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Abstract

Search engines are a key factor shaping the way people interact with today’s worldwide web.

It is therefore of critical importance for web masters to understand and increase the ranking

of their pages, and so is for search engines to inspect how a page obtains its ranking in

order to detect possible malicious activities for manipulating the natural ranking of pages.

PageRank is a popular algorithm used by search engines such as Google to rank web pages

returned as search results. This algorithm assigns a score to each web page (i.e., graph node)

reflecting its importance, which is a function of the score of other pages having a hyperlink

or a path of hyperlinks (graph links) to that page. In addition to the web graph, PageRank

is also used for ranking graph nodes in other contexts such as the citation network of the

scholarly literature. In this thesis, we take a closer look at the PageRank algorithm on

graphs and analyze how each graph node collects its PageRank score from other nodes. We

develop a systematic method for calculating the contribution that individual nodes make to

each other’s PageRank score, i.e., the difference that it would make in the PageRank score

of node v if node u did or did not exist. We then present an approximation algorithm with

guaranteed error bounds for approximating page contributions to any given target node v,

which operates in a local neighborhood of v in the graph since real-world graph such as the

web is too large to be computed on as a complete graph. We evaluate our algorithm on

a web graph and a citation graph dataset. Our experimental results indicate that we can

estimate the page contribution values with good accuracy. Moreover, our results show that

we can find higher-contribution supporter nodes for a given target node in a shorter time

than previous works.

Keywords: PageRank algorithm, page contribution, path contribution, local approxi-

mation.
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Chapter 1

Introduction

Search engines play a critical roll in the way people interact with the worldwide web. Given

a search query, search engines return a set of pages ordered according to a score for each

page, which is a combination of a static ranking score pre-calculated for the page as well

as a dynamic relevance score for the page with respect to the search query. Intuitively, the

static ranking score of a page reflects the importance of the page on the web. PageRank is

the most popular algorithm for this score which is used by Google, the most widely used

search engine today. PageRank is a link analysis algorithm which assigns a numeric value

to each page v, based on the number of pages that have hyperlinks to v as well as their own

PageRank scores. In other words, pages that are referred to by many other important pages

receive a higher score. Therefore, the PageRank score of a page depends on other pages

which have a direct link or a sequence (path) of links to the target page.

The application of the PageRank algorithm is not limited to the web graph only. This

algorithm is also used for ranking graph nodes in other contexts such as scholarly citation

networks and social networks. In a citation graph, nodes and links represent papers and ci-

tations between papers, respectively. Similar to the web, a static ranking score is calculated

for each paper which is used in the ordering of search results. Google Scholar, the most

widely used scholarly search engine today, uses a PageRank-based algorithm for this pur-

pose [5,15]. Similarly in social networks, PageRank-based algorithms are used for assigning

various importance metrics (e.g., trust and reputation) to social entities [14,21,24].

For the owners of many commercial and personal web sites, it is very important to appear

at the top of search results. This is because pages that rank higher in search results get

a much higher user traffic. Therefore, web masters always try to obtain higher PageRank

1



CHAPTER 1. INTRODUCTION 2

scores for their web sites through various techniques and tricks such as legal Search Engine

Optimization techniques. Some of these techniques even involve malicious activities such

as link-spamming, which we will discuss shortly. It is thus important for both web masters

and search engines to be able to inspect the PageRank score of a page and analyze how it

is obtained. This information will allow a web master to understand how her pages interact

with each other and with other pages on the web for collecting PageRank scores, and thus to

optimize her pages for higher ranking. In addition, this information will help search engines

in finding and counteracting link-spamming activities on the web [11, 29, 31] and possibly

on the scholarly network [5, 6, 15]. These issues, detecting spamming and optimizing page

rankings, have both been hot topics of research and highly demanded by the industry in

recent years.

1.1 Problem Statement and Contributions

In this thesis, we study the problem of PageRank contribution, and analyze the contribution

that nodes of the graph make to each other’s PageRank score—the increase in the PageRank

score of node v that is brought by node u. This is a fundamental problem for the study of

PageRank-related issues discussed earlier, and therefore has been studied by various previous

works in the literature. [1, 31].

The contribution values calculated by most previous works measures the contribution

of node u to the PageRank score of node v according to the paths (i.e., sequence of links)

from u to v. However, an important factor in the contribution made by node u to node

v is the PageRank of node u itself. That is, it can make a significant difference for the

PageRank of node v to have a path from a low-PageRank node u or to have the same path

from a high-PageRank node u′. The contribution of u and u′, however, will be considered

the same by most previous works. We will refer to this type of PageRank contribution as

path contribution. On the other hand, we consider the contribution of node u to node v as

the difference that it would make in the PageRank score of v if node u did or did not exist.

We will refer to this contribution, which is our focus in this thesis, as page contribution.

We develop a systematic method for finding the page contribution of nodes to each

other. While this page contribution value has been considered by an earlier work [31] as

well, to the best of our knowledge, no systematic algorithm for estimating these contribution

values have been proposed in the literature before. Moreover, we design approximation
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algorithms with guaranteed running time and worst-case approximation ratio for finding

these contribution values locally in a graph. We also demonstrate through experiments on

real-world datasets that our algorithms can estimate page contributions with small errors

and reasonable running time. Moreover, our algorithms can find supporting sets with the

higher page contribution in a shorter running time than the previous works.

1.2 Applications

Given the crucial importance of search engine rankings for web pages, various techniques

have been developed for web masters to improve the ranking of their pages in search results,

enabling them to attract more user traffic. Therefore, Search Engine Optimization (SEO)

has become a very successful market in recent years. As an example, consider a user study

indicating that 92% of users prefer using natural search results (as opposed to advertised

results) when looking to buy a product [28].

Therefore, different SEO methods have been developed, including various search engine

spamming techniques. In particular, to deceive the PageRank algorithm and give a boost to

the ranking of a particular page, link-spamming techniques often create a group of web pages

linking to each other and to the target pages. Rather than representing a natural hyperlink

from page A to page B, these spam links are added only for the purpose of misleading

the PageRank algorithm. These techniques are not approved by search engines, and search

engines constantly try to detect and ban such web pages from search results.

Our algorithms provide an effective tool for this detection. Most link-spam detection

techniques are based on finding and analyzing the supporting set of a given web page, that

is a group of pages that contribute the most to the ranking of the target page. Then,

various algorithms and heuristics are applied on supporting sets to decide if it is legitimate

or spam. Our algorithms can efficiently find these supporting sets for any given target page.

In particular, we demonstrate that the supporting sets found by our algorithms include

pages with higher page contributions than the supporting sets found by previous works.

In addition to finding the supporting sets, our algorithms report the contribution of each

supporting page to the target page. Revealing such fine-grained information can provide

further advantages for the analysis of spam activities.

Aside from search engine spamming, which are known as black hat SEO techniques,

legitimate SEO methods have had a prosperous market in recent years. These methods,
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which are referred to as white hat SEO, try to increase the ranking of a page legitimately

and are even recommended by search engines as part of good design. Although SEO services

are being widely traded today, it is not clear how one can quantize the success of an SEO

company in increasing the ranking of its page. While a simple way is to check the ranking of

the pages before and after getting SEO support [23], this naive approach can only be used

once at the beginning; it cannot help in assessing the effectiveness of existing SEO support,

or that of a particular SEO company among multiple ones. However, this is an important

question for any web master paying one or more SEO companies, e.g., to determine how

much it is worth to pay an SEO company or to extend/discontinue a contract.

In addition to link-spam detection, our algorithms also have applications in the white

hat SEO domain. These algorithms can compute the contribution that a page makes to

any other page’s PageRank score. Therefore, web masters can easily use these algorithms

to estimate the effectiveness of a link-based SEO technique in boosting their pages’ scores.

Our work is not limited to the web only, and is applicable in any network on which

PageRank-based algorithms are applied, such as citation and social networks discussed ear-

lier. Our algorithms can be used to find the contribution of nodes (scholarly papers) to each

other’s ranking score. Similar to the web graph, this information can assist in the detection

of link spamming in scholarly search engines such as Google Scholar [5,6,15]. Moreover, they

can also help in extracting useful information from the citation network, such as the papers

that have the highest page contributions to each given target paper. This can indicate some

level of similarity between the papers’ topics and their influence from the corresponding

target paper, which are useful information for further analysis of citation networks such as

finding a number of key, influential papers in a given scholarly literature.

Furthermore, our algorithms can be used in social networks where PageRank-based

algorithms are used to assign different importance scores to nodes [14,21,24]. Our algorithms

enable new analyses on these networks, such as how individual social entities influence each

other’s trust or reputation score. Moreover, similar to the web, our algorithms are useful

against the potential threat of spamming in social rankings, where on may add extra entities

and/or relationships to the network just to increase the trust score of a malicious user.
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1.3 Thesis Organization

We review the related work in Chapter 2. Chapter 3 provides a systematic method for

calculating the page contribution, followed by an approximation algorithm in Chapter 4

to estimate these values locally. In chapter 5, we evaluate the accuracy of our algorithm

for approximating page contributions as well as its running time. Finally, we conclude the

thesis and highlight a number of future research directions in Chapter 6.



Chapter 2

Related Work

In this chapter, we review previous work related to calculating contributions in the PageRank

algorithm and finding supporting sets (also known as page farms in some works). Moreover,

since in many previous works page farms are used for the purpose of detecting link spamming,

we also review related papers on spam detection in which page farms are studied as well.

We put the previous work in two categories as follows.

The papers in the first category study the concept of page farms and supporting sets, and

in some cases present methods for extracting such sets. In an early work in this direction,

Lempel et al. [19] have shown that the PageRank algorithm is not rank-stable. That is, the

ranking of web pages can significantly change by small modifications in the link structure

of the web graph. Later, several papers have studied the relationship between PageRank

scores and the structure of the corresponding supporting sets. Sydow [27] has shown that

the PageRank score of a web page can be significantly increased by adding carefully chosen

outgoing links to the page itself. The optimal set of such links for the page is analyzed

in [2]. Kerchove et al. [17] study linkage strategies for a given set of pages so that their total

PageRank score is maximized. Du et al. [12] focus on a similar problem for spam farms,

where the structure of a page farm is optimized for boosting the ranking of a target page.

The same problem is considered in [13], which also investigates how groups of farms can

collaborate and form spam farm alliances that benefit all participants. While these works

conduct an in-depth analysis of potential structures of page farms, they do not provide any

methods for finding these farms.

In order to find page farms for web spam detection, Saito et al. [26] have proposed to de-

compose the web graph into strongly connected components (SCC). Then, they empirically

6
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showed (on sample web data sets) that large components are spam farms with high prob-

ability. In a later work by the same authors, a recursive SCC decomposition is introduced

in [11] to extract such farms. This is an efficient approach for finding farms given that we

can find SCCs. However, we note that generally finding SCCs in the web graph takes a

time proportional to the size of the whole graph, which is infeasible for the web. Largillier

et al. [18] have proposed to simulate random walks of a random surfer up to length l. Then

the authors analyze the patterns observed in the visited paths (e.g., repeated pages) to find

page farms and those pages benefiting from the farms. The proposed algorithm is designed

for finding some random farms in the web, and it does not provide a method for finding the

supporting set of a given target page.

Becchetti et al. [3, 4] assumed that the supporting set of a target page is within a short

distance d of it (moving backwards on incoming links), and proposed to ignore these pages

in the PageRank score of the target page so that the effect of spam page farms is neutralized.

Moreover, a probabilistic method for estimating the size of the supporting set of a target

page is introduced. A random bit vector is assigned to each page. Then, several paths of

length d that end at the target page are visited, and the bit vector of each page is updated

according to its incoming neighbor on the path: it is bitwise-ORed with the bit vector of

the neighbor. Then, intuitively, if a target page has a larger number of supporters than

another, more distinct bit vectors will be ORed with its vector, and more 1s will appear

in its final bit vector. The number of 1s therefore provides an estimate on the number of

supporters. This work allows to flexibly adjust the running time and accuracy through the

parameter d and the number of paths to visit. Nevertheless, it does not find the supporting

set of the target page; it only provides an estimate on its size.

Benczur et al. [7] propose to perform a Monte Carlo simulation of random walks from

random pages on the web (based on the algorithm in [19]), and then analyze the PageRank

distribution of the supporters of each page to decide spamicity. However, this practice is

computationally expensive since it cannot find the supporting set of just a given target page.

Wu et al. [30] presented a two-step algorithm for finding page farms in order to detect

web spam. First, based on the observation that pages in such farms have many incoming

and outgoing neighbors in common, pages whose incoming and outgoing set are overlapping

beyond a threshold are considered as an initial seed farm. Then, this farm is expanded by

adding new pages to it that have many links to pages already in the farm. In [29] the same

authors proposed to identify page farms by performing a random walk from a few manually



CHAPTER 2. RELATED WORK 8

detected pages of the farm. This is based on the fact that a farm (specifically a spam farm)

has a dense link structure, hence a random walk is likely to remain in the farm for a while.

These two algorithms can be effective methods for finding spam farms, given a good initial

seed. On the other hand, it is not clear which pages are analyzed at the beginning to form

the initial seed. Also we note that these algorithm, specially the one in [30], is based on a

specific farm structure and predefined thresholds, which can make it easy to bypass (and

make the farm undetectable) by a careful spammer.

The second category of papers, besides finding page farms, study the problem of calcu-

lating contributions in the PageRank algorithm. The first algorithm in this category has

been proposed by Jeh and Widom [16]. This algorithm is essentially designed for computing

personalized PageRank values, and can be used to calculate the PageRank contribution that

node u makes to other nodes in the graph. While an efficient solution for the personalized

PageRank problem, this algorithm cannot find the PageRank contributions of all nodes to a

given target node v, which is the problem of our interest. This is because we need to repeat

the algorithm for many (possibly all) nodes in the graph, which is infeasible. Moreover, the

contribution values calculated by this work are path contributions as opposed to our desired

page contributions (Section 1.1).

Contributions received by a target page v from other pages of the graph has been inves-

tigated by Andersen et al. [1]. The authors presented a local approximation algorithm for

finding a PageRank contribution vector representing contributions made to v, as well as an

algorithm for finding the supporting set of page v. The former algorithm employs the idea

of [16] in reverse direction: the score of the target page is pushed back repeatedly to its

incoming neighbors, then to the neighbors of the neighbors and so on, until the value associ-

ated with each page becomes smaller than the desired error ϵ. This provides an approximate

on the contribution of each page u to page v. To find the smallest farm that supports v

beyond a given threshold ρ (i.e., a set of pages from which a ρ fraction of the PageRank

score of page v comes from), the aforementioned algorithm for finding contribution vectors

is repeated in a binary search procedure to find the minimum farm size. This algorithm

performs efficiently in approximating contribution values with guaranteed error ϵ. However,

as discussed earlier, the contribution values considered in this paper are only path contri-

butions, i.e., the PageRank contribution made by paths starting exactly at u and ending at

v. However, we note that a significant portion of the PageRank score transferred from u to

v depends on the state of u itself in the graph; a page u1 with no incoming links can make
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much less contribution to v than a page u2 with a reasonable PageRank score which itself

is the destination of many paths. We capture this fact by calculating page contributions as

the difference that the existence or non-existence of page u makes in the PageRank score of

page v.

To the best of our knowledge, the only previous work considering page contribution

values is the algorithm proposed by Zhou and Pei [31]. The algorithm heuristically searches

in a local neighborhood of the target page up to a given distance k in order to reach to a

given threshold θ to the PageRank of the target page. If the algorithm does not reach to

the threshold, then the whole local neighbors of distance k reported as a supporting set.

This work, for the first time, considers the notion of page contribution separate from the

path contribution, however, no systematic method for calculating page contribution values

is provided. Moreover, no approximation guarantee is provided on the size and accuracy of

the returned page farms.

Our work, on the other hand, presents a systematic method for calculating page con-

tribution values, and also includes a local approximation algorithm with guaranteed error

bounds. We first formulate the page contributions suggested by Zhou and Pei in [31] as

closed-form matrix equations, and then develop a new algorithm for local approximation of

these values which builds upon the algorithm in [1].



Chapter 3

Page Contributions in the Graph

In this chapter, we provide a new method to calculate the page contribution of nodes to each

other. We first review basic preliminaries from the literature, and then present a systematic

method for obtaining page contributions. We then formulate this contribution value as a

series of matrix equations, which forms the basis of our algorithms in the next chapter.

3.1 Preliminaries

We model the web with a directed graph G = (V,E) in which each node represents a page

and a directed edge from node u to node v represents a hyperlink from page u to page v;

similarly, in a citation graph each node represents a paper and a link from node u to node

v exists iff paper u cites paper v. N denotes the number of nodes of the graph.

The PageRank algorithm and the concept of page contribution discussed shortly are

primarily defined for web pages, but they are also used in other contexts such as citation

networks. We use both terms page and node depending on the context to refer to the

nodes of the graph. We also refer to graph nodes simply by their indices, e.g., node i where

1 ≤ i ≤ N . Let I(v) denote the set of incoming neighbors of node v, O(v) the set of

outgoing neighbors of node v, and ODeg(v) = |O(v)| and IDeg(v) = |I(v)| be the number of

its outgoing and incoming links, respectively.

10
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Table 3.1: Notations used in the thesis.
Notation Description

G,V,E,N Graph G = (V,E). N = |V |.
G(U) Induced subgraph created by voiding (removing all outgoing links) of

nodes u /∈ U in the original graph.

I(v), IDeg(v),
O(v),ODeg(v)

I(v), O(v): the set of incoming and outgoing neighbors of node v, re-
spectively. IDeg(v) = |I(v)|,ODeg(v) = |O(v)|.

α, d α is the random jump probability. d = 1− α is the damping factor.

LN×N Left-stochastic matrix of the graph (each column sums to 1).

SPcont(v, u) Sum of the contribution of all paths from u to v.

MN×N Matrix of total path contribution: M [v, u] = SPcont(v, u).

ev Unit vector whose v-th entry is 1 and all others are 0.

pr(u) PageRank vector of the graph (
∑

u∈V pr(u) = N).

cvv Path contribution vector of v where cvv(u) = SPcont(v, u).

cpvv Augmented path contribution vector of v; cpvv(u) = cvv(u)× pr(u).

gcvv Page contribution vector of v where gcvv(u) is the page contribution
of node u to node v.

3.1.1 Stochastic Matrices

A stochastic matrix, also called a probability or transition matrix, represents transition

probabilities in a graph. There are different types of stochastic matrices. A right stochastic

matrix, is a square matrix in which each row consists of nonnegative real numbers, and

sum up to 1. A left stochastic matrix, is a square matrix in which each column consists of

nonnegative real numbers, and sum up to 1. A doubly stochastic matrix is a square matrix

where all entries are nonnegative and all rows and all columns sum up to 1.

For our problem, we use a left stochastic matrix L = {li,j}N×N where li,j = 1/ODeg(i),

if there is an edge from i to j. That is, li,j represents the probability of going from node i

to node j assuming a uniform distribution among all outgoing neighbors of i.

3.1.2 The PageRank Algorithm

The PageRank algorithm was first formally described by Brin et al. [8], and is used for

ranking pages by the Google search engine. It is an iterative algorithm for measuring the

relative importance of web pages. Consider a random surfer on the web that can start from

any page and keeps following the outgoing links of pages. The surfer may also get bored

at some point and jump to some random page on the web (not necessarily a page linked to
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by the current page). The probability of this random jump is denoted by α. Assuming the

surfer is currently on page v which has ODeg(v) outgoing links, in the next step the surfer

either jumps to one of the ODeg(v) neighbors of v with probability (1 − α)/ODeg(v) for

each neighbor, or to any other of the N page on the web (including itself) with probability

α for each page. We also note that the random surfing model in the literature is sometimes

defined based on d, the damping factor which is equal to d = 1− α.

The PageRank score of a node is defined as the probability of the random surfer being

at node v in the steady state, i.e., in the long term, where the probability assigned to each

node is consistent with the probabilities assigned to its neighbors. This can be formally

defined as follows.

Definition 1 (PageRank Score). The PageRank score of node v on graph G is given as:

PageRank(v,G) = α+ (1− α)
∑

u∈I(v)

PageRank(u,G)

ODeg(u)
. (3.1)

The PageRank algorithm is often implemented in an iterative manner. First, an arbitrary

value (e.g., 1) is assigned as the PageRank score of each node, and then Equation (3.1) is

repeatedly applied until the PageRank vector converges.

3.1.3 Induced Subgraph

We use a definition of induced subgraph suggested in [31], which is different from the con-

ventional definition of induced subgraph in graph theory.

Definition 2 (Induced Subgraph). For a set of vertices U , the induced subgraph of U is

given by G(U) = (V,E′), where E′ = {v → u|(v → u ∈ E) ∧ (v ∈ U)}. That is, in G(U),

all the vertices that are not in U are voided—its outgoing links are removed.

3.1.4 Path and Page Contribution

The definition of page contribution as well as path contribution, and also the relationship

between them is reviewed in this part.

An intuitive method for calculating the contribution of a node to the PageRank score

of a given target node, is to neutralize the impact of the contributor node by removing its

outgoing links. Then, we can measure the difference of the PageRank score of the target

node with and without the neutralized node. The formal definition of page contribution

based on this idea is as follows.
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Definition 3. (Page Contribution [31]). Consider graph G = (V,E) and target node v ∈ V .

The contribution of node u ∈ V to the PageRank score of v is:

PageCont(v, u) = PageRank(v,G)− PageRank(v,G(V − {u})) (3.2)

Although this definition is simple and intuitive, for every node u we need to calculate

PageRank score, which makes it inefficient especially for large graphs. An alternative way

suggested in [31] is to calculate the page contribution through path contributions.

Definition 4. (Path Contribution [31]). Consider graph G = (V,E) and target node v ∈ V .

Let P = v0 → v1 → ... → vn → v be a directed path from v0 to v in the graph. The path

contribution to the PageRank of v from P is defined as

PathCont(P, v) = α
n∏

i=0

1− α

ODeg(vi)
(3.3)

We show the sum of all path contributions from node u to v with SPcont(v, u) as follows:

SPcont(v, u) =
∑

path P from u to v

PathCont(P, v) (3.4)

Also, based on a proposition in [9], the PageRank score of node v can be calculated using

the path contributions as follows.

PageRank(v) =
∑
x∈V

SPcont(v, x) (3.5)

The following lemma states the relationship between page contribution and path contri-

bution.

Lemma 1. ([31]) The page contribution of a node u to node v can be calculated through

path contributions as follows:

PageCont(v, u) =
∑

path P from u to v

PathCont(P, v)

+
∑
x∈V

( ∑
path P from x to v through u

PathCont(P, v)
)
. (3.6)

Proof. According to Definition 3.2, for nodes v and u in graph G = (V,E) we have:

PageCont(v, u) = PageRank(v,G)− PageRank(v,G(V − {u}))
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Using Equation 3.5, we have:

PageCont(v, u) =
∑
x∈V

SPcont(v, x)−
∑

x∈V−{u}

SPcont(v, x). (3.7)

Because the induced subgraph G(V − {u}) is obtained by removing the outgoing links

of u, the set of paths remaining after the above subtraction consists of all paths from u to

v as well as any path from another node x (x ̸= u) to v that passes through u.

3.2 A Systematic Method For Calculating Page Contribu-

tions

A simple way of estimating the page contribution values defined in the previous section

(Equation (3.6)) is to exhaustively enumerate all paths involved in PageCont(v, u) and sum

up their contributions. We propose an alternative method for this task in this section, which

provides a closed form equation for PageCont(v, u).

Our goal is to first calculate PageCont(v, u) based on SPcont(·).

Lemma 2. For u, v, x ∈ V (u ̸= v), let S denote the set of all paths from x to v that go

through u, let S1 denote the set of all paths from x to u that visit u only once (i.e., no cycles

over u), and let S2 denote the set of all paths from u to v that can visit u any number of

times. The sum of the contribution of all paths from x to v that go through u can be found

as: ∑
P∈S

PathCont(P, v) =
∑

P1∈S1

∑
P2∈S2

PathCont(P1 · P2, v), (3.8)

where P1 · P2 denotes concatenation of paths P1 and P2; clearly it always happens at u.

Proof. Let S′ := {P1 · P2 | P1 ∈ S1, P2 ∈ S2}. We show that S = S′, and that no path is

counted more than once in Equation (3.8).

First, it is easy to verify that S ⊆ S′: if there is a path P such that P ∈ S, P ̸∈ S′,

we consider the first time node u is visited in the path P = x, . . . , u, . . . , v and we break

it into two paths PA = x, . . . , u and PB = u, . . . , v. From the definition of S1 and S2, it

immediately follows that PA ∈ S1 and PB ∈ S2, and hence P ∈ S′.

Next, we similarly verify that S′ ⊆ S: each path P ∈ S′ is a concatenation of a path

from S1 and one from S2, so it would start at x, end at v, and visit u at least once. Hence,

it is by definition one of the paths in S. This leads to S = S′.
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Finally, we must show that the right hand side summation in Equation (3.8) counts the

paths in S′ once and only once. Assume that there is a path P ∈ S′ that is counted more

than once (at least twice) as P = PA · PB = PC · PD, where PA, PC ∈ S1 and PB, PD ∈ S2.

We have PA ̸= PC and PB ̸= PD. This is because PA · PB and PC · PD both constitute

the same path (i.e., the same sequence of nodes); hence either of the equalities PA = PC

or PB = PD would immediately result in the other one being true as well. Therefore, the

equality PA · PB = PC · PD means that either PA has to be a prefix of PC or the other way

around. Also since both paths PA and PC are in S1, they both end at u. This indicates

that either of PA or PC has to visit u more than once so that PA ̸= PC can hold, which is

in contradiction with the definition of S1. Hence, Equation (3.8) holds.

Lemma 3. The sum of the contributions of all paths in S1, which is the set of all paths

from x to u that visit u only once, can be calculated as:∑
P∈S1

PathCont(P, u) =
SPcont(u, x)

SPcont(u, u)
· α. (3.9)

Proof. Let Sx→u denote the set of all paths from x to u (can visit u any number of times),

and Su→u the set of all paths starting at u and ending at u itself (including the path of

length 0 at u). We have:

Sx→u = { P1 · P2 | P1 ∈ S1, P2 ∈ Su→u }.

Therefore, the sum of the contributions of all paths in Sx→u can be calculated as:

SPcont(u, x) =
∑

P∈Sx→u

PathCont(P, v)

=
∑

P1∈S1

∑
P2∈Su→u

PathCont(P1 · P2, u)

=
∑

P1∈S1

∑
P2∈Su→u

PathCont(P1, u) ·
1

α
· PathCont(P2, u)

=
∑

P1∈S1

PathCont(P1, u) ·
1

α
· SPcont(u, u),

where the equality PathCont(P1 · P2, u) = PathCont(P1, u) ·
1

α
· PathCont(P2, u) comes

from the definition of path contribution: PathCont(u0 → u1 → · · · → ul → u, u) =
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α
∏l

i=1

1− α

Do(ui)
. From the above equation it simply follows that:

∑
P∈S1

PathCont(P, u) =
SPcont(u, x)

SPcont(u, u)
· α.

Using the above lemmas, we can prove the following theorem.

Theorem 1. The sum of the contributions of all paths from x to v that go through u (u ̸= v),

i.e., all paths in S, can be calculated as:∑
P∈S

PathCont(P, v) =
SPcont(u, x)

SPcont(u, u)
· SPcont(v, u)

Proof. This is easy to verify using Lemmas 2 and 3.∑
P∈S

PathCont(P, v) =
∑

P1∈S1

∑
P2∈S2

PathCont(P1 · P2, v)

=
∑

P1∈S1

∑
P2∈S2

PathCont(P1, u) · α · PathCont(P2, v)

=
∑

P1∈S1

PathCont(P1, u) · α · SPcont(v, u)

=
SPcont(u, x)

SPcont(u, u)
· SPcont(v, u) (3.10)

Finally, we can rewrite Equation 3.6 using SPcont(·) and PageRank.

Theorem 2. The page contribution of node u to node v equals:

PageCont(v, u) = SPcont(v, u) ·
(PageRank(u)

SPcont(u, u)

)
(3.11)
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Proof. Using Lemma 1 and 3, and Theorem 1, we have:

PageCont(v, u) =
∑

path P from u to v

PathCont(P, v) +

∑
x∈V−{u}

∑
path P from x to v through u

PathCont(P, v)

= SPcont(v, u) +
∑

x∈V−{u}

SPcont(u, x)

SPcont(u, u)
· SPcont(v, u)

= SPcont(v, u) ·
(
1 +

1

SPcont(u, u)

∑
x∈V−{u}

SPcont(u, x)
)

= SPcont(v, u) ·
(∑

x∈V SPcont(u, x)

SPcont(u, u))

)
= SPcont(v, u) ·

(PageRank(u)

SPcont(u, u)

)
And the last equality holds based on Equation 3.5.

3.3 Calculation of Page Contribution Using Matrix Equa-

tions

In this section, we develop a method to calculate path and page contributions based on the

stochastic matrix of the graph.

Theorem 3. Let L be the stochastic matrix of a graph G = (V,E). Matrix M such that

M [v, u] represents the sum of the contributions of all paths from node u to node v, i.e.,

M [v, u] = SPcont(v, u), can be calculated as follows:

M = α

∞∑
t=0

(1− α)t · Lt. (3.12)

Proof. In order to obtain matrix M , we note that according to the definition of path con-

tribution (Equation (3.3)), the sum of the path contributions from node u to node v (i.e.,

M [v, u]) is equal to the sum of the path contribution of u’s outgoing neighbors x ∈ O(u)

to v (i.e., M [v, x]), times the probability of going from u to each of these neighbors (i.e.,
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1−α
ODeg(u)). More specifically, the following equations hold for all entries of M :

M [v, u] =
∑

x∈ O(u)

M [v, x]
1− α

ODeg(u)
if u ̸= v (3.13)

M [v, u] =
∑

x∈ O(u)

M [v, x]
1− α

ODeg(u)
+ α if v = u (3.14)

The difference between Equation (3.13) and Equation (3.14) is that when u = v, we are

interested in all paths starting from v and ending on itself, including the path of length 0,

which is not captured in Equation (3.13)—this is the probability of starting at v (which is

1) and immediately staying at v forever (with the probability of α).

Equations (3.13) and (3.14) can be summarized as:

M = (1− α) ·ML+A, (3.15)

where A is a scalar matrix with a scalar factor α. Inserting the power series of Equation

(3.12) into the right hand side of Equation (3.15) leads to:

A · (1− α)

∞∑
t=0

(1− α)t · LtL+A = A
(
(1− α)

∞∑
t=0

(1− α)t · LtL+ I
)

(3.16)

= A
( ∞∑

t=1

(1− α)t · Lt + (1− α)0 · L0
)

= α

∞∑
t=0

(1− α)t · Lt

(3.17)

Hence, the power series is a solution to Equation (3.15). We now show that this power

series is the only solution. Assume that this is not the case, andM1 andM2 are two solutions

of Equation (3.15):

M1 = (1− α) ·M1L+A

M2 = (1− α) ·M2L+A

⇒M1 −M2 = (1− α) · (M1 −M2)L. (3.18)

For simplicity, let M1 −M2 = K, K[i, j] = kij , and L[i, j] = lij . Since K ̸= 0, we select

one of its non-zero rows, assume it is row i, and we choose the entry in row i which has the



CHAPTER 3. PAGE CONTRIBUTIONS IN THE GRAPH 19

largest absolute value, denoted by kij :

|kij | = (1− α) · (|ki1 · l1j + ki2 · l2j + · · ·+ kin · lnj |)

≤ (1− α) · (|ki1 · l1j |+ |ki2 · l2j |+ · · ·+ |kin · lnj |)

≤ (1− α) · (|kij · l1j |+ |kij · l2j |+ · · ·+ |kij · lnj |)

= (1− α) · (|kij | · |l1j |+ |kij | · |l2j |+ · · ·+ |kij | · |lnj |)

= (1− α) · (|kij | · (|l1j |+ |l2j |+ · · ·+ |lnj |))

= (1− α) · |kij | (3.19)

We have |kij | = (1 − α) · |kij | which is a contradiction for 1 − α ̸= 1. Hence, M =

α
∑∞

t=0 (1− α)t · Lt is the only solution of Equation (3.15). It just remains to prove the

convergence of the series which we do as follows.

Lemma 4. All powers of a left stochastic matrix L are left stochastic matrices.

Proof. This can be simply proven by induction. For t = 1, Lt = L is a stochastic matrix by

assumption. We show that for every t > 0, if Lt is an stochastic matrix, Lt+1 is stochastic

as well. The entries of an stochastic matrix are non negative by definition, then for each

column c of Lt+1, the sum of all entries, which we need to show is equal to 1, is calculated

as:

N∑
i=1

Lt+1[i, c] =
N∑
i=1

N∑
j=1

Lt[i, j]L[j, c] =
N∑
j=1

(
L[j, c]

N∑
i=1

Lt[i, j]
)
=

N∑
j=1

L[j, c] = 1.

Lemma 5. The power series in Equation (3.12) converges for any stochastic matrix L.

Proof. Let 1N×N denote an N×N matrix whose entries are all 1, and the relation ≤ between

two matrices as A ≤ B stand for A[i, j] ≤ B[i, j] for all 1 ≤ i, j ≤ N . By Lemma 4 we have:

Lt ≤ 1N×N (t ≥ 0)⇒ α

∞∑
t=0

(1− α)t · Lt ≤ α

∞∑
t=0

((1− α)t · 1N×N ) ≤ 1N×N ·
1

α
.

Also, since (1− α) · L ≥ 0, the series is ascending, and the lemma is proved.

Having calculated matrix M using Theorem 3, the next and last step to formulate the

page contribution value by a matrix equation is simply substituting SPcont(.) values by the

entries of M .
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Corollary 1. The page contribution of node u to node v (u ̸= v), can be formulated by a

matrix equation as follows. PageCont(v, v) = α by definition.

PageCont(v, u) = PageRank(u) · M [v, u]

M [u, u]
, (3.20)

where matrix M is defined in Theorem 3.

Proof. Since SPcont(v, u) = M [v, u] from Theorem 3, it is enough to substitute SPcont(v, u)

and SPcont(u, u) in Theorem 2 with M [v, u] and M [u, u].

The complexity of calculating page contribution for every pair of nodes using matrix

multiplications is of O(K×N3), where K is the number of iterations until convergence. For

example, if in the implementation of Equation 3.12 we consider convergence as when the

values added to the series are all smaller than a threshold ϵ, we have K = O(log(1−α) ϵ); this

is because the value added to each cell of matrix M in iteration t is no larger than (1−α)t.

Moreover, by using Strassen’s algorithm for matrix multiplications, this complexity can be

reduced to O(log(1−α) ϵ×N2.8).



Chapter 4

Local Calculation of Page

Contribution Vector

As we have shown in the previous chapter, the page contribution of node u to node v

can be calculated as PageCont(v, u) = SPcont(v, u) · PageRank(u)/SPcont(u, u), where

SPcont(v, u) is the sum of the contribution of all paths from u to v. We would like to find a

vector that represents the page contribution of all nodes of the graph to a particular target

node. The exact value of such page contribution vector can be obtained using the matrix

calculations in the previous chapter. However, it needs repeated multiplications of the

stochastic matrix of the whole graph in itself, even if we are looking for the vector only for

one target node (i.e., one row of the page contribution matrix), which is very inefficient and

even infeasible when we are working with large datasets. In this chapter, we first formally

define the page contribution vector in 4.1, and then present an efficient local algorithm to

approximate it.

4.1 Page Contribution Vector

Let cvv be a row vector where cvv(u) = SPcont(v, u). We can obtain cvv easily using

Theorem 3 as follows:

cvv = α
∞∑
t=0

(1− α)t · Ltev, (4.1)

where L is the stochastic matrix of the graph, α is the random jump probability, and ev is

the row unit vector whose v-th entry is equal to 1.

21
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Based on the path contribution vector cvv, we are going to find a page contribution

vector gcvv, where gcvv(u) = PageCont(v, u). Let pr be a pagerank vector so that pr(u) =

PageRank(u) , then based on Theorem 2 and using the path contribution vector we have:

gcvv(u) = pr(u) · cvv(u)/cvu(u) (4.2)

4.2 Approximation Algorithms

Our goal is to find a local algorithm to approximate page contribution vector. A local

algorithm for approximating a contribution vector has been proposed by Andersen et al.

in [1] as discussed in Section 2, however it only approximates the path contribution vector.

Based on this algorithm, we present a new algorithm to approximate the page contribution

vector.

Following Equation (4.2), our algorithm consists of two steps. In the first step, we follow

the same idea as in Andersen’s algorithm with a modification that we add in PageRank scores

into the computation of path contribution vectors. In this way, the search algorithm selects

nodes with higher pagerank scores, resulting in more efficient discovery of most contributing

nodes. In the second step, we refine the obtained vector by removing the self-contribution

factor from page contributions as in Equation (4.2).

4.2.1 Step 1 - Approximation of Augmented Path Contribution Vector

In this step, we are going to approximate the augmented path contribution vector whose

u-th entry is equal to the path contribution of node u to a given target node, multiplied by

the pagerank of node u. This is formally defined as follows.

cpvv := cvv�pr,

where � for two vectors v = (v1, v2, . . . , vn) and u = (u1, u2, . . . , un) is defined as follows:

v�u = (v1.u1, v2.u2, . . . vn.un)

Our algorithm for approximating the augmented path contribution vector is shown in

Fig. 4.1. The input to this algorithm consists of the target node v, the random jump

probability α (0 < α < 1), and the desired error bound ϵ (0 < ϵ < 1). The algorithm

computes a vector ˆcpvv which is an approximation of cpvv.
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Approximation of Augmented Path Contribution

ApproxAugPathCont (v, α, ϵ)
// v: target node; ϵ: max absolute error
// α: random jump probability (i.e., 1 - damping factor)
1. p = 0, r = ev
2. while r(u) · pr(u) ≥ ϵ for some node u do
3. Pick a node u where r(u) · pr(u) ≥ ϵ
4. pushback(u, p, r)
5. done
6. return p

pushback (u, p, r)
1. p(u)← p(u) + α · r(u) · pr(u)
2. r0 ← r(u); r(u)← 0
3. for w ∈ I(u) do
4. r(w)← r(w) + (1− α) · r0/ODeg(w)
5. done

Figure 4.1: The proposed algorithm for approximating the augmented path contribution
vector.

The algorithm keeps two nonnegative vectors p and r, starting with p = 0 and r = ev.

The key idea is to maintain the invariant p + cpvr = cpvv throughout the procedure.

The algorithm applies a series of pushback operations (starting from the target node v).

Each pushback operation takes one node u of the graph at a time with r(u)pr(u) ≥ ϵ, and

increases ∥p∥1 by moving an α fraction of r(u)pr(u) to p(u). This is done such that the

invariant p + cpvr = cpvv is maintained. The algorithm keeps performing the series of

pushback operations until all entries of the vector r become less than ϵ. Then, according to

the invariant, p will contain an ϵ-approximation of cpvv as proven shortly.

The fact that the equation p + cpvr = cpvv holds throughout the algorithm for all

pushback operations is the key point for proving the correctness of the algorithm. Before

proceeding with a proof of this equation, we first need to establish a number of preliminaries.

Using Equation 4.1, we can define the path contribution vector for a specified subset S

of vertices as follows:

cvS =
∑
v∈S

cvv
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Let cvS =
∑

v∈S ·ev. Then,

cvS = α

∞∑
t=0

(1− α)t · Lt · eS

For the sake of convenience, for any non-negative vector s, we define

cvs = α

∞∑
t=0

(1− α)t · Lt · s (4.3)

We can now prove the following equations using Equation 4.3. For any vector s we have:

cvs · L = cvsL (4.4)

cvs = α · s+ (1− α) · cvsL (4.5)

Lemma 6. Let p′ and r′ be the result of performing pushback(u) on p and r. If p and r

satisfy the invariant p + cpvr = cpvv, then p′ and r′ satisfy the invariant p′ + cpvr′ =

cpvv.

Proof. After the pushback operation, we have:

p′ = p+ α · r(u) · pr(u) · eu

r′ = r− r(u) · eu + (1− α) · r(u) · eu · L (4.6)

We are going to show that p+ cpvr = p′ + cpvr′ . Using Equation 4.5 we have:

cpvr = cpv(r−r(u)·eu) + cpvr(u)·eu

= cpv(r−r(u)·eu) + α · r(u) · eu + cpv((1−α)·r(u)·eu·L)

= cpv(r−r(u)·eu+(1−α)·r(u)·eu·L) + α · r(u) · eu

= cpvr′ + α · r(u) · eu

⇒ cpvr�pr = cpvr′�pr+ α · r(u) · eu�pr

⇒ cpvr = cpvr′ + p′ − p (4.7)
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We are now ready to present our approximation algorithm in full details, and analyze

its running time. We describe the running time of our algorithm based on the number

of pushback operations; we guarantee an upper bound on the total number of pushback

operations performed by the algorithm. The running time for each pushback operation is

also proportional to the incomming degree of the node which is being pushbacked.

Theorem 4. The algorithm ApproxAugPathCont(v, α, ϵ) returns a vector ˆcpvv such that

ˆcpvv ≥ 0 and for every vertex u we have:

cpvv(u)− ϵ ≤ ˆcpvv ≤ cpvv(u)

Let T be the total number of pushback operations performed by the algorithm, then:

T ≤ ∥cpvv∥1
αϵ

+ 1, (4.8)

where for any vector X = (x1, · · · , xn), ∥X∥1 =
∑n

i=1 |xi|.

Proof. Let pt and rt be the states of the vectors p and r after t pushes. The algorithm starts

with p0 = 0 and r0 = ev which satisfies the invariant p0 + cpvr0 = cpvv, and also using

Lemma 6, we know that pt + cpvrt = cpvv for every t ≥ 1. Thus cpvrt is the error term,

and since rt is nonnegative at each step the error is also nonnegative. When the algorithm

terminates, for every vertex u we must have rT (u)pr(u) ≤ ϵ. Also for every vertex u we

have:

cpvrT (u) ≤ rT (u) · pr(u) ≤ ϵ.

This is true because rT is nonnegative, cpvrT (u) = cvrT (u) · pr(u), and cvrT (u) ≤ rT (u)

since each column of L sums to 1. Also each pushback operation increases ∥p∥1 by at least

αϵ, so we have:

αϵ(T − 1) ≤ ∥pT−1∥1 ≤ ∥cpvv∥1

⇒ T ≤ ∥cpvv∥1
αϵ

+ 1 (4.9)

We also note that the nodes visited are at most at a distance of ⌈log(1−α)(ϵ/prmax)⌉ from
the target node, where prmax = maxu pr(u). This is because a term of (1 − α)/ODeg(w)

(i.e., at most 1−α) is multiplied in the r(·) value of nodes as we get far from the target node
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(see Line 4 of the pushback function in the pseudocode of Figure 4.1). Nevertheless, this is

only a loose upper bound on the distance (tens to hundreds in our experiments) which the

visited nodes most often do not reach; they were usually within a few hops from the target

node in our experiments.

4.2.2 Step 2 - The Approximation of Page Contribution (APC) Algorithm

In this step, we complete the calculation of the page contribution vector by adding in the

self contribution factor cvu(u) for each node. We present two alternatives for this purpose.

First, a straightforward way is to estimate cvu using Andersen’s algorithm in [1]. We show

the approximation error of this method in Theorem 5. In addition, we obtain an upper and

lower bound for cvu(u), and show that the page contribution vector can be approximated

with reasonable accuracy by just substituting cvu(u) values with a fixed constant.

In order to prove an upper bounds for error of our algorithm, we first need to see the

following lemma.

Lemma 7. Let v and u be two nodes in graph G = (V,E). Then:
0 ≤ cvv(u) ≤ 1− α (u ̸= v)

α ≤ cvv(u) ≤ 1 (u = v)
(4.10)

Proof. Recall that M = α
∑∞

t=0(1− α)t · Lt where L is the stochastic matrix of the graph,

and M [v, u] = cvv(u). Also recall that we have proven that all powers of a stochastic matrix

are stochastic, hence no entry of matrix Lt can be greater than 1. Then:

(for any x ∈ V ) M [v, x] = α
∞∑
t=0

(1− α)t · Lt[v, x] ≤ α
∞∑
t=0

(1− α)t = 1

Also, note that the minimum path contribution of one node to itself (cvv(v)) is the random

jump probability α by definition. Thus the lemma is proved for u = v.

Then for u ̸= v we have:

cvv(u) =
∑

x∈O(u)

(1− α

ODeg
· cvv(x)

)
≤ ODeg(u) · max

x∈O(u)

{ 1− α

ODeg(u)
·M [v, x]

}
≤ 1− α
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Moreover, obviously the minimum path contribution of node u to v when (u ̸= v) is 0,

since it might not exist any sequence of links from node u to v.

Theorem 5. Let ϵ be the absolute error of approximating cpvv using The Approximation of

Page Contribution (APC) algorithm, and also the absolute error of approximating cvu based

on Andersen’s algorithm in [1]. Then the absolute approximation error of approximating

gcvv(u), is max{ ϵ
α
, pr(u)

ϵ(1− α)

α (α− ϵ)
}.

Proof. According to the definition, the u-th entry of the page contribution vector is

gcvv(u) =
cpvv(u)

cvu(u)

Let ĉvu(u) denote the estimate value for cvu(u) using [1], then:

cvu(u)− ϵ ≤ ĉvu(u) ≤ cvu(u)

⇒ (1− ϵ

α
) · cvu(u) ≤ ĉvu(u) ≤ cvu(u) (4.11)

Also based on the Theorem 4 we have:

cpvv(u)− ϵ ≤ ˆcpvv(u) ≤ cpvv(u)

Then first:

cpvv(u)

cvu(u)
− ˆcpvv(u)

ĉvu(u)
≤ cpvv(u)

cvu(u)
− cpvv(u)− ϵ

cvu(u)

≤ ϵ

cvu(u)

≤ ϵ

α
(4.12)

And the last inequality holds, because the minimum amount of the self contribution is

α by definition.

Second:

ˆcpvv(u)

ĉvu(u)
− cpvv(u)

cvu(u)
≤ cpvv(u)

(1− ϵ

α
) · cvu(u)

− cpvv(u)

cvu(u)

≤ pr(u) · ϵ(1− α)

α (α− ϵ)
(4.13)

And again the last inequality holds because based on Lemma 7, maximum value of

cpvv(u) is pr(u) · (1− α).

Thus, the total absolute error is max{ ϵ
α
, pr(u) · ϵ(1− α)

α (α− ϵ)
}.
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(a) On the web graph (α = 0.15).
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(b) On the host graph (α = 0.15).
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(c) On the citation graph (α = 0.5).

Figure 4.2: Distribution of cvu(u) values of different data sets measured on 10,000 nodes
(uniformly selected from the ranked sequence of all nodes). α = 0.15, 0.5 on the web/host
and citation graph, respectively.

4.2.3 The Fast Approximation of Page Contribution (FAPC) Algorithm

Since gcvv(u) = cpvv(u)/cvu(u), using APC algorithm, we need to apply the Augmented

Path Contribution algorithm to obtain all the necessary cpvv(u) values, and then apply An-

dersen’s algorithm [1] several times to find cvu(u) for each contributor node u individually.

Although the approximation error of APC algorithm is small (as proven in the previous

subsection and confirmed in our evaluations), it can take a long time to complete especially

on large graphs. This is because for each nonzero element of cpvv Andersen’s algorithm

must be run.

However, we have observed that in all datasets we have looked at (web, host, and citation

graphs), the cvu(u) value (i.e., the self path contribution) is around a constant value α, for

the vast majority of nodes. In other words, there are not so many loops with significant

path contributions from node u to itself, and the main factor in cvu(u) is just a contribution

value of α corresponding to the 0-length path on node u.

This observation is illustrated in Figure 4.2, which plots the distribution of cvu(u) values

for the web, host and citation graphs datasets; the description of the datasets is given in

details in the next section. The cvu(u) values in this figure are found using Andersen’s

algorithm [1] with ϵ = 10−6, i.e., an absolute error of at most 10−6 which is negligible.

The values are calculated on 10,000 nodes from each data set, which are picked with equal

distances (N/10000) from the ranked (based on PageRank) sequence of all nodes; this is to

ensure that representative nodes from a wide range of PageRank scores are included. As

Figure 4.2 confirms, the vast majority of nodes have a self path contribution close to α. In
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particular, in the web graph data set the cvu(u) value equals α (0.15) for 58% of the nodes,

it is between 0.15 and 0.16 for 93% of the nodes, and less than 2% of the nodes have a

cvu(u) value greater than 0.20. These percentages are 70%, 94%, and again less than 2%

for the host graph. In the citation graph, as expected the self path contribution factor is

smaller since cycles are very unlikely. In particular, less than 0.02% of the nodes have a

cvu(u) value greater than 0.51 (α =0.5 for the citation graph).

Therefore, we can significantly reduce the running time of our APC algorithm by skipping

the calculation of cvu(u) values and just assume a fixed value of cvu(u) = α, without

introducing much error. We call this version of the APC algorithm the Fast APC (FAPC)

algorithm. In fact, the running time of FAPC algorithm is same as the running time for

approximation of augmented path contribution vector. We now provide some upper bounds

for the error of this approximation algorithm.

Theorem 6. By assigning cvu(u) = α (for every u ∈ V (G)), the approximation error of

the FAPC algorithm is at most max{ ϵ
α
,pr(u) · (1− α)2

α
}.

Proof. Let ˆcpvv(u) denote the estimate value for cpvv(u). The value approximated for

gcvv(u) = cpvv(u)/cvu(u) by the FAPC algorithm is ˆcpvv(u)/α. We have:

cpvv(u)

cvu(u)
− ˆcpvv(u)

α
≤ cpvv(u)

α
− ˆcpvv(u)

α
≤ ϵ

α
.

ˆcpvv(u)

α
− cpvv(u)

cvu(u)
≤ cpvv(u) ·

( 1

α
− 1

cvu(u)

)
≤ pr(u) · (1− α)

(1− α

α

)
The maximum approximation error is therefore: max{ ϵ

α
,pr(u) · (1− α)2

α
}.

Note that α is not the best value for cvu(u) to minimize the worst-case approximation

bound of the FAPC algorithm. Rather, the choice of cvu(u) = α is to minimize the ap-

proximation error for nodes whose cvu(u) value is close to α, which actually are the vast

majority of nodes. To make our study of the FAPC algorithm comprehensive, in the follow-

ing theorem we also show the best fixed value for cvu(u), which can minimize the worst-case

approximation error. Nevertheless, in our experiments we use cvu(u) = α since it results in

much smaller average-case errors (see the observation in Figure 4.2).

Lemma 8. By assigning a fixed value I0 (α ≤ I0 ≤ 1) to all cvu(u) (u ∈ V (G)), the

approximation error of the FAPC algorithm is at most:

max
{
pr(u) · (1− α)

( 1

α
− 1

I0

)
+

ϵ

I0
, pr(u) · (1− α)

( 1

I0
− 1

)}
. (4.14)
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Proof. Let ˆcpvv(u) denote the estimate value for cpvv(u). The value approximated for

gcvv(u) = cpvv(u)/cvu(u) is ˆgcvv(u) = ˆcpvv(u)/I0.

gcvv(u)− ˆgcvv(u) =
cpvv(u)

cvu(u)
− ˆcpvv(u)

I0
=

(I0 − cvu(u)) · cpvv(i) + cvu(u) · cpvv(u)− cvu(u) · ˆcpvv(u)

I0 · cvu(u)
=

cpvv(u)

I0
·
( I0
cvu(u)

− 1
)
+

cpvv(u)− ˆcpvv(u)

I0
. (4.15)

Since 0 ≤ cpvv(u) ≤ 1− α and α ≤ cvu(u), I0 ≤ 1, using Equation (4.15) we have:

gcvv(u)− ˆgcvv(u) ≤
pr(u) · (1− α)

I0

(I0
α
− 1

)
+

ϵ

I0

≤ pr(u) · (1− α)
( 1

α
− 1

I0

)
+

ϵ

I0
.

Moreover:

ˆgcvv(u)− gcvv(u) =
cpvv(u)

I0
·
(
1− I0

cvu(u)

)
+

ˆcpvv(u)− cpvv(u)

I0

≤ pr(u) · (1− α)

I0

(
1− I0

1

)
+ 0

≤ pr(u) · (1− α)
( 1

I0
− 1

)
.

Hence, the worst-case approximation error of the FAPC algorithm where cvu(u) = I0 equals:

max
{
pr(u) · (1− α)

( 1

α
− 1

I0

)
+

ϵ

I0
, pr(u) · (1− α)

( 1

I0
− 1

)}
.

Finally, we find the appropriate value for I0 that minimizes the worst-case approximation

error of gcvv(u). First, we note that the second term of the max{·} operator in Equation

(4.14) is a decreasing function of I0, meaning that the highest possible value for I0 (i.e.,

I0 = 1) would minimize it. The first term, on the other hand, can be an increasing or

decreasing function of I0 depending on the sign of pr(u) · (1 − α) − ϵ; for some nodes this

error is less for lower values of I0 while for some other nodes it is the opposite.

To find a fixed value for I0, which minimizes the worst-case approximation error in the

general case (independent of u), we denote by Pmax the maximum PageRank score in the
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graph, and rewrite the worst-case error in Equation (4.14) as follows:

max
{
Pmax(1− α)

( 1

α
− 1

I0

)
+

ϵ

I0
, Pmax(1− α)

( 1

I0
− 1

)}
=

max
{X

α
− X − ϵ

I0
,
X

I0
−X

}
; X = Pmax(1− α). (4.16)

We can now find the best value for I0 in the general case.

Theorem 7. Assume Pmax(1 − α) > ϵ. To minimize the worst-case approximation error

of the FAPC algorithm, the fixed value I0 to assign to all cvu(u) (u ∈ V (G)) must be

I∗0 =
2α

1 + α
− αϵ

Pmax(1− α2)
, where Pmax = maxu∈V (G) pr(u).

Remark 1. We assume Pmax(1 − α) > ϵ because Pmax is usually a large number, e.g.,

Pmax = 65,172, and 34,000 in the web, and citation graph datasets, respectively.

Proof. The first term of the max{·} operator in Equation (4.16) is an increasing function

of I0. This means that the smallest possible I0 value, I0 = α, will minimize it. As with the

second term of the max{·} operator, on the other hand, the largest possible value I0 = 1

will minimize it. Therefore, the optimal I0 value that minimizes the maximum error in

Equation (4.16) can be found as:

X

α
− X − ϵ

I0
=

X

I0
−X

⇒ I∗0 =
2α

1 + α
− αϵ

Pmax(1− α2)
. (4.17)

Also the minimum worst-case error for approximating each gcvv(v, u) value can be achieved

by replacing I∗0 from Equation (4.17) in Equation (4.14).

It is easy to verify that the I∗0 value obtained from Equation (4.17) is within the valid

range α ≤ I∗0 ≤ 1:

I∗0 <
2α

1 + α
< 1.

I∗0 = α
2Pmax(1− α)− ϵ

Pmax(1− α2)
≥ α⇔ 2Pmax(1− α)− ϵ ≥ Pmax(1− α2)

⇔ Pmax(1− α)2 ≥ ϵ,

For example, for α = 0.15 which is the commonly used α value on the web graph, the

worst-case approximation error can be minimized by I∗0 ≃ 0.26. For α = 0.5 which is used

on the citation graph, we obtain I∗0 ≃ 0.67. Nevertheless, as discussed earlier we use I0 = α

since it dramatically reduces the average-case error.
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4.3 Supporting Sets

A supporting set of a target node v is a set U of nodes which make a nonzero contribution

to the PageRank score of v. For example, U = {v} is a minimum-size supporting set and

U = {u | v can be reached from u} is the maximum size supporting set of node v.

The supporting set of interest is generally a set of nodes that contribute the most to

v’s PageRank score. For example, Andersen et al. [1] consider the supporting set of target

node v as the k nodes with highest entries in the cvv vector, or the nodes whose sum (i.e.,

total path contributions) becomes at least a θ fraction of the PageRank score of v. Either

k (the supporting set size) or θ (the supporting set’s contribution) can be given as input.

Then, the other variable, contribution or size, is approximately maximized or minimized

respectively.

Another example is the work by Zhou and Pei [31] in which a similar supporting set is

defined in the form of a (θ, l)-farm for target node v: the minimum-size set of nodes whose

total path contribution to v is at least θ ·pr(v), and only consists of nodes with distance at

most l to node v. A heuristic algorithm is then proposed for finding these farms.

We return the top k nodes with highest entries in the gcvv vector as the supporting set

of node v; if no k is given, we return all nodes with non-zero entries in gcvv.

As discussed in Section 1.1, the influence that two nodes u and u′ with equal path contri-

butions to v can make to v’s PageRank score can be significantly different depending on the

PageRank score of u and u′ themselves. Therefore, we find page contribution (rather than

path contributions) as a better measure for capturing the contributions in the PageRank

algorithm. We will assess in Section 5.3 the quality of supporting sets as the page contri-

bution of its nodes; a set of nodes with higher page contributions is a stronger supporter of

the target node than a set with lower page contributions.



Chapter 5

Evaluation

In this chapter, we present the results of our experiments with the proposed page contri-

bution algorithms. The setup for our experiments including the datasets that we use are

described in Section 5.1. Then, in Section 5.2 we evaluate our algorithms and report the

results. Finally, in Section 5.3, we compare our work with two related previous works.

5.1 Setup

Our page contribution algorithm is general and applicable in any context where the PageR-

ank algorithm is used. We select two different categories of graphs to conduct our experi-

ments on: a web and its host graph, and a citation graph.

We use the Webspam-uk2007 dataset [25] from Yahoo! Research for our web graph

experiments. This dataset is based on a crawl of the .uk domain in May 2007, and consists

of two graphs: a web graph of over 105 million nodes (pages) and approximately 3.7 billion

edges (hyperlinks), and a host graph of about 115,000 nodes and 1.8 million edges. The host

graph is a summary of the web graph in which each host (which can include several pages)

is represented by a single node; a link exists from host A to host B iff a page on host A

links to a page on host B. The Webspam-uk2007 dataset [25] also includes a spam/nonspam

label for about 6000 labeled pages.

As the citation graph, we use the High-energy physics theory dataset [20]. The dataset

consists of 27,770 papers (nodes) with 352,807 edges which covers all papers in the period

from January 1993 to April 2003 (124 months) on this topic. If a paper i cites paper j,

the graph contains a directed edge from node i to node j. The graph does not contain any

33
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information from the links to or from the papers outside the dataset.

We run our experiments on the High Performance Computing (HPC) cluster of the

Faculty of Applied Science, Simon Fraser University1. The nodes of the cluster have Intel

Xeon CPUs from 2.40 to 2.80 GHz with up to 16 cores. Each of our experiments is run

single-threaded on a single core of a machine. The machines have up to 32 GB of memory.

In our experiments with the web and host graphs, we use a value of 0.15 for random

jump probability α (see Chapter 3), i.e., a damping factor of d = 0.85 which is the common

value used in the PageRank algorithm on the web graph. In our citation graph experiments,

however, we need to use a different α value. This is because the behavior of a random surfer

in jumping from paper to paper is different than a random web surfer jumping from web

page to web page. We use a random jump probability of α = 0.5 for the citation graph as

has been suggested before in the literature [10, 22]. In order to find an appropriate value,

they assign different values to α, calculate PageRank scores, compare the results with the

other ranking methods, and then choose the best value for α that matches the previous

ranking methods.

We run each of our experiments on a set of target nodes. We use two such sets for each

graph. The first set of target nodes is a sample of the set of all graph nodes, chosen in a

way that it ensures that we consider nodes in the whole range of node rankings (based on

the PageRank algorithm). Consider the sequence of all graph nodes sorted in decreasing

order of PageRank score. From this sequence in the host and citation graphs, we pick 1000

nodes at uniform distances; for example, from the 27,000 nodes of the citation graph, nodes

ranked 1st, 28th, 55th, . . . are selected. From the web graph, 100 such nodes (at uniform

distances) are taken. This set of target nodes is indicated as U.P. 1000 nodes (standing for

uniformly picked) in the following figures. On the other hand, we also would like to evaluate

our algorithm specifically on high-ranked nodes, which have many more contributors with

a more diverse range of page contributions. Moreover, these nodes are of higher importance

and may be more likely to be a target in practice. Therefore, as the second target set we

take the top-ranked 1000 nodes from the host and citation graphs, and the top 100 nodes

from the web graph.

1https://wiki.cs.sfu.ca/HPC/
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5.2 Results

We conduct several experiments with our algorithms. First, we report the running time of

our algorithms. Then, we evaluate the absolute errors in the approximated page contribution

values. We also compare the observed errors with the theoretical upper bounds obtained in

Section 4.2 to show that: (i) our analysis of the worst-case approximation error of our algo-

rithms is reasonably tight, and (ii) our algorithms can achieve orders of magnitude smaller

average-case errors compared to the theoretical worst-case errors. Moreover, we evaluate

the relative error of the approximated values to illustrate the approximation accuracy with

respect to the actual page contribution values using Definition 3. We also evaluate the

accuracy of the estimated page contribution ratios, i.e., page contribution divided by the

PageRank score of the corresponding target node.

We note that to evaluate an estimated page contribution value for (v, u), we first need

the actual value of PageCont(v, u), which can be obtained using Equation 3.2 in Section

3.1. We used this equation and calculated the actual page contribution values for host and

citation graphs by repeatedly running the PageRank algorithm N times on these graphs.

However, for the web graph dataset this is not feasible to calculate. This is because such

task involves 105 million times computation of PageRank on the graph (each taking up to

hours). To work around this problem, we use the values obtained by the APC algorithm

(with a small ϵ) as reference page contribution values for the web graph. We note that

this may not be a 100% accurate measure for our evaluations, especially where we need to

analyze the observed errors with exact theoretical expectations. We therefore present our

main evaluation results on the host and citation graphs (where exact reference values are

available) in Sections 5.2.1 through 5.3, and then report the results of our experiments on

the web graph dataset in Section 5.2.5.

5.2.1 Running Time

For each given target node, our algorithm returns a set of contributing nodes as well as their

approximated page contribution values. We plot in Figure 5.1 the average time taken by

our algorithm for each target node. The figure shows that when target nodes represent the

whole graph (i.e., U.P. 1000 nodes), the FAPC algorithm takes between 1 to 95 ms on the

host graph and between 0 to 3 ms on the citation graph. On the other hand, as expected,

a longer time is taken for the top-ranked 1000 nodes. This is because those are the nodes
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(a) On the host graph.
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(b) On the citation graph.

Figure 5.1: Average time taken per target node to find its contributor nodes and their
approximated page contributions.

with the highest PageRank score, and therefore with the highest number of contributor

nodes to take into account. For the top 1000 nodes, the FAPC algorithm takes up to 1.6 s

for the host graph and up to 23 ms for the citation graph. The time for the median value

ϵ = 10−3, which provides reasonable accuracy as shown in the following, is about 100 ms

for the FAPC algorithm on the top 1000 nodes of the host graph, and it is under 4 ms for

all other experiments with FAPC.

The APC algorithm takes longer times as shown by the dashed lines in Figure 5.1. This

is expected due to the additional calculations done for approximating cvu(u) values. For

the median value ϵ = 10−3, this time on the host graph is about 50 and 130 ms for U.P.

1000 nodes and the top 1000 nodes, respectively. In the most time-consuming case, which

is with ϵ = 10−5, the time taken per target node reaches 4.5 s. For the citation graph

(Figure 5.1(b)), the APC algorithm takes between 0 to 30 ms for the U.P 100 nodes, and

between 0 and 60 ms for the top 1000 nodes.

5.2.2 Absolute Errors and Theoretical Upper Bounds

We first evaluate the accuracy of the algorithms in terms of the absolute errors. For this

purpose, we need the actual value of PageCont(v, u), which we obtained by running the

PageRank algorithm N times on the host and citation graphs. Each time, one of the nodes

is voided and PageRank is applied, which gives us the page contribution of the voided node

to other nodes of the graph. Note that this is an intensive procedure that has taken several
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(a) On the host graph with APC algorithm.
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(b) On the host graph with FAPC algorithm.
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(c) On the citation graph with APC algorithm.
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(d) On the citation graph with FAPC algorithm.

Figure 5.2: Absolute error in estimated page contributions and its theoretical upper bound.
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days on our host graph and citation graph datasets, and is only performed to obtain the

reference PageCont(v, u) values for comparison. Moreover, as discussed in Section 5.2 this

procedure is not feasible on the web graph dataset.

The absolute error of the values estimated by our algorithms are shown in Figure 5.2.

Consider a particular (v, u) pair where we approximate the page contribution of node u to

node v. The average of the absolute error of our approximation (averaged over all (v, u)

pairs) is plotted as the solid lines in Figure 5.2. The theoretical worst-case error is plotted

with dashed lines, which almost overlap in the figures.

The small values of the average errors show the accuracy of our algorithms in practice.

For example, even with ϵ = 0.01 which is a relatively large error bound, the absolute error

does not exceed 4×10−5 for the 1000 uniformly picked nodes of the host and citation graphs,

which is a small value. For the top 1000 nodes, which are more challenging target nodes as

discussed earlier, the absolute error still does not exceed 6 × 10−4, which is again a small

value compared to actual page contributions; the scale of the obtained approximation errors

with respect to actual values are further illustrated through analysis of relative errors in the

next subsections.

Although we have proven theoretical upper bounds on the absolute error of our algo-

rithms, they actually perform much better in practice in the average case. To demonstrate

this, for each (v, u) pair we consider the worst-case error bound on PageCont(v, u), see Sec-

tion 4. The average of this bound over all (v, u) pairs is plotted in Figure 5.2 as the dashed

lines. This bound is a function of ϵ for the APC algorithm, but it does not depend on ϵ in

the FAPC algorithm; the dominating error factor in that case is the fixed value assumed

for cvu(u). In all cases, the actual average absolute errors are orders of magnitude smaller

than the worst-case error bounds (note the log-log scale of the figures).

To further demonstrate the accuracy of our algorithms for the majority of nodes, we

consider the ratio of the obtained absolute error to the worst-case error bound for each

(v, u) individually. We plot the average and the maximum of this ratio over all considered

(v, u) pairs in Figure 5.3. The average ratio barely exceeds 10% for the APC algorithm,

which confirms the significantly smaller error in the average case compared to the worst-case

error bound. For the FAPC algorithm, the average ratio is almost 0 (lines overlapping the

horizontal axis). This is due to the special distribution of cvu(u) values which is equal or

very close to the minimum value of α in the different datasets (see Section 4.2.3). This

property makes the average-case accuracy of the FAPC algorithm much higher than the
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(a) On the host graph with APC algorithm.
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(b) On the host graph with FAPC algorithm.
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(c) On the citation graph with APC algorithm.
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(d) On the citation graph with FAPC algorithm.

Figure 5.3: Average and maximum ratio of absolute error to the worst-case error bound.
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unlikely worst case, which also shows the loose theoretical upper bound.

Another interesting finding in this experiment is that the maximum ratios, which are

the dashed lines in Figure 5.3, reach up to 80% for APC algorithm on the citation graph

(Figure 5.3(c)). This indicates that our error bound analysis is reasonably tight.

We also note that for the FAPC algorithm, this ratio does not exceed 50% even with

large ϵ values. This is because of the special distribution of cvu(u) values on the graphs

as shown earlier (see Section 4.2.3). This distribution makes the estimated values more

accurate than expected. The majority of cvu(u) values are close to the fixed value we

assumed, α, whereas a more uniform distribution of cvu(u) in [0, 1] would have resulted in

larger ratios in Figures 5.3(b) and 5.3(d).
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(a) On the host graph.
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(b) On the citation graph.

Figure 5.4: Overall relative error in estimated page contributions: the sum of the absolute
errors divided by the sum of the actual page contributions.

5.2.3 Relative Error of the Approximated Values

In addition to the absolute error, we also evaluate the accuracy of our algorithms in terms

of the overall relative error of the estimated page contributions. This error is measured as

follows:∑
v∈target nodes

∑
u∈contributors to v

∣∣∣EstimatedPageCont(v, u)−ActualPageCont(v, u)
∣∣∣∑

v∈target nodes

∑
u∈contributors to v ActualPageCont(v, u)

(5.1)

Note that we do not calculate per-node relative errors since ActualPageCont(v, u) may be

0 in many cases, resulting in an undefined relative error value. Instead, we draw the overall
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relative error from Equation (5.1) in Figure 5.4. The figure shows that, for instance, when

ϵ has its median value (10−3) this error is less than 40% and 20% on the host and citation

graphs, respectively. This suggests that a choice of ϵ = 10−3 provides reasonable accuracy

while also resulting in fast running times as discussed in Section 5.2.1. We also note that

the relative error of the FAPC algorithm (solid lines) is only slightly higher than that of the

APC algorithm (dashed lines) for the host graph. For the citation graph, the two curves are

actually overlapping. This is because the fixed value assumed for cvu(u) in Section 4.2.3 is

a close estimate for most of the nodes according to the special distribution of cvu(u) values

in the different datasets (Figure 4.2).
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(a) Average on the host graph.
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(b) Maximum on the host graph.
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(c) Average on the citation graph.
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(d) Maximum on the citation graph.

Figure 5.5: Average and maximum relative error in page contribution ratio: the fraction of
page contribution over the PageRank score of the target node.
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5.2.4 Page Contribution Ratios

We analyze the accuracy of the estimated page contributions with respect to the PageRank

score of the corresponding target nodes. We consider the page contribution ratio as the page

contribution divided by the PageRank score of the target node, i.e., what fraction of node

v’s PageRank score would have been lost if node u did not exist. These ratios are normalized

as percentages in [0, 100]. We plot in Figure 5.5 the average and the maximum error in page

contribution ratios obtained in our experiments. We find that the error in the estimated

page contribution ratios (as percentages) is on average less than 0.01% (Figures 5.5(a)

and 5.5(c)). Moreover, similar to the observation in Figure 5.4(b), the average error for the

two algorithms (the dashed vs. the solid line) is very close; it is actually overlapping for the

citation graph in Figure 5.5(c).

The maximum of these errors across all (v, u) pairs is shown in Figures Figures 5.5(b)

and 5.5(d). This value for the APC algorithm is reasonably small: 12% and 0.4% with the

median value of ϵ (ϵ = 0.001) for the host and citation graphs, respectively. The notable

smaller value on the citation graph is due to the smaller deviation of the citation graph

nodes from the fixed value assumed for cvu(u) compared to those of the host graph nodes.

We also note that the maximum error in page contribution ratio reaches over 250% for the

FAPC algorithm on the host graph (Figure 5.5(b)). This phenomenon happens on a small

minority of nodes whose actual cvu(u) value is close to 1—about 7 times higher than the

assumed value of 0.15. Nevertheless, the error for the vast majority of nodes is a small value

as confirmed by the below-0.01% average error in Figure 5.5(a).

5.2.5 Web Graph Results

As discussed in Section 5.2, reference page contribution values for the web graph dataset are

not available to us since they are infeasible to compute. Thus, we use PageCont(v, u) values

obtained by the APC algorithm as an approximate reference. We also note that the APC

algorithm needs to calculate a cvu(u) value for nearly 40 million nodes in our experiments;

recall that gcvv(u) = cpvv(u)/cvu(u). In other words, if we denote by Cv the set of nodes

for which APC needs to find cvu(u) (i.e., any node u such that cpvv(u) ≥ ϵ), we have

|
∑

v∈ target nodesCv| ≃ 40, 000, 000 (given that the smallest ϵ value in our experiments is

10−5). Therefore, the APC algorithm itself may take long and not finish in a reasonable

amount of time for very small ϵ values.
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Therefore, we decided to use use a fixed value of ϵ = 10−2 for the calculation of all

necessary cvu(u) values, which is the most intensive part of the job. On the other hand,

to increase the accuracy of page contribution estimates gcvv(u) = cpvv(u)/cvu(u), we use

a smaller ϵ value for finding cpvv(u) values—ϵ = 10−5. Having obtained the estimates for

reference PageCont(v, u) values, we measure the absolute error, the overall relative error,

and the error in page contribution rations in the same manner as in earlier experiments with

host and citation graphs.
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Figure 5.6: Average time taken per target node to find its contributor nodes and their
approximated page contributions in the web graph dataset.

We first measure the running time of the APC and FAPC algorithms on the web graph,

and plot it in Figure 5.6. The FAPC algorithm on the U.P. 100 nodes has taken from 2 to

50 seconds per node on average for different ϵ values. On the top 100 nodes, which are the

most time-consuming ones in the graph, this algorithm has taken from 13 seconds to up to

7 minutes per node; it is 40 seconds for ϵ = 10−2 which is enough for providing a reasonable

accuracy, as demonstrated shortly.

The running time of the FAPC algorithm shows a different behavior; it is almost a fixed

amount independent of ϵ. This is because given an ϵ value, we only use it for finding cpvv(u)

values. For the calculation of cvu(u) for all necessary nodes (eventually 40 million), on the

other hand, we use a fixed value ϵ = 10−2 as discussed earlier. Therefore, the majority of

the running time, which is the calculation of cvu(u) values, is independent of the variable

ϵ, and looks almost constant in Figure 5.6: 33 minutes per node for U.P. 100 nodes and 50

minutes for the top 100 nodes. Thus, the FAPC algorithm is the preferred choice only on

small graphs (thousands of nodes), and the APC algorithm is recommended for large graphs
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(a) APC algorithm.
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(b) FAPC algorithm.

Figure 5.7: Absolute error in estimated page contributions.

(millions of nodes) with reasonable accuracy that is shown next.

The absolute error of the APC and FAPC algorithm are shown in Figure 5.7. There is

no absolute error reported for APC with ϵ = 10−5, since that is the reference value; the

absolute error is thus 0 which is not shown in the log-scale plot in Figure 5.7. The error for

the FAPC algorithm is between 4× 10−4 and 4× 10−3 for the U.P. 100 nodes, and between

2 × 10−3 and 8 × 10−3 for the top 100 nodes, which are small values compared to actual

page contributions; the relative errors better illustrate this shortly. For the APC algorithm,

the error values are even smaller.

Next, the overall relative error of our algorithms (similar to Section 5.2.3) is shown in

Figure 5.8(a). The figure confirms that, for instance, with ϵ = 10−2 which runs the algorithm

fast, the relative error is below 20% in all cases. We also plot in Figure 5.8(b) the error in

page contribution ratios, i.e., page contribution divided by the PageRank score of the target

page. Similar to the experiments on the host and citation graphs (Section 5.2.4), a small

error of at most 0.0004% is observed.

5.3 Comparison with Previous Works

As discussed in Chapter 2, the work by Zhou and Pei [31] and the one by Andersen et al. [1]

are the most related works to our work, to the best of our knowledge. In this section, we

compare the supporting sets found by these algorithms, which is the only common part

among the three works.
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(a) Overall relative error.
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(b) Average error in page contribution ratios.

Figure 5.8: Overall relative error in estimated page contributions (the sum of the absolute
errors divided by the sum of the actual page contributions), and average error in page
contribution ratios (the fraction of page contribution over the PageRank score of the target
node).

5.3.1 Comparison with Andersen’s Algorithm

In this part, we compare the page contribution of the nodes returned by the FAPC algo-

rithm and those of the algorithm by Andersen et al. in [1]. We note that this algorithm

does not approximate page contribution values, and instead works with path contributions.

Nevertheless, in this experiment we are interested in the contribution of the returned nodes

to the target node’s PageRank score. As discussed in Sections 1.1 and 4.3, the contribution

of node u to node v’s PageRank score depends on the PageRank score of u and on the paths

from u to v, which are both aggregated in page contribution values that we calculate. We

compare the page contribution of nodes returned by FAPC and Andersen’s algorithm, and

we show that those returned by FAPC have higher page contributions to the corresponding

target nodes.

More specifically, to compare two returned sets A (containing nodes returned by Ander-

sen’s algorithm) and B (containing those returned by the FAPC algorithm) as contributors

to a given target node, we take the average page contribution made by nodes in A and by

those in B to the target node. The page contribution values used for the comparison are

the actual values using from Definition 3 in order to ensure a sound comparison between the

returned sets. Moreover, to ensure fairness in the comparison of sets A and B of different

sizes (which typically results in the smaller set having a higher average contribution), we
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sort both sets in the decreasing order of the associated (path or page) contributions, and

take the top min{|A|, |B|} elements of each set. We then take the average page contribution

of the nodes remaining in A and B as xA and xB, respectively.

10
−5

10
−4

10
−3

10
−2

10
−1

0

2

4

6

8

10

ǫ

A
v
er

a
ge

re
la

ti
v
e

im
p
ro

v
em

en
t

(%
)

 

 

Host graph; U.P. 1000 nodes

Citation graph; U.P. 1000 nodes

(a) Average on 1000 nodes uniformly picked from
the ranked set of all nodes.
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(b) Average on the top-ranked 1000 nodes.
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(c) Maximum on 1000 nodes (from both classes).

Figure 5.9: Relative increase in page contribution of returned nodes by the FAPC algorithm
and Andersen’s algorithm [1]; average and maximum on the host and citation graphs.

To show that the nodes returned by our algorithm have higher page contributions, we

measure the relative improvement of FAPC over Andersen’s algorithm as (xB − xA)/xA.

This improvement is plotted in Figure 5.9 for different target sets from the host and citation

graphs. For the U.P. 1000 nodes, the average improvement (Figure 5.9(a)) is between 4% to

10% for the host graph, but it is insignificant on the citation graph. For the top 1000 nodes,

on the other hand, the average relative improvement has much higher values (Figure 5.9(a))

specially for the host graph.
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(a) On the host graph.
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(b) On the citation graph.

Figure 5.10: Average time taken per target node by the FAPC algorithm and Andersen’s
algorithm [1].

One major reason for this difference is that nodes of higher PageRank scores have many

more contributors to take a set A or B from, which better demonstrates the ability of our

algorithm in picking those with higher page contributions. In addition to the average rela-

tive improvement, we also plot in Figure 5.9(c) the maximum of this value observed in our

experiments. The figure shows that there are target nodes for which the returned contrib-

utors by our algorithm have many times higher page contributions than those returned by

Andersen’s algorithm.

We also measure the time taken by the FAPC algorithm and Andersen’s algorithm [1]

in this experiment. The obtained values are plotted in Figure 5.10. As confirmed by this

figure, in most cases the FAPC algorithm runs, sometimes multiple times faster (note the

log-log scale of Figures 5.10(a) and 5.10(b)).

5.3.2 Comparison with Zhou and Pei’s Algorithm

Next, we compare the page contribution of the nodes returned by FAPC with that of nodes

returned by Zhou and Pei’s algorithm [31] reviewed in Chapter 2. This work proposes a

heuristic algorithm for finding a supporting set for a given target node. We conduct the

same comparison as in the previous subsection; comparison of the supporting sets in terms

of the page contribution of their nodes. The results are reported in Figure 5.11, which shows

the relative increase in the page contribution of returned nodes (similar to Figure 5.9) in

the citation graph. The figure shows that for the U.P. 1000 nodes, the average increase is
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(a) Average increase.
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(b) Maximum increase.

Figure 5.11: Relative increase in page contribution of returned nodes by the FAPC algorithm
and the algorithm in [31]; average and maximum on the citation graph.

always positive, though marginal; we shortly show that we also found these supporting sets

in a much shorter time. The average increase for the top 1000 nodes is more significant:

between 6% to 34%. The maximum increase (Figures 5.11(b)), on the other hand, shows

that there are target nodes for which the average page contribution of the supporting set

found by FAPC is much higher (up to over 150%) than the one found by the algorithm

in [31].
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Figure 5.12: Average time taken per target node by the FAPC algorithm and the algorithm
in [31].

We also report the time taken by these algorithms in Figure 5.12. As this figure confirms,

FAPC has taken orders of magnitude shorter times for finding supporting sets (note the log

scale of the figure).



Chapter 6

Conclusions and Future Work

In this thesis, we have taken a closer look at the PageRank algorithm and analyzed how a

node collects its PageRank score from other nodes in a graph. We developed a systematic

method for finding the contribution of any nodes u in a given target node v, as the different

that it would make in the PageRank score of node v if node u did not exist. We also de-

veloped two approximation algorithms for estimating these values locally, i.e., without the

knowledge of the whole graph. The first algorithm, the Page Contribution Approximation

(PCA), provides estimates that quickly approach the actual page contribution values as we

reduce the input error parameter ϵ. While an efficient solution for small scale graphs (thou-

sands of nodes), this algorithm can have a high running time on larger graphs (hundreds

of millions of nodes). Therefore, based on an observation about cyclic paths on different

real-world datasets, we also developed the Fast PCA (FPCA) algorithm. FPCA trades a

slight approximation error for a significantly better running time than the PCA algorithm.

It is therefore the recommended choice for large graphs. We evaluated our algorithms on an

partial web graph dataset, on the equivalent host graph, and on a scholarly citation graph.

The experimental results demonstrate the accuracy of our algorithms in estimating page

contribution values and in finding better supporting sets than similar previous works.

Our work can be used as an effective underlying tool for link-spam detection algorithms,

as well as a method for measuring the success of link-based SEO techniques. As one of the

directions for future research, we will employ the designed algorithms for a new link-spam

detection technique, which can benefit from a better supporting set found for each target

node as well as from fine-grained information such as the true contribution of individual

supporting nodes to the target node.

49
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In addition, we would like to explore the application of our work in other domains, such as

social networks where PageRank-based algorithms are used for analyzing the trust/credibility

of users.

Furthermore, we want to extend our page contribution approximation algorithms by

enabling it to estimate the total page contribution of a group of nodes to a given target

node, since it is not simply equal to the sum of the individual page contributions.
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