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Abstract

This thesis develops distributed models for determining steady state and transient
performance characteristics of multi-layered underwater acoustic transducers operat-
ing in thickness mode. This important class of transducers is usually modeled using
lumped circuit or distributed models with only a couple of layers. Distributed mod-
els are preferred for design purposes since lumped circuit models are generally not
defined by material parameters. Distributed models are developed and closed form
expressions are obtained for key steady-state performance characteristics including,
the electrical impedance/admittance, receive sensitivity, transmit sensitivity, and ef-
ficiency. The impedance/admittance and receive sensitivity models are verified using
experimental measurements. Expressions for transient performance are determined
using the Laplace transform and are validated using theoretical and experimental
methods. A novel method is derived for outputting desired pressure waveforms by
pre-shaping the input drive voltage. The distributed models developed in this the-
sis accurately predict the performance of existing transducers and are valuable for
transducer design.

Keywords: underwater acoustic transducers; transient characteristics;
steady-state characteristics; drive voltage design method
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1. Introduction

This thesis focuses on modeling multi-layer underwater acoustic transducers operating
in thickness mode. These types of transducers are used as transmitters, receivers, or
both. As a transmitter, the transducer is used to convert an electrical drive signal
into a pressure signal in a propagation medium. As a receiver, it is used to convert an
incoming pressure signal into an electrical signal. However, when a transducer acts
as both, it alternates between the role of a transmitter and a receiver.

The operation of a transmitting transducer, T, and receiving transducer, R, is
presented in figure 1.1. The transmitting transducer is driven by a commonly em-
ployed finite cycle sinusoid (Drive Signal). The pressure produced by T propagates
through the medium (Transmitted Signal). As seen, the Transmitted Signal contains
both steady-state (SS1) and transient sections (T1, T2). T1 is the rise time of the
Transmitted Signal associated with the amount of time it takes for the Transmitted
Signal to reach its SS1 value. T1 exists because of the pressure waves interacting
with the material and the geometry of the transducer. T2 is a result of the residual
pressure waves still active in the transducer after the drive signal has stopped and is
known as the ring time of the Transmitted Signal.

The Received Signal contains the rise time, T3, ring time, T4, and the steady-state
section SS2. T3 is larger than T1 because it contains the effects of the Transmitted
Signal and the pressure wave interactions of R. T4 is larger than T2 because it contains
the effects of the residual pressure wave interactions of T after the Drive Signal has
stopped and the residual pressure wave interactions of R after the Transmitted Signal
has stopped.

Transducers are used for a number of applications in the fields of oceanographic
and hydro-geographic surveys, seismic exploration, marine research, environmental
monitoring, navigation, communication, target tracking, etc. To construct a trans-
ducer for a specific application, the designer must understand the relationship be-
tween the Drive Signal and Transmitted Signal, and the relationship between the
Transmitted Signal and Received Signal. The transducer model is used to describe
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these relationships.

Figure 1.1: Basic Operation of an Acoustic Transducer

A typical multi-layer thickness mode underwater acoustic transducer is composed
of a stack of piezoelectric and non-piezoelectric elements. These elements are shielded
from the external environment by the transducer housing. The internal structure of
the transducer is presented in figure 1.2.

Figure 1.2: Basic Mechanical Structure of Multi-Layer Acoustic Transducer Operating
in Thickness Mode

The Matching Layer is designed to allow the largest amount of energy from an
acoustic pressure wave to enter the transducer. The Piezo Layer converts acoustic
waves into electrical signals. The BackMatching Layer mechanically supports the
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Piezo Layer and is also used to adjust the performance characteristics of the trans-
ducer. The Backing Layer supports the BackMatching Layer.

The design of multi-layered acoustic transducers operating in thickness mode is far
from trivial. Failure of the designer to understand the effect material parameters and
geometric construction have on the complex acoustical wave interaction in the trans-
ducer severely limits the performance of the resulting transducer. A designer requires
a set of performance characteristics to understand the effect material parameters and
geometry have on the performance of the transducer. Unfortunately, performance
characteristics for a multi-layer acoustic transducer operating in thickness mode are
difficult to gather or obtain. Therefore, comprehensive models are developed for the
steady-state and transient performance characteristics of transducers.

The steady-state performance characteristics presented in this thesis include the
input electrical impedance, acoustical impedance, efficiency, sensitivity, and transmit
voltage response (TVR). The input electrical impedance is used to model the trans-
ducer as an electrical impedance, whereas, the acoustical impedance is the mechanical
impedance looking into the transducer from the transmitting acoustic face. The effi-
ciency is a ratio of the output acoustic power to the input electrical power, and the
sensitivity is the ratio of the input acoustic pressure to the voltage that is obtained
at the electrical terminals of the transducer. The TVR is the ratio of the pressure
output of the transducer to a drive voltage.

The transient performance characteristics presented include the transient voltage
output resulting from a pressure input (TVOPI ), the transient pressure output re-
sulting from a voltage input (TPOVI ), and the voltage response resulting from a
drive voltage input.

In addition to changing the material parameters and geometry of a transducer
to obtain certain performance characteristics, it is also possible to design the input
drive voltage to obtain a pre-determined output pressure waveform. A novel de-
sign paradigm used to output custom pressure waveforms from a multi-layer acoustic
transducer operating in thickness mode is theoretically developed in this thesis.

In order to find the steady-state performance characteristics of a transducer, it is
easiest to model the transducer using an equivalent electromechanical circuit. Since
the elements in a thickness mode transducer are made to vibrate in a single direction,
the models associated with the transducer are one-dimensional by design.

A classical circuit model used for a transducer is the lumped circuit model, specifi-
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cally the Butterworth-Van Dyke (BVD) model [1, 2]. The BVD model is used because
it provides an explanatory and straightforward method of gaining deeper insight into
the behavior of the transducer. It is known that the BVD model is not generally
appropriate for modeling a multi-layer transducer’s steady-state or transient charac-
teristics. The limitations of the BVD model include the inability to obtain the pa-
rameter values used by the BVD from the material and geometric parameters of the
transducer, the inaccuracy of the model when the frequency analysis is far away from
the mechanical resonance frequency of the transducer, and the failure of the model
to account for the characteristics of the transducer introduced by its multi-layered
structure. The limitations of the BVD model are discussed further in section 2.1.

State-of-the art equivalent circuit models of the transducer rely on the use of the
distributed circuit model developed by Mason [3]. Distributed models are more com-
plex than the BVD model but provide a complete representation of both the piezo-
electric and non-piezoelectric elements. If arranged correctly, the distributed models
provide a complete representation of the multi-layer underwater acoustic transducer
operating in thickness mode.

In chapter 2, the steady-state performance characteristics of the multi-layer trans-
ducer are developed in detail. Although not new generally, the models presented in
this thesis are new in that they are tailored for multi-layer acoustic transducers oper-
ating in thickness mode. In chapter 2, Mason’s distributed model of the piezoelectric
and non-piezoelectric elements is used to construct distributed models of multi-layer
acoustic transducers operating in thickness mode. These distributed models are de-
veloped to solve the constraints associated with using the BVD model. An in depth
development of the distributed model of the piezoelectric and non-piezoelectric ele-
ments is completed in sections 2.2 and 2.3. In section 2.7, the distributed models are
used to obtain the steady-state performance characteristics of both, the commonly
employed Matched transducer as well as the novel Cross-Talk Minimization (XTM)
transducer.

The Matched transducer is composed of a Matching Layer, Piezo Layer, and a
Backing Layer, whereas the XTM transducer is composed of a Piezo Layer, Back-
Matching Layer, and a Backing Layer. This XTM transducer is a significant step
forward in transducer design in that the BackMatching Layer is tailored to obtain
certain performance characteristics. The BackMatching Layer allows the XTM trans-
ducer to be used for a wide range of applications. The models presented in chapter 2
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facilitate the analysis and subsequent optimization of multi-layered acoustic trans-
ducers operating in thickness mode.

For any model to be useful, it must provide accurate results. Therefore, verifi-
cation of the steady-state models developed must be made through the use of well
designed experiments. In chapter 3, verification of the impedance takes place by com-
paring the experimental and theoretical impedance values for a number of transducers
with varying element thicknesses and materials.

In order to find the theoretical impedance, a good estimate of the material param-
eters and geometric dimensions of the transducer is required. Although the geometric
dimensions are easy to obtain, it is generally difficult to obtain all the material pa-
rameters necessary to use the theoretical impedance model. To find the material
parameters, transducer designers rely on fitting the theoretical impedance to the
experimentally measured impedance values [4, 5]. In this thesis, the material param-
eters and validation of the theoretically determined impedance values are performed
using the same experimentally measured impedance. To ensure the material param-
eters do not interfere with the validation of the theoretical impedance, constraints
are introduced on the allowable values of the material parameters. This restriction
ensures that the material parameters cannot be adjusted to fit the impedance values
without being reasonably close to the actual material parameters of the transducer.
In section 3.1, it is validated that the theoretical impedance can be used to ob-
tain the material parameters of the transducer. This is performed by conducting a
constrained non-linear fit to determine the material parameters from synthetically
produced impedance curves. Therefore, it is shown that the introduction of material
constraints allows the validation of the theoretical impedance using the measured ex-
perimental impedance without a priori knowledge of the material parameters of the
transducer.

Measuring the impedance of a transducer is a relatively simple task. However,
making a sensitivity measurement requires the use of a complex experimental setup
as well as taking a considerable amount of time to complete. These are the pri-
mary driving factors for the development of a theoretical sensitivity model for multi-
layer acoustic transducers operating in thickness mode. The sensitivity model devel-
oped affords practical, cost-effective and convenient alternative to the design-through-
experimentation process. The sensitivity measurement of an XTM transducer is val-
idated and a comprehensive analysis of the theory used to conduct the sensitivity
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measurement is presented in chapter 4. Furthermore, the experimental setup and
sources of error that are commonly encountered when conducting a sensitivity mea-
surement are discussed in detail for completeness.

In order to find the transient characteristics of a multi-layer acoustic transducer
operating in thickness mode, Laplace domain equations describing the particle speed,
pressure, and force in a piezoelectric and non-piezoelectric element were used. The
equation describing the voltage on the electrodes of the piezoelectric element in the
Laplace domain is used as well. These equations were first developed by Redwood and
Stuetzer for the transient analysis of a single piezoelectric element and are presented
at the beginning of chapter 5 [6, 7]. Subsequent study of the single piezoelectric
element was done in [8, 9].

The distributed model is generally not used to find the transient characteristics of
a multi-layer acoustic transducer operating in thickness mode because of the intrinsic
complexity of the Laplace domain expressions and finding the inverse transform. In
order to solve this complexity problem, state-of-the-art Laplace domain inversion
routines are used to find the time domain solutions. This marks a leap forward in
our ability to determine the transient performance characteristics of the transducer.
In turn, facilitating novel transducer designs customized to enhance the transducer’s
transient performance. Section 5.2 focuses on the development of the TVOPI, TPOVI,
and voltage response of a single element transducer.

Recently, transducer drive electronics have been developed that can output an
arbitrary drive voltage. This has spurred the development of software capable of
shaping the drive voltage to output specific pressure waveforms from a transducer.
Current work in this area is focused on the use of lumped circuit models to obtain a
finite cycle sinusoidal pressure outputs with low transients [10, 11, 12, 13, 14]. How-
ever, this method is useful only when the frequency content of the desired pressure
waveform is close to the mechanical resonance frequency of the transducer and does
not account for the multi-layered structure of the transducer. Other researchers have
focused on finding the transfer function of the transducer by measuring the pressure
output caused by a known drive voltage [15, 16, 17]. Using the transfer function of
the transducer, techniques of Inverse Filtering are applied to determine the necessary
drive voltage. But, the problem with the transfer function method is that it requires
a difficult to obtain high accuracy measurement of the output pressure waveform. A
major issue with both of these methods is the need to perform experimental measure-
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ments on the transducer in order to obtain the parameters needed to design the drive
voltage.

The development of a new drive voltage design method which eliminates the re-
strictions or obstacles associated with the lumped circuit model and the use of the
transfer function of the transducer is presented in section 5.3. Since no experimental
measurements are required to determine the drive voltage, the design of the trans-
ducer can be optimized to output a complex pressure waveform with a simple drive
voltage. This method also facilitates the utilization of existing transducers for new
cutting edge applications where sophisticated output pressure waveforms are required.

Having developed the expressions that describe the transient characteristics of a
multi-layer acoustic transducer operating in thickness mode, these expressions need
to be validated. The focus of chapter 6 is on the validation of these expressions using
theoretical and experimental methods. For the first time, it is shown that distributed
model based transient theory can be utilized to model the transient behavior of a
piezocomposite element.

Having established the steady-state and transient performance characteristics of
a multi-layer acoustic transducer operating in thickness mode, chapter 7 presents an
application example and the concluding summary of the thesis.
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2. Steady-State Transducer
Modeling

An in depth development of the distributed models and the steady-state performance
characteristics of multi-layer acoustic transducers operating in thickness mode is pre-
sented in this chapter.

A commonly used transducer model is the lumped circuit model, however, this
method does not accurately model the characteristics of a multi-layer acoustic trans-
ducer operating in thickness mode. A discussion of the weaknesses associated with
using the lumped circuit model is presented in section 2.1.

Sections 2.2 and 2.3 present a comprehensive development of the distributed equiv-
alent circuit models of the non-piezoelectric and piezoelectric elements, these being
the fundamental components used in building the distributed equivalent circuit mod-
els of a transducer.

In any practical application, the transducer is connected to electrical circuitry
using an electrical cable. The cable can effect the steady-state performance charac-
teristics of the transducer. A steady-state model of the cable is therefore presented
in section 2.5 which can be used with the distributed equivalent circuit model of
the transducer to account for any effects the cable may have on the performance
characteristics.

The steady-state performance characteristics of multi-layer acoustic transducers
operating in thickness mode are developed using the distributed equivalent circuit
models. In section 2.6, the distributed equivalent circuit models of the novel XTM
transducer and the Matched transducer are presented. Section 2.7 focuses on the
development of the following performance characteristics that include: the electrical
impedance, acoustic impedance, efficiency, sensitivity, and transmit voltage response
of the XTM and Matched transducers. A discussion of the resonance frequency of a
transducer is presented in section 2.7.6.
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2.1. Lumped Circuit Model of Transducer
The lumped circuit representation of a single element electroacoustic transducer is
extensively used to find the steady-state performance characteristics. The model it-
self is known as the Extended Butterworth-Van Dyke (EBVD) model [18]. There are
a number of issues associated with using this model to obtain the performance char-
acteristics of a transducer. To see this, a brief description of the model is presented.

The EBVD model is based on representing the transducer as a simple mechanical
system, illustrated in figure 2.1 [3].

Figure 2.1: Mechanical Model of Transducer with Rigid Backing

The dashed blocks represent rigid objects. The parameters are defined as follows:
Rr is the radiation resistance, Mr is the radiation mass, M is the effective mass of
the piezoelectric element, Ft is the force produced by the piezoelectric element, and
Fb is an external acoustic force applied to the transducer. V is the drive voltage of
the transducer element. It is assumed that the backing material is rigid. Notice that
no consideration is made if the transducer is composed of a multi-layered structure.

The development of the equivalent circuit model is presented in [3]. The input
admittance of the transducer, Yeq, is given by equation 2.1. Note that to find Yeq,
the external force being applied to the transducer is set to zero, Fb=0.
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Co = Aoε
S
33

L

N = h33Co

C = L

Ao[cD33−h2
33ε

S
33]

Yeq = jωCo+ 1
Ro

+ N2

jω(M +Mr) + (R+Rr) + 1
jωC

(2.1)

h33 is the piezoelectric constant of the element, εS33 is the permittivity of the
element, Ro is the dielectric loss term, Ao is the surface area of the transmitting face
of the element, L is the thickness of the element, and cD33 is the stiffness coefficient of
the element. The equivalent circuit model representation of equation 2.1 is presented
in figure 2.2. Notice that the parameters {R,M,Mr,Rr} are the same parameters
used in figure 2.1.

Figure 2.2: Electrical Model of Transducer with Rigid Backing

Using the circuit diagram in figure 2.2 it is possible to find the output pressure
of the transducer resulting from an input drive voltage. In addition, one can find
the open-circuit output voltage resulting from an input drive force on the face of the
transducer.

An important feature to be aware of when using the lumped circuit model for
a general transducer is that the parameters {Ro,Co,N,M,R,C,Mr,Rr} do not, in
general, have closed form analytic solutions that can be calculated from the material
parameters and dimensions of the transducer [18]. Unlike the single element case,
the parameters {Ro,Co,N,M,R,C,Mr,Rr} must be determined from experimental
measurements. For example, to determine the values for Rr and Mr. It is assumed
that the transducer face moves with a fixed velocity uo. Equation 2.2 is the radiation
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impedance of the transducer used to find Rr and Mr [3].

Zr = 1
uou∗o

∫∫
S
p(~r)u∗(~r)dS

=Rr + jXr

=Rr + jω
(Xr

ω

)
=Rr + jωMr (2.2)

The surface integral 2.2 is evaluated on the surface of the transducer. This requires
knowledge of the near-field pressure pattern, which almost always requires the use of
finite numerical techniques.

Another issue with this model is that it is only accurate near the mechanical
resonance of the transducer. It is clear the development of a more rigorous model to
accommodate the need to do analysis off resonance, with transients, and to have the
parameters of the model depend only on the material properties and dimensions of
the transducer is necessary. This can be done if a distributed model is used.

2.2. Distributed Model for a Non-Piezoelectric El-
ement

In this section a detailed development of the distributed model of a non-piezoelectric
solid element is given. The development follows what is presented in [3], but is
expanded to provide the reader with a clear understanding of how the model is de-
veloped.

All transducers are composed of solid elements used for impedance matching,
mechanical support, or to provide protection from the environment. The distributed
model is developed to model one-dimensional longitudinal wave motion in a solid
element. The term distributed model is used because the assumption is made that the
mass and stiffness are spread continuously throughout the element. This development
involves first analyzing the distributed theory of a single solid element without any
loses present. From this analysis, an equivalent circuit model is constructed. It it
shown that the single element case can easily be extrapolated to a multi-element case.
The last part of this section focuses on taking losses into account.
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2.2.1. Mechanical Impedance of a Solid Non-Piezoelectric El-
ement

In this section, a presentation of the theory needed for longitudinal wave motion in
a solid element is made. Using the theory developed, the mechanical impedance of a
solid element with cross sectional area Ao is found. The final product of the theory
is the lossless line transmission formula given by equation 2.3. Figure 2.3 shows how
equation 2.3 is related to the physical structure of the element.

Zin = Zo[ZL+ jZotan(kL)]
Zo+ jZLtan(kL) (2.3)

Figure 2.3: Mechanical Representation of Non-Piezoelectric Element

ZL is the impedance at the end of the element, and Zo = ρcAo is the impedance
of the material in the element. The parameter k = 2πf

c is the wave number of the
element material, and L is the length of the element in the thickness mode direction.
A number of approximations are necessary in order for this formula to be valid, as
shown in the next section.

2.2.2. Derivation of the Mechanical Impedance of a Solid Non-
Piezoelectric Element

In this section the input mechanical impedance of a solid non-piezoelectric element
is developed. The element is sub-divided into very small elements, and each of these
elements is modeled using a lumped spring-mass representation. Lateral forces on
the element are assumed negligible. With this assumption, the developed impedance
formula is not able to model gases or liquids since they do not obey the free lateral
boundary conditions. Gases and liquids are almost never used in an underwater trans-
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ducer, therefore, there is no loss in generality by excluding these from the analysis.
The assumption is made that there is no energy loss on the interface of the element
or any energy loss in the element itself.

The length of each small element is ∆z with cross-sectional area Ao. The mass of
each element is M = ρAo∆z, and the stiffness is K = Y Ao/∆z. The parameter Y is
Young’s Modulus and ρ is the density of the material in the element. The longitudinal
displacement of the ith element is denoted ξi. Each of the elements on either side of
the ith element produces an opposing force due the stiffness which hinders its motion.
The displacement of the ith element can be modeled with the following formula.

M
∂2ξi
∂t2

=−K(ξi− ξi−1)−K(ξi− ξi+1) (2.4)

The equations for M and K are now substituted into the above expression.

ρAo∆z
∂2ξi
∂t2

=−Y Ao∆z (ξi− ξi−1)− Y Ao∆z (ξi− ξi+1) (2.5)

Re-arranging the above equation gives.

∂2ξi
∂t2

= Y

ρ∆z2 [(ξi+1− ξi)− (ξi− ξi−1)] (2.6)

Now if the limit as ∆z→0 is taken, the following equation is obtained.

∂2ξ

∂t2
= (Y

ρ
)∂

2ξ

∂z2 (2.7)

Equation 2.7 is known as the one-dimensional lossless wave equation. In most
cases, the frequency response solution to this equation is of interest. This can be ob-
tained by making the following substitution ξ(z, t) = ξ(z)ejωt, where ω is the frequency
of the sinusoidal driving force. As well, noting that the speed of an acoustic wave in
the material is c=

√
Y/ρ, after substitution, the following equation is obtained.

∂2ξ

∂z2 + (ω
c

)2ξ = 0 (2.8)

If k = ω/c, the general solution to this differential equation is:

ξ(z, t) = (Ae−jkz +Bejkz)ejωt (2.9)

The input impedance of the element Z must be found. This is equal to the ratio
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of the force F , and the particle velocity, u; where F and u are related to ξ through
the following formulas: .

F =−AoY
∂ξ

∂z
=−AoY jk(−Ae−jkz +Bejkz)ejωt (2.10)

u= ∂ξ

∂t
= jω(Ae−jkz +Bejkz)ejωt (2.11)

To solve for Z, the general solution 2.9 is plugged into the expressions for F and
ξ above. After algebraic manipulation, the following formula for Z is obtained.

Z(z) = Zo
Ae−jkz−Bejkz

Ae−jkz +Bejkz
(2.12)

The two impedance boundary conditions Z(0) = Zin and Z(L) = ZL are imposed
since the impedance looking into the element is to be determined. The constants
A and B may then be solved. Zin is the impedance looking into the element, and
ZL is the impedance at the end of the element. Plugging these boundary conditions
into equation 2.12, and simplifying, the equation for Zin, given by equation 2.13, is
obtained.

Zin = Zo[ZL+ jZotan(kL)]
Zo+ jZLtan(kL) (2.13)

Equation 2.13 is the lossless line transmission formula for a non-piezoelectric ele-
ment.

2.2.3. Equivalent Circuit Model for a Solid Non-Piezoelectric
Element

Since the transducer is, in general, connected to electrical equipment, it would be ideal
if equation 2.13 for mechanical impedance, could be transformed into an electrical
circuit equivalent. This is done by relating force F and particle velocity u, to voltage
V and current I. The fundamental equation for electrical impedance is given by V =
ZeI, where e is the electrical impedance. The fundamental equation for mechanical
impedance is given by F = Zmu, where Zm is the mechanical impedance. Using the
electrical and mechanical impedance equations, it is found that F is related to V ,
and u is related to I.

In order to convert the mechanical impedance into an electrical impedance, the
following trigonometric identities need to be used as well as the parameters Za and
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Zb, defined in equations 2.17 and 2.18.

tan(kL2 ) = 1− cos(kL)
sin(kL) (2.14)

sin(kL) =
2tan(kL2 )

1 + tan2(kL2 )
(2.15)

It is useful to re-write equation 2.13 into the following form. The reason this is
done is to allow the parameters Za and Zb to be easily substituted into the expression
for Zin.

Zin = Zo[ZL+ jZotan(kL)]
Zo+ jZLtan(kL)

= ZoZL+ jZ2
o tan(kL)

Zo+ jZLtan(kL)

=
−j ZoZL

tan(kL) +Z2
o

−j ZoZL
tan(kL) +ZL

(2.16)

The parameters Za and Zb are given by:

Za = jZotan(kL/2) (2.17)

Zb =−jZo/sin(kL) (2.18)

Combinations of Za and Zb are used to represent Z2
o and −jZo/tan(kL) as shown

below:

Z2
a + 2ZaZb =−Z2

o tan
2(kL2 ) +

2Z2
o tan(kL2 )
sin(kL)

=−Z2
o tan

2(kL2 ) + 2Z2
o tan(kL2 )[

1 + tan2(kL2 )
2tan(kL2

)]

=−Z2
o tan

2(kL2 ) +Z2
o +Z2

o tan
2(kL2 )

= Z2
o (2.19)
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Za+Zb = jZotan(kL2 )− jZo
sin(kL)

= jZo
1− cos(kL)
sin(kL) − jZo

sin(kL)

=−jZo
cos(kL)
sin(kL)

=− jZo
tan(kL) (2.20)

The equation for Z2
a + 2ZaZb and Za +Zb are substituted into equation 2.16 to

determine the circuit equivalent representation of Zin.

Zin = (Za+Zb)ZL+ 2ZaZb+Z2
a

Za+Zb+ZL

= Zb(Za+ZL) +Za(Za+Zb+ZL)
Za+Zb+ZL

= Zb(Za+ZL)
Za+Zb+ZL

+Za

= 1
Za+Zb+ZL
Zb(Za+ZL)

+Za

= 1
1
Zb

+ 1
Za+ZL

+Za

= Zb//(Za+ZL) +Za (2.21)

From equation 2.21, the equivalent circuit model of the input impedance of the
element is constructed, shown in figure 2.4.
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Figure 2.4: Distributed Circuit Equivalent of a Solid Bar

Note that ZL is the impedance at the end of the element.

2.2.4. Mechanical Impedance for a Series of Non-Piezoelectric
Elements

In many cases it is necessary to find the input impedance of a series of non-piezoelectric
elements. To do this, the following recursive formula is utilized.

Zi+1 = Zo,i[Zi+ jZo,itan(kiLi)]
Zo,i+ jZitan(kiLi)

(2.22)

It is easiest to see how this formula is used if the input impedance Zin of the
following two element structure is to be determined.

Figure 2.5: Two Non-Piezoelectric Element Structure
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Z2 = Zo,1[ZL+ jZo,1tan(k1L1)]
Zo,1 + jZLtan(k1L1)

Zin = Zo,2[Z2 + jZo,2tan(k2L2)]
Zo,2 + jZ2tan(k2L2) (2.23)

It is straightforward to see how equation 2.22 can be used to find the input impedance
for an N element non-piezoelectric structure.

2.2.5. Modeling for a Lossy Solid Non-Piezoelectric Element
If the medium in the element is absorbing, then the only quantity that changes in the
above equations is the mechanical acoustic velocity in the element. The mechanical
loss is accounted for by introducing a complex positive constant. Normally these
losses are negligible if the material does not have a large value of L or if the loss is
small. The discussion of losses is presented in section 2.4.

2.3. Distributed Model for a Piezoelectric Element
Amodel suitable for modeling a piezoelectric element is presented in this section.There
are four primary types of models that are used for modeling the piezoelectric ele-
ment: the Segmented 33 Bar, Un-segmented 31 Bar, Length Expanded Bar, and the
Thickness-Mode Plate [3]. The theory for the Thickness-Mode Plate is the only one
presented here because the analysis is conducted on a thickness mode transducer.
The development of the piezoelectric element model follows what is presented in [3],
and is expanded where necessary to explicitly show how the final results are obtained.

2.3.1. Approximations to the Phenomenological Equations for
Piezoelectric Element

The phenomenological constitutive equations linearly relate the stress T, strain S,
electric field E, and electric displacement D in a piezoelectric element with crystal
structure C6v. These are presented in matrices 2.24 and 2.25 [19]. Matrices 2.24 and
2.25 are used to construct the distributed model of the piezoelectric element.
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
T1

T2

T3

T4

T5

T6

=


cD

11 cD
12 cD

13 0 0 0
cD

12 cD
11 cD

13 0 0 0
cD

13 cD
13 cD

33 0 0 0
0 0 0 cD

44 0 0
0 0 0 0 cD

44 0
0 0 0 0 0 2(cD

11 − cD
12)




S1

S2

S3

S4

S5

S6

−
 0 0 0 0 h15 0

0 0 0 h15 0 0
h31 h31 h33 0 0 0

D1

D2

D3


(2.24)

E1

E2

E3

=−
 0 0 0 0 h15 0

0 0 0 h15 0 0
h31 h31 h33 0 0 0



S1

S2

S3

S4

S5

S6

+
βS

11 0 0
0 βS

11 0
0 0 βS

33

D1

D2

D3

 (2.25)

The goal is to make assumptions to the equations in 2.24 and 2.25 to obtain
a formula that retains a good representation of the physical system, that is also
tractable.

First, the polarization direction of the piezoelectric element is in the 3 direction,
which is parallel to the thickness dimension of the element. It is assumed that no
energy is lost in the piezoelectric element. In general, the piezoelectric material being
used has a high dielectric constant; therefore, the fringing effects are negligible. This
enables D to be set to D1 =D2 = 0. As well, since the material is composed of a non-
conductive dielectric with no free charges, ∇•D = 0 =⇒ ∂D3(z)/∂z = 0. Another
assumption made is that the electrode surfaces of the piezoelectric element are at
equipotential such that E1 =E2 = 0 on the electrode surfaces. In addition, fringing of
the field is ignored so that E1 =E2 = 0 throughout the material. Only the longitudinal
electric field E3 is considered because it is assumed that this electric field does not
cause any shear stresses in the material. This enables T to be set to; T4 = T5 = T6 = 0.
Other assumptions made are is that no loading forces exist on the material, and that
no internal loading of the material in the 1 and 2 directions (directions perpendicular
to the thickness mode dimensions) occurs enabling T to be set to; T1 = T2 = 0 on the
surface and inside the element.

Using these assumptions, the following set of equations are left:

T3 = cD33S3−h33D3 (2.26)

E3 =−h33S3 +βS33D3 (2.27)
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In the next section, particle velocity, force, current, and voltage in the piezoelectric
element are related using equations 2.26 and 2.27.

2.3.2. Relating Particle Velocity, Force, Current, and Voltage
in the Piezoelectric Element

In this section u and F are related to V and I using equations 2.26 and 2.27.
Note that the following relations for strain S3 = ∂ξ/∂z and stress ∂T3/∂z =

ρ∂2ξ/∂t2 exist. By taking the spacial derivative of equation2.26, these relations can
be directly plugged in to obtain the following expression.

ρ
∂2ξ

∂t2
= cD33

∂2ξ

∂z2 −h33
∂D3
∂z

(2.28)

Assuming that ∂D3(z)/∂z = 0 the following equation is obtained.

ρ
∂2ξ

∂t2
= cD33

∂2ξ

∂z2 (2.29)

Dividing both sides of this equation by ρ, the familiar wave equation is obtained.

∂2ξ

∂t2
= (c

D
33
ρ

)∂
2ξ

∂z2 (2.30)

When ξ(z, t) = ξ(z)ejωt, the general solution to this differential equation is given
by the following equation.

ξ(z, t) =
[
Aejkz +Be−jkz

]
ejωt (2.31)

The constants A and B need to be determined from the mechanical boundary
conditions of the piezoelectric element. A schematic drawing of the piezoelectric
element is presented figure 2.6.
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Figure 2.6: Piezoelectric Element

The mechanical boundary conditions associated with this piezoelectric element
are given by the following equations:

uB = ∂ξ

∂t

∣∣∣∣
z=0

(2.32)

uL = ∂ξ

∂t

∣∣∣∣
z=L

(2.33)

FB =−AoT3

∣∣∣∣
z=0

(2.34)

FL =−AoT3

∣∣∣∣
z=L

(2.35)

The parameters uB and uL are the particle speeds on the face of the piezoelectric
element. FB and FL are the associated forces on the face of the piezoelectric element.
Figure 2.6 of the piezoelectric element indicates the directions of these quantities
relative to the piezoelectric element. The boundary conditions are used to obtain the
following set of equations which are used to solve for the constants {A,B}:

uB = ∂ξ

∂t

∣∣∣∣
z=0

= jω
[
Aejkz +Be−jkz

]
ejωt

∣∣∣∣
z=0

= jω
[
A+B

]
ejωt (2.36)
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uL = ∂ξ

∂t

∣∣∣∣
z=L

= jω
[
Aejkz +Be−jkz

]
ejωt

∣∣∣∣
z=L

= jω
[
AejkL+Be−jkL

]
ejωt (2.37)

FB =−AoT3

∣∣∣∣
z=0

=−Ao[cD33S3−h33D3]
∣∣∣∣
z=0

=−Ao[cD33
∂ξ

∂z
−h33D3]

∣∣∣∣
z=0

=−Ao[cD33jk(Aejkz−Be−jkz)ejωt−h33
I

jωAo
]
∣∣∣∣
z=0

=−AocD33jk(A−B)ejωt+ h33
jω

I (2.38)

FL =−AoT3

∣∣∣∣
z=L

=−Ao[cD33S3−h33D3]
∣∣∣∣
z=L

=−Ao[cD33
∂ξ

∂z
−h33D3]

∣∣∣∣
z=L

=−Ao[cD33jk(Aejkz−Be−jkz)ejωt−h33
I

jωAo
]
∣∣∣∣
z=L

=−AocD33jk(AejkL−Be−jkL)ejωt+ h33
jω

I (2.39)

In the above equations the fact that D3 = I/jωAo is used. The above boundary
conditions are used to solve for FB and FL as functions of uL and uB. After doing
the algebraic manipulation and simplification, the following set of equations for FB
and FL are obtained:

FL =− ρcAo
jtan(kL)uL+ ρcAo

jsin(kL)uB + h33
jω

I (2.40)
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FB =− ρcAo
jsin(kL)uL+ ρcAo

jtan(kL)uB + h33
jω

I (2.41)

Equation 2.27 is used to relate V to I,uB, and uL. To do this, the following
expressions are used:

D3 = Q

Ao
(2.42)

E3(z) = ∂V

∂z
(2.43)

u= ∂ξ

∂z
(2.44)

I = ∂Q

∂t
= Ao

∂D3
∂t

(2.45)

∂V

∂t
= jωV (2.46)

Q is the charge on the surface of the electrode, ω is the frequency of the sinusoidal
voltage between the electrodes of the piezoelectric element, and Ao is the surface area
of the electrode.

V is now related to I,uB, and uL. To begin, the expression for E3(z) is substituted
into equation 2.27 to obtain.

∂V

∂z
=−h33

∂ξ

∂z
+βS33D3 (2.47)

Then, the integral with respect to z is found on both sides of the above equation
from 0 to L, where L is the length of the piezoelectric element.

∫ L

z=0

∂V

∂z
dz =−h33

∫ L

z=0

∂ξ

∂z
dz+

∫ L

z=0
βS33D3dz (2.48)

After evaluating the above integral, the following result is obtained.

V =−h33[ξ(L)− ξ(0)] +βS33D3L (2.49)

Using equation 2.45, the time derivative is found on both sides of equation 2.49
in order to introduce I, as shown below:
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∂V

∂t
=−h33[∂ξ(L)

∂t
− ∂ξ(0)

∂t
] +βS33

∂D3
∂t

L

jωV =−h33[uL−uB] +βS33
I

Ao
L

I = Ao

LβS33
[jωV +h33[uL−uB)]]

= j(Aoω
LβS33

)V + Aoh33
LβS33

[uL−uB] (2.50)

For convenience, the parameter Co is introduced into equation 2.50. Co is the
clamped capacitance of the piezoelectric element and is given by the following formula.

Co = Ao

LβS33
= Aoε

S
33

L
(2.51)

After introducing Co, the following formula is obtained which relates V to I,uB,
and uL.

V = h33
jω

[−uL+uB] + 1
jωCo

I (2.52)

Equations 2.40, 2.41, and 2.52 provide the information necessary to construct
the equivalent circuit model of the piezoelectric element. These equations can be
compactly combined in matrix form as presented in 2.53.


FL

FB

V

=


− ρcAo
jtan(kL)

ρcAo
jsin(kL)

h33
jω

− ρcAo
jsin(kL)

ρcAo
jtan(kL)

h33
jω

−h33
jω

h33
jω

1
jωCo



uL

uB

I

 (2.53)

2.3.3. Equivalent Circuit Representation for a Piezoelectric
Element

The equations presented in 2.53 give the relations between F,u,V, and I for a piezo-
electric element. There are a number of different equivalent circuits that can be
obtained using these relations, some of which include the Mason, Redwood, and
KLM equivalent circuit models. In this section the focus is on the development of the
Mason Model, but any of the others could have been used as well.

In order to construct the equivalent circuit model of the piezoelectric element, the
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use is made of the equation of Za+Zb, given by equation 2.20, and the parameters
Zo and N given by the following equations:

Zo = 1
jωCo

(2.54)

N = Coh33 (2.55)

After plugging Za +Zb,Zo, and N into 2.53, the following matrix of relations is
obtained which is then used to develop the equivalent circuit model of a piezoelectric
element.


FL

FB

V

=


−(Za+Zb) Zb ZoN

−Zb (Za+Zb) ZoN

−ZoN ZoN Zo



uL

uB

I

 (2.56)

To construct an equivalent circuit that satisfy the relations in 2.56, the equations
need to be in a form allowing the circuit topology to be realized. The algebraic
manipulations necessary to do this are presented below:

NV = ZoN
2(uB−uL) +ZoIN (2.57)

ZoIN =NV −ZoN2(uB−uL) (2.58)

FB = Zb(ub−uL) +ZauB +ZoIN

= Zb(ub−uL) +ZauB +NV −ZoN2(uB−uL)

= (Zb−ZoN2)NV −ZoN2(uB−uL) +ZauB +NV (2.59)

FL = Zb(ub−uL)−ZauL+ZoIN

= Zb(ub−uL)−ZauL+NV −ZoN2(uB−uL)

= (Zb−ZoN2)NV −ZoN2(uB−uL)−ZauL+NV (2.60)

To use 2.59 and 2.60 to create an equivalent circuit model, note that Force is
analogous to Voltage, and Current is analogous to Particle Velocity, and that the Me-
chanical Impedance and Electrical Impedance are equivalent. From these analogies,
and equations 2.59 and 2.60, these equations are represented by the equivalent circuit
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model given in figure 2.7.

Figure 2.7: Distributed Circuit Equivalent of a Piezoelectric Element

It is convenient to convert the boxed section of the circuit into an equivalent form
using the properties of an ideal transformer, as shown in figure 2.8.

Figure 2.8: Transformation using Ideal Transformer Theory

Using this topology transform, as well as making the substitution ZB = FB/uB

and ZL = FL/uL, Mason’s Model is obtained for the distributed equivalent circuit
model of a piezoelectric element operating in thickness mode. This is presented in
figure 2.9.
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Figure 2.9: Mason’s Model of Thickness Mode Piezoelectric Element

In the Mason Model, Za = jρcAotan(kL/2), Zb =−jρcAo/sin(kL) andN = h33Co.
ZB and ZL are the backing and load impedance of the piezoelectric element. Note
that k = ω/c, ω is the frequency, c is the acoustic wave velocity in the piezoelectric
element, and ρ is the density of the piezoelectric element.

2.4. Accounting for Material Losses in the Piezo-
electric Element

In the development above the loss mechanisms that are present in the piezoelectric
element have been omitted. This omission is valid for single crystal piezoelectric ele-
ments because the loss in single crystal elements such as quartz, is sufficiently small
[20]; however, for most underwater acoustic transducers, the piezoelectric element is
made of piezoceramic materials, such as PZT, or a piezocomposite material. These
materials contain large losses as compared with quartz, consequently neglecting the
loss terms causes significant effects on the theoretical values obtained for the perfor-
mance characteristics [5, 20, 21] .

How to introduce losses in the distributed model of a piezoelectric element is
shown in section 2.4.1. Following this, a discussion of each of the loss parameters is
provided in section 2.4.2. The last section discusses how to find the values of the loss
parameters.
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2.4.1. Theoretical Discussion of how to Introduce Loss Pa-
rameters

It should be noted that no physical explanation of losses in the piezoelectric element
has yet been clearly established. There have been a number of theories developed, and
it seems as though there are four primary mechanisms in which loss can take place
in a piezoelectric transducer. A good physical discussion of these loss mechanisms
and the effects on the impedance is given in [22]. The four primary portions of loss
in a piezoelectric element are due to the domain wall portion, fundamental lattice
portion, microstructure portion, and conductivity portion. Losses in piezoelectric
elements are generally due to dielectric, mechanical, or piezoelectric losses [23]. In
order to account for these losses in the developed model of the piezoelectric element,
the following equations are introduced [24].

εS∗33 = εS33(1 + jδe) (2.61)

cD∗33 = cD33(1 + jδm) (2.62)

h∗33 = h33(1 + jδp) (2.63)

Each of the δ terms represents a specific loss. δe represents the dielectric loss, δm
represents the mechanical loss, and δp represents the piezoelectric losses. As seen, the
introduction of complex constants into the material parameters is how the losses are
introduced into the distributed models.

2.4.2. Theoretical Discussion of Loss Parameters
These loss terms may be substituted into the equations developed for the equivalent
circuit model by making the following changes εS∗33 → εS33, cD∗33 →cD33, and h∗33→h33.
From an energetics argument, it is shown that the following results must hold for the
loss terms δe, δm, δp [24].

δe ≤ 0 (2.64)

δm ≥ 0 (2.65)

It is also expect that |δp| ≤ |δm|, |δe|. In the following paragraphs, a discussion
of what the loss terms actually represent for the piezoelectric element. In order to
better understand the cause of the losses, the microscopic structure of the piezoelectric
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material is analyzed.

Mechanical Loss δm

Mechanical loss δm can be caused by a number of effects such as thermal conductiv-
ity, domain and grain boundary effects, interstitial atomic diffusion, scattering, and
the motion of dislocations [25]. A number of models have been developed for the
mechanical dispersion and how to model cD33 which account for dispersion relation-
ships in elastic materials. A number of the phenomenological loss models proposed
are frequency dependent and involve the relaxation times of the displacement of an
element to an applied stress and strain [25].

Dielectric Loss δe

The dielectric loss occurs because when an electric potential is applied to the elec-
trodes of the piezoelectric material, the molecules of the dielectric fail to align in-
stantaneously to the applied field, so a phase is introduced. In essence, a delay is
introduced between the applied electric field and the polarization of the dielectric
medium. A large amount of research has gone into the development of various mod-
els to account for the dielectric loss. Some common models for dielectric loss include
the Debye relaxation, Cole-Cole equation, Cole-Davidson Equation, and Havriliak-
Negami relaxation.

Piezoelectric Loss δe

Smits presented a connection between the laws of irreversible thermodynamic pro-
cesses and statistical mechanics applied to domain wall motion and jumping defects,
such as lattice defects, in order to show that the piezoelectric losses can, in fact, be
represented by δp [26]. Smits also shows that the piezoelectric loss term is fully deter-
mined if the dielectric and mechanical loss terms are known, in which case he shows
that δmδe ∝ δ2

p. It is worth noting that Smits results are in complete agreement with
what Holland found from a purely energetics argument [24]. From Smit’s results, it
can be seen that it is possible to use a Debye formula to represent the piezoelectric
losses.

2.4.3. Finding the Complex Values
There are a number of methods for determining the complex material coefficients
of the piezoelectric element [4, 5, 21, 22, 23, 27]. Some of the methods involve the
measurement of the impedance of the piezoelectric element at a few select frequen-
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cies, while others involve a range of frequency measurements. In all the impedance
measurements conducted in this thesis, the impedance data is obtained over a range
of frequencies. Therefore, a best fit approach to match the experimental data with
the theoretical data is used to determine the complex loss factors, as explained in
chapter 3.

2.5. Cable Model
In this section, the effect of a cable on the performance characteristics of the trans-
ducer are analyzed. These effects are especially important if the cable is long or if the
operational frequency of the transducer is high. The transmission line equation from
circuit theory can be utilized to take into account the effects caused by the cable.

The characteristic impedance of a transmission line is defined by Ztl, given by the
equation 2.66 [28].

Ztl =
√
R+ jωL

G+ jωC
(2.66)

With this equation, the assumption is made that the drive voltage along the cable
is sinusoidal with a frequency given by ω. A circuit equivalent representation of
equation 2.66 is provided in figure 2.10.

Figure 2.10: Circuit Equivalent Representation of Cable

R is the cable resistance per unit length, L is the inductance per unit length, G is
the conductance of the dielectric per unit length, and C is the capacitance per unit
length of the cable.

The sinusoidal input impedance for an electrical transmission line is given by the
following formula [28].

Zin = Ztl
Zl+ jZtltanh(γl)
Ztl+ jZltanh(γl) (2.67)
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γ =
√

(R+ jωL)(G+ jωC) (2.68)

l is the length of the electrical line, Zl is the impedance at the end of the electrical
line, and Zin is the impedance looking into the electrical line. In most cases, the
cables used for transducers have a very low R and G value. For this analysis, it is
assumed that the effects of R and G are small enough that they can be neglected
such that the following equation for γ is obtained.

γ ≈ jω
√
LC (2.69)

Plugging γ into equation 2.67 for the impedance of an electrical transmission line,
the following equation is obtained.

Zin = Ztl
Zl+ jZotan(ω

√
LCl)

Ztl+ jZltan(ω
√
LCl)

(2.70)

Assuming that the cable lengths and frequencies are small enough; ω
√
LCl� 1.

Using this assumption, the following approximation can be made tan(ω
√
LCl) ≈

ω
√
LCl. This gives the following formula for the impedance of the line.

Zin = Ztl
Zl+ jZtlω

√
LCl

Ztl+ jZlω
√
LCl

= Zl+ jZtlω
√
LCl

1 + j ZlZtlω
√
LCl

(2.71)

Since R and G are of negligible size, by assumption, Ztl =
√
L/C, the following result

for the line impedance

Zin = Zl+ jωLl

1 + jZlωCl
(2.72)

Now, if ωLl� 1, the following result is found, which is identical to what would
be found if only the line capacitance per unit length C was used.
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Zin ≈
Zl

1 + jωClZl

≈ Zl
1 + (ωClZl)2 − j

ωClZ2
l

1 + (ωClZl)2 (2.73)

2.6. Complete Electrical Equivalent Transducer
Model

Now that equivalent circuit models of the non-piezoelectric element, piezoelectric
element, and the cable, have been developed, all of these are combined to build
the complete electrical equivalent circuit model of a transducer. In this thesis, two
primary types of transducers are analyzed. The first is the novel XTM transducer,
which has the mechanical layout presented in figure 2.11.

Figure 2.11: Mechanical Representation of the XTM Transducer

This cross sectional representation along with the area of each element gives
enough information to develop the equivalent circuit model of the XTM transducer,
given in figure 2.12.
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Figure 2.12: Electrical Equivalent Representation of the XTM Transducer

The second type of transducer is the Matched transducer, of which a mechanical
diagram is presented in figure 2.13.

Figure 2.13: Mechanical Representation of the Matched Transducer

The corresponding electrical circuit model of the Matched transducer in figure 2.13,
is provided in figure 2.14.
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Figure 2.14: Electrical Equivalent Representation of the Matched Transducer

The circuit diagrams in figures 2.12 and 2.14 are utilized to determine a number
of performance characteristics for both transducers.

2.7. Transducer Performance Characteristics
In this section the steady-state performance characteristics of the XTM and Matched
transducers are determined including the electrical impedance, acoustical impedance,
efficiency, sensitivity, and the TVR. With these characteristics, a designer can con-
struct metrics of performance based on the materials and dimensions of the trans-
ducer. Since these performance characteristics depend only on the material properties
and dimensions of the transducer, it is possible to rapidly test a number of configura-
tions to meet specific design goals thereby reducing both the cost and time inherent
if a purely experimental design validation is conducted.

2.7.1. Electrical Impedance
The electrical impedance of a transducer can be used to find the resonance frequency,
anti-resonance frequency, bandwidth, and material parameters of the transducer. In
this section the input electrical impedance of the transducer presented in figure 2.15
is determined.
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Figure 2.15: Mechanical Structure of Transducer

Notice that the input electrical impedance of the XTM transducer may be obtained
Lm is set to; Lm = 0. If the input electrical impedance of the Matched transducer is
desired instead, then Lp is set to; Lp = 0. The parameter C, in the above diagram,
is used to account for the cable capacitance. The equivalent circuit model of the
transducer shown in figure 2.15 is presented in figure 2.16.

Figure 2.16: Distributed Circuit Equivalent of Above Transducer

Now basic circuit theory is applied to obtain an expression for Zin, the input
electrical impedance of the transducer. The solution for Zin is given by the following
equations:
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ZB = ρBvBAo (2.74)

Zp = ρpvpAo (2.75)

kp = ω

vp
(2.76)

Zbacking = (ZB +Zap)//Zbp+Zap

= Zp[ZB + jZptan(kpLp)]
Zp+ jZBtan(kpLp)

(2.77)

kp = ω

vp
(2.78)

Zp = ρpvpAo (2.79)

Zap = jZptan(kpLp/2) (2.80)

Zbp =−jZm/sin(kpLp) (2.81)

km = ω

vm
(2.82)

Zm = ρmvmAo (2.83)

Zam = jZmtan(kmLm/2) (2.84)

Zbm =−jZm/sin(kmLm) (2.85)

Zface = (ZL+Zam)//Zbm+Zam (2.86)

= Zm[ZL+ jZmtan(kmLm)]
Zm+ jZLtan(kmLm)

k = ω

v
(2.87)

Za = jρvAotan(kL/2) (2.88)

Zb =−jρvAo/sin(kL) (2.89)

Zeq = [(Za+Zface)//(Za+Zbacking) +Zb
N2 −Zo]//Zo (2.90)

N = εS33Aoh33
L

= Coh33 (2.91)

Co = εS33Ao
L

(2.92)

Zo = 1
jωCo

(2.93)

Zin = Zeq
1 + jωCZeq

(2.94)
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Zface is the impedance looking out of the face of the transducer, and Zbacking

is the impedance looking out the backing of the transducer. // indicates that the
impedances are in parallel. Although the system of equations looks very complicated,
it can be easily implemented on any standard computer. Notice that if all the terms
are plugged into the above expression for Zeq, the following compact expression is
obtained.

Zc = ρcAo (2.95)

Zeq = 1
jωCo

+
(
h33
ωCo

)2 (Zface+Zbacking)sin(kL) + j2Zc(1− cos(kL))
Zc(Zface+Zbacking)cos(kL) + j(Z2

c +ZfaceZbacking)sin(kL)
(2.96)

2.7.2. Input Acoustic Impedance
The acoustic impedance, Zac, of a transducer is the ratio of the pressure on the
transmitting face of the transducer, P , to the particle velocity of the transmitting
face, u. From the equivalent circuit model, Zac is found as the impedance looking
into the transducer from the transmitting face of the transducer. Notice that the
XTM transducer and Matched transducers have different expressions for Zac.

First, Zac is found for the XTM transducer. The mechanical setup to find Zac for
the XTM transducer is presented in figure 2.18.

Figure 2.17: Mechanical Setup to find Acoustic Impedance for XTM Transducer

The value Zcbl represents the cable impedance connected to the electrical port

37



of the piezoelectric element. The mechanical setup presented in figure 2.18 is con-
verted into an equivalent electrical setup to find the expression for Zac, as shown in
figure 2.18.

Figure 2.18: Mechanical Setup to find Acoustic Impedance for XTM Transducer

The expression for Zac, determined from the circuit diagram provided in fig-
ure 2.18, for the XTM transducer is presented below.

Zac = (Zbacking +Za)//(Zb+N2(Zcbl//Zo−Zo)) +Za (2.97)

An expression for Zac for the Matched transducer is determined next. The me-
chanical representation and equivalent circuit diagram for the Matched transducer
are presented in figure 2.19.
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(a) Mechanical

(b) Electrical

Figure 2.19: Mechanical and Electrical Model of Matched Transducer to find Acoustic
Impedance

Using the circuit diagram in figure 2.19(b), the following expression is found for
the acoustic impedance of the Matched transducer.

Zac = [(ZB +Za)//(Zb+N2(Zcbl//Zo−Zo)) + (Za+Zam)]//Zbm+Zam (2.98)

2.7.3. Efficiency
The efficiency of a transducer is equal to the ratio of the acoustic power emitted from
the face of the transducer to the electrical power that is delivered to the transducer.
The efficiency is represented by η. η can be found using equation 2.99, where Pa is
the acoustic power emitted and Pe is the electrical power delivered to the transducer.

39



η = Pa
Pe

= acoustic power

electrical power
(2.99)

Figure 2.20 illustrates the diagram used to find the efficiency of the transducer.

Figure 2.20: Diagram used to find Efficiency η

ZL is the impedance of the loading medium and Zin is the input electrical impedance
of the transducer. FL is the force on the face of the transducer. V is the sinusoidal
voltage being delivered to the transducer, and I is the sinusoidal current being deliv-
ered to the transducer. With these terms defined, the expressions for Pa and Pe are
found using the following formulas.

P̄e = V I (2.100)

Pe = 1
2Re[V I

∗]

= 1
2 |V ||I|cos(< V,I >)

= 1
2 |V ||

V

Zin
|cos(< V,

V

Zin
>)

= 1
2
|V |2

|Zin|
cos(φin) (2.101)

40



P̄a = FLuL (2.102)

Pa = 1
2Re[FLu

∗
L]

= 1
2 |FL||uL|cos(< FL,uL >)

= 1
2 |FL||

FL
ZL
|cos(< ZLuL,uL >) with Im[ZL] = 0

= 1
2
|FL|2

ZL
(2.103)

Notice that Pa and Pe are the average powers which are found from the com-
plex powers P̄a and P̄e, as shown. Note that the function < a,b > is defined as the
angle measure between the parameters a and b. Now substituting Pa and Pe into
equation 2.99 determines the expression for efficiency.

η = Pa
Pe

= 1
2
|FL|2

ZL

2|Zeq|
|V |2cos(φin)

= |TTF |
2

ZL

|Zin|
cos(φin) (2.104)

The term TTF is the transmission transfer function of the transducer and is de-
fined as TTF = FL/V . φin is the phase angle associated with the input electrical
impedance Zin. The TTF can be found from the transmit voltage response of the
transducer’s TVR, which is developed for the XTM and Matched transducer in sec-
tion 2.7.5.

2.7.4. Sensitivity
The sensitivity of a transducer is obtained by finding the open-circuit output voltage
resulting from a given input pressure on the face of the transducer.

Sensitivity is represented using the parameter M . The value eo corresponds to
the open-circuit output voltage of the transducer, and the applied sinusoidal pressure
is equal to P = F/Ao, where F is the sinusoidal force on the face of the transducer
and Ao is the surface area of the face of the transducer.

Since the analysis is performed using the equivalent circuit model, the applied
force F is represented by a voltage source of equal value F . With this substitution,
it is possible to find the output voltage eo at the open-circuit output terminals of the
transducer as a function of input pressure, noting that F = PAo. Also, keep in mind
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that the pressure P and the voltage eo are being applied with a sinusoidal frequency
of ω = 2πf .

In this section, the sensitivity is developed for the XTM transducer and the
Matched transducer. Since equations for the sensitivity are different for each type of
transducer, each is treated separately in the following sections.

Sensitivity for XTM Transducer

The electrical equivalent circuit of the XTM Transducer is presented in figure 2.21.

Figure 2.21: Distributed Circuit Equivalent of an XTM Transducer to find Sensitivity

The parameters used in this model are defined by the following equations:

kp = ω

vp
(2.105)

Zp = ρpvpAo (2.106)

Zap = jZptan(kpLp/2) (2.107)

Zbp =−jZm/sin(kpLp) (2.108)

Za = jρvAotan(kL/2) (2.109)

Zb =−jρvAo/sin(kL) (2.110)

N = Coh33 (2.111)

Zo = 1
jωCo

(2.112)

Zc = 1
jωC

(2.113)

Note that ZL and ZB are the load and backing impedances of the XTM transducer
respectively. Using nodal analysis and the transformation of an ideal transformer, an
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expression is obtained for eo/F using the circuit in figure 2.21. The final result is
presented in equation 2.114.

Zbacking = Zp[ZB + jZptan(kpLp)]
Zp+ jZBtan(kpLp)

A1(ω) = Za+Zbacking
2Za+Zbacking +ZL

A2(ω) = (Za+ZL)//(Zbacking +Za) +Zb

eo
F

= (Zo//Zc)NA1(ω)
[(Zo//Zc−Zo)N2 +A2(ω)] (2.114)

Notice that the expression for eo/F is a complex quantity, therefore the absolute
value of this quantity must be used in order to obtain a measurable expression. It is
convenient to express the hydrophone sensitivity by the quantity M , which is given
by equation 2.115.

M = 20log(|eo
F
Ao|)−120

= 20log(|eo
P
|)−120 (2.115)

M has units of decibel-volts per micro-pascal [dB//V/µPa]. Note that the pres-
sure P is in units of Pascals, and eo is in units of Volts.

Sensitivity for Matched Transducer

In this section the sensitivity for the Matched transducer is presented. The equivalent
circuit model of the Matched transducer is given by the circuit diagram in figure 2.22.

Figure 2.22: Distributed Circuit Equivalent of a Matched Transducer to find Sensi-
tivity
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The parameters used in this model are defined by the following equations.

Zam = jρmvmAotan(kmLm/2) (2.116)

Zbm =−jρmvmAo/sin(kmLm) (2.117)

km = ω

vm
(2.118)

Za = jρcAotan(kL/2) (2.119)

Zb =−jρcAo/sin(kL) (2.120)

N = Coh33 (2.121)

Zo = 1
jωCo

(2.122)

Zc = 1
jωC

(2.123)

Nodal analysis and the transformation of an ideal transformer are used to ob-
tain an expression for eo/F for the Matched transducer, which is presented in equa-
tion 2.124.

Zll = ((ZL+Zam)//Zbm+Za+Zam)//(Za+ZB) +Zb

A1(ω) =
[
Zam+ZL
Zbm

+ Zam+ZL
Zam+Za

+ 1
][
Zam+Za
Za+ZB

+ 1
]
− Zam+ZL
Zam+Za

eo
F

=
[

N(Zc//Zo)
A1(ω)[Zll−ZoN2 + (Zc//Zo)N2]

]
(2.124)

As in the previous section, it is standard practice to represent the sensitivity
using the units of decibel-volts per micro-pascal [dB//V/µPa]. Equation 2.125 is the
sensitivity for the Matched transducer case.

M = 20log(|eo
F
Ao|)−120

= 20log(|eo
P
|)−120 (2.125)
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2.7.5. Finding the Transmission Voltage Response
The Transmission Voltage Response (TVR) is the ratio of the pressure output from
the face of the transducer to the drive voltage of the transducer. Measurement of the
TVR is done at steady-state with a sinusoidal input voltage of frequency ω.

In this section the TVR is developed for both the XTM transducer and the
Matched transducer.

TVR for XTM Transducer

The TVR of the XTM transducer can be found from the equivalent distributed circuit
model of the XTM transducer in figure 2.23.

Figure 2.23: Distributed Circuit Equivalent of an XTM Transducer to find the TVR

The definitions of the terms in figure 2.23 are given in the XTM sensitivity section
2.7.4. Using circuit theory the expression for FL/V is determined and given by the
following formula.

FL
V

=
[
ZLN

Za+ZL

][ (Za+Zbacking)//(Za+ZL)
(Za+Zbacking)//(Za+ZL) + (Zb−ZoN2)

]
(2.126)

By convention the TVR has units of [dB//µPa/V ]. Equation 2.127 is the TVR
for the XTM transducer in units of [dB//µPa/V ].

TV R = 20log(| FL
V Ao

|) + 120

= 20log(|P
V
|) + 120 (2.127)

Note that P is in units of Pascals and V is in units of Volts.
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TVR for Matched Transducer

To find the TVR of the Matched transducer, the following distributed circuit model
of the Matched transducer given in figure 2.24 is used.

Figure 2.24: Distributed Circuit Equivalent of a Matched transducer to find TVR

The definitions of the parameters in the above circuit can be found in section 2.7.4
for the Matched transducer. Circuit theory is used to develop an expression for FL/V
from the circuit diagram in figure 2.24. The expression for FL/V is presented below.

A1(ω) =
[
1 + Za+Zam

Zbm
+ Za+Zam
Zam+ZL

]
A2(ω) =

[ 1
Zb−ZoN2 + 1

Za+Zam
+ 1
ZB +Za

]
A1(ω)− 1

ZL+Zam
FL
V

=
[

ZL
Zam+ZL

][
N

(Zb−ZoN2)A2(ω)

]
(2.128)

As in the previous section, the TVR has units of [dB//µPa/V ] and is given by
the following formula.

TV R = 20log(| FL
V Ao

|) + 120

= 20log(|P
V
|) + 120 (2.129)

Note that P is in units of Pascals and V is in units of Volts.

2.7.6. Resonance Frequency Modes
The resonance frequency of a transducer can be determined by finding the minimum
value of the input electrical impedance. In general, this is done numerically because
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it is very difficult to analytically obtain an expression for the minimum of the input
electrical impedance given its transcendental nature.

As an example of how to find the resonance frequency using the impedance, assume
that a single piezoelectric element that is unloaded is being analyzed. The input
electrical impedance for this element is given by the following formula.

Zin = Zo//(
Zb+ 0.5Za−N2Zo

N2 ) (2.130)

Substituting in the values for Za,Zb,N,Zo and simplifying, the following formula
for the input impedance is obtained.

Zin = 1
jωCo

− 2sin(kL)N2

ρcAoωCo(1 + cos(kL))

=− 1
Coω

[j+
2N2tan(kL2 )

ρcAo
] (2.131)

This expression of Zin is used to find the expression for |Zin|2, which is presented
below.

|Zin|2 = ( 1
Co

)2 1
ω2 + ( 4N4

ρcAo
)tan2(kL2 ) (2.132)

In order to find the minimum of this expression, numerical methods must be used.
As seen from this simple analysis of a single piezoelectric element, it is difficult to
obtain a good estimate of the resonance frequency of the transducer without resorting
to numerical methods.

2.8. Conclusion of Transducer Modeling
The development of the distributed equivalent circuit models of the piezoelectric and
non-piezoelectric elements of a transducer operating in thickness mode were presented
in this chapter. In addition, the equivalent circuit model was utilized to model the
cable that connects the transducer to the electrical systems that drive and receive the
signals from the transducer. These models were developed assuming the transducer
is operating in steady-state.

It was shown how to introduce mechanical, dielectric, and piezoelectric losses in
both piezoelectric and non-piezoelectric element models by the addition of complex
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constants to certain material parameters. The expressions for a number of perfor-
mance characteristics including the electrical impedance, acoustic impedance, effi-
ciency, sensitivity, and TVR, as well as how to find the resonance frequency of a
transducer are presented. Although the performance characteristics are found for the
specific cases of the XTM and Matched transducers, the theory may be expanded to
any acoustic transducer operating in thickness mode.
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3. Experimental Validation of Dis-
tributed Impedance Model

The focus of this chapter is on the experimental validation of the impedance model
developed in section 2.7.1. This is accomplished by making a comparison between
the theoretically and experimentally determined impedance curves for a number of
transducers with varying material types and geometric dimensions.

The impedance is one of the easiest steady-state performance characteristics to
measure experimentally, so the validation of the theoretical impedance is used to
provide validation of the circuit models developed in chapter 2.

Although the impedance is one of the easiest performance parameters to measure,
the validation of the impedance model is not trivial. The complexity arises because
access is limited to a number of the material parameters of the non-piezoelectric and
piezoelectric elements. It is rare for a manufacturer to provide all the material data of
a piezoelectric element, and even if they do, the variability in the material parameters
can be as high as ±20%. Therefore, before the experimental analysis begins, it must
be determined if the impedance curves can be used to obtain the material parameters.

In section 3.1, an intricate analysis is conducted to determine the accuracy of the
material parameters obtainable from an impedance curve, in theory. The equations
of the impedance curves and experimental setup used to conduct the accuracy anal-
ysis are presented in section 3.1.1. The analysis is conducted by producing synthetic
experimental impedance data and subsequently utilizing a constrained nonlinear min-
imization on an error function to obtain the original material parameters from the
synthetic impedance data. The constraints are introduced because there are physical
limitations on the values of the material parameters. The constraints for a general
piezoelectric element are presented in section 3.1.3. The analysis shows that it is
possible, assuming that the developed theoretical impedance model is correct, to find
the material parameters of the transducer from the impedance curves.

Having established that the material parameters can be determined from the
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impedance curves, it becomes possible to validate the theoretical impedance using
the experimentally measured impedance, without the need to have every material
parameter of the transducer defined. The fits of the theoretical impedance are done
by hand because it is computationally difficult to obtain a suitable estimate of the
material parameters using a standard constrained nonlinear minimization routine on
the experimental data obtained. The allowable values of the piezoelectric material
parameters are bounded using the constraints presented in section 3.1.3. For non-
piezoelectric elements, the density and acoustic velocity can be obtained with good
accuracy without the use of complex measurements.

The experimental setup used to measure the impedance is presented in section 3.1.1
and the impedance curves analyzed include the magnitude of the impedance, resis-
tance, reactance, admittance, conductance, and susceptance. The experimental veri-
fication of the impedance measurements is conducted in section 3.2.

3.1. Accuracy of Material Parameters Obtained
from Impedance Measurement

This analysis focuses on determining if the material parameters of a single piezo-
electric element in air can be accurately determined from the measured impedance
data.

The experimental setup used to conduct the impedance measurements is pre-
sented in section 3.1.1. The errors associated with the measurements and how to
synthetically produce them are discussed in section 3.1.2. The routine used to de-
termine the accuracy of the material parameters from the synthetically produced
impedance data is presented in section 3.1.5 and the final results of the analysis are
given in section 3.1.6. It is clearly demonstrated that the material parameters of a
single piezoelectric element can be determined with good accuracy using measured
impedance data.

3.1.1. Experimental Setup used to Measure Impedance
The experimental setup used to measure the impedance of a transducer is presented
in figure 3.1.

50



Figure 3.1: Schematic of Impedance Measurement System

Vg is the output voltage of the generator, Rg is the internal resistance of the
voltage generator, R is a high precision resistor, and Z represents the transducer’s
input impedance. The voltages V1 and V2 are measured using a TDS-3034B Tektronix
Oscilloscope. Vg is used to drive the system with a pure sinusoidal waveform with a
frequency ω= 2πf . The magnitudes, V1 and V2 as well as the phase difference between
V1 and V2, φ1−φ2 = φ12, are measured. These values provide sufficient information
to determine the impedance and admittance of the transducer Z, given by equations
3.1 and 3.2.

Z(f) =R
[V1(f)
V2(f)e

i(φ12(f))−1
]

(3.1)

Y (f) =
( 1
R

)[ V2(f)
V1(f)ei(φ12(f))−V2(f)

]
(3.2)

Equations 3.1 and 3.2 are used to obtain the expression for the magnitude of the
impedance, resistance, magnitude of admittance, conductance, and susceptance as
shown below:

z(f) = |Z(f)| Magnitude of Impedance (3.3)

R(f) =Re[Z(f)] Resistance (3.4)

X(f) = Im[Z(f)] Reactance (3.5)
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y(f) = |Y (f)| Magnitude of Admittance (3.6)

G(f) =Re[Y (f)] Conductance (3.7)

B(f) = Im[Y (f)] Susceptance (3.8)

3.1.2. Estimate of Errors in Impedance Measurement
A method for introducing inaccuracies in the voltage and phase measurements of
V1,V2, and φ12 is introduced in this section. Referring to the manual of the TDS-
3034B Tektronix Oscilloscope, a ±2% error exists on the vertical resolution which
must be introduced into V1 and V2. The phase angle φ12 has an assumed error of
±0.5%, which is added to φ12. Since only the ratio of V1 and V2, and the relative
phase angle between the two waveforms is important, it is possible to set V2 = 1 and
φ2 = 0 without loss of generality. If Z is known, then the following formula can be
used to obtain V1 and φ1.

V1(f)eiφ1(f) = Z(f)
R

+ 1 (3.9)

In this analysis, the values V1(f),V2(f) and φ12(f) are known. It is possible,
therefore, to introduce the errors using the following normal distributions where ∼
N (µ,σ2) indicates a normal distribution with mean µ and variance σ2.

V1(f)∼N (V1(f),((0.02)V1(f))2) (3.10)

V2(f)∼N (V2(f),((0.02)V2(f))2) (3.11)

φ12(f)∼N (φ12(f),((0.005)φ12(f))2) (3.12)

3.1.3. Constraints on Allowable Material Parameters for a
Piezoelectric Element

From the analysis of a number of manufacturing sources and literature, it is deter-
mined that the following constraints can be used to bound the values of the material
parameters. These constraints account for nearly every piezoelectric material used
in an underwater acoustic transducer. The constraints for the material constants
{ρ,cD33,K

S
33,h33} are presented in equation 3.13.
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cconst =



3000≤ ρ≤ 8000 [kg]

50≤Re[cD33]≤ 140 [Pa]

0≤ Im[cD33]≤ 25 [Pa]

200≤Re[KS
33]≤ 1300 [ ]

−400≤ Im[KS
33]≤ 0 [ ]

1≤Re[h33]≤ 4 [GV/m]

0≤ Im[h33]≤ 0.5 [GV/m]

(3.13)

3.1.4. Error Function used to Determine Accuracy of Mate-
rial Parameters

The error function used to determine the accuracy of the material parameters is given
by equation 3.26. Notice that the size of the admittance data is scaled relative to
the size of the impedance data. This is done to ensure that the impedance values,
{z,R,X}, do not dominate the value of the Error function.

~yscl = ~y ∗ (max(~z)
max(~y)) (3.14)

~Gscl = ~G∗ (max(~R)
max(~G)

) (3.15)

~Bscl = ~B ∗ (max( ~X)
max( ~B)

) (3.16)

~ym
scl = ~ym ∗ (max( ~zm)

max( ~ym)) (3.17)

~Gm
scl

= ~Gm ∗ ( max(~R)
max( ~Gm)

) (3.18)

~Bm
scl

= ~Bm ∗ (max( ~Xm)
max( ~Bm)

) (3.19)
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Ze = |~z− ~zm|2 (3.20)

Re = |~R− ~Rm|2 (3.21)

Xe = | ~X− ~Xm|2 (3.22)

Ye = |~yscl− ~ym
scl|2 (3.23)

Ge = |~Gscl− ~Gm
scl
|2 (3.24)

Be = | ~Bscl− ~Bm
scl
|2 (3.25)

Error = Ze+Re+Xe+Ye+Ge+Be (3.26)

The values { ~zm, ~Rm, ~Xm, ~ym, ~Gm, ~Bm} indicate the measured data and
{~z, ~R, ~X,~y, ~G, ~B} are the estimated values obtained using the expected material pa-
rameters of the transducer. Note that the vector symbol → above any parameter
indicates that it is a set of values, each of which is defined at a specific frequency.

3.1.5. Routine Used to Determine Accuracy of Material Pa-
rameters found from Impedance Measurement

The routine used to determine the accuracy of the obtainable material parameters is
summarized by the following steps.

0. Define the surface area Ao, thickness of the element L, and the resistance value
R. For this analysis, Ao = 111.95mm2,L= 5.12mm, and R = 55Ω.

1. Randomly select realistic values of {KS
33, c

D
33,h33,ρ}= xopt using normal distri-

butions.

2. Use xopt to find ~Z, and then use ~Z to find { ~V1, ~V2, ~V3}.

3. Introduce the measurement errors into the values of { ~V1, ~V2, ~V3} to obtain
{ ~V1

e
, ~V2

e
, ~V3

e
}.

4. Use { ~V1
e
, ~V2

e
, , ~V3

e
} to find { ~zm, ~Rm, ~Xm, ~ym, ~Gm, ~Bm}=Xe

IA.

5. Conduct a constrained nonlinear minimization of the Error function to obtain
an estimate of the original material parameters using the data in Xe

IA. The
estimated material parameters are defined by {estKS

33,est c
D
33,esth33,est ρ}= xest.

6. If the constrained nonlinear minimization was successful, then find the percent
error between the values in xopt and xest.
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In step one, each material parameter is found using a constrained uniform distri-
bution, with the limits of the distribution determined by the constraints present in
equation 3.13.

In step two, the material parameters xopt are used to find the impedance of the
transducer for a number of frequency values defined by ~f = {f1,f2, . . . ,fN}. Here the
study is conducted using ~f = {100kHz,101kHz, . . . ,700kHz}. Equation 2.131 is used
to find the impedance ~Z = {Z(f1),Z(f2), . . . ,Z(fN )}. The calculated ~Z is then used to
obtain the values of { ~V1, ~V2, ~φ12} using equation 3.9 and noting that V2 = 1 and φ2 = 0.
Note that the vector symbol→ above any parameter indicates that it is a set of values,
each of which is defined at a specific frequency, ie. ~V1 = {V1(f1),V1(f2), . . . ,V1(fN )}.

In step three, equations 3.10 to 3.12 are used to introduce the inaccuracy of the
measurement into the values of { ~V1, ~V2, ~φ12}. The voltage and phase angle measure-
ments containing measurement error are given by { ~V1

e
, ~V2

e
, ~φ12

e
}.

In step four, equations 3.1 to 3.8 are used to find the parameters of Xe
IA using the

values from { ~V1
e
, ~V2

e
, ~φ12

e
}.

In step five, a constrained nonlinear minimization is conducted using the Error
function given by equation 3.26 and the constraints defined in equation 3.13. The data
supplied to the Error function is {~f,Xe

IA}. The task of the minimization routine is
to find values of xest = {estKS

33,est c
D
33,esth33,est ρ} that are close to xopt. The function

used to implement the minimization routine is the MATLAB routine fmincon with
the option ’active-set’ specified.

In step six, the determination of the validity of the results obtained from the
constrained nonlinear minimization is performed. To do this, the value of the Error
function is found using the values xest andXe

IA. For this analysis, if the Error function
is less than or equal to 1∗109, then the minimization routine was successful.

If the fit is good, then the percent error between the parameters in xopt and xest
are determined. As an example, the percent error for the real part of KS

33 is presented
below.

%E[Re[KS
33]] =

(
Re[KS

33]−Re[estKS
33]

Re[KS
33]

)
∗100 (3.27)
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3.1.6. Conclusion of Accuracy Analysis
The accuracy routine in section 3.1.5 was run for 3000 successful trials. After anal-
ysis of the percent errors obtained, it was found that the estimated values of ρ and
cD33 had the largest inaccuracies of the obtained material parameters. On the other
hand, the estimated acoustic velocity, v =

√
cD33/ρ had the highest accuracy of the

obtained material parameters. The following list summarizes a rough estimate of the
percent error of the material parameters obtained from an in air measurement of the
impedance and admittance of a single piezoelectric element.

%E[Re[v]] =±0.02% %E[Im[v]] =±0.05%
%E[Re[KS

33]] =±2% %E[Im[KS
33]] =±0.2%

%E[Re[h33]] =±15% %E[Im[h33]] =±0.5%
%E[Re[cD33]] =±25% %E[Im[cD33]] =±35%
%E[ρ] =±25%

The analysis presented in this thesis shows that the material parameters of a
transducer can be determined using its impedance and admittance curves if the ge-
ometric dimensions of the transducer are known. This is a very beneficial result as
far as transducer design is concerned, substantially improving design efficiency. Note
that the parameter ρ is generally available from literature for standard materials, or
can be determined with high accuracy using a standard analytical balance.

3.2. Experimental Verification of the Impedance
and Admittance Model

Verification of the steady-state impedance from section 2.7.1 is validated in this sec-
tion using a number of different transducers. The experimentally measured impedance
and admittance data is compared with the theoretically determined impedance and
admittance data to perform the validation. The experimental measurement system
used to obtain the impedance/admittance data is presented in section 3.1.1.

3.2.1. Piezoelectric Transducer
In this section the impedance/admittance curves for the transducer shown in figure 3.2
are determined experimentally. To find the impedance/admittance of this transducer
theoretically, the impedance model of the XTM transducer presented in section 2.7.1
is used.
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Figure 3.2: XTM 214kHz Piezoelectric Transducer

The XTM transducer is composed of 3 Layers. The first and third layers are
polyurethane layers that provide electrical shielding and mechanical support for the
piezoelectric element. The second polyurethane layer differs in thickness from the
first layer. Both polyurethane layers have the same impedance as water. The layer in
between the polyurethane layers is the piezoelectric element. The backing material, as
shown in figure 2.15, is composed of synctactic acoustic damping material (SADM).
This is a novel transducer design in that the third layer is a quarter wave layer
of polyurethane between the piezoelectric element and the SADM material. This
geometry is used as it seems to reduce the crosstalk between neighboring piezoelectric
elements in a transducer composed of a number of thickness mode structures arranged
in a planar array pattern. The material parameters found for this transducer are
shown below:
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Ao = 445.16 [mm2]

ρload = 1000 [kg/m3]

vload = 1500 [m/s]

ρm = 1000 [kg/m3]

vm = 1500 [m/s]

Lm = 4.445 [mm]

L= 7.65 [mm]

ρ= 7750 [kg/m3]

cD33 = (121 + 2j) [GPa]

KS
33 = (710−10j) [ ]

h33 = (2.68 + 0.03j) [GV/m]

ρpoly = 1000 [kg/m3]

vpoly = 1500 [m/s]

ρSADM = 2000 [kg/m3]

vSADM = 524 [m/s]

C = 120 [nF ]

Using these material parameters and the impedance model for the XTM trans-
ducer given in section 2.7.1, the theoretically and experimentally obtained impedance
and admittance curves are shown in figures 3.3 and 3.4.

58



Figure 3.3: XTM 214kHz Piezoelectric Transducer Impedance

Figure 3.4: XTM 214kHz Piezoelectric Transducer Admittance
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The solid lines in figures 3.3 and 3.4 represent the theoretically obtained impedance
and admittance curves, whereas the dotted lines represent the experimentally ob-
tained impedance and admittance curves.

The mechanical resonance frequency of the transducer occurs at the maximum
value of the admittance curve, which occurs at a frequency of 214kHz. The mechan-
ical anti-resonance frequency of the transducer occurs at the maximum value of the
impedance curve. This occurs at a frequency of 256kHz.

In figures 3.3 and 3.4, the impedance and admittance measurements are repeated
a number of times to determine the error expected when making the impedance and
admittance measurements.

Since the theoretically and experimentally determined values are in very close
agreement with each other, this suggests that the correct material parameter values
have been determined and that the impedance model developed in section 2.7.1 is
valid.

3.2.2. Impedance and Admittance of a Composite Piezoelec-
tric Element

The theoretical input impedance and admittance models of the composite piezoelec-
tric element, shown in figure 3.5, are verified in this section.

Figure 3.5: Single Element Piezocompsite Transducer

The experimentally determined material parameters for this element are given by:
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ρ= 7240 [kg/m3]

cD33 = (94.3 + 2.1j) [GPa]

KS
33 = (476.54−25j) [ ]

h33 = (3.12 + 0.1j) [GV/m]

L= 5.12 [mm]

Ao = 111.95 [mm2]

The theoretical impedance and admittance curves are determined using equa-
tion 2.131 which is included for reference below.

Zin = 1
jωCo

− 2sin(kL)N2

ρcAoωCo(1 + cos(kL))

=− 1
Coω

[j+
2N2tan(kL2 )

ρcAo
] (3.28)

Note that the definitions of Co,N , and k are given in section 2.7.1.
The theoretically and experimentally determined impedance and admittance curves

are presented in figures 3.6 and 3.7.

Figure 3.6: Single Element Piezocompsite Transducer Impedance
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Figure 3.7: Single Element Piezocompsite Transducer Admittance

In figures 3.6 and 3.7, a very good match was obtained between the theoretically
predicted and experimentally determined impedance and admittance curves. There is
some variation in the susceptance and conductance curves, but these are still within
the error bounds of the measurement. This variation may be caused by external noise
coupling effects through the cables used to conduct the measurement.

3.2.3. Composite Piezoelectric Element with SADM Backing
The input impedance and admittance values of the transducer shown in figure 3.8
are provided in this section. The data obtained is used to determine the material
parameters of the transducer, and is also compared with the values obtained from the
impedance model.

Figure 3.8: Single Element Piezocompsite Transducer with SADM Backing
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The experimentally determined material parameters for the transducer in fig-
ure 3.8 are given by the following:

Ao = 111.95 [mm2]

L= 5.12 [mm]

ρ= 7300 [kg/m3]

cD33 = (94.3 + 2.8j) [GPa]

KS
33 = (446.9−14.7j) [ ]

h33 = (3.12 + 0.094j) [GV/m]

ρSADM = 2000 [kg/m3]

vSADM = 524 [m/s]

Using these material parameters, the theoretical impedance and admittance curves
are determined using the theory developed in section 2.7.1. Note that the parameters
Lp = 0, Lm = 0, ZL = 0, and ZB = ρSADMvSADMAo are used to model this trans-
ducer. The theoretically predicted curves together with the experimentally measured
impedance and admittance values are presented in figures 3.9 and 3.10.

Figure 3.9: Single Element Piezocompsite Transducer with SADM Backing
Impedance
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Figure 3.10: Single Element Piezocompsite Transducer with SADM Backing Admit-
tance

As seen from figures 3.9 and 3.10, the theoretically determined and experimentally
measured values are in very close agreement with each other.

Next, the same transducer structure given in figure 3.8 is used, but with the
surface area Ao doubled. This is done by connecting two of the single piezocomposite
elements in parallel. The following material parameters are determined for this two
element structure:

Ao = 223.89 [mm2]

L= 5.12 [mm]

ρ= 7300 [kg/m3]

cD33 = (94.3 + 2.8j) [GPa]

KS
33 = (446.9−20j) [ ]

h33 = (3.21 + 0.094j) [GV/m]

ρSADM = 2000 [kg/m3]

vSADM = 524 [m/s]

Not only is Ao different, but differences occur in h33 and the loss term in KS
33.
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The reason for these differences is that every transducer element has material vari-
ations even if they are constructed in the same way using equivalent processes. For
the piezocomposite element, differences in measurement could easily be due to the
concentration and orientation of the piezoelectric fibers embedded in the epoxy of the
piezocomposite material.

The comparison of the theoretically determined impedance and admittance curves
with the experimentally determined curves for the two element structure are shown
in figures 3.11 and 3.12.

Figure 3.11: Two Element Piezocompsite Transducer with SADM Backing Impedance

Figure 3.12: Two Element Piezocompsite Transducer with SADM Backing Admit-
tance
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As seen from figures 3.11 and 3.12, excellent agreement between the theoretically
and experimentally determined values is obtained.

3.2.4. Matched Piezocomposite Transducer
A comparison is made between the theoretically and experimentally determined
impedance and admittance curves for the piezocomposite transducer shown in fig-
ure 3.13.

Figure 3.13: Piezocomposite Transducer

The piezocomposite transducer illustrated in figure 3.13 contains a 3 layer struc-
ture composed of a matching layer, the piezocomposite layer, and a backing layer
made of SADM. This is the same structure as that of the Matched transducer devel-
oped in section 2.7. The surrounding structure of the piezocomposite transducer is
composed of polyurethane and SADM material. Since the SADM material is a very
good acoustic absorber, it is assumed to act as an infinite medium. Therefore, any
waves that enter this material are considered to completely dissipate.

The material parameters used to model this transducer are given by the following
values:

Ao = 173.52 [mm2]

ρload = 1.21 [kg/m3]

vload = 324 [m/s]
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ρmtch = 1300 [kg/m3]

vmtch = (4100 + 400i) [m/s]

Lmtch = 3.1 [mm]

L= 5.3 [mm]

ρ= 7750 [kg/m3]

cD33 = (108 + 15j) [GPa]

KS
33 = (950.9−50j) [ ]

h33 = (1.81 + 0.1j) [GV/m]

ρSADM = 2000 [kg/m3]

vSADM = 524 [m/s]

The theoretical impedance and admittance curves for the transducer in figure 3.13
are obtained using the theory developed in section 2.7.1, with Lp = 0.

Using the material parameters, together with the experimentally measured
impedance and admittance curves, a comparison between the theoretically predicted
and experimentally measured curves is shown in figures 3.14 and 3.15.

Figure 3.14: Piezocomposite Transducer Impedance
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Figure 3.15: Piezocomposite Transducer Admittance

Figures 3.14 and 3.15 show that a good match is obtained between the experimen-
tally measured and theoretically predicted curves. The admittance curve contains a
minor variation between about 350kHz and 400kHz resulting from any number of
factors. One such factor may be that there are other longitudinal and width modes
in operation effecting the thickness mode operation of the transducer. Also, note that
the SADM material is a granular structure containing rubber and lead compounds.
This is not a homogeneous material; therefore, standing waves may be present at
these frequencies that are not accounted for by the developed impedance/admittance
equations. It is also possible that the material parameters in the transducer are
frequency dependent.

3.3. Conclusion of the Experimental Validation of
the Impedance Model

The impedance and admittance models developed in section 2.7.1 have been verified
using the measured impedance and admittance curves for a number of different trans-
ducers. It was also successfully shown that using the impedance and admittance data
with the material parameter constraints, that it is possible to determine the material
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parameters of a transducer if the geometric dimensions of the transducer are known.
In order to show whether effects unrelated to the thickness mode operation are

present, or if the material parameters are frequency dependent, a visual comparison of
the measured and theoretical impedance and admittance values should be performed.
If it is found that the theoretical values do not match the experimental values, then
either the material parameters are frequency dependent, or the transducer is not
operating strictly in thickness mode.
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4. Sensitivity Measurement

Experimental verification of the sensitivity expression of the XTM transducer, intro-
duced in section 2.7.4, is presented in this chapter.

Many methods can be used to experimentally measure the sensitivity of an acoustic
transducer, as shown in section 4.1. However, in this case the Reciprocity Measure-
ment method is used to determine the sensitivity of the XTM transducer since the
instrumentation and transducers required for this method are available at the facility
used to conduct the sensitivity measurement.

The steps necessary to conduct the Reciprocity Measurement are presented in
section 4.3 and the experimental setup used for this is illustrated in section 4.4.
Associated error sources, as well as methods of error reduction for measurements
made are included throughout the section.

Measurements made using the Reciprocity Measurement method require complex
experimental instrumentation and test facilities, motivating the need for a theoretical
method to determine the sensitivity of an acoustic transducer. A detailed theoretical
analysis of the Reciprocity Measurement method is therefore made in section 4.1.
The theory of the Reciprocity Measurement presented clearly shows the assumptions
that must be made in order to obtain accurate sensitivity measurements.

Measured values are presented in section 4.5 and it can be seen that these exper-
imentally measured sensitivity values agree closely with the theoretically predicted
sensitivity values of the XTM transducer. Therefore, it is concluded that the sensi-
tivity theory developed in section 2.7.4 is valid.

4.1. Sensitivity Measurement Methods for Acous-
tic Transducers

Of the methods used to measure the sensitivity of a transducer, some require com-
plex experimental setups, while others are easy to perform but require complicated
theoretical development. Table 4.1 lists the commonly used methods to determine
the sensitivity of a transducer. This table is taken from the book, Principles of
Underwater Sound written by Urick [1].
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Method Advantages Disadvantages
Reciprocity
(a) Spherical
(b) Cylindrical
(c) Plane
(d) Self-Reciprocity

Standards not required; ab-
solute method

Lengthy; complex; requires
reciprocal transducer

Pulse Calibration Reduces effect of reflections
and standing waves

Elaborate Equipment Re-
quired

Impedance
Calibration

Tank or body of water not
required

Complex data reduction

Comparison Simple and fast Not absolute method, re-
quires calibrated transducer

Table 4.1: Methods to Measure the Sensitivity of an Underwater Acoustic Transducer

The most common method used is the Comparison Method which requires access
to a calibrated transducer. Another option utilized is the Reciprocity Method, in
which no calibrated transducer is necessary. To perform the sensitivity measurement,
the Reciprocity method is used, but the Comparison method is also discussed since
it is a popular method used for transducer sensitivity calibration.

4.2. Comparison Method
The comparison method is a relatively quick and easy method used to determine
the sensitivity of a transducer. To conduct the sensitivity measurement, a calibrated
omnidirectional transducer is placed a distance d from the transducer being tested.
This calibrated transducer is used to create an acoustic pulse which is received by the
uncalibrated transducer. The voltage output from the receiving transducer is then
compared with the characteristics of the transmit voltage response of the calibrated
transducer to determine the sensitivity of the uncalibrated transducer.

A serious issue with this method, however, is that one must have a transducer that
is guaranteed to be calibrated. This requirement presents a problem as the properties
of a transducer depend on many factors such as temperature, pressure, and time. In
order to guarantee that the transducer in question is actually calibrated, it must be
recalibrated regularly.
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4.3. Reciprocity Method
The reciprocity method utilizes three uncalibrated transducers to determine the sen-
sitivity of a single transducer. Since the hydrophone sensitivity is determined without
a calibrated transducer, this method is an absolute calibration. The method relies
on the electroacoustic reciprocity principle used to relate the receiving sensitivity M ,
with the transmitting response S. These quantities are related through the constant
J , known as the reciprocity parameter [2]. The electroacoustic reciprocity principle
is defined by equation 4.1 [1]:

|E|
|v|

= |F |
|I|

(4.1)

The parameter |E| is the open-circuit voltage magnitude obtained from the trans-
ducer when the face of the transducer is driven with a sinusoidal velocity of magnitude
|v|. |F | is the magnitude of the applied sinusoidal force on the face of the transducer,
and |I| is the magnitude of the closed-circuit output current from the transducer that
results from the applied force |F |. If a transducer is reciprocal, then it must satisfy
equation 4.1.

A discussion of the steps necessary to perform the reciprocity measurement method
is given in section 4.3.3.

4.3.1. Reciprocity Parameter
As mentioned above, the reciprocity parameter J relates a transducer’s transmit re-
sponse S with its receiving sensitivity M . The book, Underwater Electroacoustic
Measurements written by Bobber, gives an excellent explanation of how the param-
eter J is defined, as well as its characteristics [29]. As explained in Bobber, the
parameter J depends on the acoustic medium, frequency, and boundary conditions
of the transducer being measured. The reciprocity parameter J , is however, indepen-
dent of the mechanical details of the transducer such as its dimensions and material
properties. To be reciprocal, a transducer must be linear, passive, and reversible. It
should be mentioned that there is presently no known way to prove if a transducer is
reciprocal, however, methods do exist to ascertain the probability of a transducer be-
ing reciprocal. For the reciprocity calibration performed in this chapter, the spherical
wave reciprocity parameter defined by equation 4.2 is utilized [2].

72



Js ≡
M

S
= 2r
ρof

(4.2)

The parameter r is the distance between the transmit transducer and the receive
transducer, ρo is the density of the acoustic medium in which the reciprocal measure-
ment is being done, and f is the frequency the measurement is being conducted at. In
order for Js to be valid, the pressure pattern of the transmit transducer must follow a
spherical spreading law [1]. Spherical spreading occurs when the sound intensity de-
creases proportionally to 1/r2, or the pressure decreases proportionally to 1/r. This
occurs when the receive transducer is in the far-field region of the transmit transduc-
ers pressure waveform. This condition must be checked before the measurement is
made.

Furthermore, for the parameter Js to be valid, the transmit response S and re-
ceive sensitivity M must be obtained in the free-field region where no boundaries
are present. The method of using a pulsed waveform to mitigate the issue of having
boundaries present is discussed in section 4.4.1.

4.3.2. Reciprocity Check
The Reciprocity Method requires at least one transducer to satisfy the reciprocity
condition. Bobber introduces the following test to check if the reciprocity condition
fails [29]. The test requires two transducers, T1 and T2. The transducers are placed
in the test tank and their acoustic axes are aligned to face each other. This allows
the maximum transmit and receive response to be obtained from each transducer, as
well as reducing the effects each transducer’s beam pattern has on the measurement.
T1 is driven with a current I1, and the open-circuit voltage V2 obtained from T2, is
recorded. Without changing the positions or boundary conditions of the test, signal
directions are switched by driving T2 with a current I2 and recording the open-circuit
voltage V1 from transducer T1. If the two transducers are indeed reciprocal, then the
following relationship between the measured quantities must hold:

V2
I1

= V1
I2

(4.3)

It should be noted that this test is reliable if T1 and T2 are dissimilar transducers.
If, for example, they are the same, they may contain the same nonlinear effects which
cause the above relationship to be true, when in fact, neither transducer is reciprocal.
Note that just because two dissimilar transducers satisfy the relationship above, it
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does not prove that they are reciprocal, it merely suggests they are reciprocal.

4.3.3. Theory of Reciprocity Calibration
The theory necessary to perform the Reciprocity Calibration is presented in this
section. The method is well known and is discussed in a number of texts [1, 2,
29]. The derivation presented in Albers is followed here [2]. In order to perform
a reciprocity calibration, three transducers are required, of which at least one is
reciprocal. Three transducers, H, P, and T are defined as follows; transducer H
performs as a hydrophone and is only used to receive an acoustic signals, P is a
projecting transducer, and T is the reciprocal transducer which both, transmits and
receives signals. Three measurements are necessary to obtain enough information
to find the sensitivity, MH , of H. A fourth measurement is taken to determine the
validity of the reciprocity requirement of transducer T.

Reciprocity Calibration Step#1

In the first step, P and H are aligned so their acoustic center of axes is coincident
and have a separation distance of r1. P is driven with a current I1. The pressure
on the face of H, produced from P, is pr1 . The assumption is made that r1 is large
enough that when the pressure field produced by P reaches H, it satisfies the spherical
spreading requirement explained in section 4.3.1. The following expressions for the
transmit current response of P, and the receive sensitivity of H are given by.

MH = vH
pr1

(4.4)

SP = pr1r1
I1

(4.5)

vH is the open-circuit voltage produced by H from the pressure pr1 . Combining
the above equations, the following expression is obtained.

SPMH = pr1r1
I1

vH
pr1

= vHr1
I1

(4.6)

Reciprocity Calibration Step#2

P and T are aligned so their acoustic center of axes are coincident and their separation
distance is r2. P is driven with a current I2 such that the pressure produced on the face
of T is pr2 . Again, r2 is assumed large enough that when the pressure waves produced
from P reach T, they obey the spherical spreading requirement. The expressions for
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the sensitivity of T, and the transmit current response of P are given below.

MT = vT
pr2

(4.7)

SP = pr2r2
I2

(4.8)

vT is the open-circuit voltage produced by T from the pressure pr2 . Combining
equations 4.4 and 4.7 for MH and MT , the following expression is obtained.

MH

MT
= vH
pr1

pr2

vT
= vH
vT

(
pr2

pr1

)
(4.9)

Reciprocity Calibration Step#3

T and H are aligned so their acoustic center of axes are coincident and have a separa-
tion of r3. T is driven with a current I3 such that the pressure produced on the face of
H is pr3 . Once again, r3 is assumed large enough that when the waves produced from
T reach H, the spherical spreading requirement is satisfied. The following expressions
for the sensitivity of H and transmit current response of T are given by.

MH = v′H
pr3

(4.10)

ST = pr3r3
I3

(4.11)

The value v′H is the open-circuit voltage produced from H from the pressure pr3 .
Combining the above expressions for MH and ST , the following relation is obtained.

STMH = pr3r3
I3

v′H
pr3

= v′Hr3
I3

(4.12)

Now using equations 4.6 and 4.12, the following expression for SP /ST is obtained.

SPMH

STMH
= SP
ST

= vHr1
I1

I3
v′Hr3

= vH
v′H

r1I3
r3I1

(4.13)

With the above equations and the spherical reciprocity parameter, an expression
for MH containing MT is determined from equation 4.9. As well, an expression for
SP is determined using equation 4.12.

MH =MT
vH
vT

(
pr2

pr1

)
(4.14)
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SP = ST
vH
v′H

r1I3
r3I1

(4.15)

These equations are multiplied to obtain.

SPMH = ST
vH
v′H

r1I3
r3I1
∗MT

vH
vT

(
pr2

pr1

)
(4.16)

Now equations 4.6 and 4.16 are used to solve for the expression STMT as shown.

ST
vH
v′H

r1I3
r3I1
∗MT

vH
vT

(
pr2

pr1

)
= vHr1

I1
(4.17)

STMT = v′HvT pr1r3
vHI3pr2

(4.18)

To determine an expression for MT , the reciprocity requirement of T is used with
equation 4.18 for STMT as follows.

JS = MT

ST
=⇒ ST = MT

JS
(4.19)

M2
T

JS
= v′HvT pr1r3

vHI3pr2
(4.20)

MT =

√√√√JS v′HvT pr1r3
vHI3pr2

(4.21)

An expression for MH is determined using equations 4.14 and 4.21.

MH = vH
vT

(
pr2

pr1

)√√√√JS v′HvT pr1r3
vHI3pr2

=

√√√√JS v′HvHpr2r3
vT I3pr1

(4.22)

Notice that pr1 is functionally dependent on the values of I1 and r1. As well,
pr2 is functionally dependent on the values of I2 and r2. To simplify the calibration
procedure, all measurements are conducted using the same separation distance r,
and drive current I. Therefore, I = I1 = I2 = I3 and r = r1 = r2 = r3 in which case
pr1 = pr2 . This allows the expression of MH to be given by equation 4.23.
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MH =
√
JS
v′HvHr

vT I
(4.23)

To find the receive sensitivity of a transducer, one requires three voltage mea-
surements, the distance between transducers, the drive current, the appropriate reci-
procity parameter, and equation 4.23.

Reciprocity Calibration Step#4: Reciprocity Check

To validate the results of the measurements made in the previous steps, the reciprocity
requirement of transducer T must be checked. A quick way to do this is to conduct
the following measurement to determine vP . Align transducer T and P along their
acoustic center axis with a separation distance r. Now drive transducer T with a
current I and record the open-circuit output voltage vP , of transducer P. In order for
transducer T and P to be considered reciprocal, the following relation must be true:

vP
I

= vT
I

=⇒ vP = vT (4.24)

Note that vT is determined in Step#2 of the Reciprocity Calibration.

4.4. Experimental Setup for Sensitivity Measure-
ment

The reciprocity calibration was carried out in a tank with dimensions< 4,4,2>meters
corresponding to < length,width,height >. The transducers used for the reciprocity
calibration are presented in figure 4.1.

In order to keep the same naming convention as that used in the reciprocity cali-
bration theory, table 4.2 shows the naming scheme for the corresponding transducers
in figure 4.1.

MARPORT_182kHz_PROTO ⇐⇒ T
AIR 214kHz ⇐⇒ H
Air 212kHz ⇐⇒ P

Table 4.2: Naming Convention for Transducers used in Reciprocity Calibration

As a summary, the diagram in figure 4.2 shows the steps necessary to conduct the
reciprocity calibration.
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Figure 4.1: Transducers used to conduct the Reciprocity Calibration
[Left→Right: MARPORT_182kHz_PROTO, AIR 214kHz, Air 212kHz]

Figure 4.2: Outline of the Measurements Needed for Reciprocity Calibration
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Each of the measurements in figure 4.2 is carried out using the same procedure.
Therefore, only the analysis of Step#1 of the reciprocity calibration is presented in
sections 4.4.1 to 4.4.4.

4.4.1. Geometric Setup
The geometric setup of the test tank and the transducer placement is important to
ensure that the test is being conducted such that the free-field and far-field conditions
are satisfied. In this section, experimental methods used to conduct measurements
at steady-state in a finite sized test tank are presented.

For the reciprocity parameter to be valid, a medium that is homogeneous, isotropic,
and free of boundaries is required. Of course, there is no such test facility available.
Reflecting boundaries, temperature gradients, gas bubbles, other sources of acoustic
and electromagnetic interference as well as many other effects are all present during
any acoustic measurement. The goal is to set up a test condition that allows suffi-
ciently accurate results to be obtained without the need for a large test tank. The
tank used here to conduct the reciprocity calibration is not treated with anechoic
material. Therefore, when conducting the measurements, reflections are present from
the surface and walls of the tank.

A common method used to mitigate the problem of boundary conditions is to use
a pulsed transmission and receive method. In this method, the transducer being used
to project the sound is driven by a short finite cycle pure-frequency pulse. As long
as the transmit transducer and receive transducer have a sufficient amount of time
to reach steady-state before any reflections arrive, then the problem of a finite sized
test tank can be mitigated. The theory associated with the length of the rise time
and ring time of the transducer is presented in chapter 5.

4.4.2. Hydrophone Voltage Response Pattern
The hydrophone voltage response pattern is used to determine the magnitude of
the steady-state output voltage from the hydrophone when excited by an incoming
pressure waveform. The amount of time it takes for the hydrophone to reach a steady-
state value depends on the rise time and steady-state section of the pressure waveform
as well as on the hydrophone’s rise time characteristics. The amount of time it takes
for the hydrophone voltage response pattern to reach steady-state must be shorter
than the time it takes for interference pressure waveforms from reflections to reach the
hydrophone. It is useful to look at the response patterns of the receiving hydrophone
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to illustrate the steady-state requirement. The response of a receive transducer when
excited by a transmitted pulse is shown in figure 4.3.

Figure 4.3: Response of Transducer when excited by a pressure wave

As seen from figure 4.3, there is an initial transitory period at the start of the
waveform which increases in an approximately exponential fashion. A steady-state
is then reached in which the magnitude of the signal amplitude does not vary with
time. After the drive pressure has stopped, there is a relaxation period where the
amplitude of the waveform decreases in an approximately exponential fashion. All of
the measurements must be done in the steady-state region of the waveform where no
interfering waveforms from reflections occur.

4.4.3. Geometry of the Test Tank
When a pulse is sent from the transmit transducer to the receive transducer, multiple
reflections occur in the test tank. The primary pressure wave is the one which hits
the hydrophone first. It has the shortest path length from the transmitter to the
receiver and is the only signal that should excite the receive transducer during the
measurement.

To ensure no unwanted signals resulting from reflections interfere with the mea-
surement, major contributors that could cause interference must be determined. The
amount of time it takes for these interference signals to reach the receive transducer
must be larger than the amount of time it takes to complete the steady-state voltage
measurement.
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The interference signals are caused by signal reflections from the walls, bottom,
and surface of the tank. Figure 4.4 shows how the surface and bottom reflections
interfere with the primary signal.

Figure 4.4: Reflections from Surface and Bottom

Table 4.3 lists the length of each acoustic path and the travel time of the pressure
signals in figure 4.4.

Route Distance Time
Direct Path r r r/c
Surface Reflection s 2

√
(d2
s + ( r2)2) 2

√
(d2
s + ( r2)2)/c

Bottom Reflection b 2
√

(d2
b + ( r2)2) 2

√
(d2
b + ( r2)2)/c

Table 4.3: Bottom and Surface Reflection Times in Test Tank, c is the acoustic speed
in the medium

The wall-reflections that may cause measurement inaccuracies are shown in fig-
ure 4.5.
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Figure 4.5: Reflections from the side walls of the tank

In order to determine the path lengths sw1, sw2 and sw3, the parameters (x1,y1),
the position of the transmit transducer, and (x2,y2), the position of the receive trans-
ducer is introduced. θ1, θ2, and θ3 are the angles associated with the reflections that
take place on the side walls. The equations for θ1, θ2, and θ3 and the acoustic path
lengths, sw1 ,sw2 and sw3 are given below:

θ1 = tan−1
(2L−x1−x2

y2−y1

)
(4.25)

sw1 = L−x1
sin(θ1) + L−x2

sin(θ1) (4.26)

θ2 = tan−1
( y2 +y1
x2−x1

)
(4.27)

sw2 = y1
sin(θ2) + y2

sin(θ2) (4.28)

θ3 = tan−1
(2W −y2−y1

x2−x1

)
(4.29)

sw3 = W −y1
sin(θ3) + W −y2

sin(θ3) (4.30)

The acoustic paths represented by sw1, sw2 and sw3 limit the amount of time
the primary pulse can be observed without any reflections causing interference with
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the measurement. It is worth noting that if the projector has a very directional
beam pattern, then the acoustic paths defined by sw1, sw2 and sw3 may not effect
the measurement significantly, but this is not the case for other interference paths.
The next major source of error in the reciprocity method is the alignment of the
transducers.

4.4.4. Alignment of the Transducers
One of the major sources of error in the reciprocity calibration is the alignment of both
transducers such that their acoustic axes are coincident. Both transducer axes must
be at the same depth. Since the maximum response is seen when the two acoustic
axes of the two transducers are aligned, a pulse is sent through the water and the
received response is observed. Then, by adjusting the orientation and height of the
transducers, a search for the maximum receive response is conducted. Once found,
the two transducers are aligned.

4.4.5. Determination of the Drive Current I
The instrumentation used to conduct the measurement allows a specific drive voltage
to be specified for the transmit transducer. In addition, the complex input electrical
impedance of each transducer can be determined by conducting a separate impedance
measurement for each. Using the impedance of the transducer and the drive voltage,
the current I can be determined using the following formula.

I = |V |
|Zeq|

(4.31)

The parameter |V | is the amplitude of the sinusoidal drive voltage, and |Zeq| is the
magnitude of the complex impedance of the transducer being driven. Equation 4.31
is used to determine the drive voltage |V | to ensure I remains constant throughout
the measurement.

4.4.6. Determination of the Magnitude of the Steady-State
Hydrophone Voltage Response

The open-circuit output voltage of the hydrophone is recorded beginning with the
initialization of the drive pulse for the projector. A typical voltage response for the
hydrophone resulting from the excitation pressure pulse is presented in figure 4.6.
The instrumentation used to record the voltage response always samples the signal
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at 8 times the frequency of the drive signal. In this case, the projector is being driven
with a 210kHz sinusoidal pulse, which means the samples are obtained at a frequency
of 1.68MHz. The Amplitude axis of figure 4.6 corresponds to the output of a 16-bit
ADC converter used to measure the voltage response.

Figure 4.6: Open-Circuit Voltage response over entire test time for a 210kHz Pulse

Figure 4.6 shows that there is considerable noise present in the received signal.
Note that a bandpass filter could be used to filter a significant amount of the un-
wanted noise. At the start of the received signal waveform, there is a large amount
of interference picked up from the electromagnetic coupling between the transmit
transducer cables and the receive transducers cables. This electromagnetic coupling
does not effect the measurement. The largest amplitude waveform seen in the voltage
response is the received signal resulting from the primary acoustic pulse. After the
effects of the primary acoustic pulse have stopped, there are a number of other wave-
forms present in the voltage response resulting from pressure waves due to reflections.
As seen, the waveform produced from the primary pressure pulse is isolated from all
subsequent waveforms produced by reflections. This allows the steady-state value of
the voltage waveform resulting from the primary acoustic pulse to be obtained easily.

The hydrophone response when the primary pulse reaches the hydrophone is pre-
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sented in figure 4.7.

Figure 4.7: Open-Circuit Voltage response when first 210kHz Pulse reaches the hy-
drophone

The waveform in figure 4.7 shows the typical response of a transducer. The rise
time, steady-state period, and ring time are all present and clearly visible.

The instrumentation used to send the pulse and record the hydrophone voltage
response are coherent from pulse to pulse. If multiple measurements are performed at
the same frequency, white noise can be significantly reduced by averaging the values
over a number of trials.

The waveforms obtained by taking an average over 50 pulses are presented in
figures 4.8 and 4.9.
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Figure 4.8: Open-Circuit Voltage response over entire test time for a 210kHz Pulse
Averaged over 50 Pulses

Figure 4.9: Open-Circuit Voltage response of the hydrophone for the first received
Pulse at 210kHz Averaged over 50 Pulses

As seen from figures 4.8 and 4.9, better results are obtained if the measurement
values are averaged over a number of pulses.
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From figure 4.9, the rise time of the voltage response is about 10 cycles long and
the ring time is approximately 14 cycles long.

To measure the steady-state hydrophone voltage response, two methods are used.
The first method is to fit a sine curve to the steady-state region and determine the
magnitude of the voltage response from the fit. The sine-fitting method is relatively
simple because the frequency is known. The second method takes the magnitude of
the in-phase and quadrature components of the received signal and determines the
magnitude of the steady-state voltage response. The magnitude of the in-phase and
quadrature components of the hydrophone voltage response resulting from a 210kHz
pressure signal is given in figure 4.10.

Figure 4.10: Average Magnitude of the Open-Circuit Voltage response of the hy-
drophone for the first received Pulse at 210kHz from the in-phase and quadrature
components Averaged over 50 Pulses

Both the sine-fit and quadrature methods produce equivalent results for all fre-
quencies measured in this sensitivity measurement.

4.4.7. Difficulties Associated with the Voltage Measurement
Situations arise which produce difficulties when conducting the steady-state voltage
measurement. An example is given in figure 4.11. Here, the same transducer setup
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from the previous section is used, but the measurement is made at a frequency of
260kHz.

Figure 4.11: Average Magnitude of the Open-Circuit Voltage response of the hy-
drophone at 260kHz

The electromagnetic coupling is still present but does not interfere with the mea-
surement. The difficulty in the voltage measurement arises because the rise time
section no longer contains a uniform increase in amplitude. Therefore, care must be
taken when determining the steady-state magnitude of the voltage output, as seen in
figure 4.12.

Figure 4.12: Magnitude of the Open-Circuit Voltage response of the hydrophone for
the first received Pulse at 260kHz Average d over 50 Pulses
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The initial rise time and ring time are clearly visible in figure 4.12. The frequency
of 260kHz is located close to the anti-resonance frequency of the receive transducer.
The pattern of the receive voltage is produced from the complex transient acoustic
wave interactions that take place in the receive transducer from the applied pressure
pulse. Although the transient effect is pronounced on the receive voltage, it is still
possible to isolate the steady-state section of the waveform.

4.5. Experimental Results of Reciprocity Calibra-
tion

Having discussed the theoretical aspects of the reciprocity calibration, experimental
setup, and the data acquisition methods, the results obtained from the reciprocity
calibration are now presented. Figure 4.13 shows the theoretically and experimentally
determined sensitivity for transducer H. The dots indicate the experimental values,
and the solid lines indicate the theoretical values.

Figure 4.13: Sensitivity of Transducer H

Reciprocity#1, in figure 4.13, is determined using the measurements shown in
figure 4.2 and using equation 4.23. Reciprocity#2 is determined using the same
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measurements, except P is assumed to be the reciprocal transducer, in which case
equation 4.32 is used to determine the sensitivity.

MH =
√
JS
v′HvHr

vP I
(4.32)

If T and P are reciprocal transducers, then the results of Reciprocity#1 and
Reciprocity#2 should be equivalent.

One of the primary issues associated with the reciprocity calibration is the align-
ment of the acoustic axes. The acoustic axis of a single multi-element transducer is
invariant as the frequency is varied. This is not the case for transducers containing
a planar array of multi-element structures. Transducers P and T are both composed
of a planar array of multi-element structures. Only a single multi-element structure
of the multi-element array is used which causes the acoustic axis to change direc-
tion and the beam pattern to change shape when the frequency is varied. Notice
that the largest deviation from the theoretical and experimental sensitivity varies by
about 6dB//V/µPa. This variation can easily be caused by the misalignment of the
acoustic center axis of the two transducers.

The results of the Reciprocity Check for transducers P and T is given in figure 4.14.

Figure 4.14: Reciprocity Check for Transducers P and T
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If the two transducers are considered to be reciprocal, the values vP and vT in
figure 4.14 must be the same. The variation between vP and vT may be caused by
the beam pattern changing shape during the measurement. For the frequency values
where the transducers P and T appear to be reciprocal, the theoretically determined
and experimentally measured sensitivity are in close agreement with each other. This
suggests that P and T may be reciprocal transducers, but only for a certain frequency
range.

4.6. Conclusion of Sensitivity Measurement
This chapter shows the complexity associated with the conducting of sensitivity mea-
surements. The theory and experimental techniques required to successfully measure
the sensitivity using the reciprocity calibration method are presented in sections 4.3
and 4.4. The measured sensitivity is compared with the theoretically predicted sen-
sitivity of an XTM transducer from section 2.7.4, and it is demonstrated that the
sensitivity of a multi-layer acoustic transducer operating in thickness mode can be
accurately obtained using the distributed sensitivity model. This allows for the rapid
optimization of transducer designs, eliminating the need for sophisticated and costly
experimental sensitivity measurements.
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5. Transient Analysis Laplace Do-
main

In this chapter, the transient characteristics of a multi-layer acoustic transducer op-
erating in thickness mode are developed in the Laplace domain. To obtain the time
domain values, the numerical inverse Laplace transform routines given in appendix A
are utilized.

Transient characteristics are important for transducer design and operation. For
example, suppose that a transducer designer wants to maximize the obtainable res-
olution and wishes to utilize the resonance performance of the transducer when it is
used as a transmitter and receiver. In order to increase the resolution of a transducer,
the frequency of the transmit pulse must be increased [16]. Generally, the pressure
pulses are sent sequentially to construct an image using the echoes of sent pulses. The
difficulty is that the rise time and ring time must be small in order for the transducer
to rapidly switch roles, as a transmitter and as a receiver. If the performance char-
acteristics are defined, this allows the optimum mechanical design to be determined
in order to reduce the number of cycles necessary to reach steady-state. These can
then be reduced to the point where the resonance performance characteristics of the
transducer can be utilized.

Not only can the mechanical design be tailored to obtain desired performance
characteristics, but it also becomes possible to design the drive voltage to produce a
desired output pressure. Sophisticated output pressure waveforms are required for a
number of cutting-edge applications. In test facilities, pulses with low rise times and
ring times are desirable [14, 15, 16]. For underwater communication, the Gaussian
pulse is needed for optimum transmission through channels [15]. For Doppler tolerant
applications, bionic pulses are used [30]. And, for high resolution applications, the
zero-phase cosine magnitude pulse is preferred [17]. In order to output these wave-
forms using a multi-layer acoustic transducer operating in thickness mode, a routine
is required that can account for the multi-layered structure.

92



The development of a novel routine that combines the versatility of a distributed
model of the transducer with state-of-the-art numerical inversion routines is presented
in this chapter. The Drive Voltage Design Method (DVDM) developed requires that
only the material properties and geometric dimensions of the transducer need to be
known in order to determine the drive voltage necessary to output a user defined
pressure waveform. As is shown, this method is superior to other drive voltage design
methods in that it accounts for the multi-layered structure of the transducer, is capa-
ble of outputting a general pressure waveform, and does not require any experimental
measurements to be made of the transducer.

To determine the transient performance characteristics of a transducer, equations
relating displacement, force, and voltage in a piezoelectric and non-piezoelectric ele-
ment are used. In section 5.2, the development of the transient performance character-
istics include the transient voltage output resulting from a pressure input (TVOPI ),
the transient pressure output resulting from a voltage input (TPOVI ), and the volt-
age response of the transducer. The voltage response is developed because it is the
easiest performance parameter to measure experimentally, and is therefore used to
validate the transient theory.

The novel DVDM is derived in section 5.3.

5.1. Derivation of Transient Equations for a Piezo-
electric Transducer

This section presents the basic transient equations describing the displacement and
force in a non-piezoelectric element, as well as the displacement, force, and voltage
occurring in a piezoelectric element. These expressions have already been developed
in [6, 7]. Redwood’s development is illustrated here because of the importance of
these expressions in the development of the TVOPI, TPOVI, and voltage response for
multi-layer acoustic transducers operating in thickness mode. To determine these ex-
pressions, Redwood uses the one-dimensional lossless wave equation and phenomeno-
logical equations of a piezoelectric element, given by equations 2.7, 2.26, and 2.27,
re-presented below.

∂2ξ(x,t)
∂t2

= v2∂
2ξ(x,t)
∂x2 (5.1)
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T3(x,t) = cD33S3(x,t)−h33D3(x,t) (5.2)

E3(x,t) =−h33S3(x,t) +βS33D3(x,t) (5.3)

v is the acoustic wave velocity in the material, and ξ is the displacement. To
solve this set of equations, a set of boundary conditions must be specified. The most
useful boundary conditions are given by the following set of equations describing the
particle speed u, pressure P , and force F .

u(x,t) = ∂ξ(x,t)
∂t

Particle Speed (5.4)

P (x,t) =−T3(x,t) Pressure (5.5)

F (x,t) =−AoT3(x,t) Force (5.6)

Equations 5.1, 5.2, and 5.3, together with the boundary conditions, are trans-
formed into the Laplace domain to construct the necessary equations of displace-
ment, force, and voltage in a non-piezoelectric and piezoelectric element. Note that
the non-piezoelectric element does not require an expression for voltage.

5.1.1. Laplace Domain Equation of Displacement for Non-
Piezoelectric Element

To find the displacement in the non-piezoelectric element, the Laplace transform of
equation 5.1 is performed.

L [ξ(x,t)] = ξ̄(x,s) =
∫ ∞

0
ξ(x,t)e−stdt (5.7)

L [∂
2ξ(x,t)
∂t2

] = s2ξ̄(x,s)− sξ̄(x,s)− ∂ξ(x,0)
∂t

(5.8)

L [∂
2ξ(x,t)
∂x2 ] = d2ξ̄(x,s)

dx2 (5.9)

The initial conditions of the non-piezoelectric element are set to zero, from which
the Laplace domain expression of equation 5.1 is given by the following differential
equation:
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s2ξ̄(x,s) = v2d
2ξ̄(x,s)
dx2 (5.10)

The general solution to this ordinary differential equation is given by equation 5.11.

ξ̄(x,s) = A(s)e−
s
vx︸ ︷︷ ︸
→

+B(s)e
s
vx︸︷︷︸
←

(5.11)

In equation 5.11, the arrow→ indicates a wave traveling in the positive x direction.
The arrow ← indicates a wave traveling in the negative x direction. A(s) and B(s)
are determined from the boundary conditions of the element. Note that for a non-
piezoelectric element, D3 = 0. The commonly used boundary conditions for a non-
piezoelectric element are given by the following set of equations:

ū(x,s) = sξ̄(x,s) = s
[
A(s)e−

s
vx+B(s)e

s
vx
]

(5.12)

P̄ (x,s) =−Y dξ̄(x,s)
dx

=−sY
v

[
−A(s)e−

s
vx+B(s)e

s
vx
]

= sZ

Ao

[
A(s)e−

s
vx−B(s)e

s
vx
]

(5.13)

F̄ (x,s) =−AocD33
dξ̄(x,s)
dx

=−sc
D
33Ao
v

[
−A(s)e−

s
vx+B(s)e

s
vx
]

= sZ
[
A(s)e−

s
vx−B(s)e

s
vx
]

(5.14)

In equation 5.14, Z is the the characteristic acoustic impedance of the element
and is given by Z = ρvAo .

5.1.2. Laplace Domain Equations of Displacement, Force, and
Voltage of a Piezoelectric Element

First, the expression for F̄ in a piezoelectric element is determined. The Laplace
transform of equation 5.2 is shown below.
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L [T3(x,t)] = T̄3(x,s)

L [S3(x,t)] = S̄3(x,s) = dξ̄(x,s)
dx

L [D3(x,t)] = D̄3(x,s)

T̄3(x,s) = cD33
dξ̄(x,s)
dx

−h33D̄3(x,s) (5.15)

An expression for ξ̄ and D̄3 is determined by utilizing the analysis presented
in Redwood [6]. Then, using equation 5.2 and Newton’s second law, the following
formula for ξ is obtained.

ρ
(
∂2ξ(x,t)
∂t2

)
=
(
∂T3
∂x

)
= cD33

S3(x,t)
∂x

−h33
D3(x,t)
∂x

(5.16)

Solving for ∂2ξ/∂t2 in equation 5.16 and substituting the expression S3 = ∂ξ/∂x,
the following formula is obtained.

∂2ξ(x,t)
∂t2

= (cD33/ρ)∂
2ξ(x,t)
∂x2 − (h33/ρ)∂D3(x,t)

∂x
(5.17)

It is assumed that plane wave propagation takes place strictly in the x direction.
Furthermore, it assumed that there are no free charges present inside the piezoelectric
element, Gausses law states that ∇·D = 0. Using these assumptions, the following
equation is obtained.

∇·D = ∂Dx

∂x
+ ∂Dy

∂y
+ ∂Dz

∂z

= ∂Dx

∂x
+
�

�
���

0
∂Dy

∂y
+
�

�
���

0
∂Dz

∂z

=⇒ ∂Dx

∂x
= 0 (5.18)

The cancellations above are since only plane wave motion occurs only in the
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x direction. By plugging equation 5.18 into equation 5.17, and noting that the x
direction is identical to the 3 direction, the wave equation within the piezoelectric
element is found and given by equation 5.19.

∂2ξ(x,t)
∂t2

= (cD33/ρ)∂
2ξ(x,t)
∂x2 (5.19)

Assuming the piezoelectric element has zero initial conditions, the Laplace domain
representation of equation 5.19 is given by equation 5.20.

s2ξ̄(x,s) = v
∂2ξ(x,s)
∂x2 (5.20)

The general solution to equation 5.20 is given by equation 5.21.

ξ̄(x,s) = A(s)e−
s
vx+B(s)e

s
vx (5.21)

The parameters A(s) and B(s) are determined from the boundary conditions of
the piezoelectric element. The expression for F̄ is obtained using equations 5.6 and
5.15 as shown below.

F̄ (x,s) =−AoT̄3(x,s)

=−Ao
[
cD33

dξ̄(x,s)
dx

−h33D̄3(x,s)
]

=−Ao
[
scD33
v

[
−A(s)e−

s
vx+B(s)e

s
vx
]
−h33D̄3(x,s)

]
(5.22)

To simplify the expression for F̄ , the following relations are utilized:

Zc = ρvAo (5.23)

D̄ = Q̄

Ao
(5.24)

The expression for D̄ is obtained from Gauss’s law applied to the piezoelectric
element’s surface. Zc is the characteristic acoustic impedance of the piezoelectric
element. After the relations Zc, D̄ are inserted into equation 5.22, the simplified
expression for F̄ is given by equation 5.25.
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− F̄

Ao
= scD33

v

[
−A(s)e−

s
vx+B(s)e

s
vx
]
−h33

Q̄(x,s)
Ao

F̄ = sZc

[
A(s)e−

s
vx−B(s)e

s
vx
]

+h33Q̄ (5.25)

Next, the equation for the voltage V̄ , developed between the piezoelectric ele-
ment’s electrical terminals, is determined using equation 5.26.

V̄ =
∫
Ē·d` (5.26)

The assumption that no electrical field is present, except in the x direction, allows
the integration of Ē strictly in the x direction. If one end of the piezoelectric element is
positioned at x= 0, and the element has a thickness L, then the following expression
for V̄ is obtained. Note that Co is the clamped capacitance of the piezoelectric
element.

V̄ =
x=L∫
x=0

Ēdx

=
L∫

0
−h33

dξ̄

dx
+βS33D̄3dx

=−
L∫

0
h33

dξ̄

dx
dx+ D̄3L

εS33

=−h33

[
ξ̄
∣∣∣∣
x=L
− ξ̄

∣∣∣∣
x=0

]
+ D̄3L

εS33

=−h33

[
ξ̄

∣∣∣∣
x=L
− ξ̄

∣∣∣∣
x=0

]
+ Q̄L

AoεS33

=−h33

[
ξ̄(L,s)− ξ̄(0, s)

]
+ Q̄

Co
(5.27)

The mechanical boundary conditions most often used for the piezoelectric element
are given by the following set of equations:

98



F̄ (x,s) = sZc

[
A(s)e−

s
vx−B(s)e

s
vx
]

+h33Q̄ (5.28)

P̄ (x,s) = sZc
Ao

[
A(s)e−

s
vx−B(s)e

s
vx
]

+ h33Q̄

Ao
(5.29)

ū(x,s) = sξ̄(x,s) = s
[
A(s)e−

s
vx+B(s)e

s
vx
]

(5.30)

Another useful boundary condition can be defined at the electrical terminals of the
piezoelectric element [6]. The current I into the transducer is related to the charge Q
on the electrodes by the formula I = dQ/dt. This formula and Ohm’s Law are used
to determine an appropriate boundary condition for the case when the piezoelectric
element is loaded by an electrical impedance Z̄load.

V̄ =−ĪZ̄load
=−sQ̄Z̄load (5.31)

Equations 5.21, 5.25, and 5.27, together with the boundary conditions defined
using 5.28, 5.29, 5.30, and 5.31, are used to describe the transient behavior of a
piezoelectric element.

5.2. Development of TVOPI, Voltage Response, and
TPOVI

The transient expressions presented in sections 5.1.1 and 5.1.2 are used to develop the
TVOPI, voltage response, and TPOVI. These are important transient performance
characteristics to have for any transducer design. Note that to determine the time
domain expressions the numerical inverse Laplace transform routines presented in
appendix A can be used.

5.2.1. Transient Voltage Output resulting from a Pressure In-
put

The Transient Voltage Output resulting from a Pressure Input (TVOPI ) is a measure
of the transient voltage received from an input pressure field.

It is assumed that the pressure on the face of the transducer is uniform. The
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simplest case is one in which only a single piezoelectric element with no backing
or matching layer is considered to illustrate how the Laplace domain expression of
the TVOPI is determined. The mechanical setup used to determine the TVOPI is
presented in figure 5.1.

Figure 5.1: The Mechanical Setup used to determine the Open-Circuit Output Volt-
age of a Single Element Transducer resulting from a Pressure Input P

Equations 5.21, 5.27, 5.28 and 5.29 from section 5.1.2 are used to obtain the
necessary equations to describe the transient behavior within the piezoelectric element
and within the boundary mediums of the element as well. These are given by the
following equations.

ξ̄1(x,s) = A1e
− s
v1
x+B1e

s
v1
x (5.32)

F̄1(x,s) = sZ1

[
A1e

− s
v1
x−B1e

s
v1
x
]

(5.33)

ξ̄(x,s) = Ae−
s
vx+Be

s
vx (5.34)

F̄ (x,s) = sZc

[
Ae−

s
vx−Be

s
vx
]

+h33Q̄ (5.35)

ξ̄2(x,s) = A2e
− s
v2
x+B2e

s
v2
x (5.36)

F̄2(x,s) = sZ2

[
A2e

− s
v2
x−B2e

s
v2
x
]

(5.37)
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V̄ =−h33

[
ξ̄(L,s)− ξ̄(0, s)

]
+ Q̄

Co
(5.38)

P̄ (x,s) = sZ1
Ao

[
A1e

− s
v1
x−B1e

s
v1
x
]

(5.39)

This set of equations is used to find V̄ as a function of P̄ . The parameters
{A1,B1,A,B,A2,B2, Q̄} are determined by the boundary conditions of the element.
The first is the continuity boundary condition for displacement and force at the
boundaries of the piezoelectric element.

ξ̄1

∣∣∣∣
x=0

= ξ̄

∣∣∣∣
x=0

ξ̄
∣∣∣∣
x=L

= ξ̄2

∣∣∣∣
x=L

(5.40)

F̄1

∣∣∣∣
x=0

= F̄
∣∣∣∣
x=0

F̄
∣∣∣∣
x=L

= F̄2

∣∣∣∣
x=L

(5.41)

It is assumed that there are no incoming pressure waves at the back of the trans-
ducer so that B2 = 0. As well, since only the open-circuit voltage is being considered,
the quantity Q̄ = 0 because no current flows from the transducer [6]. Using these
boundary conditions, the following set of equations is obtained.

A1 +B1 = A+B (5.42)

sZ1
[
A1−B1

]
= sZc

[
A−B

]
(5.43)

Ae−
s
vL+Be

s
vL = A2e

− s
v2
L (5.44)

sZc

[
Ae−

s
vL−Be

s
vL
]

= sZ2

[
A2e

− s
v2
L
]

(5.45)

V̄ = h33

[
A(1− e−

s
vL) +B(1− e

s
vL)

]
(5.46)

P̄ (x,s) = sZ1
Ao

[
A1

]
(5.47)

This set of equations is used to solve for V̄ as a function of P̄ and is given by
equation 5.48. Note that the TVOPI= V̄ (P̄ ).

V̄ =
[ 2Aoh(eLsv −1)((Z2 +Zc)e

Ls
v + (Z2−Zc))

s[(Z1 +Zc)(Z2 +Zc)e
2Ls
v + (Z1−Zc)(Zc−Z2)]

]
P̄ (5.48)

It is of interest to determine the TVOPI of a single element transducer when an
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impedance load is present. For this case, the boundary condition Q̄ = 0 is no longer
valid because current flows from the transducer. Figure 5.2 represents the mechanical
setup used to determine the TVOPI when an electrical load is present.

Figure 5.2: Mechanical Setup used to determine the Output Voltage of Single Element
Transducer with an Electrical Load resulting from a Pressure Input P

In order to find the TVOPI of the transducer in figure 5.2, the boundary condition
V̄ =−sQ̄Z̄load, from equation 5.31, is utilized. Using this boundary condition, along
with the equations found from the boundary conditions for the unloaded piezoelectric
element, the following set of equations is obtained.

A1 +B1 = A+B (5.49)

sZ1
[
A1−B1

]
= sZc

[
A−B

]
+h33Q̄ (5.50)

Ae−
s
vL+Be

s
vL = A2e

− s
v2
L (5.51)

sZc

[
Ae−

s
vL−Be

s
vL
]

+h33Q̄= sZ2

[
A2e

− s
v2
L
]

(5.52)

V̄ = h33

[
A(1− e−

s
vL) +B(1− e

s
vL)

]
+ Q̄

Co
(5.53)

V̄ =−sQ̄Z̄load (5.54)

P̄ (x,s) = sZ1
Ao

[
A1

]
(5.55)

The solution of this set of equations for V̄ as a function of P̄ is given by equa-
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tion 5.56, the TVOPI of a single element transducer when an electrical load is present.

C1(s) = 2AoCohZ1s(e
Ls
v −1)((Z2 +Zc)e

Ls
v + (Z2−Zc))

C2(s) = s[(Z1 +Zc)(Z2 +Zc)e
2Ls
v + (Z1−Zc)(Zc−Z2)]

C3(s) = h2[(Z1 +Z2−2Zc) + 4Zce
Ls
v − (Z1 +Z2−2Z− c)e

2Ls
v ]

C4(s) = s2Z1[(Z1−Zc)(Zc−Z2) + (Z1 +Zc)(Z2 +Zc)e
2Ls
v ]

V̄ =
[

C1(s)
C2(s) +Co(C3(s) +C4(s))

]
P̄ (5.56)

5.2.2. Transient Voltage Response for a Given Input Voltage
The transient voltage response of a transducer resulting from a given input voltage is
presented in this section. The schematic representation of the setup used to determine
the voltage response is given in figure 5.3.

Figure 5.3: Electrical Setup Used to find Transient Voltage Response

In figure 5.3, the input voltage waveform is defined by Vg. Any loading between the
voltage generator and transducer is taken into account by the impedance Z. Notice
that any electrical structure can be broken down into this form using Thevenin’s
Theorem. The input impedance of the transducer is represented by Zin. The voltage
response is the expression for V as a function of Vg.

The derivation of the voltage response of a single element transducer has already
been conducted by Richards [31]. Here, the theory is expanded to model the voltage
response of a multi-layer transducer operating in thickness mode.

In order to obtain the voltage response, an expression for Z̄in is required. Note that
Z̄in is the transient input impedance of the transducer in the Laplace domain. The
transient input impedances of piezoelectric and non-piezoelectric elements are used
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to construct the expression for Z̄in for a multi-layer acoustic transducer operating in
thickness mode.

Transient Impedance of Non-Piezoelectric Element

To determine the transient impedance of a non-piezoelectric element, note that the
impedance is equal to the ratio of force to velocity. Therefore, the boundary conditions
of F̄ and ū given by equations 5.14 and 5.12, can be used to determine a general
expression for the impedance of a non-piezoelectric element, given by equation 5.57.

Z̄(s,x) = F̄ (x,s)
ū(x,s) = Zo

[
Ae−

sx
v −Be sxv

Ae−
sx
v +Be

sx
v

]
(5.57)

The parameters A and B are found using the boundary conditions of the non-
piezoelectric element. The thickness of the element is L and the load on the element
is given by Z̄L(s). The input transient impedance of the piezoelectric Z̄in(s), is
determined at x = 0 such that Z̄in(s) = Z̄(s,0). Therefore the equations used to
determine the parameters A and B used to find Z̄in(s) are given by.

Z̄in(s) = Z̄(s,0) = Zo

[
A−B
A+B

]
(5.58)

Z̄L(s) = Z̄(s,L) = Zo

[
Ae−

sL
v −Be sLv

Ae−
sL
v +Be

sL
v

]
(5.59)

After solving for A and B, the expression for Z̄in(s) is given by equation 5.60.

Z̄in = Zo

[
ZL+Zotanh(Lsv )
Zo+ZLtanh(Lsv )

]
(5.60)

If multiple non-piezoelectric elements are cascaded in series, equation 5.60 can be
used recursively to find the input impedance of the layered structure. For example,
consider the two layer structure given in figure 5.4.

Figure 5.4: Input Impedance of Cascaded Non-Piezoelectric Elements
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The input impedance of the structure in figure 5.4 is given by the following formula.

Z̄1 = Zo,2

[ZL+Zo,2tanh(L2s
v2

)
Zo,2 +ZLtanh(L2s

v2
)

]

Z̄in = Zo,1

[Z1 +Zo,1tanh(L1s
v1

)
Zo,1 +Z1tanh(L1s

v1
)

]
(5.61)

Transient Impedance of Piezoelectric Element

The transient input impedance of a piezoelectric element is determined by using the
equations of force and particle velocity together with the boundary conditions of the
element. Figure 5.5 illustrates the direction of the force and particle velocity on the
boundaries of the piezoelectric element.

Figure 5.5: Transient Input Impedance of Piezoelectric Element

The expressions for ūB,F̄B,ūL,F̄L can be determined using equations 5.30 and
5.28 and imposing the associated boundary conditions. The set of equations obtained
from the boundary conditions together with the expression for the voltage, given by
equation 5.27, are listed as follows.
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ūB(s) = s
[
A+B

]
(5.62)

F̄B(s) = sZc

[
A−B

]
+h33Q̄ (5.63)

ūL(s) = s
[
Ae−

s
vL+Be

s
vL
]

(5.64)

F̄L(s) = sZc

[
Ae−

s
vL−Be

s
vL
]

+h33Q̄ (5.65)

V̄ = h33

[
A(1− e−

sL
v ) +B(1− e

sL
v )
]

+ Q̄

Co
(5.66)

It is convenient to use the current Ī, instead of the charge Q̄, in the above equa-
tions. This is done by using the following formulas and making the required substi-
tutions.

I = ∂Q

∂t
= Ao

∂D

∂t
(5.67)

D = Q

Ao
(5.68)

Converting these equations into the Laplace Domain and solving for Ī, the follow-
ing expression for the current Ī is obtained.

Ī = sQ̄ (5.69)

Then, using equation 5.69, together with the boundary conditions equations of
the piezoelectric element, it is possible to solve for F̄L, F̄B, and V̄ as functions of ūL,
ūB, and Ī. The results are summarized in matrix form given in 5.70.


F̄L

F̄B

V̄

=


Zccoth(sLv ) Zccsch(sLv ) h33

s

Zccsch(sLv ) Zccoth(sLv ) h33
s

h33
s

h33
s

1
sCo



ūL

ūB

Ī

 (5.70)

The transient input impedance of the piezoelectric element Z̄in, is determined by
using the equations presented in 5.70 together with the following relations.
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Z̄L = F̄L
ūL

(5.71)

Z̄B = F̄B
ūB

(5.72)

Z̄in = V̄

Ī
(5.73)

Z̄L is the transient load impedance, and Z̄B is the transient backing impedance
of the piezoelectric element. The solution for Z̄in is given by equation 5.76.

C1(s) = Zc(2Coh2 + s(ZB +ZL)) (5.74)

C2(s) = (Coh2(ZBZL) + s(Z2
c +ZBZL)) (5.75)

Z̄in(s) =
2Coh2Zc−C1(s)cosh(Lsv ) +C2(s)sinh(Lsv )

Cos2(−Zc(ZB +ZL)cosh(Lsv ) + (Z2
c +ZBZL)sinh(Lsv ))

(5.76)

Voltage Response to Given Input Voltage Waveform

To determine the transient input impedance of the entire transducer Z̄in(s), notice
that equations for the non-piezoelectric elements can be directly substituted into
equation 5.76 for the input impedance of a piezoelectric element in order to determine
Z̄in(s).

Using the expression for Z̄in(s) of the transducer, the voltage response is given by
equation 5.77.

V̄ =
[

Z̄in

Z̄+ Z̄in

]
V̄g (5.77)

Note that the parameters in equation 5.77 are equivalent to the parameters shown
in figure 5.3.

5.2.3. Transient Pressure Output resulting from a Voltage In-
put

The Transient Pressure Output resulting from a Voltage Input (TPOVI ) of a trans-
ducer provides the output pressure produced at the face of the transducer from a
given drive voltage. The TPOVI is an important peformance characteristic to have
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as it can be used to determine the rise time and ring time constants of a transmit-
ted pressure waveform as well as to determine the values of the transmitted pressure
waveform.

In this section the development of the TPOVI for two important cases are pre-
sented. The first is related to the transient pressure field produced if a pure voltage
waveform is applied to the transducer and the second is related to a more realistic
situation in which a function generator, with a certain impedance, provides the drive
voltage to the transducer.

TPOVI for Pure Voltage Input

The expression of the TPOVI of a single piezoelectric element transducer with no
electrical load is found by using the equations describing ξ̄, F̄ , P̄ , and V̄ together
with the boundary conditions of the element. Figure 5.6 presents the mechanical
setup used to solve for P as a function of V .

Figure 5.6: Mechanical Setup used to determine TPOVI from Pure Voltage Input

In figure 5.6, V is the drive voltage of the piezoelectric element, and P is the
output pressure field on the face of the transducer resulting from V . The expressions
for ξ̄, F̄ , P̄ , and V̄ in figure 5.6 are determined using equations 5.21, 5.25, 5.27, and
5.29. The obtained set of equations for these parameters are given below.
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ξ̄1(x,s) = A1e
− s
v1
x+B1e

s
v1
x (5.78)

F̄1(x,s) = sZ1

[
A1e

− s
v1
x−B1e

s
v1
x
]

(5.79)

ξ̄(x,s) = Ae−
s
vx+Be

s
vx (5.80)

F̄ (x,s) = sZc

[
Ae−

s
vx−Be

s
vx
]

+h33Q̄ (5.81)

ξ̄2(x,s) = A2e
− s
v2
x+B2e

s
v2
x (5.82)

F̄2(x,s) = sZ2

[
A2e

− s
v2
x−B2e

s
v2
x
]

(5.83)

V̄ =−h33

[
ξ̄(L,s)− ξ̄(0, s)

]
+ Q̄

Co
(5.84)

P̄ (x,s) = sZ1
Ao

[
A1e

− s
v1
x−B1e

s
v1
x
]

(5.85)

To find an expression that relates P̄ to V̄ , the following boundary conditions are
used. The boundary mediums of the piezoelectric element are assumed infinite in
extent allowing A1 = 0, and B2 = 0. The continuity boundary conditions of force and
displacement are used at each boundary of the element. These boundary conditions
are used to obtain the following set of equation.

ξ̄1

∣∣∣∣
x=0

= ξ̄
∣∣∣∣
x=0

=⇒ B1 = A+B (5.86)

F̄1

∣∣∣∣
x=0

= F̄
∣∣∣∣
x=0

=⇒ sZ1

[
−B1

]
= sZc

[
A−B

]
+h33Q̄ (5.87)

ξ̄2

∣∣∣∣
x=L

= ξ̄

∣∣∣∣
x=L

=⇒ A2e
− sLv2 = Ae−

sL
v +Be

sL
v (5.88)

F̄2

∣∣∣∣
x=L

= F̄
∣∣∣∣
x=L

=⇒ sZ2

[
A2e

− sLv2

]
= sZc

[
Ae−

sL
v −Be

sL
v

]
+h33Q̄ (5.89)

The voltage V̄ and pressure P̄ are given by the following equations.
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V̄ = h33

[
A(1− e−

sL
v +B(1− e

sL
v2 )
]

+h33Q̄ (5.90)

P̄ = sZ1
Ao

[
−B1

]
(5.91)

To solve for P̄ as a function of V̄ the above set of equations are used. The solution
for the output pressure P̄ , is given by equation 5.92. This is the TPOVI when no
electrical load is present.

C1(s) = Z1Cohs(1− e
Ls
v )((Z2−Zc) + e

Ls
v (Z2 +Zc)

C2(s) = s[(Z1−Zc)(Z2−Zc)− (Z1 +Zc)(Z2 +Zc)e
2Ls
v ]

C3(s) = (2Zc− (Z1 +Z2))−4Zce
Ls
v + (Z1 +Z2 + 2Zc)e

2Ls
v

P̄ =
[

C1(s)
Ao[C2(s) +Coh2C3(s)]

]
V̄ (5.92)

TPOVI from a General Function Generator

The TPOVI of a single piezoelectric element when an electrical load is present is
developed in this section. Figure 5.7 illustrates the mechanical setup used to find the
TPOVI for this case.

Figure 5.7: Single Element TPOVI with Electrical Load
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In figure 5.7, notice that the only difference between this mechanical setup, and
the one presented in figure 5.6, is the introduction of the impedance Z̄. To account
for Z̄, the following boundary condition is used.

V̄ =
[

Z̄in

Z̄+ Z̄in

]
V̄g (5.93)

The parameter Z̄in, is the transient input impedance of the piezoelectric element
given by equation 5.76. The other boundary conditions used to find the TPOVI for
a pure input voltage are the same as for the loaded case. The output pressure P̄ , as
a function of V̄g, is given by equation 5.94.

C1(s) = Z1Cohs(1− e
Ls
v )((Z2−Zc) + e

Ls
v (Z2 +Zc)

C2(s) = s[(Z1−Zc)(Z2−Zc)− (Z1 +Zc)(Z2 +Zc)e
2Ls
v ]

C3(s) = (2Zc− (Z1 +Z2))−4Zce
Ls
v + (Z1 +Z2 + 2Zc)e

2Ls
v

P̄ =
[

C1(s)
Ao[C2(s) +Coh2C3(s)]

]
V̄

=
[

C1(s)
Ao[C2(s) +Coh2C3(s)]

][
Z̄in

Z̄+ Z̄in

]
V̄g (5.94)

Equation 5.94 provides the Laplace domain solution for the TPOVI for a loaded
piezoelectric element.

5.3. Drive Voltage Design to output a Specific Pres-
sure Waveform

The theoretical development of a drive voltage design method (DVDM) is presented.
The DVDM is used to pre-shape the drive voltage in order to obtain a specified
pressure waveform from a multi-layer acoustic transducer operating in thickness mode.
This is the first time a distributed model of the transducer has been used in order to
determine the drive voltage necessary to output a specific pressure waveform.

A significant amount of work has focused on methods to drive a transducer to
output a desired pressure waveform, but most research has concentrated on the trans-
ducer being modeled using a 2nd-order lumped circuit model, which is only applicable
at the resonance frequency of the transducer and does not account for the effects
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caused by a multi-layered structure. Other methods have required the experimental
measurement of the transfer function of the transducer in order to determine the drive
voltage necessary to produce a desired pressure output. The issue with measurement
of the transfer function is that not only does one require the transducer to be built,
but difficulties also arise in obtaining accurate measurements of the output pressure
waveform used to construct the transfer function.

The method developed in this section relies on the use of the distributed model of
the transducer, given by the TVOPI, as well as on the use of cutting-edge numerical
inversion routines. Only the geometric dimensions and material parameters of the
transducer, along with the desired output pressure waveform, are required. This
allows the accurate design of drive voltages to be determined for multi-layer acoustic
transducers operating in thickness mode without any experimental measurements
required

5.3.1. Drive Voltage Design from Transient Distributed Model
The DVDM is based on using Inverse Filtering and the TPOVI expression of the
transducer. The technique of Inverse Filtering is also known as Deconvolution and
Restitution.

To begin the development of the DVDM, the expression for the TPOVI is analyed
in the Laplace domain. Notice that the TPOVI = P̄ (V̄ ). Introducing the expression
POVI= P̄ /V̄ allows the POVI to be re-written as TPOVI= [POVI]∗ V̄ . Note that the
Laplace domain expression of the POVI is easily obtained from the TPOVI because
the output pressure P̄ is linearly related to the drive voltage V̄ .

Using the technique of Inverse Filtering and the POVI, it is possible to determine
the voltage V̄DDS(s) necessary to produce the desired output pressure P̄D(s) from
the transducer. Figure 5.8 presents how the process of Inverse Filtering is applied to
the POVI to determine the drive voltage, V̄DDS(s), necessary to produce P̄D(s).

Figure 5.8: Process Diagram of how the DVDM Operates

In figure 5.8, P̄D(s) is the desired pressure output of the transducer and is equal
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to V̄D(s). The DVDM block determines the drive voltage V̄DDS(s) necessary to
produce the output pressure P̄ (s) from the transducer. This block represents where
the technique of Inverse Filtering is applied to the POVI. As seen, when V̄DDS(s) is
used to drive the transducer, the output pressure produced is equal to P̄D(s).

Specifically, the Laplace domain expression of V̄DDS(s) is given by equation 5.95.

V̄DDS(s) =
[ 1
POVI(s)

]
∗ P̄D(s) (5.95)

To determine a time domain solution of the drive voltage given by equation 5.95,
the numerical inversion routines presented in appendix A are used.

In order for the DVDM method to produce a bounded drive voltage, the poles of
the expression 1/POVI must all be negative. This occurs if the real parts of the zeros
of the POVI are all negative. Note that even if this condition is not met, it is still
possible to obtain the output pressure waveform, but the time duration is limited to
the maximum amplitude capabilities of the drive voltage electronics.

5.4. Conclusion of Laplace Domain Formulation
A number of Laplace domain solutions for the transient characteristics of a transducer
are presented in the preceding sections. The transient equations for displacement
and force in a non-piezoelectric element are found in section 5.1.1 and the transient
equations for displacement, force, and voltage in a piezoelectric element are found in
section 5.1.2. These equations are used to determine the TVOPI, voltage response,
and TPOVI of a transducer, as shown in section 5.2.

The expressions developed in sections 5.1 and 5.2 provide a designer with the
ability to rapidly evaluate different transducer geometries and materials without the
need for elaborate experimental setups and sophisticated instrumentation.

In section 5.3, a novel method, DVDM, is derived that is used to pre-shape the
drive voltage in order to output a desired pressure waveform from a multi-layer acous-
tic transducer operating in thickness mode. This method requires the geometric di-
mensions and material parameters of the transducer as well as the desired pressure
waveform be known prior to the determination of the necessary drive voltage.
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6. Theoretical and Experimental
Analysis of Transient Theory

The transient theory introduced in chapter 5 is validated in this chapter using theo-
retical and experimental methods.

A method for testing the validity of the TVOPI using Snell’s Law is developed in
section 6.1 and it is shown that accurate predictions of the TVOPI for single element
and multi-element transducers operating in thickness mode can be obtained.

No simple methods exist to validate the TPOVI. Instead, the steady-state TVR
is used to make a partial validation of the TPOVI. If the transducer is being driven
with a unity magnitude sinusoidal drive voltage, then the steady-state region of the
output pressure waveform must have the same magnitude as the TVR. This allows
for the partial validation of the TPOVI, as shown in section 6.2.

A similar procedure of driving the transducer with a unity magnitude sinusoidal
pressure together with the steady-state sensitivity may be used as a validation check
of the TVOPI, as shown in section 6.2.

The state-of-the-art Drive Voltage Design method (DVDM) developed in sec-
tion 5.3, is validated in section 6.3. It is conclusively shown that the developed
method, when applied to a lumped circuit model, obtains a perfect match between
the analytic and numerically found drive voltages. Subsequently, an in depth discus-
sion is given of the results of the DVDM for a single piezoelectric element and an
XTM transducer. This analysis provides sufficient detail to validate the accuracy and
robustness of the developed routine for the purpose of outputting a general pressure
waveform from a multi-layer acoustic transducer operating in thickness mode.

Having conducted the theoretical validation of the transient theory, it is neces-
sary to determine a practical method for verifying the transient theory that does not
involve elaborate experimental setups and instrumentation. The easiest transient per-
formance characteristic to measure is the voltage response, developed in section 5.2.2.

Determination of the capability of the voltage response to be used to validate the
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transient theory is shown in section 6.4. This is done by analyzing the effect material
parameter variation has on the obtained voltage response.

Voltage response is a suitable expression for validating the transient theory. Ex-
perimental measurement of the voltage response is the topic of section 6.5, in which
the voltage response of a piezocomposite material is analyzed for a number of dif-
ferent drive voltages. The experimentally measured and theoretically determined
voltage responses are compared throughout the analysis. For the first time, it is
demonstrated that the theoretical voltage response can accurately predict the voltage
response obtained experimentally from a piezocomposite element.

6.1. Validation of TVOPI using Established The-
ory of Reflection and Transmission

A method suitable for testing the validity of the TVOPI, developed in section 5.2.1,
is presented in this section.

The method utilizes the application of a Dirac delta (δ) function pressure to the
face of the transducer, and since the acoustic speed in the material is known, it is
possible to determine the arrival of the delta pressure pulse at a boundary. Using
Snell’s law of reflection and transmission, determination of the change in voltage after
the incident delta pressure reflects or enters a boundary of the piezoelectric element
can be made. This method is explained in detail for a single layer and 2-Layer XTM
transducer to validate the TVOPI equation.

6.1.1. Validation of Single Element TVOPI
First Snell’s law of reflection, R and transmission, T relative to the boundary in fig-
ure 6.1 are determined. PR signifies the reflected pressure, PT signifies the transmitted
pressure, and PI signifies the incident pressure.

Figure 6.1: Diagram used to illustrate Snell’s Law of Reflection and Transmission
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The equations describing R and T at the boundary in figure 6.1 are given by
equations 6.1 and 6.2.

R = Z2−Z1
Z2 +Z1

(6.1)

T = 2Z2
Z2 +Z1

(6.2)

The mechanical arrangement of the piezoelectric element is presented in figure 6.2.

Figure 6.2: Incident Delta Plane Pressure Wave on a Single Element Transducer

The characteristic impedance of a single piezoelectric element is defined as Zc.
The front material has an impedance Z1, and the backing material has an impedance
Z2. The transducer is assumed to have no losses. Therefore, when the delta pressure
PDelta, is applied to the face of the transducer, the expectation is to observe a constant
voltage output while the pulse travels through the it.

When PDelta enters the transducer, an immediate jump in the output voltage oc-
curs and remains constant until the pulse reaches the backing layer of the transducer.
At this point, the voltage reverses sign and is reduced by the factor R2 according
to Snell’s law. The voltage then remains constant until it reaches the front layer
boundary of the transducer where it changes sign and is reduced by the factor R1.
Thereafter the voltage remains constant until the pulse is once again reflected at the
backing layer boundary R2. This process of internal reflection repeats itself an infinite
number of times.
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The value R1 is the reflection coefficient associated with a wave from medium
Zc about to reflect off the boundary of material Z1. The value R2 is the reflection
coefficient associated with a wave fro medium Zc about to reflect off the boundary of
material Z2. The values, R1 and R2, are given by the following equations.

R1 = Z1−Zc
Z1 +Zc

(6.3)

R2 = Z2−Zc
Z2 +Zc

(6.4)

The reflection coefficients R1 and R2 are utilized to determine the voltage output
of the transducer from the pressure input PDelta.

In order to determine the time domain expression of the voltage output using the
distributed model of the transducer, the TVOPI expression of the element, given
by equation 5.48, is utilized. Notice that the Laplace domain expression of PDelta
is equal to P̄ = 1. Therefore, using P̄ = 1 and equation 5.48, the Laplace domain
expression for the output voltage is given by equation 6.5.

V̄ = 2Aoh33(eLsv −1)((Z2 +Zc)e
Ls
v +Z2−Zc)

s(Z1 +Zc)(Z2 +Zc)e
2Ls
v + s(Z1−Zc)(Zc−Z2)

(6.5)

In order to conduct the analysis of the voltage output resulting from PDelta, the
following set of material parameters are used as they provide a good approximation
to real world values:

Ao = 1 [m2]

L= 1 [mm]

h33 = 1∗109 [V/m]

Z1 = 1∗106 [kg/s]

Z2 = 0.5∗106 [kg/s]

Zc = 2∗106 [kg/s]

v = 4000 [m/s]

These material parameters are used to find the values of R1 and R2. Additionally,
the parameter τ is introduced to represent the time it takes for the pulse to travel
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from one side of the element to the other.

R1 =−1
3 (6.6)

R2 =−3
5 (6.7)

τ = L

v
= 2.5∗10−7s (6.8)

To conduct the numerical inversion of equation 6.5, Iseger’s and the DAC Method
from appendix A are used. The voltage values obtained are given in figure 6.3.

Figure 6.3: Open-Circuit Voltage Output from Delta Pressure Input for Single Ele-
ment Transducer

Visually, the voltage output is as expected. The voltage jumps occur at integer
multiples of τ , and the voltage values after each jump are a multiple of −R1 or −R2.
A detailed comparison of the voltage values is presented in table 6.1.
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Time TVOPI for PDelta R1 and R2 Coefficients
0.5τ 666.6662999510171 666.6662999510171
1.5τ -399.9993500621985 -399.9999441506848
2.5τ 133.3333107465898 133.3333147168949
3.5τ -79.99972976984275 -79.999988830136957
4.5τ 26.66686957687763 26.666662943378984
5.5τ -15.99961901853426 -15.999997766027390
6.5τ 5.33390107405914 5.333332588675797

Table 6.1: Single Element Delta Pressure TVOPI

Table 6.1 shows that the voltage output obtained using the numerical inversion
of equation 6.5 and that obtained using the R1 and R2 coefficients are nearly equal.
Note that the voltage output at time 0.5τ from both methods in table 6.1 are set equal
because there is no way to determine the initial value without resorting to numerical
techniques.

6.1.2. 2-Layer XTM Transducer TVOPI Validation
The validation of the TVOPI for a 2-Layer transducer is conducted using the same
method as presented in section 6.1.1.

The 2-Layer XTM transducer is shown in figure 6.4.

Figure 6.4: Mechanical Setup of 2-Layer XTM Transducer

The material parameters of the 2-Layer XTM transducer are provided below.
These are typical values for materials used to construct underwater acoustic trans-
ducers. Additionally, it should be noted that mechanical, piezoelectric, and dielectric
loss terms are not included, thereby allowing the use of the validation method devel-
oped in section 6.1.1.
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Ao = 445 [mm2]

L= 5 [mm]

ρ= 7550 [kg/m3]

v = 4000 [m/s]

h33 = 2.68∗109 [V/m]

Zc = ρvAo = 13439 [kg/s]

Z1 = ρ1v1Ao = (1000)(1500)Ao = 667.5 [kg/s]

v2 = 1500 [m/s]

Z2 = ρ2v2Ao = (3000)v2Ao = 2002.5 [kg/s]

L2 = 1 [mm]

Z3 = ρ3v3Ao = (2000)(524)Ao = 466.36 [kg/s]

τ = L

v
= 1.25 [µs]

τ2 = L2
v2

= 2/3 = (8/15)∗ τ [µs]

Using these values, and the theory developed in section 5.2.1, it is possible to
predict the voltage output from a delta pressure input on the face of the transducer
using the Laplace domain expression for V̄ , given by equation 6.9.

P (s) = 1

C1(s) = (Z2 +Z3)((Z2−Zc) + (Z2 +Zc)e
Ls
v )

C2(s) = (Z3−Z2)((Z2 +Zc) + (Z2−Zc)e
Ls
v ) +C1(s)e

2Ls
v2

C3(s) = (Z2 +Z3)(Z1−Zc)(Z2−Zc)e
2(L+L2)s

v2

C4(s) = (Z2−Z3)(Z2−Zc)(Z1 +Zc)e
2Ls(v+v2)

vv2

C5(s) = (Z2−Z3)(Z1−Zc)(Z2 +Zc)e
2Ls
v2

C6(s) = (Z2 +Z3)(Z1 +Zc)(Z2 +Zc)e
2(L(v2+v)+vL2)s

vv2
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V̄ =
[ 2Aoe

2Ls
v2 (eLsv −1)h33C2(s)

s(C3(s) +C4(s)−C5(s)−C6(s))

]
P̄ (6.9)

The numerical inversion of equation 6.9, with P̄ = 1, is conducted using Iseger’s
and the DAC method from appendix A. The voltage values are given in figure 6.5.

Figure 6.5: 2-Layer XTM Transducer Open-Circuit Voltage Output from Delta Pres-
sure Input

From figure 6.5, it can be seen that the Iseger method produces large spikes at
locations of certain discontinues of V (t), whereas the DAC method does not. These
spikes are a product of the Iseger inversion method and are not present in the actual
values of V (t). Away from the discontinuities, the Iseger and DAC methods are in
excellent agreement. Using the values τ and τ2, it can be observed that the voltage
discontinuities in figure 6.5 occur at the correct locations.

Since the DAC method gives the best results for inverting equation 6.9 with P̄ = 1,
the voltage values obtained from this method are compared with the expected values
obtained using the method of reflection and transmission coefficients, similar to what
is done in section 6.1.1. To conduct the comparison, the following set of reflection
and transmission coefficients are required:
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R′1 = Z1−Zc
Z1 +Zc

=−0.905363

R2 = Z2−Zc
Z2 +Zc

=−0.740634

R′2 = Zc−Z2
Z2 +Zc

= 0.740634

T2 = 2Z2
Z2 +Zc

= 0.259366

T ′2 = 2Zc
Z2 +Zc

= 1.74063

R′3 = Z3−Z2
Z3 +Z2

=−0.622206

Table 6.2 provides a detailed comparison of the voltage values obtained from the
numerical inversion of the TVOPI to the voltage values obtained using the reflection
and transmission coefficients.

Time TVOPI for PDelta R,T Equation R,T Voltage
0.5τ 63.090242764529421 Vo 63.090242764529421
1.5τ -46.726296207779782 VoR2 -46.726778859664485
1.5τ + τ2 42.304368015266235 VoR2R′1 42.304696688722416
2τ + τ2 24.581447092376433 Vo[R2R′1 +T2R′3T

′
2] 24.582567343147030

2.5τ + τ2 -49.054598752475862 Vo[R2R′1R
′
2 +T2R′3T

′
2] -49.054426072930625

1.5τ + 3τ2 -15.286994515063656 Vo[R2R′1R
′
2 +T2R′3T

′
2R
′
1] -15.287336536657069

Table 6.2: 2-Layer XTM Transducer Delta Pressure TVOPI

As can be seen from table 6.2, a very good match was found between the values
obtained from the transmission and reflection coefficients and those obtained using
the TVOPI.

6.1.3. Conclusion of the Validation of TVOPI using Estab-
lished Theory of Reflection and Transmission

In this section the transient voltage output resulting from a Dirac delta function
pressure input obtained from the TVOPI for both single element and multi-element
transducers is discussed. A comparison is made between the voltage output resulting
from a delta function pressure input using the TVOPI to the expected voltage output
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using Snell’s law of reflection and transmission as well as the travel times of the input
pressure pulse. The voltage outputs obtained from the two methods are in very good
agreement; therefore, validation of the TVOPI for single and multi-layer acoustic
transducers operating in thickness mode has been completed.

6.2. Partial Validation of Transient Response of
Matched Transducer

The partial validation of the TPOVI of the Matched transducer presented in sec-
tion 3.2.4 is determined in this section. Unfortunately, no simple methods to validate
the entire response obtained from the TPOVI exist. It is possible, however, to utilize
the steady-state TVR of the Matched transducer from section 2.7.5 in order to con-
duct a partial validation. If the Matched transducer is driven with a finite cycle unity
magnitude sinusoidal drive voltage, then the steady-state region of the TPOVI must
have the same magnitude as the TVR. Therefore, validation within the steady-state
region of the TPOVI using the TVR is presented.

The TVOPI was already validated in section 6.1, but as a check, a comparison,
similar to that conducted previously, between the sensitivity and steady-state magni-
tude of the TVOPI is made. The result found was that if the Matched transducer is
driven by a finite cycle unity magnitude sinusoidal pressure wave, then the magnitude
of the steady-state region of the TVOPI must have the same value as the sensitivity.
The sensitivity of the Matched transducer is determined in section 2.7.4.

To begin the analysis an expression for the TPOVI is determined for the Matched
transducer in section 6.2.1. This is followed in section 6.2.2 by the partial valida-
tion, as described above, for the TPOVI. Then, having completed the analysis of
the TPOVI, a derivation of the TVOPI of the Matched transducer is made in sec-
tion 6.2.3. The comparison between the sensitivity and steady-state region of the
TPOVI is completed in section 6.2.4.

The mechanical structure of the Matched transducer is presented in figure 6.6.
The parameters {A1,B1,A,B,A2,B2,A3,B3} are explicitly shown because they are
used to derive the TPOVI and TVOPI.
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Figure 6.6: Mechanical Structure of Matched Transducer

The material parameters of the Matched transducer used in this section can be
found in section 3.2.4.

6.2.1. Derivation of the TPOVI of the Matched Transducer
An expression for the TPOVI of the Matched transducer presented in figure 6.6 is
determined using the theory developed in sections 5.1.1 and 5.1.2. The following set
of equations describe the displacements and forces in the Matched transducer.

ξ̄1(x,s) = A1e
− s
v1
x+B1e

s
v1
x (6.10)

F̄1(x,s) = sZ1
[
A1e

− s
v1
x−B1e

s
v1
x
]

(6.11)

ξ̄2(x,s) = A2e
− s
v2
x+B2e

s
v2
x (6.12)

F̄2(x,s) = sZ2
[
A2e

− s
v2
x−B2e

s
v2
x
]

(6.13)

ξ̄(x,s) = Ae−
s
vx+Be

s
vx (6.14)

F̄ (x,s) = sZc
[
Ae−

s
vx−Be

s
vx
]
+h33Q̄ (6.15)

ξ̄3(x,s) = A3e
− s
v3
x+B3e

s
v3
x (6.16)

F̄3(x,s) = sZ3
[
A3e

− s
v3
x−B3e

s
v3
x
]

(6.17)

The equation for the voltage V̄ is illustrated below.

V̄ = h33
[
Ae−

s
vLm(1− e−

s
vL) +Be

s
vLm(1− e

s
vL)

]
+ Q̄

Co
(6.18)

Boundary conditions are introduced to solve for the parameters
{A1,B1,A2,B2,A,B,A3,B3,Q}. It is assumed that the backing layer and front load
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are of infinite extent. This allows B3 = A1 = 0. The continuity boundary conditions
for force and displacement are also used. These boundary conditions provide enough
information to solve for {B1,A2,B2,A,B,A3,Q} using the following set of equations.

B1 = A2 +B2 (6.19)

sZ1[−B1] = sZ2[A2−B2] (6.20)

A2e
−Lmsv2 +B2e

Lms
v2 = Ae−

Lms
v +Be

Lms
v (6.21)

sZ2[A2e
−Lmsv2 −B2e

Lms
v2 ] = sZc[Ae−

Lms
v −Be

Lms
v ] +h33Q̄ (6.22)

Ae−
(Lm+L)s

v +Be
(Lm+L)s

v = A3e
− (Lm+L)s

v3 (6.23)

sZc[Ae−
(Lm+L)s

v +Be
(Lm+L)s

v ] = sZ3[A3e
− (Lm+L)s

v3 ] (6.24)

V̄ = h33
[
Ae−

s
vLm(1− e−

s
vL) +Be

s
vLm(1− e

s
vL)

]
+ Q̄

Co
(6.25)

P̄ = sZ1
Ao

[−B1] (6.26)

The equation for P̄ as a function of V̄ is found using the above set of equations,
and is given by equation 6.27. Note that the TPOVI= P̄ (V̄ ).

C1(s) = (Z3−Zc)− (Z3 +Zc)e
Ls
v

C2(s) = (Z1 +Z2)(Z2−Zc)(Z3−Zc)e
(Lv2+2Lm(v+v2))s

vv2

C3(s) = (Z1−Z2)(Z3−Zc)(Z2 +Zc)e
(L+2Lm)s

v

C4(s) = (Z1−Z2)(Z2−Zc)(Z3 +Zc)e
(3L+2Lm)s

v

C5(s) = (Z1 +Z2)(Z2 +Zc)(Z3 +Zc)e
(3Lv2+2Lm(v+v2))s

vv2

C6(s) = (Z1−Z2)(Z2−Z3−2Zc)e
(3L+2Lm)s

v

C7(s) = (Z1 +Z2)(Z2 +Z3−2Zc)e
(Lv2+2Lm(v+v2))s

vv2

C8(s) = 4(Z1−Z2)Zce
2(L+Lm)s

v −4(Z1 +Z2)Zce
2(Lm(v+v2)+Lv2)s

vv2

C9(s) = (Z1−Z2)(Z2−Z3 + 2Zc)e
(L+2Lm)s

v
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C10(s) = (Z1 +Z2)(Z2 +Z3 + 2Zc)e
(3Lv2+2Lm(v+v2))s

vv2

C11(s) = C2(s) +C3(s)−C4(s)−C5(s)

C12(s) = C6(s)−C7(s) +C8(s)−C9(s) +C10(s)

P̄ =
[2Coh33sZ1Z2(1− eLsv )e

(Lv2+Lm(2v2+v))s
vv2

Ao(sC11(s) +Coh2
33C12(s))

]
V̄ (6.27)

To determine the time domain pressure output for the Matched transducer, the
numerical inverse Laplace routines presented in appendix A are applied to equa-
tion 6.27.

6.2.2. Partial Validation of the TPOVI of the Matched Trans-
ducer

In order to perform the partial validation of the TPOVI of the Matched transducer
given by equation 6.27, it is necessary to determine where the steady-state region of
the TPOVI is located. To do this, a number of pressure output waveforms obtained
from the TPOVI are examined when the Matched transducer is driven with a 1V 40
cycle sinusoidal drive voltage at a frequency f .

Figure 6.7 shows the result obtained by numerically inverting the TPOVI using
Iseger’s method when the drive voltage is at the resonance frequency of the transducer,
which occurs at f = 241.5kHz.

Figure 6.7: TPOVI for 1V 40 cycles Sinusoidal Driving Voltage at 241.5kHz
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The rise time of the waveform in figure 6.7 shows an exponential like increase in
magnitude until the steady-state portion of the signal is reached. After the 40 cycle
drive voltage is complete, an exponential like decay in the pressure output of the
transducer is obtained. This type of response is characteristic when the transducer is
being driven at its resonance frequency.

Now the determination of the pressure output when the Matched transducer is
driven at a frequency away from its resonance frequency is determined. The resultant
TPOVI for the drive voltage at a frequency of 200kHz and 500kHz is presented in
figure 6.8.

(a) f = 200kHz

(b) f = 500kHz

Figure 6.8: TPOVI for 1V 40 cycles Sinusoidal Driving Voltage
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In figure 6.8, the steady-state sections of the transient pressure output have a lower
magnitude than the steady-state portion of the pressure output when the Matched
transducer is driven at its resonance frequency. It may also be noted from figure 6.8
that the rise time and ring time sections of the pressure output no longer follow an
exponential-like increase or decrease in magnitude. This characteristic occurs because
of the complex internal acoustic wave interactions and reflections occuring within the
transducer.

Using figures 6.7 and 6.8, the transducer is assumed to have reached a steady-
state value after completion of the first 30 cycles of the drive voltage. Therefore, in
order to determine the steady-state magnitude, the maximum value of the transient
pressure waveform must be taken after the first 30 cycles of the drive voltage have
been completed.

The comparison of the steady-state region of the TPOVI to the TVR of the
transducer is presented in figure 6.9

Figure 6.9: TPOVI at Steady-State and TVR Comparison for Matched Transducer

As figure 6.9 shows, excellent agreement is obtained between the steady-state
section of the TPOVI and the TVR when the input sinusoid is a unity magnitude
sinusoidal drive voltage. Therefore, it is illustrated that an accurate estimate occurs
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between the established TVR theory, and the steady-state magnitude of the TVOPI.

6.2.3. Derivation of the TVOPI of the Matched Transducer
The TVOPI expression of the Matched transducer is derived in this section. As be-
fore, the equations describing the displacement, force, and voltage at the terminals
of the transducer are used. These are given by equations 6.10 to 6.18. The expres-
sion for the TVOPI is found with these equations using the appropriate boundary
conditions.

First, since there is no electrical load connected to the Matched transducer, this
allows the setting of Q= 0. In addition, since the backing layer is composed of SADM,
an acoustic absorber, any acoustic waves entering the backing layer are absorbed.
Therefore B3 = 0. Additional boundary conditions are determined from the continuity
condition of displacement and force on the boundaries of the elements. Dependant
on these boundary conditions, {A1,B1,A2,B2,A,B,A3} may now be solved using the
following equations.

A1 +B1 = A2 +B2 (6.28)

sZ1[A1−B1] = sZ2[A2−B2] (6.29)

A2e
− s
v2
Lm +B2e

s
v2
Lm = Ae−

s
vLm +Be

s
vLm (6.30)

sZ2[A2e
− s
v2
Lm−B2e

s
v2
Lm ] = sZc[Ae−

s
vLm−Be

s
vLm ] (6.31)

Ae−
s
v (Lm+L) +Be

s
v (Lm+L) = A3e

− s
v3

(Lm+L) (6.32)

sZc[Ae−
s
v (Lm+L)−Be

s
v (Lm+L)] = sZ3[A3e

− s
v3

(Lm+L)] (6.33)

V̄ = h33
[
Ae−

s
vLm(1− e−

s
vL) +Be

s
vLm(1− e

s
vL)

]
(6.34)

P̄ = sZ1
Ao

[A1] (6.35)

Solving this set of linear equations for V̄ as a function of P̄ , the following expression
for the TVOPI is obtained and given by equation 6.36.
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C1(s) = (Z3−Zc) + (Z3 +Zc)e
Ls
v

C2(s) = (Z1 +Z2)(Z2−Zc)(Z3−Zc)e
2Lm(v+v2)s

vv2

C3(s) = (Z1−Z2)(Z3−Zc)(Z2 +Zc)e
2Lms
v

C4(s) = (Z1−Z2)(Z2−Zc)(Z3 +Zc)e
2(L+Lm)s

v

C5(s) = (Z1 +Z2)(Z2 +Zc)(Z3 +Zc)e
2(Lm(v+v2)+Lv2)s

vv2

V̄ =
[4Aoh33Z2e

Lm(2v2+v)s
vv2 (1− eLsv )C1(s)

s(C2(s) +C3(s)−C4(s)−C5(s))

]
P̄ (6.36)

Equation 6.36 is used to find the voltage output resulting from a pressure input
for the Matched transducer.

6.2.4. TVOPI Validity Test for the Matched Transducer
In this section the TVOPI of the Matched transducer is tested. If the Matched
transducer is driven with a finite cycle unity magnitude sinusoidal pressure, then
the magnitude of the steady-state portion of the voltage output must be equal to
the sensitivity of the transducer. The TVOPI has already validated in section 6.1.
Therefore, a comparison of the steady-state portion of the TVOPI and the sensitivity
of the transducer can be used to test the validity of TVOPI of the Matched transducer,
not establish it.

The drive pressure used to conduct this study is a 40 cycle unity magnitude
sinusoid at a frequency f . Iseger’s numerical inversion routine from appendix A is
used to obtain the time domain solution of the TVOPI.

Initially, a number of transient voltage waveforms are produced when the trans-
ducer is driven at various frequencies f . The first waveform is presented in figure 6.10.
The frequency of the drive pressure producing this voltage waveform is at the anti-
resonance frequency of the transducer, which occurs at f = 270.5kHz.
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Figure 6.10: TVOPI for 1Pa 40 cycles Sinusoidal Driving Pressure at 270.5kHz

Figure 6.10 shows an exponential-like increase in magnitude for the rise time por-
tion of the voltage output until the steady-state value is reached. After the drive
pressure has completed, the ring time follows an exponential-like decay. This charac-
teristic is common when the transducer is receiving a sinusoidal pressure excitation
at its anti-resonance frequency.

Figures 6.11 and 6.12 show the voltage outputs obtained when the drive pressure
is applied away from the anti-resonance frequency of the transducer.

Figure 6.11: TVOPI for 1Pa 40 cycles Sinusoidal Driving Pressure at 200kHz
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Figure 6.12: TVOPI for 1Pa 40 cycles Sinusoidal Driving Pressure at 500kHz

In figures 6.11 and 6.12, notice that the magnitude of the steady-state sections
of the output voltages have a smaller magnitude than the magnitude of the steady-
state sections of voltage obtained when the transducer is driven at its anti-resonance
frequency, seen in figure 6.10. Additionally, the exponential-like behavior in the
rise time and ring time sections of the transient voltage are no longer present. The
transient characteristics seen in the rise time and ring time are a result of the complex
acoustic wave interactions that take place inside the Matched transducer.

Using figures 6.10, 6.11 and 6.12, it is determined that after 30 cycles of the drive
pressure have completed the steady-state value of the output voltage is reached. The
maximum magnitude of the voltage waveform produced by the last 10 cycles of the
drive pressure are used to determine the steady-state value of the TVOPI.

The sensitivity equation from section 2.7.4 is used to test the validity of the steady-
state values obtained from the TVOPI, and the comparison between the sensitivty
and steady-state values obtained from the TVOPI are presented in figure 6.13.
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Figure 6.13: Steady-State TVOPI and the Receive Sensitivity for the Matched Trans-
ducer

Figure 6.13 shows that excellent agreement is obtained between the values of the
TVOPI measured at steady-state resulting from a 1Pa sinusoidal pressure input as
compared with the sensitivity of the transducer. Therefore, the validation of the
TPOVI done in section 6.1 is correct.

6.3. Theoretical Validation of Transient Waveform
Design

Given the novelty of the Drive Voltage Design method (DVDM), developed in sec-
tion 5.3, creative methods are required to validate the DVDM.

The simplest way to validate the DVDM is to use the results obtained from Pi-
quette. Piquette developed an analytic expression for the drive voltage necessary to
produce a pure finite cycle sinusoidal pressure output from a spherical transducer
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using a lumped circuit model of the transducer [10, 11]. The developed drive voltage
is known as the transient suppression waveform. The study of this thesis focuses on
the thickness mode transducer, but it is possible to utilize the results of Piquette to
validate our numerical inversion methods and the Inverse Filtering technique. This
analysis is completed in section 6.3.1.

Subsequently, an analytic expression for the drive voltage necessary to produce a
pure finite cycle sinusoidal pressure waveform from a thickness mode transducer is
modeled using the BVD model. A comparison is made of the results obtained using
the DVDM to the analytic expression developed in order to show the robustness of
the DVDM. This analysis is presented in section 6.3.2.

Having established the DVDM for 2nd-order lumped circuit models of a transducer,
the DVDM’s performance is determined using the state-of-the-art distributed model,
TVOPI, to model a transducer.

An in depth analysis of the drive signals obtained from the DVDM for a single
element and an XTM transducer to output a finite duration square pulse of unity mag-
nitude is completed in section 6.3.3.The analysis shows the flexibility of the DVDM
to accurately output any desired pressure waveform from a multi-layered thickness
mode acoustic transducer.

6.3.1. Lumped Circuit Transient Suppression Waveform De-
sign of Spherical Transducer

The analytic drive voltage equation obtained from Piquette is utilized here to output
a finite cycle pressure waveform from a spherical transducer in order to validate the
numerical inversion routines and the theory of Inverse Filtering [10, 11]. This analysis
is used to establish the DVDM when the transducer is modeled using a lumped circuit
model.

The analytic drive voltage found by Piquette is based upon modeling the spherical
transducer using a 2nd-order lumped circuit model presented in figure 6.14.
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Figure 6.14: Lumped Circuit Model of Spherical Transducer

The voltage Vw(t) is equivalent to the pressure waveform output of the spherical
transducer. Therefore, Vw(t) must be defined as a finite cycle sinusoidal waveform.
Then, using circuit theory, the waveform Vw(t) is used to determine, working back-
wards, the voltage input V (t) needed to produce this waveform. The derivation of
V (t) has been completed in [10].

In order to conduct the comparison, the analysis is restricted to a 4 cycle sinusoidal
waveform with frequency ω = 2πf . The analytic equations for the output pressure,
and input voltage producing this output pressure, are presented in equations 6.37 and
6.40.

Vw(t) =


0 if t < 0
Vo
Rw
sin(ωt) if 0≤ t≤ 4

f

0 if t > 4
f

(6.37)

I(t) = Vo
Lwω

[1− cos(ω)t)] + Vo
Rw

sin(ωt) (6.38)

q(t) = Vot

Lwω
− Vo
Lω2 sin(ωt) + Vo

Rwω
[1− cos(ωt)] (6.39)

V (t) =


0 if t < 0

LdIdt + q
C + IR+Vosin(ωt) if 0≤ t≤ 4

f

q(4/f)
C if t > 4

f

(6.40)

Then, in order to validate the numerical inversion routines, a Laplace domain ex-
pression is required which relates V (t) to Vw(t). Using the circuit model in figure 6.14,
the necessary Laplace domain expressions are given by the following equations.
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ZLCR =R+ sL+ 1
sC

(6.41)

V̄w(s) =
[
Voω

ω2 + s2

][
1− e−(4/f)s

]
(6.42)

V̄ (s) =
[

sLwRw
RwZLCR+ sLwZLCR+ sLwRw

]
V̄w(s) (6.43)

The values listed below for {L,C,R,Rw,Lw,Vo} are used to conduct the compar-
ison between the results obtained using the numerical inversion of equation 6.43 and
the analytic values obtained by Piquette. These are the same values used by Piquette
to model the spherical transducer [11]:

L= 5.79 [mH]

C = 30 [µF ]

R = 5.04 [Ω]

Rw = 114 [Ω]

Lw = 5.55 [mH]

Vo = 1 [V ]

Before the comparison of the analytic expression of the drive voltage given by
equation 6.40 to what is obtained after doing the Laplace domain inversion of 6.43 is
conducted, the output pressure obtained resulting from a sinusoidal drive voltage is
shown. The output pressure waveform produced from a pure sinusoidal voltage input
of 4 cycles at a frequency of 12kHz is shown in figure 6.15.
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(a) Drive Voltage (b) Pressure Output of Spherical Trans-
ducer

Figure 6.15: Drive Signal and Pressure Output of Spherical Transducer

Figure 6.15 shows the output signal obtained if the transducer was simply driven
without doing any pre-shaping of the drive voltage. The pressure waveform contains
no steady-state value because the 4 cycle drive voltage is too short to allow the
steady-state value of the output pressure waveform to be reached.

A comparison is made of what is obtained from the analytic transient suppression
waveform from equation 6.40 to the transient suppression waveform obtained using
Iseger’s and the DAC numerical inversion of equation 6.43. The comparison is given
in figure 6.16.

(a) Drive Signal

Figure 6.16: Transient Supression Waveform for f = 12kHz
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As figure 6.16 shows, excellent agreement is obtained between the analytic values
found by Piquette, and the results obtained from the numerical inversion of equation
6.43. This establishes that the numerical inversion routines are accurate and the
DVDM is valid for spherical transducers modeled using a lumped circuit model.

6.3.2. Lumped Circuit Transient Suppression Waveform De-
sign of Thickness Mode Transducer

In this section the same analysis as in section 6.3.1 is performed, but the BVD model
of a thickness mode transducer is used instead of a lumped circuit model of a spherical
transducer.

The analytic equation for the drive voltage necessary to produce a finite cycle
sinusoidal pressure output is derived using the same method as that used by Piquette,
which is to define the desired output pressure, and then use circuit theory to obtain
an expression for the input voltage necessary to produce the output pressure.

The lumped circuit representation of a thickness mode transducer is presented in
figure 6.17.

Figure 6.17: Lumped Circuit Model of Thickness Mode Transducer

The pressure output of the transducer is equivalent to the voltage Vw(t) across the
resistor Rw. Therefore, Vw(t) is defined as a 4 cycle sinusoidal voltage with frequency
f . Circuit theory is used to obtain the equation for V (t) necessary to produce Vw(t).
V (t) is given by equation 6.44.
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V (t) =


0 if t < 0

(RVoRw
+Vo)sin(ωt) + (MVoω

Rw
+ MwVoω

Rw
)cos(ωt) + Vo

CRwω
[1− cos(ωt)] if 0≤ t≤ 4

f

0 if t > 4
f

(6.44)
The Laplace domain equation for V (t), found from the circuit shown in figure 6.17,

is given by equation 6.45.

V̄w(s) =
[
Voω

ω2 + s2

][
1− e−(4/f)s

]
V̄ (s) =

[
Rw

R+ sM + sMw +Rw + 1/sC

]
V̄w(s) (6.45)

To conduct the analysis, the following values are used for the circuit elements in
figure 6.17:

M = 2.94 [H]

C = 112.8 [pF ]

R = 1611 [Ω]

Rw = 2389 [Ω]

Mw = 0.12 [H]

Vo = 1 [V ]

The comparison of the drive voltage obtained from equation 6.44 to the drive
voltage obtained by numerically inverting equation 6.45 to produce a 4 cycle 8.5kHz
output pressure waveform, is shown in figure 6.18. Note that 8.5kHz is the resonance
frequency of the transducer.
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Figure 6.18: Lumped Circuit Thickness Mode Drive Voltage for f = 8.5kHz

Figure 6.18 shows that excellent agreement is obtained between the values found
from the analytic expression, and the values obtained by numerically inverting equa-
tion 6.45.

The drive voltage obtained from the analytic and numerical routines to output a
4 cycle pressure waveform at a frequency of 5kHz and 20kHz is shown in figure 6.19.

(a) Drive Voltage for f = 5kHz (b) Drive Voltage for f = 20kHz

Figure 6.19: Lumped Circuit Transient Suppression Waveforms for Thickness Mode
Transducer

As seen from figure 6.19, an excellent match between the analytic expression and
the values found from the numerical routines occurs. Hence it is concluded from this
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analysis that the Inverse Filtering works and that the numerical inversion routines
are accurate. Furthermore, it is concluded that the DVDM is valid for thickness mode
transducers modeled using a BVD lumped circuit model.

6.3.3. Distributed Model Transient Waveform Design
The DVDM developed in section 5.3 is used to produce a pure finite duration square
output pressure from a single element transducer and an XTM transducer. The
DVDM requires the TPOVI expression of the transducer, as well as the desired
pressure output in the Laplace domain, defined by P̄ .

The single element transducer is analyzed first using equation 5.92 to obtain the
TPOVI of the transducer. The desired finite duration square output pressure is
defined, in the Laplace domain, by equation 6.46.

P̄ = 1− e−τTs
s

(6.46)

The material parameters of the single element transducer are given by the follow-
ing values:

Ao = 445.1 [mm2]

L= 7.65 [mm]

h33 = 2.68 [GV/m]

Co = 365.3 [pF ]

vpzt = 4003.3 [m/s]

Zpzt = 13454.9 [kg/s]

Z1,Z2 = (1000)(1500)Ao [kg/s]

τ = L

vpzt
= 1.9109 [µs]

Z1,Z2 represent the backing and load impedance of the piezoelectric element.
This list of material parameters is the same as for the piezoelectric element used in
the XTM transducer from section 3.2.1, except that the mechanical, dielectric, and
piezoelectric loss terms have been deliberately omitted. These loss terms are neglected
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to simplify the analysis of the obtained drive voltages.
In order to conduct the analysis, two drive voltages are found for the piezoelectric

element. The first is the drive voltage necessary to produce a square output pressure
of unity magnitude for a duration of T = 3.5τ . The second is the drive voltage
necessary to produce a square output pressure of duration T = 4τ . The necessary drive
waveforms to produce the associated pressure outputs are presented in figures 6.20
and 6.21.

(a) Output Pressure T = 3.5τ [s] (b) Drive Voltage for T=3.5τ [s]

Figure 6.20: Distributed Model Transient Waveform Design T = 3.5τ

(a) Output Pressure T = 4.0τ [s] (b) Drive Voltage for T=4.0τ [s]

Figure 6.21: Distributed Model Transient Waveform Design T = 4τ

Week’s, Iseger’s, and the DAC method are used to obtain the time domain solu-
tion of the drive voltage to determine if the numerical inversion routines are being
performed correctly.
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Referring to figures 6.20 and 6.21, it can be seen that Week’s method contains
many transients in the neighborhood t = 0 and, subsequently, wherever any discon-
tinuities in the drive voltage occur. This is a common characteristic of the Week’s
method. Moreover, Iseger’s method is similarly not accurate at points of disconti-
nuity. This inaccuracy is a well known characteristic of this inversion routine. The
DAC method is the only method that is accurate at determining the values at points
of discontinues, as seen from figures 6.20 and 6.21. It should be noted, however, that
the three inversion routines are in good agreement in regions away from the points
of discontinuities. Therefore, it can be conclude that the numerical inversions have
been calculated correctly, with the DAC method producing accurate results for the
entire drive voltage waveform.

Referring to figure 6.20, an immediate jump in the drive voltage waveform occurs
at time t = 0. This indicates the unity pressure output from the transducer. The
jump at t = τ occurs due to the drive voltage acoustic wave interactions. The drive
voltage must cancel the original produced acoustic wave produced from the back layer
of the piezoelectric element.

More specifically, whenever a drive pulse is sent to the transducer, both the front
layer and back layer are displaced in opposite directions. This causes each to produce
an acoustic pulse of opposite sign. The acoustic pulse produced from the back layer
reaches the front layer at time τ , the acoustic travel time in the element. Therefore,
the drive voltage must cancel this acoustic pulse while maintaining the pressure output
that is defined by P̄ .

The repeating square waveform seen in the drive voltage after 3.5τ is necessary to
cancel the acoustic waves that occur in the piezoelectric layer. When the front layer
is used to cancel an incoming acoustic pulse, the back layer is producing an acoustic
pulse which must be canceled by the front layer at a time τ later. This illustrates the
complex nature of the wave interactions occurring within the piezoelectric element.

From figure 6.21, notice that the drive voltage is held constant after a period of
time 4τ . This occurs because there are no acoustic waves traveling in the piezoelectric
element at that time. The transducer therefore is held in a fixed position whereby no
more acoustic waves are produced.

Next the drive voltage necessary to produce a finite cycle unity magnitude pres-
sure at a frequency f from the XTM transducer presented in section 3.2.1 with no
mechanical, dielectric, and piezoelectric loss terms.
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The TPOVI of the XTM transducer is given by equation 6.9 and the Laplace
domain equation for the desired pressure is given by equation 6.46. The mechan-
ical properties and dimensions for the XTM transducer are given by the following
parameters:

Ao = 445.1 [mm2]

L= 7.65 [mm]

h33 = 2.68 [GV/m]

Co = 365.3 [pF ]

v = 4003.3 [m/s]

Zc = 13454.9 [kg/s]

τ = 1.9109 [µs]

Z1 = 667.74 [kg/s]

Z2 = 667.74 [kg/s]

L2 = 0.9562 [mm]

v2 = 4003.3 [m/s]

Z3 = 466.52 [kg/s]

Enough information is now presented to use Week’s, Iseger’s, and the DAC method
to numerically invert equation 6.47 which describes the drive voltage, V̄ (s), necessary
to produce the finite duration square pulse from the XTM transducer.

V̄ (s) =
[ 1
POVI

]
∗ P̄ (6.47)

Figure 6.22 shows the drive voltage necessary to produce a square pulse of duration
T = 3.5τ , shown in figure 6.20(a), from the XTM transducer.
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Figure 6.22: Distributed Model Transient Waveform Design for XTM Pressure Out-
put of T = 3.5τ

The drive voltage in figure 6.22 is similar to the drive voltage obtained for the
single element case in figure 6.20(b), but there are noticeable differences. The first
is that transients are now introduced from the second layer of the XTM transducer
on the drive voltage. The drive voltage is more sophisticated than the one used for
the single element transducer because of the complex acoustic wave interactions that
take place in the multi-layer structure of the XTM transducer.

Thus, the state-of-the-art method of designing a drive voltage that can produce
any desired output pressure waveform has been verified. The robustness of the method
is shown by using the DVDM on both a single element and multi-element thickness
mode acoustic transducer. The only inputs necessary to find the drive voltage are
the desired pressure, the material parameters of the transducer, and its geometric
dimensions.

Using the DVDM, transducer designs can be optimized to simplify the drive volt-
age necessary to output a specific pressure waveform. This method can also enhance
the use of existing transducers by allowing outputs of sophisticated pressure wave-
forms, and since only the drive voltage needs to be modified, a single transducer can
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be used for a number of different applications requiring complex pressure waveforms.

6.4. Variation in Voltage Response resulting from
Material Parameter Variations

The easiest transient performance characteristic to measure experimentally is the
voltage response, presented in section 5.2.2. Consequently, the voltage response is the
preferred performance characteristic to use for the validation of the transient theory;
however, before the voltage response can be used to validate the theory, it must be
determined if the voltage response is effected by material parameter variations.

In this section the potential effect material parameter variations have on the volt-
age response of a single piezoelectric element is analyzed.

First the voltage response for a piezoelectric element lacking a backing or load ma-
terial is developed. This model is used to show the effect any variations in the stiffness
coefficient, mechanical loss, clamped permittivity, density, and drive frequency may
have on the voltage response obtained.

6.4.1. Voltage Response of Single Piezoelectric Element
To find the voltage response of a single piezoelectric element, the Laplace domain
equation of the electrical impedance of the element Z̄in, given by equation 5.76, is
required. Note that the piezoelectric element is being tested in air, in which case
ZB,ZL = 0 in the impedance equation.

The piezoelectric element is connected to a function generator with an internal
impedance of R = 50Ω and the function generator is used to produce a pure N cycle
unity magnitude sinusoidal pulse, V̄g(s).

Equation 5.77 is used to obtain the voltage response of the piezoelectric element
when driven with the function generator.

Z̄in(s) = 1
sCo
−

2h2
33tanh(Ls2v )
s2Zc

(6.48)

ω = 2πf (6.49)

V̄g(s) = ω

s2 +ω2

[
1− e−

N
f s
]

(6.50)

V̄ (s) =
[

Z̄in

R+ Z̄in

]
V̄g (6.51)
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The parameter N indicates the number of cycles the drive voltage has, and f

indicates the frequency of the drive voltage.
To find the time domain solution of the voltage response, V̄ (s), the numerical

inversion routines presented in appendix A are used.
The original material parameters of the piezoelectric element are given by:

Ao = 111.95 [mm2]

L= 5.12 [mm]

ρ= 7240 [kg/m3]

εS33 = (400.54 + i0.0)∗10−8 [C/mV ]

cD33 = (94.3 + i0.0)∗109 [Pa]

h33 = (3.2 + i0.0)∗109 [V/m]

The resonance frequency of the transducer occurs at 287kHz. Both the Iseger and
DAC numerical inversion routines are used to determine the time domain voltage
response of the transducer.

Figure 6.23 shows the voltage response obtained when the original material pa-
rameters of the transducer are used with an applied drive voltage at 287kHz.

Figure 6.23: Voltage Response of Original Piezoelectric Element f=287kHz N = 20
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Voltage Response resulting from cD33 Variations

An analysis of how changes to cD33 effect the voltage response of the piezoelectric
element is conducted in this section. The stiffness coefficient cD33 is the ratio of the
force acting on the piezoelectric element to its displacement from equilibrium.

Figure 6.24 presents the voltage response of the transducer for a number of values
of the parameter cD33. Note that figure 6.24(a) is the same as figure 6.23.

(a) Original cD33 = 94.3GPa (b) cD33 = 50GPa

(c) cD33 = 90GPa (d) cD33 = 100GPa

Figure 6.24: cD33 variations effect on voltage response f=287kHz N = 20

Figure 6.24 shows that the ring time and the drive voltage portion of the voltage
response is effected by the variation of cD33. The magnitude of the ring time is largest
at the original value of cD33 because this is the resonance frequency of the transducer. If
the value of cD33 changes, so does the resonance frequency of the transducer. Therefore,
since the drive voltage is always at a frequency of 287kHz, if cD33 changes, then the
magnitude of the ring time decreases.
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Voltage Response resulting from Mechanical Loss Variations

Mechanical losses may also effect the voltage response of the transducer. Figure 6.25
presents the voltage response for a number of different mechanical loss values which
are introduced with the complex term in the stiffness coefficient. Note that fig-
ure 6.25(a) is equivalent to figure 6.23.

(a) Original with No Losses

(b) cD33 = (65.4+ i2.0)GPa (c) cD33 = (65.4+ i5.0)GPa

Figure 6.25: Mechanical Loss Variations effect on the voltage response f=287kHz
N = 20

It is noticed that mechanical loss increases cause ring time decreases. This is
illustrated in figure 6.25(a) and figure 6.25(c). This makes sense since increasing the
amount of mechanical loss in the transducer causes faster dissipation of the energy
stored in the transducer. The drive section of the voltage response also becomes more
uniform in magnitude as the mechanical loss in the transducer is increased, as seen
in figure 6.25.
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Voltage Response resulting from Clamped Permittivity Variations

The effect making variations to the clamped permittivity KS
33 have on the voltage

response of the transducer is analyzed in this section.
Figure 6.26 shows the voltage response for a number of values of KS

33. Note that
figure 6.26(a) is equivalent to figure 6.23.

(a) Original KS
33 = 400.54 (b) KS

33 = 350

(c) KS
33 = 450 (d) KS

33 = 500

Figure 6.26: KS
33 Variations effect on the voltage response f=287kHz N = 20

Figure 6.26 shows that the value ofKS
33 effects the shape and amplitude of the driv-

ing voltage section as well as the ring time section of the voltage response. The reason
for this is that the resonance frequency of the transducer depends upon the value of
KS

33. Therefore, since the drive voltage of the transducer is always at f=287kHz, any
modifications to KS

33 from the original value in figure 6.23 result in an immediate
decrease in the magnitude of the ring time.
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Voltage Response resulting from Density Variations

To determine how making changes to the density effects the voltage response, fig-
ure 6.27, which shows the voltage response obtained for a number of values of ρ, is
used. Note that the original value of ρ is 7240kg/m3.

(a) ρ= 6000kg/m3 (b) ρ= 6500kg/m3

(c) ρ= 7000kg/m3 (d) ρ= 7500kg/m3

Figure 6.27: ρ Variations effect on the voltage response f=287kHz N = 20

Notice that the driving voltage section of the voltage response changes resulting
from changes to the value of ρ, as seen from figures 6.27(d) and 6.27(e) as compared
with figure 6.23.

Large variations in the value of ρ cause noticeable changes between the ring time
sections of figures 6.27(b) and 6.27(c) as compared with the ring time section in
figure 6.23. In this case the transducer is being driven with a drive voltage at a
frequency of 287kHz, the resonance frequency of the original transducer. If the value
ρ is varied, the resonance frequency of the transducer also varies. Therefore, when ρ
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is varied from its original value, a reduction in ring time is expected.

Voltage Response resulting from Drive Frequency Variations

It is clear that variations to the drive frequency would effect the voltage response,
but what effects are present is not clear from the complex nature of the wave inter-
actions in the material. To gain insight into how the frequency variation effects the
voltage response, a number of voltage responses are determined for different driving
frequencies.

Figure 6.28 shows the voltage response obtained for a number of different driving
frequencies. Note that the orginal drive frequency occurs at f = 287kHz.

(a) f = 270kHz (b) f = 280kHz

(c) f = 295kHz (d) f = 320kHz

Figure 6.28: f Variation effect on the voltage response N = 20

Figure 6.28 shows that if f is varied, the shape of the drive section, and the ring
section of the voltage response, also vary.
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If figure 6.23 is compared with figures 6.28(b) and 6.28(e), it is noticed that as
the frequency of the drive voltage is moved away from the resonance frequency of the
transducer, the magnitude of the ring time decreases, as expected.

6.4.2. Conclusion of Sensitivity of Voltage Response to Pa-
rameter Variation

The analyses above show that the parameters cD33, KS
33, and ρ all effect the voltage

response of the transducer. When the frequency of the drive voltage is varied away
from the resonance frequency of the transducer, a noticeable decrease occurs in the
magnitude of the ring time. It is established, therefore, that the voltage response is
both material and frequency dependent. The voltage response may therefore be used
to experimentally verify the transient theory.

6.5. Experimental Validation of the Voltage Re-
sponse

Experimental verification of the voltage response of a single piezoelectric element
transducer indicates that the distributed transient models developed are accurate.
The validation of the transient voltage response provides indirect validation of the
other transient performance characteristics because they all rely on the equations of
displacement, force, and voltage, which are all used to model the piezoelectric element
as seen in chapter 5. The piezoelectric element used is composed of a piezocomposite
material. This is the first time that the transient voltage response is being used to
model a piezocomposite material.

An in depth study is performed to verify the accuracy of the theoretically devel-
oped voltage response. The analysis begins by driving the piezoelectric element at
its resonance frequency. The drive voltage used is finite cycle sinusoid. A number
of drive cycles, and amplitudes, are used to validate the accuracy of the voltage re-
sponse when the transducer is being driven at its resonance frequency. This analysis
is conducted in section 6.5.1.

Then, an analysis of the voltage response is conducted when the drive signal is
delivered at the anti-resonance frequency of the piezoelectric element. A number of
drive cycles are used to validate the accuracy of the voltage response at the anti-
resonance frequency of the transducer. This analysis is done in section 6.5.2.

In order to verify the linear response of the piezoelectric element, the drive voltage
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is adjusted at a constant frequency and the theoretically and experimentally obtained
data are compared. If the transducer is linear, the voltage response from theory, and
from experimentation, must remain equal. All that should change is the amplitude
of the voltage response waveform. This linearity check is conducted in section 6.5.3.

The analysis is concluded with a study of what takes place when the frequency of
the drive voltage is varied away from the resonance and anti-resonance frequencies of
the piezoelectric element. This analysis is conducted in section 6.5.4.

Initially, the material parameters of the piezocomposite element must be deter-
mined. It has already been established that the impedance and admittance curves can
be used to obtain the material parameters of the piezocomposite element, as shown
in section 3.1. Therefore, they are used in this regard. The fit used to obtain the
material parameters is presented in figures 6.29(a) and 6.29(b).

(a) Impedance (b) Admittance

Figure 6.29: Impedance and Admittance of Single Element Piezocomposite Material

The material parameters of the piezocomposite element are given by:

Ao = 1.1195∗10−4 [m2]

L= 5.12∗10−3 [m]

ρ= 7240 [kg/m3]

εS33 = (400.54 + i15.739)∗10−8 [C/mV ]
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cD33 = (94.3 + i2.22)∗109 [Pa]

h33 = (3.20 + i0.092)∗109 [V/m]

Co= (8.7576− i0.34412∗10−11 [F]

v = 3609.2 + i42.47 [m/s]

Note that all the experimental measurements are done in air. Other details of
the experimental setup used to conduct the voltage response analysis are presented
in figure 6.30.

Figure 6.30: Experimental Setup for Voltage Response

In figure 6.30, the parameter Vg represents the input voltage from a Tektronix
AFG-310 Function Generator. Z is the internal impedance of the function generator
and is equal to 50Ω. V is the voltage response of the piezocomposite element. The
voltage V , in figure 6.30, is measured by a Tektronix TDS-3034B Oscilloscope.

A number of voltage response cases are considered in this analysis and the Laplace
domain expression describing the voltage response is given by equation 6.55.

Z̄in(s) = 1
sCo
−

2h2
33tanh(Ls2v )
s2Zc

(6.52)

ω = 2πf (6.53)

V̄g(s) = A
ω

s2 +ω2

[
1− e−

cyc
f s
]

(6.54)

V̄ (s) =
[

Z̄in

R+ Z̄in

]
V̄g (6.55)

A is the amplitude of the drive signal. f is the frequency of the drive signal, and
cyc is the number of cycles of the input sinusoidal drive voltage.
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6.5.1. Piezocomposite Element Voltage Response at Reso-
nance

The theoretically and experimentally obtained voltage responses for a number of
different drive voltages centered at the resonance frequency of the piezocomposite
element are compared. Since the drive voltage is at the resonance frequency of the
piezocomposite element, the ring time of the obtained waveform is expected to be
large. Using figure 6.29(b), the resonance frequency of the transducer occurs at
f = 276kHz.

Figure 6.31 shows the voltage response of the piezocomposite element resulting
from a 30 cycle sinusoidal drive voltage with an amplitude of 8V at a frequency of
276kHz.

Figure 6.31: 276kHz Sinusoidal Pulse with 30 cycles at 8V

Initially there is a drop in magnitude of the measured voltage V . This magnitude
eventually reaches a steady-state value after approximately 12 cycles. Refer to fig-
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ure 6.31. Immediately after the 30 cycle pulse is complete, the magnitude drops, but
does not decay very quickly. This is in agreement with the expectation that the ring
time would be large at the resonance frequency of the transducer. Figure 6.31 shows
that the experimentally measured and theoretical predicted voltage responses of the
piezocomposite element are in close agreement with each other.

Next, a drive voltage with an amplitude of 10V and 20 cycles is used. The voltage
response for this case is presented in figure 6.32.

Figure 6.32: 276kHz Sinusoidal Pulse with 20 cycles at 10V

Figure 6.32 shows that the theoretically predicted and experimentally measured
voltage responses are in very good agreement for the drive voltage section of the
voltage response. In order to determine the accuracy of the ring time section, the
attention must be focused more closely on the ring time section of figure 6.32. This
is presented in figure 6.33.
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Figure 6.33: 276kHz Sinusoidal Pulse with 20 cycles at 10V Ring Section

Figures 6.32 and 6.33 illustrate a good match between the theoretically predicted
voltage response and the experimental measured voltage response for a drive voltage
of 20 cycles.

Figures 6.34 and 6.35 show the voltage response obtained for a 10V 10 cycle drive
voltage. Note that figure 6.35 is the ring time of the voltage response shown in
figure 6.34.

Figure 6.34: 276kHz Sinusoidal Pulse with 10 cycles at 10V
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Figure 6.35: 276kHz Sinusoidal Pulse with 10 cycles at 10V Ring Section

It takes about 12 cycles for the voltage response to reach its steady-state value
at the resonance frequency of the transducer. Therefore, when the drive voltage is
only 10 cycles long, the steady-state section of the voltage response is not reached.
Figures 6.34 and 6.35 show that excellent agreement is obtained between the experi-
mentally measured and theoretically predicted voltage response of the piezocomposite
element.

The voltage response obtained when a drive voltage of 1 cycle with an amplitude
of 8V is shown in figures 6.36 and 6.37. Note that figure 6.37 is the ring time for the
1 cycle drive voltage.
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Figure 6.36: 276kHz Sinusoidal Pulse with 1 cycle at 8V

Figure 6.37: 276kHz Sinusoidal Pulse with 1 cycle at 8V Ring Section
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Figures 6.36 and 6.37 show once again that the measured and theoretically ob-
tained voltage responses of the piezocomposite element are in excellent agreement
with each other.

6.5.2. Piezocomposite Element Voltage Response at
Anti-Resonance

In this section the drive voltage is driven at the anti-resonance frequency of the piezo-
electric element, which occurs at f = 352.5kHz. At the anti-resonance frequency of the
transducer, a very short ring time is expected in the voltage response. Furthermore,
a very sharp drop in magnitude after the drive voltage is stopped is also expected.

A 10V 30 cycle drive voltage is used and the corresponding voltage response is
shown in figure 6.38.

Figure 6.38: 352.5kHz Sinusoidal Pulse with 30 cycles at 10V

As expected, there is almost no variation in the magnitude of the voltage response,
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as seen from figure 6.38. Figure 6.39 illustrates the ring time section of the voltage
waveform shown in figure 6.38.

Figure 6.39: 352.5kHz Sinusoidal Pulse with 30 cycles at 10V Ring Section

Note that the horizontal red lines in figure 6.39 are caused by the saturation
of the oscilloscope at this voltage resolution. As seen from figures 6.38 and 6.39,
the experimentally measured voltage response is well matched with the theoretically
predicted voltage response for both the voltage drive section and ring section of the
waveform.

Next, the voltage response obtained from a 10V 1 cycle drive voltage is analyzed.
An illustration of the corresponding voltage response waveform is shown in figures
6.40 and 6.41 .
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Figure 6.40: 352.5kHz Sinusoidal Pulse with 1 cycle at 10V

Figure 6.41: 352.5kHz Sinusoidal Pulse with 1 cycle at 10V Start of Ring Section

In figures 6.40 and 6.41, notice that after the drive voltage stops, the magnitude
of the ring time is very close to the value that was obtained with the 30 cycle pulse
presented in figure 6.38. The ring time is also similar to the magnitude of the ring
time occurring immediately after a 1 cycle drive voltage is used at the resonance
frequency of the transducer, as shown by comparing figures 6.37 and 6.41. Note that
the waveform in figure 6.37 is produced from an 8V drive voltage.

The reason the magnitude of the ring time is small is that the transducer stores
very little energy when these drive voltages are used. At the anti-resonance frequency,
the acoustic waves in the piezocomposite element interfere destructively. Also, very
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little energy is delivered to the transducer when only a single cycle drive voltage is
used.

6.5.3. Piezocomposite Element Voltage Response at Constant
Frequency with Amplitude Variation

The resultant effects of drive amplitude variation upon the voltage response of the
piezocomposite element are analyzed in this section. The study is conducted at the
resonance frequency of the transducer. This analysis is used to determine if the
piezocomposite element is operating linearly for over a range of drive voltages. Note
that only the ring time of the waveform is presented for this analysis because the
transient characteristics are clearly apparent when one looks at the ring time.

The results of the amplitude variation of the drive voltage are presented in fig-
ure 6.42.

(a) 10V Excitation (b) 8V Excitation

(c) 6V Excitation (d) 4V Excitation

Figure 6.42: Voltage Response of transducer to 30 cycle sinusoidal driving voltages
at a frequency of 276kHz
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From figure 6.42, the theoretical voltage responses are nearly equal to the ex-
perimentally measured voltage responses. Therefore, it is concluded that the piezo-
composite element acts linearly when the drive voltage has an amplitude between
4-10V.

It is of interest to lower amplitude of drive voltage to determine if the linearity
condition is still met. The voltage responses resulting from lower amplitude drive
voltages are shown in figure 6.43.

(a) 2V Excitation (b) 1V Excitation

(c) 0.25V Excitation (d) 0.1V Excitation

Figure 6.43: Voltage Response of transducer to 30 cycle sinusoidal driving voltages
at a frequency of 276kHz
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Figure 6.44: Voltage Response of transducer to 30 cycle sinusoidal drive voltage of
0.05V at a frequency of 276kHz

Figures 6.43 and 6.44 show that an extremely good match between the theoreti-
cally predicted and experimentally obtained voltage responses over a range of drive
voltages, from 2V down to 50mV, at the resonance frequency of the transducer.

From this analysis, it is concluded that the piezocomposite transducer acts linearly
in the voltage range 50mV-10V.

6.5.4. Piezocomposite Element Voltage Response at Constant
Amplitude with Frequency Variation

An analysis of the effect variations of the driving voltage frequency have on the voltage
response of the piezocomposite element are shown in this section. For this analysis,
the magnitude of the drive voltage is always 10V. A number of voltage response wave-
forms of the piezocomposite element have already been presented in previous section;
namely at the resonance frequency, f = 276kHz, and the anti-resonance frequency,
f = 352.5kHz.

The result of driving the transducer below the resonance frequency with a 30 cycle
sinusoidal pulse at a frequency of 200kHz is presented in figure 6.45. Note that only
the ring time sections are presented since the magnitudes of the drive voltage sections
are relatively constant.
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Figure 6.45: 200kHz Sinusoidal Pulse with 30cycles at 10V

Figure 6.45 shows that a fairly accurate match between the theoretically predicted
and experimentally measured voltage response is obtained at a frequency of 200kHz.

The voltage response obtained by driving the transducer with a frequency of
320kHz is presented in figure 6.46. Note that this frequency is between the resonance
and anti-resonance frequencies of the piezocomposite element.

Figure 6.46: 320kHz Sinusoidal Pulse with 30cycles at 10V

Again, as shown in figure 6.46, a close match is obtained between the theoretically
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predicted and the experimentally measured voltage response.
Finally, a drive frequency far beyond the anti-resonance frequency of the piezoelec-

tric element is used. The voltage response obtained for a drive frequency of 500kHz
is shown in figure 6.47.

Figure 6.47: 500kHz Sinusoidal Pulse with 30cycles at 10V

At the beginning of figure 6.46, it can be noticed that there are small transient
characteristics in the theoretically determined voltage response exist that are not
present in the experimentally measured voltage response. These may be due to the
transients being masked by the noise introduced from the experimental measurement
system, or due to other effects not accounted for by the theoretical voltage response
developed for transducers operating in thickness mode.

There are a number of possible causes for these transients. The first could be
that the material properties are frequency dependent and have changed value. Notice
that is is assumed that the material parameters are frequency invariant. Another
cause could be that the linear assumption may break down when the drive voltage
frequency moves far beyond the regular operating frequency of the transducer element.
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The transients may also be the result of other resonances from the width and length
mode of the piezoelectric element.

As indicated in section 3.3, it is possible to use the impedance and admittance
data of the piezocomposite element to determine if other effects not related to the
thickness mode are present.

The experimentally measured impedance and admittance curves, together with
the theoretically determined impedance and admittance curves, are shown in figures
6.48 and 6.49.

(a) Low Frequency (b) High Frequency

Figure 6.48: Detailed Impedance Curves of Piezocomposite Element

(a) Low Frequency (b) High Frequency

Figure 6.49: Detailed Admittance Curves of Piezocomposite Element
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As can be seen from figures 6.48 and 6.49, the theoretical values obtained for
the impedance and admittance are accurate for low frequencies, but clearly as the
frequency is increased past 600kHz, the theoretically predicted impedance and admit-
tance curves do not match the experimentally determined values. Therefore, either
the material parameters have changes value or other effects not related to the thick-
ness mode operation of the piezocomposite element are present at higher frequencies.
Since the theory for the impedance and admittance depends upon exactly the same
parameters as the transient theory, there is no surprise that if one of the theories
fails to be accurate, the other fails as well because both models depend on the same
material parameters and assumptions.

6.6. Conclusion of Theoretical and Experimental
Analysis of the Transient Theory

An in depth validation of the distributed transient performance characteristics devel-
oped in chapter 5 was presented in this chapter.

The successful validation of the TVOPI was conducted using a method developed
using the theory of Snell’s Law of reflection and transmission for both single and
multi-element acoustic transducers operating in thickness mode.

Currently, no method exists to validate the TPOVI without the use of complex
experimental equipment or sophisticated finite element numerical routines. A partial
validation of the TPOVI was successfully conducted, however, using the steady-state
TVR. Although not a complete validation, it showed the accuracy of the TPOVI
when used to predict the steady-state behavior of a transducer driven by a sinusoidal
voltage.

A validation check of the TVOPI was performed by driving a transducer with a
unity magnitude sinusoidal pressure and comparing the obtained steady-state ampli-
tude with the sensitivity of the transducer. The values obtained from the sensitivity
and the steady-state sections of the TVOPI are in very close agreement, as expected.

The DVDM developed in section 5.3 was successfully validated by comparing the
analytic expression obtained from 2nd-Order lumped circuit model to what is obtained
from the DVDM when using a 2nd-Order lumped circuit model. A detailed discussion
of the results obtained when the output pressure waveform is a finite duration square
pulse for a single and multi-layer acoustic transducer operating in thickness mode was
also given to further validate the method.
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Having completed a number of theoretical validations of the transient theory,
the last part of this chapter focused on the experimental validation of the transient
theory using the voltage response. For the first time, it was proved conclusively
that the theoretical voltage response accurately predicts the voltage response of a
piezocomposite element. This is a significant find as it illustrates the flexibility of
the transient theory to model any type of multi-layer acoustic transducer operating
in thickness mode.
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7. Example Application and Con-
cluding Summary

If a choice between two backing layer materials must be made for a transducer both,
steady-state impedance and sensitivity methods, as well as the developed TVOPI
models, could be used to do this.

Assume that an XTM transducer receives a sinusoidal pressure pulse at a fre-
quency of 260kHz, and that the material selection of two backing materials, ZM1

and ZM2 are to be tested. The rise time constant and ring time constant, as well as
the corresponding sensitivity values, need to be determined. Refer to section 3.2.1
for details regarding the material parameters and geometric structure of the XTM
transducer.

Note that, short rise and ring time constants of the voltage output provide the
best receive performance as long as sufficient steady-state sensitivity is maintained.
To determine the steady-state impedance and sensitivity, the expressions developed
in sections 2.7.1 and 2.7.4 are utilized, and in order to determine the rise time and
ring time constants of the transducer, the expression developed for the TVOPI in
section 6.1.2 is used.

The specific acoustic impedances of ZM1 and ZM2 are given by:

ZM1 = 2096 [Mrayls]

ZM2 = 524 [Mrayls]

When using ZM1 and ZM2, the impedance and sensitivity of the XTM transducer
are illustrated in figures 7.1 and 7.2.
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(a) Impedance (b) Sensitivity

Figure 7.1: Steady-State Performance Parameters of XTM Transducer with ZM1

(a) Impedance (b) Sensitivity

Figure 7.2: Steady-State Performance Parameters of XTM Transducer with ZM2

From figures 7.1 and 7.2, the sensitivity of the transducer at a frequency of 260kHz
when using material ZM1 is −180.7dB//V/µPa, and when using material ZM2 is
−183.4dB//V/µPa.

To determine the rise time and ring time of the receive pulse, a qualitative mea-
surement is made using the time constants τrise and τring. These parameters are
found by fitting the function V(t) to the magnitude of the voltage output.

V(t) =

 VSS(1− e−t/τrise) 0≤ t≤ tf
VSS(e−(t−tf )/τrise) tf ≤ t

(7.1)
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VSS is the steady-state value of the voltage output and is determined from the
sensitivity. tf is the time when the drive pressure stops. The values of τrise and
τring for materials ZM1 and ZM2 are shown in figures 7.3 and 7.4. Note the vertical
dashed-black lines indicate the location of tf .

Figure 7.3: Voltage Output due to 30 cycle Sinusoidal Pressure Input of Unity Mag-
nitude at a frequency of 260kHz for ZM1

Figure 7.4: Voltage Output due to 30 cycle Sinusoidal Pressure Input of Unity Mag-
nitude at a frequency of 260kHz for ZM2
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From the steady-state and transient analysis, the parameters used to evaluate
which particular backing material to use are given in table 7.1.

Material
ZM1 ZM2 Symbol [Unit]

Sensitivity -180.7 -183.4 M [dB//V/µPa]
Rise Time Constant 17.0 7.0 τrise [µs]
Ring Time Constant 17.3 7.2 τring [µs]
Input Impedance 6670-j3283 4811-j298.1 Zin [Ω]

Table 7.1: Parameters used to Evaluate Receive Performance of XTM Transducer
with Backing Materials ZM1 or ZM2 when f = 260kHz

Based upon the values in table 7.1, the material ZM2 is the preferred alternative
for the backing layer of the XTM transducer since it has the lowest rise time and
ring time constants. The sensitivity obtained when ZM2 is used is slightly lower than
that obtained when using ZM1; however, the sensitivity is not sufficiently different
to counteract the negative effects caused by the increase in the rise and ring time
constants. Therefore, ZM2 is the backing material preferred for this application.

This thesis presents the development of distributed models of multi-layered acous-
tic transducers operating in thickness mode. The distributed models were used to
determine the steady-state and transient performance characteristics of a transducer
and may be used in future applications to provide practical, cost-effective, and con-
venient alternatives to design through experimentation.

The steady-state performance characteristics developed include the impedance,
sensitivity, transmit voltage response, efficiency, and acoustic impedance; the most
convenient of these, in terms of measurement, being the impedance.

An entire chapter was dedicated to the verification of the impedance and admit-
tance as they can be used to determine the material parameters of the transducer.
Also, it was demonstrated that the impedance/admittance data can be used to de-
termine whether the transducer’s material parameters are invariant, as well as to de-
termine whether other effects not related to the thickness mode operation are present
over the frequency range of interest.

Measuring the sensitivity of a transducer is very difficult. A number of methods
are widely used, but their accuracy is generally poor or requires sophisticated instru-
mentation and laboratory setups. In this thesis it was verified that the distributed
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sensitivity model for a multi-layer acoustic transducer operating in thickness mode
accurately predicts its sensitivity. This verification was conducted by comparing the
experimentally measured sensitivity values obtained from the reciprocity calibration
method with theoretically determined values. Since close agreement exists between
these values, the developed sensitivity expression may be used and innovative de-
signs can be rapidly optimized without the need for complex and time consuming
experimentation.

In a number of practical applications, the transient performance characteristics of
a transducer are also important. These characteristics may be used to determine the
rise and ring time constants, as well as the sophisticated waveforms that occur when
a transducer receives a pressure pulse or when it is driven to output a pressure pulse.

Cutting-edge distributed transient models were developed in this thesis that de-
scribe the pressure output resulting from a voltage input (TPOVI), the voltage out-
put resulting from a pressure input (TVOPI), and the voltage response of multi-layer
acoustic transducers operating in thickness mode. These models were developed in
the Laplace domain and required state-of-the-art numerical inversion routines to find
the time domain solutions. These methods are easy to implement on any standard
computer and allow transducer designers to rapidly evaluate the performance of trans-
ducer designs. As well, the expressions can be used to create novel signal processing
routines that can be used to enhance the performance of existing transducers.

Modern drive electronics for transducers are now capable of outputting arbitrary
waveforms. This has motivated the design of software routines capable of outputting
desired pressure waveforms by pre-shaping the drive voltages of the transducer. In this
thesis, a novel routine was developed for pre-shaping the drive voltage that is based on
modeling the transducer using a distributed transient model. This method is superior
to other methods as it is accurate and only requires the material parameters and
geometric dimensions of the transducer to be defined. This allows for the optimization
of a transducer to simplify the input drive voltage necessary to output a sophisticated
pressure waveform. As well, the flexibility of the method allows existing transducers to
be used in a number applications where intricate waveforms are required. This reduces
the necessity of having to design and build new transducers for specific applications.
Both, the transient performance characteristics and the drive voltage design method
for multi-layer acoustic transducers operating in thickness mode were developed and
validated using theoretical and experimental methods.
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Transducer design is both, an art and a science requiring a good understanding
of the physical phenomena that take place in a transducer. The state-of-the-art
performance characteristics developed in this thesis provide transducer designers with
the necessary tools to make informed design decisions and facilitate the optimization
of multi-layer underwater acoustic transducers operating in thickness mode.
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Appendix A.
Numerical Inversion of Laplace
Transform

To determine the time domain function f(t), from the Laplace Domain function F (s),
the Bromwich Integral is used [32], as shown by equation A.1.

f(t) = 1
2πi

σ+i∞∫
σ−i∞

F (s)estds (A.1)

In practice, the value σ is chosen to be greater than the largest real part of all the
singularities of F (s). This ensures that the integral in equation A.1 exists. If F (s) is
a simple function, then the theory from complex analysis can be used to find a closed
form analytic solution of f(t). But, for the Laplace domain expressions considered in
this thesis, there are no closed form analytic solutions. Therefore, numerical methods
must be used to obtain the time domain values from the Laplace domain expressions.

There are now over 100 different algorithms that can be used for the numerical
inverse Laplace transform of F (s) [33]. However, since the inverse Laplace transform
is ill-posed, no universal algorithm exists [34]. To determine an appropriate inversion
routine to use, the following criteria are considered [35]:

a) Applicability to Problem
b) Numerical Accuracy
c) Computational Time and Stability
d) Implementation Difficulties

An excellent overview of a number of inversion routines can be found in the paper
by Abate and Valko [36]. The expressions F (s) being considered in this thesis rep-
resent time domain functions with a number of discontinuities or functions that are
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smooth. Therefore, using the criteria above, the following numerical inverse Laplace
transform routines have been selected:

1) Weeks Method
2) Isegers Method
3) Crump’s Method
4) Dubner-Abate-Crump (DAC) Method

Method 1 is based on the expansion of F (s) using Laguerre functions, and then
performing the numerical inversion with these functions. Method 2 is based on using
the Poisson Summation Formula and then approximating the infinite summation
using a Gaussian Quadrature rule. Methods 3-4 are based on the Fourier-Series
Method for computing the inverse Laplace transform.

Each of these routines is summarized in the following sections. Comments are
made regarding the estimated error associated with using each routine, as well as
which methods are suitable for specific expressions of F (s).

Note that the ill-posed nature of the numerical inverse Laplace transform ne-
cessitates the fact that a number of inversion techniques be used and subsequently
compared to increase the confidence of the time domain solution obtained [35]. The
reason for doing this is that one can ascertain if peculiar behavior exists in the values
obtained and whether this is due to the actual values or to problems associated with
the inversion routine used [35].

A.1. Week’s Method
Week’s method is a well known method to numerically invert a Laplace domain ex-
pression. This method is computationally efficient if a number of time domain points
are used [32]. Furthermore, high accuracy is obtainable using Week’s method when
the time domain function is continuous [35].

A well known weakness of Week’s method, however, is its inability to give accurate
results if discontinuities are present in the function f(t) [32, 35, 37]. Another issue
with Week’s method is that it requires the parameters, σ and b, to be chosen close
to their optimal value in order for accurate results to be obtained. The choice of the
parameters, σ and b, is not trivial, but there are methods available to determine the
values of σ and b close to their optimum values for special functions of F (s) [32].

One of the main reasons that this method is is used here is that it provides a good
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numerical check for the results of the other numerical inversion routines. It does not,
however, perform well when losses are present in the Laplace domain solutions of the
TVOPI, TPOVI, and the voltage response of the transducer.

The main idea of Week’s method is to expand the time domain function f(t)
using a set of Orthogonal Laguerre Polynomials ln(t). The Laplace transform of ln(t)
is known analytically. Then, the function F (s), is expanded using the Laplace domain
expressions of the Orthogonal Laguerre Polynomials. The Laguerre Coefficients, qn,
produced from these expansions are used to relate the function F (s) to f(t). The
Laguerre Generating Function, Q(z), is used to determine the values of qn from F (s).

A detailed derivation of Week’s Method is given in [38, 39], and further details
related to Week’s method can be found in [32, 37, 39, 40, 41]. The final solution of
Week’s method that can be implemented on a computer, is given by the following
equations [32]:

f(t) = eσt
N−1∑
n=0

qnln(bt) (A.2)

ln(bt) = e−bt/2Ln(bt) (A.3)

Ln(bt) =
[ n∑
k=0

(
n

k

)
(−bt)k
k!

]
(A.4)

Q(z) =
∞∑
n=0

qnz
n = b

1− zF
[
b(1 + z)
2(1− z) +σ

]
(A.5)

qn = e
ikπ
2N

2N

N−1∑
k=−N

Q
(
e
i(k+0.5)π

N

)
ein(kπN ) (A.6)

The parameter, N , is related to the number of terms used in the midpoint rule to
approximate qn.

A.1.1. Sources of Error
One of the major problems with Week’s method is the choice of parameters, σ and b
[39, 41]. These parameters greatly effect the numerical accuracy obtainable from the
inversion routine. Also, errors associated with the truncation performed in both, the
Laguerre series expansion and the evaluation of the coefficients qn exist. The Week’s
method performs very poorly if discontinuities exist in the time domain function f(t)
[37]; however, this is only true if the discontinuities do not occur at t= 0.
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An example of the Laplace domain function is given by equation A.7.

F (s) = 1
s

(A.7)

This is the well known unit step function. The expression of Q(z) for this function
is given by equation A.8.

Q(z) =
∞∑
n=0

qnz
n = b

1− zF
[
b(1 + z)
2(1− z) +σ

]

= b

1− z

[ 2(1− z)
b(1 + z) + 2σ(1− z)

]
= 2b

(b+ 2σ) + z(b−2σ)

=
( 2b
b+ 2σ

)[ 1
1 + z((b−2σ)/(b+ 2σ)

]

=
( 2b
b+ 2σ

) ∞∑
n=0

(−1)n
(b−2σ
b+ 2σ

)n
zn

=⇒ qn = (−1)n
(b−2σ
b+ 2σ

)n
(A.8)

As seen from equation A.8, the Laguerre coefficients rapidly decline as long as b
and σ are chosen correctly. It can be concluded, therefore, when a discontinuity exists
at the origin, the accuracy of the inversion routine is not effected.

A.2. Iseger’s Method
Iseger’s Method is a Gaussian Quadrature rule method used to compute the numerical
inverse Laplace transform.

This method was selected because it is easy to implement and it gives near ma-
chine accuracy for smooth functions [42]. This method is also fairly accurate when
discontinuities are present in the time domain function [43]; however, it provides
inaccurate results at the points of discontinuity.

Iseger’s method uses the Fourier Series and the Poisson’s Summation Formula
to obtain an expression for the numerical inverse Laplace transform. The Poisson
Summation Formula is given by equation A.9.
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+∞∑
k=−∞

F (a+ 2πi(k+v)) =
+∞∑
k=0

e−akf(k)e−2πikv (A.9)

Iseger’s method is based on the evaluation of the sum on the left hand side of
equation A.9 using a Gaussian Quadrature rule. After this is completed, the Discrete
Inverse Fourier Transform is used to solve for specific values of the time domain
function f(k).

The derivation of Iseger’s method is shown in [42], and the final result is presented
below.

f(k∆)≈ eak

N

N−1∑
j=0

fje
2πkj
N (A.10)

fj =


1

2∆
∑n
k=1βk

[
F (a+iλk

∆ ) +F (a+iλk+2πi
∆ )

]
if j = 0

1
∆
∑n
k=1βkF (a+iλk+2πiv

∆ ) if j > 0
(A.11)

In equation A.11, the parameters βk and λk are defined by:

λk = 1
iµ0.5
k

− iπ (A.12)

βk = α0.5
k

|µ0.5
k |2

(A.13)

The values µvk are the zeros of the polynomial qvn(s) presented in equation A.14,
and αvk are the positive Christoffel numbers given by equation A.16 [44].

qvn(s) = pn(s)− (−1)ne−2πivpn(−s) (A.14)

pn(s) =
√

2n+ 1
n∑
k=0

(k+n)!
(n−k)!

(−s)k
k! (A.15)

αvk = 1∑n
j=0 |qvj (µvk)|2

(A.16)

A method used to implement Iseger’s routine is presented in [42].
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A.2.1. Iseger Error Analysis
There are two parameters that determine the magnitude of the error associated with
Iseger’s method. The first is the time discretization parameter N . In theory, as
proven by Iseger for smooth functions, the larger the value of N , the more accurate
the results. The same effect is obtained if one chooses a smaller ∆ value since if the
time interval of interest of f(t) is fixed, then an increase in ∆ causes a corresponding
increase in N .

The other parameter that effects the accuracy is the choice of n, the number of
points used for the Quadrature Rule. A value of n= 16 gives fairly good results, but
since a higher accuracy is preferred, a value of n= 48 is used. For smooth functions,
n= 48 gives results near machine precision [42].

There is a numerical stability problem with Iseger’s method for certain functions
F (s). This problem is associated with the sample points s, given by equation A.17,
used in Iseger’s method.

s= 1
∆

[
a+ iλj + 2πik

M

]
(A.17)

To see the numerical stability problem, consider the numerical inversion of the
time-shifted unit step given by equation A.18.

F (s) = 1
s
eτs (A.18)

Notice that if the real part of the ratio of ∆ and τ is large, then the value of eτ/∆

is extremely large. This is a particularly important problem to be aware of since these
types of exponential terms are present in a number of the expressions developed in
this thesis, where the values of τ can be many magnitudes larger than the values of
∆.

A.3. Crump’s Method
Crump’s Method is an easy to implement numerical inverse Laplace transform routine,
and is useful for the inversion of a wide range of functions which are smooth and
contain discontinuities [35]. This method is accurate and has stood the test of time
as modified versions of it are still widely used today [35].

Crump’s Method is based on the properties of the Fourier Series and Laplace
transform to perform the numerical inversion. The derivation of Crump’s Method is
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given in [45]. The final result of Crump’s method is given by equation A.19.

f(t) = eat

T

[1
2Re[F (a)] +Re[

N−1∑
k=1

F (a+ ikπ

T
)e

ikπt
T ]
]

(A.19)

The parameter a is chosen such that a is larger than any of the real singularities
of the Laplace domain function F (s) being inverted. The parameter T is chosen such
that t < T , for the values of f(t) being determined.

A.3.1. Crump’s Method Error Analysis
The errors associated with Crump’s method are discussed in [45]. An estimate of the
error associated with using Crump’s Method is given by equation A.20.

En = eat
∞∑
n=1

gn(t)

= eat
∞∑
n=1

[
e−a(2nT+t)f(2nT + t)

]

=
∞∑
n=1

e−2naT f(2nT + t) (A.20)

Since the function f(t) is bounded, it is possible to obtain the relation |f(t)| ≤
Meαt for some bounded value M and substituting this relation into the above geo-
metric series, the following error bound is obtained [45]:

En ≤
Meαt

e2(a−α)T −1
(A.21)

Notice that α, shown in equation A.1, represents the real part of the largest
singularity of F (s). Note that t < T and a > α, which allows the inversion routine to
be as accurate as needed by making a−α sufficiently large.

Another source of error occurs as a result of the truncation of the infinite Fourier
series to obtain a numerical solution for f(t); therefore, at points of discontinuity,
Gibbs phenomenon is present. The effect of Gibbs phenomena can be reduced by
increasing the number of terms in the truncated series.
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A.4. Dubner-Abate-Crump Method
The Dubner-Abate-Crump (DAC) method is summarized in this section. This method
uses the same principle as Crump’s method, but increases both the computational
accuracy and speed of Crump’s method.

The DAC method is based on evaluating the sum given in equation A.19 using
the Fast-Fourier Transform. The derivation of how to do this is presented in [46].
The DAC method is given by equation A.26.

W = e
2πi
N (A.22)

W jk =W j(k+lM) for l = 0,1,2, . . . (A.23)

A(k) =
L∑
l=0

F (a+ i(k+ lN)2π
T

) (A.24)

tj = j∆t= j
T

N
for j = 0,1,2, ...,N −1 (A.25)

f(tj) = 2eaj∆t
T

[
− 1

2Re[F (a)] +Re[
N−1∑
k=0

A(k)W jk]
]

(A.26)

Equation A.26 can be evaluated very quickly using the Inverse Fast-Fourier Trans-
form. Note that when using equation A.26, the constraint t < T/2 must be true.

A.4.1. Error Analysis of DAC Methods
Since the DACmethod is based on the same method as Crump’s method, the following
error bound for the DAC inversion routine is obtained.

En ≤
Meαt

e2(a−α)T −1
(A.27)

Note that this result is obtained using the property that f(t) is bounded such that
|f(t)| ≤Meαt. The benefit of using the DAC method is that it is numerically faster
to compute and is more stable than Crump’s Method.
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