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Abstract

Diffusion Weighted Magnetic Resonance Imaging (DW-MRI) is a non-invasive and in vivo

medical imaging technique that allows neural tissue architecture to be probed at a micro-

scopic scale. This is possible due to the diffusion of hydrogen atoms within water molecules

in the imaging body; thus capturing the microstructure of the underlying tissues. DW-MRI

adds to conventional MRI the capability of measuring this diffusion of water molecules by

applying strong magnetic field along several gradient directions in order to measure the

apparent diffusion coefficients along those directions.

In this thesis, we look at modeling diffusion of water molecules with Cartesian Tensors:

a model known as Diffusion Tensor Magnetic Resonance Imaging (DT-MRI). We begin

with 2nd order tensor model which results in an image where at each voxel the preferred

direction of diffusion is locally modeled by a 3 × 3 symmetric positive definite matrix whose

coefficients are estimated from the DW-MR data. After briefly reviewing anisotropy and

distance measures of 2nd order tensors, we extend these ideas to develop a novel anisotropy

measure. Tensor distance measures are then used to extend scalar image segmentation

algorithms in order to segment tensor images. Next, we present a clinical application of DT-

MRI to investigate various features of white matter fiber tracts in the cortico-striatal region

of the brain for the diagnosis of Parkinson’s disease. Finally, we investigate the limitations of

the 2nd order tensor model and extend it to higher order tensors in order to correctly depict

crossing fiber tracts. In particular, we develop a new technique to model fiber orientation

distribution functions using higher order tensors and develop a novel anisotropy measure

derived directly from fiber orientation distribution functions.

Keywords: Diffusion Weighted Magnetic Resonance Imaging; Diffusion Tensor Mag-

netic Resonance Imaging; Fractional Anisotropy; Shape Anisotropy; Cartesian Tensor Fiber

Orientation Distribution
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Chapter 1

Introduction

In their commentary titled “Backwardness of human neuroanatomy” to Nature Journal in

1993, Francis Crick and Edward Jones said that “To interpret the activity of living human

brains, their neuroanatomy must be known in detail. New techniques to do this are urgently

needed, since most of the methods now used on monkeys cannot be used on humans.”

Who would have thought only a year later would a new imaging technique be widely used

within the Magnetic Resonance Imaging (MRI) community to address this urgency? That

is exactly what Peter Basser, James Mattiello, and Denis Le Bihan achieved with their

seminal work titled “Estimation of the effective self-diffusion tensor from the NMR spin

echo” [14]. They developed what is now termed Diffusion Weighted Magnetic Resonance

Imaging (DW-MRI): a non-invasive and in vivo (occurring or made to occur within a living

organism or natural setting) imaging technique that allows neural tissue architecture to be

probed at a microscopic scale thanks to the random motion of hydrogen atoms within water

molecules in all three dimensions in the human body; thus capturing the microstructure of

the underlying tissues [27, 71, 15, 69].

Individual water molecules at temperatures above 0 ◦K are constantly in motion, collid-

ing with each other and with other molecules in tissues at high speeds. These high-speed

collisions cause the water molecules to spread out randomly. DW-MRI adds to conventional

MRI the capability of measuring this random motion of water molecules, called diffusion.

This is achieved by applying a strong magnetic field along several gradient directions in

order to measure the Apparent Diffusion Coefficient (ADC) along those directions at each

voxel in the imaging body.

While DW-MRI technology provides new information about the state of many tissues
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2 CHAPTER 1. INTRODUCTION

within the body, it is particularly useful in identifying the neural connectivity patterns of

the human brain allowing us to distinguish between anatomical structures of the cerebral

white matter such as the corpus callosum, the superior longitudinal fasciculus or the cortico-

spinal fiber tracts [84, 79, 91, 16, 30, 58, 63, 70]. DW-MRI is also informative when imaging

fibrous tissues such as tendons (a band of tough, fibrous, inelastic tissues made chiefly of

collagen that connect a muscle to a bone) and ligaments (a sheet or band of tough, fibrous

tissue connecting bones or cartilages at a joint or supporting an organ).

The inventors of DW-MRI 1, describe the success of DW-MRI as deeply rooted in the

powerful concept that during their diffusion-driven random displacements, water molecules

probe tissue structures at a microscopic scale well beyond the usual image resolution. Dur-

ing typical diffusion times of about 50 to 100 msec, water molecules move in the brain on

average over distances around 10µm bouncing, crossing, or interacting with many tissue

components such as cell membranes, fibers or macromolecules. The overall effect observed

in a DW-MRI image voxel of several mm3 reflects, on a statistical basis, the displacement

distribution of the water molecules present within this voxel. The observation of this dis-

placement distribution thus provides unique clues to the structure and geometric organiza-

tion of tissues. It is now well established that the Magnetic Resonance (MR) measurement

of an effective diffusion of water in tissues can provide unique biologically and clinically

relevant information that is not available from other imaging modalities. This information

includes parameters that help characterize tissue composition, the physical properties of

tissue constituents, tissue microstructure and its architectural organization.

Once several Diffusion Weighted Images (DWI) are acquired, we may proceed either to

analyze the images directly or we may opt to model diffusion at each voxel with certain

functions whose parameters are estimated from the DWI data. Analyzing the DWI directly

is not convenient as each image contains little information. Combining all the DWI in some

way is therefore required in order to get optimal advantage from DW-MRI. Noting that

diffusion of water molecules in the body would be spherical if no barriers were present, it

therefore makes sense to model diffusion with spherical functions that reflect the presence

or absence, and if present, the shape of barriers that hinder the diffusion. The two most

commonly used frameworks for spherical function representations are Cartesian tensors [15]

and spherical harmonics [107].

1A good text on the history of the development of DW-MRI can be found at [41].
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The Cartesian tensor representation is a simple model first developed for single fiber

reconstruction using second order tensors and has given rise to the research area known

as Diffusion Tensor Imaging (DTI) [15]. As few as only six gradient directions are enough

to reconstruct diffusion tensor images that enable us to generate fiber tracts in fibrous

tissues. Recently, the DTI model has been extended to the Higher Order Tensor (HOT)

model in order to address the limitation of the DTI model in regions containing intra-voxel

orientational heterogeneity such as crossing and merging of fiber bundles by acquiring more

Diffusion Weighted Magnetic Resonance (DW-MR) images [86].

The spherical harmonics representation on the other hand requires acquisition of high

angular resolution diffusion images primarily developed to enable a precise angular char-

acterization of the diffusion signal for multi-fiber reconstruction purposes, while keeping

the acquisition time compatible with clinical constraints. This model, known as High An-

gular Resolution Diffusion Imaging (HARDI), is developed to address the limitation of the

DTI model in regions containing intra-voxel orientational heterogeneity such as crossing and

merging of fiber bundles [107]. This model, however requires acquisition of high angular res-

olution diffusion images which in turn requires advanced scanners and has become popular

only recently. It was not a mature research topic when this thesis was started and therefore

is not covered in the thesis. Previous work on HARDI is presented as an introduction in

Chapter 6 of the thesis where we present the HOT model representation of Fiber Orienta-

tion Distribution (FOD) functions. See also [56] for comprehensive reference material on

diffusion MRI.

The thesis therefore focuses at modeling of diffusion of water molecules with Cartesian

Tensors and develops tools for processing and analysis of tensor images reconstructed from

DW-MRI. Such a model has given rise to the research field referred to as Diffusion Tensor

Magnetic Resonance Imaging (DT-MRI) or DTI for short. The high dimensional nature of

Diffusion Tensor Magnetic Resonance (DT-MR) images, 3D volume images with a 3 × 3

Symmetric Positive Definite (SPD) matrix at each voxel, requires some processing to visual-

ize on conventional 2D display devices. What relevant information to extract from diffusion

tensors for the purpose of visualization, segmentation, interpolation, anisotropy measures,

tensor similarity measures, fiber tractography, clinical applications, etc will be addressed

in the thesis. We begin with the DTI model which results in a 3D image where at each

voxel the preferred direction of water diffusion is locally modeled by a Gaussian probability

density function whose covariance matrix is a second order 3 × 3 SPD matrix, referred



4 CHAPTER 1. INTRODUCTION

to as a diffusion tensor. Towards the end of the thesis, we extend the DTI model to the

HOT model [86] and examine the costs and benefits of such a model not only for modeling

ADC but also FOD functions to correctly infer the underlying fiber orientations. The con-

tributions of the thesis are: utilizing tensor similarity measures in order to perform tensor

field images segmentation, utilizing tensor similarity measures to extract novel anisotropy

measures, using tensor anisotropy and diffusivity measures as bio-markers for the diagnosis

of Parkinson’s disease, and utilizing tensor representation for the purpose of developing a

novel model of fiber orientation distribution functions.

The thesis is organized as follows: we first review DW-MR image acquisition, diffusion

tensor image reconstruction and several image processing and analysis techniques developed

for DT-MR images in Chapter 2 followed by a closer look at tensor similarity measures and

anisotropy indices induced by tensor distance measures in Chapter 3. Segmentation of DT-

MR images utilizing tensor similarity measures is presented in Chapter 4. Chapter 5 looks

at clinical applications of tractography in the classification of Parkinson’s Disease (PD)

subjects from controls. In Chapter 6, we review the HOT model, extend it to estimate

FOD functions and develop a new anisotropy measure derived directly from FOD functions.

Chapter 7 concludes the thesis.



Chapter 2

Selected Background

2.1 DW-MR Image Acquisition

Diffusion of water molecules in the presence of a strong magnetic field gradient results

in a loss of MR signal due to de-phasing of spin coherence. The application of a pair of

gradients to elicit differences in diffusion of water molecules among different biological tissues

is known as diffusion weighting. The sequence most commonly used for DWI acquisition is

Spin Echo Single Shot Echo Planar Imaging (EPI). It uses a pair of gradients, systematically

positioned around a 180◦ refocusing pulse allowing for controlled diffusion weighting [101].

Fig. 2.1 shows a schematic diagram of Spin Echo Single Shot EPI [128].

Figure 2.1: Spin Echo Single Shot EPI sequence with diffusion weighting gradients G.
RF90 and RF180 are 90◦ excitation pulse and 180◦ refocusing pulse respectively. TE is the
effective echo time and tEPI denotes the half time interval of the EPI readout. The duration
of diffusion encoding gradients is δ and their separation is ∆.

5
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DW-MRI consists of acquiring DWI Si, i = 1, 2, . . . N , reflecting the relative amount of

diffusion along non-coplanar diffusion weighting gradient directions gi that are uniformly

distributed on a unit sphere and one image S0 with no diffusion sensitizing gradient. Fig. 2.2

shows a typical example of distribution of gradient orientations that uniformly sample a unit

sphere.1 These encoding orientations can be defined by the electrostatic repulsion algorithm

previously proposed by Jones et al. [57].

(a) 21 directions (b) 81 directions

Figure 2.2: Diffusion weighting encoding directions

The requirements that the diffusion weighting gradient directions be non-coplanar, uni-

formly distributed on a unit sphere, and the least number of gradient directions required

will be evident in Section 2.2 below. In the meantime, a typical set of DW-MR images is

shown in Fig. 2.3. As can be seen in this figure, the individual images don’t seem to convey

much information. However, as we will see in the next sections, quite good features can be

reconstructed from DT-MR images.

2.2 Second Order Diffusion Tensor Reconstruction

The second order diffusion tensorD, i.e. a 3×3 SPD matrix, characterizing anisotropic water

diffusion within a macroscopic voxel is estimated from the N DWI Si and one image S0

1Since diffusion of water molecules in the body is symmetric, we don’t actually need to sample the gradient
orientations from a unit sphere. It suffices to sample from a unit hemisphere. Thus the 21 and 81 gradient
orientations in Fig 2.2(a) and 2.2(b) refer only to the upper half hemisphere.
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Figure 2.3: DWI for a human brain scan acquired using a Phillips Achieva 3.0 Tesla scanner
with slices parallel to the anterior-commissure posterior-commissure line. The bottom right
image corresponds to the image S0 acquired with no diffusion sensitizing gradient.
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acquired with no diffusion sensitizing gradient [120]. Using the Bloch-Torrey equation [103],

Stejskal and Tanner derived the following formula to relate the DWI measured in the spin

echo experiment to the diffusion tensor estimation D [101]:

Si = S0e
−bgTi Dgi , i = 1, 2, . . . N (2.1)

where the b-value renders the amount of diffusion weighting and is determined by

b = γ2G2δ2(∆− δ/3) (2.2)

where γ is the gyromagnetic ratio, G is the maximum diffusion encoding gradient strength

and δ and ∆ are as described in Fig. 2.1. Taking the natural logarithm of both sides of (2.1)

and rearranging, we get

gTi Dgi =
−1

b
ln(

Si

S0
), i = 1, 2, . . . N (2.3)

The expression on the left, i.e., gTDg, is known as the diffusivity function. Since D is

symmetric, it has six degrees of freedom. Hence Eq.(2.3) results in a N × 6 system of linear

equations that is solved at each voxel independently. Denoting the diffusion tensor D as

D =









Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz









and the gradient directions as gi = (gix giy giz)
T , the set of linear equations obtained from

Eq.(2.3) will look like
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When N = 6, this has a unique solution. However it will be very sensitive to noise because

any measurement error even in only one direction will give rise to an incorrect diffusion
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tensor. Therefore N is generally greater than 6; typically 60 - 100 [6]. In this case, Eq.(2.3)

describes a set of over determined linear system of equations which can be solved using the

Moore-Penrose pseudo-inverse or the Linear Least Squares (LLS) [68] solution. Denoting it

as

Ax = B (2.4)

we obtain the LLS solution to be

x = (ATA)−1ATB (2.5)

This equation has to be solved for each voxel in the image in order to obtain a tensor

image. Moreover, while the LLS solution is the simplest and straight forward approach to

solve Eq.(2.3), it does not guarantee that the solution obtained is an SPD matrix. Hence

other sophisticated mathematical tools have been explored in the DT-MRI community in

order to get an SPD matrix [56, 120, 26, 39, 75, 81, 90, 113, 10]. One may also estimate the

diffusion tensor D in the presence of noise; as in [14] where the authors take into account a

Gaussian noise model.

2.3 Visualization of DT-MR Images

One of the fundamental problems in DT-MRI is how to visualize these SPD second order

tensors. Basser and Pierpaoli [15] used the geometric equivalence between SPD matrices

and ellipsoids in order to visualize diffusion tensors as ellipsoids. Given a diffusion tensor

D, it can be diagonalized as

D =









Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz









=









v11 v12 v13

v21 v22 v23

v31 v32 v33

















λ1 0 0

0 λ3 0

0 0 λ3

















v11 v12 v13

v21 v22 v23

v31 v32 v33









T

where each λi > 0 is the eigenvalue of D with corresponding normalized eigenvector

vi,j , i = 1, 2, 3 and T stands for matrix transposition. The matrix of eigenvectors is an

orthogonal matrix (i.e. V V T = V TV = I). This spectral decomposition can be achieved

numerically [94] or analytically [49]. When the eigenvalues are sorted in decreasing or-

der, their corresponding eigenvectors are usually referred to as major, medium and minor

eigenvectors respectively.
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(a) Linear anisotropy
λ1 ≫ λ2 ≈ λ3

(b) Planar anisotropy
λ1 ≈ λ2 ≫ λ3

(c) Spherical (isotropic)
λ1 ≈ λ2 ≈ λ3

Figure 2.4: Ellipsoidal visualization of second order diffusion tensors.

In this visualization method, the eigenvalues of the diffusion tensor correspond to the

radii of the ellipsoid while the eigenvectors determine the axes’ orientations as shown in

Fig. 2.4. This visualization technique reveals the shape of diffusion of water molecules from

a given data point in a fixed amount of time. Fig. 2.4(a) reveals linear anisotropic diffusion

where λ1 ≫ λ2 ≈ λ3, which typically occurs along white matter fiber bundles, Fig. 2.4(b)

reveals planar anisotropic diffusion λ1 ≈ λ2 ≫ λ3 which is typical in regions where fibers

are crossing in a plane and Fig. 2.4(c) reveals isotropic (spherical) diffusion λ1 ≈ λ2 ≈ λ3

which is typical of brain gray matter and homogeneous materials such as water.

Figure 2.5: Ellipsoidal visualization of a brain image.
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Fig. 2.5 shows an ellipsoidal visualization of a brain image slice plotted using ellip-

soids [11]. It is clear from this figure that while ellipsoidal visualization gives a qualitative

measure of the type of diffusivity (linear, planar or spherical) for individual tensors, it is not

convenient for the visualization of a whole image as occlusion is inevitable for large images.

It is therefore necessary to extract features from diffusion tensors suitable for visualization

and assessment of diffusivity, anisotropy and connectivity of brain regions.

2.4 Diffusion Anisotropy Quantitative Measures

2.4.1 Linear, Planar and Spherical Anisotropy Indices

A quantitative description of anisotropy measures was first presented by Westin et al. [120]

by defining coefficients of linear (cl), planar (cp) and spherical (cs) anisotropy indices. Given

a diffusion tensor, the authors first decomposed the tensor to its eigenvalues and eigenvectors

in such a way that the eigenvalues are sorted so that λ1 ≥ λ2 ≥ λ3 and then defined the

following anisotropy measures:

cl =
λ1 − λ2

λ1
, cp =

λ2 − λ3

λ1
, cs =

λ3

λ1
(2.6)

where all measures lie in the range [0, 1) and their sum is equal to 1. These anisotropy

indices are rotationally invariant and the values do not depend on the chosen frame of

reference of the diffusion tensor. cl is large where there is linear diffusion as in the brain

white matter, and is an indicator of presence of fibrous structures. cs is an indicator for

isotropic diffusion as in the gray matter of the brain. Finally cp is large where there is

planar diffusion which is typical where there is presence of crossing, fanning, kissing and

merging of fibrous structures. Fig. 2.6 shows an axial slice of human brain DT-MR image

using these three scalar anisotropy indices. White matter and gray matter in the brain are

revealed with high intensities on the linear and spherical index images respectively.

While these anisotropy indices are good indicators of anisotropy of diffusion, they are

very sensitive to noise. Thus more stable measures were sought and we discuss two such

anisotropy indices in the following sections.
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(a) Linear anisotropy index (b) Planar anisotropy index (c) Spherical anisotropy index

Figure 2.6: Linear, planar and spherical indices images.

2.4.2 Fractional and Relative Anisotropy Indices

Another way of looking at anisotropy of diffusion tensors is by first decomposing the tensor to

its isotropic and anisotropic parts, and then looking at their proportions. Given a diffusion

tensor D, Basser and Pierpaoli [17] proposed decomposing D as

D = Diso +Dan (2.7)

with

Diso = λ̄ I and Dan = D − λ̄ I (2.8)

where λ̄ is the arithmetic mean of the eigenvalues of D and I is a 3×3 identity matrix. The

authors then defined two anisotropy measures as follows:

1. Fractional Anisotropy (FA): The ratio of the Frobenius norm of Dan to the Frobenius

norm of D

FA =

√

3

2

‖Dan‖F
‖D‖F

=

√

3

2

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(2.9)

2. Relative Anisotropy (RA): The ratio of the Frobenius norm of Dan to the Frobenius

norm of Diso

RA =
1√
2

‖Dan‖F
‖Diso‖F

=

√

3

2

√

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ1 + λ2 + λ3
(2.10)
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The leading normalizing coefficients are inserted so that the values of FA and RA will

fall in the range [0, 1). For both FA and RA indices, values close to 1 indicate highly

anisotropic diffusion while values close to 0 indicate isotropic diffusion. These measures are

rotationally invariant and scale and sorting independent [120]. Moreover, Hasan et al. [48]

have demonstrated analytically that FA maps have a higher Signal to Noise Ratio (SNR)

than RA maps for any value of diffusion anisotropy. Fig. 2.7(a) and 2.7(b) show an axial

slice of a brain DT-MR image visualized with these measures. As expected, the images show

higher intensity on the white matter of the brain. The trace image (see Section 2.5 below)

is also displayed for comparison purposes.

(a) FA (b) RA (c) Trace

Figure 2.7: FA and RA maps reveal high intensity at regions of high anisotropy such as
brain white matter but low intensity at isotropic regions such as brain gray matter. The
trace image reveals similar intensities at both isotropic and anisotropic regions of the brain.

2.5 Bulk Diffusivity Measures

The measures described above characterize the anisotropic nature of diffusion but do not

give information regarding the amount of diffusion because they are all scale invariant. As

will be discussed in Chapter 5, the amount of diffusion measurements have been found to be

useful for clinical purposes. Such measures of bulk diffusivities include the trace of diffusion

tensors, Mean Diffusivity (MD) and ADC defined as:

Trace(D) = Dxx +Dyy +Dzz = λ1 + λ2 + λ3

MD(D) =
Tr(D)

3
, and

ADC(D)i = gTi Dgi (2.11)
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The ADC is measured along a given direction. Physically, an estimate of MD can be

obtained by taking the arithmetic average of ADCs acquired in all possible directions [60].

In fact, it is shown in [88] that the trace can be expressed as the integral of the quadratic

form of the tensor as

Trace(D) =
3

4π

∫

S
gTDg dg (2.12)

where g is the unit gradient vector and S is the unit sphere. This integral can be evaluated by

first expressing the unit vector g = (x, y, z)T in its polar coordinates with the transformation

x = r sin(θ) cos(ϕ) (2.13)

y = r sin(θ) sin(ϕ) (2.14)

z = r cos(θ) (2.15)

We have r = 1, θ runs from 0 to π, and ϕ runs from 0 to 2π. The integral can then be

easily calculated as

Trace(D) =
3

4π

∫ π

θ=0

∫ 2π

ϕ=0
gTDg |J |dϕdθ (2.16)

where |J | is the determinant of the Jacobian matrix of the transformation from (x, y, z)

coordinate to (r, ϕ, θ) coordinate and is given by

|J | =

∣

∣

∣

∣

∣

∣

∣

∣

∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ

∣

∣

∣

∣

∣

∣

∣

∣

= r2 sin(θ) = sin(θ)
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Hence

Trace(D) =
3

4π

∫ π

θ=0

∫ 2π

ϕ=0
gTDg |J |dϕdθ

=
3

4π

[

Dxx

∫ π

θ=0

∫ 2π

ϕ=0
sin3(θ) cos2(ϕ)dϕdθ +

Dyy

∫ π

θ=0

∫ 2π

ϕ=0
sin3(θ) sin2(ϕ)dϕdθ +

Dzz

∫ π

θ=0

∫ 2π

ϕ=0
sin(θ) cos2(θ)dϕdθ +

2Dxy

∫ π

θ=0

∫ 2π

ϕ=0
sin3(θ) sin(ϕ) cos(ϕ)dϕdθ +

2Dxz

∫ π

θ=0

∫ 2π

ϕ=0
sin2(θ) cos(θ) cos(ϕ)dϕdθ +

2Dyz

∫ π

θ=0

∫ 2π

ϕ=0
sin2(θ) cos(θ) cos(ϕ)dϕdθ

]

=
3

4π

[4π

3
Dxx +

4π

3
Dyy +

4π

3
Dzz + 0 + 0 + 0

]

= Dxx +Dyy +Dzz (2.17)

Pierpaoli et al. [92] have shown that the trace image exhibits uniform distribution within

normal adult brain parenchyma and has similar intensities in both the white and gray mat-

ters of the brain even though these tissues are so different histologically. This spatial unifor-

mity has contributed to the increasing clinical utility of the trace image in disease assessment

and monitoring since it makes diseased regions more conspicuous when juxtaposed against

the homogeneous background of normal parenchyma. Basser and Jones [13] report that

questions still remain why the trace image is so uniform in normal adult brain white and

gray matters; and more importantly, why it appears so similar between and among normal

human subjects. In fact, it appears to be quite similar across a range of normal mammalian

brains including mice, rats, cats, monkeys and humans. It is worth considering whether

mammalian brains are designed to force the trace image to lie within such a narrow range

of values and, if so, what these optimal design criteria are.
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2.6 Fiber Tractography

Fiber tractography is a relatively new technique that has generated much enthusiasm and

high expectations because it presently is the only approach available to non-invasively study

the three-dimensional architecture of white matter tracts in the central nervous system [12].

Assuming that the orientation of the major eigenvector of the diffusion tensor represents

the orientation of dominant axonal tracts, DT-MRI can provide a 3D vector field in which

each vector presents the dominant fiber orientation. Currently, there are several different

approaches to reconstruct white matter tracts from DT-MR images. They can roughly

be divided into two groups: line propagation algorithms and global energy minimization

techniques. An alternative characterization is that the former approach is a deterministic

approach while the latter is a probabilistic approach.

The first category uses local tensor information for each step of the propagation. Such

methods employ varieties of line convolution integral algorithms that are common in vector

field visualizations. The tractography starts at a seed point and propagates along the major

eigenvector field by taking time steps proportional to the magnitude of the major eigen-

value. The main differences among techniques in this class stem from the way information

from neighboring voxels is incorporated to define smooth trajectories or to minimize noise

contributions which may involve diffusion tensor interpolation. The propagation stops when

diffusion approaches isotropy or when the turning angle between successive major eigenvec-

tors exceeds a certain threshold (usually when FA < 0.25 and turning angle > 45◦). This

linear propagation approach, which was dubbed Fiber Assignment by Continuous Tracking

(FACT), was used for the first successful tract reconstruction, which was accomplished for

a fixed rat brain and showed good agreement with histological knowledge [12]. Fig. 2.8

shows fiber tractography of whole human brain computed via the FACT approach using

ExploreDTI software [72].

The second category finds the energetically most favorable path between two predeter-

mined pixels. These methods include the Fast Marching Method (FMM) [100], stream-

tubes and streamsurfaces [127], the diffusion spectrum approach [115], probabilistic ap-

proaches [52], etc.

For any fiber tractography algorithm to succeed, it is clear that an interpolation scheme

for diffusion tensors has to be developed. Such an interpolation scheme needs to have the

key property that the result of interpolating diffusion tensors should be a diffusion tensor,
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(a) Coronal view (b) Sagittal view (c) Axial view

Figure 2.8: Human brain fiber tracts reconstructed via the FACT algorithm.

i.e., an SPD matrix. This in turn brings the need for a proper diffusion tensor similarity

measure to be developed.

While it is tempting to use the Euclidean distance of matrices in order to measure the

similarity of diffusion tensors, it has been shown that it has drawbacks. The main shortcom-

ing is that the Euclidean distance does not take into account the fact that diffusion tensors

are SPD matrices and thus do not span the whole 9D (or even 6D) space (See Chapter 3

for details). Actually, the space of 3×3 SPD matrices is an open convex cone. More im-

portantly, performing extrapolation of tensor data along a straight line, whose length is

what the Euclidean distance measures, may result in an invalid tensor: a symmetric matrix

with zero or negative eigenvalues. A zero eigenvalue is physically impossible for there is

always diffusion of water molecules above 0 ◦K; while a negative eigenvalue is meaningless.

In addition, Euclidean distance based averaging of tensors normally results in a mean tensor

with larger determinant than the original determinants. However, as a tensor is a covari-

ance matrix of the Gaussian distribution of diffusion of water molecules, the value of its

determinant is a direct measure of the dispersion of the associated multivariate Gaussian

distribution and thus a larger determinant of the mean corresponds to more diffusion which

is physically impossible. This is referred to as the tensor swelling effect, see Fig. 2.10 below.

Lastly, the Euclidean distance is not symmetric with respect to matrix inversion in that the

average between a tensor and its inverse is not an identity matrix which one would normally

expect [5].
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2.7 Diffusion Tensor Dissimilarity Measures

Several diffusion tensor dissimilarity measures have been proposed including the Frobenius

norm [116], Log-Euclidean distance metric [5], J-divergence dissimilarity measure [112], and

Riemannian metric [19, 18]. See Chapter 3 for more details. These tensor distance are

appealing because they give closed form solutions and will be used throughout the thesis.

A slightly different approach of measuring tensor distances is using geodesic-loxodromes

proposed by Kindlmann et al. [62]. However, this method which employs differential geom-

etry does not have a closed solution, thus requires numerical methods to solve and will not

be used in our work. Having tensor dissimilarity measures helps to group similar tensors

together (segmentation), interpolate tensors, spatially register tensor images, etc.

2.8 Segmentation, Interpolation and Registration

Once a proper tensor dissimilarity measure is defined, segmentation of diffusion tensor im-

ages can be performed using any of the methods developed for scalar images segmenta-

tion such as level sets, graph cuts, spatial clustering, or PDE based geometric flow meth-

ods [112, 22, 96, 74]. Fig. 2.9 shows segmentation of a cardiac wall with graph cuts using

the J-divergence tensor dissimilarity measure2.

Figure 2.9: Cardiac Wall Segmentation using graph cuts. Left: Visualization using Trace.
Middle: Seed points for graph cut segmentation algorithm. Right: Segmentation result.

Similarly, interpolation of diffusion tensors can be achieved using linear, bilinear, splines

or other methods that are common in processing and analysis of scalar images. Fig. 2.10

2See Chapter 4 for details.
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shows the result of Euclidean, Log-Euclidean [5] and Rotational [118] linear interpola-

tion of second order diffusion tensors. In this experiment, the left most diffusion ten-

sor is given by D1 = diag([1.2 0.4 0.4]) and the right most diffusion tensor is given by

D2 = diag([0.4 1.2 0.4]). The intermediate diffusion tensors are results of interpolating

between these tensors. Tensor swelling effect is clearly visible when interpolating in the Eu-

clidean space, Fig. 2.10(a). Interpolating in the Log-Euclidean space minimizes the tensor

swelling effect, Fig. 2.10(b). However, it is clear in this specific experiment that all that

needs to be interpolated is the rotation matrix that smoothly rotates D1 until it aligns itself

with D2. This is true because D1 and D2 have the same eigenvalues, albeit corresponding

to different eigenvectors. In such a scenario, interpolating the rotation matrix makes more

sense as shown in Fig. 2.10(c). Also note that since both D1 and D2 have the same trace

and determinant, Euclidean interpolation preserves only the trace while Log-Euclidean in-

terpolation preserves only the determinant. The Rotational interpolation on the other hand

preserves both the trace and the determinant. Similarly, the authors of geodesic-loxodromes

approach [62] claim that their approach is designed to explicitly preserve clinically important

tensor attributes, such as MD and FA.

(a) Euclidean interpolation of tensors

(b) Log-Euclidean interpolation of tensors

(c) Rotational interpolation of tensors

Figure 2.10: Interpolation of second order diffusion tensors.
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Registration of DT-MR images is also achieved using algorithms common in scalar image

registration such as cross-correlation, mutual information, sum of squared differences, etc

using a proper tensor distance defined on diffusion tensor field images to optimize a cost

function defined to minimize the dissimilarity of images during the registration process [126,

125, 28]. Therefore we may exploit the tensor distance measures discussed above to perform

registration of 2nd order diffusion tensor images. One may also perform local smoothing,

commonly known as regularization of tensor field, by making use of these tesnsor distance

measures.

In order to reliably reconstruct diffusion tensors, one may also perform a spatial registra-

tion on the DW-MR images so that Si(p) ∀i = 0, 1, .., N corresponds to the same anatomical

position. Several methods have been proposed for patient motion correction in DW-MRI.

Trouard et al. [106] compared three motion correction algorithms: projections onto convex

sets [50], collection of navigator echoes to track phase errors [85], and radial scan data ac-

quisition combined with a modified projection-reconstruction algorithm [59]. The authors

show that while all the methods work well for correcting translational motion, the radial

approach performs better when more complex rotations are involved. Anderson and Gore [4]

show that while navigator echo can be used to correct the imaging data for arbitrary trans-

lations, only when the diffusion gradient is applied in the phase encode direction is there

sufficient information to correct for rotations around all axes, and therefore correct for gen-

eral rigid body motion. Rohde et al. [95] proposed a mutual information-based registration

technique and a spatial transformation model containing parameters that correct for eddy

current-induced image distortion and rigid body motion in three dimensions. The authors

first define a target coordinate system, rigidly register the first S0 volume to the target co-

ordinate system and finally register each DW-MR images to the S0 volume which brings the

entire DW-MR images to be positioned in a standardized orientation. For an accurate and

fast solution to the registration problem, the authors optimize all parameters simultaneously.

Similarly, Mangin et al. [78] proposed a correction algorithm that relies on the maximization

of mutual information to estimate the parameters of a geometric distortion model and then

replacing the standard least squares based approach by the Geman-McClure M-estimator

in order to reduce outliers related artifacts. Atkinson et al. [7] used 2D navigator echoes to

monitor the k-space sampling which resulted from motion in ungated multi-shot DW-MR

acquisitions and showed the propagation of errors in DW-MR images to the average ADC

map during the tensor reconstruction stage. A least squares based automatic registration
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of distorted EPI images with corresponding anatomically correct MRI images that models

the deformation field (with splines while comprising the affine transform as a special case)

has been proposed by Kybic et al. [66].

2.9 Conclusion

In this chapter, we have presented selected background on what has been done in the DT-

MRI community with regards to processing and analysis of tensor images. In the subsequent

chapters, we will utilize the tensor similarity measures described above in order to derive

novel anisotropy measures using these tensor distance measures, perform segmentation of

DT-MR tensor field images, and extend the ideas further for higher order tensor modeling of

fiber orientations and deriving anisotropy measure from such higher order tensors. Moreover,

the existing anisotropy measures will be used as bio-markers for the diagnosis of Parkinson’s

disease in normal and disease subjects.



Chapter 3

Tensor Distance to Anisotropy

Measure

Measurement of diffusion tensors on a voxel-by-voxel basis has led to the development of

scalar quantities, called indices of anisotropy, that resemble histological or physiological

stains characterizing the intrinsic features of tissue microstructure and microdynamics. The

most commonly used such scalar diffusion anisotropy measure is FA [17]. It is defined as the

distance of a diffusion tensor from its closest isotropic tensor. It is rotationally invariant and,

therefore, objective and insensitive to the choice of laboratory coordinate system. It has

been widely used for revealing the white matter in brain images, as a parameter for seeding

and stopping in fiber tractography, and for the diagnosis, assessment, and classification of

patients and healthy subjects in clinical settings [12, 37, 123, 77, 23].

Despite the extensive use of FA in the DT-MRI community, not much attention has

been given to the mathematical derivation of FA from diffusion tensors. The FA value is

derived using the Euclidean norm, although it is known that the space of diffusion tensors

does not form a Euclidean vector space and thus the Euclidean norm is not appropriate for

tensors. In fact averaging using the Euclidean norms results in a tensor swelling effect; even

worse, computations using the Euclidean norm can result in non SPD matrices which is not

physically possible [5]. To this end, appropriate tensor distance measures that take into

account the manifold of the space of diffusion tensors have been proposed. These distance

measures include the J-divergence, Log-Euclidean and Riemannian distance metrics [112, 5,

19]. Therefore it is more consistent with the definition of FA to use these appropriate tensor

22
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distance measures instead of Euclidean norms in deriving anisotropy measures for diffusion

tensors.

In this chapter, we propose two novel and robust diffusion anisotropy measures derived

using these appropriate diffusion tensor distance measures. We demonstrate qualitatively

that our new anisotropy measures reveal superior white matter profiles of DT-MR brain

images and analytically show that these new measures have higher SNR than FA. An in-

teresting finding of our work is that given a diffusion tensor, its closest isotropic tensor is

different for different tensor distance measures used.

3.1 Method

We start by revisiting the development of FA in order to develop the mathetical theories

of our anisotropy measures. Given diffusion tensor D with eigenvalues λ1, λ2 and λ3, FA is

derived by first decomposing D as

D = Diso +Dan (3.1)

where Diso = λ̄ I is the isotropic part of D, Dan = D − λ̄ I is the anisotropic part of

D, λ̄ = (λ1 + λ2 + λ3)/3 is the arithmetic mean of the eigenvalues of D and I is a 3 × 3

identity matrix. Clearly Diso is an isotropic tensor because it has equal eigenvalues given

by λ1 = λ2 = λ3 = λ̄. Diso is commonly referred to as the closest isotropic tensor to D.

Having decomposed a diffusion tensor into its isotropic and anisotropic parts, we then

obtain magnitudes (or lengths) of D, Diso and Dan by taking their Euclidean norms. The

diffusion tensor magnitude, also known as tensor contraction, is equivalent to the L − 2

norm of the diffusion tensor’s matrix representation and is given by

‖D‖2 =
√

trace(DDT )

=
√

trace(D2) (3.2)

where T stands for matrix transposition.

Applying Eq.(3.2) to D, Diso and Dan, we obtain
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‖Diso‖2 =
√

trace(λ̄2I2)

=
√

λ̄2 trace(I)

=
√
3λ̄ (3.3)

‖D‖2 =
√

trace(D2)

=
√

λ2
1 + λ2

2 + λ2
3 ...........(See section 3.1.3 for the proof.) (3.4)

‖Dan‖2 =
√

trace((D − λ̄ I)2)

=
√

trace(D2 − 2λ̄D + 3λ̄2) I

=
√

λ2
1 + λ2

2 + λ2
3 − 2λ̄(λ1 + λ2 + λ3) + 3λ̄2

=
√

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2 (3.5)

FA is then defined as:

FA =

√

3

2

‖Dan‖2
‖D‖2

=

√

3

2

√

(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(3.6)

Notice that the choice of Diso = λ̄ I is such that it minimizes the distance between D

and its closest isotropic tensor. Consider the function

f(x) = d(D,Diso) = ‖D −Diso‖2 = ‖Dan‖2 =
√

(λ1 − x)2 + (λ2 − x)2 + (λ3 − x)2 (3.7)

Differentiating f with respect to x, we find that f takes its minimum value when (λ1−x)+

(λ2 − x) + (λ3 − x) = 0 thus x = (λ1 + λ2 + λ3)/3.

It is clear that FA has range [0,1) and it is scaling and rotationally invariant [120].

Moreover it has been demonstrated that the FA map has a higher SNR than other anisotropy

measures such as RA for any value of anisotropy greater than zero [48, 89]. The shortcoming
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with FA and which we are addressing in this work stems from the fact that FA is derived

by making use of the Euclidean norm; yet diffusion tensors do not form a vector space and

thus the Euclidean norm is not appropriate for diffusion tensors. In order to appreciate the

need for appropriate tensor distance measures, we will start by looking at the space spanned

by diffusion tensors.

3.1.1 Manifold of Diffusion Tensors

Since diffusion tensors are SPD matrices, the space spanned by diffusion tensors will be

investigated by looking at the manifold of SPD matrices. Moreover, while our interest is in

3 × 3 SPD matrices, for better visualization and easier analysis we will restrict ourselves to

the case of 2 × 2 SPD matrices [81, 39]. To this end, suppose that the matrix

D =

(

a c

c b

)

is a 2 × 2 SPD matrix. The eigenvalues of this matrix are λ such that

det(D − λI) = 0 (3.8)

where det denotes matrix determinant. This gives

λ2 − (a+ b)λ+ (ab− c2) = 0 (3.9)

which implies

λ =
(a+ b)±

√

(a+ b)2 − 4(ab− c2)

2
(3.10)

=
(a+ b)±

√

(a− b)2 + 4c2

2
(3.11)

In order to have SPD matrix, we must have both eigenvalues greater than zero. This

implies

(a+ b) >
√

(a− b)2 + 4c2 (3.12)

or

ab > c2 (3.13)
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The inequality in Eq.(3.13) implies both a and b must have the same sign; both positive

or negative. However if both are negative, we see that the solution λ =
(a+b)−

√
(a−b)2+4c2

2

will result in a negative λ. Thus both a and b must be greater than zero.1 Hence for any 2

× 2 SPD matrix D, we have the necessary and sufficient conditions:

ab > c2, a > 0, b > 0 (3.14)

It is not hard to see that the inequality Eq.(3.14) is a hyperboloid inequality. To see its

geometry easily, set 0 < u = a+b
2 and v = a−b

2 . Then the condition ab > c2 can be rewritten

as
√
v2 + c2 < u which can be written as

v2 + c2 < u2, u > 0 (3.15)

and therefore with this parametrization, 2 × 2 SPD matrices can be seen to span the interior

of an open convex second order cone [81]. Fig. 3.1.1 shows a plot generated by sampling

10,000 random 2 × 2 SPD matrices to help us visualize the manifold of SPD matrices and

confirm the above conclusions.

Figure 3.1: Space spanned by 2 × 2 SPD matrices. Two colors are used to help visualize
the 3D nature of the space spanned by 2 × 2 SPD matrices.

1An nxn SPD matrix has all its diagonal elements greater than zero.
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3.1.2 Tensor Distance Measures

J-divergence Tensor Dissimilarity Measure

Since diffusion tensors are the covariance matrices of the Gaussian distribution that model

diffusion of water molecules in the body tissue, Wang and Vemuri [112] noted that the

distance between such tensors can in fact be deduced from the distance between their cor-

responding Gaussian distributions. The most frequently used distance between Gaussian

distributions is the Kullback-Leibler(KL) divergence:

KL(p‖q) =
∫

p(x)log
p(x)

q(x)
dx (3.16)

However as this distance is not commutative which is a required criteria for dissimilarity

measure, the authors symmetrize it by taking the J-divergence given by:

J(p, q) =
1

2
(KL(p‖q) +KL(q‖p)) (3.17)

The tensor distance is then defined as the square root of the J-divergence. The simpli-

fication of this distance gives a closed form for the distance given by:

dJD(D1, D2) =
1

2

√

trace(D−1
1 D2 +D−1

2 D1 − 2I) (3.18)

Log-Euclidean Tensor Distance Measure

The first comprehensive and mathematically sound and complete tensor distance metric in

the DT-MRI community is probably the Log-Euclidean tensor distance [5]. This metric,

motivated by the shortcomings of the L−2 norm and the computationally expensive nature

of other affine-invariant Riemannian metrics, addresses the tensor dissimilarity problem by

noting that a tensor D has a unique symmetric matrix logarithm L = log(D). It verifies

D = exp(L) where exp is the matrix exponential. Conversely, each symmetric matrix is

associated to a tensor by the exponential. L is obtained from D by changing its eigenvalues

into their natural logarithms, which can be done easily in an orthonormal basis in which D

(and L) is diagonal. The beauty of the space of symmetric matrices is that they form a vector

space with respect to matrix addition and scalar multiplication. On the other hand, the

tensor vector space with a Log-Euclidean metric is isomorphic (the algebraic structure of the

vector space is conserved) and isometric (distances are conserved) with the corresponding



28 CHAPTER 3. TENSOR DISTANCE TO ANISOTROPY MEASURE

Euclidean space of symmetric matrices. Thus by going from the space of tensors to the

space of symmetric matrices, the authors successfully transfer the matrix addition “+” and

the scalar multiplication “·” back to the tensor space with matrix exponential. This defines

on tensors the logarithmic multiplication
⊙

and the logarithmic scalar multiplication
⊗

given by:

{

D1
⊙

D2 = exp(log(D1) + log(D2))

λ
⊗

D = exp(λ · log(D)) = Dλ

When one considers only the multiplication
⊙

on the tensor space, one has a Lie group

structure which exhibits distances that are invariant by multiplication and inversion. This

distance measure named by the authors as the Log-Euclidean tensor distance can be written

as:

dLE(D1, D2) = ‖log(D1)− log(D2)‖2 (3.19)

It is apparent from Eq.(3.19), matrices with null or zero eigenvalues are at infinite

distance from tensors.

Riemannian Tensor Distance Measure

Finally, noting that Eq.(3.19) is a true geodesic distance only when D1 and D2 are com-

muting symmetric positive definite matrices, Bhatia [19] rectifies the metric further to get

a Riemannian metric. The Riemannian metric (dRI) is given by:

dRI(D1, D2) = ‖log(D−1/2
1 D2D

−1/2
1 )‖2 (3.20)

Since FA essentially measures the distance of a diffusion tensor from its closest isotropy,

our aim is now to employ these distance measures in order to compute the distance of a

given diffusion tensor from its closest isotropy.

3.1.3 Tensor Distance From Closest Isotropy

Given a diffusion tensor matrix D, let e1, e2 and e3 be its normalized eigenvectors and λ1, λ2

and λ3 be its eigenvalues so that V = (e1|e2|e3) denotes its normalized eigenvectors matrix

such that V V T = V TV = I and Λ = diag(λ1, λ2, λ3) denotes its eigenvalues matrix. Then

applying spectral decomposition to D, we obtain
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D = V ΛV T (3.21)

Such spectral decomposition is a very useful tool to prove some identities. For instance

the fact that trace(D) = λ1 + λ2 + λ3 can be easily proved as follows:

trace(D) = trace(V ΛV T )

= trace(V (ΛV T ))

= trace((ΛV T )V ) ...........(∵ trace(AB) = trace(BA))

= trace(Λ(V TV ))

= trace(Λ) ...........(∵ V V T = V TV = I)

= λ1 + λ2 + λ3 (3.22)

Similarly, trace(D2) = trace((V ΛV T )(V ΛV T )) = trace(V Λ2V T ) = trace(Λ2) = λ2
1 + λ2

2 +

λ2
3. For Diso, denoting its eigenvalues matrix as Λ̄ = diag(λ̄, λ̄, λ̄) = λ̄I and using the

identity V V T = V TV = I, we obtain

Diso = λ̄I = λ̄V V T = V (λ̄I)V T = V Λ̄V T (3.23)

which shows Diso has the same normalized eigenvectors matrix as D. Actually Diso is

degenerate (spherical), hence any set of three normalized orthogonal vectors in ℜ3 can be

used as its eigenvectors. Choosing V as its eigenvectors, however, enables us to simplify

computations considerably. For instance observe that using Eq.(3.23), it follows that Dan =

D − Diso = V ΛV T − V Λ̄V T = V (Λ − Λ̄)V T which shows Dan has eigenvalues given by

λ1 − λ̄, λ2 − λ̄, and λ3 − λ̄ in agreement with Eq.(3.5). Also note that the choice of λ̄ that

minimizes the distance between D and Diso depends on the distance metric used, as will be

shown in section 3.1.4.

Remark 1. Observe that by assigning the same eigenvector matrix to a closest isotropic

tensor, we are essentially enforcing the same orientation to both a given diffusion tensor

and its closest isotropy. This implies the dissimilarity measure between a diffusion tensor

and its closest isotropy is due to shape difference only. For this reason, we may refer to

the tensor dissimilarity measure between a given diffusion tensor and its closest isotropy as

Tensor Shape Dissimilarity measure. Therefore, we will also refer to anisotropy measures

obtained by using different tensor distances as Shape Anisotropy (SA) measures.
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Using the identities D−1 = V Λ−1V T and log(D) = V log(Λ)V T , it is then easy to show

that

dJD(D,Diso) =
1

2

√

trace(D−1Diso +D−1
isoD − 2I)

=
1

2

√

trace(V Λ−1Λ̄V T + V Λ̄−1ΛV T )− 6

=
1

2

√

√

√

√

3
∑

i=1

λ̄

λi
+

3
∑

i=1

λi

λ̄
− 6

=
1

2

√

√

√

√

3
∑

i=1

(λi − λ̄)2

λ̄λi
(3.24)

dLE(D,Diso) = ‖log(D)− log(Diso)‖2
= ‖V log(Λ)V T − V log(Λ̄)V T ‖2
= ‖V (log(Λ)− log(Λ̄))V T ‖2
= ‖V log(ΛΛ̄−1)V T ‖2
=

√

trace(V log2(ΛΛ̄−1)V T )

=

√

√

√

√

3
∑

i=1

log2
λi

λ̄
(3.25)

dRI(D,Diso) = ‖log(D−1/2DisoD
−1/2)‖2

= ‖log(V Λ
−1
2 Λ̄Λ

−1
2 V T )‖2

= ‖V log(Λ−1Λ̄)V T ‖2
=

√

trace(V log2(Λ−1Λ̄)V T )

=

√

√

√

√

3
∑

i=1

log2
λi

λ̄
(3.26)

The fact that Eqs.(3.19) and (3.20) simplify to the same expression (Eqs. (3.25) and

(3.26) respectively) in computing the tensor distance between D and Diso should not come

as a surprise; after all dLE(D1, D2) = ‖log(D1)−log(D2)‖2 is a special case of dLE(D1, D2) =

‖log(D−1/2
1 D2D

−1/2
1 )‖2 which holds whenD1 andD2 are commuting matrices [19]. IndeedD

and Diso are commuting matrices as can be seen by: DDiso = Dλ̄I = λ̄DI = λ̄ID = DisoD.
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3.1.4 Closest Isotropic Tensor

Consider the J-divergence tensor distance. In order to find the value of λ̄ that minimizes

the distance between D and its closest isotropic tensor, define the function

f(λ̄) =
(λ1 − λ̄)2

λ̄λ1
+

(λ2 − λ̄)2

λ̄λ2
+

(λ3 − λ̄)2

λ̄λ3
(3.27)

Then differentiating f with respect to λ̄, we find that f takes its minimum value when

λ̄2(
1

λ1
+

1

λ2
+

1

λ3
) = λ1 + λ2 + λ3 (3.28)

or

λ̄ =

√

trace(D)

trace(D−1)
(3.29)

Similarly, the value of λ̄ that minimizes the distance between D and its closest isotropic

tensor when using the Log-Euclidean and the Rimannian tensor distances is given by [18]

λ̄ = det(D)1/3 (3.30)

3.2 Shape Anisotropy (SA)

The new anisotropy measure is developed by making the following observations about

Eqs.(3.24), (3.25) and (3.26):

(i) They are functions of eigenvalues only.

(ii) They have ranges [0, +∞).

(iii) They are scale invariant and rotationally invariant.

(iv) They measure the distance of a tensor from its closest isotropic tensor.

These are the properties exhibited by FA except for the range values. Therefore we can

essentially use Eqs.(3.24), (3.25) and (3.26) to measure the anisotropy of diffusion tensors.

For comparisons with FA and for displaying purposes, we first normalize them using the

tanh function and define two novel anisotropy measures as follows:
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SAJD = tanh

(

√

√

√

√

3
∑

i=1

(λi − λ̄)2

λiλ̄

)

(3.31)

SALE = tanh

(

√

√

√

√

3
∑

i=1

log2
(λi

λ̄

)

)

(3.32)

where λ̄ is as shown in Eqs.(3.29) and (3.30). Of course, both Eqs.(3.25) and (3.26) give

rise to the same ShapeAnisotropy(SA), hence we will consider only SALE . It is easy to

see that SA, just like FA, is rotationally invariant, scale invariant, sorting of eigenvalues

independent and has range [0, 1).

3.3 Experimental Results

3.3.1 Qualitative Comparison of FA and SA

A qualitative comparison of FA and SA maps is shown in Fig. 3.2 using a real brain DT-

MR image slice. The diffusion weighted images were acquired using a Phillips Achieva

3.0 Tesla scanner using 32 directions with slices parallel to the anterior-commissure posterior-

commissure line. 60 continuous slices of 2.2 mm thickness were collected with a Field of

View (FOV) of 212 mm, pixel size 0.8281 mm2. We see from the figure that both SAJD

and SALE maps have brighter intensities and higher contrast than FA which can also be

seen in Fig. 3.2(d) and Fig. 3.2(e) where we show the difference between SA and FA maps

(i.e. SA− FA). The intensity values of SALE and FA maps are inspected along the white

line shown and plotted in Fig. 3.2(f) which clearly shows the SA map has higher intensity

values than the FA map along the line.

It is interesting to note that while the mathematical expressions of SAJD and SALE

seem very different, their corresponding images are very similar (see also Fig. 3.4 below).

Since SAJD and SALE values take consistently larger values than FA, we expect SAJD and

SALE maps to provide a more detailed depiction of anisotropic areas and better contrast

between gray matter and white matter than FA map. This is explored in the following

subsections.
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(a) FA (b) SAJD (c) SALE

(d) SAJD minus FA (e) SALE minus FA (f) FA and SALE profiles along the
white line

Figure 3.2: Qualitative comparison of FA, SAJD and SALE maps using a DT-MR brain
image slice. The SAJD and SALE maps show higher intensity values as shown in 3.2(b)
and 3.2(c) and supported by the SAJD - FA and SALE - FA maps shown in 3.2(d) and
3.2(e). The intensity values of FA and SALE maps are inspected along the white line shown
in 3.2(a) and 3.2(c) and plotted in 3.2(c) again confirming SALE maps have higher intensity
values than FA.
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3.3.2 Tissue discrimination with FA and SA

For the task of discriminating between two tissue classes, a measure of diffusion anisotropy,

A, can be evaluated using a detectability index [2],

d =
< A1 > − < A2 >

√

σ2
1 − σ2

2

(3.33)

where (< A1 >, σ2
1) and (< A2 >, σ2

2) are the means and variances of the anisotropy

values for the two tissue classes. The anisotropy measure with the greatest detectability

index should be close to optimum for the specified task. The variances depend upon a

combination of tissue and subject variability, measurement noise, the encoding axes, the

diffusion weighting and the pulse sequence parameters (TR, TE, etc.). It is well known that

these measures of diffusion anisotropy are highly sensitive to measurement noise and as such

any study of diffusion anisotropy must take noise effects into account.

Figure 3.3: Single slice of FA map from JHU MNI SS DTI dataset with corresponding
regions of interest segmented using JHU MNI SS WMPM TypeI white matter parcellation
map: CC = corpus callosum, IC = Internal Capsule, TH = Thalamus, GM = Gray matter,
and SCW = Subcortical white matter

In order to compare SA and FA in discriminating tissue classes, we calculated the

detectability indices of these anisotropy measures for a publicly available DTI atlas 1

downloaded from Johns Hopkins Medical Institute Laboratory of Brain Anatomical MRI

(http://lbam.med.jhmi.edu/). We also downloaded a white matter parcellation map 2 that

is already registered with the atlas from the same source. Both the atlas and the white

1JHU MNI SS
2JHU MNI SS WMPM TypeI
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matter parcellation map are in the Montreal Neurological Institute (MNI) coordinate sys-

tem with 181 x 217 x 181 (1 mm isotropic) resolution. Since the white matter parcellation

map was already registered with the atlas, the regions of interest were easily extracted by

superimposing the white matter parcellation map onto the SA and FA anisotropy measures

calculated from the atlas. Our tissue detectability results are presented in Table 3.1 where

the values of d shown in bold face indicate that the anisotropy index given on that row per-

forms best in discriminating tissue classes on the corresponding column. We observe that

while FA performs better in detecting differences among tissues within the white matter;

SA detects differences between white matter and gray matter regions better.

Table 3.1: Tissue detectability using FA and SA. Abbreviations of the tissue classes is as
shown in Fig. 3.3.

AI\ CC CC CC CC IC IC IC TH TH GM
vs vs vs vs vs vs vs vs vs vs

ROI IC TH GM SCW TH GM SCW GM SCW SCW

FA 0.24 0.95 2.01 0.52 1.46 2.69 0.86 2.07 0.45 1.82

SAJD 0.39 0.74 2.12 0.36 1.35 2.89 0.81 2.10 0.36 1.90

SALE 0.38 0.73 2.10 0.37 1.33 2.87 0.82 2.11 0.34 1.89

3.3.3 Noise Immunity Considerations

While Fig. 3.2 gives a qualitative comparison of FA and SA maps, we now analytically show

that SA has higher noise immunity than FA by comparing the SNR of SA and FA. Once

again, because the results obtained with SAJD and SALE are very similar, here we report

only the results obtained using SAJD.

For any Anisotropy Index (AI) such as RA, FA and SA; assuming that all λi’s are

independent with the same standard deviation (std) of noise, the SNR of AI per unit std of

noise in λi is given by [89]

SNR(AI) =
AI

√

∑3
i=1

(

∂AI
∂λi

)2
(3.34)

Following the approach of Papadakis et al. [89], we have calculated the values of AI and

SNR of AI for FA, SAJD and SALE for a prolate tensor for three types of distributions of
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the principal diffusivities, λ1 ≥ λ2 ≥ λ3:

(a) cylindrical, λ1 ≥ λ2 = λ3,

(b) disc-shaped, λ1 = λ2 ≥ λ3,

(c) symmetric about λ̄, λ1 − λ2 = λ2 − λ3.

For all the three types of anisotropy the mean diffusivity λ̄ is kept constant at 0.7 ·
10−3mm2/s, in agreement with typical values of the experimentally measured value for

normal cerebral tissue. In the cylindrical anisotropy, we vary λ1 from 0.7 · 10−3mm2/s to

2.1 · 10−3mm2/s and keep λ2 = λ3 which ensures that λ1 ≥ λ2 ≥ λ3 for all values of λ1. In

the disc-shaped anisotropy, we vary λ1 from 0.7 · 10−3mm2/s to 1.05 · 10−3mm2/s and keep

λ1 = λ2 so that once again λ1 ≥ λ2 ≥ λ3. Similarly, λ1 takes values from 0.7 · 10−3mm2/s

to 1.4 · 10−3mm2/s and λ1 − λ2 = λ2 − λ3 in the symmetric anisotropy.

Fig. 3.4 shows plots of AI i.e. FA, SAJD and SALE and SNR(AI), for each of the

three types of anisotropy, as a function of the largest principal diffusivity λ1 which has been

normalized relative to λ̄. We also plot RA and SNR of RA for comparison purposes.

From Figs. 3.4(a), 3.4(c) and 3.4(e), we observe once again that despite their differ-

ent mathematical expressions SAJD and SALE have very similar values for all types of

anisotropy at all levels of anisotropy. Moreover, SAJD and SALE are consistently greater

than or equal to FA and they exhibit stronger non-linear relationship with λ1 compared to

FA. The gap between SAJD and SALE on the one hand and FA on the other is pronounced

more clearly as we move away from the isotropic case and decreases as we approach the

case of linear anisotropy. Therefore, SAJD and SALE maps will give increased signal in-

tensity for cases of low anisotropy, providing an isotropic background of increased intensity.

However, since SAJD and SALE take consistently larger values than FA, they may pro-

vide a more detailed depiction of anisotropic areas. For the cylindrical type, both SAJD

and SALE remain well-bounded to their maximum value for range of values of λ2 and λ3

compared to FA. Therefore, SAJD and SALE maps may provide darker background signal

intensity, corresponding to areas of low anisotropy, and stronger contrast between low and

high anisotropy area.

Figs. 3.4(b), 3.4(d) and 3.4(f) show plots of SNR(AI) as a function of the normal-

ized dominant principal diffusivity λ1. For small anisotropy levels, all three AI measures
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(a) AI: Cylindrical (b) SNR(AI): Cylindrical

(c) AI: Disk Shaped (d) SNR(AI): Disk Shaped

(e) AI: Symmetric (f) SNR(AI): Symmetric

Figure 3.4: Plots of AI (RA, FA, SAJD and SALE) in 3.4(a), 3.4(c) and 3.4(e) and the
respective SNR(AI) in 3.4(b), 3.4(d) and 3.4(f) of prolate tensor as its anisotropy varies
from 0 to 1 as a function of the dominant principal diffusivity λ1.
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have comparable SNR, but their differences in noise sensitivity becomes more prominent as

anisotropy level increases, with both SAJD and SALE having better SNR than FA. There-

fore the SAJD and SALE maps will generally be more robust to noise than the FA map,

exhibiting little intensity variation within structures of uniform anisotropy. The difference

in the appearance of noise between SAJD and SALE on the one hand and FA on the other

will be more pronounced for strongly anisotropic structures.

3.4 Conclusion

A novel anisotropy measure for DT-MRI is derived using tensor distance measures and

its performance compared with existing anisotropy measures. We have shown that our

anisotropy take consistently greater than or equal to FA values and they exhibit stronger

non-linear relationship with the eigenvalues. The gap between our anisotropy measures on

the one hand and FA on the other is pronounced more clearly as we move away from the

isotropic case and decreases as we approach the case of linear anisotropy. Therefore, our

anisotropy maps give increased signal intensity for cases of low anisotropy, providing an

isotropic background of increased intensity. However, since they take consistently larger

values than FA, they provide a more detailed depiction of anisotropic areas and give ad-

ditional information by revealing more white matter structures in the image. In terms of

noise immunity, our anisotropy measures have comparable SNR to FA for small anisotropy

levels but better SNR than FA as anisotropy level increases. Therefore our anisotropy maps

will generally be more robust to noise than the FA map, exhibiting little intensity variation

within structures of uniform anisotropy. The difference in the appearance of noise between

FA on the one hand and our anisotropy measures on the other are more pronounced for

strongly anisotropic structures. Importantly, the significance of this work will be more ev-

ident in Chapter 6 where we propose a novel anisotropy measure for higher order tensors

using appropriate tensor distance following the same approach.
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Chapter 4

Second Order Tensor Field

Segmentation

An important problem in medical image analysis is the segmentation of anatomical regions

of interest. Once regions of interest are segmented, one can extract shape, appearance and

structural features that can be analyzed for disease diagnosis or treatment evaluation. Image

segmentation where regions of interest are delineated is necessary for performing subsequent

quantitative analysis and qualitative visualization. In medical imaging applications, it is

apparent that good quality segmentation helps radiologists and physicians extract shape,

appearance, and other structural features that can be analyzed for disease diagnosis or

treatment evaluation. Analogous to scalar image segmentation, DT-MR image segmentation

can rely on:

a) identifying nearby tensors with similar diffusion properties and grouping them into

one coherent structure,

b) identifying edges in the images and linking them to form separating boundaries be-

tween neighboring structures, and

c) incorporating prior knowledge about shape characteristics of the different targets to

segment.

While scalar image segmentation has been studied extensively and different algorithms

have been developed over a long period of time, DT-MR image segmentation is a relatively

new and challenging task. Early, attempts on DT-MR image segmentation include the

40
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method proposed by Zhukov et al. [129] where the authors extract rotationally invariant

scalar diffusion anisotropy measures and use a level-set segmentation method that operates

on the scalar field. However this method will fail to distinguish between regions of the

same diffusion anisotropy magnitude but oriented in different directions. By incorporating

the directions of diffusion in addition to the magnitude during the segmentation process,

one can differentiate between regions of same anisotropic diffusion but oriented in different

directions.

In order to improve the segmentation of DT-MR data, one has to exploit all the informa-

tion captured by the tensors. To this end, several level-set based curve evolution techniques

for DT-MR image segmentation that operate on the whole diffusion tensor fields have been

developed [112, 38, 74, 76, 96]. However, these variational formulations with iterative gradi-

ent descent based solutions are sensitive to parameter settings and initialization, and hence

may get stuck at suboptimal local minima of the energy functional. Further, implementing

intuitive user interaction remains a challenging goal in level set based segmentation tech-

niques. On the other hand, interactive and highly-automated segmentation techniques keep

the user ‘in the loop’ in an attempt to bridge the gap between the clinical users’ expert

knowledge and the inner workings of the computational tools and algorithms.

Another approach to segment DT-MR images was proposed by Brun et al. [24] where

the authors present a framework for unsupervised segmentation of white matter fiber traces

obtained from DT-MR data. Fiber tracts are compared pairwise to create a weighted undi-

rected graph which is partitioned into coherent sets using the normalized cut criterion. A

simple and yet effective method for pairwise comparison of fiber traces is presented which in

combination with the normalized cut criterion is shown to produce plausible segmentations

of both synthetic and real fiber trace data. Similarly Wiegell et al. [121] proposed segmen-

tation of major thalamic nuclei based on the characteristic fiber orientation of the cortico

thalamic/thalamo cortical striations within each nucleus. Using an automatic clustering al-

gorithm, the authors extracted the Talairach coordinates for the individual thalamic nuclei

and claim that the center-of-mass coordinates for the segmented nuclei were found to agree

strongly with those obtained from a histological atlas. While interesting, such techniques

are however restricted to clustering of white matter fiber tracts and not segmentation in

general.

In this chapter, we look at segmentation of second order tensor field using two pop-

ular interactive multidimensional segmentation algorithms: Graph cuts [22] and Random
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Walker [47]. Our goal is in order to cluster tensor pixels to classes such that each tensor

is assigned to a single class. This task is useful for parcellation of diffusion tensor brain

images to anatomically distinct regions such as thalamus, corpus callosum, internal capsule,

etc in order to create a brain atlas. While both these segmentation algorithms have been

developed for scalar image segmentation, we extend them to operate on second order tensor

field data by utilizing advances in tensor calculus and diffusion tensor distance metrics. The

chapter is organized as follows. In section 4.1, we review graph cuts and optimal maximum

flow algorithms for computing minimum cuts. In addition, the connection between minimiz-

ing energy functions and computation of minimum cut is discussed. After reviewing scalar

image segmentation using graph cuts, we present our extension of the method to DT-MR

image segmentation in section 4.1.3. We present experimental results on both synthetic and

real cardiac and brain DT-MRI images in section 4.1.4. Segmentation using Random Walker

is presented in section 4.2 by first presenting the Random Walker algorithm in section 4.2.1,

incorporating prior models in section 4.2.2 and extending the algorithm for DT-MR images

segmentation in section 4.2.3. Segmentation results using the Random Walker algorithm is

presented in section 4.2.4. Finally, we summarize and draw concluding remarks in section

4.3.

4.1 Segmentation using Graph Cuts

The graph cut segmentation technique is an efficient multidimensional image segmentation

algorithm that is intuitive, interactive and globally optimal. In this technique, the user first

interactively selects certain tensors as object (“obj”) or background (“bkg”) to provide hard

constraints for the segmentation [22]. The obj tensors constitute the tensors that belong to

the object to be segmented and the bkg ones correspond to the tensors that make up the

background of the DT-MR image. These obj and bkg tensors, collectively known as seed

points, give clues about the location of the object of interest and the background. A graph

structure is then constructed from the DT-MR image where the tensors correspond to graph

vertices and edge weights are computed using similarity measures of adjacent vertices. The

locations of the seed points are encoded into the graph providing hard constraints for the

segmentation; additional soft constraints incorporate information about both regional tissue

diffusion as well as boundaries between tissues of different diffusion properties. The graph

cuts algorithm is then used to find the globally optimal segmentation of the underlying
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3D DT-MR image among all segmentations satisfying the constraints. We emphasize that

the optimality of this segmentation technique is with respect to the similarity measure

used. Therefore in order to obtain a global optimal segmentation result for a particular

purpose, it is required to design a similarity measure that takes into account the purpose

of the segmentation so as to yield high similarity to objects that need to belong to the

same class and low similarity measure to objects of different classes. The topology of the

segmentation is unrestricted and both obj and bkg segments may consist of several isolated

parts. Moreover, the user can interactively modify the seed points as needed in order to

improve the segmentation results. We test our method on synthetic tensor field data and

apply it to real DT-MR data providing segmentations of the corpus callosum in the brain

and the ventricles of the heart.

4.1.1 Graph Cuts Overview

Suppose G = (V,E) is an undirected graph with vertex set V and edge set E. As in the

flow problem, two special terminal vertices denote the source s and the sink t. An edge in

E connecting u, v ∈ V is assigned a cost c(u, v). An s− t cut C(S, T ) partitions V into two

disjoint sets S and T , such that s ∈ S and t ∈ T . The cost of the cut is the sum of all edge

costs connecting a vertex in S to a vertex in T :

C(S, T ) =
∑

u∈S,v∈T

c(u, v) (4.1)

The minimum s − t cut is the cut C with the smallest cost. Due to the theorem of

Ford and Fulkerson [40], finding the minimum cut is equivalent to computing the maximum

flow from the source to the sink, which is solvable in polynomial time [45]. While there are

generalizations of the minimum s − t cut problem that involve more than two terminals,

such as the multiway cut problem [32], these generalizations are generally NP-hard.

Since each cut of a graph G has a cost associated with it, we may view the graph G

as an energy function mapping from all cuts on G to the set of non negative real numbers.

Any cut can be described by |V | binary variables x1, ..., x|V | corresponding to vertices in

G (excluding the source and the sink), such that xi = 0 when vertex vi ∈ S, and xi = 1

when vi ∈ T . An energy ξ can be represented by G, where ξ is viewed as a function of

|V | binary variables ξ(x1, ..., x|V |), and whose value is equal to the cost of the cut defined

by the configuration x1, ..., x|V | (xi ∈ {0, 1}). Such an energy function ξ can be efficiently
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Figure 4.1: (a) Simple illustration of graph construction from 2D 3×3 DT-MR image. (b)
The cost of each edge is reflected by the edge’s thickness. Low cost edges are attractive
choices for the minimum cut. (c) The cut separates the tensors into object and background
classes. (d) The 3D ellipsoids are used to visualize diffusion tensors where the directions
and lengths of the major axes correspond to the eigenvectors and eigenvalues of the diffusion
tensors.
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minimized by computing the minimum cut of G or simply the “graph cut” [64].

The standard form of the energy function can be written as

ξ(x1, ..., x|V |) =
∑

p∈{1,2,...,|V |}

ζp(xp) +
∑

p,q∈{1,2,...,|V |}
vq∈Np,q 6=p

ζp,q(xp, xq) (4.2)

where Np is the neighborhood of vertex vp. The first term ζp(xp) measures the cost of

assigning a binary value xp to a vertex vp, which designates whether vp belongs to the set

S or T after the minimum cut is computed. From a segmentation point of view, this term

is derived from the image data and is computed by measuring the similarity between the

voxel corresponding to vp and other known object or background voxels. The second term

ζp,q(xp, xq) measures the cost of assigning xp and xq to the adjacent vertices vp and vq.

Once again, from a segmentation point of view this cost reflects conformance to boundary

properties. The cost function is computed in such a way that similar neighboring image

voxels are associated with graph vertices that are connected by higher cost edges, whereas

dissimilar voxels are associated with lower cost edges. At the borders of objects, adjacent

voxels should have different labels and it is important that the energy function ξ does not

over penalize such a labeling.

4.1.2 Scalar Image Segmentation Using Graph Cuts

As explained in the previous section, a cut is a binary partition of a graph and can be viewed

as a labeling of the graph. Binary segmentation, which is a binary partition of image voxels,

can therefore be performed by first creating a graph with vertices corresponding to the

image voxels and edges with proper weights and then employing an efficient polynomial time

minimum cut algorithms [45]. Boykov and Jolly [22] proposed an interactive technique for

segmenting N-dimensional scalar images using graph cuts. In this method the user imposes

hard constraints for segmentation by indicating certain pixels (seeds) that absolutely have to

be part of the object and certain pixels that have to be part of the background. Intuitively,

these hard constraints provide clues on what the user intends to segment. The rest of

the image is segmented automatically by constructing a cost function whose minimization

results in a globally optimum segmentation among all segmentations satisfying the hard

constraints. The cost function is defined in terms of edges that form boundary and region

properties. The boundary property ensures that voxels on either side of a boundary are
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dissimilar while the region property ensures voxels belonging to the same region are similar

to each other and dissimilar to voxels (seeds) known to belong to different image partitions.

Similarity of voxels can be measured as differences of intensities.

4.1.3 Extending Segmentation Using Graph Cuts to DT-MR Images

In the case of DT-MR image segmentation using graph cuts, the user first selects certain

tensor voxels belonging to the structure or object to be segmented and background tensor

voxels belonging to the background. These seed tensors constitute hard constraints for

the segmentation, i.e., after segmentation obj seeds must remain labeled as belonging to

the object of interest while bkg seeds must remain labeled as background. Since typically

more than one solution can satisfy these hard constraints, these conditions are considered

insufficient for defining a single optimal segmentation and additional soft constraints are

used to automatically label all remaining tensors in the image. The soft constraints are

incorporated into the energy function through edge weights, reflecting both boundary and

region properties.

Energy Function

Consider an arbitrary N-dimensional tensors field T . Let A = (A1, A2, ...A|T |) be a binary

vector that defines a segmentation of T , where each element Ai specifies whether tensor

Di belongs to the object or background. This is the same as the binary labeling problem

described in section 4.1 for which an energy functional can be constructed and minimized

efficiently using graph cuts.

We define an energy functional ξ(A) as [22]

ξ(A) = λ ·R(A) +B(A) (4.3)

with

R(A) =
∑

Di∈T

RDi
(Ai), and (4.4)

B(A) =
∑

i,j∈{1,2,...,|T |}
Dj∈Ni,i 6=j

B(Di,Dj) (4.5)

where Ni is the set of tensors neighboring tensor Di. The coefficient λ ≥ 0 in Eq.(4.3) speci-

fies a relative importance of the region properties term R(A) versus the boundary properties
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term B(A). The boundary term B(Di,Dj) is interpreted as the penalty for discontinuity be-

tween neighboring tensors (Di, Dj). Normally B(Di,Dj) is large when the neighboring tensors

are similar and close to zero when they are dissimilar. The regional term R(A) sums up

the individual penalties RDi
(Ai) of assigning a tensor Di as obj or bkg and is computed by

examining the dissimilarity measure of tensor Di compared to the obj and bkg seed tensors.

Graph Construction

We now construct a graph G as follows. Each tensor voxel of the DT-MR image corresponds

to a non-terminal node in the graph. We add two terminal nodes, namely source s and sink

t so that a flow is pushed from s to t (Fig. 4.1). Neighboring tensors (Di, Dj) are connected

by edges with edge weights of B(Di,Dj). In our work we have considered 8-connectivity

neighborhood for 2D data and 26-connectivity for 3D data. Moreover, each non-terminal

node is connected to the terminal nodes with edge weights given as in table 4.1.

Table 4.1: Edge weight assignment table for the graph G
Edge Weight For

(Di, Dj) B(Di,Dj) (Di, Dj) ∈ N , Dj ∈ Ni, i 6= j

λRDi
(bkg) Di /∈ O ∪ B

(Di, s) K Di ∈ O
0 Di ∈ B

λRDi
(obj) Di /∈ O ∪ B

(Di, t) 0 Di ∈ O
K Di ∈ B

where

K = 1.0 + max
Di∈T

∑

i,j∈{1,2,...,|T |}
Dj∈Ni,i 6=j

B(Di,Dj) (4.6)

while O and B denote the set of obj and bkg seed tensors respectively.

The edge weight of a non-terminal tensor Di to the source terminal node s is the penalty

of assigning the tensor Di as bkg tensor denoted by RDi
(bkg). Similarly, the edge weight of

a non-terminal tensor Di to the sink terminal node t is the penalty of assigning the tensor

Di as obj tensor denoted by RDi
(obj).

By assigning the weight K, which is greater than the sum of all edge weights of a seed

tensor to its neighbors, to the edges connecting each obj and bkg seed points to s and t

respectively, we ensure that the hard constraints of the segmentation will always remain
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intact after segmentation. This comes from the fact that the minimum graph cut always

severs the least weight edges. Moreover by definition, this cut will sever one and only one

terminal link from each tensor, thus resulting in an optimal segmentation.

In order to fully utilize all the information in the tensors while computing the edge

weights of the graph, the dissimilarity measure of tensors should incorporate both diffusion

magnitudes and directions in the DT-MR image voxels. We utilize the Log-Euclidean tensor

distance [5] and the J-divergence tensor dissimilarity measure [111] described in Chapter 3

for computing these edge weights.

We compute the boundary link weights B(Di,Dj) as the inverse of tensor distance between

Di and Dj .

B(Di,Dj) = d−1(Di, Dj) (4.7)

The weights of the terminal links connecting a non-seed tensor to the terminal nodes are

obtained by computing the distance of each such tensor from all seed tensors and averaging

these distances. Specifically, the edge weight of a non-seed tensor Di to the source terminal

node s, which is the penalty of assigning the tensor Di as bkg tensor, is given by

RDi
(bkg) =

∑

Dj∈B
d(Di, Dj)

|B| (4.8)

Similarly, the weight of a non-seed tensors Di to the sink terminal node t, which is the

penalty of assigning the tensor Di as obj tensor, is given by

RDi
(obj) =

∑

Dj∈O
d(Di, Dj)

|O| . (4.9)

4.1.4 Experimental Results

In this section, we present some simulation results of the proposed segmentation technique

for both synthetic and real data. Both Log Euclidean and J-divergence tensor dissimilarity

measures were tested and gave similar results.

Synthetic Data

Fig. 4.2 shows a noisy synthetic DT-MR image segmentation performed with the proposed

technique. This example is used to demonstrate that full tensor information must be used to

achieve quality segmentation for tensor fields. The inner circle contains anisotropic diffusion
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(a) Original image (b) Seeded image (c) Segmentation result

Figure 4.2: Segmentation of a noisy synthetic 2D DT-MR slice using graph cuts. (a) The
DT-MR slice visualized using Dxx. The inner ‘white’ disk contains tensor pixels with eigen-
vectors (1, 0, 0), (0, 1, 0), and (0, 0, 1) and corresponding eigenvalues (10, 1, 1). The outer
disk contains tensors with eigenvectors (0, 1, 0), (1, 0, 0), and (0, 0, 1) and corresponding
eigenvalues of (10, 1, 1). Gaussian noise is then added to corrupt the eigenvalues and to
rotate the eigenvectors. (b) Manually selected object seed points (red) and background seed
points (blue). (c) Segmentation result shown in green.

with a preferred direction pointing left while the outer circle contains anisotropic diffusion

tensors of the same magnitude with preferred direction of diffusion pointing downward.

In order to test the strength of our segmentation algorithm, random Gaussian noise

was added independently to the three eigenvalues of the DT-MR image [119] in addition

to random rotation (in azimuth and elevation) perturbing the three eigenvectors by the

same amount to retain orthogonality. Scalar quantities derived from tensors such as FA

would not discriminate such image as having distinct diffusion properties. By considering

the diffusion direction in addition to the magnitude however, we could correctly interpret

the image as having two distinct structures with entirely different diffusion properties and

thus segmented the image accordingly.

In Fig. 4.3, we show that the proposed method is capable of segmenting an object of

interest made up of several disconnected parts.

Real Data

While the synthetic example demonstrated the quality of segmentation results obtained by

the proposed technique, the practicality of the proposed technique was evaluated using real

brain and cardiac DT-MRI data as shown below. Although we present typical segmentation
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(a) Original image (b) Seeded image (c) Segmentation result

Figure 4.3: Segmentation of a synthetic noisy DT-MR slice containing an object comprising
several disconnected parts using graph cuts. (a) The DT-MR slice visualized using Dxx.
(b) Object (red) and background (blue) seed points. (c) Segmentation result in green. The
tensors in the object and background were created in a manner similar to those in Fig. 4.2.

results for 2D images, we have tested our method on several 2D and 3D and obtained

similar results.

Figure 4.4: Corpus callosum (CC) segmentation using graph cuts from a DT-MR slice of
the brain. From left to right: original image visualized using trace, manually selected CC
seed points (red) and background seed points (blue), and CC segmentation result shown in
green.

Fig. 4.4, shows the segmentation result of brain corpus callosum where white matter

is segmented out from the remaining part of the brain. No regularization, smoothing or

interpolation was performed prior to segmentation. Fig. 4.5 shows the segmentation result

for the cardiac ventricles.
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Figure 4.5: Cardiac wall segmentation from a DT-MR slice of the heart using graph cuts.
From left to right: original image visualized using trace, manually selected heart seed points
(red) and background seed points (blue), and cardiac segmentation result shown in green.

4.2 Segmentation using Random Walker

The Random Walker segmentation algorithm is performed by labeling each unlabeled image

pixel with the label for which it has the highest probability. This is achieved by calculating

the probability that a Random Walker, starting from an unlabeled pixel, first reaches a

labeled pixel (seed point).

4.2.1 Random Walker Overview

Similar to graph cuts, the segmentation is carried out on a weighted graph which is con-

structed from the image to be segmented. A graph G = (V,E) with vertices v ∈ V and edges

e ∈ E is constructed from the image such that each vertex in the graph is a tensor voxel (Di)

from the image. Neighboring tensors (Di, Dj) are connected by edges eij which have weights

wij . As in graph cuts, the weights of the edges are computed using the Log-Euclidean and

J-divergence tensor distance measures. An edge connecting two similar tensors should have

a larger weight than an edge connecting two dissimilar tensors. Moreover, the user provides

obj and bkg seed points that constitute hard constraints for the segmentation. Therefore,

given the graph and a set of labeled vertices, the goal of the Random Walker algorithm is

to label each unlabeled vertex VU in the graph with a label s provided by the user [47].

Fig. 4.6 provides an illustration of how the graph is constructed from a DT-MR image using

ellipsoids to visualize the diffusion tensors (voxels).

To find the probability xsi that a Random Walker starting from a vertex vi first reaches

a labeled node, the following energy functional has to be minimized [47]
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Figure 4.6: Simple illustration of the approach to segmentation using Random Walker with
two seed points representing two labels (L1, L2). (a) Initial seed points where each node is
a diffusion tensor visualized as ellipsoid. (b) and (c) Probabilities that a Random Walker
starting from each node first reaches a seed. (d) Expected segmentation result.
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E = xsTU LxsU (4.10)

where s corresponds to a label and L represents the combinatorial Laplacian matrix defined

as

Lvi,vj =















degvi if i = j

−wij if vi and vj are adjacent vertices

0 otherwise

(4.11)

where degvi is the degree of the vertex vi. The Laplacian matrix can be partitioned into

labeled (L) and unlabeled (U) vertices such that

L =

[

LL B

BT LU

]

(4.12)

The minimization of the energy function Eq.(4.12) can then be achieved by solving the

following system of equations

LUx
s
U = −Bfs (4.13)

where fs is an indicator vector for the labeled vertices that defines the segmentation bound-

ary.

4.2.2 Incorporating Label Priors

Without incorporating label prior models, the Random Walker formulation fails to segment

disconnected objects since each segment must be connected to a seed [46]. From the user

initialized obj and bkg seed regions, a tensor distribution can be calculated using a kernel

density estimation, where for each tensor a nodewise prior P s
i is calculated. The prior P s

i

represents the probability that the tensor at vertex vi belongs to the tensor distribution of

label s. Each label is assumed to be equally likely, therefore using Bayes’ theorem the prior

probability is given as

xi
s =

Pi
s

∑k
s=1 λi

s
(4.14)

In vector form, this is written as

(

k
∑

s=1

Λs

)

xs = P s (4.15)



54 CHAPTER 4. SECOND ORDER TENSOR FIELD SEGMENTATION

where Λs is a diagonal matrix with the values of P s on its diagonal. This leads to the

introduction of the priors into the system of equations given in Eq.(4.13) which are used to

find the probabilities xsU . The new system of equations can be defined as

LU + γ
k
∑

r=1

diag (P r
U )x

s
U = γP s

U −Bfs (4.16)

where γ is a free parameter.

A Gaussian kernel is used to produce the probability density estimation. Given a set of

k labeled tensors (seeds) Rs = {Rs
1, R

s
2, ..., R

s
k} for each user defined label s, the probability

P s
i that a tensor Di is generated from the seeds distribution corresponding to label s is

given by

P s
i =

k
∑

q=1

exp

(

d2(Di, Rq)

σ2

)

(4.17)

where d(Di, Rq) is the tensor distance between a pair of tensors Di and Rq, and σ is a free

parameter.

4.2.3 Extending Random Walker Segmentation to DT-MR Images

For scalar images the following equation is used for mapping neighboring vertex intensities

(Ii, Ij) to the weight of an edge connecting them

wij = e−β(Ii−Ij)
2

+ ǫ (4.18)

In the case of DT-MR images, we modify the equation in order to incorporate appropriate

tensor distance measures.

wij = e−βd2(Di,Dj) + ǫ (4.19)

where ǫ is a small constant, β is a free scaling parameter, and d(Di, Dj) is the tensor

dissimilarity measure between two tensors Di and Dj .

4.2.4 Experimental Results

Synthetic data sets

In order to highlight the advantage of incorporating priors, we first present an experiment

for a synthetic image made of several disconnected parts as shown in Fig. 4.7. Segmenting

the image without the incorporation of prior models fails to detect all three disconnected
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objects. Only the object that was seeded was segmented correctly. Additionally, we show

the effect of changing the β parameter on the result of the segmentation. Using the same β

parameter for both dLE and dJD metrics lead to different segmentation results.

Figure 4.7: Segmentation of a noisy synthetic 2D DT-MR slice using Random Walker with
several disconnected parts without incorporating priors. From left to right: initial image
with seed points, segmentation result using Log Euclidean distance metric, segmentation
result using J-divergence, and segmentation result using J-divergence after fine tuning of
segmentation parameters.

The same image was segmented by incorporating prior models and the result of the

segmentation is shown in Fig. 4.8. Again, only one of the disconnected objects was seeded.

However, all three disconnected objects are detected and make up the result of the segmen-

tation. Also, fewer seeds were needed as an input to obtain a correct segmentation. Only

the Log Euclidean distance metric was used for the segmentations with prior models.

Figure 4.8: Segmentation of a noisy synthetic 2D DT-MR slice using Random Walker with
several disconnected parts with priors.
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Real data sets

In order to compare the Random Walker algorithm with Graph Cuts and highlight the

advantage of priors in aiding the segmentation task, we now present results of applying the

Random Walker algorithm to a DT-MR slice presented in Fig. 4.5 above. Without using

prior models, the Random Walker segmentation technique failed to segment the cardiac wall

accurately or needed too many seed points to give satisfactory results. When prior models

are incorporated a satisfactory and expected segmentation was achieved with much fewer

seed points as shown in Fig. 4.9. This demonstrates that using prior models not only makes

the algorithm more resistant to noise but also fewer seed points are needed to achieve good

segmentation, which makes the whole process faster.

Figure 4.9: Cardiac wall segmentation from a DT-MR slice using Random Walker of the
heart with prior models. Clearly fewer seed points are needed when incorporating prior
models.

4.3 Conclusion

We extended the Graph Cuts and Random Walker segmentation algorithms that have been

proposed for scalar images to segment DT-MR images. We made use of tensor calculus and

tensor dissimilarity measures to define edge weights in the graphs. We applied the results

to segmenting real and synthetic DT-MR data and obtained qualitatively satisfactory seg-

mentations. Unlike extraction of scalar features from DT-MR images and then performing

segmentation on the extracted features, our methods work directly on the tensor images.
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This is useful because extracted features may be invariant to some transformation of the dif-

fusion tensors. This is demonstrated in 4.2 where extracting FA would not distinct between

the segmented regions. Moreover, graph cuts and Random Walker segmentation techniques

are beneficial because they incorporate prior information in the form of hard constraints.

This is useful in order to alter the segmentation task to get better results on the fly by

adding more seeds. Finally, unlike level-set based methods that are sensitive to several

parameter tunings and that use gradient decent based methods that may end up stuck at

local optimal solutions, graph cuts and Random Walker algorithms have few parameters to

tune and are guaranteed to get optimal solution for a given edge weighting tensor similarity

measure. An important distinction between graph cuts and Random Walker is that the later

takes into account local effects. This may give Random Walker technique an advantage in

certain configurations; for example in trying to segment tensors that are configured in a

slowly bending profile (say along the parameter of a circle) in to the same class. In this

case, Random Walker may walk along bending tensors with ease because adjacent (local)

tensors are similar although as we move further and further we may end up with completely

different profile tensors. Since the far apart tensors will be dissimilar, graph cuts may not

cluster them to the same class unless more seeds are added but Random Walker may be

able to achieve the desired goal with fewer seeds.

4.4 Contribution

1. Yonas T. Weldeselassie and Ghassan Hamarneh. DT-MRI Segmentation Using Graph

Cuts. In SPIE Medical Imaging, Vol. 6512-1K, pages 1-9, 2007.

2. Saba El-Hilo, Yonas T. Weldeselassie, and M. Stella Atkins. Second Order DT-MR

Image Segmentation Using Random Walker. In SPIE Medical Imaging, Vol. 7962-162,

pages 1-8, 2011.



Chapter 5

Clinical Application of DT-MRI

DT-MRI is useful for the generation and analysis of fiber-tract trajectories following the

major eigenvectors of the diffusion tensors in soft fibrous tissues [16]. Combined with func-

tional MRI, DT-MRI fiber tractography is also useful in the study of neuronal connectivity

between active cortical areas in the brain [61]. Recently, DT-MRI fiber tractography has

been extended for the analysis of several diseases [51, 73, 123, 25, 20].

Holodny et al. used DT-MRI to define the location and organization of cortico-spinal

tracts in the posterior limb of the internal capsule [51]. Sandra et al. [73] used connectivity-

based seed classification analysis to investigate the anatomical distribution of cortico-striatal

pathways. In [123], Yoshikawa et al. demonstrate that patients with PD had significantly

decreased FA in the region along a line between the substantia nigra and the lower part

of the putamen/caudate complex, a region which includes the nigrostriatal dopaminergic

pathway, a key site for degeneration in PD. Application of DTI fiber tracts was investigated

in schizophrenia by Buchsbaum et al. [25] where diffusion tensor and structural MRI images

were used to trace tracts from a region of interest in the anterior limb of the internal

capsule to the prefrontal cortex. They concluded that patients with schizophrenia had tract

paths that were significantly shorter in length from the center of the internal capsule to the

prefrontal white matter.

A comprehensive quantitative analysis of change of diffusion measures and statistical

analysis of healthy versus non-healthy subjects is given by Blain et al. [20]. The authors

used diffusion tensor MRI to quantify and compare degeneration of the pons and cerebellar

peduncles in multiple system atrophy, progressive supranuclear palsy, and Parkinson disease

and to relate changes in diffusion measures to clinical features and localized atrophy. A

58
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Region of Interest (ROI) approach was used to measure changes in FA and MD in the

middle cerebellar peduncles, decussation of the superior cerebellar peduncles and pons.

Functional connectivity alterations in PD have also been demonstrated using Functional

Magnetic Resonance Imaging (fMRI) [97], but demonstration of altered anatomical con-

nectivity in vivo has only recently been made possible by the advance in diffusion tensor

techniques. While the primary focus of neurodegeneration in PD is the nigrostriatal path-

way, neuroimaging studies have demonstrated widespread altered function within cortico-

striatal-thalamo-cortical loops in PD [33].

In this chapter, we investigate various features of white matter fiber tracts extracted from

DT-MR images in the cortico-striatal region of the brain in control and PD subjects. After

image acquisition, manual delineation of primary motor cortex and striatum, and generation

of white matter fiber tracts connecting the primary motor cortex to the striatum, we collect

features of interest and perform statistical analysis to see if such features can be used as

markers in the classification of PD subjects from control subjects. In addition to the use of

FA and MD, we investigate vector field measures of the major eigenvectors of the diffusion

tensors namely divergence and curl. Our results show that PD subjects have significantly

lower FA and MD and the major eigenvectors of control subjects have lower divergence.

5.1 Materials and Methods

Seventeen subjects were considered in this pilot study. We recruited nine PD subjects, mean

age 61 years ± 9, 4 female, 5 male, 8 right handed, 1 left-handed. Patients were diagnosed

with mild to moderate stage PD (Hoehn & Yahr stage 1-2.5). Data were compared to that

from eight age-matched control subjects without neurological or psychiatric disorders, 4

male, 4 female, 7 right handed, 1 left handed.

We proceeded as follows: image acquisition, motion correction, DTI reconstruction, ROI

delineation, fiber tracts generation, features extraction and statistical analysis of features.

5.1.1 Image Acquisition

Diffusion tensor images were acquired using a Phillips Achieva 3.0 Tesla scanner with slices

parallel to the anterior-commissure posterior-comissure line. 60 continuous slices of 2.2 mm

thickness were collected with a field of view (FOV) of 212 mm, pixel size 0.82 mm2. 32

gradient directions were obtained with a total scan time of 248 seconds. Three separate DTI
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scans were acquired for each subject and averaged during tensor reconstruction. Regions

of interest were manually drawn on a high resolution T1-weighted structural MRI, FOV

240 mm, pixel size 1 mm2, with 170 continuous slices acquired parallel to the commissural

line.

5.1.2 Motion Correction

In order to minimize the effects of head motion during DTI image acquisition, we performed

motion correction for the three DTI scans of each subject. This was done by rigidly aligning

all the diffusion weighted images to the first base image So and rotating the gradient direc-

tions accordingly. A normalized correlation cost function, a gradient descent algorithm and

sinc interpolation implemented in the CATNAP software [67] were used for this purpose.

The diffusion tensors were also reconstructed using CATNAP software.

5.1.3 ROI Delineation

The ROIs, namely the primary motor cortex and striatum, were manually delineated by

a trained research assistant, blinded to disease status, using Amira (Mercury Computer

Systems, Berlin, Germany) on the structural MRI images for each subject. Boundaries of

each ROI were selected according to a standard neurological atlas [102] and segmented using

a semi-automated livewire approach.

In order to register the delineated ROIs from the structural MRI scans to the recon-

structed DTI, we first co-registered the structural MRI images to scalar volumes (FA maps)

extracted from the DTI volumes. For the registration, we used Amira software implement-

ing a rigid transformation utilizing a Quasi-Newton algorithm to maximize the normalized

mutual information. Once the structural MRI images are registered to the FA maps, the

same spatial transformation parameters are used on the labeled ROIs in order to transform

the ROIs coordinates to the DTI frame of reference.

5.1.4 Fiber Tract Generation

Fiber tracts were generated by seeding at the primary motor cortex with uniform density

of one seed per voxel. The tracking is done following the major eigenvectors of the diffusion

tensors using line integral convolution [80]. The tracking was stopped when either the

turning angle of a fiber exceeds 45◦ or the diffusion approaches isotropy (FA < 0.25).
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(a) Delineated left motor cortex (yellow), stria-
tum (green) and Cortico-Striatal fiber tracts
(red)

(b) Cortico-Striatal and Cortico-Spinal fiber
tracts

(c) Zoomed in Cortico-Striatal Fibers Bundle (d) Zoomed in Cortico-Striatal Fibers Bundle
(Red) and Cortico-Spinal Fiber Tracts (Blue)

Figure 5.1: Delineated regions of interest and fiber tracts between the regions of interest.
Cortico-Spinal fiber tracts are shown to emphasize that they are not included in the analysis.
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Since fibers emanating from the motor cortex may or may not terminate at the stria-

tum, we considered only those fibers that terminate at the striatum (cortico-striatal fibers),

Fig. 5.1(a). This is done by first tracking all fibers by seeding at the motor cortex and then

visually selecting those that terminate at the striatum. In Fig. 5.1(b), we show the cortico-

striatal fibers together with non cortico-striatal fibers. To avoid clutter in the visualization,

only cortico-striatal (red) and cortico-spinal tracts (blue) are shown.

5.1.5 Feature Extraction and Statistical Analysis

We extracted FA and MD from every point in the DTI volume through which the fiber tracts

pass. Vector field features including Divergence (DIV) and curl of the major eigenvectors of

the diffusion tensors are also analyzed. The curl is included to see if PD causes the geometry

of fibers to change, i.e., if the curvature of tracts is changed; while the divergence quantity

which measures the flux over a small boundary and indicates if a point is a source of flux or

a sink is included to see if PD changes the diffusivity profile of a point in comparison with

a small boundary around the given point.

Separate analyses were performed for FA, MD, major eigenvectors divergence and curl

using unbalanced one-way analysis of variance (ANOVA) for comparing the means of the

control and PD groups. We tested the null hypothesis that the mean values of the features

extracted are drawn from the same population.

5.2 Experimental Results

The results of the one-way ANOVA test for FA, MD, DIV and Curl are shown in Fig. 5.2. We

found reduced FA (p value of 0.06), reduced MD (p value of 0.04), and increased divergence

(p value of 0.11) in PD compared to controls. The result of the curl feature was inconclusive.

5.3 Conclusion

We used cortico-striatal white matter fiber tracts and extracted diffusion and vector field

features from DT-MR images in order to perform comparison of controls versus PD subjects.

Our results show that PD subjects have significantly lower FA and MD values and their

major eigenvectors have higher divergence values for tracts connecting primary motor cortex

with the striatum. The changes suggest that secondary changes in the cortex, far from the
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Figure 5.2: Analysis of variance plots comparing the mean values of FA, MD, divergence
and curl of the major eigenvectors between control and PD subjects
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primary sites of pathology in PD, may be affected early on in the disease, possibly as a

compensatory mechanism. The increase in the divergence of major eigenvectors among

the PD patients may provide another sensitive marker for PD, in addition to the known

significantly reduced FA and MD values. Despite the relatively small sample size, the results

obtained are sufficiently encouraging to suggest that DTI features along the cortico-striatal

region may be used to differentiate PD and control subjects.

5.4 Contribution

1. Yonas T. Weldeselassie, Ghassan Hamarneh, Samantha Palmer, Martin McKeown,

and M. Stella Atkins. Diffusion Properties of Cortico-Striatal White Matter Tractog-

raphy As Sensitive Markers of Parkinson’s Disease. In The 17th Scientific Meeting and

Exhibition of the International Society for Magnetic Resonance in Medicine (ISMRM),

2009.



Chapter 6

Fiber Orientation Distribution

Functions

In all the previous chapters, 2nd-order SPD tensors have been used to model the diffu-

sivity profile at each voxel with the assumption of a single coherent fiber tract per voxel.

This model, despite its simplicity and robustness, has been shown to be incorrect in regions

containing intra-voxel orientational heterogeneity such as crossing and merging of fiber bun-

dles [1, 3, 34, 35, 109, 108]. In order to highlight this shortcoming, we show how 2nd-order

and 4th-order tensor models depict the ADC profiles of crossing fibers in Fig. 6.1 below. The

synthetic DW-MR signals for these simulations were generated using a realistic diffusion MR

simulation model proposed in [99] with b-value = 1500s/mm2 and 81 gradient directions.

The data is of size 100 × 100 and contains a 40 × 40 box which is composed of simulated

crossing fibers with orientations of [1, 0, 0] and [0, 1, 0]. The box is surrounded by sim-

ulated crossing fibers with orientations of [0.7071, 0.7071, 0] and [0.7071, − 0.7071, 0].

The 2nd-order tensor model fails to correctly represent the fiber crossings and instead shows

all the tensors in the image as being planar. It fails to distinguish the inner box from the

surrounding fibers. Whereas, the 4th-order tensor model not only can it depict crossing

fibers but it also can differentiate between both regions; albeit with wrong orientations (see

section 6.3.1 and Fig. 6.3 for more details). Note that to avoid tensor cluttering, we plot

the tensors at intervals of 10.

Several methods have been proposed to overcome the single fiber orientation limitation of

2nd-order tensors. In [109], Tuch et al. proposed the use of diffusion imaging with diffusion

65
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(a) 2nd-order tensor model (b) 4th-order tensor model

Figure 6.1: ADC profiles of crossing fibers depicted with 2nd-order and 4th-order tensor
models visualized as spherical functions. Different colors are used in 6.1(a) to highlight the
two distinct regions.

weighting gradients applied along many directions distributed almost isotropically on the

surface of the unit sphere, a method known as HARDI. In contrast to rank 2 tensors, this

method does not assume any a priori knowledge about the diffusivity profile. A number of

approaches have been proposed to compute the ensemble-average diffusion propagator P(r,

t) of HARDI data. These methods include Diffusion Spectrum Imaging (DSI) [114], Q-ball

Imaging (QBI) [107], and Diffusion Orientation Transform (DOT) [87]. These methods,

collectively known as q-space imaging techniques, identify multiple fiber components by

calculating the Probability Distribution Function (PDF) of the diffusion process in each

voxel based on the Fourier transform relationship between the PDF of diffusion displacement

and the diffusion weighted signal attenuation in q-space. DSI performs a discrete Fourier

transform to obtain P (r, t), which requires a time intensive Cartesian sampling in q-space

and hence is impractical for routine clinical use. The QBI method takes measurements on a

q-space ball and approximates the radial integral of the displacement PDF by the spherical

Funk-Radon transform. One problem with QBI is that the estimated diffusion Orientation

Distribution Function (ODF) is modulated by a zeroth-order Bessel function that induces

spectral broadening of the diffusion peaks. DOT computes the PDF at a fixed radius by

expressing the Fourier transform in spherical coordinates and evaluating the radial part of
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the integral analytically assuming the signals decay can be described by either a mono or a

multi-exponential model. In [87], the authors show that the PDF values on a fixed radius

can be reconstructed either directly or parametrically in terms of a Laplace series and claim

that their technique can be regarded as a transformation of diffusivity to probability profiles

whose peaks correspond to distinct fiber orientations. When the signals decay is described

by a multi-exponential model, the DOT technique requires data acquisition over multiple

concentric spheres, a time consuming proposition.

An important limitation of QBI methods is that they do not enforce the estimated ODF

to be non-negative, which can cause the estimated ODF to have negative values; a situation

that does not obey the underlying principle of diffusion. Goh et al. [44] proposed the use

of spherical harmonic representations to pose the ODF estimation problem as a convex

optimization problem, minimizing the cost function with a coordinate descent method.

While the authors claim that their method results in sharp diffusion ODFs, the estimated

ODF is constrained to be non-negative and a proper PDF (summing up to one); it remains

to be seen how this method may be extended to multiple q-shell reconstruction method such

as the one proposed in [1].

To overcome this limitation, Tournier et al. [105, 104] proposed a constrained spherical

deconvolution method to directly estimate the FOD from DW-MRI data and reduced the

occurrence of negative values, albeit not completely eliminating them. A careful distinction

needs to be made between the two different concepts of diffusion ODF and fiber FOD

functions, although both have similar acronyms in the DW-MRI research community. While

QBI techniques model the diffusion ODF, which is the radial marginal distribution of the

diffusion PDF or ensemble average propagator (EAP) which in turn is the Fourier Transform

of the diffusion signal; the technique by Tournier et al. [105, 104] models FOD based on a

deconvolution of a diffusion signal with a response function. The ODF model holds true

when the signal is acquired using the short gradient pulse assumption. Moreover, the ODF

model does not really indicate fiber orientations but rather the primary diffusion orientations

and therefore is known to have broad peaks (which is also partially due to the modulation of

the Bessel function). Further, the ODF model is a concept from the q-space formalism that

establishes the Fourier relationship between the diffusion signal and the diffusion PDF. The

FOD on the other hand is a deconvolution of the diffusion signal with a response function

that indicates fiber orientations and needs to make no assumptions such as the narrow

gradient pulse in the acquisition process and neither does it require a Fourier relationship
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between the diffusion signal and the diffusion PDF. The FOD can also be computed by first

computing an ODF from a QBI acquisition scheme and then deconvolving the ODF with a

response function that represents the ODF for a single fiber [36].

Another approach for multi-fiber reconstruction is to describe the ADC by HOT (e.g.

4th and 6th) that generalize the 2nd order tensors and have the ability to approximate multi-

lobed functions [86]. Several methods have been proposed for estimating 4th order tensors

with positive definite constraints [9, 10, 42] as well as for processing HOT fields [122]. This

approach is attractive not only because the rich set of processing and analysis algorithms

developed for 2nd-order tensor fields can be extended for HOT, but also the local maxima

of HOT can easily be computed due to their simple polynomial form. The polynomial form

of spherical functions represented as HOT gives a significant algorithmic benefit to compute

the local maxima and minima, compared to the equivalent spherical harmonics basis that

need techniques such as finite difference, spherical Newtons method or Powell’s conjugate

gradient descent method. With the exception of the finite difference method, whose accuracy

is limited to the mesh size, these methods are numerical minimization problems and thus

care must be taken to avoid small local maxima and to ensure convergence [21, 98, 43]. See

also [56] for more detailed descriptions of diffusion MRI and the methods described above.

Unfortunately, the use of HOT has been confined so far to the estimation of tensor ADC

profiles, although the local maxima of ADC profiles estimated using HOT generally do not

match the underlying fiber bundle orientations for the intravoxel crossing fibers [3, 110, 124].

See also Fig. 6.1 above. In this chapter, we propose the use of SPD HOT to model FOD

profiles and present a novel method for estimating the tensor field of FOD profiles from a

given set of DW-MR images. Moreover, we extend our method of tensor distance induced

diffusion anisotropy measures developed in Chapter 3 in order to derive anisotropy measure

computed directly from Cartesian Tensor Fiber Orientation Distribution (CT-FOD) profiles

with the use of appropriate HOT distance measure. The novelty of this chapter is therefore

to use HOT to model the FOD functions and derive anisotropy measure directly computed

from FOD functions.

In our technique the FOD is modeled by a Cartesian tensor basis using a parametrization

that explicitly enforces the positive definite property to the computed FOD functions. The

computed CT-FOD are SPD tensors whose coefficients can be efficiently estimated by solving

a linear system with non-negative constraints. We evaluate our method qualitatively and

quantitatively to demonstrate the superiority of the proposed technique over several existing
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multi-fiber reconstruction methods. It is also recently reported that estimating positive

semidefinite 4th-order tensor ODFs can be achieved by minimizing an objective function

subject to linear constraints by solving a linear programming problem that enforces non-

negativity to computed ODFs [55].

There are three main contributions in this chapter:

• We present a novel method for positive-definite CT-FOD estimation from DW-MR

images. To the best of our knowledge there is no existing FOD model in the litera-

ture that imposes explicitly the positivity property to the estimated FOD, which is

naturally a positive-valued spherical function.

• We present a useful application of our method for converting HOT ADC profiles to

CT-FOD. We should emphasize that this is an essential task since the maxima of HOT

do not correspond to the underlying fiber orientations. On the other hand, our method

computes CT-FOD whose maxima can be computed analytically and correspond to

the true diffusion orientations.

• We derive a rotationally invariant AI with range [0,1) defined directly on CT-FOD

which consolidates the whole analysis pipeline of diffusion imaging using solely CT-

FOD.

6.1 Method

6.1.1 Symmetric Positive-Definite Cartesian Tensors of Even Orders

Any spherical function f(g) can be approximated by an L− th order Cartesian tensor as:

f(g) ≈
3
∑

i1=1

3
∑

i2=1

· · ·
3
∑

iL=1

gi1gi2 · · · giLCi1,i2,··· ,iL (6.1)

where gi is the i− th component of the 3-dimensional unit vector g, and Ci1,i2,··· ,iL are the

coefficients of an L− th order tensor.

When approximating certain spherical functions in DT-MRI, we are interested in tensors

of even orders with full symmetry, due to the antipodal symmetric nature of the DW-MR

signal acquisition. In this case of symmetry, those tensor coefficients which correspond to

the same monomial ga1g
b
2g

c
3 are equal to each other (e.g. C2,2,2,1 = C2,2,1,2 = C2,1,2,2 =
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C1,2,2,2, since they all correspond to the monomial g1g
3
2).

Notation:- The Einstein’s notation of L− th order tensors as Ci1,i2,··· ,iL has been com-

monly used in literature. But in this notation, one needs to explicitly specify the constraints

of symmetry as in the case of C2,2,2,1 = C2,2,1,2 = C2,1,2,2 = C1,2,2,2 above. In order to avoid

such explicit specification of symmetry constraints, we will adopt an alternative notation that

incorporates such symmetry constraints more naturally. In this new notation, the coefficient

of an L− th order tensor corresponding to the monomial gi1g
j
2g

k
3 is denoted by a single term

Ci,j,k with i+ j+k = L and the spherical function in Eq.(6.1) can more naturally be written

as:

f(g) ≈
∑

i+j+k=L

gi1g
j
2g

k
3Ci,j,k i, j, k ∈ {0, 1, ..., L} (6.2)

Using this alternative notation, the fifteen unique coefficients of 4th-order SPD tensors

are C400, C310, C301, C220, C211, C202, C130, C121, C112, C103, C040, C031, C022, C013,

and C004. Their corresponding terms using Einstein’s notation are C1111, C1112, C1113,

C1122, C1123, C1133, C1222, C1223, C1233, C1333, C2222, C2223, C2233, C2333, and C3333

respectively. More importantly, note the correspondence that Ci,j,k = 4!/(i!j!k!)Ci1,i2,··· ,iL .

Example C400 = Cxxxx but that C130 = 4Cxyyy etc.

Furthermore, if the approximated function f(g) is a positive-valued function, the Carte-

sian tensor should be positive-definite, i.e. f(g) > 0 ∀ g ∈ S2. Therefore Eq.(6.2) needs to

be re-parametrized such that this positivity property is adhered to. In order to achieve this

goal, we use the SPD HOT parametrization that has been recently proposed in [10, 8]. Ac-

cording to this parametrization, any non-negative spherical function can be approximated

by a positive-definite Lth order homogeneous polynomial in 3 variables expressed as a sum

of squares of (L/2)th order homogeneous polynomials p(g1, g2, g3;u), where u is a vector

that contains the polynomial coefficients.

f(g) =
M
∑

j=1

λjp(g1, g2, g3;uj)
2 (6.3)

The parameters λj in Eq.(6.3) are non-negative weights. This parametrization approx-

imates any given symmetric positive function and the approximation accuracy depends on
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the order L and on how well the set of vectors uj sample the space of unit vectors u. It

has been shown that by constructing a large enough set of well sampled vectors uj , we can

achieve any desired level of accuracy [10].

6.1.2 Positive-Definite Cartesian Tensor FOD Profiles

The DW-MR signal for a given magnetic gradient orientation g and gradient weighting b,

can be modeled using the standard multi-fiber reconstruction framework as follows

S(g, b) =

∫

S2

w(v)B(v,g, b)dv (6.4)

where the integration is over all unit vectors v, B(v,g, b) is a basis function, and w(v) is a

non-negative spherical function that can be seen as a mixing/weighting function. There have

been several proposed models for the basis function B() such as a Rigaut-type function [54],

von Mises-Fisher distribution [65] and others. The main problem with all of these models

is that the integral in Eq.(6.4) cannot be computed analytically. Therefore, one needs to

approximate the space of unit vectors v by a discrete set of vectors v1, · · · ,vK in which

case Eq.(6.4) is correctly discretized by S(g, b) =
∑K

k=1wkB(vk,g, b) if and only if there

are at most K underlying neural fibers that are oriented necessarily along the vectors vk.

Another problem with the aforementioned discretization is that the function w() is no more

continuous over the sphere (it equals to wk for vk and it is zero everywhere else).

The main idea in this work is to avoid the above unnatural discretization of the space

of orientations, by using a blending function w(), which can be appropriately decomposed

so that:

1. w() is positive-definite, and

2. w() is continuous over the sphere.

In this work, we model such a blending function as an Lth order SPD tensor (say 4th)

by plugging Eq.(6.3) into Eq.(6.4) as follows

S(g, b) =

∫

S2

M
∑

j=1

λjp(v1, v2, v3;uj)
2B(v,g, b)dv (6.5)

where v1, v2, v3 are the three components of the unit vector v.
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Given a data set of DW-MR signal attenuations Si/S0 associated with magnetic gradient

orientations gi and diffusion weighting b-value b, the coefficients of an Lth order positive-

definite CT-FOD can be estimated by minimizing the following energy function with respect

to the unknown polynomial-weighting coefficients λj

E =
N
∑

i=1

(

Si/S0 −
M
∑

j=1

λj

∫

S2

p(v1, v2, v3;uj)
2B(v,gi, b)dv

)2
(6.6)

In order for the basis function B() to reflect the signal attenuation of a single and highly

oriented fiber response, we require the basis function to be a Gaussian that represents the

diffusion process which is highly restricted perpendicular to the orientation v. A common

choice is the single fiber response which is described by the bipolar Watson function [31]

B(v,g, b) = lim
δ→+∞

e−δ(vTg)2 (6.7)

Here we should emphasize that the model in Eq.(6.7) agrees with the properties of the

DW-MR signal response, i.e. it takes maximum and minimum values for diffusion sensitizing

gradient orientations g that are perpendicular and parallel to the underlying fiber orientation

v respectively. Moreover, δ is such that it captures information about b and mean diffusivity

(D) and can be adjusted by altering either b or D. So this ‘symmetry’ can be simplified by

using only δ in Eq.(6.7).

In order to compute the CT-FOD, we need to solve the minimization problem Eq.(6.6) for

λ′
js. This problem can be rewritten into an equivalent linear system problem Bx = y where

x is an M -dimensional vector of the unknown λj , y is an N -dimensional vector containing

the given signal attenuations S/Si and B is a matrix of size N × M with the elements

Bi,j =
∫

S2
p(v1, v2, v3;uj)

2B(v,gi, b)dv. This linear system is solved for the non-negative x

using the efficient Non-Negative Least Squares (NNLS) algorithm given in [68]. We can then

easily compute the CT-FOD coefficients by multiplying the solution vector with a matrix

U, (i.e. Ux), where the matrix U is of size (2+L)!
2(L!) ×M that contains monomials formed by

the vectors uj . Note that L is the order of the CT-FOD and (2+L)!
2(L!) is the number of the

unique coefficients in an Lth-order Cartesian tensor. In the case of 4th-order CT-FOD, the

multiplication Ux gives the 15 unique coefficients of a positive-definite tensor.

An interesting property of the NNLS optimization algorithm is that it produces sparse

solution vectors and the sparsity depends on the rank of the basis matrix. In our particular

case, although the problem seems significantly unconstrained, the solution vector contains at
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most as many non-zero weights as the unknown tensor coefficients, which correspond to the

rank of our polynomial basis matrix. Therefore if the finitely-generated set of polynomial

basis contains a few thousand bases, the NNLS algorithm by definition will select only up

to 6, 15, 28 for tensors of order 2, 4, and 6 respectively. Moreover the number of non-zero

weights in the solution vector equals to the number of the unique unknown parameters of the

symmetric tensor in each case. The sparsity of NNLS in comparison with other optimization

techniques for modeling the DW-MR signal has also been studied in [53]. Therefore the

degrees of freedom of our method is equal to the number of unknown tensor coefficients

and it does not increase by the number of polynomial basis M but by the number of the

unknown tensor coefficients.

We applied our proposed method for estimating 4th-order CT-FOD (L = 4), using a

set of M = 321 polynomial coefficients uj and δ = 200. Regarding the parameter δ, we

performed several experiments using different values δ > 100 and we obtained similar fiber

orientations density profiles, which shows that our method is not sensitive to the selection

of the value of δ.

6.1.3 Computing CT-FOD from HOT

Now, we present an application of our proposed framework for computing the coefficients of

a CT-FOD from a given HOT and diffusion weighting b-value b, which is an essential task

since the maxima of HOT do not correspond to the underlying fiber orientations. Given a

HOT, the coefficients of the corresponding CT-FOD are computed by using the technique

we presented in the previous section as follows

UB−1exp(−bGt) (6.8)

where the matrices U and B are as defined in the previous section, G is of size N × (2+L)!
2(L!)

and contains only monomials constructed from N unit vectors gi uniformly distributed on

the unit sphere, and t is a vector of size (2+L)!
2(L!) that contains the unique coefficients of the

given HOT. For example, in the case of 4th-order tensors, the 15 unique coefficients are

given in the vector t, and G is of size N × 15. Also notice that B is not a square matrix

and the matrix inverse B−1 corresponds to the solution provided by the NNLS algorithm

and therefore is a specifically non-negative constrained solution, in contrast to the general

pseudo-inverse solution.
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6.2 Distance and Anisotropy measures of CT-FOD

6.2.1 Distance Measure

After estimating CT-FOD, it is important that we define a distance measure between pairs

of CT-FOD, for example, in order to impose smoothness across the image lattice or to

compute anisotropy measures. Since our CT-FOD are modeled as HOT (say 4th order)

SPD tensors which are isomorphic to homogeneous polynomial functions of the same order,

one way to get a distance measure between CT-FOD Ci and Cj is to define the distance as

the L2 distance between the corresponding spherical functions fi(g) and fj(g) as follows:

d2(Ci,Cj) =
1

4π

∫

S2

(fi(g)− fj(g))
2dg (6.9)

where fi(g) and fj(g) are defined as given in Eq.(6.2) and the integral is over all unit vectors

g, i.e., the unit sphere S2.

Observe that this distance measure has the same mathematical form as the tensor dis-

tance measure defined between HOT in [9] when fi(g) and fj(g) are substituted with diffu-

sivity functions. Denoting the fifteen components of Ci − Cj by ∆xyz, we get

d2(Ci,Cj) =
1

315

[

(∆400 +∆040 +∆004 +∆220 +∆022 +∆202)
2 +

4[(∆400 +∆220)
2 + (∆400 +∆202)

2 + (∆040 +∆220)
2 +

(∆040 +∆022)
2 + (∆004 +∆022)

2 + (∆004 +∆202)
2] +

24(∆2
400 +∆2

040 +∆2
004)− 6(∆2

220 +∆2
022 +∆2

202) +

2(∆400 +∆040 +∆004)
2 + (∆211 +∆031 +∆013)

2 +

(∆121 +∆301 +∆103)
2 + (∆112 +∆310 +∆130)

2 +

2[(∆310 +∆130)
2 + (∆301 +∆103)

2 + (∆031 +∆013)
2] +

2(∆2
310 +∆2

301 +∆2
130 +∆2

031 +∆2
103 +∆2

013)
]

(6.10)

6.2.2 Closest Isotropy

Given a CT-FOD C, its closest isotropic CT-FOD Ciso is defined such that the distance

d(C,Ciso) is minimum among all isotropic CT-FOD. The conditions for isotropy in the case

of 4th-order CT-FOD is:
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Ciso = λ̄ Is (6.11)

for some λ̄ ∈ R
+ and where Is is a totally symmetric 4th-order identity tensor [82]. In terms

of components, Is is given by

Is400 = Is040 = Is004 = 1

Is220 = Is202 = Is022 = 2 (6.12)

and all remaining components equal to zero. Using this result and minimizing the distance

d(C,Ciso) with respect to λ̄, we obtain [83]

λ̄ =
1

5
(C400 +C040 +C004) +

1

15
(C220 +C202 +C022) (6.13)

Observe that λ̄ is actually the mean FOD of the CT-FOD C which is the same as saying

the zeroth order CT-FOD that is closest to C.

6.2.3 Anisotropy Measure

We now present an anisotropy measure derived from 4th-order CT-FOD. This is important

in order to consolidate the work of diffusion tensor imaging towards CT-FOD. Similar to

the definition of FA for 2nd-order tensors, we propose the use of the distance of a given

CT-FOD from its closest isotropy normalized by the norm of the CT-FOD as our measure

of AI. Defining the norm of a given CT-FOD as its L2 distance from ZERO, we see that

the non-negative function d(C,Ciso)/d(C,0) can be used to infer AI. It is easy to see that

this expression takes its minimum value of 0 when C is isotropic. In order to find its

upper bound, it suffices to look at the limiting, but physically impossible, case of a non-zero

diffusivity in only one direction, say along the direction v = (1, 0, 0)T and zero diffusivities

along all directions perpendicular to v. In this case, all components of C except C400 will

be zero and its mean FOD will be C400/5 resulting in an upper bound of AI = 4/5. In

order to have an AI in the range [0, 1), we would like to find a monotonic function that will

map the interval [0, 45) to [0, 1). While several mapping functions can achieve this, in this

work we chose a linear mapping and defined our anisotropy measure as

AI =
5

4

(d(C,Ciso)

d(C,0)

)

(6.14)
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We simulated several synthetic diffusion profiles comprising of isotropic, planar, linear

and crossing fiber profiles in order to see the behavior of this anisotropy measure and

compare it with existing measures.
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Diffusion Profile: Isotropic to Crossing
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Diffusion Profile: Planar to Crossing
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Figure 6.2: Comparison of FA, GA and our AI as diffusion profiles range from isotropic
to linear (left), isotropic to two perpendicular crossing fibers (middle), and planar to two
crossing fibers on the plane (right).

Fig. 6.2 shows anisotropy measures obtained by our AI, FA and Generalized Anisotropy

(GA) as defined in [86]. The DW-MR signals for these simulations were generated using

a realistic diffusion MR simulation model proposed in [99]. For the case of isotropic to

linear diffusion profile (Fig. 6.2 left), we started with 321 crossing fiber orientations that

uniformly sample the unit hemisphere with equal diffusivities and then gradually (in 100

time steps) restricted the diffusion in all directions except along one fiber orientation. In this

configuration, while both FA and our AI show monotonically increasing values as we move

from isotropic to linear diffusion, GA shows little changes at both isotropic and anisotropic

regions with larger changes in the intermediate regions. As a result while the contrast

of GA is concentrated between low and high anisotropies, the contrast in both FA and

our AI is more or less uniform at all regions. Similarly, for the case of isotropic to two

crossing fibers (Fig. 6.2 middle), we started with the same 321 fiber orientations with equal

diffusivities and then gradually restricted diffusion in all directions except two perpendicular

fiber orientations. The important observation in this case is the fact that both GA and our

anisotropy measure give rise to larger values for crossing fibers while FA does not, which

highlights the limitation of the 2nd-order tensor model in regions of crossing fibers. Finally

in the case of planar to two crossing fibers (Fig. 6.2 right), we started with 16 crossing fiber

orientations on a plane that sample a circle uniformly and then restricted diffusion in all but



6.3. EXPERIMENTAL RESULTS 77

two perpendicular directions on the plane. As expected not only does FA gave rise to more

or less uniform values in this configuration, but surprisingly both GA and our AI did so

too, albeit with higher values. In other words, even though both 4th-order tensor ADC and

FOD models are able to model two crossing fibers, they do not distinguish as such between

only two or more than two crossing fibers. This of course is the limitation of a 4th-order

tensor model when there are more than two crossing fibers. From the tractography point of

view, where the AI is used for seeding and stopping criteria, both GA and our AI will be

good indicators of presence of fibrous structures because they show a high anisotropy value

in such regions (close to 0.7).

6.3 Experimental Results

In this section, we present experimental results of the proposed method applied to simulated,

phantom, as well as a real DW-MR image from a human brain dataset.

6.3.1 Synthetic Dataset

In order to highlight the accuracy with which the maxima of estimated CT-FOD profiles

coincide with the actual underlying fiber orientations, we first present qualitative results for

the case of a synthetic dataset comprising of two crossing fiber bundles modeled as 4th-order

CT-FOD as shown in Fig. 6.3. We also include the results of ADC profiles modeled as 4th-

order tensors in order to highlight the performance of CT-FOD over ADC tensors of the same

order. In this experiment, we start with two fiber bundles crossing at 90◦ degrees and then

rotate one of the fiber orientations gradually until it aligns with the second fiber orientation

resulting to a single fiber. The DW-MR signals for this simulated experiment were generated

by simulating the MR signals using the model described in [99] with b−value = 1500s/mm2

and 81 gradient directions. Fig. 6.3(a) shows the result for a noise free case and Fig. 6.3(b)

shows the results obtained when a Rician noise with std. dev.=0.02 is added to the simulated

DW-MR signals. It is evident from these results that not only do CT-FOD profiles model

the underlying structure better but they also have better noise immunity.

Next, we present quantitative results by presenting the deviation angles of the maxima

of estimated CT-FOD with respect to the actual underlying fiber orientations. We consider

the case of two crossing fibers whose orientations are (cos 20◦, sin 20◦, 0) and (cos 100◦,

sin 100◦, 0) and the DW-MR signals are generated as described above. Six distinct Rician



78 CHAPTER 6. FIBER ORIENTATION DISTRIBUTION FUNCTIONS

(a) Noise free. Top to bottom: schematic diagram of orientations, ADC
profiles and FOD profiles.

(b) Rician noise, std. dev.=0.02. Top to bottom: schematic diagram of
orientations, ADC profiles and FOD profiles.

Figure 6.3: Alignment of maxima of estimated ADC and CT-FOD profiles with underlying
fiber orientations.

noise levels were added to the simulated data and for each noise level the experiments were

repeated 100 times. Fig. 6.4 shows a plot of the means and standard deviations of deviation

angles between the actual fiber orientations and the maxima of estimated CT-FOD. In

order to compare our results with spherical deconvolution techniques, we also include the

results obtained using the MOW [54], QBI [107], DOT [87] and MOVMF [65] methods by

computing the maxima of either the PDF or FOD profiles of the corresponding methods.

For the particular noise level with std. dev.=0.08 the deviation angles for all the methods

are reported in the adjacent table. Also notice that in this experiment the deviation angle

of the computed orientations is compared to its closest actual fiber orientation because the

crossing fibers are weighted equally in generating the MR signals. The results demonstrate

the superiority of the proposed method over QBI, DOT, MOVMF and MOW methods.

Although we don’t perform any explicit comparison here, it is worth mentioning that the

least deviation angle result obtained using the spherical deconvolution method proposed by

Tournier et al. [104] is about 7◦ - 8◦ on wider crossing fiber orientations while our method

has achieved a least deviation angle result of 4.79◦. Our method therefore performs as well

as, or better than, Tournier’s method.
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Table of errors (deg.)
noise st. dev. = 0.08

Method Mean St. dev.

QBI 9.13 ±4.55

DOT 6.65 ±3.72

MOVMF 5.62 ±3.51

MOW 5.01 ±2.96

CT-FOD 4.79 ±2.87

Figure 6.4: Deviation angle in degrees (y − axis) between actual fiber orientations and
maxima of estimated CT-FOD using a simulated 2-fiber crossing data with orientations
(cos 20◦, sin 20◦, 0) and (cos 100◦, sin 100◦, 0) at different levels of Rician noise (x− axis).

6.3.2 Phantom Dataset

Here, we present our results for the publicly available HARDI phantom dataset whose

ground truth fibers are known and was used in the MICCAI 2009 Fiber Cup contest [93].

The dataset consisted of 64 diffusion weighted images and one So volume acquired in two

different spatial resolutions: 3× 3× 3mm3 and 6× 6× 6mm3 and three different b-values:

650, 1500 and 2650 s/mm2. We used the 3 × 3 × 3mm3 resolution dataset with a b-value

of 650s/mm2. Fig. 6.5(a) shows generalized anisotropy while Fig. 6.5(b) gives a zoomed

in visualization of 4th-order CT-FOD computed for the box shown in red. Clearly the 4th-

order CT-FOD correctly depicts the fiber organization of crossings as well as single fiber

orientations.

6.3.3 Real Dataset

Here, we present CT-FOD computed from a real dataset consisting of a human brain dataset.

The dataset consists of 63 continuous slices of 2.0mm thickness with a FOV of 256×256mm2

and pixel size of 2 × 2mm2. 10 images were collected without diffusion weighting (b ∼
0s/mm2) which were averaged during the CT-FOD reconstruction for a single average So

image, and 99 diffusion weighted images are acquired in 99 gradient directions. Each of these

image sets used different diffusion gradients with b values of approximately 3000s/mm2.

Fig. 6.6(a) and Fig. 6.6(b) respectively show the proposed AI and 4th-order CT-FOD field

computed using our method. For comparison purposes, included are GA and 4th-order
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(a) Generalized anisotropy. (b) 4th-order CT-FOD.

Figure 6.5: Generalized anisotropy and 4th-order CT-FOD for the fibercup phantom data.
Crossing of fiber orientations is clearly depicted as expected.

ADC fields as shown in Fig. 6.6(c) and Fig. 6.6(d) respectively. As can be verified in the

anisotropy images, the branching, bending and crossing of tracts are better depicted by

the computed CT-FOD field as compared to the ADC field. Moreover, unlike the GA map

which reveals the white matter region with higher contrast but fails to distinguish the gray

matter from the background, the proposed anisotropy map reveals both white matter and

gray matter regions more clearly, albeit with less contrast.

Based on our preliminary CT-FOD results [117] and in conjunction with their techniques,

Jiao et al. [55] have already shown that the proposed CT-FOD model improves tractography

results and accurately detects fiber crossings, splits and kisses. Another potential fiber

tracking algorithm that may be used in conjunction with CT-FOD is the spin glass based

framework to untangle fiber crossings [29].

6.3.4 Tissue discrimination with GA and AI

Finally, we present a quantitative comparison of the anisotropy index derived from CT-FOD

with generalized anisotropy in discriminating different tissue classes in a brain image. For

the task of discriminating between two tissue classes, a measure of diffusion anisotropy, A,

can be evaluated using a detectability index [2],

d =
< A1 > − < A2 >

√

σ2
1 − σ2

2

(6.15)
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(a) Proposed anisotropy (b) 4th-order CT-FOD

(c) GA (d) 4th-order ADC

Figure 6.6: 4th-order CT-FOD and ADC tensor fields computed from human brain slice and
their corresponding anisotropy measures.
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where (< A1 >, σ2
1) and (< A2 >, σ2

2) are the means and variances of the anisotropy values

for the two tissue classes. The anisotropy measure with the greatest detectability index

should be close to optimum for the specified task.

In order to compare GA and AI in discriminating tissue classes, we calculated the de-

tectability indices of these anisotropy measures for the dataset described in section 6.3.3

above. The brain was parcellated using a publicly available white matter parcellation map

(JHU MNI SS WMPM TypeI) downloaded from Johns Hopkins Medical Institute Labora-

tory of Brain Anatomical MRI. The GA and AI maps of our dataset were registered to

the white matter parcellation map using FA map that was came with the parcellation map

and was already registered to it. An affine registration was performed using the DiffeoMap

software downloaded from the same source. Figure 6.7 shows the publicly available FA map

with five regions of interest segmented. Our tissue detectability results for the regions of

Figure 6.7: Single slice of FA map from JHU MNI SS DTI dataset with corresponding
regions of interest segmented using JHU MNI SS WMPM TypeI white matter parcellation
map: CC = Corpus Callosum, IC = Internal Capsule, TH = Thalamus, HC = Hippocampus,
and PT = Putamen

interest are presented in Table 6.1 where the values of d shown in bold face indicate that

the anisotropy index given on that row performs best in discriminating tissue classes on the

corresponding column. We observe that our anisotropy index generally performs better in

detecting differences among the tissues presented.
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Table 6.1: Tissue detectability using GA and AI. The tissue name abbreviations are as
described in Fig. 6.7
AI\ CC vs CC vs CC vs CC vs IC vs IC vs IC vs TH vs TH vs HC vs
ROI IC TH HC PT TH HC PT HC PT PT

GA 0.69 0.74 0.53 0.77 0.42 0.21 0.54 0.39 0.36 0.56

AI 0.81 1.48 0.73 0.96 0.09 0.18 0.59 0.07 0.44 0.63

6.4 Conclusion

We presented a novel technique to model FOD fields as SPD HOT and estimated from DW-

MRI data. The performance of the proposed method was compared against several existing

FOD/ODF measures on a synthetic dataset with different noise levels and outperformed

the other methods. We also demonstrated the use of our method on a real DT-MRI data

obtained from a human brain dataset. Our results clearly demonstrate the superiority with

which the organizational structure of an underlying diffusion process is neatly modeled with

the CT-FOD field as compared to the ADC field and the fact that crossing, merging and

bending of fibers are correctly depicted with the CT-FOD model. By deriving an anisotropy

map directly from CT-FOD fields, we have consolidated the analysis of diffusion imaging

towards the use of solely CT-FOD.

6.5 Contribution

1. Yonas T. Weldeselassie, Angelos Barmpoutis, and M. Stella Atkins. Symmetric Positive-

Definite Cartesian Tensor Orientation Distribution Functions (CT-ODF). Medical Im-

age Computing and Computer Assisted Intervention (MICCAI 2010). In Lecture Notes

in Computer Science (LNCS), Vol. 6361, pages 582-589.

2. Yonas T. Weldeselassie, Angelos Barmpoutis, and M. Stella Atkins. Symmetric Positive-

Definite Cartesian Tensor Fiber Orientation Distributions (CT-FOD). Submitted for

review in the Journal of Medical Imaging.



Chapter 7

Conclusion

The field of medical image analysis has increased rapidly in importance over the past few

years. New imaging modalities and improved technologies now allow the acquisition and

measurement of ever more data of the human body. DW-MRI is one result of this rapid

progress in medical imaging which is progressing toward clinical reality and which promises

to have a major effect on the study of brain connectivity patterns in vivo. It is also a

promising tool for the study of brain development.

In this thesis, we have developed theoretical and applied tools and algorithms for the

processing and analysis of DT-MR images. The contributions of the thesis include better

feature extraction using appropriate tensor similarity measures such as the development of

our new anisotropy measure coined Shape Anisotropy, an extension of the graph cuts and

Random Walker scalar image segmentation techniques to work directly on diffusion tensor

field images, and a clinical application of DT-MRI to investigate various features of white

matter fiber tracts extracted from DT-MR images in the cortico-striatal region of the brain

in control and PD subjects.

We have shown that our shape anisotropy measures take consistently larger values

than FA, providing a more detailed depiction of anisotropic areas. This implies the shape

anisotropy measure provides additional information by revealing more white matter struc-

tures in the image which is also useful for fiber tractography purposes. In terms of noise

immunity, the shape anisotropy measure gives comparable SNR to that of FA for small

anisotropy levels but better SNR than FA as anisotropy level increases. Therefore shape

anisotropy maps will generally be more robust to noise than the FA map, exhibiting little

intensity variation within structures of uniform anisotropy. Importantly, the significance of

84
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tensor distance based anisotropy measures is that it is straightforward to extend to higher

order tensors.

Unlike extracting scalar features from DT-MR images and then performing segmentation

on the extracted features, our graph cuts and Random Walker based segmentation tasks

are performed directly on tensor images. This is useful because extracted features may be

invariant to some transformation of the diffusion tensors. Graph cuts and Random Walker

segmentation techniques are beneficial because they incorporate prior information in the

form of hard constraints. This is useful in order to alter the segmentation task to get better

results on the fly by adding more seeds. Moreover, unlike level-set based methods that are

sensitive to several parameter tunings and that use gradient descent based methods that

may end up stuck at local optimal solutions, graph cuts and Random Walker algorithms

have few parameters to tune and are guaranteed to find the optimal solution for a given

edge weighting tensor similarity measure.

Being part of the medical imaging research community, we also included a chapter on

clinical application of DT-MRI and showed that we can extract useful features from diffusion

tensors for the diagnosis of brain diseases such as PD. These features included anisotropy

measures, diffusivity measures, geometric features of fiber tracts, and vector field features

of major eigenvector directions along given fiber tracts.

In this rapidly expanding and exciting research field, it was not long before we noticed

that the tools and algorithms developed earlier were not adequate and needed further work

to model crossing, fanning, splitting and merging of fiber tracts. For this reason, we went a

step further and developed a Cartesian tensor based FOD model to correctly depict crossing,

fanning, splitting and merging of fiber tracts. The performance of our FOD method was

compared against several existing FOD/ODF functions by measuring the deviation angles

of computed fiber orientations from underlying ground truth orientations computed from a

synthetic dataset with different noise levels and outperformed the other methods. Finally,

we extended the classical anisotropy measures derived from 2nd order diffusion tensors with

one that is directly inferred from FOD utilizing appropriate tensor distance measures. Our

anisotropy measure was compared against existing generalized anisotropy measures for the

task of discriminating different tissues of a brain image and resulted in a better discrimina-

tion of tissues from different classes.

The future prospects of DW-MRI can not be overstated. It has already proved useful in

the investigation of various brain diseases such as multiple sclerosis, schizophrenia, and PD.
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Its ability to map brain neuronal connectivity in vivo holds the future of understanding the

complex structure and functionality of human brain. Considering the speed at which the

field is progressing, it won’t be surprising to see a complete understanding of human brain

anatomy and functionality using DW-MRI in the near future.
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