
BeeSecured Web – An AJAX Web Interface to a
Sensor Network for Occupational Safety

by
Frank Chen

B.A.Sc., Simon Fraser University, 2008

Research Project Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Engineering

in the

School of Engineering Science

Faculty of Applied Sciences

 Frank Chen 2012

SIMON FRASER UNIVERSITY
Spring 2012

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may

be reproduced, without authorization, under the conditions for
“Fair Dealing.” Therefore, limited reproduction of this work for the

purposes of private study, research, criticism, review and news reporting
is likely to be in accordance with the law, particularly if cited appropriately.

ii

Approval

Name: Frank Chen
Degree: Master of Engineering
Title of Thesis: BeeSecured Web – An AJAX Web Interface to a Sensor

Network for Occupational Safety

Examining Committee:
Chair: Ash Parameswaran, Professor

Bozena Kaminska
Senior Supervisor
Professor

Kamal Gupta
Supervisor
Professor

Date Defended/Approved: January 25, 2012

iii

Partial Copyright Licence

iv

Abstract

A software application for monitoring and controlling sensor network data needs to be

easily accessible and needs to maintain an accurate record of all activities in the

network. Traditional desktop applications have been a primary form of software

interface for many applications, but they require additional setup per physical machine

without the flexibility of access from additional computers. Our particular system of

interest, the BeeSecured rapid deployment and monitoring system, an end-to-end

solution for remotely monitoring personnel and assets in various terrains using wireless

sensor networks (WSN), currently uses a desktop application as the primary software

interface and does not include capabilities to maintain a record of the network activities.

This report presents the design and implementation of an AJAX application with the

integration of an open-source map technology and database system. The purpose of

this project is to design a cross-browser compatible user interface that can be

conveniently accessed by any computing device with an internet connection. The

application is suitable for real-time information updates as well as securely controlling

any system level data. In particular, the application is targeted for displaying

geographical locations for sensors in a WSN, with the capability to store and retrieve the

most up-to-date sensor network data in real-time. We have implemented an application

that utilizes AJAX technology at run-time, with the integration of the Google Maps

version 2 technology and the PostgreSQL database system, and we demonstrated our

application by integrating it with the BeeSecured rapid deployment and monitoring

system. WSN devices were generated via a software simulator to test the various

functionalities of our application, and we were able to demonstrate a working prototype

of the web interface.

Keywords: BeeSecured Web; BeeSecured; Google Maps; database; sensor network;
GWT

v

Acknowledgements

First, I would like to thank Dr. Bozena Kaminska for giving me the opportunity to partake

in the BeeSecured project and her guidance through various stages of my M.Eng

degree. I would also like to thank Dr. Marcin Marzencki for coordinating project

scheduling and providing general support throughout the project, and Dr. Jens Wawerla

for providing software and technical support, documentation, setting up required

environments for application deployment and driving the software integration effort

during the development of the project. I would also like to extend my thanks to all other

BeeSecured members who were involved in various stages in the project and provided

additional support and project knowledge.

vi

Table of Contents

Approval .. ii
Partial Copyright Licence ... iii
Abstract .. iv
Acknowledgements ... v
Table of Contents ... vi
List of Tables ... viii
List of Figures.. x
List of Acronyms .. xii

1. Introduction .. 1
1.1. BeeSecured Project Background .. 1
1.2. Client Profiles ... 1
1.3. Motivation ... 2
1.4. Objective .. 3
1.5. Contribution & Project Scope .. 3
1.6. Report Organization ... 4

2. BeeSecured Project Architecture Overview ... 5
2.1. System Components .. 5

2.1.1. Hardware Components ... 5
2.1.2. Software Components ... 8
2.1.3. Database .. 9

2.2. System Architecture ... 10
2.3. System Functionality .. 12
2.4. Data Flow ... 12

2.4.1. Handling Alarms .. 13

3. Software Requirements and Constraints .. 15
3.1. Uses Cases .. 15
3.2. Constraints ... 17
3.3. Project Schedule .. 18

4. Design Criteria .. 19
4.1. Application Platform .. 19

4.1.1. Platform Research .. 19
4.1.2. Firmware Research ... 21
4.1.3. Database Research .. 22
4.1.4. Map Technology Research ... 23
4.1.5. Method of Deployment .. 24

4.2. 4.2 Application Type ... 25
4.2.1. Front-End (Client-Side) ... 25
4.2.2. Back-End (Server-Side) .. 26
4.2.3. Communication Method .. 26
4.2.4. Deployment Environment .. 28

vii

4.3. Database .. 28
4.4. Database Connector – JDBC ... 29
4.5. Tools .. 29

5. Software Architecture .. 30
5.1.1. User Case Work Flow Scenarios... 32

6. Implementation ... 33
6.1. Implementation Architecture ... 33
6.2. Design .. 34

6.2.1. UML Diagrams .. 34
6.2.2. Client Package .. 35

6.2.2.1. Classes... 35
6.2.2.2. Interfaces .. 38

6.2.3. Server package ... 38
6.3. Database .. 39

6.3.1. Database Design .. 39
6.3.2. Notifications .. 41

6.4. EER Diagram ... 42
6.4.1. Relationship explained .. 43
6.4.2. Potential Performance Concerns... 43

6.5. Testing ... 44

7. BeeSecured Web Interface... 45

8. Future Work .. 50
8.1. Feature Implementation .. 50
8.2. Testing ... 51
8.3. Map Upgrades .. 51

8.3.1. Google Maps v3 .. 51
8.3.2. GWT Google Map Utilities ... 51
8.3.3. Mapstraction ... 51

8.4. Bug Fixes and Code Refactor ... 52

9. Conclusion .. 53

References ... 54

Appendices .. 55
Appendix A. UML for Client Application .. 56
Appendix B. UML for Server Application ... 70
Appendix C. Database Tables .. 72

viii

List of Tables

Table 2.1: PEG Sensor Table .. 7

Table 2.2: TAG Sensor Table .. 8

Table 3.1: BeeSecured Web Software Requirements .. 17

Table 3.2: Project Schedule .. 18

Table 4.1: Platform Comparison .. 19

Table 4.2: Datastore Storage Comparison .. 22

Table 4.3: Map API Comparison ... 23

Table 4.4: Method of Deployment Concerns ... 24

Table 4.5: SQL database comparison ... 28

Table 6.1: Notifications List ... 41

Table 6.2: Database relationship symbols ... 43

Table 7.1: Device Status Icons .. 47

Table 7.1: Unimplemented Features ... 50

Table C.1: Site Table ... 72

Table C.2: Device Table .. 72

Table C.3: Peg Config Table ... 73

Table C.4: Tag Config Table ... 74

Table C.5: Gateway Config Table.. 75

Table C.6: Alarm Data Table ... 75

Table C.7: External Sensor Type Table ... 76

Table C.8: Gateway Data Table .. 76

Table C.9: Peg Data Table .. 77

Table C.10: Tag Data Table .. 77

Table C.11: Tag Sensor Table .. 78

ix

Table C.12: Device Table .. 78

Table C.13: User Role Table ... 78

Table C.14: Login Table .. 78

Table C.15: Device Type Table ... 79

Table C.16: Sensor State Table .. 79

x

List of Figures

Figure 2.1: Lantronix Xport Pro ... 6

Figure 2.2: PEG Device Deployed with Solar Panel .. 7

Figure 2.3: TAG Device ... 8

Figure 2.4: System Architecture of One Site .. 10

Figure 2.5: System Architecture with Multiple Sites ... 11

Figure 2.6: Sequence Diagram for Raising Alarms .. 13

Figure 2.7: Sequence Diagram for Clearing Alarms .. 14

Figure 3.1: Administrator Use Cases ... 16

Figure 3.2: User Use Cases .. 16

Figure 5.1: Concept Diagram of BeeSecured Web .. 30

Figure 6.1: Implementation Architecture Diagram .. 34

Figure 6.2: Class UML Format .. 35

Figure 6.3: EER of BeeSecured Database .. 42

Figure 7.1: BeeSecured Web GUI ... 45

Figure 7.2: Gateway Settings Dialog ... 48

Figure 7.3: PEG Settings Dialog .. 48

Figure 7.4: TAG Settings Dialog .. 48

Figure 7.5: PEG Sensor Status Dialog .. 49

Figure 7.6: TAG Sensor Status Dialog .. 49

Figure 7.7: Device Configuration Dialog .. 49

Figure A.1: Login Class ... 56

Figure A.2: Config Class ... 57

Figure A.3: Constants Class .. 57

Figure A.4: AlarmData Class ... 58

xi

Figure A.5: BeeSecuredWeb Class (Fields) .. 59

Figure A.6: BeeSecuredWeb Class (Methods) .. 60

Figure A.7: GoogleMaps Class (Fields) ... 61

Figure A.8: GoogleMaps Class (Methods) ... 62

Figure A.9: Device, TagDevice, PegDevice Classes ... 63

Figure A.10: DeviceService, DeviceServiceAsync Class ... 64

Figure A.11: DeviceType, ExtSensorType ... 65

Figure A.12: SiteStorage, GwStorage, PegStorage, TagStorage, Site Classes 65

Figure A.13: GwStorage Class .. 66

Figure A.14: PegStorage Class ... 67

Figure A.15: TagStorage Class ... 68

Figure A.16: GwConfig, PegConfig, TagConfig Classes .. 69

Figure B.1: Servlet Classes ... 70

Figure B.2: Servlet Classes Continued .. 71

xii

List of Acronyms

Acronyms Definition

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
ASP Active Server Pages
BST BeeSecured Technologies
DOS Denial of Service
DBS Database Server
EC2 Elastic Cloud 2
EER Enhanced Entity Relationship
GUI Graphical User Interface
GWT Google Web Toolkit
HRD High Replication Datastore
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IaaS Infrastructure as a Service
IDE Integrated Development Method
IO Input/Output
JSNI JavaScript Native Interface
JSON JavaScript Object Notation
JVM Java Virtual Machine
OOD Object Oriented Design
OS Operating System
PaaS Platform as a Service
RDMBS Relational Database Management System
RPC Remote Procedure Call
SDK Software Development Kit
SDLC Software Development Life Cycle
StAX Streaming API for XML
WSN Wireless Sensor Network

1

1. Introduction

BeeSecured Web is a web interface designed for an occupational safety

monitoring system: BeeSecured. This section will cover a brief introduction to

BeeSecured, some of the motivation, objective, and scope for the BeeSecured Web

project as well as the organization for the remainder of the report.

1.1. BeeSecured Project Background

The BeeSecured system is an integrated intrusion detection and health

monitoring solution that uses a Zigbee wireless sensor network, and it provides an end-

to-end solution to monitor for occupational safety. The motivation behind designing a

system that utilizes a Zigbee network is to implement a solution that is operationally

efficient and low maintenance, and flexible to deploy to various terrains. The system

consists of many integral components from hardware, firmware to software. Hardware

devices consist of Zigbee coordinators, routers and end-devices for the WSN as well as

external sensors that could optionally be added to these devices. Firmware components

consist of customized software that configures individual hardware devices as

coordinator, router or end-device. Software components consist of front-end

applications that are used to monitor network and sensor statuses as well as servers

that translate Zigbee messages.

1.2. Client Profiles

BeeSecured applies wireless sensor network technology to monitor and detect

the statuses of individual nodes in the network. This particular system is an innovative

solution to monitor a closed proximity of both indoor and outdoor environments; some

specific client profiles are as follows:

2

Building Security (Indoor)

BeeSecured can provide a solution to monitor movement and location inside any

region that is within the Zigbee network. Nodes can be installed to monitor a hazardous

area within a building to ensure the safety of all personnel through determining their

location, body position and heart rate.

Security for Mining Sites (Outdoor)

Mining sites are especially dangerous and BeeSecured can be a good solution to

monitor the safety of any personnel in a site. Existing security systems may require

miners to carry and swipe an access card to monitor entry and exit, and this may result

in unaccounted miners in or out of a site when one forgets to swipe the card. The

BeeSecured system removes this concern by replacing the swipe card with a wearable

TAG node, and automatically detecting when miners enter or leave the site.

1.3. Motivation

The motivation behind the BeeSecured Web project is to allow users easy

access to the front-end application that controls and monitors the wireless sensor

network. In the previous iteration of the system, a desktop application was implemented;

however, the lack of mobility with the application, and the additional effort required for

deployment led to the idea for a web front-end. The initial motivation behind

BeeSecured Web was to create a cloud application. As there are emerging cloud

development platforms, deploying an application into a cloud environment seemed like a

very attractive options to potential clients. However, due to various system

complications and security concerns, the decision was made to not continue with this

approach, and instead proceed with a local, more controllable deployment method.

My motivation to take on this project is to learn more about web development as

well as the Zigbee wireless sensor network and have exposure to all the components

that make the system possible from hardware, firmware to software. The BeeSecured

project has grew substantially since its initial research phase and it was really exciting to

be a part of a project with real application scope and potential.

3

1.4. Objective

The objective of BeeSecured Web is to deliver a user friendly update to the

current desktop application with the use of open sourced maps and database

technologies. The web application has to be in line with common web standards, as well

as software requirements drafted as the project scope. The objective is to deliver a

robust application in a short timeframe utilizing open-source map APIs.

1.5. Contribution & Project Scope

The project scope is defined by a set of software features agreed on throughout

the agile software design iterations. Features are prioritized by importance in the

implementation timeline to accommodate for potential feature completion estimation

errors. Exact feature requirements are defined in section 3.

In order to design an appropriate interface for a WSN, understanding how WSNs

work is a must. Additional research was done on communication networks and

protocols, and in particular, research on the Zigbee protocol standards, as well as

encryption, authentication, routing and other security issues contributed to the

understanding of the full capabilities of the BeeSecured WSN. Knowledge of WSN

security, such as routing security, and the understanding of various types of passive and

active attacks further contributed to deciding on an appropriate approach to working with

a WSN. From a software and database perspective, extensive knowledge from

capabilities of a particular framework, language, SDLC and best practices for designing

and working with RDBMS also were also applied to this project. Moreover, the

understandings of software concepts such as OOD and web application and server

technologies were critical to the design of the application. Furthermore, research on

cloud computing were used to make decisions to balance between the business needs

of the application and the technical constraints and costs, such as available platforms,

development time, capability and security concerns for deployment. Additional analysis

on previous versions of the BeeSecured GUI was also done for designing an interface

that provides a similar overall experience which allows a seamless transition to the new

interface for the end user.

4

1.6. Report Organization

The rest of the report will be organized as follows: The overall BeeSecured

system architecture will be presented in section 2; use cases, software requirements and

features will be listed in section 3; BeeSecured Web design criteria are covered in

section 4; software architecture and conceptual designs are covered in section 5;

implementation details are presented in section 6; BeeSecured Web interface overview

is in section 7; future work is discussed in section 8; and finally section 9 concludes.

5

2. BeeSecured Project Architecture Overview

There are several components that make up BeeSecured, and this section will

cover all the components within the system, as well as the overall system architecture

and functionalities.

2.1. System Components

The BeeSecured project consists of several hardware and software components.

Each device is configured differently by firmware to configurations of a Gateway, PEG,

or TAG devices. An additional edge device is required for the Zigbee network to

communicate with Ethernet devices, and in our system, we use the Lantronix Xport Pro

portable network server running the Evolution operating system.

2.1.1. Hardware Components

Hardware components (excluding the Xport Pro below) operate at ranges from -

40 C to +85 C, giving the system great versatility for deployment over various terrains

and weather conditions.

Edge Device (Lantronix Xport Pro)

The Xport Pro network server is an embedded networking device that acts as a

compact server. It is easy to setup, provides security options for data transfers, and

supports an abundance of network protocols comprising of TCP/IP, and HTTP. Our

main use of the Xport Port is to forward serial data from the Zigbee network to Ethernet.

Once Zigbee messages have been converted and sent via serial port, the Xport Port

then forwards this data via TCP/IP to the BeeSecured Server to process and store into

the database.

6

Figure 2.1: Lantronix Xport Pro

Note. BST (2011); used with permission. Lantronix Xport Pro is the highlighted device.

Gateway Devices

Gateways are programed as Zigbee coordinators to form and coordinate data in

the Zigbee network. Certain Gateways are also programmed to convert Zigbee

messages to standard serial data to be sent over an Ethernet connection. Figure 2.1

shows a Gateway device inside a long range WiFi router.

PEG Devices

PEGs are Zigbee routers whose main purpose is to route data from coordinators

to the end devices. They also have the capability of adding external sensors (infrared,

motion, etc) which enhances the flexibility and coverage the BeeSecured security

system. PEG devices have 16 signalization pins that can be used to connect to

additional output devices based on sensor triggers, and PEG devices usually stay

stationary after system deployment. Table 2.1 lists the available sensors on a PEG

device.

7

Figure 2.2: PEG Device Deployed with Solar Panel

Note. BST (2011); used with permission

Table 2.1: PEG Sensor Table

PEG Sensors Description

External sensor A (optional) Extendible to external sensors such as infrared,
motion, magnetic

External sensor B (optional) Extendible to external sensors such as infrared,
motion, magnetic

Vibration sensor Sensor to detect physical tempering of the device
Temperature sensor Sensors to detect abnormal temperature conditions

that may hinder device operations

TAG devices

TAGs are the end devices in the Zigbee network, and they are wearable nodes

given to the person being monitored. They are the most power efficient devices in the

system because they do not need to be operating the entire time. TAG devices also

have the capability to monitor heart rate via ECG and body positions via accelerometers

and can alarm the system if a wearer suffers sudden physical injury or goes into cardiac

arrest.

8

Figure 2.3: TAG Device

Note. BST (2011); used with permission

Table 2.2: TAG Sensor Table

TAG Sensors Description

Accelerometers Sensors to detect relative positions of the Tag
wearer

Heart rate Monitors wearer heart rate for any abnormal heart
conditions

2.1.2. Software Components

BeeSecured Server

Previous versions of the Zigbee server processes Zigbee messages from the

network and sends them via a proprietary message format to the front-end client

application. In order for the server to work with BeeSecured web, it has been upgraded

to convert serial bitstream of Zigbee messages, and process them to determine

appropriate modifications or updates on the database. The server provides a HTML

interface for the administrator to analyze the network for any issues.

Front-end GUI

The front-end GUI is what the user will interact with the BeeSecured system.

There are two applications that act as the front-end UI: BeeSecured Client, and

BeeSecured Web. BeeSecured Client is a WPF desktop application for the user to

monitor the sensor network. It offers a rich UI using the .NET 4.0 Framework and

provides audio and visual feedback on the sensor network. BeeSecured Web is the new

9

light weight counterpart to the desktop application that will run on any web browser, and

it will interact primarily with a remote database that holds all sensor network information.

Zigbee simulator

The Zigbee simulator is an application created for generating Zigbee data to

simulate the sensor network when no hardware devices are available for testing the

software applications. The simulator will periodically generate database data for the

front-end GUI to interact with.

2.1.3. Database

In order to maintain a history record of all the data in the sensor network, and

login credentials for all users, we use a database to maintain these records. There are

several critical features we looked for in selected a database system, which will be

discussed in section 4. The database system we use in BeeSecured is SQL.

10

2.2. System Architecture

Figure 2.4: System Architecture of One Site

Note. BST (2011); used with permission

Figure 2.4 shows the system architecture of all the components within a single site within

the WSN. Each site consists of a Gateway, PEG, TAG and Commissioner, and the data

collected from these components are forwarded to a server and then displayed onto the

GUI. The communication channel between the site, server, and GUI are all bidirectional.

Site 1

TAG
PEG

Commissioner

Gateway

Server

GUI

11

Figure 2.5: System Architecture with Multiple Sites

Note. BST (2011); used with permission

Figure 2.5 shows the architecture of multiple sites within the WSN. The BeeSecured

system supports multiple sites, each with its’ own set of Gateways, PEGs and TAGs as

well as the potential of multiple GUIs. Multiple gateways can be added to the system to

increase reliability and multiple GUI access points add flexibility for the end user to

monitor the system.

GUI GUI GUI GUI

Site N

Site 2

Site 1

PEG PEG TAG TAG TAG TAG
PEG PEG PEG PEG

Gatew
ay

Commissioner

Gateway

Server

12

2.3. System Functionality

The BeeSecured system provides an end to end solution for monitoring WSN.

The current system comprises of the following functionalities:

• Multiple sites in a system

• Very large sites with 500-1000 persons per site (in progress)

• Fixed routers and tags mobile within the site (across multiple subnets)

• TCP/IP connection between sites, server, and GUIs

• Localization (in progress)

• Accounting (in progress)

• Man down detection (physiological monitoring + activity detection)

• Routers with sensors

• Periodic reporting of sensor parameters

• Real-time reporting of alarms

• 3 months battery life for PEG device with no sensors and no solar power

• 5 days battery life for TAG

• Operation -40˚C to +80˚C and IP67 certification

Note that several functionalities marked as “in progress” are currently not available in the

system, and will be included in future implementations of the project.

2.4. Data Flow

As we can see from Figure 2.4 above, sensor data is collected through PEG and

TAG devices, and they are routed through PEGs and Gateways. The data then becomes

serialized and forwarded via TCP/IP to the Zigbee server. The server consists of a

database, and interprets this data and decides the appropriate actions to act on the

database. When the database is updated, the GUI will display these updates to the user.

Sensor status data will be sent periodically, and frequency can be set by the

administrator. On the event of an alarm, alarm messages will be sent asynchronously

through the network, and we will address this below.

13

2.4.1. Handling Alarms

As BeeSecured relies on alarm events to notify end users on intrusion or other

critical statuses in the system, the sequence of raising and clearing alarms generated

from sensors throughout the system is an important data flow to monitor. The diagram

below shows how each component does in the event of an alarm.

Figure 2.6: Sequence Diagram for Raising Alarms

Note. BST (2011); used with permission

As we see in figure 2.6, when the system raises an alarm, it sends an alarm message to

the server. The server then sends an acknowledgement message back once it receives

the alarm. At the same time, the server updates the alarm status in the database and

inserts a new entry in the alarmData table as a log. The GUI periodically checks

whether the database has an updated alarm status and displays alarm conditions

accordingly.

14

Figure 2.7: Sequence Diagram for Clearing Alarms

Note. BST (2011); used with permission

The sequence to clear alarms starts by the user noticing the alarm status on the GUI.

By clearing the alarm in the GUI, the GUI sends a clearing alarm pending status to the

database. On the event that the database alarm status is updated, the server reads

from the database and sends out a clear alarm message to the device(s). Once the

device(s) clears the alarm, a status message is sent back to the server, which then

writes the updated status to the database. The GUI reads the updated clear status from

the database and displays it to the user accordingly.

15

3. Software Requirements and Constraints

BeeSecured Web aims to satisfy two distinct user profiles, commonly used in

standard IT security scenarios: the administrator, who has full privilege to modify settings

in the application and data in the database; and the standard user, who only has access

to monitoring sensor network statuses. In security systems, the standard user typically

takes the role of a security guard, who may or may not have extension experience with

software applications, therefore, BeeSecured Web must be designed with this

consideration in mind. In addition, there are also requirements for integrating the

application with a database for storing a unified copy of all sensor network data. The

requirements are determined by the uses cases for the individual roles we mentioned,

and they are created to cover scenarios that the actors in the systems will encounter.

These scenarios are shown in the section 3.1.

3.1. Uses Cases

Use cases need to be defined prior to designing software to fit a particular user

profile or scenario. Based on the two targeted roles, the fundamental use cases are

established and used to map out specific functionalities within BeeSecured Web.

16

Figure 3.1: Administrator Use Cases

Note. Administrators have targeted features focusing on the configuration and troubleshooting of

the system.

Figure 3.2: User Use Cases

Note. Standard users have features targeting monitoring the system.

17

From the uses cases above, the following list of software requirements were drawn for

BeeSecured Web:

Table 3.1: BeeSecured Web Software Requirements

Feature Target User Profile

Web application must be able to communicate with a
server

Admin/User

Application must have a map that shows site
locations via GPS coordinates

Admin/User

Display devices on the maps: separate icons for
gateways, pegs, tags

Admin/User

Map must be able to pan and zoom Admin/User
Login capability with different user profiles Admin/User
Databases interaction Admin/User
Configuration of devices Admin
Enable/disable sensors Admin/User
Set signalization values for peg devices Admin
Display alarms (visual and acoustic) User
Display current sensor data User
Display sensor data history User
Display alarm data history User
Acknowledge/clear alarms User
Place devices on the map Admin
Replace/reconfigure devices on the map Admin
Select a region on the map display present devices User
External database configuration file for application Admin

3.2. Constraints

The resources available for this application is limited to one person, and the

scope of the project will be limited to the software requirements established. The time

constraint is one semester’s timeframe of 13 weeks, distributed to research time,

learning the required technology, as well as application development. Basic unit testing

18

is covered throughout the development cycle, but a full test plan will not be implemented

or executed. The software life cycle used throughout BeeSecured Web is the agile

model, with weekly milestones and reviews with design modifications reduce the risk of a

feature not working as originally intended.

Agile Model

• Short development milestones
• Requirements may be updated or changed during development
• End of development depends on feature completion

3.3. Project Schedule

Based on the limited time allocated for the development of the project,

BeeSecured Web started from the requirements phase and carried out until the

beginning of the testing phase. Full testing phase was not be allocated to the project

schedule, nor was maintenance. Minor maintenance may be done post-mortem, but will

only go until the end of the year. The following timeline is an approximation of the

project timeline throughout development:

Table 3.2: Project Schedule

Agenda Duration (weeks)

Project scope and requirements drafting 1
Initial research and first requirements scoping 1
Technology learning 2
First prototype 1
Weekly milestones 7
Unit testing and additional fixes 1
Total: 13

The agenda is an approximate time spent in each phase in the project. Due to decision

changes throughout the development phase, certain tasks were performed in parallel to

make up for time left in the remainder of the project schedule.

19

4. Design Criteria

In order to achieve our objective and design a robust, but simple to use web

application, there are many factors to consider: the application platform, database, map

technology, potential firmware implementations, and the method of deployment. In this

section, we will analyze these individual components in the system.

4.1. Application Platform

4.1.1. Platform Research

The initial development direction is for BeeSecured Web to be a cloud

application; therefore the choice of an appropriate cloud platform was one of our initial

concerns. There are several big players that offer cloud platforms, and the following are

the platforms that were taken into consideration in the initial project research:

Table 4.1: Platform Comparison

 Google Microsoft Amazon

Cloud Platform App Engine Azure EC2
Cloud Service Type PaaS PaaS IaaS
Customization
Flexibilty

Low Medium High

Cloud Computing Cost Free 1GB for
incoming/outgoing daily
bandwidth limit

$0.12 per hour Free Tier 750 hours (1st
year). $0.12 per hour
thereafter (small
instance)

Database usage Cost Free (up to
500Mb/month)

$9.99 per database for
1GB per month

Free Tier 5GB (1st
year), $ thereafter

Development Platform Open Sourced (Eclipse,
NetBeans)

Visual Studios Open

Development Platform Free Per license Open

20

Framework Java/Python/Go SDK .NET Open
Application Type AJAX ASP.NET (AJAX) Open
Language Java/Python/Go C# Open

There are a few key factors that were used to decide on a choice for the

application: cloud platform cost, development platform cost, and the speed of

development. As with most research projects there is a budget constraint to operation

costs, so the costs of the cloud usage and development platforms weighed heavily into

the choice of development platform. In addition, there is also a need to maintain

software portability in the event that there is a need to migrate the application to a

different system.

Amazon’s EC2 provides the most flexibility in our cloud deployment, as they offer

IaaS, where we are given the option to customize and choose any OS (Linux, Windows,

OpenSolaris) for our hardware emulation. This allows us to develop on any platform we

choose and use any framework we please. For new users, Amazon does offer free

quota for the first year, which is beneficial for the development phase of this project.

However, since we are developing a web application, there is very little benefit in using a

service that provides high hardware customization ability, as is provided by Amazon’s

EC2. Although it may be useful to customize cloud instances for different customer

profiles, the effort to setup the configuration outweighs the benefits. Microsoft and the

.NET framework provides a very rich set of libraries for our application, and their

integrated Visual Studios 2010 platform has an abundance of features that will allow us

to create rich web applications. Unfortunately, the costs of development licenses for

Microsoft products do not come cheap, and neither do their services. The portability of

code is also fairly low since we will be restricted to relying on the .NET framework.

Lastly, for the Google App Engine platform, we have a permanent free quota for

database and computing usage, which is a major advantage over the other frameworks.

Development for App Engine can be done on any free open-source development

platform such as Eclipse or NetBeans, which makes the choice even more appealing.

Although the flexibility of the Google platform is the most limited of our choices because

we are developing in a sandbox environment, it does cater to all of our needs for

deploying a web application.

21

Based on the mentioned criteria, the Google platform definitely comes out on top

with their offer of free quota for computation and database usage, as well as the open-

source development platform that they’ve integrated into their SDK.

4.1.2. Firmware Research

The Lantronix Xport Pro with Evolution OS provides a set of APIs for

customizations to the onboard server, as well as CGI scripting capabilities for changing

their default web interface. The Xport Pro can be used as a solution to push data onto a

web server, and have the web application display contents to the user based on that

data. However, it would be difficult for the web application to communicate with the

Xport Pro since applications run in closed sandbox environments. A potential solution to

enable the web application to communicate with Xport Pro is to have the Xport Pro

hosted on the web with a public address. Since the Xport Pro has limited hardware

capabilities, this solution can leave the system open to DOS attacks directly on the

device. One potential option to discourage DOS is to host a HTTPS server on the Xport

Pro.

The proposed architecture of BeeSecured Web is to act as an alternative solution

to both BeeSecured Client and BeeSecured Server. This architecture requires the Xport

Pro network server to not only forward Zigbee messages from serial to TCP/IP, but to

also submit it as HTTP requests to BeeSecured Web. The Xport Pro does provide

customization features for this mechanism; however it requires writing customized

firmware onto the device. On the Zigbee Gateway, there is also no functionality written

to send serial data via HTTP format, so another option would be to change the Gateway

firmware for this setup to work. Both these solutions, however, requires additional code

changes on the existing BeeSecured Client application, so the final decision was against

this system design.

After researching on potential firmware modifications, the team decided it was

best to make modifications to the BeeSecured Server application and not move forward

with combining it with BeeSecured Web. By keeping the BeeSecured Server as a

separate application, there is less risk to changing or breaking the overall system.

22

4.1.3. Database Research

Google provides their database service with App Engine, called the datastore.

The datastore is based on Google’s proprietary database system, BigTable, and it is not

distributed outside of Google, but is offered as a service as part of App Engine.

BigTable is not a RDMS, because it was designed for distributed mapping across

numerous machines. There are two data storage options in the datastore, High

Replication, and Master/Slave configurations, and they are summarized below:

Table 4.2: Datastore Storage Comparison

 High Replication Master/Slave
Cost
Storage 1x 1/3x
Put/Delete CPU 1x 5/8x
Get CPU 1x 1x
Query CPU 1x 1x
Performance
Put/Delete Latency 1/2x – 1x 1x
Get Latency 1x 1x
Query Latency 1x 1x
Consistency
Get/Put/Delete Strong Strong
Most Queries Eventual Strong
Occasional Planned Read-Only
Period

No Yes

Unplanned Downtime Extremely rare. No data loss. Rare. Could lose a small % of
writes near downtime
(recoverable after event).

Note. Google App Engine Documentation (2012)

Both storage options can be accessed through the same datastore API provided

through App Engine. The default storage method for the datastore service is High

Replication. It is more secure than the master/slave storage because it stores data

synchronously across multiple datacenters. There is also a benefit in terms of

performance for using the HRD over master/slave; since HRD replicates data over

23

multiple data centers, users are also not prone to scheduled maintenance downtimes.

Of course, these benefits come with a price of roughly 3 times more than master/slave.

4.1.4. Map Technology Research

BeeSecured Web relies on a map system to display the location of each sensor

within the network. One possible solution is to create such a system by manipulating

custom images and adding our own functionality, but that additional effort would require

substantially more time based on the given the list of application requirements. For web

applications, there are many map systems that have open APIs with functionalities that

provide a rich user experience. The most commonly known system is arguably Google

Maps, and there are other systems such as Microsoft’s Bing Maps and Yahoo! Maps we

can also choose to integrate into BeeSecured Web. We compared the following map

services:

Table 4.3: Map API Comparison

Map Technology Free version? Free platform conditions Enterprise
License costs

Google Maps Yes Map must be publicly available (not
allowed for internal applications).
Map implementation can be restricted by
login, restrictions cannot be fee based.
Currently unlimited; 25,000 map loads
per day (starting in 2012).

$10,000 per year

Bing Maps Yes Use on public facing, non-password
protected web sites.
125,000 sessions or 500,000
transactions per year.

Usage-based,
Known user, or
per asset based

Yahoo! Maps Yes Map must be free of charge (can be
internet or intranet applications for
personal or business).
Unlimited Map loads.
5000 queries per IP per day for
Geocoding services.

None

24

Table 4.3 lists a subset of conditions for free map services by the listed

providers. In terms of costs, both Google Maps and Yahoo! Maps currently have no

restrictions on map loads, and are both great cost effective solutions. In terms of

flexibility, Yahoo! Maps provides the most robust service agreement at the moment as

we can use their services for non-public facing applications. We will discuss in the

section 4.2 our choice of map services to include in BeeSecured Web.

4.1.5. Method of Deployment

Cloud technology is fairly new and there are various concerns with using cloud

services. For this project, there are several concerns and complexities in particular that

we ran into in regards to deciding on a deployment method.

Table 4.4: Method of Deployment Concerns

Concerns Cloud Traditional Web Hosts

Data Security (excluding physical
tempering)

Relies on service provider Secure

Data Confidentiality Uncertain Secure
Data Communication with
Sensors

Requires additional firmware
development on edge device

No edge device development
required

Deployment Environment Setup None Yes

One of the main benefits to deploying an application in the cloud is that it does

not require much effort. However, although cloud service providers do support data

replication for their database, there is still a concern with extracting that data out for

backup or using it in another system. In addition, since the BeeSecured system can

potentially monitor personnel health status, there is a concern for data confidentiality if it

were stored in the cloud.

Asides from data and environment issues, there is a complication with the

dataflow of the system. In order for sensor data to be forwarded directly to the web

application, additional firmware needs to be written for the Lantronix Xport Pro network

server. With the proposed project timeline for feature requirements, the additional

learning curve required for firmware development may block feature development for the

application.

25

After considering data control and development requirements, we decided it was

better to internally host BeeSecured Web rather than to deploy it onto the cloud. The

initial research gone into cloud development did provide a good insight into future

potential possibilities, and also allowed us to choose a great development platform,

except that we no longer need to utilize its cloud capabilities.

4.2. 4.2 Application Type

4.2.1. Front-End (Client-Side)

Web development has come a long way since the first version of HTML and

there are many technologies and standards to govern a good application. The design

requirements for BeeSecured Web are cross-browser compatibility and platform

independency, and if we consider a Java application, one option is to develop a Java

Applet as our application front-end. However, in order to Java Applets to run on an OS,

the user must download the application and have JVM installed on their machine, which

may add unfavorable delays for the end-user. Many web applications are now written in

AJAX, which allows asynchronous retrieval of data from the server to the client based on

UI interactions. AJAX allows dynamic displays in JavaScript without full page loads,

giving the user a smooth experience.

With AJAX, we need to write our client-side application in JavaScript. However,

Google has provided a framework used by many Google products such as AdWords and

Orkut, called GWT, and it allows us to write our application in Java and compile in AJAX

for faster development. With GWT, Google has also provided a very valuable collection

of Java wrapper libraries for different Google product APIs (Maps, Charts, Calendar, etc)

which makes it simpler to integrate Google products with our application.

Google App Engine supports three languages for development: Java, Python,

and Go. Keeping in mind the constraint of open-source development platforms, we

selected to use Java because it is the supported language for the GWT framework. One

important feature we require for our application is to have a map to display the location

of our sensor nodes. There are many maps applications with open APIs available, as

shown in Table 4.3, such as Google Maps, Bing Maps, and Yahoo! Maps, and we need

26

to select one that has JavaScript libraries in the language of our choice. Although in

terms of robustness and current future usage speculations, Yahoo! Maps offers the most

cost effective service, currently, there is no GWT library available for it. On the other

hand, GWT has Java libraries available for many Google products, including Google

Maps; therefore, the decision was made for BeeSecured Web to be developed in Java

using the Google Maps service.

4.2.2. Back-End (Server-Side)

BeeSecured Web requires a server side component because it needs to

accomplish certain tasks that cannot be implemented on the client side application, such

as directly accessing a database through JDBC and reading configuration files from the

server’s file system. As with the client-side application, our server application can be

done in various languages. The language choice for the server will depend on the type

of web container we eventually decide to use in our deployment server.

Since we are using GWT, the obvious choice is to develop the back-end with

Java. There are numerous web services that support Java servlets so for the ease of

development; BeeSecured Web uses Java Servlets as the back-end.

4.2.3. Communication Method

GWT RPC vs. HTTP Requests

Communication between the GWT client-side and server side application can be

done either through GWT RPC or HTTP requests using GWT supplied RequestBuilder

class. GWT RPC is a great way for Java front-end applications to talk to the server

because GWT takes care of all the object serialization and deserialization for you, as it is

an efficient method to serialized objects across networks using deferred bindings.

Alternatively, we can communicate with the server by submitting HTTP requests through

RequestBuilder if we choose not to use a Java backend. There are several classes in

GWT that allows us to write custom HTTP request and we can then process a JSON or

XML formatted response. GWT does not limit to these two methods of communication,

27

as you can also use JSNI methods or third party libraries as other forms of RPC

mechanisms.

Although HTTP requests potentially offer more flexibility to our choice in back-

end applications, RPC is much simpler to setup as it does not require parsing of request

URL or JSON, XML responses. With a Java backend, RPC also offers greater

performance; therefore BeeSecured Web uses RPC as the main method of

communication between client and server applications.

Serializable Types

In designing classes to work with GWT RPC, we need to be aware of the

supported serializable types to ensure data can be successfully passed between the

client and server. The list below specifies a subset of the conditions that are of concern

to BeeSecured Web.

A type is serializable if one of the following is true:

• The type is primitive, such as char, byte, short, int, long, boolean, float,
or double.

• The type is an instance of the String, Date, or a primitive wrapper such
as Character, Byte, Short, Integer, Long, Boolean, Float, or Double.

• The type is an enumeration. Enumeration constants are serialized as a name
only; none of the field values are serialized.

• The type is an array of serializable types (including other serializable arrays).

• The type is a serializable user-defined class.

• The type has at least one serializable subclass.

Note. Google GWT (2012)

Serializable User-Defined Classes

All of the following conditions need to be met for a user-defined class to be

serializable:

• Either directly implements IsSerializable or Serializable interface or derives
from a superclass that does.

28

• All non-final, non-transient instance fields are themselves serializable

• As of GWT 1.5, it must have a default (zero argument) constructor (with any
access modifier) or no constructor at all.

Note. Google GWT (2012)

4.2.4. Deployment Environment

With the GWT SDK, a local Jetty development server has been integrated for the

use of debugging during development. The choice of our web container is not extremely

critical, given that it’s stable and reliable, as long as it supports Java.

Apache Tomcat has been around for a very long time, and has proven to be

extremely reliable; therefore, we decided to use Tomcat as our servlet container for the

deployment of BeeSecured Web.

4.3. Database

Another important component to select is our database. As we decided to locally

host our application, we have a range of databases to consider. Our desktop

application, BeeSecured Client, utilizes the Microsoft SQL database for authenticating

user login information. It will eventually be migrated to an open-source database to keep

the system running on a unified database, so in order to keep our selection simple, we

decided to continue using SQL as our database system.

In selecting a SQL product, we selected from the following:

Table 4.5: SQL database comparison

Criteria Microsoft SQL MySQL PostgreSQL

Commercial Cost Yes Free for open-source
version

Free

Notifications No No Yes

29

One important criterion for our database selection is the database must be able

to asynchronously notify external applications on particular modifications to a table. This

is crucial because instead of a one way communication, where the client application

initiates all requests to the server, we need a method for the application to query the

database only when there is updated data instead of periodically fetching redundant

data. We first decided to use MySQL, however, we then realized it does not support the

asynchronous notification events we needed so we migrated to PostgreSQL. Of course,

there are many other differences between these database systems, but for the purpose

of our application, the complex features that may cater to large complex queries or data

replication are not too much of a concern at this stage.

4.4. Database Connector – JDBC

In order to connect to and interact with our database, we need a database driver

for Java. JDBC is an open-source API that abstracts the implementation of Java

programs to various different database systems. This allows us to write our database

connection code once, and gives us the flexibility to change between different databases

as we please. As such, most database systems provide JDBC drivers for their systems,

and the PostgreSQL JDBC driver we use in BeeSecured Web is JDBC4 Postgresql

Driver, Version 9.1-901.

4.5. Tools

One of our design criteria is to use free and open-source development platforms.

We selected Eclipse as the choice of development tool because GWT offers plugins for

the Eclipse IDE. GWT’s Jetty local development server is also integrated to provide fast

testing during development.

For database tools, PostgreSQL has both a command shell and a graphical user

interface, pgAdmin for managing connections the local or remote databases.

30

5. Software Architecture

As we mentioned, there are two user profiles we need to cater to in BeeSecured

Web, each with unique access rights to the application. Both profiles have access to the

same login page, where no sensitive data is presented. The main interaction with the

application is through the Google Maps API, and most of the functionality within the

application is tied with features from Maps. All data will be stored in the database, and

the application will fetch and update data to display new information on the map either

on user request, or on database notification updates.

The conceptual software architecture of the application below shows the

interaction with individual functional blocks within the application.

Figure 5.1: Concept Diagram of BeeSecured Web

Administrator

User Device
Configuration

Alarms

Device Properties

Device Data

 Database

Rea

Rea

Write Google Maps

Read

Write

31

Google Maps block represents all API calls made to Maps. Device configuration

block consists of settings that change the behavior of a device, such as status report

intervals, alarm delay, and external sensor types. The alarms block consists of all alarm

statuses, timestamps and alarm messages. Device data block consists of any periodic

data updates from the devices, such as temperature, battery voltage, and accelerometer

readings. Finally, device properties represent fields such as geographic positioning of

devices, the parent site a device belongs to, and the name of the device.

These functional blocks by no means represent a single class in the application

and can encapsulate multiple classes that work together to achieve the block function.

Detail implementations of each class will be explained in section 6, and please refer to

appendix C for detailed fields in the database table.

Users have mostly read privileges for monitoring the WSN, with the addition that

they can enable or disable sensors on any particular PEG or TAG device.

Administrators can also monitor the WSN, but have the ability to modify device

configurations, as well as other properties available for updates such as device names

and their parent sites.

32

5.1.1. User Case Work Flow Scenarios

A few common work flows are described below to show how a user would

typically interact with BeeSecured Web:

Administrator wants to update device configuration

1. Administrator finds device on the map.

2. Administrator clicks on device configuration menu.

3. Device configurations read from the database and displays in dialog.

4. Administrator updates configurations and commits the changes on UI.

5. Device configuration writes to the database.

User wants to clear an alarm

1. An alarm is trigged in the WSN database sends out a notification.

2. Alarm updates device status on the map.

3. User finds the devices and clicks the clear alarm option.

4. Clear alarm writes updated status to the database.

33

6. Implementation

This section covers the implementation with regards to BeeSecured Web.

Detailed descriptions about the implementation architecture, organization of each

package in the application and their classes, as well as the design criteria for the

database are covered.

6.1. Implementation Architecture

BeeSecured Web is organized into two packages:

com.ciber.beesecuredweb.client, and com.ciber.beesecuredweb.server. The client

package consists of Java code that compiles to JavaScript to run in a browser, and the

server package compiles to Java .class files to run on the Apache Tomcat web

container. The client package interacts with Google Map’s API, as well as the servlet’s

GWT RPC interface. The server package interacts with the PostreSQL database using

JDBC, as well as the file IO interface for reading configuration files from the server’s file

system. Figure 6.1 shows the implementation architecture of BeeSecured Web.

34

Figure 6.1: Implementation Architecture Diagram

6.2. Design

6.2.1. UML Diagrams

This section describes in detail each class in BeeSecured Web and their

relationships within the program. The UML diagrams will include any fields, methods

and relations to other classes. Since there are many classes in the program, they will be

discussed separately. Classes will be explained in a standard user work flow, starting

with the client package, then moving on to the sever package.

35

UML diagrams will have the following format:

Figure 6.2: Class UML Format

Due to the size of the diagrams, please refer to appendix A for full class UML

regarding all the classes in the com.ciber.beesecuredweb.client and

com.ciber.beesecuredweb.server packages.

6.2.2. Client Package

Description of each class and their usage within the program will be described

below. The general organization and structure of classes is based off of the database

design, as we encapsulate all the table columns as variable fields in the class objects.

6.2.2.1. Classes

Login

Login class is used for authentication user credentials on accessing sensor

network data. The class encapsulates all the data fields in the login database table as

well as providing an enumeration of login statuses for the application.

Site

Site class is defined to store properties such as the name and location of a

particular site in the system.

<<Class, Interface, Enumeration>>
Class Name

Package Name

Method name (parameters): Return type

Class field name: Data type

36

Config

The Config class is to store properties for the configuration files that hold the

database connection parameters which BeeSecured Web reads on application load.

Constants

All global constants used throughout the application are defined in this class.

AlarmData

The AlarmData class encapsulates all properties of alarm events to pass

between the client and server application.

Device

Device class holds all device properties to a particular device. It is the base

class for all Gateway, PEG and TAG devices. Since Gateways do not have sensors,

they are represented as the Device object in the application.

PegDevice, TagDevice

These classes are child classes of the Device class, and hold additional fields

and methods such as sensor fields that are particular to a PEG or TAG device.

DeviceType

Device type class is used to hold the names and IDs for the types of devices in

the system. Current devices in the system are fixed to Gateways, PEGs and TAGs.

ExtSensorType

This class holds all external sensor types properties for optional sensors that

could be attached to PEG devices.

37

GoogleMaps

The GoogleMaps class handles all API calls to the Maps API, along with any

methods that keeps track of the most updated data in the application.

BeeSecuredWeb (Entry Point)

BeeSecuredWeb is the entry point to our application. It holds fields and methods

that manipulate and display the user interface, and interacts closely with the

GoogleMaps class. This class is also responsible for handling user password encryption

for the application.

GwConfig, PegConfig, TagConfig

These classes hold all configurations pertinent to each device type.

Configurations are parameters customizable by the user that govern how the device

operates, such as alarm delays, or status reporting intervals.

GwData, PegData, TagData

These classes encapsulate all information regarding the status of each device.

Data readings such as temperature levels, battery levels, and accelerometer values are

fields in these classes.

GwStorage, PegStorage, TagStorage

The storage classes are wrapper classes that hold the device properties, data

and configuration of a particular device. These classes are created to encapsulate all

information regarding a particular device as a simple form to storing the most update to

date information in the application.

SiteStorage

The SiteStorage class holds lists of all the device storages (GwStorage,

PegStorage, TagStorage) for a particular site. The class allows a unified object to

manipulate for individual sites in the application.

38

6.2.2.2. Interfaces

DeviceService

The DeviceService interface defines all methods that are used on the server

application. This interface is accessed to use GWT RPC to pass java objects between

client and server applications.

DeviceServiceAsync

This class is defined by GWT RPC and is an asynchronous interface equivalent

to the DeviceService interface. It contains all the same methods in the DeviceService

interface except all methods have a return type of void.

6.2.3. Server package

dbConnection

dbConnection class is used for create new JDBC connections based on the

parameters read in the local configuration file.

DeviceServiceImpl

DeviceServiceImpl implements the DeviceService interface in the client package,

and provides the implementations of methods that submit different SQL commands to

PostgreSQL once it receives RPC calls from the client.

Log

The log class uses the Java file IO API to write to a separate log file when there

are connections or SQL exceptions. The purpose of this class is to provide an easy way

for the administrator to debug the application if errors occur.

notificationListener

BeeSecured Web periodically checks for notifications coming for PostgreSQL on

table updates, and the notificationListener class spawns a separate thread on the server

39

to maintain a connection to the database; this thread will spawn on application load, and

will terminate on application exit.

StAXParser

The StAXParser class is used to parse the configuration XML that stores the

database connection strings using the StAX API. The reason for using StAX is because

it allows both pulling and pushing of XML data.

6.3. Database

The database used with BeeSecured Web is PostgreSQL, an open source

RDBMS under the PostgreSQL license. The license entitles you to distribute, modify

and make any enhances to PostgreSQL as you like. PostgreSQL is not as powerful as

other DBMS and is not capable of running enterprises, as it is a platform for in-house

development that may require RDBMS capabilities.

BeeSecured’s database server can be used by several customer networks, and

each customer uses a separate database with custom access privileges. This delivery

method is beneficial for the customer such that they do not need to maintain a database,

and can monitor their sensor networks through BeeSecured Web via any web browser

using the credentials we’ve provided them. Alternatively, a customer can use their own

private DBS and still deploy the same web application, since BeeSecured uses external

XML configuration files to access databases and Google Map APIs. If the customer

does choose to employ their own server, they still need to abide by Google’s conditions

for using their map services and expose the application to the public. This would not be

an issue in terms of sensor network data security however, since BeeSecured Web

relies on login credentials to access any proprietary information.

6.3.1. Database Design

The SQL database is designed based on the three orders of normal forms of

RDBMS design. The database model minimizes duplicate information and is designed

40

to minimize potential anomalies from user input. Due to the length of the database

tables, please refer to appendix B for the full database tables and their descriptions.

Key choice criteria

• Minimality: choose fewest columns

• Stability: column that seldom changes

• Simplicity: simple and familiar to users

Purpose of database design

• Efficient data entry, update, deletions

• Efficient retrieval, reporting (query calculations)

• Self-documenting

• Changes in schema is easy to make

• Prevent anomalies

Normal Form design in tables (the higher order the better, more efficient the design)

First Normal Form (1NF)

• Only one value per row-column (atomic)

• No repeating groups in columns

Second Normal Form (2NF)

• Is in the First Normal form

• Every non-key column is fully dependent on the (entire) primary key. Entire
here means if your primary key is composite, all other columns depend on the
composite key, and not just part of it.

Third Normal Form (3NF)

• Is in Second Normal form

• All non-key columns are mutually independent

41

6.3.2. Notifications

In order to prevent needing the client application to consistently query the

database for new data when there are no updates, we need an asynchronous method to

notify the client application when there is an update to the database. PostgreSQL

supports asynchronous notifications on table events that allow external applications to

register to handle these events when they fire. The table below summarizes all

notifications supported in BeeSecured Web.

Table 6.1: Notifications List

Table Event Notification

gw_data INSERT gwDataTableInsert

pegData INSERT pegDataTableInsert

tagData INSERT tagDataTableInsert

pegSensor UPDATE pegSensorTableUpdate

tagSensor UPDATE tagSensorTableUpdate

Note. BST (2011)

JDBC currently does not support asynchronously notification updates to external

applications, as the implementation has not been completed. In order to utilize the

notifications feature, BeeSecured Web spawns an alternative thread on the server to

periodically check for notification updates coming from the database. The client

application periodically make RPC calls to the server to obtain the most updated

notifications list and updates the user interface accordingly.

42

6.4. EER Diagram

Figure 6.3: EER of BeeSecured Database

Note. BST (2011); used with permission

Figure 6.1 shows the EER for the BeeSecured database, and shows the

relationship between each table.

43

6.4.1. Relationship explained

Table 6.2: Database relationship symbols

Symbols Description
>--------o N : 1 non-identifying relationship
> N : 1 identifying relationship

An identifying relationship means the child table can be uniquely identified (can

exist) without the parent table; a non-identifying relationship means the child table

cannot exist without the parent table. A many-to-one (N : 1) relationship means there

can be multiple rows in the ‘N’ table for each row in the ‘1’ table, or in other words a

foreign key is added in the ‘N’ table, and it is constrained to the primary key of the ‘1’

table. As an example of the non-identifying relationship, a device can exist without

defining a site. An example of the identifying relationship: a peg (device) configuration

cannot exist without defining a device.

In a hierarchical sense, the topmost layer is the site table, and in each site, there

can be many devices. A device can either be a Gateway, Peg or Tag, and each of them

has configurations, data, and sensors.

6.4.2. Potential Performance Concerns

Since this database is not too complex, there is little concern over queries that

require joining multiple tables. In BeeSecured Web, the most join required for fetching

data is limited to 4 per query. The only performance concerns may be with the gwData,

pegData, tagData and alarmData tables. As these tables store a history of all incoming

data from the sensor network, they will grow over time and BeeSecured Web may suffer

performance issues when it needs to query for the most updated data. To guard against

potential performance degradation, the data from these tables may need to be backed

up and cleaned up on a periodic basis.

44

6.5. Testing

Due to time constraints, no formal testing schedule has been planned throughout

the project; however, each individual feature has been tested via Ad-hoc functionally

tests. Regression testing on individual features has been done throughout the project to

ensure all newly added functionality work with previously implemented features.

Because there are not enough physical devices manufactured at this stage to construct

a proper WSN, majority of testing has been done using the Zigbee simulator, injecting

artificial data into the database to simulate a functional sensor network. The purpose of

testing with the simulator is to get a sense of the user experience through using

BeeSecured Web.

45

7. BeeSecured Web Interface

This section will discuss the layout of the BeeSecured Web interface. The

interface design was aimed to provide most of the functionalities of the application within

Google Maps, with an additional left side panel that gives the user additional information

and options.

Figure 7.1: BeeSecured Web GUI

Note. This interface displays the full functional view available to administrators. Standard users

will have a more limited view to the application.

46

The left panel of the interface holds three separate disclosure panels that allow

the user to hide or expand the information based on their needs. The three panels are

as follows: Alarm, Device Explorer, and Device Edit.

Alarm Panel

The Alarm Panel shows any alarm that has been triggered by the database. As

notifications are generated from the database, the Alarm Panel displays any outstanding

(uncleared) alarms that are currently in the system. Each item in the panel is also

clickable, and directs the user to the corresponding icons displayed on Google Maps.

Device Explorer Panel

The Device Explorer Panel holds all the devices in the network and categorizes

them by their site, device type and device IDs. This panel offers the user a convenient

way to find a specific device if they know the device ID. In most cases, users will likely

monitor devices directly on the Map, so this panel acts as a supplemental view for users

to quickly find a particular device.

Device Edit Panel

This panel is only available to the administrator profile, as it contains most of the

configuration options to the application. In Edit Mode, administrators have the option to

reposition devices geographically on the map, which will update the sensor network to

their updated latitude and longitude. Devices can also be renamed, as well as relocated

to another site in another network.

Top Bar

The Top Bar is where the user go to log into the application, and it also displays

the user name and the current version number of BeeSecured Web. The position of the

items in the Top Bar will be moved systematically as the user resizes the browser

window.

47

Table 7.1: Device Status Icons

Device Type Online Alarm Offline
Gateway

PEG

TAG

The different device types are represented in the application with their distinct

color code as well as icons to allow the user to easily distinguish between them.

Devices in the network are represented as in either online, offline or alarm states, and

these icons are updated in real-time to reflect the most updated device information in the

network. Icons are clickable, and will display a Google Maps InfoWindow that holds all

the information to a particular device.

Google Maps InfoWindow

The InfoWindow in Google Maps is the popup window that display additional icon

information when clicked. In BeeSecured Web, the InfoWindow holds the most updated

device information from the database, and it also holds controls to configure device

settings, clear alarms, and pin or unpin icon locations depending on the application

mode. In most cases, users will use the InfoWindow to monitor device statuses and

handle any device alarms.

Configuration Settings

The figures below show all the configuration options available in BeeSecured

Web. All the configuration settings can only be accessed through the administrator

profile, except for the PEG and TAG sensor status controls that allow a user to enable or

disable a sensor conveniently.

48

Figure 7.2: Gateway Settings Dialog

Figure 7.3: PEG Settings Dialog

Figure 7.4: TAG Settings Dialog

49

Figure 7.5: PEG Sensor Status Dialog

Note. Sensor statuses can only be set to the pending (On/Off) states from BeeSecured Web.

The Zigbee server will send messages to update the devices in the network, and only
when the physical device status has been changed will the GUI display the confirmed
updated states.

Figure 7.6: TAG Sensor Status Dialog

Figure 7.7: Device Configuration Dialog

Note. The Device ID cannot be changed once it is configured in the application, since the ID is

specific to the hardware. If the device is no longer needed in the system, it can be
removed in Edit Mode.

50

8. Future Work

Given the short project schedule for BeeSecured Web, there are many areas in

the application that could use further work. This section discusses areas of

improvements as well as potential new technologies to integrate into the application.

8.1. Feature Implementation

There are a few lower priority features that did not make it into BeeSecured Web

due to time constraints, and they will be the first priority to future iterations of the project.

The following features have been left out for future iterations:

Table 7.1: Unimplemented Features

Feature Profile

Display sensor data history User
Display alarm data history User
Select a region on the map display present devices User

Note: The last feature will require additional third party libraries as the capability is not included with Google
Maps.

Notification Implementations

The current application cannot create additional sites from the user interface, so

a new site must be created on the database. Future iterations should support creating

additional sites as well as handling notifications from any changes to the site table.

BeeSecured Web also currently relies on an internal checker function to ensure the

consistency of displayed data to the database. In the future, it should be relying on

notifications to asynchronously check and notify the user to refresh the application if

changes have been made directly applied to the database.

51

8.2. Testing

BeeSecured Web has not gone through a full cycle of feature testing or

regression testing, and some effort will need to be allocated to this. Testing will also

need to be performed under a WSN test site with physical devices operating in real time.

8.3. Map Upgrades

8.3.1. Google Maps v3

BeeSecured Web currently uses Google Maps API version 2, which is the most

recent version with the completed GWT library. Currently there is an open source

project dedicated to wrapping Google Map’s API version 3 to the GWT library, but many

of the features are not complete and the documentation is also unfinished. Maps

version 3 has many new features including custom animations, customizable marker

information windows, deprecation of API keys that tie Google maps to a specific web

site, and many more enhancements that would improve user experience with

BeeSecured Web.

8.3.2. GWT Google Map Utilities

There are several open source JavaScript utilities written for Google Maps, and

some of which have been wrapped as GWT libraries. Integrating these utilities can

improve the overall performance of BeeSecured Web as well as add new capabilities

that are not supported natively by the Google Maps API. Some useful capabilities

include MarkerClusterer, which optimizes view by selectively displaying large number of

markers by geographical regions, label markers, and context view control in Maps.

8.3.3. Mapstraction

Mapstraction is a JavaScript library that wraps all popular map services (Google

Maps, Yahoo! Maps, MapQuest, etc) into one API, which allows developers eliminate

the dependency of a particular map provider and easily change the service without

rewriting any code. Currently there is no Mapstraction library written for the GWT

framework, but if one is available in the future this would be a great direction to upgrade

52

BeeSecured Web. If the benefit of Mapstraction proves that it is worth the development

cost, BeeSecured Web can potentially move in the direction of JavaScript development.

8.4. Bug Fixes and Code Refactor

As with any software, the current version of BeeSecured Web is not bug free and

these issues should be addressed in future iterations. Refactoring code to optimize

performance of BeeSecured Web can improve the overall experience of the end user.

53

9. Conclusion

Overall this project has been very successful, as all of the high priority

requirements have been implemented into the application. The project timeline was

fairly tight as many design changes were made after the initial research phase. Some of

the requirements also came later on in the project, which caused some additional

overhead later in the project. Although there were some delays with architecture

changes and requirements, the technology learning phase was done in parallel, which

allowed the first prototype to be presented in a reasonable amount of time.

Many decisions to simplify the overall architecture, including the decision to avoid

firmware implementation on the Xport Pro, turned out favourably as the rest of the

development effort was focused on the web application itself. The decision to utilize a

local database was also a good one as it enabled smoother integration and testing

between the BeeSecured Web and the BeeSecured Server applications.

54

References

Google. (2012). Google Maps API Terms of Service. Retrieved from
http://code.google.com/apis/maps/terms.html#section_4_4

Yahoo. (2012). Yahoo Maps Terms of Use. Retrieved from
http://info.yahoo.com/legal/us/yahoo/maps/mapsapi/mapsapi-2141.html

Microsoft. (2012). Bing Maps Licensing and Pricing Information. Retrieved from
http://www.microsoft.com/maps/product/licensing.aspx

Google. (2012). Google Web Toolkit Documentation. Retrieved from
http://code.google.com/webtoolkit/overview.html

Google. (2012). Google App Engine Documentation. Retrieved from
http://code.google.com/appengine/docs/

Amazon. (2012). Amazon Web Services. Retrieved from http://aws.amazon.com/ec2/

Microsoft. (2012). Microsoft Azure. Retrieved from http://www.windowsazure.com/en-us/

Lantronix. (2011). Lantronix Xport Pro. Retrieved from http://www.lantronix.com/device-
networking/embedded-device-servers/xport-pro.html

Apache. (2012). Apache Tomcat. Retrieved from http://tomcat.apache.org/

BST. (2012). BeeSecured Database Document. Retrieved from http://ciber-
linux1.ensc.sfu.ca/redmine/projects/beesecsuite/wiki/Database_Description

55

Appendices

56

Appendix A.

UML for Client Application
Figure A.1: Login Class

57

Figure A.2: Config Class

Figure A.3: Constants Class

58

Figure A.4: AlarmData Class

59

Figure A.5: BeeSecuredWeb Class (Fields)

60

Figure A.6: BeeSecuredWeb Class (Methods)

61

Figure A.7: GoogleMaps Class (Fields)

62

Figure A.8: GoogleMaps Class (Methods)

63

Figure A.9: Device, TagDevice, PegDevice Classes

64

Figure A.10: DeviceService, DeviceServiceAsync Class

65

Figure A.11: DeviceType, ExtSensorType

Figure A.12: SiteStorage, GwStorage, PegStorage, TagStorage, Site Classes

66

Figure A.13: GwStorage Class

67

Figure A.14: PegStorage Class

68

Figure A.15: TagStorage Class

69

Figure A.16: GwConfig, PegConfig, TagConfig Classes

70

Appendix B.

UML for Server Application
Figure B.1: Servlet Classes

71

Figure B.2: Servlet Classes Continued

72

Appendix C.

Database Tables
Table C.1: Site Table

Column Data type Description Range

idSite int Primary key
name string Name of the network/site
latitude double Position [deg]
longitude double Position [deg]

Note. BST (2011)

Table C.2: Device Table

Column Data type Description Range

idDevice int Primary key

name string Name of device

site int Ref. to the site of this device

latitude double Position [deg]

longitude double Position [deg]

shortAddr int Zigbee short address

macAddr string MAC/IEEE address of device

deviceType int type of device (see deviceType table)

gwIpAddress string IP address of gateway to device

lastMsgTimestamp dateTime time of last received message

softwareVersion int Version number of the firmware [0, 255]

softwareDateTime dateTime Build time and date of the software

hardwareVersion int Version number of the hardware [0, 255]

panId int PAN Id of the Zigbee network 16 bit

online boolean Flags if the device is online or not

Note. BST (2011)

73

Table C.3: Peg Config Table

Column Data
type

Description Range

idDevice int Primary key
typeSensorA int Ref. to the type of external sensor A
typeSensorB int Ref. to the type of external sensor B
statusReportInterval float Interval at which status reports are send [s] [0.0,

65535.0]
pollSensorInterval float Interval at which to poll sensors [s] [0.0, 65.0]
alarmAckTimeout float Timeout for alarm acknowledgements [s] [0, 65.0]
alarmDelay float Delay before alarms are send, to give TAGs time to

disable alarms [s]
[0, 65.0]

vibrationThreshold float Acceleration threshold to detect vibrations [m/s2] [0.0, 4.0]
alarmRefractoryTime int Time between raising an alarm condition and raising the

same condition again [s]
[0, 255]

authenticationMask int Mask to authenticate TAGs to disable alarms for smart
intrusion 16 bit

proximityRssiThreshold int RSSI values to detect TAG proximity for smart intrusion [-128, 0]
lowerTempThreshold float Lower threshold for temperature alarm [-40.0,

125.0]
upperTempThreshold float Upper threshold for temperature alarm [-40.0,

125.0]
signalizationA int Mask for mapping alarms to signalization channel A
signalizationB int Mask for mapping alarms to signalization channel B
signalizationC int Mask for mapping alarms to signalization channel C
signalizationD int Mask for mapping alarms to signalization channel D
modified bool True if modified by GUI (GUIs are only allowed to modify

a row if false) False if confirmed by device

Note. BST (2011)

74

Table C.4: Tag Config Table

Column Data
type

Description Range

idDevice int Primary key
statusReportInterval float Interval at which status reports are send [s] [0.0,

65535.0]
pollSensorInterval float Interval at which to poll sensors [s] [0.0,

65535.0]
alarmAckTimeout int Timeout for alarm acknowledgements [s] [0, 255]
nearbyBeaconInterval float Interval at which to send “Hello” beacons [s]
alarmRefractoryTime int Time between raising an alarm condition and raising the

same condition again [s]
[0, 255]

fallenTime float Duration all axis have to be below fallenThreshold to
trigger fallen alarm [s]

[0.0,
65535.0]

fallenThreshold float Acceleration threshold, all axis below this threshold trigger
a fallen alarm [m/s2]

[0.0,
65535.0]

activityThreshold float Accelerations higher trigger high activity [m/s2]
inactivityThreshold float Acceleration lower trigger low activity[m/s2]
inactivityTime float Time window to detect inactivity [s]
authenticationMask int Mask to disable PEG alarms (smart intrusion)
modified bool True if modified by GUI (GUIs are only allowed to modify a

row if false) False if confirmed by device

Note. BST (2011)

75

Table C.5: Gateway Config Table

Column Data
type

Description Range

idDevice int Primary key
statusReportInterval int Interval at which status reports are send [s] [0, 65535]
routeDiscoveryInterval int Interval in which to send many to one route discoveries [s] [0, 65535]
lowerTempThreshold float Lower threshold for temperature alarm [-40.0,

125.0]
upperTempThreshold float Upper threshold for temperature alarm [-40.0,

125.0]
modified bool True if modified by GUI (GUIs are only allowed to modify a

row if false) False if confirmed by device

Note. BST (2011)

Table C.6: Alarm Data Table

Column Data type Description Range

idAlarmData int Primary key
deviceId int Ref. to the device that generated the alarm
timestamp dateTime Time of alarm
alarmMessage string Text describing the alarm
alarmVector int alarm code as send by device

Note. BST (2011)

76

Table C.7: External Sensor Type Table

Column Data type Description Range

idExtSensorType int Primary key
name string name of sensor
normalMask int GPIO mask for normal condition (any deviation causes an alarm)
conectionMask int Masks used GPIO lines
alarmText string Text describing the alarm
coneAngle float Angle of the sensor cone [rad]
bearing float Bearing of the sensor [rad]
range float Range of the sensor [m]

Note. BST (2011)

Table C.8: Gateway Data Table

Column Data type Description Range

idGwdata int Primary key
deviceId int Ref. to the device that generated the data
timestamp dateTime Time stamp of the data record
temperature float [deg C]
aanlogValue float reading from the analog input
accelX float Acceleration in X axis [m/s2]
accelY float Acceleration in Y axis [m/s2]
accelZ float Acceleration in Z axis [m/s2]
errorCode int Errors of the device

Note. BST (2011)

77

Table C.9: Peg Data Table

Column Data type Description Range

idPegdata int Primary key
deviceId int Ref. to the device that generated the data
timestamp dateTime Time stamp of the data record
temperature float [deg C]
batteryVoltage float [V]
rechargingCurrent float [A]
rechargingState string ?
accelX float Acceleration in X axis [m/s2]
accelY float Acceleration in Y axis [m/s2]
accelZ float Acceleration in Z axis [m/s2]
errorCode int Errors of the device
state int State of the device
analogValue float Reading of the analog input

Note. BST (2011)

Table C.10: Tag Data Table

Column Data type Description Range

idTagdata int Primary key
deviceId int Ref. to the device that generated the data
timestamp dateTime Time stamp of the data record
heartrate float Heart rate [bpm]
accelX float Acceleration in X axis [m/s2]
accelY float Acceleration in Y axis [m/s2]
accelZ float Acceleration in Z axis [m/s2]
bodyAttitude int Attitude of the person wearing the tag
activityLevel int Activity level of the person wearing the tag
errorCode int Errors of the device

Note. BST (2011)

78

Table C.11: Tag Sensor Table

Column Data type Description Range

idDevice int Primary key
stateHeartrate int State of the heart rate sensor (see sensorState)
stateFallen int State of the fallen sensor (see sensorState)

Note. BST (2011)

Table C.12: Device Table

Column Data type Description Range

idDevice int Primary key
stateSensorA int State of the external sensor A (see sensorState)
stateSensorB int State of the external sensor B (see sensorState)
stateVibration int State of the vibration sensor (see sensorState)
stateTemperature int State of the temperature sensor (see sensorState)

Note. BST (2011)

Table C.13: User Role Table

Column Data type Description Range

idUserRole int Primary key
name varchar(45) Name of role

Note. BST (2011)

Table C.14: Login Table

Column Data type Description Range

login varchar(45) Primary key, login name
role int Reference to the userRole table
password char(32) MD5 hash of the password
lastname varchar(45) last name of the user
firstname varchar(45) first name of the user
sessionid varchar(45) sessionid of user connection

Note. BST (2011)

79

Fixed Value Tables

Table C.15: Device Type Table

idDeviceType name

1 GW

2 PEG

3 TAG

Note. BST (2011)

Table C.16: Sensor State Table

idSensorState state

1 On

2 Off

3 Alarm

4 Pending_On

5 Pending_Off

6 Pending_Clear

Note. BST (2011)

	Approval
	Partial Copyright Licence
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1. Introduction
	1.1. BeeSecured Project Background
	1.2. Client Profiles
	1.3. Motivation
	1.4. Objective
	1.5. Contribution & Project Scope
	1.6. Report Organization

	2. BeeSecured Project Architecture Overview
	2.1. System Components
	2.1.1. Hardware Components
	2.1.2. Software Components
	2.1.3. Database

	2.2. System Architecture
	2.3. System Functionality
	2.4. Data Flow
	2.4.1. Handling Alarms

	3. Software Requirements and Constraints
	3.1. Uses Cases
	3.2. Constraints
	3.3. Project Schedule

	4. Design Criteria
	4.1. Application Platform
	4.1.1. Platform Research
	4.1.2. Firmware Research
	4.1.3. Database Research
	4.1.4. Map Technology Research
	4.1.5. Method of Deployment

	4.2. 4.2 Application Type
	4.2.1. Front-End (Client-Side)
	4.2.2. Back-End (Server-Side)
	4.2.3. Communication Method
	4.2.4. Deployment Environment

	4.3. Database
	4.4. Database Connector – JDBC
	4.5. Tools

	5. Software Architecture
	5.1.1. User Case Work Flow Scenarios

	6. Implementation
	6.1. Implementation Architecture
	6.2. Design
	6.2.1. UML Diagrams
	6.2.2. Client Package
	6.2.2.1. Classes
	6.2.2.2. Interfaces

	6.2.3. Server package

	6.3. Database
	6.3.1. Database Design
	6.3.2. Notifications

	6.4. EER Diagram
	6.4.1. Relationship explained
	6.4.2. Potential Performance Concerns

	6.5. Testing

	7. BeeSecured Web Interface
	8. Future Work
	8.1. Feature Implementation
	8.2. Testing
	8.3. Map Upgrades
	8.3.1. Google Maps v3
	8.3.2. GWT Google Map Utilities
	8.3.3. Mapstraction

	8.4. Bug Fixes and Code Refactor

	9. Conclusion
	References
	Appendices
	Appendix A. UML for Client Application
	Appendix B. UML for Server Application
	Appendix C. Database Tables
	Fixed Value Tables

