a relatively small

fraction of all available fibres are used.

FISH-combing. In this technique, the combed DNA fibres are mapped to specific

regions along the genome using FISH [55, 21, 22]. In contrast to DNA combing, this map-

pable technique provides position-specific information on the replicated and unreplicated

domains, whose boundaries correspond to replication forks. This additional feature has

allowed exploration of timing correlations between pairs of origin initiations [22] and mo-

tivated an analysis based on a reformulation of the KJMA model in terms of forks [17].
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Figure 1.5: A schematic diagram of DNA combing. A. The combing processes. A glass
slide coated with silane is dipped into a solution with labelled DNA. DNA molecules bind
to the glass surface by their ends (only one is shown for clarity). When the glass slide is
pulled up from the solution, the liquid and air interface “combs” (stretches and flattens) the
DNA onto the glass surface. B. (Coloured in electronic file) Typical combed DNA fibres
under the microscope. Regions of DNA that are replicated before a predetermined time tp
relative to the start of S phase are labelled with BrdU (a modified nucleotide) that is visu-
alized with red antibodies. All DNA are also labelled with green anti-ssDNA antibodies.
(Red and green merge to show yellow.) Courtesy of Dr. Nicholas Rhind.

The disadvantage of FISH-combing is that it has limited spatial coverage (see Table 1.1)

and provides many fewer fibres for analysis.

Time-course microarray. Figure 1.6A shows a schematic diagram of the technique.

The adjective “time-course” indicates that the probed cell cultures are synchronized. The

DNA of a synchronized culture is extracted and hybridized onto a microarray chip. With

synchronization, each culture can be assigned a time point tp with respect to the start of S

phase. The resulting measurement is a spatially resolved replication fraction f(x, t = tp)

at time tp. Repeating the procedure at multiple time points, one obtains the replication
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fraction f(x, t) sampled with finite spatial and temporal resolution.

Compared to molecular combing, the main disadvantages of microarrays are the loss

of information about cell-to-cell variability and the need for complicated data processing

to remove artifacts. Fortunately, the second disadvantage can now be largely overcome by

sequencing techniques [64]. The main advantages of both microarray and sequencing are

the techniques’ high-throughput and complete coverage of the genome at high resolution

(kb – 100 bp). The availability of high-resolution, genome-wide data allows one to quantify

in detail the complete spatiotemporal replication program, averaged over a population of

cells. The analysis of a time-course-microarray dataset is presented in Chapter 3.

FACS-microarray. In this technique, cells in S phase are first separated from the asyn-

chronous culture by FACS. Their DNA is then extracted and hybridized onto a microarray

chip (Fig. 1.6B). The resulting measurement is a temporally averaged replication fraction

f(x). The analysis of data from this technique is the focus of Chapter 5. Compared to

time-course microarrays, this technique averages out temporal features of the replication

program; however, it is much more accessible because synchronization, which is difficult

for most eukaryotes, is not needed. In other words, FACS-microarray is preferred for prob-

ing a wide range of organisms’ spatiotemporal replication programs, while time-course

microarray is better for understanding model organisms in great detail.

In addition to the techniques mentioned, other important techniques for understanding

replication probe replication in real time and in vivo∗. An example of the former is an

in vitro experiment that follows the replication of stretched DNA fibres in real time [65].

This technique can be likened to a video version of DNA combing and has allowed direct

measurement of replication fork movements [66, 67]. Since the observations are in real

time, they are naturally “synchronized” to the lab clock. The main disadvantage is of

course that such experiments cannot be done in vivo.

A popular technique for probing replication in vivo is microscopy. Viewing fluores-

cently labelled DNA and proteins in the nucleus can reveal the relation between replica-

tion and the active nuclear environment [68]. Microscopy studies suggest that replication

forks are not randomly distributed but are clustered together in three-dimensional space to

∗The Latin phrase “in vivo” means “in something alive” and describes measurements that probe replication
in the nucleus. The Latin phrase “in vitro” means “in glass” and describes measurements made outside
the cell in an artificial setup. Sometimes, the phrase “in silico” is used for computer simulations of such
measurements.
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Figure 1.6: A schematic diagram of time-course microarray and FACS-microarray. A.
Time-course microarray. The DNA from synchronous cell cultures are hybridized onto
microarray chips or sequenced. The time labels (t0 < t1 < t2) show how long the cell
culture has been in S phase. Ideal results without instrumental noise are shown at the
bottom. B. FACS-microarray. Cells progressing through S phase in an asynchronous cell
culture are selected by FACS. The DNA are extracted from the cells, fragmented, and
hybridized onto a microarray chip. Ideal results without instrumental noise are shown at
the bottom.
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form “replication factories” that replicate the DNA [69, 70]. Microscopy studies also show

that DNA at the periphery of the nucleus are replicated later than DNA near the centre

[71]. The major drawbacks of the technique are its inability to resolve individual DNA

fibres and identify their precise genome positions. Recently, super-resolution microscopy

techniques have provided microscopy images of replicating chromosomes with resolution

(≈ 10 nm) that is an order of magnitude better than normal light microscopy (≈ 200 nm)

[72]. Images using such techniques have resolved the individual components of replication

factories. Coupling the analysis of replication kinetics to the nuclear environment is an

exciting future direction.

1.4 Structure of the thesis

This thesis is organized as follows (the citations indicate that parts of the analyses pre-

sented are published in the corresponding references): We first present the theoretical

framework in Chapter 2 [73, 74]. We then apply the theory to time-course microarray

data and extract parameters that quantify the genome-wide spatiotemporal program of bud-

ding yeast in Chapter 3 [74]. Based on the parameters extracted, we propose and test a

model for the control of origin initiation timing in yeast in Chapter 4 [74]. In Chapter 5,

we seek to reconstruct the replication program from the more-accessible FACS-microarray

experiments. In Chapter 6, we address the “random-completion problem,” which asks how

replication-completion time can be controlled with stochastic origin licensing and initiation

[73]. Lastly, we present concluding remarks and possible future directions in Chapter 7.

There are three themes throughout the thesis: 1) the development of a general framework

that can describe the replication programs of eukaryotes, 2) the application of models in the

framework to various experiments, and 3) the advance in our understanding concerning the

temporal aspects of replication control. Each chapter begins with an overview that connects

to these themes.



Chapter 2

Theory

As discussed in Chapter 1, our picture of replication kinetics has three elements: the initia-

tion of licensed replication origins, the growth of replication domains via replication forks,

and the coalescence of domains (Fig. 2.2). For origin initiation, the theory represents the

position and timing probabilistically and is sufficiently general to describe both determin-

istic and stochastic replication-kinetics scenarios. We assume only that initiation events

are not correlated (discussed below in Sec. 2.1.1). For fork movements, we focus on the

simplest case of a constant, deterministic velocity (discussed in Sec. 2.1.1). With these two

elements, we derive formula for replication fractions and characterize origin properties.

These form the basis of the models used in Chapter 3 and 4 to extract information from

experiments on budding yeast and the inversion method presented in Chapter 5.

The third element, coalescence, is useful for deriving the distribution of replication-

completion times. (The last coalescence defines the completion time.) We focus on a

scenario where initiation is spatially uniform and derive explicit formula for the end-time

distribution given power-law initiation rates. The results are used in Chapter 6 to address

the random-completion problem in frog embryos. We also include a brief description of

our simulation methods at the end of the chapter. In terms of the three themes mentioned in

Sec. 1.4, this chapter presents a general framework that can describe the replication kinetics

in eukaryotes. Sections 2.1 and 2.2 are based on [74] and [73], respectively.

18
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2.1 Formalism for eukaryotic replication kinetics

2.1.1 Replication fraction

From our picture of the replication process, an organism’s replication kinetics can be fully

determined by the properties of the origins, which are specified through their licensed po-

sitions and ability to initiate throughout S phase, and the properties of the fork progression.

While fork progression can in general be described as a spatiotemporal function v(x, t),

we assume, for the derivation below, the simplest case that all forks travel at a constant

velocity v. This assumption is reasonable, as fork velocity has been observed in budding

yeast and human cell lines to be roughly constant [48, 75]. The generalization to variable

fork velocity is presented briefly in Appendix 3.A.2 and in more detail in [17, 76].

The neglect of stochasticity in fork movements, interpreted as using an effective, aver-

aged fork velocity, is a reasonable approximation. Using a single-molecule approach, Lee

et al. showed that bacteriophage fork progression, though marked by transient pauses that

last for seconds, is essentially constant on the kb/min scale (Fig. 4 in [66]). Using the same

approach, Tanner el al. showed that bacteria fork progression is also constant on the kb/min

scale (Fig. 2 in [67]). In eukaryotes, fork-to-fork variation can result from forks that stall

to repair misreplicated and damaged DNA [6, 77]. Gauthier and Bechhoefer modelled the

effect of stochastic fork stalls on replication kinetics and concluded that the effective fork

velocity is not affected until the stall density exceeds a threshold that is well above what

is observed in normal replication [46]. Based on these findings, we argue that an averaged

fork velocity is reasonable for the scale relevant to our modelling∗.

Following previous work [33], we describe the kinetic properties of origin via an initi-

ation rate I(x, t), defined as the number of initiations per time per unreplicated length of

DNA, at genome position x and at time t after the start of S phase. Such a description im-

plies that origin initiations are not correlated. Even though there is evidence for correlation

in some organisms (e.g., in frog embryos [62]), the correlation has only a minor effect on

the replication kinetics. In simpler organisms such as budding yeast, correlation among

∗Using single-molecule “magnetic tweezers” experiments, Danilowicz et al. showed that the unzipping
of double-stranded DNA under constant force is not continuous but consists of stochastic jumps and pauses
that are sequence dependent [78]. Comparing this result to the much more constant velocities observed in
replication experiments in vitro [66, 67], we speculate that the unzipping of DNA by helicases is actively
regulated to proceed at a roughly constant rate.
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Figure 2.1: Illustration of Kolmogorov’s argument. The replication fraction at (x, t) equals
to “1 − probability that no origins initiated within the shaded triangle 4.” Vertical lines
indicate the positions of discrete origins; initiation can occur only along these lines.

initiations is insignificant [22].

Given I(x, t), we can calculate the replication fraction f(x, t) of site x on the genome

at a time t after the start of S phase [27, 33]. The result is

f(x, t) = 1−
∏
4

[1− I(x′, t′)∆x′∆t′] , (2.1)

where the product is over all area elements of ∆x∆t in the shaded triangle 4 depicted

in Fig. 2.1 [27]. We note that the product in Eq. 2.1 is the key concept in the theory and

will reappear in many of the quantities derived. In words, the replication fraction at a

specific position and time is equal to one minus the probability that the position has not

been replicated before that time. In the limit ∆x→ 0 and ∆t→ 0, one finds

f(x, t) = 1− e
−

∫∫
4

I(x′,t′)dx′dt′

. (2.2)

Equations 2.1 and 2.2 are remarkable because they provide an essentially exact solution to

a nontrivial many-body problem in 1 + 1 (space and time) dimensions.

We start with a description of budding yeast, where origin positions are well defined

and sequence specific. Denoting these positions by xi, we can describe an origin by its

initiation rate Ii(x, t) = δ(x − xi)I0(x, t), where δ(x) is the Dirac delta function, which

is zero for all x 6= xi. The total rate I(x, t) is the sum of all Ii(x, t). To make the double
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integral in Eq. 2.2 explicit, we define a local measure of origin firing,

g(∆xp, t) =

∫ xp+1

xp

δ(x− xi)dx
∫ t

0

I0(x, t′)dt′, (2.3)

for the interval [xp, xp+1), where the index p comes from discretizing a genome of length

L:

∆x =
L

N
, xp = p(∆x), p = 0, 1, ..., N − 1. (2.4)

The function g(∆xp, t) = 0 unless there is an origin contained in the interval [xp, xp+1).

Replacing the double integral in Eq. 2.2 by a sum using Eq. 2.3, we obtain

f(x, t) = 1− exp

[
−

N−1∑
p=0

g

(
∆xp, t−

|x− xp|
v

)]
, (2.5)

where v is the fork velocity. The ∆xp in the first argument of g(x, t) is an interval, while

the xp in the second argument is a point. The second argument, t− |x− xp|/v, is the time

along the edge of the triangle in Fig. 2.1. Biologically relevant g(x, t) should satisfy the

following constraints:

1. g(∆xp, t < 0) = 0. This means that the initiation rate is zero [I(x, t < 0) = 0]

before the start of replication. Applying this constraint to Eq. 2.5, we see that the

sum is limited to the domain (x− t/v) ≤ x ≤ (x+ t/v).

2. d
dt
g(∆xp, t) ≥ 0. Since g(∆xp, t) =

∫ x+∆x

x

∫ t
0
I(x′, t′)dt′dx′, this is equivalent to

I(x, t) ≥ 0, meaning that the initiation rate cannot be negative.

3. g(∆xp, t) ≥ 0. This is a direct consequence of constraints 1 and 2.

One can generalize Eqs. 2.3 and 2.5 to a continuous version where origins can be any-

where; i.e., the xi that defines the budding yeast origin is now a continuous variable instead

of a finite set of positions. Renaming it x′, we rewrite Eq. 2.3 as

g(x′, t) =

∫ t

0

I(x′, t′)dt′ (2.6)
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and Eq. 2.5 as

f(x, t) = 1− exp

[
−
∫ L

0

g

(
x′, t− |x− x

′|
v

)
dx′
]
. (2.7)

One can now choose I(x, t) to appropriately describe any organism. For example, if the

licensing of an origin occurs in a particular zone along the genome, one might describe this

origin with Ii(x, t) = N(xi, σi)Ii(t), where N(µ, σ) is the normal distribution with mean

µ and standard deviation σ. The genome-wide I(x, t) is the sum of all origin contributions.

In application to the bulk experiments mentioned in Sec. 1.3, we fit Eq. 2.5 to a time-

course microarray dataset, where the budding yeast cell culture was synchronized to enter

S phase at roughly the same time and where the replication fraction was measured for

specific genome position [57]. The experiment generated the genome-wide f(x, t) at eight

time points, and we fit f(x, t) in order to extract I(x, t) and v, which fully characterizes

the replication kinetics. The details are presented in Chapter 3.

For asynchronous and unmappable techniques such as fluorescence-activated cell sort-

ing (FACS), the resulting histogram of DNA content is related to the genome-averaged

replication fraction f(t). In principle, one can average Eq. 2.5 over space and fit to such

data to extract I(x, t) and v. In practice, this data can, at most, provide information on

the time dependence of the rate because the degeneracy in parameters after the genome-

average is too large. For asynchronous but mappable techniques such as FACS-microarray,

the resulting replication fraction profile is a time-averaged spatial profile f(x). To analyze

such data, one can average Eq. 2.5 over time and extract I(x, t) and v. In Chapter 5, we

present the the analysis of both FACS and FACS-microarray data. In particular, we will

discuss methods to directly invert I(x, t) from averaged f(x) and f(t).

Recently, by considering the problem in a light-cone coordinate, Baker derived an in-

version formula that, given v, directly transforms f(x, t) to I(x, t) [76]:

I(x, t) =
v

2

(
1

v2
∂tt − ∂xx

)
ln [1− f(x, t)] . (2.8)

Replacing the continuous double derivatives with their numerical counterparts and defining
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H(x, t) = − ln[1− f(x, t)], one obtains a discrete version

I(xr, ts) =
1

2v
[H(xr, ts+1)− 2H(xr, ts) +H(xr, ts−1)]

−v
2

[H(xr+1, ts)− 2H(xr, ts) +H(xr−1, ts)] ,
(2.9)

where r and s are indices that run through the discretized genome position and time. The

inversion is an advance because it is in general much faster than fitting and because the

I(x, t) extracted is model free and may better reflect the real replication program. How-

ever, direct application of Eq. 2.9 to data can be troublesome. First, experimental data are

often noisy, and the double numerical derivatives amplify the noise. Second, the temporal

resolution of the data is usually lower than the spatial resolution, and the formula does not

take the variable resolution scales into account. We will comment on a strategy to deal with

these issues in light of the reconstruction method discussed in Chapter 5.

2.1.2 Characterization of origins

In the biology literature, origins are often described as “early” or “late” and “efficient” or

“inefficient” (e.g., [57]). These classes are good for qualitative discussion but are insuf-

ficient to fully characterize the origins. In our modelling, we quantitatively characterize

the origins by firing-time distributions. The properties of the origins can be easily summa-

rized as the statistics of the distribution. For instance, the first moment of the distribution

shows whether an origin is early or late firing, and the second moment shows the preci-

sion of the firing time. In general, one should also assign a licensing distribution for each

origin to describe its spatial properties. However, for simplicity and clarity, we focus on

the budding-yeast scenario, where each origin has a specific location, i.e., a δ-function for

the licensing distribution. One can use wider distributions to characterize origins in other

organisms.

We start by stating the cumulative initiation probability Φ(xp, t) in terms of g(∆xp, t)

[79]:

Φ(xp, t) = 1− e−g(∆xp,t). (2.10)
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Since Φ(xp, t) is non-zero only for xp ≤ xi ≤ xp+1, we introduce

φi(t) ≡
d

dt
Φ(xi ∈ ∆xp, t) ≡

d

dt
Φi(t) (2.11)

to denote the initiation probability density of each origin i. The xp in Eq. 2.10 is related

to the discretization, while the subscript i in Eq. 2.11 relates to the origin position. Rear-

ranging Eq. 2.10 for g(∆xp, t) and differentiating, we obtain the relationship between the

initiation rate and the firing-time distribution∗:

Ii(t) ≡ I(xi ∈ ∆xp, t) =
φi(t)

1− Φi(t)
. (2.12)

The above equation shows that the initiation rate is the probability that an origin initiates

between t and t+ dt, given that it has not initiated before time t.

Using the probability distributions in Eq. 2.11, we define potential efficiency pi as the

probability that origin iwould fire by the end of S phase if there were no passive replication;

i.e., pi ≡ Φi(t = tend) with tend being the typical length of S phase. By contrast, the

efficiency of any origin decreases because of passive replication by neighbouring origins.

The utilized efficiency of the jth origin thus depends not only on φj(t) but also with the

φk(t) of neighbouring origins. Mathematically, the utilized efficiency Ej of the jth origin

is

Ej ≡
∫ tend

0

dt φj(t)
∏
k 6=j

[
1− Φk

(
t− |xk − xj|

v

)]
, (2.13)

where the integrand can be seen an effective initiation probability density that represents

the probability that the jth origin initiates between t and t+dt and that all the other origins

have not initiated to passively replicate the jth origin before time t.

Recently, de Moura et al. proposed that the replication kinetics is largely affected by

origin “competence,” defined as the probability that an origin is licensed [42, 81]. The

biological picture is that an origin may not be licensed every time in every cell (thus, the

competence of an origin is ≤1). Mathematically, the competence qi of origin i, defined as

qi ≡ Φi(t = ∞) [81] differs from the potential efficiency [pi ≡ Φi(t = tend)] only in the

integration limit (∞ vs. tend). In practice, one can hardly distinguish an origin with high

∗Ii(t) is also known as a hazard function [80].
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qi but low pi from an origin with low qi and pi by investigating the replication fraction, as

the former origin contributes to replication significantly only after tend. For this reason,

a model that uses origins with qi = 1 but varying pi is as effective as a model that uses

origins with varying qi and pi but needs fewer parameters. In this thesis, we use the former

model.

Passive replication implies an interesting phenomenon: a group of nearby origins forms

an effectively earlier-firing and more-efficient origin. Since it is always the earliest initia-

tion in the cluster that counts, the effective initiation probability of the cluster is the extreme

(smallest) value distribution of all the φj(t) in the cluster. To distinguish between the ori-

gins in a cluster and the final effective origin, we call the former “initiators” and the latter

“origins.” Biologically, this correspond to the scenario that multiple initiators—the pro-

tein complexes that can initiate the unwinding and synthesis process—are loaded onto a

small stretch of DNA. This picture and its biological implications are the focus of Chapter

4. Using the new terminology, for n initiators near x, the effective cumulative initiation

probability of the origin is

Φeff(x, t, n) = 1−
n∏
j=1

[
1− Φj

(
t− |x− xj|

v

)]
. (2.14)

For large n, extreme-value theory asserts that Eq. 2.14 tends toward the Weibull distribution

(Eq. 4.1) for a large class of functions Φj(t) whose probability densities φj(t) are bounded

from one side (0 for t < 0) [82]. We note that the product in Eq. 2.14, which captures

the notion of “the first among many,” is the same as that in Eqs. 2.13 and 2.1. As we will

mention in the following section, the replication-completion time, being defined by the last

coalescence, also relates to a product of cumulative probabilities. The appearance of the

same mathematical form in the effective initiation time and replication-completion time

shows that the two timings share the same underlying principle.

2.2 Replication-completion-time distribution

An important feature of any replication program is that it should replicate the DNA in

a timely manner. The quantity that reflects this feature is the distribution of replication-
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Figure 2.2: A schematic of the DNA replication model. A horizontal slice in the figure
represents the state of the genome at a fixed time. The lighter (darker) grey represents
unreplicated (replicated) regions. Open circles denote initiated origins, while filled circles
denote coalescences. The dark dotted line cuts across the last coalescence, which marks the
completion of replication. The slope of the lines connecting the adjacent open and filled
circles gives the inverse of the fork velocity.

completion times (or, simply, the end-time distribution). In this section, we derive the

end-time distribution for the case of embryonic cells and use it to address the “random-

completion problem” in Chapter 6. At the time of our study, a uniform initiation rate

across the genome was thought to be a good description for replication in frog embryos;

however, recent work has revealed an apparent spatial inhomogeneity in the initiation [19].

We will present the theory for I(x, t) = I(t), i.e., an initiation rate that varies in time but

not space, and will comment on the effect of spatial inhomogeneity at the end of Sec. 2.2.3.

2.2.1 Distribution of coalescences

Our model, which assumes a constant fork velocity, results in a deterministic replication

pattern for each realization of licensing and initiation. Figure 2.2 illustrates such determin-

istic replication and shows that, except at the boundaries, there is a one-to-one mapping

between the initiations and the coalescences. It follows that every distribution of initiations

φi(t) has an associated distribution of coalescences φc(t). Since the completion of repli-

cation is defined by the last coalescence, the problem of determining the time needed to

replicate a genome of finite length is equivalent to that of determining the distribution of

times at which the last coalescence occurs. This distribution is the end-time distribution

φe(t).

The temporal program of stochastic initiation times is governed by an initiation rate



CHAPTER 2. THEORY 27

I(t), defined as the rate of initiation per unreplicated length per time. In writing down

the initiation rate as a simple function of time, we are implicitly averaging over any spa-

tial variation and neglecting correlations in neighbouring initiations. Below, we derive

an analytical approximation to the end-time distribution function for arbitrary I(t). This

analytical result will allow us to investigate how initiation programs affect the timing of

replication completion.

Taking the limit ∆x and ∆t → 0 in Eq. 2.1 for I(x, t) = I(t), we see that for an

infinitely long genome, the fraction f of the genome that has replicated at time t is given

by [33]

f(t) = 1− e−2vh(t) , (2.15)

where v is the fork velocity (assumed constant), h(t) =
∫ t

0
g(t′)dt′ and g(t) =

∫ t
0
I(t′)dt′∗.

Equation 2.15 predicts that an infinite time is needed to fully duplicate the genome; how-

ever, since all real genomes have finite length, they can be fully replicated in a finite amount

of time. During the course of replication, as long as the number of replicated domains is

much greater than one, the infinite-genome model is reasonably accurate. However, since

the number of domains is small at the beginning and end of replication (f → 0 and f → 1),

we expect discrepancies in those regimes. In particular, to calculate the finite replication

time expected in a finite genome, we need to go beyond the calculation of replication frac-

tion.

We begin by introducing the hole distribution, nh(x, t) = g2(t) exp[−g(t)x − 2vh(t)]

which describes the number of “holes” of size x per unit length at time t [33]. A “hole” is

the biologists’ term for an unreplicated domain surrounded by replicated domains. Since a

coalescence corresponds to a hole of zero length, we write the coalescence distribution as

φc(t) ∝ nh(0, t). Normalizing by imposing the condition
∫∞

0
φc(t)dt = 1, we find

φc(t) =
2vL

No

g2(t)e−2vh(t) , (2.16)

where L is the genome length and No the expected total number of initiations. Note that

No is also the total number of coalescences because of the one-to-one mapping discussed

∗Equation 2.15 can also be derived from Eq. 2.7 by 1) replacing g(x′, t−|x−x′|/v) by g(t−|x−x′|/v),
2) noticing that the function is 0 outside [x− vt, x+ vt] and symmetric around x, and 3) making the change
of variable t′ = t− |x− x′|/v and vdt′ = dx′.
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previously. One can calculate No via

No = L

∫ ∞
0

I(t)[1− f(t)]dt = L

∫ ∞
0

I(t)e−2vh(t)dt , (2.17)

where the factor [1 − f(t)] arises because initiations can occur only in unreplicated re-

gions. The integrand in Eq. 2.17 divided by No is the initiation distribution φi(t)dt, which

corresponds to the number of initiations between time t and t+ dt.

Given the initiation distribution, we picture the initiations as sampling No times from

φi(t). This implies that No independent coalescence times are sampled from φc(t). The

replication-completion time, finite on a finite genome, can then be associated with the

largest value of the No coalescence times, and the end-time distribution is the distribution

of these largest values obtained from multiple sets of sampling from φc(t). At this point,

we apply extreme-value theory (EVT) to calculate the end-time distribution.

2.2.2 Digression on extreme-value theory

EVT is a well-established statistical theory for determining the distributional properties of

the minimum and maximum values of a set of samples drawn from an underlying “parent”

distribution [83, 82]. The properties of interest include the expected value, fluctuations

around the mean, frequency of occurrence, etc. EVT plays a key role in the insurance

industry: for example, the “100-year-flood” problem that asks for the expected maximum

water level over 100 years is an extreme-value problem [84]. In physics, EVT has attracted

increasing interest and has been applied to analyze crack avalanches in self-organized ma-

terial [85], degree distribution in scale-free networks [86], and many other problems.

EVT is powerful because of its universality. The key theorem in EVT states that the

distribution of the extremes of an independent and identically distributed random variable

tends to one of three types of extreme value distributions, the Gumbel, Fréchet, and Weibull

distributions, depending only on the shape of the tail of the underlying distribution∗. The

universality of the extreme value distribution with respect to the underlying distribution is

similar to that of the better-known Central Limit Theorem [89]. For an underlying distri-

bution with an unbounded tail that decays exponentially or faster, the distribution of the
∗Apparently, the origin of extreme-value theory can be traced back to the work of Fréchet in 1927 [87]

and of Fisher and Tippett in 1928 [88].
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extremes tends to a Gumbel distribution. Such is the case of Xenopus embryos since the

underlying distribution, the coalescence distribution φc(t), is approximately proportional to

e−τ
4 , where τ is a dimensionless time. The decay rate e−τ4 follows from applying Eq. 2.16

to the observation that I(t) ∼ t2 in Xenopus embryos (Sec. 6.2). The other initiation rates

we consider also lead to the Gumbel distribution.

The Gumbel distribution,

ρ(x) =
1

β
exp

(
−x− e−x

)
, x =

t− t∗

β
, (2.18)

depends on only two parameters, t∗ and β [83, 90, 82]. The former is a “location” param-

eter that gives the mode of the distribution. The latter is a “scale” parameter proportional

to the standard deviation. We follow standard procedures to obtain t∗ and β as a function

of the initiation rate and the fork velocity [83, 90]. The main step is to recognize that the

cumulative end-time distribution Φe(t), which has a Gumbel form, is equal to the product

of No cumulative coalescence distributions, each resulting from the same initiation distri-

bution φi(t). In other words, the probability that No coalescences occur at or before time t

is equivalent to the probability that the last of them occurred at or before time t, which is

also the probability that the replication will finish at or before time t. For our case, we find

that the mode t∗ is determined implicitly by

No [1− Φc(t
∗)] = 1 (2.19)

and β ≈ 1/[Noφc(t
∗)]. In Eq. 2.19, Φc(t) is the cumulative distribution of φc(t); thus,

[1−Φc(t)] is the probability that a coalescence would occur at or after time t. Equation 2.19

then implies that given a total of No coalescences, t∗ is the time after which the expected

number of coalescences is one, and therefore, the typical end time. The Gumbel form of

the end-time distribution is one of our main results, as it allows quantitative comparison

between the fluctuations of completion times resulting from different initiation rates.

2.2.3 Replication-completion distribution for power-law initiation

Below, we derive the end-time distribution for a power-law initiation rate In(t) = Int
n

(where n > −1) and a delta-function initiation rate Iδ(t) = Iδδ(t). In the power-law
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case, h(t) ∝ tn+2, while for the δ-function case, h(t) ∝ t. From Eq. 2.16, both initiation

forms give rise to coalescence distributions that decay exponentially or faster, and thus,

both forms will lead to an end-time distribution of the Gumbel form. Using these initiation

rates, we see that the coalescence distribution given by Eq. 2.16 is completely determined

by three parameters: the fork velocity v, the initiation strength prefactor (In or Iδ), and the

initiation form [n or δ(t)]. The relationship between these three parameters and the two

Gumbel parameters reveals how different “initiation strategies” affect the completion time.

We write the cumulative distribution Φc(t) of the coalescences as 1 −
∫∞
t
φc(t

′)dt′.

Using integration by parts, we obtain∫ ∞
t

φc(t
′)dt′ =

L

No

g(t)e−2vh(t) − L

No

∫ ∞
t

I(t′)e−2vh(t′)dt′ . (2.20)

Substituting Eq. 2.20 into Eq. 2.19, we obtain a transcendental equation

2vh(t∗) = ln [(1− α)Lg(t∗)] , α =

∫∞
t∗
I(t)e−2vh(t)dt

g(t∗)e−2vh(t∗)
(2.21)

that relates the initiation parameters to t∗. For the width, Eqs. 2.16 and 2.21 give

β =
1− α

2vg(t∗)
, (2.22)

indicating that the width of the end-time distribution β is inversely proportional to g(t∗).

Since g(t) is the integral of I(t), and since LI(t)dt is the number of initiations in the given

time interval, Lg(t∗) is the number of origins that would have initiated during S phase if

there were no passive replication. In other words, g(t∗) is the lower bound on the average

number of potential origins per length (“average” here is over an ensemble of genomes).

It is the lower bound because the potential origins that would have fired with a longer S

phase are not counted. At the end of Sec. 6.3.2, we compare the inferred in-vivo bound on

potential origin density with the experimental estimate.

In practice, given experimentally observed quantities such as v, t∗, and L, we solve

Eqs. 2.21 and 2.22 numerically to determine the initiation prefactor (Iδ or In) and the

width for different initiation forms [δ(t) or tn]. Nevertheless, an analytical approximation

of Eqs. 2.21–2.22 is possible, as the factor α is often small. For instance, in the power-law
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I(t) case, introduce a function η(t) = be−at that decays more slowly than φi(t). Imposing

η(t∗) = φi(t
∗) so that η(t) > φi(t) for t > t∗, we find α to be at mostO(10−2). Neglecting

α, we obtain the analytical approximations

In ≈
(n+ 1)(n+ 2)

2vt∗n+2
ln

[
L(n+ 2)

2vt∗n+2

]
(2.23)

β ≈ n+ 1

2vInt∗
n+1

(2.24)

that show the explicit relationship between the initiation parameters and the Gumbel param-

eters. In summary, given a realistic initiation rate I(t) and fork velocity v, we have shown

that the distribution of replication end times tends toward a Gumbel form. We have also

shown how the replication parameters relate to the location and scale Gumbel parameters

analytically.

Our discussion of the end-time distribution thus far was based on an initiation rate

I(t) that is uniform across the genome, an assumption that was thought to be true in frog

embryos. Recently, Labit et al. showed using FISH-combing that the initiation rate is

inhomogeneous, at least for the 5-Mb region of the frog genome that they investigated [19].

In a previous analysis of DNA combing data done on frog embryos, Herrick et al. extracted

a spatially uniform initiation rate I(t) and a “starting-time” distribution ψa(τ) defined as

the probability that a cell in the probed cell culture enters S phase between lab time τ and

τ + δτ [54]. (Here, t is the time relative to the start of S phase, and τ is the lab time.) In

using a spatially averaged I(t), the assumption was that all analyzed DNA fibres started

replication at t = 0. However, as the authors pointed out, this was likely not true for two

reasons: 1) the synchronization of the cell culture was imperfect, and 2) different regions

of the genome may start replication at different times. Thus, they introduced the starting-

time distribution to summarize the combined effect of the imperfect synchrony and spatial

inhomogeneity in the initiation rate.

Building on the idea that inhomogeneous initiation rate effectively leads to a starting-

time distribution, we consider a simple scenario that illustrates how spatial variations in

initiation rate affects the end-time distribution. Suppose that the genome can be sepa-

rated into m equi-length regions that all have the same replication kinetics, except for the

replication-starting time. That is, the initiation rate for a region r can be described by
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I(t− tr). (Note I(t < 0) = 0.) Denoting the starting time of region r as tr, the cumulative

end-time distribution for the region can be described as

Φr(t) = exp
(
−e−

t−t∗−tr
β

)
, (2.25)

where t∗ and β are the mode and width of the distribution, respectively. The cumulative

end-time distribution for the entire genome is then

Φe(t) =
m∏
r=1

Φr(t) = exp

(
−

m∑
r=1

e−
t−t∗−tr

β

)
. (2.26)

Assuming that m is large and the starting times tr are normally distributed with standard

deviation σ, Eq. 2.26 becomes

Φe(t) ≈ exp

(
− m√

2πσ

∫ ∞
−∞

e−
t−t∗−tr

β e−
(tr)

2

2σ2 dtr

)
= exp

(
−m exp

(
−t− t

∗ − σ2/2β

β

))
= exp

(
− exp

(
−t− t

∗ − β ln(m)− σ2/2β

β

))
. (2.27)

For a spatially uniform initiation rate, σ = 0, and the mode and width of the genome-

wide end-time distribution is t∗ + β ln(m) and β, respectively. In other words, a spatially

inhomogeneous initiation rate shifts the mode to a later time by σ2/2β. We will apply this

result to the study of frog embroys in Sec. 6.3.2. For general I(x, t) and v(x, t), Gauthier et

al. derived an approximate end-time distribution based on rate equations of fork movements

[17].

2.3 Simulation

In addition to the analytical framework of the replication kinetics presented above, we also

perform simulations of the replication process. The simulations are useful in confirming

the analytical results, in generating test data for fitting and inversion, and in addressing

cases where analytical approach becomes cumbersome (e.g., Sec. 6.5). The simulation, as
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Figure 2.3: A schematic diagram of the phantom-nuclei algorithm. Open circles corre-
spond to initiated origins. Dots correspond to passively replicated origins, or “phantom”
nucleations, that are eliminated by the algorithm. The algorithm outputs the replicated
(grey bubbles) and unreplicated (horizontal line) domain sizes. Figure reproduced with
permission from Phys. Rev. E [Vol. 71, 011908, Fig. 7] [33] (Copyright ©2005, American
Physical Society).

with our kinetic picture, is composed of several routines that correspond to the licensing

and initiation of replication origins, the growth of replication domains via replication forks,

and the coalescence of domains.

Licensing. For budding yeast, licensing amounts to assigning a number to the origin

position. For frog embryos, the origin position is assigned to a uniform random number in

[0,L], where L is the length of the simulated genome. In general, one can form the desired

distribution by Monte Carlo methods [91].

Initiation. Given the form of the firing-time distribution or initiation rate, which we

choose to be integrable and invertible, we use the Monte Carlo transform method to trans-

form a uniform random number into the desired distribution [91].

Domain growth and coalescence. We used the previously developed “phantom-nuclei

algorithm” (Fig. 2.3) [33]. The algorithm implements the deterministic growth, eliminates

passively replicated origins, and joins coalesced domains. In contrast to naive lattice sim-
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ulations, the algorithm can calculate the state of the genome at any time step without com-

puting intermediate time steps. The routine results in a list of replicated and unreplicated

domain lengths that can be used to calculate the different statistics. The most commonly

used one in the thesis is the average replication fraction.

Completion time. We use the bisection method and the phantom-nuclei algorithm to

search for the first t at which the replication fraction f becomes 1 up to some tolerance

level [92]. A faster and more accurate method is to use the phantom nuclei subroutine to

eliminate passively replicated origins and calculate directly the coalescence times for each

of the utilized origins. The largest coalescence time is then the completion time.

All programming was done using Igor Pro v. 6.22 [93].



Chapter 3

Spatiotemporal Replication Program of
Budding Yeast

In this chapter, we develop a parameterized model of the replication program in budding

yeast using the theory presented in Chapter 2. While licensing in budding yeast is known

to be sequence specific and therefore deterministic in position∗, there are opposing views

as to whether the initiation time is deterministic or stochastic. To deal with this issue, we

use a parameterization that is general enough to describe both deterministic and stochastic

initiation. We then perform least-squares fits to a set of recently published time-course

microarray data on Saccharomyces cerevisiae (budding yeast) [57]. We will see the results

show that stochastic effects are important.

From the fits, we extract origin positions, firing-time distributions, origin efficiencies,

and a global fork velocity. We find that the wide firing-time distributions suggested by the

data are incompatible with a naive deterministic model and are best described by a stochas-

tic process. We also find that the later an origin fires on average, the greater the variation in

firing times. In other words, the timing and precision of origin firing are strongly correlated.

This correlation and its biological significance is further investigated in Chapter 4. Lastly,

we quantify the effects of various experimental imperfections on the fit parameters and

argue that these imperfections do not invalidate our major findings. In terms of the three
∗Strictly speaking, licensing is never deterministic and always spatially continuous. Thus, the determin-

istic origin position should be viewed as a simplification that makes the model fitting practical. Compare
to other eukaryotes, this simplification is reasonable because the spatially continuous ORC occupancy show
well-localized peaks [47].

35
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themes mentioned in Sec. 1.4, this chapter provides an example of the use of mathematical

models to extract quantitative information from replication experiments.

3.1 Introduction

The kinetics of DNA replication in eukaryotic cells are carefully controlled, with some

parts of the genome replicating early and others replicating later. Patterns of replication

timing correlate with gene expression, chromatin structure, and sub-nuclear localization,

suggesting that replication timing may play an important role organizing the nucleus and

regulating its function [94] (discussed in Chapter 4). The timing of DNA replication is

regulated largely by the timing of replication origin initiation. Although the biochemical

steps of origin firing are increasingly well-understood (major steps mentioned in Sec. 1.1),

the regulation that leads to defined patterns of replication timing is still a mystery [5].

3.1.1 Deterministic or random?

A prevailing picture of eukaryotic replication is that origins are positioned at defined sites

and activated at preprogrammed times [95]. In S. cerevisiae, origin positions are defined, in

part, by 11–17-basepair autonomous replicating sequence (ARS) consensus motifs, which

bind the origin recognition complex (ORC) [5]. The timing of origin initiation is more

controversial: although microarray experiments have generally been interpreted assuming

a deterministic temporal program [20], recent molecular-combing experiments suggest that

the initiation of individual origins is stochastic [21, 22]. A more subtle issue is that the con-

sequences of the spatiotemporal connections between origin initiation and fork progression

in multiple-origin systems are often not taken into account. An origin site is sometimes im-

plicitly assumed to be replicated solely by the origin itself [39], even though the locus can

also be replicated by nearby origins. Our view is that a more rigorous analysis of mi-

croarray replication data based on the probabilistic framework presented in Chapter 2 can

yield greater insight into the replication process and contribute to forming a more accurate

picture of the replication kinetics. We argue that both the population-averaged microarray

and the single-molecule combing experiments are compatible with stochastic origin initia-

tion and that the apparent disagreement is resolved after performing a more sophisticated
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analysis of the microarray data.

3.1.2 Indicator of stochasticity

The microarray experiments yield the fraction of cells in a population that have a specific

site replicated after a given time in S phase (see Sec. 3.4 for more experimental details).

The origin positions correlate with peaks in the graph of replication fraction vs. genome

position, since an origin site is replicated before its neighbouring sites (Fig. 3.1). Following

standard nomenclature, we define a median replication time trep as the time by which half of

the cells show replication of the origin locus [20]. Implicit in the traditional interpretation

of this type of data are the assumptions that the variation of firing times of an origin, twidth
(defined as the time for the origin locus to go from 25% to 75% replicated), is small and

that trep is independent of twidth.

In more detail, let the replication fraction be f(x, t), where x is the genome position

and t is the time elapsed since the start of S phase. For microarray data, f(x, t) represents

the fraction of the population that has replicated locus x by time t. Looking at the spatial

part of the replication fraction, one expects that an efficient origin that is seldom passively

replicated would show an apparent peak at the origin position, as the site is almost always

replicated before its surrounding. Thus, peaks in f(x, t) correspond to origin sites. At a

fixed x where an origin resides, the peak height then scales with the number of initiations

of the particular origin in the population. If an origin always fires at a given time, the cor-

responding f(t) will resemble a step function. By contrast, if an origin fires stochastically,

f(t) will be smooth.

Using 275 previously identified origin sites [96], we extract 275 f(t) curves from the

microarray data. (Fig. 3.1B shows one of them.) These f(t) curves are well described by

sigmoids with parameters trep and twidth. We used the Hill equation

f(t) =
1

1 +
( trep

t

)r , (3.1)

where r is related to twidth via

twidth =
(
31/r − 3−1/r

)
trep, (3.2)
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Figure 3.1: A simple analysis of replication timing data. A. Smoothed time-course microar-
ray data for Chromosome I. Triangles are origins identified in [96]. The arrow indicates the
origin analyzed in B. B. Replication fraction of the indicated origin versus time. Fitting the
data with the sigmoidal curve defined by Eq. 3.1 gives the median time trep and the 25–75%
time width twidth. C. Time widths versus median times for all 275 origin loci identified in
[96]. The dotted line shows the linear function twidth = trep.

to fit the f(t) curves and extracted 275 pairs of trep and twidth. The result is plotted in

Fig. 3.1C. Before attempting a more complete analysis, we perform a simple analysis of

local replication fraction that ignores the complications due to passive replication.

This simple analysis suggests that, in contrast to the deterministic timing scenario

that assumes twidth is much less than trep, the extracted twidth approximately equals trep
(Fig. 3.1C). The apparent variability in origin timings suggests that stochasticity is impor-

tant for an accurate description of the replication program. Moreover, in a model where
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the timing of origin firing is regulated by external triggers [94] (see Sec. 4.1), one ex-

pects no correlation between trep and twidth. In other words, the twidth points would scatter

about a horizontal line in Fig. 3.1C, implying that variations in twidth are independent of

trep. Instead, we see a strong correlation between twidth and trep, suggesting the two are

mechanistically related.

3.2 Fitting time-course replication fraction with the sig-
moid model (SM)

The discrepancies between a naive, deterministic picture of origin initiation and the data

motivate a more detailed approach. Based on the framework developed in Chapter 2, we

introduce an analytical model, the “sigmoid model” (SM), that can generate replication

fraction f(x, t) to fit the genome-wide time-course microarray data in [57].

The framework in Chapter 2 links f(x, t) with the spatiotemporal initiation rate I(x, t)

via Eq. 2.5. Since the origins in S. cerevisiae are well-localized, the genome-wide I(x, t)

can be separated into contributions from each origin. Each origin is then described by

its own firing-time distribution φi(t), defined in Eq. 2.11 as the probability that origin i

at site xi initiates between time t and t + dt. The use of firing-time distribution instead

of an initiation rate Ii(t) simplifies the calculation of origin efficiency via Eq. 2.13. The

two quantities are interchangeable via Ii(t) = φi(t)/[1 − Φi(t)] (Eq. 2.12). Inspired by

the sigmoidal replication fraction profile in Fig. 3.1B, we assign each origin a sigmoidal

cumulative firing-time distribution Φi(t)—hence the name “sigmoid” model.

Below, we detail the parameters used in the SM fits. The model parameters can be

separated into a “local” group that describes the properties of each origin and a “genome-

wide” group that describes quantities that are roughly constant across the genome. Within

the local group, there are two types of parameters, one for the position and the other for the

firing-time distribution. These parameters are local in space (genome position) but global

in time (throughout S phase):

Origin position. Each origin is associated with a unique location xi along the genome.

Initial guesses of the xi include all 732 origins recorded in the OriDB database [97]. We

count origins that were less than 5 kb apart as a single origin throughout the fitting process,
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as the data (resolution ≈ 2 kb) cannot be used to distinguish between a single efficient ori-

gin and a group of less-efficient origins (see Sec. 3.4 and the discussion around Eq. 2.14).

Before attempting the genome-wide fit, we first fit each chromosome separately to elimi-

nate false origins and origins that do not contribute enough to the replication fraction. This

allows the genome-wide fit to run more smoothly. The criteria for elimination are:

1. Mode of firing-time distribution< 10 minutes (min) and efficiency defined by Eq. 2.13

< 0.5.

2. Cumulative firing-time probability < 0.3 at end of S phase (estimated to be 60 min).

The first criterion aims to identify false-origin peaks in microarray data that originate from

contamination instead of origin activity. (Small fragments of unreplicated DNA along with

A-T rich sequence can be mistaken as replicated DNA, as mentioned in Sec. 3.4.) Contam-

ination produces microarray peaks in the early but not the mid and late time points. In the

model, this is effectively the same as an origin that fires very early (before the first time

point at 10 min) but is inefficient. The second criterion simply eliminates origins that do

not contribute much throughout S phase.

Firing-time-distribution parameters. The cumulative firing-time distribution Φ(t)

has two parameters: the median time t1/2 at which Φ(t = t1/2) = 0.5 and the width tw,

defined as the difference t0.75 − t0.25. Explicitly, Φ(t) takes the form of Eq. 3.1, but with

trep and twidth replaced by t1/2 and tw, respectively (see Appendix 4.A.1 for a discussion

on the use of Hill equation). This function is a valid cumulative initiation probability

function, satisfying the constraints 0 ≤ Φ(t) ≤ 1, Φ(t < 0) = 0, and dΦ(t)/dt ≥ 0

given after Eq. 2.5. We note that these two parameters t1/2 and tw differ from trep and twidth
in Sec. 3.1.2. The former pair describes the “firing time” of an origin, while the latter pair

describes the “replication time” of an origin site, which is replicated by both the on-site

origin and nearby origins.

There are three types of genome-wide parameters:

Fork velocity v. We use a velocity v that is constant across the genome and throughout

S phase. There are three justifications to the use of such a simple velocity: First, a constant

velocity fits the genome-wide data well. Second, fitting the data with a model that uses spa-

tially varying fork velocities does not improve the fit much (Appendix 3.A.2). Third, there
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is experimental evidence that the fork velocity is remarkably uniform across the genome

[48].

Background bg. The reason for introducing this parameter comes from the observation

that the 10-minute-time-point data do not start close to f=0 (see Sec. 3.4). While intro-

ducing a variable background is possible, we find that a simple constant background is

sufficient for the global fit. This parameter is global both in space and time.

Normalization factors αt. These parameters correct for various artifacts that cause

the microarray data to not cover the entire range of possible fractions, 0% to 100% (see

Sec. 3.4). We propose a genome-wide normalization factor αt for each time point. Com-

bining the normalization factors with the background parameter, we generate a modified

replication fraction

fmod(x, t) = αt [f(x, t) + bg] (3.3)

to fit the data. Notice that, in Eq. 3.3, αt is global in space but not time, while bg is global

both in space and time.

In summary, the SM parameters include origin position, the t1/2 and tw that describe

firing-time distributions, fork velocity, and factors to deal with experimental artifacts (dis-

cussed in Sec: 3.4). Using this model, we performed least-squares fits to the time-course

microarray data in [57]. The fit was done using the Global Fit package in Igor Pro 6.1

(Wavemetrics Inc. http://www.wavemetrics.com). We fit to the unsmoothed mi-

croarray data (see Appendix 3.A.3; Fig. 3.16). To speed up the code, we wrote an external

C-language code that the fit program calls to do key function evaluations. On a personal

computer with an Intel Core2 Duo CPU @ 3.16 GHz, the fit for an average chromosome

(≈ 900 points and ≈ 150 parameters) takes about 5 minutes. The time to fit the entire

genome of S. cerevisiae is about 10 hours∗. All local parameters of the SM are tabulated in

Supplementary Table I; global ones are in Supplementary Table III (see Appendix 4.A.2).

The fit to Chromosome XI is shown in Fig. 3.2 to demonstrate that the model captures the

replication process well. Fits to all chromosomes can be found in Fig. 4.8 at the end of

Chapter 4. A detailed statistical analysis of the fits is presented later in Appendix 3.A.1.

∗A rough empirical estimate of the time to do fits with different number of data points Nd suggests that
the fit time scales with N2

d .
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Figure 3.2: Chromosome-XI section of the genome-wide fits. Markers are data; solid
lines are fits from SM. At the bottom, upper row of solid triangles denote origin positions
identified in [96]; middle row of open circles denote the estimated origin positions in the
sigmoid model (SM); and the lower row of triangles correspond to origins in the OriDB
database [97]. The three curves from bottom to top correspond to the replication fraction
f(x) at 15, 30, and 40 minutes after release from the cdc7-1 block. The dataset covers the
genome at ≈2-kb resolution.



CHAPTER 3. SPATIOTEMPORAL PROGRAM OF BUDDING YEAST 43

3.3 Results

3.3.1 Extracted origins and fork velocity

The list of initial guesses for origin positions consisted of 732 positions from the OriDB

database that had been previously identified using a variety of methods [97]. All results

presented below do not depend sensitively on this initial list, since we allowed origin posi-

tions to vary in the fit. After eliminating origins according to the criteria described above,

the SM gave 342 origins (origin parameters tabulated in Supplementary Table I; see Ap-

pendix 4.A.2). Of the 342 origins, 236 colocalize with the 275 origins identified by Alvino

et al. using a similar dataset [96]. The remaining 106 origins were not reported in [96] be-

cause they do not associate with apparent peaks in the microarray data. We find that 75%

of the 106 colocalize (within 5 kb) with origins in the OriDB database [97].

The genome-wide fork velocity we extracted from the SM is 1.9 kb/min. Our statistical

analysis of the fits suggests an error of 0.2 kb/min on v (see Appendix 3.A.1). Consistent

with this conclusion, recent work that monitored the movement of GINS, an integral mem-

ber of replication forks, showed that the fork progression rate is 1.6± 0.3 kb/min and does

not vary significantly across the genome [48]. Our conclusion and that in [48] contrast with

a previous analysis, where variations in slope from peak to trough in the replication fraction

were interpreted as fork-velocity variations [20]. In our model, these variations are mostly

accounted for by variations in firing-time distribution and the levels of passive replication

[42].

3.3.2 Firing-time distributions and initiation rates

The least-understood aspect of the eukaryotic replication process is its temporal program

[5]. One reason is that there has been no direct way of visualizing both the spatial and

temporal aspects of replication at high resolution. Another reason is that the implications of

temporal stochasticity in initiations have often been neglected. We extracted the firing-time

distributions of the 342 origins identified in the SM (Fig. 3.3A). The widths are comparable

to the length of S phase, confirming that stochastic effects play an important role. The

kinetic curves of the origins extracted from the model also show that tw increases with t1/2
(Figs. 3.3 and 3.4). Further, we show that four representative, previously studied origins
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Figure 3.3: Firing-time distributions. A. Firing-time distribution for the 342 origins ex-
tracted using the SM. Darker curves are representative distributions chosen to illustrate
origins with different values of t1/2. Numbers denote their ARS number in the OriDB
database [97]. Grey background corresponds to times not included in the data (t <10 min
and t >45 min); curves in these domains are extrapolated. The length of S phase is roughly
60 min∗. B. Cumulative firing-time distributions Φ(t) for the 342 origins. Each trace is
the kinetic curve that would be measured for the corresponding origin site if there were
no neighbouring origins. Darker curves correspond to darker curves in A. The potential
efficiencies of the origins are taken to be the value of Φ(t) at t = 60 min.

(ARS 413, ARS 501, ARS 606, and ARS 1114.5) are typical origins that follow this global

t1/2-tw relationship (Fig. 3.4).

The rate of initiation, defined as the number of initiations per time per unreplicated

length, is a crucial parameter in kinetics (see Chapter 2). It has been proposed that an

increasing rate of initiation later in S phase would lead to robust completion of replica-

tion, even when origin firing is stochastic [99]. To investigate the initiation rate in the SM,

we plotted initiation rates averaged over the genome and over individual chromosomes

(Fig. 3.5). Our results show the initiation rate rising for most of S phase and then declining

in late S phase. A similar pattern has been described in a number of organisms [38]. How-

ever, the genome-wide-averaged initiation rate we extracted does not decay to zero before

S phase ends, as it does in the analysis in [38]. In [38], the use of trep rather than the full

distribution of firing times of an origin leads to an underestimation of origin initiation at
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late times. Nonetheless, since the proposed universality of the initiation rate across species

was for scaled initiation rates, that conclusion may well survive reanalysis of all datasets

with a stochastic model, which would modify the extracted average rates and scalings for

all the analyzed organisms.

3.3.3 Origin efficiencies and passive replication

Understanding origin efficiency is important because these efficiencies determine the replication-

completion time and the robustness of the replication program [40, 41]. The efficiency of

an origin is closely related to its geometry—its location relative to other origins. Imag-

ine two highly efficient origins placed near each other; only one of the two origins will

fire in any given cell because the initiation of one origin will passively replicate the other

origin. Placing an efficient origin next to an inefficient one should decrease the firing of

each by different amounts. For an isolated origin, one expects that its efficiency would be

unaffected by passive replication.

In our analysis, we distinguish between “efficiency,” which is traditionally defined as

the probability that an origin fires during normal replication, taking into account passive

replication effects, and “potential efficiency.” The latter term is defined as the probability

that an origin would have initiated before the end of S phase if there were no passive repli-

cation [100]. We will occasionally write “utilized efficiency” instead of just “efficiency”

to emphasize the effect of passive replication. Experimentally, techniques that hinder fork

progression to avoid passive replication have been applied to extract the potential efficien-

cies of origins [56]. However, such approaches provide only rough estimates of potential

efficiency because the fork-stalling drug also blocks origin firing in late S phase. Thus,

to determine whether the utilized efficiency of origins is due primarily to their potential

efficiency or to their proximity to neighbouring origins, we investigated the relationship

between efficiency and potential efficiency.

We use the extracted origin positions and firing-time distributions to calculate both the

utilized efficiencies (via Eq. 2.13) and potential efficiencies of all identified origins (via

evaluating Φi(t = tend); see Fig. 3.3B caption and Sec. 2.1.2). Here, tend is the length

of S phase, and we estimate it to be 60 minutes from flow-cytometric determination of

replication progress (see Sec. 3.4). We found that more than half of the origins have high
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Figure 3.6: Origin efficiencies. A. Histogram of potential efficiencies with bin width =
0.05. More than half of the origins have high potential efficiency (> 0.9). Median value
= 0.91. B. Histogram of utilized efficiencies with bin width = 0.05. Median value = 0.68.
C. Utilized efficiency versus potential efficiency. Markers would lie on the dotted line if
there were no passive replication. Solid markers correspond to the same origins in Fig. 3.4.
The solid curve is a mean-field calculation (see Sec. 3.3.4). D. Potential efficiency vs. t1/2.
There is roughly a one-to-one relationship between the potential efficiency and t1/2.
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potential efficiency (> 0.9), but the utilized efficiencies of origins vary much more (com-

pare Fig. 3.6B to A). Furthermore, we found that the relation between utilized efficiency

and potential efficiency can be approximately accounted for by a mean-field argument (see

Sec. 3.3.4), where all neighbouring origins are replaced by an average neighbour that has

the genome-wide-averaged firing-time distribution (Fig. 3.6C). Thus, the efficiency of ori-

gins in S. cerevisiae can largely be explained by geometric effects due to neighbouring

origins.

3.3.4 Mean-field analysis of origin efficiency

The relationship between efficiency and potential efficiency shown in Fig. 3.6 can be mostly

explained by a mean-field analysis. The idea is that all the neighbouring origins of an origin

are replaced by an “average neighbour” whose firing-time distribution is the average of all

the distributions. We averaged over all 342 firing-time distributions in the SM to produce

the genome-wide-averaged φavg(t). We then computed the average nearest-neighbour dis-

tance (≈ 28 kb) to locate the average neighbour. Next, we approximated tw as a function of

t1/2 by fitting a power-law through Fig. 3.4 (tw ≈ 11 + 0.002 t 2.4
1/2 ). The analytic relation-

ship between tw and t1/2 implies that the potential efficiency is also a smooth function of

t1/2. Finally, the efficiency was calculated by placing the average neighbour at the average

nearest-neighbour distance beside origins. Going through all the t1/2 values extracted, we

generated the curve shown in Fig. 3.6C. This analysis suggests that the geometric effect we

see on utilized origin efficiency is not specific to the particular arrangement of origins in

budding yeast and would be generally expected for a genome with this density of origins.

3.3.5 Case study of origin ARS501

As seen in Fig. 3.6D, later-firing origins have lower potential efficiency. The monotonic

decrease in efficiency with increasing t1/2 is a consequence of the tw-vs.-t1/2 relationship

mentioned above. The larger tw values associated with later-firing origins imply that their

chance of initiating before S phase ends is less than that of earlier-firing origins.

A previous experiment reported that although the ARS501 origin is late firing, its ki-

netics (replication fraction f(t) curve) and efficiency resemble that of an early-firing origin

[101]. The ARS501 kinetics was used to support a scenario where origin initiation is regu-
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Figure 3.7: Replication fraction of ARS501. ARS501 is located on Chromosome V at ≈
549 kb. Circles are data from a slot-blot experiment [101]; squares are data from the newer
microarray experiment [57]. Lines are fits to the data using a sigmoid (Hill equation in
Eq. 3.1). Values for trep and twidth are extracted for comparison. For the slot-blot, trep = 33
min and twidth = 11 min. For the microarray, trep = 33 min and twidth = 26 min.

lated deterministically in time. We compared the kinetic curves of ARS501 obtained from

the earlier slot-blot experiment [101] to that from the present microarray data [57] and

found that the two curves differ significantly∗. The microarray kinetic curve suggests that

ARS501 is a typical origin with trep ≈ 33 min and twidth ≈ 26 min, while the slot-blot data

suggest trep ≈ 33 min and twidth ≈ 11 min (Fig. 3.7). For comparing origin properties,

we argue that the microarray data are more reliable than the slot-blot data because the for-

mer has information about the relative behaviour of origins genome wide, while the latter

contains curves for only a few sites. Simply stated, microarray data contain more relative

information about sites than the slot-blot data. According to our analysis, ARS501 is nei-

ther unusually efficient (utilized efficiency ≈ 0.58) nor unusually late (t1/2 ≈ 36 min; the

median and standard deviation of the 342 t1/2 values are 31 min and 11.2 min, respectively).

∗The slot-plot experiment in [101] is essentially the same as the microarray experiment except that it can
probe only one genome position.
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Figure 3.8: Histogram and autocorrelation of origin firing time. A. Histogram of t1/2 with
bin width = 4 min. There is no sharp distinction between early and late origins. Median
value = 31.0 min, standard deviation = 11.2 min. B. Autocorrelation of t1/2 and trep. The
graph shows the t1/2 and trep correlation between an origin and its nth neighbour. The range
of the x-axis corresponds to roughly 700 kb of genome distance, as the average interorigin
distance extracted is 35 kb.

3.3.6 Initiation clustering?

The microarray replication profiles f(x, t) show that different parts of the genome repli-

cate at different times. McCune et al. studied a mutant yeast strain where origin firings

are largely limited to the first half of the cell cycle and found that the typical replication

fraction of some regions is unaltered while it decreased in other regions [57]. They thus

hypothesized that there are relatively long stretches of chromosomes that replicate early

and late and that temporally alike origins are clustered together to form these early- or

late-replicating regions [57].

To investigate this hypothesis, we note that the distribution of t1/2 has a single peak

(Fig. 3.8A; also seen in [20]), suggesting a continuum of firing times and arguing against

distinct categories of temporally alike origins (e.g., early and late origins). To test the spa-

tial aspect, we calculated the autocorrelation function of the origins’ t1/2 values (Fig. 3.8B)

[92]. In this test, a positive value means that, typically, an origin and its nth neighbour are

likely to have t1/2 that are both larger or both smaller than the average firing time, as would
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be expected if temporally alike origins were to cluster. Conversely, negative values would

mean that an origin and its nth neighbour were likely to have t1/2 values that were anti-

correlated. We found that the autocorrelation function fluctuates around zero for t1/2 but is

clearly non-zero at the nearest neighbour for trep (Fig. 3.8B). The former result indicates

that the intrinsic initiation time among origins is independent. The latter result indicates

that the time at which neighbouring origin sites are replicated is correlated. The correlation

arises because a fork from one origin sometimes passively replicates the site of a neighbour-

ing origin. Thus, the observation that neighbouring origin sites tend to replicate at similar

times is consistent with the inference that neighbouring origins initiate independently.

3.3.7 Robustness of the replication program

The difference between the distributions of efficiency and potential efficiency gives insight

about the robustness of the replication program. Although the utilized efficiencies varies

over a wide range, most of the origins have high potential efficiencies, implying that there

are more potential origins than needed to replicate the genome and that many potentially

efficient origins appear to be dormant. In circumstances where some forks stall because

of DNA breakage or other replication stress, these normally dormant yet highly efficient

origins, not being passively replicated, would initiate to help replicate the DNA [41, 102].

In this way, redundancy is built into these potentially efficiency origins to safeguard the

replication process against replication stress.

Furthermore, Fig. 3.5 shows that the initiation rate extracted using the SM increases

throughout most of S phase. Biologically, this design allows any large, unreplicated regions

that remain toward the end of S phase to be replicated with increasing probability, ensuring

timely completion of genome duplication [73]. An increase in the origin-initiation rate as

S phase progresses has been observed in every dataset that has been studied, and several

plausible mechanisms for such an increase have been suggested [37, 38, 100].

3.3.8 Summary of results

Among the various results presented above, the most important one is the genome-wide

correlation between t1/2 and tw (Fig. 3.4). As mentioned above in Sec. 3.3.5, this correlation

implies that the earlier-firing origins are also potentially more efficient. Then, in Sec. 3.3.4,
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we established that the utilized efficiency can be approximated as a function of potential

efficiency and the density of origins. This suggests that the utilized efficiency is also partly

a consequence of the t1/2-tw correlation. Since the distributions of efficiency and potential

efficiency are largely determined by the correlation, the robustness against replication stress

and for timely duplication discussed in Sec. 3.3.7 is yet another consequence of the t1/2-tw
correlation. This important feature of the replication program is the focus of Chapter 4.

3.4 Discussion of data limitations

Although the microarray experiments analyzed here provide high-quality data, artifacts

and limitations should be addressed. We devote this section to show that our major find-

ings remain valid in the presence of these issues. We begin with a brief description of

the experiment, following [96] and [20]. The data we analyzed [57] were obtained using

similar procedures.

In a protocol inspired by the classic Meselson-Stahl experiment [103], budding yeast

cells were grown in an isotopically dense (13C, 15N) medium for a few generations at 23 ◦C

and then synchronized at G1 by exposure to alpha mating pheromone. The culture was

then resuspended in an isotopically light (12C, 14N) medium and further synchronized at the

G1/S boundary by incubation at 37 ◦C, the restrictive temperature for cdc7-1. When 93%

of the cells were budded (a sign that the cells are not dead), the temperature was lowered

to the permissive temperature 23 ◦C to allow cells to enter S phase. Newly replicated DNA

would incorporate the light isotope to form a heavy-light double-strand, while unreplicated

DNA would be heavy-heavy. Samples were collected throughout S phase. The DNA of

the collected cells was first fragmented with a restriction enzyme (Eco RI). Heavy-heavy

and heavy-light DNA were then separated by ultracentrifugation, separately labelled with

Cy3-dUTP and Cy5-dUTP, and hybridized to an open-reading-frame microarray∗. The in-

tensities, after normalization by the mass of the sample, were used to calculate the fraction

of replication [96].

∗An open reading frame (ORF) is a DNA sequence that does not contain a stop codon (possible stop
codons are TAA, TAG, and TGA). An ORF microarray uses these sequences as spatial probes. In budding
yeast, there is on average 1 ORF per 2 kb, hence the spatial resolution of ≈ 2kb.
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3.4.1 Asynchrony in cell population

As shown in Fig. 1.3, asynchrony in a cell population in general denotes that each cell

is at a different stage of the cell cycle. In the discussion below, we use asynchrony to

specifically describe the fact that cells in a population enter and progress through S phase

at different times and with different rates. It is apparent that asynchrony widens firing-time

distributions. Consider a scenario where the timing of every origin is deterministic. Since

cells in an asynchronous culture enter S phase at different times, the initiation times will

appear to be stochastic. To assess the effect of asynchrony on the parameters we extracted,

we extended our formalism to include asynchrony.

For the modelling, we first distinguish between “starting-time asynchrony” and “pro-

gressive asynchrony.” For the microarray experiment analyzed, the cell culture was syn-

chronized in two steps (first by alpha-factor incubation, then with cdc7-1 block) before

samples were taken for hybridization. We define starting-time asynchrony in terms of the

distribution of release times relative to the last synchronization procedure. In other words,

this is the asynchrony that reflects imperfections in the procedure used to synchronize the

cell cycles of the population under study. Now, consider a scenario where the synchroniza-

tion procedures produce a perfectly synchronized cell culture. If the replication program is

not strictly deterministic, the DNA content for each cell will evolve differently as S phase

proceeds. This “progressive asynchrony” is a consequence of the stochastic replication

program. The probabilistic model presented in Chapter 2 already captures the effects of

progressive asynchrony on the replication fraction. Since the data analyzed contain both

types of asynchrony, we extend the formalism to include starting-time asynchrony.

We model the starting-time asynchrony of a cell population by a starting-time distribu-

tion ψa(τ), defined as the fraction of cells in the population that enters S phase between

lab time τ and τ + δτ . For a ψa(τ) centred around τ = 0, cells associated with negative

τ enter S phase τ minutes after the nominal start of S phase at t = 0. If the probed cell

culture has a starting-time distribution ψa(τ), the measured replication fraction profile can

be approximated as the convolution

fa(x, t) =

∫ ∞
−∞

f(x, τ)ψa(t− τ)dτ , (3.4)
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with f(x, t) being the replication fraction profile for a perfectly synchronous cell culture

[ψa(τ) = δ(τ)]∗.

We simulated the replication fraction profiles that contain both types of asynchrony us-

ing the simulation method described in Chapter 2. The theoretical approximation matches

the simulation data well (Fig. 3.9A). The most apparent effects of the starting-time asyn-

chrony are the “pulling” of the peaks in the replication-fraction axis and the “stretching” of

the peaks in the position axis. The former mainly translates into an apparently wider firing-

time distribution, whereas the latter translates into an apparently faster fork progression

rate.

To apply Eq. 3.4 to our analysis, we need to estimate the starting-time distribution.

To our knowledge, although there are works that estimate the starting-time distribution

resulting from alpha-factor synchronization [104, 105], there are none related to the cdc7-1

block. Since the cdc7-1 block is the final synchronization step taken and since it blocks

cells at the G1/S boundary, it is important for the estimate of ψa(t) to include the effects

of cdc7-1. To do this, we analyzed the flow-cytometric determination of DNA content

(Fig. 1A in [96]).

We measured the width by measuring the spread of DNA content at half the peak height

(Fig. 3.10). The width at 0-min is a reference width corresponding to perfect synchrony,

as all the cells have 1C amount of DNA. The width at 20-min includes both types of asyn-

chrony and can be used to generate an upper bound of the starting-time asynchrony. A

simple image analysis shows that the width of the 20-min peak is 5 pixels larger than that

of the 0-min peak. DNA content increases from 1C to 2C over 75 pixels. Using a crude

estimate that DNA content linearly increases with the progression of S phase, we converted

5 pixels to 4 min (via 60 min/75 pixel). Since the flow-cytometric peaks are approximately

Gaussian, we set ψa(t) to a normal distribution with mean zero and standard deviation 2

min, denoted by N(0,2). The estimated asynchrony implies that 95% of the cells would

have entered S phase within 8 min of the start of S phase.

We refit the SM to Chromosome-XI part of the data with Eq. 3.4 (instead of Eq. 2.5) and

the estimated asynchrony. We found that the local parameters extracted with asynchrony

∗To fully model the asynchrony, one has to model how the replication-fraction distribution of the cell
culture evolves as replication proceeds. This is analytically difficult because it involves calculating all the
moments of the replication fraction, of which f(x, t) is only the first. For the analysis here, the approximation
in Eq. 3.4 suffices, and the full calculation is not needed.
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Figure 3.9: Effects of starting-time asynchrony on replication fraction. A. Simulation and
theoretical replication fraction profile f(x, t) with three different starting-time distribu-
tions. The notation N(µ,σ) denotes a normal distribution with mean µ and standard de-
viation σ. The three curves are generated using the same set of SM parameters (xi, t1/2,
tw and v) and correspond to the same time point. The only difference among them is the
starting-time distribution. The theoretical calculation (solid curves) matches the simula-
tions (dashed curves) well. Horizontal dashed lines are the replication fraction 0-lines for
the three cases. B. Comparison of t1/2 fit parameters. The x-axis corresponds to the SM
parameters extracted without consideration of asynchrony; the y-axis corresponds to the
case with consideration of asynchrony. Dashed line shows y = x. C. Comparison of tw fit
parameters. The x-axis, y-axis, and dotted lines are as described in B.
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Figure 3.10: Determining the width of DNA content histograms. A. The DNA content
histograms obtained by flow cytometry after releasing the culture from the cdc7-1 block.
The plot is reproduced with permission from Mol. Cell. Biol. [Vol. 27, pages 6396–6404,
Fig. 1A] [96] (Copyright ©2007, American Society for Microbiology). B. The width w is
defined as the width of the histogram at half the peak height h/2.

are not significantly different from those extracted without asynchrony (Fig. 3.9B and C).

The estimated starting-time asynchrony shifts t1/2 by ≈ −0.5 min, tw by ≈ −1 min, and

v by ≈ −0.3 kb/min. These shifts do not change the relationship between t1/2 and tw, and

the results presented in the main text remain valid. We note that using a linear relationship

between DNA content and time underestimates the asynchrony; however, refitting using

N(0,4) also gives shifts that are unimportant.

3.4.2 Data resolution, data range, data statistics, and S-phase dura-
tion

Data resolution. A limitation of the data is its resolution. The dataset covers roughly

the entire genome at time points from 10 to 45 minutes, as measured from the release

of the cdc7-1 block. It comprises 8 time points (with 5-minute temporal resolution) and,

on average, 6149 position points for each time point (spatial resolution = genome size /
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number of points≈ 12000 kb / 6149≈ 2 kb). The average spatial resolution of 2 kb cannot

resolve every single origin. In our fits, the elimination of origins that are less than 5 kb apart

from their neighbours reflects this limitation. Given that the fork speed v ≈ 2 kb/min, a

typical origin can cover roughly 60 kb (average t1/2× v) of DNA. Thus, treating all origins

in the region xi±2.5 kb as an effective origin at xi would not change the replication fraction

profiles. The average error on the xi is 0.7 kb for the SM.

The exact number of effective origins that we found depends on the elimination criteria

(see Sec. 3.2), as some origins made only marginal contributions to the replication fraction

profiles. The parameters of these origins have relatively large errors (tw± 50% for the SM).

They were also sensitive to the form of data used in the fit (e.g., smoothed data vs. raw;

Appendix 3.A.3). The marginal origins constitute about 10% of all origins identified. Since

they do not affect the replication kinetics significantly (the replication fraction profile at 30

min changes by less than 5%), uncertainties about their numbers and parameters do not

change the results presented above.

Data range. Another issue is that the dataset does not cover the entire range of pos-

sible replication fraction (0–100%); roughly all the data points spread between 10–90%

(Fig. 4.8). One contribution to this artifact is the inability to cleanly separate the replicated

fragments from the unreplicated. Alvino et al. reported that small fragments and A-T rich

sequences of unreplicated DNA are less dense and are physically similar to the replicated

fragments [96]. This leads to non-zero replication signals everywhere, even when no DNA

is replicated. To understand the upper bound of 90%, we note Alvino et al. reported that,

for each time point, they normalized the microarray signals by the ratio between the to-

tal signal and the DNA fragments’ total mass [96]. Although the normalization corrects

for large amounts of signal drifts and scaling, we suspect that the rescaling is not perfect.

Furthermore, a fraction of cells might not have been released from the synchronization

or might have died in the process. To compensate for the reduced range of replication,

we introduced a global background and a constant scaling factor for each time point as

(genome-wide) parameters. Since these parameters are genome wide, they affect all ori-

gins simultaneously, and thus, the relationship between the local SM parameters t1/2 and tw
is not significantly affected.

Data statistics. In performing the least-squares fit, we assume that the data points are

normally distributed. This would be the case if we had many datasets to average over. How-
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ever, only two independent and nominally equivalent time-course experiments are avail-

able. Subtracting one dataset from the other shows that the data points are actually not

normally distributed (Appendix 3.A.1). Rather, the distribution has an exponential-like tail

to the right. Instead of forming and using a more appropriate likelihood function, we used

an exponential likelihood function to refit the data to test whether this likelihood function

would change the parameters significantly. Our rationale is that since a normal distribution

is too narrow and an exponential distribution too broad, the two possibilities bracket the

true likelihood (see Fig. 3.12D in Appendix 3.A.1). We found that the robust fit leads to

shifts in v by ≈ −0.2 kb/min, origin positions by ≈ ±1 kb, t1/2 by ≈ −3 min, and tw by

≈ −2 min (Fig. 3.13). These small uncertainties do not affect our overall conclusions.

S-phase duration. In the microarray experiment, the progress of replication is mon-

itored by flow cytometry [96]. The flow-cytometry data show that DNA content stops

increasing after 60±10 minutes into S phase (Fig. 3.10A). We therefore estimate S phase

to be 60 min. With our definition of potential efficiency in terms of Φ(tend), a change in

tend changes the potential efficiency of every origin. (Potential efficiencies as a function

of tend can be estimated from Fig. 3.3B.) Still, the trend that later-firing origins have lower

potential efficiency remains valid, as is the trend between utilized and potential efficiency

shown in Fig. 3.6C.

3.4.3 Summary of limitations

We summarize the effects of the above mentioned limitations:

1. There is starting-time asynchrony in the cell population probed. We extended the

formulation to account for such asynchrony and found it to be consistent with a

normal distribution with standard deviation = 2 min. Refitting the SM to part of

the microarray data using the estimated asynchrony, we found that v shifted by ≈
-0.3 kb/min, t1/2 by ≈ -0.5 min, and tw by ≈ -1 min (Fig. 3.9).

2. The microarray dataset analyzed has a spatial resolution of ≈ 2 kb. This limits us to

resolve origins that are closer than 5 kb apart.

3. The data do not cover the entire range of replication fraction (0 to 100%), perhaps

because of contamination and imperfect signal normalization. We deal with these
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artifacts by introducing a scaling factor for each time point and a background as

fitting parameters (see Sec. 3.2).

4. All the fit parameters have a small systematic uncertainty that originates from an

incomplete knowledge of the likelihood function (Figs. 3.11 and 3.12). We found

that using an alternative form of the likelihood function shifts v by ≈ −0.2 kb/min∗,

origin positions by ≈ ±1 kb, t1/2 by ≈ −3 min, and tw by ≈ −2 min.

5. From the flow-cytometry data, we estimated S phase to be 60±10 min. Uncertainty

in the length of S phase affects the values of the efficiencies extracted but not the

relationships shown in Fig. 3.6C and D.

In summary, artifacts in the microarray data result in small uncertainties in the absolute

values of the extracted parameters but do not significantly alter our findings. In particular,

the relationship that t1/2 ≈ tw remains valid. The t1/2-tw trend clearly reveals that initiation

times and the precision of timing are correlated. This relationship has also been observed

by recent analyses [42, 23] and contrasts with the view that origin initiation is timed in a

nearly deterministic fashion. We continue the discussion of this relationship in Chapter 4.

3.A Appendix

3.A.1 Statistical details of the fits

Here, we discuss in more detail the various fits described in the main text. We start by

recalling the definition of the χ2 statistic:

χ2 =

Nd∑
i=1

(fi − di)2

σ2
i

, (3.5)

where Nd is the number of data points, fi is the model value, di is the data (measurement)

value, and σi is the standard deviation of the measurement di. The use of χ2 statistic (least-

squares fitting) asserts that statistical fluctuations affect each data point di independently

∗Correcting for starting-time asynchrony and likelihood function makes the fork velocity closer to the one
reported in [48].
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t (min) 10 15 20 25 30 35 40 45
σt 1.16 1.43 1.96 2.46 2.96 3.37 3.05 3.00

Table 3.1: Standard deviation of single-measurement noise for time-course microarray.
Top row: t is the time at which the measurement is made. Bottom row: σt is the standard
deviation of the measurement noise for time point t.

and that the fluctuations are normally distributed, with mean 0 and standard deviation σi,

which we denote N(0,σi). As we shall see, a detailed examination of the fluctuations shows

that the assumptions for least-squares fits are not strictly met.

Ideally, the noise distribution for each data point would be estimated by repeating the

experiment a large number of times. McCune et al. repeated their experiment once, mean-

ing that there are just two measurements of each data point [57]. To examine the distri-

bution of fluctuations, we consider the distribution of the differences between the timing

curves from both experiments, calculated data point by data point (Fig. 3.11A). A cur-

sory examination shows that the fluctuations vary notably with time: earlier time points

show smaller fluctuations than later ones. We thus grouped the fluctuations by time points.

Within each time point, fluctuations are homogeneous, except for an obvious upward bias

corresponding to the data points representing Chromosome I (Fig. 3.11B). We observed a

similar bias from Chromosome I in all 8 time points and thus excluded the data from the set

of residuals used to estimate the distribution of fluctuations. (However, we did not exclude

Chromosome I from our model fits.)

Excluding the differences from Chromosome I, we compiled histograms for the 8 time

points (Fig. 3.12C). These histograms estimate probability distribution functions for the

differences between two noisy measurements. For curve fitting, we need to estimate the

distribution of a single noisy measurement. Elementary properties of the variance imply

that, for two independent random variables X and Y , Var[X − Y ] = Var[X] + Var[Y ]. For

two independently and identically distributed random variables, the standard deviations of

the differences are then
√

2 times larger than the standard deviation for single-measurement

noise. Correcting for this factor, we found the standard deviations recorded in Tab. 3.1.

(The caption to Fig. 3.12C gives the uncorrected values.)

To examine the fluctuation distributions further, we rescaled the fluctuations for each

data point by dividing by the standard deviation for that time point. After rescaling, all
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Figure 3.11: Statistics of the difference between two equivalent experiments, part 1. A.
Difference between two equivalent experiments from [57]. The differences between the
replication fraction of two nominally equivalent experiment are shown serially in time.
The fluctuation of the differences varies across different time points. B. Differences for the
first 2000 data points of time-point 40 are shown. The upward bias in the shaded region
corresponds to Chromosome I. All time points have this bias.
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Figure 3.12: Statistics of the difference between two equivalent experiments, part 2. C.
Histograms of the differences for different time points. In making the the histograms (bin
width = 0.5), we excluded the first 200 data points of each time point because of the ap-
parent upward bias. These data points correspond almost exactly to Chromosome I. The
standard deviation of the differences (in sequence of increasing time points) are 1.64, 2.03,
2.77, 3.48, 4.18. 4.76. 4.31, and 4.25. The σt values used in the fits equal these standard
deviations divided by

√
2. D. The histograms (bin width = 0.2) in C collapse onto the

same distribution after scaling the differences for each time point with its corresponding
σt. Small deviations are Gaussian like, while large positive deviations are exponential. E.
Autocorrelation of the differences. The autocorrelation shown excludes the first 200 data
points, as well.
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eight histograms collapse to a single distribution (Fig. 3.12D). This confirms that the noise

fluctuations depend only on a reduced variable (fi−di)/σi, as assumed when writing down

Eq. 3.5. Unfortunately, two problems need to be addressed in order to perform a rigorous fit.

First, the distributions are not normally distributed (Fig. 3.12C). In particular, the positive-

valued tails are approximately exponential, implying that large fluctuations are much more

likely than those suggested by a noise model (likelihood function) based on Gaussian statis-

tics. Second, the distribution is clearly skewed (asymmetric about 0). This means that the

noise distributions of the two experiments are not identical and that the σ values obtained

from the
√

2 scaling might not approximate the deviation of the single-measurement noise

well. (It is easy to prove that the difference between two independently and identically dis-

tributed random variables must be distributed symmetrically about zero.) Without further

measurements, it is difficult to infer the actual form of the noise distribution. One further

test examines the independence of fluctuations in one data point compared to another. We

checked this by computing the autocorrelation function of the (scaled) residuals. The auto-

correlation curves collapse, and there is only a weak correlation in the first few data points

(Fig. 3.12E). Thus, the assumption of independence is reasonably well satisfied.

At this point, we have established that it is reasonable to treat the fluctuations in each

data point separately and that the fluctuations are a function only of the reduced variable

(fi − di)/σi. Although we do not know the exact form of the likelihood function, we can

examine how sensitive our model fits are to its precise form. Thus, we compared least-

squares fits (assume Gaussian likelihood function) with robust fits (assume Exponential

likelihood and use χ2 =
∑Nd

i=1 |fi−di|/σi). To compare the fits, we fit to Chromosome XI,

and the results are shown in Fig. 3.13. In general, we found little to distinguish between

the results of the two fits. The main difference is that there are systematic shifts between

corresponding parameters. The robust fit shifts the global v by ≈ −0.2 kb/min, origin

positions by ≈ ±1 kb, t1/2 by ≈ −3 min, and tw by ≈ −2 min. We speculate that using

the actual noise distribution to fit would give parameters whose values are in between those

obtained from a least-squares fit and those obtained from a robust fit.

Since least-squares and robust fits give similar parameter values, we decided to adopt

the more standard least-squares χ2 statistic. We keep in mind that any resulting P values

will be severely underestimated, as they fail to account for the exponential tail of the dis-

tribution. For a similar reason, the statistical errors for the parameters estimated by the
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Figure 3.13: Comparison between least-squares and robust fit parameters for Chromosome
XI. The x-axis corresponds to the least-squares fit, and the y-axis to the robust fit. Dotted
line shows y = x. The least-squares t1/2 (tw) values are on average 3.24 (0.73) min larger
than the robust t1/2 (tw) values.

fit will be underestimated. In reporting our fits, instead of using χ2, we follow common

practice and record the “reduced chi square” χ2
ν ≡ χ2/ν, where ν is the number of degrees

of freedom (ν = Nd − Np, with Nd the number of data points and Np the number of free

parameters in the fit). For ν � 1, which is always true in our analysis, the χ2
ν statistic is ex-

pected to be distributed as N(1,
√

2/ν). Again, we note that the exponential tail of the noise

fluctuations will increase the expected standard deviation of the χ2
ν statistic significantly.

Before proceeding to whole-genome fits, we first made a detailed comparison of the

variable-fork-velocity model (VVSM), SM, and MIM on Chromosome XI∗, which has

Nd = 2678 and Np = 99, 76, and 54 for the VVSM, SM, and MIM, respectively. The χ2
ν

values for the three models are 2.29, 2.48, and 2.76. These values exceed the expected χ2
ν

value of 1 by 42, 53, and 63 standard deviations. Given the uncertainty in the distribution

of χ2
ν , we did not reject the fits but attempted a more qualitative description of the fit quality

(Fig. 3.14). The fit residuals and their distributions are all quite similar (Fig. 3.14A and B).

The autocorrelation functions decrease to zero within a few data points (Fig. 3.14C), sug-

gesting that the fits do capture most of the details of the data. The similarity in the results of

∗The multiple-initiator model (MIM) is a model introduced in Chapter 4.



CHAPTER 3. SPATIOTEMPORAL PROGRAM OF BUDDING YEAST 65

A

B C

-20

-10

0

10

20

R
es

id
ua

ls

200010000

Data point

 VVSM        SM        MIM

0.2

0.1

0.0

D
is

tr
ib

ut
io

n

-20 -10 0 10 20

Residuals

 VVSM
 SM
 MIM

 

1.0

0.5

0.0

A
ut

oc
or

re
la

tio
n

20151050

Data point

 VVSM
 SM
 MIM

 

Figure 3.14: Residuals of different model fits. A. Residuals of the model fits to Chromo-
some XI. Markers correspond to the residuals of the three different model fits, VVSM,
SM, and MIM, discussed in the text. The residuals are plotted serially in time points. B.
Histogram of the residuals with bin width = 0.5. The standard deviations of the VVSM,
SM, and MIM residuals are 3.21, 3.42, and 3.52, respectively C. Autocorrelation of the
residuals of the VVSM, SM, and MIM fits.
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the three models justifies favoring the model with fewest parameters (MIM model). Repeat-

ing the comparison for whole-genome fits, we found χ2
ν for the SM and MIM genome-wide

fits: 4.91 and 5.83 (ν = 48129 and 48481).

3.A.2 Variable-velocity sigmoid model

The formalism introduced in Sec. 2.1 can be extended to incorporate a space-time-dependent

fork velocity v(x, t). We generated a spatially varying velocity v(x) as follows: The sum-

mand in Eq. 2.5 in the main text is non-zero only when ∆xp contains an origin at xi,

implying that the sum is really only over p = i. By replacing the global v by a local vi,

we associated a different fork velocity with each origin. In this way, we obtained spatially

varying fork velocities. Since the origins are well localized, this scenario roughly corre-

sponds to velocity variation in zones that are ≈ 50 kb in size. Generalizing further, with a

variable fork velocity vi(t), the edges of the triangle in Fig. 2.1 would be curved. The goal

is then to find the time along the curved edge by solving∫ t

te

vi(t)dt = |x− xp| (3.6)

for te. Here, te is a function of t, |x − xp|, and the parameters that form v(t). This gen-

eralizes the constant-velocity case, where te = t − |x − xp|/v. Replacing the argument

t− |x− xp|/v used previously with te(t, |x− xp|, vi,···) [with vi,··· representing the param-

eters that describe vi(t)], one obtains a formalism that allows for a time-dependent fork

velocity. In the fits, we kept the velocity constant in time. This assumption is consistent

with independent evidence that the velocity is constant throughout S phase [106].

We used this “variable-velocity-sigmoid model” (VVSM), the SM, and the MIM to fit

Chromosome XI (Fig. 3.15). Each of the three models captures most of the variations in

the data, explaining 98.87% (VVSM), 98.77% (SM), and 98.62% (MIM) of the variance

of the raw data. We also showed that the distributions of the residuals of the three fits are

very similar (Fig. 3.14B), indicating that the quality of the three fits is similar. Thus, we

conclude that constant-velocity models describe the replication kinetics as well as variable-

velocity models.
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Figure 3.15: Fits to Chromosome XI. Markers are data; solid lines are fits from VVSM;
dotted lines are fits from SM; and dashed lines are fits from MIM. The eight curves from
bottom to top correspond to the replication fraction f(x) at 10, 15, 20, 25, 30, 35, 40 and 45
min after release from the restriction temperature of cdc7-1. The dataset covers the genome
at ≈ 2-kb resolution.
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3.A.3 Fits to raw and smoothed data

It is common practice to analyze a smoothed version of microarray data so that peaks can

be more easily identified. It is thus tempting to use smoothed data for curve fitting, as well.

However, there are reasons to prefer fits to the raw, unsmoothed data. First, as a matter of

principle, smoothing can only reduce the information available in a dataset and can never

add to it. Second, the smoothing procedure correlates the statistical fluctuations among

nearby data points, requiring a modification of standard least-squares fitting algorithms.

To test whether there are significant differences between the results of fitting to raw and

to smoothed datasets, we repeated the SM fit of Chromosome XI using the smoothed data

of [57]. The residuals (Fig. 3.16A) and their autocorrelation function (Fig. 3.16B) show a

correlation among neighbouring points that results from the smoothing operation. The χ2

statistic of standard least-squares routines then needs to be modified to explicitly account

for the correlations [107]. In this case, the use of the standard statistic (Eq. 3.5) can bias the

resulting parameter values. With this particular dataset, we found little practical difference

between fitting to the raw and smoothed data. Both fits produced parameter values that

mostly agreed to within 10%; only a few parameters, which correspond to less-apparent

peaks in the microarray data, do not match well (Fig. 3.16C). Thus, it is unlikely that any

substantive conclusions reached about this particular dataset would have been affected had

we fit to the smoothed data using the standard χ2 statistic; however, since it is just as easy

to fit to raw data, we recommend doing this and encourage experimental groups to publish

and make available the raw datasets.
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Figure 3.16: Fitting smoothed data: residual and parameter. A. Residuals of SM fit to the
smoothed data of Chromosome XI. the first 500 of the 5136 data points of residuals are
shown for clarity. The number of data points here is larger than that of the raw data (2678)
because the smoothed data were also interpolated [57, 20]. B. Autocorrelation of residuals,
showing the correlation in noise produced by the smoothing algorithm. C. Comparison of
t1/2 fit parameters. The x-axis corresponds to the raw-data fit, the y-axis to the smoothed-
data fit. Dotted line shows y = x.



Chapter 4

Control of Origin Timing in Budding
Yeast

In Chapter 3, we showed that the timing (t1/2) and precision (tw) of origin initiation are

correlated in budding yeast. This correlation implies that earlier-firing origins initiate with

less temporal variation and are potentially more efficient. Many of these highly efficient

origins are not normally used because of passive replication but can help safeguard against

replication stress such as fork stalls. What kind of mechanism can lead to this correlation?

In this chapter, we propose a model, the multiple-initiator model (MIM), where earlier-

firing origins have more initiator complexes loaded and are located at regions that have

more-accessible chromatin structure. We refit the time-course microarray data with the

MIM and show that the MIM captures the t1/2-tw trend qualitatively.

The model demonstrates how initiation can be stochastic and yet occur on average at

defined times during S phase without an explicit time-measuring mechanism. Furthermore,

we hypothesize that the initiators in this model correspond biologically to loaded pairs of

minichromosome maintenance (MCM) complexes. We compare the initiator number ex-

tracted from the fit with independent measurement of MCM occupancy and show that the

two correlate. We also investigate the correlation between the initiator number and two

quantities that relate to chromatin accessibility, namely histone acetylation and deacetyla-

tion. This model is the first to suggest a detailed, testable, biochemically plausible mech-

anism for the regulation of replication timing in budding yeast. Because the elements of

the model are found generally in eukaryotic organisms, one expects that it may apply to a

70
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broad range of eukaryotes. In terms of the three themes mentioned in Sec. 1.4, this chapter

explains the biological significance of the model-extracted quantities and thus advances our

understanding about the temporal aspect of replication in eukaryotes.

4.1 Introduction

The conventional understanding of origin timing control has two steps: first, early-or-late

“time stamps” are formed on the origin loci; second, activators recognize specific time

stamps at preprogrammed times to execute the timing program [94]. There are many can-

didates for the first step. Proposed time stamps include the level of histone acetylation [94],

the openness of chromatin structure [95], and the localization of the origin loci within the

nucleus [94, 71]. The idea that activators function at preprogrammed times for the second

step is plausible, as there are factors whose activities are known to be modulated in differ-

ent phases of the cell cycle. For instance, the CDK activity mentioned in Sec. 1.1 is low

in G1 phase to allow licensing of potential origins but increases in S phase to prevent re-

licensing and re-replication [4]. On the other hand, the mechanisms by which the early/late

activators recognize only early/late time stamps are elusive.

The results from our Sigmoid Model (SM) fit to time-course microarray data are in-

compatible with the above picture in two aspects. First, since the SM allows for any com-

bination of median firing time (t1/2) and time width (tw), the model is capable of capturing

a broad range of dynamics. In particular, the SM would result in distinct classes of early

and late origins if the data were to strongly suggest that scenario. However, the fit reveals

that the initiation timing is a continuum (Fig. 3.8) and supports the view that stochastic

effects overwhelm the early-late distinction at the single-cell level. Second, the fit shows a

tight and smooth correlation between t1/2 and tw (Fig. 3.4). If time-stamp-specific activa-

tors were functional at preprogrammed times, one would expect no correlation between t1/2
and tw and would expect tw to be roughly the same for both early and late origins. Over-

all, our results support a scenario where origins do not form distinct classes and activators

are not time-stamp specific. Our proposal is that initiation timing is controlled with the

multiplicity of stochastic initiators and non-specific, random activators. In the presentation

below, we first describe the technical details of the model in Sec. 4.2. Then, we investigate

its biological significance in Sec. 4.3.
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4.2 The multiple-initiator model (MIM)

Replication initiates at origins because there are initiator proteins bound to them. At some

point during S phase, trans-acting activator proteins activate the initiators to start the un-

winding and elongation. Suppose the dynamics between every activator and initiator were

the same. Then, every initiator would fire according to a global firing-time distribution

φo(t), and origins that have more initiators loaded would be more efficient. This situation

arises because when multiple initiators bind near an origin site, it is always the earliest firing

that counts. Other initiators cannot fire to re-replicate the same site [5]. One can assign an

effective firing-timing distribution φeff(t, n) to the initiator cluster at an origin, with n being

the number of initiators in the cluster. This distribution of the earliest firing times shows

the same trend as the curves extracted from the microarray data: earlier-firing origins have

narrower distributions (Compare Figs. 4.1B with 3.3A). We call this the “multiple-initiator

model” (MIM), since the number of initiators determines the shape of the firing-time dis-

tribution. Note that because the MIM captures the t1/2-tw trend, all the properties of SM

origins are captured (see Sec. 3.3.8).

For moderately large n (n & 10), the selection of the first initiation among many causes

φeff(t, n) to tend to a universal distribution, the Weibull distribution, regardless of the “de-

tails” of the φo(t) used [82]. As an example, the shape of φeff(t, n) would differ between

using an increasing and a decreasing φo(t) but would not alter significantly between a lin-

early and a quadratically increasing φo(t). This robustness is an advantage of the model

because it obviates the need for an accurate form of φo(t). The cumulative Weibull distri-

bution has the form

ΦW(t) = 1− e−( tλ)
k

, (4.1)

where λ is the scale factor and k the shape factor. If Φeff(t, n), the effective cumulative

firing-time distribution, tends to ΦW(t), Eq. 4.1 suggests that the plot of− ln[1−Φeff(t, n)]

vs. t on a log-log scale for different n should be straight lines. The inset of Fig. 4.1B shows

that this is indeed the case. We will explain why the lines have the same slope in the next

section.
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Figure 4.1: A. Illustration of the multiple-initiator model. Initiators are loaded onto an
origin site. The effective firing-time distribution of the origin narrows and shifts to earlier
times with increasing number of initiators. B. Firing-time distributions in the multiple-
initiator model. The parameter n ranges from 2.2 to 96.4. These firing-time distributions
resemble those shown in Fig. 3.3A. Inset shows − ln[1 − Φeff(t, n)] vs. t on log-log scale.
The n in the subgraph goes from 10 to 100 in increments of 10. C. Histogram of n with
bin width = 4. Values of n range from 2.2 to 96.4. Median value = 13.3; standard deviation
= 16.7.
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4.2.1 Fit parameters for the MIM

The MIM, like the SM, is parameterized with a constant fork velocity (global in space

and time), a constant background (global in space and time), eight constant normalization

factors (global in space and one for each time point), and 732 starting origin positions

(see Sec. 3.2). The two firing-time-distribution parameters t1/2 and tw for each origin in

the SM are replaced by a single parameter n in the MIM. As we will discuss below, n

depends on the number of initiator molecules but is modified by effects such as chromatin

accessibility. There are two additional parameters, t∗1/2 and r∗, that describe the global

firing-time distribution of all initiators (Eq. 4.3). These are absent from the SM, as the SM

does not assume that the firing-time distributions are related. All local parameters of the

MIM are tabulated in Supplementary Table II and all global parameters in Supplementary

Table III (Appendix 4.A.2).

We again use the Hill equation to describe the global cumulative distribution Φo(t).

Using Eq. 2.14, the Φeff(t, n) for a cluster of n initiators is

Φeff(t, n) = 1− [1− Φo(t)]
n , (4.2)

where

Φo(t) =
1

1 +
(
t∗1/2
t

)r∗ . (4.3)

The quantity t∗1/2 is the median time of the firing-time distribution for a single initiator, and

r∗ is the distribution’s rate of increase (see Appendix 4.A.1 for a discussion on the use of

Hill equation). Mathematically, the MIM reveals an interesting feature when expressed in

terms of initiation rates. Equation 2.10 suggests that the global cumulative distribution can

be rewritten as Φo(t) = 1 − exp[−
∫ t

0
Io(t

′)dt′], where Io(t) is the corresponding global

initiation rate that every initiator follows. Substituting this into Eq. 4.2, one obtains

Φeff(t, n) = 1− exp

[
−n
∫ t

0

Io(t
′)dt′

]
. (4.4)

Eq. 4.4 shows that the MIM includes a class of models where the initiation rate of each

origin is described by a scaling constant n times the global initiation rate Io(t). This con-

venient feature allows one to easily identify whether a model falls into the MIM class. This
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feature also explains why the lines have the same slope in the inset of Fig. 4.1B. Comparing

Eqs. 4.4 with 4.1, we see that the slope is determined by Io(t) and thus universal, while the

intercept is determined by n and shifts upward with increasing n.

Due to the different form of firing-time distribution used in the MIM, the criteria for

origin elimination are slightly modified from the SM ones (see Sec. 3.2). The MIM pre-

dicts strictly that earlier-firing origins are more efficient; thus, no contamination effects are

modelled by the MIM (see discussion in Origin position under Sec. 3.2). We then elimi-

nated origins via a single criterion of Φi(t = 60 min) < 0.4. The change is consistent with

the observation that the firing-time distribution in Eq. 4.2 tends to result in more efficient

origins than the Hill function does. Similar to the SM fits, individual-chromosome fits were

done first before performing the genome-wide fit.

After eliminating origins with the above criterion, the MIM gave 337 origins. Of the

337, 234 colocalize with the 275 origins identified in [96]. Of the remaining 103 origins,

70% colocalize with known origins from the OriDB database [97] within 5 kb. Together,

the SM and MIM gave 357 distinct origins: 322 are in both SM and MIM, 20 in only

SM, and 15 in only MIM. Among these, 116 were not identified in [96], and 71% of them

colocalize with known origins from the OriDB database within 5 kb. As is for the SM,

the parameter values of the MIM origins are not significantly affected by the experimental

limitations (Sec. 3.4). The average error on the origin position is 1.1 kb for the MIM.

Inefficient origins have large errors (n± 30%) but do not alter the replication kinetics.

Uncertainty in the fit likelihood roughly translates to a ±1 uncertainty in n. Overall, the

imperfections of the data have minor effects on the MIM.

Results of the MIM fits are shown in Fig. 4.8. In the SM, each origin has three param-

eters: x, t1/2, and tw. In the MIM, each origin has only two: x and n. Although the number

of parameters used decreased by nearly 1/3, the MIM fits are similar to the SM fits. This

suggests that the MIM is likely the more appropriate model for replication in budding yeast

(Appendices 3.A.1 and 3.A.2).
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Figure 4.2: MIM matches the t1/2-vs.-tw and the t1/2-vs.-efficiency trend. A. Markers are
results from the SM, a reproduction of Fig. 3.4. The curve is the result from the multiple-
initiator model (MIM) using Φo(t) = 1/[1 + (76/t)3]. The parameter values 76 min and
3 result from the the genome-wide MIM fit. Solid (darker) square, triangle, inverted tri-
angle, and circle correspond to ARS 413, 501, 606, and 1114.5, respectively. B. Potential
efficiency vs. t1/2. Markers are results from SM, taken from Fig. 3.6D. The solid curve is
calculated using the parameters obtained from the genome-wide MIM fit. The solid, darker
markers are as in A.

4.3 Significance of the MIM

4.3.1 Link between t1/2 and tw

The SM describes the replication program with a sigmoid at each origin, in effect giving

each origin an independent firing program. The correlation between the SM parameters

t1/2 and tw, however, suggests that the firing programs of all origins are linked. The MIM

provides the link: while each origin consists of a particular number of initiators, all initia-

tors are the same (meaning all are described by the same φo(t)). The similarity between

Figs. 4.1B and 3.3A is evidence that the MIM scenario is promising. The MIM also cap-

tures qualitatively the t1/2-vs.-tw trend and the relationship between t1/2 and potential effi-

ciency (Fig. 4.2). We emphasize that these similarities are biologically significant because

the MIM eliminates the need for time-measuring activators and shows that a robust timing

order can be built from indistinguishable, stochastic initiators and activators.
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One observation that has been used to support the view of time-specific activators in

S. cerevisiae is that the later-replicating regions of the genome suffer significant delay in

a clb5∆ strain compared to that in the wild type, while the earlier-replicating regions are

largely unaffected [57]. The interpretation offered was that the Clb5 proteins specifically

help activate origins that are marked late; thus, upon decreasing their abundance in the

mutant, only the late origins are inhibited. The MIM offers another interpretation: The

decrease in Clb5 proteins suppresses the number or function of non-specific activators and

affects all origins. Scaling the activator number Na by a factor α < 1 in the presence

of n initiators is equivalent to scaling the initiator number n by α in the presence of Na

activators. Under such a scenario, how would the firing time change as a function of n?

By using Eqs. 4.2 and 4.3 and setting Φeff(t1/2, n) = 1/2, we obtained t1/2 as a function

of n:

t1/2(n) = t∗1/2

(
n
√

2− 1
) 1
r∗
, (4.5)

where t∗1/2 and r∗ are the parameters that define Φo(t). For completeness, we also obtained

tw = t3/4 − t1/4 as a function of n:

tw(n) = t∗1/2

[(
n
√

4− 1
) 1
r∗ −

(
n
√

4/3− 1
) 1
r∗
]
. (4.6)

The t1/2(n) for normal initiation in the wild type and delayed initiation in the clb5∆ mutant

are plotted in Fig. 4.3A. In the clb5∆ mutant, the initiator number n is scaled down by

α, and t1/2 increases as a consequence. (We used α = 0.7 as an illustration; any value

less than 1 would give the same trend.) Figure 4.3B shows the difference in t1/2 between

the clb5∆ mutant and the wild type. The key observation is that origins with large n

(earlier-firing origins) are affected much less than origins with small n (later-firing origins).

This conclusion matches the observation reported in [57]—that later-replicating regions

suffer significant delay, while earlier-replicating regions are largely unaffected—but does

not need time-specific activators that target only late origins∗. The result strengthens our

proposal that initiation timing is controlled by the number of initiators and non-specific,

random activators.
∗In a future analysis, one can quantify the qualitative agreement by fitting the MIM to the f(x, t) in clb5∆.

According to our reasoning, the wild-type n and clb5∆ n should be linearly proportional with a slope of α.
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Figure 4.3: Relationship between t1/2 and n in the MIM. A. The x-axis is the initiator
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4.3.2 An initiator candidate: the MCM complex

We have shown that the MIM captures the origin initiation properties revealed by the SM.

The MIM suggests that the origin’s timing is controlled by stochastic initiators rather than

deterministic time stamps. It also shows how controlled timing patterns form without time-

measuring activators. In this section, we propose a biologically plausible candidate for the

initiator: the minichromosome maintenance (MCM) complex [5]. MCM complexes are

associated with the unwinding of DNA, one of the initial steps in origin activation, and

are loaded in excess onto the DNA prior to S phase (Sec. 1.1) [99, 108, 109]. Below, we

investigate the biological interpretations and implications of the MIM in light of MCM

biology.

The parameter n for the number of initiators does not have to be an integer, as it rep-

resents the average number of initiators bound to an origin. Because the value of n is

coupled to the φo(t) used, relative variations in n between origins are more significant than

absolute values. From the data of McCune et al. in [57], we found a 43-fold range be-

tween the smallest and largest n (n =2.2 and 96.4, respectively), which is larger than one
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might expect for variation in MCM loading at a single origin. However, the majority of

origins falls within a 20-fold range, between 2 and 40 (Fig. 4.1C), which is consistent with

experimentally observed levels of MCM loading [108, 109].

In addition, other factors such as chromatin structure and origin-recognition-complex

occupancy can influence the loading of initiators. Previous work has hypothesized that

the time required for an activator to find an origin can limit the origin-initiation rate [37].

The search times in heterochromatin regions could be longer than in euchromatin regions

because initiators in heterochromatin are less accessible to activators [110]. This in turn

implies that initiation rates should be “scaled down” in heterochromatin regions (initia-

tion rates are related to firing-time distributions via Eq. 2.12). For the same accessibility

reasons, the loading of initiators may also be reduced in the heterochromatin regions. Put

together, variations in chromatin structure and in the loading of initiators increase the range

of inferred n values. Thus, the fit parameter n represents not simply the number of initia-

tors but rather the combined effects of origin accessibility and initiator multiplicity. As

an illustration, if the structure of chromatin identically affects initiation loading and origin

activation, the number of initiators would be
√
n, and the range of initiator number will

cover a 6.5-fold difference.

In the MIM, the parameter n has direct implications for the timing of the replication

program. Figure 3.8A shows the histogram of all the t1/2 values we extracted. The mode of

the histogram suggests a typical firing time. The MIM implies that the typical firing time

is related to the average number of initiators loaded onto the origin sites. The histogram

also shows that no t1/2 is earlier than 15 min. In the context of the MIM, this observation

implies an upper limit to the number of origin-bound initiators, which corresponds to the

largest n-value found (≈ 43 after normalizing the smallest n to 1). To judge whether such a

value is reasonable, we make a crude estimate of the largest biologically plausible value of

n, which can be associated with a close packing of the double MCM hexamers. Each pair

of hexamers is roughly 30 nm long (0.1 kb) [111], and we imagine the pairs spreading out

from an origin-recognition-complex (ORC) binding site while still closely packed around

it. If the pairs were to spread more than ±2.5 kb to either side of the ORC loading site,

we would, in our analysis, assign more than one origin to that region. The largest value of

n for a single origin is then ≈ 5 kb / 0.1 kb = 50, which is greater than the largest value

found. In summary, the MIM is not only a mathematical model that captures the replication
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kinetics in budding yeast but also a plausible biochemical model that gives insight to the

mechanism of initiation timing control.

4.3.3 Correlation with MCM complex

Having proposed MCM as the initiator, we now seek evidence for a correlation between the

MCM number and the MIM n. Before discussing the experimental results, we briefly ex-

plain how three techniques, ChIP-PCR, ChIP-chip, and ChIP-seq, are used to probe MCM

number. Common to all three is chromatin immunoprecipitation (ChIP), a technique used

to isolate the DNA bound to specific proteins. The isolation procedures involve crosslinking

DNA-bound proteins to DNA, fragmenting the DNA into sub-kb-sized pieces, precipitat-

ing out the desired protein by a specific antibody, and dissolving the cross links to isolate

the DNA. In all three techniques, ChIP is used to isolate the MCM-bound DNA. The three

techniques, however, differ in the way that the isolated DNA is detected:

ChIP-PCR. Polymerase chain reaction (PCR) is a technique used to amplify the

copy number of a particular sequence of DNA. From the pool of MCM-bound DNA

fragments, one can choose particular sequences (e.g., those that correspond to early

origins) to amplify using PCR. Since the number of DNA copies for a particular

sequence reflects the number of MCM bound to that sequence, ChIP-PCR can be

used to compare the relative MCM occupancy at a few different origin loci.

ChIP-chip. Here, PCR is replaced by microarray chips that can measure the varia-

tions in DNA copy number across the genome. The result is a genome-wide profile

of relative MCM occupancy. The ChIP-chip signal reported is usually relative to a

control experiment, where the number of DNA copies measured is known to be con-

stant. It has been observed that the finite dynamic range of microarray data, defined

as the ratio between the signal and the control, can limit the signal; i.e., the actual

ratio between the quantity and the control is smaller or larger than the microarray can

reliably probe [112].

ChIP-seq. Here, the isolated DNA is sequenced directly. ChIP-seq generates a

genome-wide profile of relative MCM occupancy similar to ChIP-chip but provides

larger dynamic range, higher resolution, and fewer normalization issues [64].
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Figure 4.4: ChIP-chip signal of MCM occupancy vs. parameter n. The y-axis is the ChIP-
chip signal for MCM2 (the first unit of the MCM2-7 hexamer ring) occupancy from [113];
the x-axis is the parameter n that we extracted from the MIM. The Pearson correlation
coefficient between the two quantities is 0.003, which is consistent with no correlation
(1-sided P-value = 0.48).

A previous experiment using ChIP-PCR showed that origin efficiency is strongly corre-

lated with the number of MCMs bound at origins [114]. Those data show that, on average,

there are six times more MCM on efficient origins than on inefficient origins (Supplemen-

tary Fig. 1 in [114]). A similar experiment done using ChIP-chip [113] is not consistent

with the ChIP-PCR data (Fig. 4.4), possibly because of the lack of sufficient dynamic range

in the ChIP-chip data.

In a collaboration to further test the MCM-n correlation, the Rhind lab recently used

ChIP-seq to probe the genome-wide MCM occupancy in S. cerevisiae (unpublished). The

resulting data are sequences that correspond to the MCM-bound DNA in a population of

cells. We quantify the MCM occupancy by counting the number of sequences that fall

within a radius of rORI kb around the MIM origins. To test the correlation, we ignore

telomeric origins, defined as origins that are within 10 kb of the chromosomes’ ends, be-

cause the fit parameters at the ends, being determined by the data from only one side (the

other side has no data), are less reliable. The MCM occupancy shows significant correla-

tion with the MIM n for a range of rORI (Fig. 4.5A). The apparent maximum in correlation

at rORI ≈ 2.4 kb suggests the typical radius of an origin in terms of MCM spread. The
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Figure 4.5: Correlations among MIM n, MCM occupancy, and ORC occupancy in budding
yeast. A. The y-axis gives the Pearson correlation coefficient between the 313 MIM n (337
normal origins − 24 telomeric origins) and MCM occupancies. The MCM occupancy
of an MIM origin is calculated by counting all MCM-bound sequences that fall within
a radius rORI of that origin’s position. The x-axis indicates the radius rORI. Maximum
correlation = 0.356 at rORI =2.4 kb. B,C, and D. The MCM occupancy shown is calculated
at rORI =2.4 kb and normalized so that the maximum occupancy is 100. The ORC signal
is calculated similarly at rORI=2.4 kb and normalized to span 0–100. The MIM n are the
final fit parameter values. Each plot has 337 points: 24 crosses corresponding to telomeric
origins that are within 10 kb of the chromosomes’ ends; 54 stars corresponding to rdp3
origins identified in [115]; and 259 circles corresponding to normal origins.
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Pearson correlation between MCM occupancy and n at this rORI is 0.356 (1-sided P-value

= 2× 10−11; Fig. 4.5B). This significant correlation confirms the previous ChIP-PCR cor-

relation and supports the proposal that MCM occupancy is a primary determinant of origin

initiation time.

Recently, Wu and Nurse reported a correlation between the timing of initiation and

the timing of ORC binding in S. pombe (fission yeast) that also suggests a mechanism for

origin-timing control [116]. Since ORC recruits multiple MCM [99, 109], we speculate

that early ORC binding provides more opportunities for MCM to be loaded, leading to the

formation of early-firing origins. We found evidence that indirectly supports this specula-

tion in S. cerevisiae (budding yeast). From recent ChIP-seq data [47], we calculate ORC

occupancy by counting the number of ORC-bound sequences that fall within rORI =2.4 kb

of the MIM origins and taking the logarithm of the total count. Assuming that sites with

high ORC occupancy started loading ORC early, it is reasonable to also assume that these

sites have more time to load MCM. Thus, we expect the ORC and MCM occupancy to cor-

relate. Indeed, ORC and MCM occupancy do correlate significantly (Pearson correlation =

0.638; P-value negligible; Fig. 4.5C). Interestingly, the Pearson correlation between MIM

n and ORC occupancy is 0.258 (1-sided P-value = 1× 10−6 ; Fig. 4.5D) and is close to the

product of the MIM-MCM and MCM-ORC Pearson correlations (0.356× 0.638 = 0.227).

This suggests that ORC indirectly controls the initiation timing through the loading of

MCM and that the two steps of loading and activation of MCM are independent stochastic

events.

4.3.4 Correlation with chromatin structure?

Although MCM occupancy correlates significantly with the MIM n, it is clear that there

are still unexplained features. We suggested above that chromatin structure may be another

contributing factor. To test this proposal, we consider the nucleosome, a compact structural

feature of chromatin that consists of a segment of DNA wrapped around eight histone pro-

teins [117]. Its stability can be modified via several processes; the analysis below focuses

on acetylation and deacetylation. Acetylation of histones destabilizes the nucleosome by

neutralizing the positive charge of histones [118]. The interaction between the neutralized

histones and the negatively charged DNA decreases as a result, and the nucleosome disas-
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sembles. The reverse process of deacetylation recovers the positive charge of the histones,

thereby promoting formation of nucleosomes. Figure 4.6 illustrates these two processes∗.

In higher organisms such as H. sapiens, histone acetylation (or, interchangeably, nucleo-

some acetylation) forms open chromatin structures, and these structures correlate well with

gene-rich, high-transcription, earlier-replicating regions [95, 120]. The picture is that the

transcription and replication machinery can more easily access these regions.

The situation is more confusing in S. cerevisiae. Although histone acetylation, which

marks open chromatin states, correlates well with transcription activity [121], transcription

activity does not correlate well with replication timing [20]. The two observations together

suggest that replication timing is not affected by the “openness” of chromatin. We inves-

tigate this suggestion by testing whether the level of histone acetylation correlates with

MIM n. Pokholok et al. used ChIP-chip to estimate the genome-wide level of nucleosome

acetylation [121]. We calculated acetylation levels, which reflect chromatin accessibility,

by summing up all chip intensities that lie within a radius rORI = 2.4kb of the MIM origins.

We found no correlation between the MIM n and the acetylation level (313 normal origins

used; Pearson correlation = 7× 10−4 ; 1-sided P-value = 0.49). While this result does not

support our proposal that initiation timing correlates with chromatin accessibility, we note

that ChIP-chip data are not reliable, perhaps because of insufficient dynamic range, as seen

in Sec. 4.3.3 (compare Figs. 4.4 to 4.5B).

There is more-recent evidence based on ChIP-seq data that the “compactness” of chro-

matin structure affects initiation timing. Knott et al. used ChIP-seq to show that upon delet-

ing rdp3, the gene for a component of histone deacetylase, over 100 non-telomeric origins

initiate earlier than in wild type. Unlike the previous datasets, the data for deacetylation

concern only the origins that are affected by rdp3 rather than the genome-wide deacetyla-

tion intensity [115]. Of the 106 origins affected by rdp3 levels [115], 54 coincide with an

MIM origin within 5 kb. We found that these origins are relatively low in n but high in

MCM occupancy (Fig. 4.5B). This matches our intuition that, although these origins con-

sist of many initiators, the firing probability is suppressed by a more compact chromatin

∗Another (perhaps more popular) view of histone acetylation is that the process causes nucleosomes to
interact less with each other (instead of disassembling) to form an accessible chromatin structure. The reverse
process, deacetylation, strengthens the attraction among nucleosomes to promote a compact heterochromatin
structure [119]. The details of how chromatins become accessible upon histone acetylation is unimportant to
our analysis here.
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Figure 4.6: A schematic diagram of acetylation and deacetylation of nucleosomes. In the
acetylation process, histone acetyltransferases (HAT) incorporates acetyl groups to two hi-
stones. The acetyl groups neutralize the histones, and the nucleosome falls apart. The DNA
in this state is more accessible. In deacetylation, histone deacetylase (HDAC) removes the
acetyl groups, and the nucleosome reassembles. The DNA in this state is less accessible.
This figure is a modified version of Fig. 5a in [118].
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Figure 4.7: The distribution of Pearson correlation for MIM n and MCM occupancy is
obtained as follows: 54 points are randomly deleted from the 313 MIM n that are non-
telomeric. The corresponding 54 points are also deleted from the MCM occupancy. We
repeat the random deletion 5000 times and record the resulting Pearson correlations. These
correlations are used to construct the histogram (bin size = 0.005; mean = 0.356; standard
deviation = 0.028). Deleting the 54 rdp3 origins resulted in a Pearson correlation of 0.408.
The probability of obtaining a higher correlation by chance is equal to the shaded area (area
= 0.04).

structure. Discounting the rdp3 origins, the Pearson correlation between MIM n and MCM

occupancy increased from 0.356 to 0.408. Random deletion of the same number of points

(54 points) leads to a distribution of Pearson correlations shown in Fig. 4.7. From this dis-

tribution, we calculated that the P-value for obtaining a correlation of 0.408 is 0.04. Thus,

the effect of chromatin accessibility on initiation timing via rdp3 is significant.

In summary, from the literature and our analysis above, we can start to piece together a

possible “chain of causality” for initiation timing in budding yeast:

Sequence→ Nuclesome→ ORC→ MCM→ MIMn→ t1/2.

That is, the sequence governs the position and density of nucleosome; ORC binds to the

nucleosome-free regions [47]; along with chromatin structure, the ORC loading time and
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efficiency determine the number of MCM loaded (Fig. 4.5C with [116]); the MCM oc-

cupancy and chromatin structure around an origin site partially explain the variation in

the MIM n (Fig. 4.5B); and the MIM n describe the observed median firing times well

(Fig. 4.2A). In [122], Arneodo et al. shows that DNA sequence encodes rich structural

and dynamical information, advocating sequence as the first element of the causal chain.

Although the chain is speculative and incomplete, it offers directions for future investi-

gation. For instance, knowing that incorporating histone deacetylation improves the cor-

relation between MCM occupancy and MIM n, one can further investigate the effects of

chromatin accessibility. In particular, we propose in Chapter 7 that investigating the three-

dimensional chromosome structures and the dynamic nuclear environment may reveal the

missing pieces.

4.A Appendix

4.A.1 Form of firing-time distribution

Although our motivation for using the Hill equation to describe the firing-time distribution

in both the SM and MIM is purely phenomenological, the Hill equation does have a phys-

ical interpretation. The equation describes cooperative binding, where the fraction of sites

bound increases non-linearly as a function of ligand concentration. Comparing these quan-

tities with those in Eq. 3.1 or 4.3, we can map concentration to time and the fraction of sites

bound to the probability of initiation. The simplest interpretation of the concentration-time

mapping is that the concentration of activators linearly increases with time [123]. In this

scenario, the inferred MIM Hill coefficient r∗ = 3, being greater than 1, suggests that the

biochemical events leading to an initiation are cooperative. Similarly, the SM Hill coeffi-

cients r ∝ t −0.18
1/2 for the range of relevant t1/2 suggests that origins fire earlier because the

associated reactions are more cooperative. These physical interpretations are, of course,

speculative.

Are there “more-natural” forms for the firing-time distribution? The exponential form—

Φ(t) = 1 − exp[−t/τ ], with τ being a rate constant—describing a single-step irreversible

chemical reaction seems a natural candidate, as initiation is also irreversible. However,

comparing the sigmoid-shaped data points in Figs. 3.1B and 3.7 with the concave form of
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Φ(t), we argue that an exponential form cannot fit the time-course data well. This form is

not suitable for the MIM Φo(t) either. Substituting it into Eq. 4.2, one sees that the effective

firing-time distribution Φeff(t, n) = 1 − exp[−nt/τ ] is still exponential and cannot gener-

ate the trend in Fig. 4.1B. In general, irreversible processes that result in purely exponential

distributions, be they single-step or multiple-step, do not describe the replication kinetics

in budding yeast well.

A slightly more complicated and realistic process is the Michaelis-Menten kinetics that

describes the chemical reaction

[E] + [S]
 [ES]→ [E] + [P],

where [E], [S], [ES], and [P] are the concentrations of the enzyme, substrate, enzyme-

substrate intermediate, and product, respectively. Each arrow has an associated rate. Our

preliminary study shows that, for a good range and combination of rates, the resulting dis-

tribution (the concentration of [P] as a function of time) is still roughly concave throughout

time. Thus, similar to the exponential distribution, this form cannot fit the data well and is

not suitable for the MIM Φo(t). Interestingly, Brummer et al. modelled the complex molec-

ular network identified in budding yeast using rate equations and found a set of firing-time

distributions whose means and standard deviations correlate [23]. In other words, although

simple chemical reactions do not produce suitable distributional forms, a realistic network

of reactions does. This suggests that the physics and chemistry underlying initiation may

be inherently complex.

4.A.2 Parameter tables

The final fit parameter values of the SM and MIM can be found on the website: http://

www.nature.com/msb/journal/v6/n1/suppinfo/msb201061_S1.html.

Supplementary Table I: Origin properties extracted from the genome-wide SM. For

the column titles, we used the following abbreviations: “chr” for chromosome, “ori pos” for

origin position, “err” for error, “pot eff” for potential efficiency, and “obs eff” for utilized

efficiency∗. Under the “Alvino,” “OriDB,” and “MIM” columns, 1 denotes that the origin is

∗When this work was published, we used “observed efficiency” instead of utilized efficiency. Later, it was
pointed out that the efficiency is not observed but inferred; thus, we changed the adjective to “utilized.”
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also identified in [96], in [97], and in the MIM, respectively, while 0 denotes not identified.

Supplementary Table II: Origin properties extracted from the genome-wide MIM.

Same convention as Supplementary Table I.

Supplementary Table III: Genome-wide parameters extracted from the SM and MIM

fits. For the MIM, t∗1/2 and r∗ are used to construct the global Φo(t) = 1/[1 + (t∗1/2/t)
r∗ ]

(Eq. 4.3). The quantity t∗1/2 plays a role that is analogous to the quantity t1/2 for the SM

model.

4.A.3 Whole-genome fits
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Figure 4.8: Genome-wide SM and MIM fits, separately shown for each chromosome. Ro-
man numbers correspond to chromosome number. The x-axis denotes the position along
the chromosome. At the bottom, upper row of solid triangles denote origin positions identi-
fied in [96]; middle row of open circles denote the estimated origin positions in the sigmoid
model (SM); and the lower row of triangles correspond to origins in the OriDB database
[97]. Markers are data; solid lines are fits from SM; dotted lines are fits from MIM. The
eight curves from bottom to top correspond to the replication fraction f(x) at 10, 15, 20,
25, 30, 35, 40, and 45 min after release from the cdc7-1 block.



Chapter 5

Reconstructing the Replication Program
from Asynchronous Replication
Experiments

In Chapters 3 and 4, we extracted the spatiotemporal replication program for budding yeast

from a time-course microarray experiment. Even though the time-course microarray tech-

nique is arguably the most informative among the ones mentioned in Sec. 1.3, it is ex-

pensive, time-consuming, and requires the ability to synchronize the cell culture probed.

In this chapter, we focus on the more-accessible FACS-microarray technique. We recall

that fluorescence-activated cell sorting (FACS) is a technique for selecting cells that are

progressing through S phase in an asynchronous cell population. The major difference be-

tween the two techniques is that the former provides information on the replication fraction

f(x, t) as a function of genome position and time, whereas the latter provides information

on the spatially averaged replication fraction profile f(t) and the temporally averaged repli-

cation fraction profile f(x). We investigate methods to extract the spatiotemporal replica-

tion program from simulated FACS-microarray data. That is, from measurements of f(t)

and f(x), we seek to estimate f(x, t) and the initiation rate I(x, t). Our hope is that these

proof-of-principle simulation studies can eventually be extended to real FACS-microarray

experiments.

95
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5.1 Introduction

In Sec. 1.3, we introduced several experimental techniques. Only two of the techniques,

time-course microarray and FACS-microarray, are both genome wide and mappable. The

time-course microarray, being synchronized, is the more informative technique and allows

direct application of Eq. 2.5 to the data. It is with such high-quality data that we were able

to extract detailed features of the spatiotemporal replication program in budding yeast in

Chapters 3 and 4. Even though time-course microarray is powerful, it has limited applica-

bility because synchronization of cell cycles in a population is generally very difficult for

eukaryotes other than yeast. Even when possible, synchronization methods often involve

genetic mutations that may alter the replication program in unintended ways.

For these organisms, FACS-microarray is the method of choice. As the name suggests,

the technique involves two steps. The first is to sort the cells in a population into different

categories based on their DNA content via FACS (Fig. 5.1A). There are many variants

of the technique. Here, we focus on the simplest, which sorts the cells into only two

categories: replicating or non-replicating. Replicating cells have DNA content between

one copy (1C) and two copies (2C) of DNA; non-replicating cells have either 1C or 2C of

DNA. One can then sort “replicating” cells by selecting those whose intensities of labelled

DNA lie between a lower and upper threshold (Fig. 1.6B). The replicating cells are then

hybridized onto a microarray (or, more likely, sequenced in 2012) to generate a spatial

replication profile. In terms of the replication fraction f(x, t) defined in the beginning of

Sec. 1.3, the resulting spatial replication profile f(x) is equal to f(x, t) averaged over time.

The FACS data, as we will discuss in Sec. 5.2 below, are intimately connected with f(t),

which is defined to be f(x, t) averaged over genome position∗. In analogy to the technique

of tomography [124], the FACS microarray produces two perpendicular projections of the

time-course microarray f(x, t)—the x and t projections.

Similar to the case of time-course microarray, our goal here is to extract the replication

program I(x, t) from FACS-microarray data. We assume, as in previous chapters, that the

fork velocity v is constant. In parts of the analysis, we shall also assume that the constant

velocity is known in order to further simplify the treatment. All of the methods that we

∗Here, we use a loose notation where f(x), f(t), and f(x, t) denote three different functions. We use the
different arguments to distinguish among them.
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present are tested on simulated data.

The chapter is organized as follows: In Sec. 5.2, we present an analysis of FACS data.

The goal is to first obtain the replication fraction f(t) and then the initiation rate I(t) as

a function of time. In Sec. 5.3, we analyze the microarray profile f(x) by using a time-

averaged version of Eq. 2.5. The method is essentially the same as the fit presented in

Chapter 3. In Sec. 5.4, we present a non-parametric inversion method that takes f(t) and

f(x) as inputs and generates the spatiotemporal I(x, t) as the output.

5.2 Analysis of FACS data

FACS is a very popular and efficient technique for determining the relative DNA content of

each cell in a cell culture. Present-day flow cytometers can processO(104) cells per second

[59]. The basic experimental procedures involve staining the cells’ DNA with fluorophores,

flowing the cells one by one through a narrow channel, shining a laser beam at the cell,

detecting the fluorescence intensity, and directing via fluid flow the cell to a particular

storage chamber based on the intensity signal (Fig. 5.1A). The intensity of the signal reflects

the amount of DNA in the detected cell, as a cell with more DNA will incorporate more

fluorophores. Given an asynchronous cell culture that is growing under normal conditions,

a typical FACS-experiment result is a histogram of DNA content, as illustrated in Fig. 5.1B.

The standard, qualitative interpretation splits the histogram in Fig. 5.1B into three parts:

The left peak corresponds to cells that have 1C DNA and have not entered into S phase (G1

phase). The right peak corresponds to cells that have 2C DNA and have finished S phase

(G2 and M phase). The wide valley in between then corresponds to cells that have DNA

content between 1C–2C and are replicating (S phase). The area under each part reflects

the duration of the corresponding phase of the cell cycle. In the discussion below, we will

work with discretized quantities because the data are always discretized. We define the

experimental FACS histogram he
f to be the fraction of cells having DNA content between

[1 + f, 1 + f + ∆f). Note that f is the replication fraction, and the DNA content is 1 + f .

In an ideal experiment where the DNA content of each cell can be measured precisely,

the peaks at 1C and 2C would each occupy only one bin. We denote ideal FACS histogram
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Figure 5.1: A schematic diagram of fluorescence-activated cell sorting (FACS) taken from
Fig. 1.4. A. The setup. B. The resulting histogram.

as hi
f . The quantity hi

f can be related to the replication fraction f(t) via

hi
f =

1

Tcc
[t(f + ∆f)− t(f)] , (5.1)

where t(f) is the inverse of f(t), and Tcc is the total cell cycle time. We note that the

first bin (which contains f = 0) and the last bin (which contains f = 1) are not well

defined by Eq. 5.1 because the existence of finite G1, G2, and M phases is not built into

the definition of f(t). Therefore, these two bins in the ideal FACS histogram need to be

generated using other information. We also note that one can rewrite Eq. 5.1 with a scaled

time, without the factor of Tcc. We retain it in the definition in order to make a clearer

connection with experiment. The meaning of the FACS histogram is more apparent when

Eq. 5.1 is rewritten in the limit ∆f → 0:

hi(f) =

(
df

dt

)−1

. (5.2)

Equation 5.2 shows that cells that progress slowly through a given part of S phase spend

more time at roughly the same f ; thus, more cells are sampled in the parts of S phase
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where f(t) is changing most slowly—namely, at the beginning and at the end of S phase.

Underlying Eq. 5.2 is also the assumption that the cells are uniformly sampled in the cell

cycle time.

The broad peaks at 1C and 2C seen in Fig. 5.1B result from a combination of factors,

including fluctuations in the number of fluorophores incorporated, fluctuations in the num-

ber of photons emitted by the fluorophores, and amplification of noise in the detector. We

describe the combined effect of these noise sources by a point-spread function. The func-

tion describes how the measured DNA content is distributed around the true content. It

has been proposed that a satisfactory form for the point-spread function is N(f, γf), where

N(µ, σ) is a normal distribution with mean µ and standard deviation σ, and γ is a constant

[125, 126]. It is not surprising that the standard deviation increases with replication frac-

tion because many of the processes that give rise to the spread, such as the incorporation

of fluorophores, are Poisson processes whose standard deviations scale with the amount

of DNA. In the analysis below, we used the slightly different form N(f, γf + c), where

c is another constant. This choice reflects our observation that the spread at 2C is usually

smaller than twice the spread at 1C. In effect, we assume the existence of another uncorre-

lated noise source that is independent of the DNA content (e.g., non-specific binding of the

fluorophores).

In a discretized version, the point-spread function becomes a point-spread matrix M,

whose row i elements are formed from N(i, γi+ c):

Mij =
e−

1
2( j−i

γi+c)
2

(γi+ c)
√

2π
. (5.3)

The two FACS histograms are then related via matrix multiplication,

he = Mhi. (5.4)

Note that hi has nid elements whose value f lies strictly in the range [0, 1]. On the other

hand, he, being “corrupted” by the point-spread function, can cover a larger range of values.

(Typically, they are contained in [−1, 2].) Because the histogram bin size is the same in hi

and he, the number of elements of he, nex, is greater than nid. The point-spread matrix

M is then a nex-by-nid matrix. Throughout the chapter, bold capital letters are used for
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matrices, and bold small case letters for vectors.

Having established the relationship between f(t) and he via Eqs. 5.1 and 5.4, we con-

sider possible ways to extract the initiation rate and fork velocity from FACS data. Since

FACS data provides no spatial information, one can at most extract a time-dependent rate

I(t) and velocity v(t) from the data. One way to do this is to construct a model that pa-

rameterizes the point-spread function, the heights of the first and last bin, the initiation

rate I(t), and the velocity v(t). Then, one fits this model to he to extract the parameters.

Another way is to perform a two-step inversion: First, one deconvolves the experimental

FACS histogram into an ideal FACS histogram. Then, one transforms the ideal FACS his-

togram into I(t) and v(t). Below, we present a simulation study and use the latter strategy,

where we deconvolve he into ĥi and then invert a discretized I(t) from ĥi. The hat denotes

an estimate throughout the chapter.

5.2.1 Deconvolving FACS histogram

We first simulate a FACS experiment. The simulation involves:

1. Assigning each cell in the cell culture a time in the cell cycle. The time is generated

from a uniform distribution. The cell culture contains 106 cells.

2. Determining the cell’s DNA content. We let the G1, S, and G2+M phases occupy 21,

28, and 51% of the cell cycle time, respectively. If the assigned time for a cell is in

G1 phase, the cell is assigned a 1C DNA content. If in G2 or M, the cell is assigned

a 2C DNA content. If the cell is in S phase, the DNA content is 1 + f , where f is the

replication fraction simulated using the routines mentioned in Sec. 2.3. The length

of the genome for each cell is 103 kb. The initiation rate I(t) linearly increases in

time. The velocity v is 1 kb/min.

3. Making a histogram of the DNA content. This produces the ideal FACS histogram.

4. Smoothing the ideal histogram with the point-spread function. The point-spread

function varies between N(0, 0.08) at the G1 peak and N(1, 0.1) at the G2+M peak.

Specifically, we choose γ = 0.02 and c = 0.08. The experimental FACS histogram

is obtained via Eq. 5.4.
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Figure 5.2: Simulated FACS histograms. The ideal FACS histogram hi is plotted with
dotted line, and the experimental FACS histogram he is plotted with solid line. Bin size
= 0.02 C.

The resulting FACS histograms are shown in Fig. 5.2.

To set up the analysis, we want to solve for hi in Eq. 5.4, where hi is an nid-element

column vector, he is an nex-element column vector, M is an nex-by-nid matrix, and nex >

nid. The point-spread matrix M is not directly invertible because it is not square. The

standard procedure is to solve the equation in the least-squares sense, by finding the ĥi that

minimizes (Mĥi − he)T(Mĥi − he), where T denotes the transpose. The solution is

ĥi = (MTM)−1MThe, (5.5)

where −1 denotes the inverse. For simplicity, we assume that the point-spread matrix M

is given. In real applications, one has to estimate M either from he or from independent

measurements. Figure 5.3A shows the solution obtained via Eq. 5.5.

The large fluctuations shown in Fig. 5.3A are clearly undesirable. Such fluctuations are

inherent to inverting the smoothing matrix M. Following Höcker and Kartvelishvili [127],

we clarify the underlying issue by investigating the singular value decomposition (SVD)
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Figure 5.3: Deconvolution of FACS histograms by a naive least-squares method. A. The
ideal FACS histogram hi in Fig. 5.2 is plotted on linear scale here. The deconvolved his-
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j = 25, log(|bj|) changes from being signal dominated to being noise dominated (shaded
area). The inset shows the singular vectors v10 and v40, also defined under Eq. 5.6.

of M. Briefly, the SVD generalizes the notion of eigenvalue decomposition to a matrix,

with M = USVT, where U is nex-by-nid and column orthonormal, S is nid-by-nid and

diagonal, and V is nid-by-nid and orthonormal. The values along the diagonal of S are

called singular values and are ranked from largest to smallest going from top left to bottom

right.

Using SVD, we rewrite Eq. 5.5 as

ĥi = VS−1UThe = VS−1b =

nid∑
j=1

bj
sj
vj, (5.6)

where bj is the jth element of b, sj is the jth singular value of M, and vj is the jth column

of V. Equation 5.6 shows that the deconvolved ĥi is formed by bases vj with coefficients

bj/sj . A general feature of smoothing kernels, such as M, is that their singular values span

many orders of magnitude; hence, the inversion problem involving M is ill conditioned.

Another feature of smoothing kernels is that the singular vectors—the columns of U and
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V—associated with small singular values are in general quickly oscillating (Figure 5.3B

inset).

What do these properties imply? The bj in b = UThe are the projection coefficients

of he onto the columns of U. For reasonably smooth he, one expects the magnitude of bj
to decrease with j because the frequency of oscillation in the columns of U increases with

j. As j increases, the coefficient bj should eventually be dominated by contributions from

the experimental noise in he. (Here, the noise in he is due to the finite number of cells

simulated.) Thus, log(|bj|) (or |bj|) vs. j should decrease for j ≤ k and fluctuate about

a constant for j > k, where the index k separates the signal-dominated values from the

noise-dominated values (Fig. 5.3B) [127]. In terms of basis representation, the “change in

behaviour” implies that the singular vectors vj for j > k are statistically insignificant bases

for hi and should have small weights in Eq. 5.6. This is, however, not the case because the

1/sj factor increases the weight of vj drastically as j → nid. The least-squares solution

is thus dominated by the insignificant, rapidly oscillating vj , and the result is the wildly

fluctuating solution seen in Fig. 5.3A.

As recommended by Höcker and Kartvelishvili [127], we add a regularization term to

the simple least-squares equation:

Minimize J = (Mĥi − he)T(Mĥi − he) + τ(Cĥi)T(Cĥi), (5.7)

where C is the regularizer matrix, and τ determines the relative weight of the regularization.

A common choice for C is the numerical second derivative, given by

C =



−1 1 0 · · ·
1 −2 1 0 · · ·
0 1 −2 1 0 · · ·

. . . . . . . . . . . .

· · · 0 1 −2 1

· · · 0 1 −1


. (5.8)

With this choice, minimizing the second term in Eq. 5.7 is equivalent to minimizing the

total bin-to-bin curvature of ĥi. For τ → 0, the solution to Eq. 5.7 approaches that of

Eq. 5.5 and is wildly fluctuating. For τ → ∞, the regularization term dominates, and
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the solution is a flat histogram with zero bin-to-bin curvature everywhere. For finite τ ,

the larger-scale, overall trend of ĥi is determined by the first term in Eq. 5.7, while the

smaller-scale, bin-to-bin features are set by the second term in Eq. 5.7. In particular, the

regularization term in Eq. 5.7 reflects our assumption that ĥi should be smooth on the bin-

to-bin scale. Fluctuations in ĥi on this scale imply rapid temporal changes in the initiation

rate, which have not been observed in any organisms.

To find the solution of Eq. 5.7 in the form of Eq. 5.6, we define M̃ ≡ MC−1 and

h̃i ≡ Cĥi and rewrite Eq. 5.7 as

Minimize J = (M̃h̃i − he)T(M̃h̃i − he) + τ(h̃i)T(h̃i). (5.9)

By setting ∂J/∂h̃i = 0, we obtain

h̃i = (M̃TM̃ + τI)−1M̃The, (5.10)

where I is the identity matrix. Defining the SVD: M̃ = ŨS̃ṼT, we find

ĥi = C−1Ṽ(S̃2 + τI)−1S̃ŨThe =

nid∑
j=1

b̃j s̃j
s̃2
j + τ

[C−1Ṽ]j, (5.11)

where b̃j is the jth element of ŨThe, s̃j is the jth singular value of M̃, and [C−1Ṽ]j denotes

the jth column of C−1Ṽ. We note that the solution now relates to s̃j/(s̃2
j + τ) instead of

simply 1/sj . The factor τ acts as a threshold to eliminate the contributions from singular

vectors corresponding to s̃j � τ .

Although we assume that we know M, C, and he, we still need to choose τ in order

to use Eq. 5.11. Following the suggestion in [127], a reasonable choice for τ is s̃2
k, where

k is the index at which noise begins to dominate (Fig. 5.3B). This choice of τ effectively

suppresses the contribution from the insignificant, quickly oscillating singular vectors vj

associated with j > k. The plot of log(|b̃j|) vs. j is very similar to Fig. 5.3B and reveals

that the transition occurs at k = 23. Using τ = s̃2
k=23, we obtain Fig. 5.4A.

Figure 5.4A and B show that the deconvolved ĥi matches very well the input hi. We

note that ĥi has small bin-to-bin fluctuations. Although these fluctuations are small com-

pared to the overall structure of the histogram, they would be amplified if one were to invert
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Figure 5.4: Deconvolution of FACS histograms with regularization. A. The ideal and de-
convolved FACS histograms. B. The difference between the deconvolved and ideal his-
tograms from A. The x-axis is same as A. C. Direct inversion of the initiation rate I(t)
from the deconvolved FACS histogram with regularization. Solid line represents the true
I(t) used in the simulation. Here, j denotes that the jth singular value is used as the thresh-
old; i.e., τ = s2

j . The x-axis is scaled so that the length of cell cycle is 1. The initiation rate
I(t) is scaled accordingly.
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ĥi to obtain the initiation rate I(t). A consideration of Eqs. 2.15 and 5.1 shows that the in-

version involves taking two time derivatives of − ln[1 − f(t)] and that the time derivative

depends on ĥi. Intuitively, since the noise amplification comes from the numerical deriva-

tives and since numerical derivatives are linear operations, one can deal with this issue

using the same type of regularization scheme discussed above. Figure 5.4C shows the so-

lution obtained by regularizing the inversion. The “change in behaviour” for this problem

occurs around k = 4. We see that the inverted I(t) does indeed match the true I(t) for most

of S phase (Fig. 5.4C). To understand the decrease of the solution towards the end, we also

plot the solution obtained using a higher threshold, τ = s2
j=20 (Fig. 5.4C). In contrast to the

τ = s2
4 solution, the τ = s2

20 reconstruction increases throughout but is dominated by noise

in the regime where the τ = s2
4 solution decreases. Thus, the decrease in the solution is

a numerical artifact produced by the algorithm, in its attempt to eliminate large bin-to-bin

fluctuations. Nonetheless, the algorithm provides a good reconstruction of I(t) for most of

S phase.

In summary, we have presented a method, following [127], to deconvolve an experi-

mental FACS histogram into an ideal histogram. The histogram can be integrated to pro-

duce a scaled f(t) via Eq. 5.1. Being the time-derivative of f(t) (see Eq. 5.2), the FACS

histogram also provides information on the domain density, since the rate of replication is

determined by the number of replicated domains growing. (More precisely, df/dt = 2vnf ,

where v is the fork velocity and nf the density of replicating domains.) Lastly, the ideal

FACS histogram can be used to infer the general shape of the underlying initiation rate

I(t).

5.3 Analysis of FACS-microarray data: time-averaged fit

In the previous section, we studied how to extract the spatially averaged replication fraction

f(t) and initiation rate I(t) from FACS histograms. In the FACS-microarray technique, the

cells selected by FACS are hybridized onto microarray chips. The result is a replication

profile that reflects the temporally averaged replication fraction f(x). In this section, we

explore how much information we can extract from f(x) via fitting.

The FACS-microarray replication profile f(x) has contributions from cells that entered
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S phase at different times. Formally,

f(x) =

∫ ∞
−∞

f(x, t)ρ(t)dt, (5.12)

where f(x, t) is the replication fraction defined in Eq. 2.5, and ρ(t) is the fraction of cells in

the culture that have been in S phase for time t. For the analysis in this section, we assume

ρ(t) to be uniform between [ts, te] and 0 everywhere else. In practice, the time boundaries

ts and te can be estimated from the hard thresholds in the FACS histogram (Fig. 5.5). Here,

we assume that ts and te are known.

We expect a uniform ρ(t) to be a reasonable estimate of the experimental distribution

because, under normal growth conditions, the cells sampled by FACS are uniformly dis-

tributed in the cell cycle time. On the other hand, the experimental ρ(t) will have a smooth

boundary for the following reasons: In the FACS-microarray shown in Fig. 5.5, one con-

siders a cell to be replicating if its DNA content is in between two hard thresholds. The

hard thresholds in the experimental FACS histogram translate into smooth thresholds in

the ideal DNA content because of the point-spread function. Also, because the replication

process is stochastic, cells at different times in S phase can have the same DNA content.

Thus, the soft thresholds in the ideal DNA content are further smoothed out. Overall, we

expect that the shape of ρ(t) to be flat topped with rounded edges (Fig. 5.5 bottom right).

Given ρ(t), fitting is straightforward. One can simply generate f(x, t) using the sigmoid

model (SM) or the multiple-initiation model (MIM) in Chapters 3 and 4 and use Eq. 5.12

to calculate the averaged f(x) to fit to the FACS-microarray data. Since this procedure is

essentially the same as the analysis presented for time-course microarray, we first study the

reliability of the FACS-microarray fit. In particular, we want to test the reliability of the

FACS-microarray fits relative to the time-course-microarray fits.

5.3.1 Time-averaged fit vs. time-course fit

We first simulate a time-course microarray dataset and a FACS-microarray replication pro-

file. For the time-course microarray, we simulate an ideal version of the dataset in [57],

where “ideal” means that the experimental imperfections mentioned in Sec. 3.4 are absent.

We simulate Chromosome XI of the budding yeast genome with the fork velocity extracted
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cells that are in S phase. The truncated FACS histogram can be transformed into the cor-
responding distribution ρ(t) that describes the fraction of cells in the culture that is at time
t relative to the start of S phase. The distribution, bottom right, can be approximated by a
uniform distribution with hard boundaries ts and te, top right.

from SM (1.9 kb/min) and the final SM parameters tabulated in Supplementary Table I

(Sec. 4.A.2). The dataset is composed of eight time points ranging from 10 to 45 minutes

at 5-minute intervals. The spatial resolution is 1 kb. Gaussian measurement noise is added.

The noise standard deviation for each time point is the estimate given in Table 3.1.

For the FACS-microarray simulation, the input parameters are the same as above. Of

course, instead of eight synchronized time points, the FACS microarray generates only one

averaged replication profile. The simulation uses a ρ(t) that is uniform between ts = 10 and

te = 45 minutes relative to the start of S phase and 0 for other times. This corresponds to

the scenario where the FACS uniformly samples cells from that part of S phase. Gaussian
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noise (standard deviation = 3.5% replication fraction) is added to the replication profile

f(x).

We fit both simulated datasets with the SM. In the fit, everything is known except for

the fork velocity and the three SM parameters for each origin: origin position, median

firing time t1/2, and width of firing time tw. The results are shown in Fig. 5.6. In general,

the parameter uncertainties resulting from the FACS-microarray fit are larger than those

from the time-course-microarray data. In particular, Fig. 5.6C shows that the uncertainties

in tw in FACS-microarray fit are usually larger than the parameter itself. This reflects the

property of averaging; i.e., firing-time distributions with very different widths can have

similar averages. In other words, the FACS-microarray data are nearly degenerate with

respect to tw variations. Figure 5.6D also supports this point: while the FACS-microarray

tw parameters are quite different from the input values, they still result in a profile that is

similar to the theoretical one.

The large degeneracy in tw suggests that the SM parameterization is not suitable for

FACS-microarray data. From Fig. 5.6A–C, one sees that the data allow reliable estimates

of roughly two parameters per origin: one for position and another for the firing time

distribution or initiation rate. A reasonable choice for the latter is a linearly increasing

initiation rate Ii(t) = 2Iit, where 2Ii is the slope of the rate that characterizes the ith

origin. The main advantage of this choice is that it allows Eq. 5.12 to be calculated semi-

analytically. From Eq. 2.5, one sees that the replication fraction f(x, t) ∝ exp[−
∫
Ii(t)dt].

Assuming that ρ(t) is a uniform distribution with domain [ts, te], for Ii(t) = 2Iit, Eq. 5.12

becomes

f(x) = 1− 1

te − ts

∫ te

ts

exp

[
−
∑
all i

Iit
2

]
dt, (5.13)

which can be calculated semi-analytically using error functions.

Furthermore, a linear initiation rate is biologically plausible. Figure 3.5 shows that the

chromosome-averaged initiation rates in budding yeast are nearly linear in the time range

(10–45 min) probed by the experiment. The same increasing trend is also observed in many

species [38] and is a feature that makes the replication process robust (see Sec. 3.3.7).

Interestingly, assigning each origin a slope 2Ii corresponds to a multiple-initiator model

where every initiator follows the global initiation rate Io(t) = 2Iot (see discussion around

Eq. 4.4). We test the speed of this “linear MIM” on a FACS-microarray dataset probing
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Figure 5.6: Comparison between the fits to time-course microarray and the fits to FACS-
microarray data. A–C. The x-axis is the input parameter value used in the simulation.
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is added. The fit to the noisy simulated data is plotted with a solid line.

budding yeast [53]. The fit took roughly 20 minutes, which is much shorter than the 10

hours needed for the time-course microarray.
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5.4 Analysis of FACS-microarray data: non-parametric
reconstruction

In our theory, the fundamental quantities characterizing the replication kinetics are the ini-

tiation rate I(x, t) and the fork velocity v. From these two quantities, we derived the repli-

cation fraction f(x, t) in Sec. 2.1.1. In the previous section, we built a forward model that

connects these fundamental quantities to the FACS-microarray data that yield the spatially

averaged replication fraction f(t) and the temporally averaged replication fraction f(x).

Conceptually, the fitting methods used in Sec. 5.3 require solid prior information such as

the number of origins. In this section, we explore another approach, similar to the one in

Sec. 5.2.1, where the algorithm is non-parametric and is based on general considerations

about the solution’s structure. Our goal is to reconstruct I(x, t) and f(x, t) from f(t) and

f(x) using such methods. In this analysis, we assume that the fork velocity v is known

independently, in order to simplify the treatment.

Since the data are discrete, we again work with discretized quantities: f(t) → f t, a

column vector with nt elements; f(x)→ fx, a column vector with nx elements; f(x, t)→
Fxt, a matrix with nt-by-nx elements; and I(x, t) → Ixt, also a matrix with nt-by-nx
elements. We start with the matrix equation that connects Fxt to f t and fx. For cleaner

notation, we introduce an operator R that redimensions an nt-by-nx matrix into a column

vector with ntnx elements via

R(Fxt) =
[
row(Fxt, 1), row(Fxt, 2), · · · , row(Fxt, nt)

]T
, (5.14)

where row(Fxt, i) extracts the ith row from Fxt and T denotes the transpose operator. Using

this notation, the data are connected to Fxt via a simple matrix multiplication

d =

[
f t

fx

]
= AR(Fxt), (5.15)

where A is an (nt + nx)-by-(ntnx) averaging matrix that can be constructed in a straight-

forward manner.

As in Sec. 5.2, one could solve for R(Fxt) in Eq. 5.15 in the least-squares sense by
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minimizing

J = (AR(F̂xt)− d)T(AR(F̂xt)− d)

=
∥∥∥AR(F̂xt)− d

∥∥∥
2
, (5.16)

where ‖·‖2 is the `2, or Euclidean, norm, and F̂xt is an estimate of Fxt. In contrast to the

deconvolution problem in Sec. 5.2.1, the problem here is underdetermined, and the least-

squares solver was not able to converge to even a noisy solution. To overcome this problem,

we regularize J by adding the curvature term introduced in Sec. 5.2.1. Such a regularized

cost function has two desirable features: First, minimizing the curvature leads to a specific

structure and is thus much less degenerate than Eq. 5.16. Second, we expect biologically

relevant Fxt to be smooth, as has been observed in many organisms.

We construct a regularizing matrix St via StR(Fxt) = R(CtFxt), where Ct is the

numerical second derivative matrix in Eq. 5.8. Since Fxt is nt-by-nx, Ct is nt-by-nt and

measures the temporal curvature of Fxt. The matrix St is then, by construction, (ntnx)-

by-(ntnx). In like manner, we also construct a regularizer Sx for the spatial part via

SxR(Fxt) = R(CxFxtT
), where Cx is nx-by-nx and measures the spatial curvature of

Fxt. The matrix Sx is also (ntnx)-by-(ntnx).

Before adding the regularizers St and Sx to Eq. 5.16, we note that each element in the

replication fraction matrix Fxt must be between [0, 1] to be biological. Put together, we

have turned the reconstruction problem into a constrained optimization problem:

Minimize

J =
∥∥∥AR(F̂xt)− d

∥∥∥
2

+ λ1

∥∥∥StR(F̂xt)
∥∥∥

2
+ λ2

∥∥∥SxR(F̂xt)
∥∥∥

2
(5.17a)

subject to

0 ≤ F̂xt ≤ 1, (5.17b)

where λ1 and λ2 are constants that adjust the weight of each factor in the objective function.

We note that normal least-squares methods cannot handle the constraints in Eq. 5.17b. To

solve this problem, we use CVX, a package for specifying and solving constrained convex
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programs [128, 129]∗. The package runs in the MATLAB environment and includes solvers

that use advanced interior-point methods [130]. Equation 5.17 is convex because both the

objective function in Eq. 5.17a and the constraints in Eq. 5.17b are convex functions. Once

F̂xt is obtained, Eq. 2.9 can be used to extract Îxt.

5.4.1 Reconstruction with ideal FACS-microarray data

To test the method outlined above, we simulate a 60-kb genome at 1-kb resolution from 0–

20 min at 1-min resolution. The initiation rate is 0 everywhere except for the bins centred

at x = 10, 30, 50 kb, as shown in Fig. 5.7A. The fork velocity is 1 kb/min. The simulated

replication fraction Fxt and the averages f t and fx are shown in Fig. 5.7C. The simulation

procedures are described in Sec. 2.3. Our goal is to reconstruct Fxt and Ixt, given the

two “clues” f t and fx. Figure 5.7B shows that the initiation rates have an increasing and a

decreasing part. We use this form instead of the linear rate advertised in Sec. 5.3.1 because

we want to test whether our reconstruction methods can capture both trends.

Solving Eq. 5.17 with λ1 = λ2 = 1, we first obtain F̂xt (Fig. 5.8C). Given the fork

velocity (v = 1 kb/min), we then use Eq. 2.9 to invert Îxt from F̂xt (Fig. 5.8A and B).

Our first observation is that while the reconstructed f̂ t and f̂x agree with the simulation, the

reconstructed initiation rates for the origins do not. Comparing Figs. 5.8B to 5.7B, we see

that the reconstructed rates increase too slowly in the beginning and too quickly towards

the end.

A related observation is that Îxt diverges at the latest time point (Fig. 5.8A). To explain

this, we first recall that the inversion from f(x, t) to I(x, t) involves transforming f(x, t)

into H(x, t) = − ln[1− f(x, t)] (see discussion around Eqs. 2.8 and 2.9). Here, we denote

the discretized H(x, t) by Hxt = − ln[1 − Fxt], where Hxt is transformed element by

element from Fxt. At late times, as F̂xt → 1, Ĥxt → ∞. An investigation of the recon-

structed F̂xt and Ĥxt reveals that the divergence is exponential in time. Thus, Îxt, being

proportional to the second time derivative of Ĥxt (see Eqs. 2.8 and 2.9), also diverges. We

speculate that the exponential divergence is related to the interior-point method which ap-

proximates the hard constraint of F̂xt ≤ 1 in Eq. 5.17b by a steep but smooth log-barrier

function [130]. In the future, it would be interesting to test this hypothesis using algorithms

∗CVX is freely downloadable from http://cvxr.com/cvx/.
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Figure 5.7: A simulation of FACS-microarray data. A. The Ixt matrix used to generate the
simulation. The genome is 60 kb at 1-kb resolution. The simulation time spans 20 min at
1-min resolution. White is zero, and value increases with darkness. The three origins at
10 kb, 30 kb, and 50 kb, are labelled Ori1, Ori2, and Ori3, respectively. B. The initiation
rates I(t) for the three origins in A. C. The Fxt matrix. Same dimension as Ixt. White is
0; black is 1. The spatial average fx is shown at the bottom, and the temporal average f t is
shown on the right.
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Figure 5.8: Reconstructing Fxt and Ixt from simulated FACS-microarray data in the ideal
case. A. The reconstructed Îxt matrix. Same convention as in Fig. 5.7A. All values larger
than 0.8 are shown as black for better display of the entire structure. B. The initiation
rates I(t) for the three origins in A. C. The reconstructed F̂xt matrix. Same convention as
in Fig. 5.7C. In the spatial and temporal average plots, markers are the input data (those
from Fig. 5.7), and lines are the averages obtained from F̂xt. D. Comparison between the
simulated and reconstructed origin initiation rates on a log-log scale.
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that impose a hard constraint.

While the bias in our method towards an increasing rate is an issue, the main problem is

that the data are consistent with a broad range of prior biases on the shape of the initiation

rate. In other words, because many Îxt produce very similar f t and fx, one has little sense

of whether the reconstructed Îxt is similar to the true Ixt. With information on only f t and

fx, the present method can reliably extract only one parameter (e.g., the relative efficiency)

for each origin, in addition to the position. This is essentially the same conclusion that we

obtained in Sec. 5.3.

On a more encouraging note, although the method does not capture the detailed shape

of the initiation rates, it is surprisingly accurate in determining the origin positions. In par-

ticular, the reconstructed initiation rates concentrate at the correct origin positions to within

1 kb throughout time! Also, Fig. 5.8D shows that the linear increase of the reconstructed

initiation rates at early times match that of the simulated rates.

5.4.2 Reconstruction with noisy FACS-microarray data

To test the method further, we add Gaussian noise to the input f t and fx. We solve Eq. 5.17

with a range of values for λ1 and λ2; intuitively, large values of λ1 and λ2 suppress fluc-

tuations in F̂xt. The solutions we obtain all exhibit two major problems. First, the re-

constructed Îxt is not concentrated but has non-negligible values for most of the entries.

This in turn leads to F̂xt, f̂ t, and f̂x that are smoother than supposed to be. Second, Îxt

fluctuates between negative and positive values. Negative Ixt are not biological, as they

correspond to unreplicating replicated domains. From these observations, we realize that

the core problem with Eq. 5.17 is that the initiation rate Îxt is not constrained. In fact,

because the replication fraction is a consequence of the initiation rate, it is best to work

with Ixt in the reconstruction process rather than Fxt.

Formulating reconstruction with Ixt

To reformulate the problem in terms of Ixt, we note that Hxt, which equals − ln[1− Fxt],

is a linear combination of Ixt. Thus, we define the matrix P via R(Hxt) = PR(Ixt).

Pictorially, just as a domain grows to fill in a “light cone” on the space-time graph that

emanates from the initiation in Fig. 2.2, P propagates the initiation rate at (x, t) to fill the
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light cone that emanates from (x, t) with that particular rate (Fig. 5.9). Summing up all the

light cones from each element in Ixt, one obtains Hxt (Fig. 5.9). As an illustration, the

scenario in Fig. 5.9 can be written explicitly as



1 0 · · · · · · 0

0 1 0 · · · ...

0 0 1 0 · · ·
0 0 0 1 0 · · ·
1 1 0 0 1 0 · · ·
1 1 1 0 0 1 0 · · ·
0 1 1 1 0 0 1 0 · · ·
0 0 1 1 0 0 0 1 0 · · ·
1 1 1 0 1 1 0 0 1 0 · · ·
1 1 1 1 1 1 1 0 0 1 0 · · ·
1 1 1 1 0 1 1 1 0 0 1 0

0 1 1 1 0 0 1 1 0 0 0 1





0

I1

0

I2

0
...

...

0



=



0

I1

0

I2

I1

I1

I1 + I2

I2

I1

I1 + I2

I1 + I2

I1 + I2


(5.18)

or in condensed form, PR(Ixt) = R(Hxt). The elements indicated by the dots are all 0.

We note that P is lower triangular because of causality. To explain this, we consider the first

row of P. If the 5th–12th elements of the first row of P were not zero, the 5th–12th elements

of R(Ixt), which correspond to the initiation rates at later times, would propagate back in

time to contribute to the first element of R(Hxt). Likewise, if the 2nd–4th elements of the

first row of P were not zero, the 2nd–4th elements of R(Ixt), which correspond to the rate

at positions 2–4, would influence position 1 in R(Hxt) in zero time. Applying the logic to

every row, one sees that causality leads to a lower triangular structure. Although triangular

matrices can be inverted efficiently, this feature is of only marginal benefit because the

gradient-based optimization algorithm used does not involve inverting P.

Having established the connection between Îxt and F̂xt via Hxt and P, we can now
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Figure 5.9: An illustration of the light-cone propagator. The matrix Ixt is non-zero at two
space-time points with rate I1 and I2. The matrix P propagates the rates I1 and I2 forward
in time and bidirectionally outward. The sum of the propagated rates is Hxt.

consider the problem in terms of Îxt. We propose solving the problem:

Minimize

J =
∥∥∥A(1− e−PR(̂Ixt)

)
− d

∥∥∥
2

+ λ1

∥∥∥StR(̂Ixt)
∥∥∥

1
+ λ2

∥∥∥SxR(̂Ixt)
∥∥∥

1
(5.19a)

subject to

Îxt ≥ 0, (5.19b)

where ‖·‖1 is the `1 norm. Below, we discuss Eq. 5.19 term by term, including the choice

of norms. The first term in the objective function J is simply a rewriting of the first term in

Eq. 5.17a. However, the expression is now sigmoidal with respect to Îxt and non-convex.

This means that we cannot use CVX to solve Eq. 5.19. One way to proceed is to em-

ploy algorithms that can handle nonlinear objective functions (e.g., [131, 132]). These

algorithms usually involve approximating the constrained objective landscape locally as a

convex problem and moving the local solution iteratively towards the local minimum. In-

stead of exploiting such nonlinear optimizers, we investigate the properties of Eq. 5.19, in

particular, the effect of the `1 norm, in another way. As we will show later, the way involves

formulating a problem that is similar to Eq. 5.19 but uses only linear functions of F̂xt so

that the objective function is convex. The application of suitable nonlinear programming

algorithms to solve Eq. 5.19 is an interesting future topic.
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Digression on `1 and `2 norms

Before explaining the second and third terms of Eq. 5.19, we first discuss the implication

of the `1 norm. Compared to the `2 norm, the `1 norm induces sparse solutions; i.e., the

quantity in ‖·‖1 is exactly zero for many of its entries [133, 134]. To understand why, we

follow [133] and consider the toy example,

Minimize J = ‖Bx− d‖2 + λ ‖x‖1 , (5.20)

where B is a 2-by-2 matrix, x is a column vector with entry x1 and x2, d is a 2-element

column vector, and λ is a constant. Here, B, d, and λ are given, and x1 and x2 are unknown.

Equivalently, the above unconstrained problem can be rewritten as a constrained problem:

Minimize J = ‖Bx− d‖2 (5.21a)

subject to |x1|+ |x2| < τ, (5.21b)

where τ can be calculated from λ and vice versa. Figure 5.10A shows the geometry

of Eq. 5.21. The solution x1 and x2 occurs at the point where the contour levels of J in

Eq. 5.21a first contacts the boundary of the constraint set by Eq. 5.21b. Figure 5.10B shows

the same picture but for the constraint x2
1 + x2

2 < τ . Note that replacing Eq. 5.21b with this

constraint is equivalent to changing the second term in Eq. 5.20 from the `1 norm ‖x‖1 to

an `2 norm ‖x‖2. Comparing Figs. 5.10A to 5.10B, one sees that the contact in the `1-norm

picture sometimes occurs at the corners, where one of the x elements is exactly zero. In

contrast, because the constraint in the `2-norm picture is round, the contact almost always

occurs at points where both x1 and x2 are non-zero.

In higher dimensions, we expect the contact in the `1-norm picture to occur with in-

creasing probability at “edges” of the constraint where some x values are exactly zero. For

a hypercube of dimension n, the number of “faces” increases linearly with n but the number

of “vertices” and “edges” exponentially with n. If the contact is at a face, all elements in x

are non-zero; if not, some elements are exactly zero. As n increases, the number of vertices

and edges quickly overwhelms the number of faces; thus, the probability that all elements

are non-zero is minute. In contrast, because a hypersphere has no vertex or edge, the prob-

ability of having even one non-zero element is minute. This simple argument suggests that
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Figure 5.10: The geometry of `1 and `2 optimization. A. The solid diamond at the centre
represents the constraint in Eq. 5.21b. The elliptical contours are the contour levels of J in
Eq. 5.21a. The cross labels the solution of Eq. 5.21a without the constraint. The solution
to the full problem in Eq. 5.21 is at the point where the contour level first contacts the solid
diamond. B. Same as A, except that the constraint is now x2

1 + x2
2 < τ . The illustration is

adapted from Fig. 2 in [133].

the `1 norm is likely to induce sparse quantities, while the `2 norm is not.

Modified reconstruction formulation with Fxt

Having seen that `1 norm induces sparsity, we now explain the second and third terms of

J in Eq. 5.19a. The rationale behind using the matrix Sx and St is the same—to penalize

the spatiotemporal bin-to-bin fluctuations in Ixt—regardless of which of the norms is used.

However, the use of `1 norm on StR(̂Ixt) and StR(̂Ixt) has the advantage that the recon-

structed Îxt will have non-zero curvature for only few entries. Most often, zero curvature

in Îxt also corresponds to zero initiation rate; thus, the use of the `1 norm here forces Îxt

to be concentrated while regularizing rapid fluctuations. Lastly, Eq. 5.19b constrains Îxt

to be ≥ 0. One can usually put an upper bound on Îxt as well, knowing that biologically

plausible initiation rates cannot be too large.

The major difference between Eqs. 5.17 and 5.19 is the use of the `1 norm. To investi-

gate the function of the `1 norm without resorting to nonlinear optimization software, we
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consider the convex problem∗:

Minimize

J =
∥∥∥AR(F̂xt)− d

∥∥∥
2

+ λ1

∥∥∥StR(F̂xt)
∥∥∥

2
+ λ2

∥∥∥SxR(F̂xt)
∥∥∥

2
+ λ3

∥∥∥StP−1R(F̂xt)
∥∥∥

1

(5.22)

subject to

0 ≤ F̂xt ≤ 1

P−1R(F̂xt) ≥ α,

where λ3 is a constant weight, and α is a constant lower bound. Compared to the original

problem in Eq. 5.17, we have added in Eq. 5.22 the term
∥∥∥StP−1R(F̂xt)

∥∥∥
1

to the objec-

tive function and P−1R(F̂xt) ≥ α to the set of constraints. These two terms in Eq. 5.22

correspond to
∥∥∥StR(̂Ixt)

∥∥∥
1

and Îxt ≥ 0 in Eq. 5.19, respectively. (We leave out the corre-

sponding ‖Sx · · · ‖1 term in this analysis so as to see more clearly the function of a single

`1 norm.)

The rationale for formulating Eq. 5.22 is as follows: Although the use of Îxt in Eq. 5.19

is ideal for the reasons mentioned in the beginning of this section, it makes the problem

non-convex. To keep the problem convex so that CVX can be used, we limit the objec-

tive function J to be a functional of only linear functions of F̂xt. At this point, we note

that P−1F̂xt and Îxt = P−1Ĥxt have similar structures, implying that the solution ob-

tained from minimizing
∥∥∥StP−1R(F̂xt)

∥∥∥
1

should also be structurally similar to that ob-

tained from minimizing
∥∥∥StR(̂Ixt)

∥∥∥
1
. Thus, we propose solving Eq. 5.22 as a first step

towards understanding the more ideal solution of Eq. 5.19.

In particular, since Ĥxt and F̂xt are related to each other element by element, we expect

the sparsity in P−1Ĥxt to be preserved in P−1F̂xt for early times, before the origins start

to passively replicate each other. To illustrate this, we consider a 5-by-5 example of Ixt →
∗It is known that ‖x‖p is convex for p ≥ 1, where ‖·‖p is the p-norm. By extension, the p-norm of any

linear function of x for p ≥ 1 is also convex. Thus, both the `1 and `2 terms in Eq. 5.22 are convex, and CVX
can be used to find the solution.
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Hxt: 
1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

→


1 0 0 0 0

3 1 0 0 0

6 3 1 0 0

10 6 3 1 0

15 10 6 3 1

 , (5.23)

where→ represents the transformation via the propagator P. Time increases going down

the rows of the matrices. The reverse transformation can be done via P−1 (the inverse

of P) which backpropagates the light cone in Hxt to a point source in Ixt according to

Eq. 2.9. For the above case, which has fork velocity v = 1, the backpropagation in Eq. 2.9

simplifies to

I(xr, ts) =
1

2
[H(xr, ts+1)−H(xr−1, ts) +H(xr, ts−1)−H(xr+1, ts)] , (5.24)

where r and s are indices. Except for the boundary at the last row, we see that Eq. 5.24

recovers the sparsity in Ixt from Hxt. Explicitly, this happens because H(xr, ts+1) =

H(xr−1, ts) and H(xr, ts−1) = H(xr+1, ts) for places where I(xr, ts) = 0. Notice that

because Hxt and Fxt are related element by element [via Fxt = 1− exp(Hxt)], applying

Eq. 5.24 to the corresponding Fxt also results in a sparse matrix, for the explicit reason

mentioned above [i.e., F (xr, ts+1) = F (xr−1, ts) and F (xr, ts−1) = F (xr+1, ts)]. This

property no longer holds for Fxt at space-time points where multiple origins contribute

to the replication fraction. When the sum contains more than one element, Fxt = 1 −
exp(−

∑
Hxt

i) 6=
∑

[1− exp(−Hxt
i)], where Hxt

i is the Hxt of the ith origin. Thus, we

expect that the P−1F̂xt to be sparse until the time when origins start to interact.

Solving Eq. 5.22 using CVX with λ1 = λ2 = 1, λ3 = 5, and α = −2, we obtain

Fig. 5.11. We chose these values through trial and error. The solutions are not very sensitive

to the exact values of the λ and α: for instance, doubling all the values results in, on average,

a 5% change in f̂x and f̂ t and a 20% change in Îxt around the origin positions. Figure 5.11C

shows that the reconstructed F̂xt, f̂x, and f̂ t are similar to the true inputs in Figure 5.7C. As

argued above, this happens because the reconstructed Îxt captures the general structure of

the true Ixt. Indeed, Fig. 5.11A shows that the reconstructed Îxt is concentrated around the

input origin positions, and Fig. 5.11B shows the same increasing trend as Fig. 5.8B. The
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similarity between Figs. 5.11 and 5.8 suggests that using the `1 norm, which constrains

the solution to adopt the structure determined by the propagator, makes the reconstruction

robust against noisy inputs.

A careful investigation of Fig. 5.11A and B reveals two issues. First, noise, though

greatly reduced, still biases the estimate of the origin position and broadens its width, as

shown in Fig. 5.11A and D. The noise also causes the three origins to be essentially indis-

tinguishable (compare Fig. 5.11B to 5.8B). As one can see from Fig. 5.11C, the indistin-

guishable issue is expected because the noise level is comparable to the difference in peak

heights (compare the noisy fx in Fig. 5.11C to the fx in Fig. 5.7C). Second, Fig. 5.11A

shows traces of non-zero rates between the origins. As mentioned above, these traces are

expected in the solution of Eq. 5.22 because the backpropagator P−1 acts on F̂xt instead

of on Ĥxt. We expect this issue to disappear if one were to solve Eq. 5.19 for Îxt directly

instead of solving for F̂xt and inverting to Îxt.

Another issue that can be more easily dealt with by working with Îxt rather than F̂xt

is the concentration of high initiation rates in Îxt at later times (Figs. 5.8A and 5.11A). As

mentioned previously, the divergence happens because F̂xt → 1 and Ĥxt → ∞ for late

times. This is not an issue when Îxt is the fundamental variable, as the forward transfor-

mation, Fxt = 1 − exp[−Hxt], is well behaved. Furthermore, if one knows a priori that

the initiation rate should decrease towards late S phase, as is the case of the simulation, one

can directly constrain or bias Îxt towards the desired shape with a proper regularizing term.

In summary, we have developed a method to reconstruct the replication fraction f(x, t)

and I(x, t) from f(x) and f(t)—noise-corrupted spatial and temporal projections of f(x, t)

given by the FACS-microarray data. The method is based on solving a constrained convex

optimization problem that constrains the solution to follow the structure set by the propa-

gator P (or, equivalently, the backpropagator in Eq. 2.9). Using this method, we were able

to reconstruct an estimate of f(x, t) and I(x, t) that capture many of the biological relevant

features. In particular, we were able to reconstruct regions of concentrated initiation rates

in I(x, t) that correspond to origins.

Lastly, we note that the ideas presented in this section also apply to time-course mi-

croarray data. We mentioned in Sec. 2.1.1 two issues with the direct application of the

inversion formula Eq. 2.9 to time-course microarray data: First, numerical differentiation

amplifies noise in the data. Second, the temporal and spatial resolution of the data are often
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Figure 5.11: Reconstructing Fxt and Ixt from simulated FACS-microarray data with noise.
A. The reconstructed Îxt matrix. Same convention as in Fig. 5.7A. White is 0; black is
0.05. The limited range is chosen to make the features between the origins more apparent.
The vertical dotted lines mark the true positions of Ori1, Ori2, and Ori3. The slice of Ixt

marked by the horizontal line labelled t∗ is shown in D. B. The initiation rates I(t) for the
three origins in A. Each curve is calculated as the sum over ±2.5 kb of the marked origin
positions in A. Similar to Fig. 5.8D, the rates increase linearly at earlier times. C. The
reconstructed F̂xt matrix. Same convention as in Fig. 5.7C. In the spatial and temporal
average plots, markers are the input data, and lines are the averages from the reconstructed
F̂xt. The input data are generated by adding Gaussian noise to fx and f t in Fig. 5.7C. D. A
slice of Ixt at time t∗. Vertical dotted lines are the true origin positions, as in A.
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on different scales. Both problems can potentially be overcome by the method presented

here. Replacing d with the time-course microarray data and A with the appropriate matrix,

one can obtain a smooth F̂xt (or Îxt) with the appropriate regularizers (such as those in

Eq. 5.22 or 5.19), even when d is noisy. To deal with the second issue, one can simply

choose the dimensions of F̂xt (or Îxt) so that the spatial and temporal resolution are as

desired. This often amounts to using a higher temporal resolution than the data offer. In

this sense, the method is also a smoothing and interpolating algorithm that accounts for the

structure of the replication fraction set by the propagator P. We also note that in the case

of time-course microarray, the method can be applied sequentially to short stretches of the

genome and is can thus be easily scaled up to analyze replication in human.



Chapter 6

The Random-Completion Problem in
Frog Embryos

In this chapter, we shift focus to replication in frog embryos, where DNA synthesis initiates

stochastically in time and space. (Note that this is different from the case of budding yeast

discussed in Chapter 3 and 4, where licensing is sequence specific.) Stochastic initiation

implies fluctuations in the time to complete replication. These variations may lead to cell

death if replication takes longer than the cell cycle time (≈ 25 min for embryos). Sur-

prisingly, although the typical replication time is about 20 min, in vivo experiments show

that replication fails to complete at most once in 300 times. How is replication timing

accurately controlled despite the stochasticity?

Biologists have proposed two solutions to this “random-completion problem.” The

first solution uses regularly spaced origins, while the second uses randomly located origins

but increases their rate of initiation as S phase proceeds. We used the theory developed

in Sec. 2.2 to investigate this problem. We argue that the biologists’ second solution to

the problem is not only consistent with experiment but also nearly optimizes the use of

replicative proteins. We also show that spatial regularity in origin placement does not alter

significantly the distribution of replication times and, thus, is not needed for the control

of replication timing. In Sec. 1.4, we mentioned that this thesis has three themes: 1) de-

veloping models for eukaryotic replication, 2) applying the models to experiments, and 3)

understanding the replication timing control in eukaryotes. This chapter, in illustrating how

modelling can clarify and quantify the control of replication-completion time in eukaryotes

126
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in the presence of spatiotemporal stochasticity, is an example of themes 1 and 3.

6.1 Introduction

Many of the DNA-combing experiments mentioned in Sec. 1.3 have been done on embryos

of the South African clawed frog, Xenopus laevis [61, 135, 54]. In contrast to the replica-

tion program in budding yeast investigated in Chapters 3 and 4, studies of the kinetics of

replication in Xenopus embryos revealed a particularly interesting scenario where the repli-

cation program is stochastic not only in time but also in space [61, 18]. As we will discuss

below, this spatiotemporal stochasticity has important implications for the development of

embryonic cells.

In previous work, we mapped the stochastic replication process onto a one-dimensional

nucleation-and-growth process and modelled the detailed kinetics of replication seen in

DNA-combing experiments [54, 33, 34]. In [136], Bechhoefer and Marshall extended the

model to quantitatively address a generalized version of the “random-completion problem,”

which asks how cells can accurately control the replication completion time despite the

stochasticity. In this chapter, we present and extend the work in [136] further to investigate

the idea that cells regulate the replication process in order to minimize their use of cell

“resources” and to explore the effects of spatial regularity on the placement of origins.

6.1.1 The random-completion problem

Replication in Xenopus embryos is interesting because the process is stochastic yet the

replication-completion times are tightly controlled. After fertilization, a Xenopus embryo

undergoes 12 rounds of synchronous, uninterrupted, and abbreviated cell cycles (lacking

G1 and G2 phases), whose durations are strictly controlled by biochemical processes that

are independent of replication [1, 99]. In contrast to the case of most somatic cells, these

embryonic cells lack an efficient S/M checkpoint to delay entrance into mitosis for unusu-

ally slow replication [137]. Nonetheless, in each embryonic cell cycle, roughly 3 billion

basepairs of DNA are replicated in a 20-min S phase followed by a 5-min mitosis (M)



CHAPTER 6. THE RANDOM-COMPLETION PROBLEM IN FROG EMBRYOS 128

phase at 23◦C [138]†. If replication is not completed before the end of mitosis, the cell suf-

fers a “mitotic catastrophe” where the chromosomes break, eventually leading to cell death

[1, 140, 141]. (See Sec. 6.3.1 for more discussion.) In replicating the lengthy genome,

O(106) potential origins are licensed, without sequence specificity, and initiated stochasti-

cally throughout S phase [18, 54, 142, 108, 143]. One might expect that this spatiotemporal

stochasticity leads to large fluctuations in replication times, which would result in frequent

mitotic catastrophes. However, experiments imply that such catastrophic events for Xeno-

pus embryos happen less than once in 300 instances (see Sec. 6.3.1). This means that

despite the stochasticity in licensing and initiations, Xenopus embryos can tightly control

the duration of S phase, in order to meet the 25-min “deadline” imposed by the cell-cycle

duration.

Laskey was the first to ask whether non-sequence-specific licensing might lead to in-

complete replication [144]. Specifically, he assumed that origins in embryonic cells initiate

at the start of S phase. He then noted that if the origins were licensed at random, they

would have an exponential distribution of separations. With the estimates of the average

inter-origin spacing and fork velocity known at that time, one would expect a few very

large gaps. The extra time needed to replicate the gaps would then imply a replication time

longer than the known duration of S phase. Even though some details have changed, biolo-

gists still have such a paradox in mind when they refer to the random-completion problem

[138].

In older references of replication (e.g., [145]), it was assumed implicitly that the po-

tential origins are associated with ORCs. The estimated number of ORCs per nucleus in

Xenopus embryos is about 3.5× 105 (1 ORC per 8 kb) [142]. Positioning these ORCs ran-

domly on the genome (non-sequence specificity assumption), one would find many gaps

that cannot be replicated in time [18, 138]. However, more recent experiments revealed

that initiations coincide with the MCM2-7 rings and that each ORC loads 20–40 copies of

MCM2-7 [143, 108]. Using a pair of MCM rings as a potential origin, one then expects

about 3.5–7 ×106 potential origins per nucleus (1.9±0.6 potential origins/kb). Assuming

that the potential origins are free to move and are uniformly distributed along the DNA, this

†The durations of the embryonic cell cycle depend on temperature. For this chapter, we take the cell cycle
time to be 25 min at 23◦C [139]. A typical duration of S phase used is ≈ 20 min [138, 99]. Longer times (25
min for S phase and 30 min for the cell cycle) have been observed at 20◦C [139].
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density implies that there is negligible chance of having a gap that is too large to replicate

in time. Although a large excess of potential origins seems to resolve the problem, the ac-

tual distribution of these origins are not known. There is evidence that potential origins can

cluster together, effectively reducing the average density [138]. In addition, experiments

also show that potential origins initiate throughout S phase in a stochastic manner [54].

These effects will be discussed later in the chapter.

Over the years, biologists have proposed two qualitative scenarios to address this random-

completion paradox. The first scenario, the “regular-spacing model,” incorporates mech-

anisms that regularize the placement of potential origins despite the non-sequence speci-

ficity to suppress large inter-origin gaps [99]. The second scenario, the “origin-redundancy

model,” uses a large excess of randomly licensed potential origins and initiates them with

increasing probability throughout S phase [54, 99, 146]. Experimentally, the observed

replication kinetics in Xenopus are compatible with the origin-redundancy model, but there

is also evidence for some regularity in the origin spacings [62, 138, 147].

In Chapter 2, we formulated the random-completion problem in a more general way.

In particular, we investigated not only the possibility of replication completion but also

the probability of completion (fluctuations in completion time). Using the theory devel-

oped in Chapter 2, we investigate here how cells control the replication time despite the

non-sequence-specific placement and stochastic initiation of potential origins. As we shall

see, the fluctuations in the replication times can be reduced arbitrarily if one allows an

unrestricted number of initiations. As an extreme example, having an infinite number of

initiations at time t∗ implies that replication would always finish at t∗. Thus, an even more

general formulation of the random-completion problem is to ask how reliability in timing

control can be achieved with a reasonable or “optimal” use of resources in the cell. Of

course, the terms “reasonable”, “optimal”, and “resources” must be carefully defined.

This chapter is organized as follows: In Sec. 6.2, we describe how we model the repli-

cation kinetics in Xenopus embryos and show how replication-completion time can be con-

trolled despite the stochasticity. In Sec. 6.3, we use the model to extract parameters relevant

to replication completion from in vivo and in vitro experiments. In Sec. 6.4, we compare

the extracted in vivo “replication strategy” with the strategy that optimizes the activity of

replication forks. In Sec. 6.5, we explore the effect of spatial ordering on the replication

time via a variant of the regular-spacing model. We summarize our findings in Sec. 6.6.
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6.2 Modelling replication completion

We start with a brief review of the model, which is described in detail in Sec. 2.2. Our

model of the replication kinetics has three elements: initiation, growth, and coalescence

of replicated domains (Fig. 2.2). In Sec. 2.2, we used a time-dependent initiation rate I(t)

and a constant fork velocity v to describe the replication kinetics in Xenopus embryos. Our

model suggests that there is a one-to-one mapping between initiations and coalescences

and that the last coalescence marks replication completion (Fig. 2.2). We were thus able

to express implicitly the distribution of replication-completion times (or the end-time dis-

tribution) as a function of I(t), v, and the genome length L. In particular, we showed that

the end-time distribution is an extreme-value distribution, the Gumbel distribution, and de-

pends on only two parameters, the mode t∗ and the width β of the distribution defined in

Sec. 2.2.

In a previous analysis, Herrick et al. extracted a bi-linear I(t) from an in vitro DNA-

combing experiment on Xenopus embryos [54]. In order to address the random-completion

problem which is in vivo, we will transform the bi-linear initiation rate in vitro (Ivitro) to

obtain a scaled bi-linear initiation rate in vivo (Ivivo) in Sec. 6.3. For ease of calculation, in

parts of the paper, we approximate both bi-linear functions with power-law functions. Both

initiation rates turn out to be approximately quadratic (Ivitro ∼ t2.62 and Ivivo ∼ t2.45).

The use of a bi-linear or quadratic form implies that the initiation rate increases through-

out S phase. At the time that [54] was written, there was little evidence that suggested oth-

erwise. Although the data in [54] show that I(t)→ 0 toward the end of S phase, the errors

on the decreasing part are large, and the decrease was neglected [33, 136]. However, a

more recent repeat of the original experiment has shown that the decrease is not an artifact

of poor statistics but represents a true feature of the replication process [139, 38, 37]. To

address this issue, we ran simulations and found that with the decrease seen in [38, 37], the

mode of the end-time distribution was delayed by≈ 0.3% and the width increased by 15%.

These quantities approximately translate into an S phase that is prolonged by ≈ 0.5 min.

Since this difference is small compared to the overall duration of S phase (20 min), we will

use the simpler increasing I(t) throughout the chapter.

Along with the bi-linear initiation rate, Herrick et al. extracted a constant fork velocity

v ≈ 0.6 kb/min [54]. In a more recent experiment, it was shown that the fork velocity
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in vitro decreases from 1.1 to 0.3 kb/min [148]. To test whether replacing the observed

decreasing fork velocity with its average is a valid approximation, we simulated the two

cases. We found that the tails of the coalescence distributions for the two cases agree to ≈
1%, indicating that the two cases also have similar end-time distributions.

It is not surprising that the initiation rate and fork velocity are not as simple as we

modelled them to be. In addition to the temporal variations that we mentioned above,

there are also spatial variations and correlations [18, 19, 62, 138, 147, 149]. In Sec. 6.5,

we will investigate the implications of spatial regularity in origin spacing by simulation

and show that realistic regularity does not alter the end-time distribution. Overall, these

simulations suggest that an increasing time-dependent I(t) and a constant v are reasonable

approximations.

6.2.1 Control of replication-completion time

As a first step toward resolving the random-completion problem, we consider the end-

time distributions produced by different initiation rates. We use a power-law initiation

rate [I(t) = Int
n, with In a constant and n the power] because it captures Ivitro, covers a

wide range of scenarios, and can be treated analytically. We also examine an alternative

δ-function form [I(t) = Iδδ(t), with Iδ a constant], where all potential origins initiate at

the start of S phase, as one might expect this to be the scenario that minimizes replication

time and its fluctuations. (In the early literature on DNA replication, biologists assumed

this scenario to be true [144].) The most relevant results are the relationship among the

replication kinetic parameters (Iδ, In, n, v, and L) and the end-time parameters (t∗ and β)

in Eqs. 2.18 and 2.23–2.24.

From the theory developed in Sec. 2.2, we infer two heuristic principles for controlling

the end-time distribution: the first narrows the width, whereas the second adjusts the mode.

To explore how the width β depends on the initiation form [δ(t) and tn], we simulate

the replication process by choosing the prefactors Iδ and In, using Eq. 2.21 so that the

typical replication-completion time and fork velocity match the values inferred from in

vitro experiments: t∗ = 38 min and v = 0.6 kb/min. (As we will discuss in Sec. 6.3,

replication in vitro is slower than in vivo.) The t∗ = 38 min is obtained by simulating

the end-time distribution with the bi-linear Ivitro(t). The Xenopus genome length L is
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Figure 6.1: A. The end-time distribution with fixed mode t∗ = 38 min. Markers are the re-
sults of the Monte Carlo simulations. Each distribution is estimated from 3,000 end times.
The “δ-function” corresponds to initiating all potential origins simultaneously at t = 0
min. The n = 0, 1, 2 cases correspond to constant, linearly increasing, and quadratically
increasing initiation rates, respectively. Solid lines are Gumbel distributions with t∗ and β
calculated according to Eqs. 2.21–2.22. There are no fit parameters. B. Initiation distribu-
tion φi(t) defined in Eq. 2.17 for n = 0, 1, 2. Parameter values correspond to those in A.
Error bars are smaller than marker size. Solid lines are calculated from Eq. 2.17. Again,
there are no fit parameters.

3.07× 106 kb [150].

The result shown in Fig. 6.1A is perhaps counterintuitive: Initiating all origins in the

beginning of S phase, which corresponds to a δ-function I(t), gives rise to the broadest

distribution. Initiating origins throughout S phase narrows the end-time distribution. The

narrowing is more pronounced as the power-law exponent n increases. These observations

can be explained by Eq. 2.22, which states that the width is inversely proportional to the av-

erage density of potential origins. The physical interpretation is that having fewer potential

origin sites leads to more variation in the spacing between potential origins. This variation

in turn induces fluctuations in the largest spacings between initiated origins, which widens

the end-time distribution. In this light, Fig. 6.1A shows that when t∗ is fixed, the δ-function

case uses the fewest potential origins and thus produces the widest distribution. In contrast,

a large power-law exponent n implies the use of many potential origins and thus produces
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a narrow distribution. In summary, the first heuristic principle is that the end-time dis-

tribution can be narrowed arbitrarily by increasing the number of potential origins in the

system.

The second principle is that given an excess of potential origins, cells can initiate ori-

gins progressively throughout S phase instead of all at once to lower the consumption of

resources while still controlling the typical replication time. In S phase, activators and

polymerases are recyclable proteins; i.e., they can be reused once they are liberated from

the DNA [151]. Progressive initiation then allows a copy of the replicative protein to be

used multiple times. Compared to initiating all origins at once, this strategy requires fewer

copies of replicative machinery and thus saves resources. This notion of minimizing the

required replication resources is further discussed in Sec. 6.4.

Figure 6.1B shows that increasing the exponent n results in the “holding back” of more

and more initiations until later in S phase. Comparing Figs. 6.1B with 6.1A, one finds that

“holding back” initiations corresponds to narrowing the end-time distribution. Although

many potential origins are passively replicated and thus never initiate, the timing of repli-

cation can still be accurately controlled, as initiations now occur in the “needed places.”

Since the probability of initiation inside a hole (an unreplicated region) is proportional to

the size of the hole, the held-back initiations are more likely to occur in large holes. This

filling mechanism is made efficient by increasing I(t) toward the end of S phase so that

any remaining large holes are increasingly likely to be covered.

One subtle point of the origin-redundancy scenario is that although the potential origins

are licensed at random, the spacings between initiated origins form a distribution ρi(s) with

a non-zero mode that contrasts with the exponential distribution of spacings between poten-

tial origins. An example of the ρi(s) is shown later in Sec. 6.5. In earlier literature, before

experiments showed that initiations can take place throughout S phase, biologists believed

that all potential origins initiate at the start of S phase. In this δ-function case, the distri-

bution of the inter-potential-origin spacing is the same as that of the spacing between fired

origins (inter-origin spacing). As mentioned previously, a completely random placement

leads to an exponential distribution. Thus, the mode of the inter-origin distribution ρi(s)

is at zero spacing (s = 0): there are many very small gaps balanced by occasional large

ones. By contrast, in a scenario with an increasing I(t), a peak will arise in ρi(s) because

closely spaced potential origins are not likely to all initiate but be passively replicated by a
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nearby initiation. This passive replication effect suppresses the likelihood of having small

inter-origin spacings and thus creates a non-zero mode value in the spacing distribution.

One should be careful not to confuse the two distributions.

In conclusion, we have shown that a large excess of potential origins suppresses fluctua-

tions in the size of inter-potential-origin gaps, while the strategy of holding back initiations

allows control of the typical replication time. These control mechanisms are also “open

loop” in that they do not require any information about the replication state of the cell. In

the next section, we review what is known experimentally about DNA replication kinetics

in Xenopus embryos, in light of the analysis we have just presented.

6.3 Analysis of replication experiments in frog embryos

In the previous section and in Sec. 2.2, we showed that given an initiation rate and a fork

velocity, one can find the associated end-time distribution using extreme-value theory. In

this section, we review what is known experimentally about these quantities in Xenopus

embryos. There have been two classes of experiments: in vivo, where limited work has

been done [140, 1, 141], and in vitro, where rather more detailed studies have been per-

formed on cell-free extracts [61, 135, 138, 54]. Typically, embryo replication in vivo takes

about 20 minutes of the (abbreviated) 25-minute cell cycle [99]. As we discuss below,

in vivo experiments imply that replication “failure”—incomplete replication by the end of

the cell cycle—is very unlikely, occurring less than once in about 300 instances. The in

vitro experiments on cell-free extracts give more detailed information about the replication

process, including an estimate of the in-vitro initiation rate Ivitro(t). However, the typical

replication time in vitro is about 38 min, not 20 min, and it is not obvious how one can

apply the results learned from the experiments in vitro to the living system. Below, we

propose a way to transform Ivitro(t) into an estimate of the in vivo initiation rate Ivivo(t)

that satisfies the failure probability of the in vivo system.

6.3.1 In-vivo experiments on cell death

A low replication-failure rate is remarkable because Xenopus embryos lack an efficient S/M

checkpoint to delay cell cycle progression when replication is incomplete [99]. If chromo-
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somes separate before replication is complete, cells suffer “mitotic catastrophe,” which

leads to apoptosis [140]. Thus, a low failure rate in embryonic cells implies that replication

timing is precisely controlled by the initiation rate and fork velocity. Mathematically, we

can test whether an initiation rate is realistic by calculating the rate of mitotic catastrophe

F it implies. To evaluate F , we first choose a time t∗∗ at which mitotic catastrophe occurs

if replication is not fully completed. Then,

F ≡
∫ ∞
t∗∗

φe(t)dt = 1− Φe(t
∗∗) . (6.1)

As a first step in estimating F , we identify t∗∗ with the cell cycle time (≈ 25 min). Our

identification is justified by observations that imply that replication can continue throughout

mitosis, if needed [140]. Thus, even if the bulk of replication is completed before entering

mitosis, small parts of the genome may continue to replicate, essentially until the cell totally

divides. However, if unreplicated regions remain after the cell finishes dividing, the two

daughter cells will inherit fragmented chromosomes.

Having identified t∗∗, we estimate F using data from an experiment on DNA damage in

embryos [1, 141]. In [1], Hensey and Gautier found that cells with massive DNA damage

(induced by radiation) will continue to divide through 10 generations. Then, at the on-

set of gastrulation, which occurs between the 10th and 11th cleavages, an embryo triggers

a developmental checkpoint that activates programmed cell death. The role of cell death

is to eliminate abnormal cells before entering the next phase of development, where the

embryo’s morphology is constructed via cell migration. In Hensey and Gautier’s study,

abnormal cells were detected using TUNEL staining, a technique for detecting DNA frag-

mentation in cells. In a later work investigating the spatial-temporal distribution of cell

deaths in Xenopus embryos, they reported that, at gastrulation, 67% of 237 embryos, each

containing 1024 cells, had more than 5 TUNEL-stained cells [141]. We can estimate F

from the above observations using a simple model based on the following four elements:

1. All cells divide; each produces two cells.

2. If a cell has an abnormal chromosome, all its progeny are abnormal because replica-

tion can at best duplicate the parent’s chromosome.

3. Along with abnormal cell division and other factors, failure to replicate all DNA
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A B

Figure 6.2: A branching model for cell proliferation. A. Schematic diagram of the simple
model described in the text. Open circles represent normal proliferating cells, while filled
circles represent abnormal cells. The numbers indicate the round of cleavage. Once a cell
fails to replicate properly, all its progeny will be abnormal. B. Cumulative distribution
of the number of dead cells at gastrulation (between cleavage 10 and 11) generated using
Monte Carlo simulation. The distribution satisfies the constraint that 33% of the embryos
have 5 or fewer abnormal cells. The inset shows the convergence of the gradient search to
F = 3.73 ± 0.01 × 10−3. The average and standard deviation of the mean are computed
over the last 40 values of the gradient search.

before the end of a cell cycle results in chromosome breakages and leads to apoptosis

at gastrulation.

4. All normal cells in all rounds of cleavage have the same probability F of becoming

abnormal because of incomplete replication.

A schematic depiction of our model is shown in Fig. 6.2A.

The above model can be described by a standard Galton-Watson (GW) branching pro-

cess [152], where the number of proliferating progeny generated by a normal cell is an

independent and identically-distributed random variable. GW processes obey recursion re-

lations that can be solved analytically using probability generating functions; however, the

solution in our case is too complex to be helpful. We thus turned to numerical analysis.

We used Monte Carlo methods to simulate the branching process outlined above. Each

embryo, after going through 10 rounds of division, contains m abnormal cells that commit
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apoptosis before the 11th division. Simulating N embryos results in a distribution of num-

ber of deaths. We then compare the value of the cumulative distribution at 5 death events

with the reported likelihood, which states that 33% of the time, there are 5 or fewer dead

cells in 1024 cells [141]. Figure 6.2B shows the cumulative distribution that matches the re-

ported numbers. To find F , we used a gradient-based method for finding roots of stochastic

functions [153]. In this case, the input is the failure rate F , and the function evaluates the

number and likelihood of deaths via a Monte Carlo simulation of the branching process of

237 embryos. We found that the numbers reported in [141] imply F = 3.73± 0.01× 10−3

(Fig. 6.2B inset)†. Since replication failure is only one of the factors that contribute to cell

death, the F (≈ 1 in 300) inferred is an upper bound to the replication failure rate.

Comparing Eq. 6.1 with the standard cumulative Gumbel distribution given by the in-

tegral of Eq. 2.18, one can relate the quantities t∗∗ and F to the Gumbel parameters via

t∗∗ = t∗ − β(t∗) ln

[
ln

(
1

1− F

)]
. (6.2)

For F � 1, the expression simplifies to t∗∗ ≈ t∗ − β(t∗) ln(F ), which implies that the end

time is insensitive to the exact value of F : an order-of-magnitude estimate suffices.

6.3.2 Connecting replication in vitro to duplication failure in vivo

As discussed above, the most detailed experiments on replication in Xenopus have been

conducted on cell-free egg extracts. In previous work [54], Herrick et al. modelled a DNA-

combing experiment on such an in vitro system and inferred the time-dependent initia-

tion rate Ivitro(t) (approximately quadratic as discussed in Sec. 6.2), a fork velocity of 0.6

kb/min (averaged over S phase [148]), and a typical replication time t∗ of 38 min. In con-

trast, the typical replication time in living embryos is only 20 min. While it is generally

believed that DNA replication in the two settings occurs in a similar way, the overall dura-

tion of S phase is an obvious difference that must be reconciled. We thus have a dilemma:

the known replication parameters, v and I(t), are extracted from in vitro experiments while

†In [136], we estimated a failure rate F ≈ 10−4 using a simple model that neglected the complications
due to the branching process. Since t∗∗ depends on the logarithm of F from Eq. 6.2, the factor of 30 between
the two estimates of F results only in a roughly 1 min shift in the t∗∗ of the end-time distribution and does
not alter the qualitative conclusion of the previous work.
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the failure rate F is derived from observations of cells in vivo. Is it possible to “transpose”

the results from the in vitro experiments to the in vivo setting? Although any such trans-

formation is obviously speculative, we propose here a simple way that is consistent with

known experimental results.

We hypothesize that, except for the fork velocity, replication is unaltered between the

in vitro and in vivo systems. The subtlety is that there are several conceivable interpreta-

tions of “unaltered” replication. One could keep Ivitro(t) the same; however, this is not

reasonable in that the dramatic increase in Ivitro(t), at t ≈ 17.4 min of the bi-linear func-

tion, would be moved from the midpoint of replication to the end [54]. Alternatively, one

could express the initiation rate in terms of the fraction of replication; i.e., I = I(f), and

preserve this function. In this case, one would need a fork velocity of about 2.2 kb/min to

produce the extracted in vivo failure rate. Although this is a reasonable fork speed in sys-

tems such as the Drosophila embryo, it is about twice the maximum fork speed observed

in Xenopus embryonic replication in vitro [148]. The third possibility is to preserve the

maximum number of simultaneously active replication forks. Intuitively, this is plausible

as each replication fork implies the existence of a large set of associated proteins. The max-

imum fork density then gives the minimum number of copies of each protein set required.

Thus, we are in effect assuming that the number of replicative proteins remains the same in

both cases.

The simplest way to preserve fork usage is to rescale the density of forks active at time

t,

nf (t) =
1

2v

df

dt
= g(t)e−2vh(t) , (6.3)

linearly in time so that

nvivof

(
t

tscale

)
= nvitrof

(
t

t∗vitro

)
, (6.4)

where t∗vitro ≈ 38 min and tscale is chosen so that t∗∗ = 25 min and F = 3.73±0.01×10−3.

We found that the in vitro fork usage is preserved by using the rescaling Ivivo(t/tscale) ∼
2Ivitro(t/t

∗
vitro) and v = 1.030± 0.001 kb/min (Fig. 6.3)†. The error on v is a consequence

†In extracting the initiation rate Ivitro, Herrick et al. also extracted a “starting-time” distribution [54].
As discussed at the end of Sec. 2.2.3, the starting-time asynchrony partially captures the spatial variations
in the true initiation rate and should be accounted for. We showed that such variations shift the mode of the
end-time distribution. The starting-time distribution extracted in [54] is a normal distribution with standard
deviation ≈ 6 min. Using Eq. 2.27, we estimate that t∗vitro increases by roughly 5%. Since the change is
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Figure 6.3: Density of simultaneously active replication forks throughout S phase, nf (t).
The dotted curve corresponds to the in vitro fork usage while the solid curve is the rescaled
fork usage that satisfies the constraints t∗∗ = 25 min and F = 0.00373. The rescaled nf (t)
is generated using Ivivo(t/t∗vivo) ∼ 2Ivitro(t/t

∗
vitro) and v = 1.030 kb/min.

of the uncertainty in F .

Using the transformed Ivivo(t), we estimate from gvivo(t
∗) the lower bound of the po-

tential origin density to be 1.2 potential origins/kb (PO/kb). This lower bound is consis-

tent with the experimentally estimated average density of 1.9±0.6 PO/kb mentioned in

Sec. 6.1.1. The velocity we infer also has a significant interpretation. As noted previously,

Marheineke and Hyrien found that the fork velocity in vitro is not constant but decreases

linearly from about 1.1 kb/min to 0.3 kb/min at the end of S phase [148]. The decrease in

fork velocity suggests that in vitro replication progressively depletes rate-limiting factors

(e.g., the nucleotides) throughout S phase. We suggest that our extracted v ≈ 1 kb/min

means that in-vivo systems are able to maintain the concentration of rate-limiting factors,

perhaps by the factors’ diffusing into the nuclear membrane [154] to maintain a roughly

constant fork velocity throughout S phase. In summary, by preserving the rescaled version

of the fork usage rate in vitro, we have transformed Ivitro(t) into an Ivivo(t) that satisfies

the in-vivo failure rate and results in reasonable replication parameters.

small, the rescaling arguement presented here still holds.
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6.4 Replication completion and the optimization of fork
activity

The random-completion problem mentioned in Sec. 6.1 can be quantitatively recast into a

problem of searching for an initiation rate that produces the in-vivo failure rate constraint

in Eq. 6.1. In Fig. 6.4A, we show that any initiation form with the proper prefactor can

satisfy the constraint on the integral of the end-time distribution, including the transformed

in vivo initiation rate. Can we then understand why Xenopus embryos adopt the roughly

quadratic I(t) and not some other function of time?

To explore this question, we calculate for the different cases of I(t) the maximum

number of simultaneously active forks. Figure 6.4B shows that initiating all origins at the

start of S phase [setting I(t) ∼ δ(t)] requires a higher maximum than a modestly increasing

I(t). At the other extreme, a rapidly increasing I(t) (high exponent n) also requires many

copies of replicative machinery because the bulk of replication is delayed and needs many

forks close to the end of S phase to finish the replication on time. Thus, intuitively, one

expects that an intermediate I(t) that increases throughout S phase—but not too much—

would minimize the use of replicative proteins. Figure 6.4B hints that the in vivo initiation

rate derived from in vitro experiments may be close to such an optimal I(t), as the number

of resources required by Ivivo(t) is close to the minimum of the power-law case.

The three resources modelled explicitly are potential origins, activators, and replica-

tion forks. It is not immediately clear which replication resources should be optimized.

In general, the metabolic costs of expressing genes and making proteins are assumed to

be non-rate-limiting factors. On the other hand, it is plausible that the cell minimizes the

“complexity” of the replication process to minimize topological problems caused by simul-

taneously active replication forks, thus reducing the chance of unfaithful replication. Thus,

in our optimization analysis, we ignore the metabolic costs of having a large number of

potential origins and propose that the maximum number of simultaneously active forks is

minimized. We argued previously that the maximum of nf (t) gives the minimum number

of copies of the proteins required for DNA synthesis. Moreover, since the unwinding and

synthesis of DNA at the forks create torsional stress on the chromosomes, minimizing the

number of active forks would minimize the complexity of the chromosome topology, which

may help maintain replication fidelity [155]. For these reasons, the maximum number of
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Figure 6.4: A. Replication end-time distribution with t∗∗ fixed to be 25 min and F =
0.00373. Similar to Fig. 6.1A, the width decreases with an increase in the exponent n.
B. Typical maximum number of simultaneously active forks. The curve is obtained from
extracting the maximum value of nf (t) for different exponents n.

active forks is a plausible limiting factor for replication. Below, we calculate the optimal

I(t) and compare it with Ivivo(t).

The number of forks active at time t is given by nf (t) = 2g(t) exp[−2vh(t)]. One can

find the I(t) that optimizes the maximum of nf (t) by minimizing

nmax[I(t)] = lim
p→∞

[∫ t∗∗

0

nf [I(t)]p dt

]1/p

. (6.5)

This is a common analytic method to optimize the maximum of a function [156]. The trick

is to analytically calculate the Euler-Lagrange equations for finite p and then take the limit

p → ∞, where the contribution of the maximum dominates the integrand. The associated

Euler-Lagrange equation is

ḧ(t) = 2vḣ2(t) , (6.6)

where we recall that ḧ(t) = I(t) and ḣ(t) = g(t). Note that Eq. 6.6 is independent of

p, suggesting that the optimal nf (t) does not have a peak. Solving Eq. 6.6 subject to the

boundary condition that the replication fraction be 0 at t = 0 [i.e., h(0) = 0] and 1 at
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t = t∗∗, we obtain

Iopt(t) =
1

2vt∗∗

[
δ(t) +

1

t∗∗
1

(1− t/t∗∗)2

]
. (6.7)

Inserting the result from Eq. 6.7 into Eq. 6.3, one sees that nf (t) = 1/vt∗∗ is constant

throughout S phase and is about three times smaller than the maximum number of simul-

taneously active forks in vivo (Fig. 6.5C). Intuitively, the most efficient strategy is to use

all the forks all the time. In terms of Iopt(t), this optimal solution, like Ivivo(t), increases

slowly at first, then grows rapidly toward the end of S phase (Fig. 6.5B). However, the

diverging initiation probability at t → t∗∗ implies that this initiation rate is unphysical.

In effect, a constant fork density implies that when the protein complexes associated with

two coalescing forks are liberated, they instantly find and attach to unreplicated parts of

the chromosome. It also implies that at the end of S phase, all the replication forks would

be active on a vanishingly small length of unreplicated genome. Both implications are

unrealistic.

To find a more realistic solution, we tamed the behaviour of the initiation rate for t →
t∗∗ by adding a constraint. A natural constraint to impose is that the failure rate in vivo

be satisfied†. The diverging initiation rate at t = t∗∗ in Eq. 6.7 means that the replication

always finishes exactly at t∗∗ and that the failure rate is zero. Therefore, having a non-

zero failure rate would force the initiation rate to be non-divergent. This constraint is also

consistent with the idea that the replication process is shaped by the evolutionary pressure

of survival. The new optimization quantity is then

J [I(t)] = max {nf [I(t)]}+ λ {F [I(t)]− Fvivo} , (6.8)

where the first term is the maximum of the fork density, and the second term is a penalty

function that increases J for F 6= Fvivo. The strength of the penalty is set by the Lagrange

multiplier λ. The time associated with F is t∗∗ = 25 min throughout this section.

Substituting Eq. 6.5 into the first term of Eq. 6.8 and applying the method of variational

calculus, we obtained an integro-differential equation that is difficult to solve analytically

because the gradient of Eq. 6.5 is highly nonlinear and because F depends on t∗, which is

†Since a diverging initiation rate requires infinitely many activators and initiators to find each other in an
infinitesimal amount of time, another natural constraint is that the number of replicative proteins and search
time be finite, as modelled in [37]. This is an interesting topic for future analysis.
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not readily expressible in terms of the basic replication parameters I(t) and v. For these

reasons, we turned to a gradient-approximation numerical method called finite difference

stochastic approximation (FDSA) [153]. Although this search method is used for stochastic

functions (as the name suggests), the method is just as suitable for deterministic functions.

The basic concept is that the gradient of a function, which encodes the steepest-decent

direction toward a local minimum, can be approximated by a finite difference of the func-

tion. The advantage of this method is that we can replace the complicated evaluation of the

variation δJ [I(t)] by the easily calculable difference J [I + ∆I]− J [I −∆I].

Figure 6.5 shows the results of the FDSA search. We perform FDSA under several

different conditions, with the initial search function being Ivivo(t). First, we investigate

the case where the optimization objective J is simply max{nf}, with no constraint or

boundary condition [except nf (t) > 0]. The markers in Fig. 6.5A shows that the optimal

solution lingers near max{nf} = 0.05 (slow decrease in J) and then goes to the global

minimum (zero). In the transient regime (search step between 50 to 100), the fork density

evolves from a bell curve to a constant, which is the form of the calculated optimal solution.

For search step > 100, the fork density (a constant) decreases to zero if no constraint is

imposed. This zero solution corresponds to the case where no initiation or replication

occurs. However, when the boundary condition used in the calculation (replication finished

at t∗∗) is imposed, the FDSA algorithm indeed finds the nf (t) = 1/vt∗∗ optimal solution

(data not shown).

The second search was implemented following Eq. 6.8, where the constraint in F is

added. Figure 6.5C shows that the fork solution is no longer a constant because the tail

needs to decrease to satisfy F = Fvivo. The corresponding effect on the I(t) is a decrease

toward the end of S phase (Fig. 6.5B). The I(t) behaves otherwise as predicted by Eq. 6.7

for most of S phase—a δ-function at the beginning followed by a rate that increases sharply

at the end of S phase. Interestingly, the mechanism of spreading out the fork density to

minimize the maximum fork usage seen in the analytical calculation is still present here, as

shown by the plateau at early S phase (Fig. 6.5C).

In the third search, in addition to Eq. 6.8, we impose that there be no burst of initiation

at the beginning of S phase [g(0) = 0], as seen in experiments. Figure 6.5C shows that

with the addition of each constraint, the maximum of the fork density increases toward the

in vivo value. Furthermore, besides satisfying the constraints and boundary conditions, the



CHAPTER 6. THE RANDOM-COMPLETION PROBLEM IN FROG EMBRYOS 144

0.10

0.05

0.00

M
ax

{ 
n f

 }
 (

 fo
rk

 / 
kb

 )

200150100500

Search step

A
vivo

optimal

Fvivo + g(0)

Fvivo

0.6

0.4

0.2

0.0

I(
t)

 (
 /k

b 
/m

in
 )

20100

S phase (min)

B

 optimal
 in vivo
 Fvivo

 Fvivo + g(0)

0.15

0.10

0.05

0.00

n f
 (

 fo
rk

 / 
kb

 )

20100

S phase (min)

C

Figure 6.5: Results of a numerical search for optimal initiation rates under various con-
straints. The label “vivo” corresponds to the in vivo case; “optimal” corresponds to opti-
mizing maximum fork density with no constraint (corresponds to Eq. 6.7); “Fvivo” corre-
sponds to optimization with the constraint that the failure rate be equal the Fvivo extracted
in Sec. 6.3.1; “Fvivo + g(0)” corresponds to optimization with the constraint of Fvivo and
the constraint that g(0) = 0. A. Finite difference stochastic approximation search. The
markers show the search for the case of minimizing the max{nf} with no constraint and
no boundary condition. The horizontal lines are the maximum fork density for different
search conditions. B. Initiation rate I(t). The Ivivo shown is in the bi-linear form, follow-
ing [54]. C. Fork density nf (t). Line types correspond to those in B.
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fork density profiles show a common feature of forming as lengthy a plateau as possible to

minimize the maximum. The resulting I(t) with this additional constraint is qualitatively

similar to Ivivo (Fig. 6.5B).

There are still some differences between the result of the third search and nvivof . In

particular, the optimal fork solution increases much faster at the beginning of S phase

than nvivof does to spread out the fork activities. Minimizing the maximum number of

initiations also leads to the same feature: a fast initial increase in the initiation activities

followed by a plateau. These observations suggest that while minimizing the maximum of

simultaneously active replicative proteins may be a factor that determines the replication

kinetics, there must be a stronger limiting factor at the beginning of S phase to suppress

the fast initial increase. A plausible hypothesis is that the copy number of some replicative

proteins is small in the beginning of S phase but gradually increases with nuclear import

[139]. This would lead to suppression of fast replication kinetics at the early stage of

S phase. In conclusion, the optimization method presented here connects the replication

process with an objective function that relates to evolutionary selection pressure and allows

one to explore the limiting factors of replication.

6.5 The lattice-genome model: from random to periodic
licensing

Until now, we have assumed a spatially random distribution of potential origins. In this

section, we explore the implications of spatial ordering among the potential origins on the

end-time distribution. We have two motivations. First, an “obvious” method for obtaining a

narrow end-time distribution is to space the potential origins periodically and initiate them

all at once. However, such an arrangement would not be robust, as the failure of just one

origin to initiate would double the replication time. Still, the situation is less clear when

initiations are spread out in time, as the role of spatial regularity in controlling inter-origin

spacing is blurred by the temporal randomness.

Our second motivation is that there is experimental evidence that origins are not po-

sitioned completely at random. A completely random positioning implies that the dis-

tribution of gaps between potential origins is exponential, resulting in many small inter-



CHAPTER 6. THE RANDOM-COMPLETION PROBLEM IN FROG EMBRYOS 146

potential-origin spacings. However, in an experiment of plasmid replication in Xenopus

egg extracts, Lucas et al. found no inter-origin gap smaller than 2 kb [147]. In a previous

analysis, Jun and Bechhoefer also observed that, assuming random licensing, one expects

more inter-origin gaps less than 8 kb than were observed and fewer between 8–16 kb [34].

Moreover, experiments have suggested a qualitative tendency for origins to fire in groups,

or clusters [138]. These findings collectively imply that there is some spatial regularity in

the Xenopus system, perhaps through a “lateral inhibition” of licensing potential origins too

closely together. Our goal is to find an “ordering threshold,” at which point the resulting

end-time distribution starts to deviate from the random-licensing case.

To investigate spatial ordering, we change the continuous genome to a “lattice genome”

with variable lattice spacing dl. Potential origins can be licensed only on the lattice sites.

For dl → 0, the lattice genome becomes continuous, and the model recovers the random-

licensing case. As dl increases, the lattice genome has fewer available sites for licensing

potential origins, and the fraction of licensed sites increases. In this scenario, the spacings

between initiated origins take on discrete values—multiples of dl. One can imagine that a

further increase in dl would eventually lead to a critical dl, where every lattice site would

have a potential origin. This scenario corresponds to an array of periodically licensed

origins, which leads to a periodic array of initiated origins with spacing dl. Thus, by in-

creasing a single parameter dl, we can continuously interpolate from complete randomness

to perfect periodicity.

In order to compare regularized licensing to random licensing, we impose that while

the potential origins may be distributed along the genome differently, the total initiation

probability across the genome is conserved. We then write

I(x, t) = dl I(t)

L/dl∑
n=0

δ(x− ndl) , (6.9)

where x is the position along the genome. Equation 6.9 shows that as the number of lattice

sitesL/dl is reduced via an increase in dl, the initiation probability for each site is enhanced,

resulting in more efficient potential origins†. This implies a tradeoff between the “quantity”

†This concept is also captured by Eq. 2.13, Sec. 3.3.7, and the multiple-initiator model (MIM) in Chap-
ter 4. Since this work was published before the study in Chapter 3 and 4, we did not try to explicate the
connections in this chapter.
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and “efficiency” of potential origins.

A

B

C

Figure 6.6: Schematic diagram of licensing on a lattice genome. A. A realization of repli-
cation using random-licensing (dl = 0 case). The grey (white) area represents replicated
(unreplicated) domains. Circles denote initiations. B. Origins are forced to their nearest
lattice sites (marked by vertical lines at multiples of dl = 200 kb), while initiation times
remain the same. C. The result of the shift in origin positions. Open markers represent
“phantom origins” that do not contribute to the replication; filled markers denote the actual
origins. Alternatively, a filled marker can be viewed as the origin that initiated in a cluster
of potential origins. Going from dl = 0 kb in A to 200 kb in C, the average initiation time
decreased from about 22 min to about 10 min.

Figure 6.6 shows how Eq. 6.9 connects random licensing to ordered licensing and il-

lustrates this tradeoff. A realization of random licensing is shown in Fig. 6.6A. Since

Eq. 6.9 modifies only the spatial distribution of origins relative to our previous I(t), the

effect of going from a continuous genome to a lattice genome is equivalent to shifting

the randomly licensed origins to their nearest lattice sites while preserving their initiation

times (Fig. 6.6B). In so doing, we obtained Fig. 6.6C, which shows multiple initiations on

a lattice site. Since re-initiation is forbidden in normal replication, on each site only the

earliest initiation contributes to the replication. The later initiations are “phantom origins”

that illustrate how ordering reduces the number of initiations but enhances the efficiency of

potential origin sites. The increase in efficiency is indicated by the decrease in the average

initiation times between the two scenarios.
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A perhaps more interesting and biologically relevant interpretation of Fig. 6.6 is that

when potential origins cluster together, the one that initiates earliest can passively replicate

the nearby potential origins. In other words, clustering can, in effect, reduce the effective

number of potential origins but increase their efficiency. Thus, the increasing spatial order

of potential origins from Fig. 6.6A to 6.6C can be interpreted either as having fewer but

more efficient actual potential origins or as indicating clustering.

Having outlined the rules for licensing, we now introduce two quantities, “periodicity”

P and dinter, that will be useful in later discussions of how dl alters the end-time distribu-

tion. We first look at ρi(s), the distribution of the spacing between initiated origins, where

s is the inter-origin spacing. Figure 6.7A shows two ρi(s): the continuous one corresponds

to random licensing, while the discrete one corresponds to setting dl to 2 kb. The two dis-

tributions are different because of the discretization effect of the lattice genome: origins

can have separations that are only multiples of dl. As dl increases, one expects a dominant

spacing to appear in the system. We characterize this ordering effect by defining the pe-

riodicity P as the probability at the mode of the discrete inter-origin-spacing distribution.

As an example, the dl = 2 kb distribution shown in Fig. 6.7A has P = 0.23, indicating that

23% of the nearest neighbour origin pairs are equally spaced. In the fully periodic case,

the probability at the mode is 1; all the spacings have the same value; and the system is

100% periodic (P = 1). For dl → 0, P should be interpreted as the mode of ρi(s) times

a vanishingly small ∆s (∼ dl). Thus, P → 0 in the small ∆s limit, as there will be no

inter-origin spacings sharing the same size.

In interpolating from random licensing to periodic licensing, one expects that the av-

erage inter-origin spacing davg to change from being dl-independent to being linearly de-

pendent on dl. Indeed, from Fig. 6.7B, which shows davg as a function of dl, we can label

two asymptotes and identify two regimes. We first introduce dinter to be the average inter-

origin spacing of the dl = 0 kb case. For dl → 0, davg asymptotically approaches dinter.

In contrast, for large dl (when all lattice sites are occupied), davg approaches the asymptote

davg = dl. The intersection of the two asymptotes is precisely at dl = dinter. We therefore

identify two regimes, with Regime I being dl ≤ dinter and Regime II being dl > dinter.

Physically, the weak dl dependence in Regime I suggests that the system is still spatially

random, whereas the asymptotically linear behaviour in Regime II indicates that the system

is becoming periodic.
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Figure 6.7: Properties of the lattice-genome model. A. The distribution of spacings be-
tween initiated origins, ρi(s), for the dl = 0 and 2 kb cases (2 kb is chosen to mimic the
minimal spacing between origins reported in [147]). The initiation rate and fork velocity
are those discussed in Sec. 6.3.2. The mean of the continuous distribution (dl = 0 kb
case) is marked dinter and is ≈ 6.5 kb. The mode of the discrete distribution (dl = 2 kb
case) is marked by “ ? ”. The probability P at the mode (0.23 in this case) is defined
to be the periodicity, a measure of ordering in the system. B. Average inter-origin spac-
ing davg as a function of dl. There is a gradual transition from Regime I to Regime II. In
Regime I (dl ≤ dinter), davg is asymptotically independent of dl for dl → 0. In Regime II
(dl > dinter), davg is asymptotically linearly proportional to dl. Inset shows the periodicity
P as a function of dl.

The length scale dinter encodes the two factors that determine the distribution of inter-

origin spacings. The first factor is the passive replication of closely positioned potential

origins, which suppresses the likelihood of having small inter-origin spacings. The second

factor is based on the low probability of randomly licensing two far-away origins, which

reduces the probability of having large inter-origin gaps. Both of these effects can be seen

in Fig. 6.7A.

When dl exceeds dinter, the typical spacing between potential origins (∼ dl) exceeds

the typical range of passive replication and approaches the typical largest spacing of the

random-licensing case. This means that potential origins are not likely to be passively
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Figure 6.8: The end-time distribution as a function of spatial ordering defined by dl. Each
horizontal profile is an end-time distribution. In Regime I, the end-time distribution does
not change appreciably; in Regime II, the mode shifts to the right. The ordering threshold
is at dl = dinter ≈ 6.5 kb. The dashed line shows the dl = 2 kb end-time distribution,
which corresponds to the lateral inhibition ordering observed experimentally [147].

replicated or positioned farther than dl apart (note that the next smallest spacing 2dl is

quite large). The inset in Fig. 6.7B, which shows the periodicity P as a function of dl,

strengthens this notion that for dl > dinter, the system enters a nearly periodic regime

where P has saturated.

Our main result is Fig. 6.8, which shows how the end-time distribution changes with

increasing dl. The initiation rate used in the simulation is the power-law approximation

of the Ivivo(t) mentioned in Sec. 6.2, transformed using Eq. 6.9. The fork velocity and

failure rate used are as extracted in Sec. 6.3. There are again two distinct regimes separated

by the ordering threshold dinter ≈ 6.5 kb. Below the threshold (Regime I), the end-time

distribution is nearly independent of dl. Above the threshold (Regime II), the mode shifts

to the right. The width is unaltered.

To understand the changes in going from Regime I to Regime II, we note that in

Eq. 2.19, t∗ depends on the number of initiations No. On average, No is unaffected when

the number of lattice sites available is in excess ( No
L/dl

> 1). This means that t∗ starts to

change only when dl = L/No which is precisely dinter. In Regime II, the minimum time

to replicate the smallest gap between potential origins, dl/v, becomes significant compared
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to the temporal randomness resulting from stochastic initiation. In effect, t∗ ≈ dl/v+ tavg,

where tavg is the average initiation time. We tested numerically that the mean and standard

deviation of the initiation times both decrease sigmoidally, for dl/dinter > 3. Thus, for the

range of dl shown in Fig. 6.8, one expects t∗ ∝ dl in Regime II, while the width should be

unaltered.

In Xenopus embryos, the inhibition zone observed in plasmid replication corresponds

to dl ≈ 2 kb (dashed line in Fig. 6.8) [147]. The value is well below the ordering threshold

of dinter ≈ 6.5 kb, suggesting that the experimentally observed spatial ordering plays a

minor role in solving the random-completion problem in embryonic replication.

In a very recent work, Karschau et al. studied replication completion in terms of opti-

mization and spatial ordering as well [157]. They propose that the DNA replication pro-

cess evolves to minimize the replication-completion time, as faster completion would allow

faster development and provide evolutionary advantage. Their main result is that under a

scenario where the efficiency of each potential origin is below a critical threshold, form-

ing clusters of potential origins is the strategy to minimize the replication-completion time.

They then argued qualitatively that the clustering scenario matches experimental observa-

tions. One issue with this proposal is that there is no clear mechanism that enforces the

formation of the clusters described in the paper. In addition, the experimental observa-

tions, while qualitatively consistent with clustering, are also well captured by the random

scenario (see Fig. 3C in [157]). In summary, stronger experimental evidence is needed to

support a clustering scenario.

6.6 Conclusion

In this chapter, we have extended the stochastic nucleation-and-growth model of DNA

replication to describe not only the kinetics of the bulk of replication but also the statistics

of replication quantities at the end of replication. Using the model, we have quantita-

tively addressed a generalized version of the random-completion problem, which asks how

stochastic licensing and initiation lead to the tight control of replication end times observed

in systems such as Xenopus embryos. In particular, we applied our model to investigate

and compare the two solutions proposed by biologists—the regular-spacing model (RSM)

and the origin-redundancy model (ORM).
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First, we found that the ORM, which utilizes purely random licensing, can still accu-

rately control the replication time. With this approach, the fluctuation of the end times is

suppressed by licensing a large excess of potential origins, while the typical end time is

adjusted by increasing the initiation rate toward late S phase. Then, we analyzed the effect

of spatial ordering in the RSM using a lattice genome. Our results show that 1) incorpo-

rating regularity leads to a tradeoff: the large number of potential origins in the ORM is

effectively replaced by fewer but more efficient origins in the RSM and that 2) under the

condition that the initiation rate across the genome is preserved, the two models produce

the same end-time distribution until an ordering threshold is reached. We show that the

experimentally observed ordering effect of lateral inhibition in Xenopus is well below the

ordering threshold.

These results are particularly enlightening when considering clustering as a mechanism

that transforms the ORM into the RSM. As discussed in Sec. 6.5, clustering spontaneously

leads to a tradeoff between quantity and efficiency of potential origins while satisfying the

condition of preserving the initiation rate. Thus, the intrinsic reason that the RSM and

the ORM produce the same end-time distribution is not the spatial distribution of potential

origins but the high density of potential origins. We argue that the key factors in resolving

the random-completion problem, at least in the Xenopus case, are the licensing of a large

excess of potential origins and an increasing initiation rate—and not an ordered spatial

distribution of origins. To say it in a different way, the analysis in Sec. 6.5 implies that

the end-time distribution due to a random ordering of potential origins would be unaltered

if those same potential origins were positioned more regularly (e.g., in ordered clusters),

as long as the regularity is below a threshold which exceeds the experimentally observed

amounts in frog embryos.

We have also found the optimal I(t) that minimizes the maximum number of simulta-

neously active forks. Similar to the observed in-vitro initiation rate, it increases throughout

S phase except for the end. Further pursuit of the optimization problem with more detailed

model may reveal the rate-limiting factors in replication, which have not been identified

to date. An open issue not addressed by our model is the observation that there is a weak

correlation in the initiations of neighbouring origins [138] via chromatin structure [62],

fork progression [158, 123, 25], or other unknown mechanisms. We do not expect that

correlations will modify the scenario we have presented here significantly, as the most sig-
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nificant effect of correlations, an increase in spatial ordering, would not be important even

at exclusion-zone sizes that are much larger than observed (e.g., 10 kb).

Have we fully solved the random-completion problem? Recall that there is on aver-

age one ORC every 8 kb of DNA, and each ORC loads 20–40 MCMs. Counting a pair

of MCMs as a potential origin, there is, on average, roughly two potential origins every

kb. According to our results, if these MCMs were to move along the DNA and spread

out, the cells would not need a mechanism that regularizes the spacing between ORC or

MCM. Experiments showed that MCM can slide along free DNA molecules in vitro [9, 10];

however, little is known about the mobility of MCMs in vivo, where the DNA form higher-

order structures in order to fit inside the nucleus. On the other hand, if loaded MCMs were

constrained to be near an ORC, the cells would need either a mechanism that regularizes

the spacing between the ORCs or a mechanism that allows an ORC to visit multiple loci.

Since the distribution of MCM in vivo is unknown, our analysis cannot rule out the regular-

spacing model. Nevertheless, we have shown that the two models (regular-spacing model

and origin-redundancy model), though mechanistically very different, result in essentially

the same end-time distribution.

Connecting the solution of the random-completion problem to our results in Chapter

3, we note that the replication in budding yeast also uses redundant potential origins that

have increasing initiation rates. Although budding yeast, unlike embryonic cells, has many

cell cycle checkpoints, there is no direct evidence for a checkpoint that detects incom-

plete duplication. To our knowledge, the known S/M checkpoints all respond to replication

stress such as DNA breakages and fork stalls (e.g., [159, 160]). If there were really no

S/M checkpoint for normal replication, would budding yeast suffer from the fluctuation in

replication-completion times? We simulated the replication process using the SM param-

eters and found that the mode and width of the end-time distribution are roughly 75 and

10 min, respectively. The cell cycle of the experimentally probed culture is roughly 200

min [52], and S and G2 phase together usually constitute ∼50% of the cell cycle [161].

Thus, under normal circumstances (without replication stress), duplication essentially al-

ways finishes before mitosis. Putting the results for frog embryos and budding yeast in

a broader perspective, we propose that instead of forming regulatory feedback mehcan-

isms to ensure replication completion, eukaryotic cells complete genome duplication in a

feedforward manner by adopting the proper initiation rates.



Chapter 7

Conclusion

Replication kinetics in eukaryotes is difficult to understand without a quantitative frame-

work because replication starts at many sites across the genome and throughout S phase in

a stochastic manner. In this thesis, we have first developed a general mathematical frame-

work based on the stochastic nucleation-and-growth theory introduced by Kolmogorov,

Johnson, Mehl, and Avrami. Our theory includes probabilistic licensing and initiation and

the effect of passive replication. The probabilistic nature of the model allows analysis of a

broad range of kinetics—from deterministic to random origin positioning and timing—and

is thus general enough to describe eukaryotic replication. Accounting for passive repli-

cation allows one to characterize the potential efficiency of origins and explain how the

replication process is robust against replication stress. We also derived the distribution of

replication-completion times, a result that allows us to understand how genome duplication

connects with the replication program.

A major motivation for developing the theory is to apply it to experiments. Because

our theory is analytic, it allows efficient information extraction from genome-wide experi-

ments. In this thesis, we have applied our theory to two experimental techniques that probe

the genome-wide progress of replication, namely time-course microarray (Chapter 3) and

FACS-microarray (Chapter 5). We believe that the methods presented in this thesis, par-

ticularly the analysis for FACS-microarray, can be used to extract quantitative information

about replication kinetics in many organisms.

We specifically built models for two organisms: budding yeast and frog embryos. In

the case of budding yeast, we fit the Sigmoid Model (SM) to a recent time-course dataset
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and extracted a striking feature—that the average firing time of an origin correlates strongly

with its timing precision. This finding has at least three major implications: 1) the initiation

timing in budding yeast is not deterministic; 2) earlier-firing origins are more efficient; and

3) there is a global mechanism that underlies origin firing in addition to local variations.

Based on this result, we proposed the Multiple-Initiator Model (MIM) and showed that

reproducible replication patterns need not result from time-measuring activators but can be

a consequence of random and identical activators and initiators. The details of the model

suggest a specific molecular mechanism for replication timing, in which the number of

minichromosome maintenance (MCM) complexes loaded at an origin and the chromatin

structure around the origin together regulate the origin firing time.

For the case of frog embryos, we showed that the random-completion problem, which

asks how the replication-completion time can be tightly controlled in the presence of ran-

dom licensing and initiation, is solved by 1) licensing more potential origins than needed

and 2) adopting an initiation rate that increases throughout most of S phase. Interestingly,

we found that the initiation rate extracted from experiment not only exhibits these two

properties but also nearly optimizes replication resources. Lastly, compared to the two

properties mentioned, we showed that spatial regularity is not an important factor in con-

trolling the genome-duplication time in frog embryos.

As mentioned in Sec. 1.1, the replication kinetics in budding yeast and frog embryos

are often thought to be at the two ends of a “deterministic-to-random” spectrum. Licensing

in budding yeast is associated with particular sequences, while licensing in frog embryos

is sequence independent. Interestingly, although the licensing properties of the two organ-

isms differ drastically, the control of replication timing is very similar. In budding yeast,

we showed that the average and precision of origin timing are related to the number of ini-

tiators loaded onto the origins. In frog embryos, we showed that the average and precision

of replication-completion time are related to the number of potential origins licensed. In

other words, in both organisms, replication timing is controlled by the number of initiat-

ing elements. Also, the initiation rates in both organisms increase throughout most of S

phase—a strategy that safeguards against fork stalls and large unreplicated gaps. These

two mechanisms—loading excessive initiators and adopting an increasing initiation rate—

offer a simple and plausible explanation to robust timing control that contrasts with the

popular but mechanistically elusive view that replication timing is controlled carefully by
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mechanisms that measure time and origin spacing.

7.1 Future directions

7.1.1 Universal features of eukaryotic replication

Goldar et al. showed evidence for a universal replication program across many species

[38]; however, the analysis in [38] was deterministic and averaged over the genome. We

propose that using the methods presented in this thesis can lead to more reliable estimates

of the replication program. In particular, one could test whether the correlation between

initiation-timing average and precision is a universal feature across many species.

In order to do this, we first note that one can speed up the SM and MIM fit by exploiting

the parameter structure. As mentioned in Sec. 3.2 and Sec. 4.2.1, both models consist of

a handful of global parameters and many local parameters associated with the origins. In

the present algorithm, all parameters, including the local origin parameters, are fit globally.

However, since an origin cannot affect the replication kinetics far away from it, performing

a global evaluation of χ2 is a waste of computational power. We thus suggest that the fit

can be separated into two routines: one performs a global search for the global parameters,

while the other performs a local search for the origin parameters and sweeps through the

genome. We note that the local search cannot be done origin by origin because the origins

are weakly coupled together via passive replication. Nevertheless, if the local search were

properly programmed, we expect that the fit would speed up by orders of magnitude so that

it could be applied to larger genomes of multicellular organisms.

The SM and MIM, in their present forms, need prior information on the number of ori-

gins. In Chapter 5, we presented a more general method that relaxes this requirement.

The method is based on constrained optimization and assumes only generic structures

such as bi-directional fork propagation and smooth initiation rates. We demonstrated that

the method can extract information about the replication program from simulated FACS-

microarray data and pointed out specific ways to improve the method. An implementation

of the improved method for large datasets will allow one to extract replication information

from real FACS-microarray experiments, which are much more accessible than time-course

microarray. At present, there are at least 100 FACS-microarray datasets on eight species
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[162, 14] available already! We believe that applying the improved and extended method

to these datasets and the many more to come will reveal a more detailed kinetic picture of

eukaryotic replication in general.

With respect to testing the correlation between initiation timing and precision, our

analysis showed that the simplest FACS-microarray data, which provide only two repli-

cation fraction profiles (one averaged over the genome and the other over most of S phase),

do not contain enough information (see Sec. 5.4.1). However, more elaborated FACS-

microarray experiments can provide multiple replication fraction profiles that are averaged

over narrower sections of S phase. In fact, such experiments have already been done (e.g.,

[163]). We expect that the improved and extended method can be applied to these FACS-

microarray datasets to provide information about the correlation. With this information,

one can start to test the hypothesis that the correlation mentioned above is a universal fea-

ture of eukaryotic replication.

7.1.2 Incorporating replicative machinery

In this thesis, we focused on analyzing experiments that probe the fraction of replication.

We propose that extending the analysis to simultaneously incorporate other replicative ma-

chinery can yield even more details. For example, by incorporating the time-course profiles

of fork density in [48] with the replication profiles in [57], one can better estimate the spa-

tiotemporal variations in fork velocity and hence also the replication program. (The theory

based on fork density is developed in [17].) If one further incorporates the time-course

profiles of MCM occupancy, one can start to address whether the MCM complexes are

pushed along or pushed off the DNA by replication forks. If the MCM are pushed along,

this can lead to a correlation between fork progression and origin initiation. In [25], Ma et

al. proposed such a correlation for budding yeast. In any case, the answer to this question

can further refine our understanding of the replication kinetics.

7.1.3 Incorporating three-dimensional structure

Until now, most mathematical and simulation models for DNA replication kinetics (see

[8] for a review) have ignored the three-dimensional structure of the chromosomes and

the crowded nuclear environment. However, recent evidence shows strong correlations
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between the origin function and nucleosome positioning [47] and between replication tim-

ing and chromatin structure [164]. In fact, the latter correlation is one of the strongest

correlations in genomics [162]. The chromatin structure is characterized by a newly de-

veloped technique called Hi-C that measures the contact frequencies among chromosomes

[120]. Using the Hi-C techniques, Lieberman-Aiden et al. confirmed the well-established

observation that chromatin in humans is compartmentalized with two distinct structures:

a euchromatin structure that is highly accessible and and a heterochromatin structure that

is more compact [120]. Using the same technique, Duan et al. proposed a static three-

dimensional model of the budding yeast genome inside the nucleus [165]. A physical

theory that incorporates such three-dimensional information, perhaps via polymer physics,

would be an exciting future direction. As an example, one can model replicative proteins

using strictly diffusive particles that have certain binding and unbinding rates and model

chromosomes using an interacting bead-on-string model where the interactions among the

beads determine the chromatin accessibility. Such models would allow comparison with

many Hi-C and microscopy studies that relate chromatin structure and nuclear positioning

to replication timing [70, 71, 72, 164, 166].

Furthermore, in Chapter 4, we proposed that the timing of origin initiation is determined

by the number of initiators loaded onto the origins and the chromatin structure around the

origin. Although we showed that, in budding yeast, there is significant correlation between

the timing of initiation and the number of origin-bound MCM (a pair of which is a bio-

logically plausible initiator), we cannot explain all the variations in initiation timing by the

MCM occupancy. A detailed investigation of the three-dimensional chromatin structures

within the nucleus during S phase might reveal the missing factors.

7.1.4 Abnormal replication

As mentioned in Sec. 1.2, we hope that modelling DNA replication kinetics can contribute

to understanding and eventually treating cancer. This would require a sound understanding

of replication under different conditions. Experiments have, in fact, probed the replication

fraction of budding yeast in many mutants [53]. We believe that modelling these datasets

with the methods presented in this thesis can advance and solidify our understanding of

normal replication.
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To model replication in cancer cells, one needs to extend the theory presented here to

incorporate abnormal kinetic elements such as fork stalls and re-replication. Previous work

that modelled the effect of fork stalls has already shown that cancerous cells have higher

stall densities than do normal cells [46]. Also, since cancer is a developmental disease, one

might need a theory for mitosis and checkpoint activation that allows the effect of abnormal

replication to be propagated or suppressed in order to address the emergence of cancer.

7.2 A final remark

Joel Cohen has stated that “Mathematics is biology’s next microscope, only better” [167].

Just as a microscope allows one to see things too small to see with the naked eye, math-

ematics allows one to obtain information that would be impossible to infer using purely

qualitative arguments. The analyses presented in this thesis illustrate this concept. In Chap-

ter 3, by applying our mathematical model to genome-wide replication experiment probing

budding yeast, we revealed a correlation between the average and the precision of initia-

tion timing. Without such quantitative analysis [74, 42, 23], the correlation would have

remained hidden in the data, as it had for the past decade since the publication of the first

genome-wide replication data in 2001 [20]. Further modelling of the correlation then led

to the first transparent molecular mechanism for controlling initiation timing. In a video

entitled “A vision for quantitative biology” in i-Bio-Magazine, Rob Phillips argues that

mathematics can sharpen the kind of questions we ask about biology [168]. We saw such

sharpened understanding emerge from our analysis of the random-completion problem in

Chapter 6. There, we found that since nearly any initiation rate can satisfy the replication

timing constraints, the problem is not only to complete the duplication on time but to com-

plete it while optimizing replicative resources. Through these examples, I hope to have

convinced you, the reader, that mathematical modelling is essential to the understanding

of the important, complex, and—when seen in the right light—rather beautiful dynamical

processes that underlie life itself.
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