BeeSecured Web — An AJAX Web Interface to a

Sensor Network for Occupational Safety

by
Frank Chen
B.A.Sc., Simon Fraser University, 2008

Research Project Submitted in Partial Fulfillment
of the Requirements for the Degree of

Master of Engineering

in the
School of Engineering Science

Faculty of Applied Sciences

© Frank Chen 2012
SIMON FRASER UNIVERSITY
Spring 2012

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may
be reproduced, without authorization, under the conditions for
“Fair Dealing.” Therefore, limited reproduction of this work for the
purposes of private study, research, criticism, review and news reporting
is likely to be in accordance with the law, particularly if cited appropriately.



Approval

Name: Frank Chen
Degree: Master of Engineering
Title of Thesis: BeeSecured Web — An AJAX Web Interface to a Sensor

Network for Occupational Safety

Examining Committee:
Chair: Ash Parameswaran, Professor

Bozena Kaminska
Senior Supervisor
Professor

Kamal Gupta
Supervisor
Professor

Date Defended/Approved: January 25, 2012




Partial Copyright Licence S F U

The author, whose copyright is declared on the title page of this work, has granted to
Simon Fraser University the right to lend this thesis, project or extended essay to users
of the Simon Fraser University Library, and to make partial or single copies only for such
users or in response to a request from the library of any other university, or other
educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a
digital copy for use in its circulating collection (currently available to the public at the
“Institutional Repository” link of the SFU Library website (www.lib.sfu.ca) at
http://summit/sfu.ca and, without changing the content, to translate the thesis/project or
extended essays, if technically possible, to any medium or format for the purpose of
preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not be
allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use, of any
multimedia materials forming part of this work, may have been granted by the author.
This information may be found on the separately catalogued multimedia material and in
the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the thesis,
project or extended essays, including the right to change the work for subsequent
purposes, including editing and publishing the work in whole or in part, and licensing
other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the Simon
Fraser University Archive.

Simon Fraser University Library
Burnaby, British Columbia, Canada

revised Fall 2011



Abstract

A software application for monitoring and controlling sensor network data needs to be
easily accessible and needs to maintain an accurate record of all activities in the
network. Traditional desktop applications have been a primary form of software
interface for many applications, but they require additional setup per physical machine
without the flexibility of access from additional computers. Our particular system of
interest, the BeeSecured rapid deployment and monitoring system, an end-to-end
solution for remotely monitoring personnel and assets in various terrains using wireless
sensor networks (WSN), currently uses a desktop application as the primary software

interface and does not include capabilities to maintain a record of the network activities.

This report presents the design and implementation of an AJAX application with the
integration of an open-source map technology and database system. The purpose of
this project is to design a cross-browser compatible user interface that can be
conveniently accessed by any computing device with an internet connection. The
application is suitable for real-time information updates as well as securely controlling
any system level data. In particular, the application is targeted for displaying
geographical locations for sensors in a WSN, with the capability to store and retrieve the
most up-to-date sensor network data in real-time. We have implemented an application
that utilizes AJAX technology at run-time, with the integration of the Google Maps
version 2 technology and the PostgreSQL database system, and we demonstrated our
application by integrating it with the BeeSecured rapid deployment and monitoring
system. WSN devices were generated via a software simulator to test the various
functionalities of our application, and we were able to demonstrate a working prototype

of the web interface.

Keywords: BeeSecured Web; BeeSecured; Google Maps; database; sensor network;
GWT



Acknowledgements

First, | would like to thank Dr. Bozena Kaminska for giving me the opportunity to partake
in the BeeSecured project and her guidance through various stages of my M.Eng
degree. | would also like to thank Dr. Marcin Marzencki for coordinating project
scheduling and providing general support throughout the project, and Dr. Jens Wawerla
for providing software and technical support, documentation, setting up required
environments for application deployment and driving the software integration effort
during the development of the project. | would also like to extend my thanks to all other
BeeSecured members who were involved in various stages in the project and provided

additional support and project knowledge.



Table of Contents

Y o] o] 0 1Y RPN ii
Partial Copyright LICENCE .......coiiiiiiiiiiiee et a e e ii
Y o 1] 1 = o PSPPSR iv
ACKNOWIEAGEMENTS ...ttt v
Table Of CONTENES ... Vi
I o) N 1F= 1 ][ viii
(IS Ao T T L= PP X
LISt Of ACTONYMIS. ...ttt eaaaesaaesnnnsnnnnnnnes Xii
1. INtFOAUCHION ... e 1
1.1. BeeSecured Project Background.........cccooooiiiiiiiii 1
1.2, Clent Profiles ..o 1
1.3 MOtIVALION .. e 2
R S O o =T ox 1 Y= S 3
1.5. Contribution & Project SCOPE......ccooiiiiiiiieeeeeee 3
1.6. Report Organization ..o 4
. BeeSecured Project Architecture OVerview ...........cccccviiiiiiiiiiiiinnesssssssssesssseeeenns 5
2.1, System COMPONENES ......uiiiiiiiiiiiiiiiiiiii s 5
2.1.1. Hardware COMPONENLES .......uuuiiiiiiiiiiiiee e 5
2.1.2. Software COMPONENES.........cuiiiiiiiiiiiiiiiiiiiiiiietie et 8
2.1.3. Database ........oovuiiiii i ————————— 9

2.2, System ArChIECIUIE .........uueeiiiiiiiiiii s 10
2.3. System FUNCHONAILY ........uuiiiiiiiiiii s 12
P S I - = TN [0 T 12
P2 TR o = g Lo | T o N F= 4 o TSROSO PRSP 13

3. Software Requirements and Constraints............cccccvvremeiceiniiinnreccescese e eeeeeenas 15
R T B B 1T = 1 T 15
B T O] 011 =11 ) =TSP 17
3.3, ProjeCt SChEAUIE ..o e 18
L SN T Y- T | 4 0 4 1 1 4 - O 19
4.1. Application Platform.........ccoooo i 19
4.1.1. Platform RESEAICH .........oviiiiiiiiiiiiiiiiiiiieeieiit e nnennnnnnnne 19
4.1.2. Firmware RESEarCRN.......oouuuuiiii e 21
4.1.3. Database RESEAICH ............uuuuiiiii e 22
4.1.4. Map Technology RESEArCh ...........uuuiiiiiiiiiiicee e 23
4.1.5. Method Of DeploymMeNnt ..........cooiiiiiiiiii e 24

4.2. 4.2 Application TYPe ....cooeeeeeeeeeeee e 25
4.2.1. Front-ENd (CHent-Sid@) .........uuuummumiiiiii e 25
4.2.2. Back-End (Server-Side) ... 26
4.2.3. Communication Method .............uuuimmiiiii e 26
4.2.4. Deployment ENVIFONMENT........uuuuumiiiiiiiiiii s 28

Vi



N T D F- | =] o 1= 11 WP 28

4.4. Database Connector — JDBC ...... .. 29
S TR o T PP 29
5. Software ArchiteCture ... ssssssssssnns 30
5.1.1. User Case Work FIOW SCENArIOS...........ccvveiiiiiiiiiiiiiiiiiiieieeeeeeiiieeeeenenennnennes 32

6. Implementation.........oiiii e 33
6.1. Implementation ArchiteCture...............oviii i 33
8.2, DIBSIGN ..ttt s 34
6.2.1. UML DIi@gramsS .......ccoiiiiiiiiiiiiiiiiieeeeeee et 34
6.2.2. Client PACKage.........couiiiiiiiiiiiiiiiiieieeeeeeeeeeee ettt 35
B.2.2.1. ClASSES...uuuuuuuiiiiiiiiiiiiiii e as 35

6.2.2.2. INTEITACES. .. .ueii s 38

LS B 1= V=T o= Tod 1€ o [ 38

B.3. Database.........coiiiiiiiii e 39
6.3.1. Database DeSign ........coooiiiiiiiiii e 39

SRS I0Z L] ()71 1 o o < PR 41

6.4. EER DIAQIam ......uueeieiiiii e 42
6.4.1. Relationship explain€d .............iiiiiiiiii i 43
6.4.2. Potential Performance CONCEINS.............uuuuiiiiiieiiiiiiiiiiieiiiieeeeneennnnnnnnnnnnnnns 43

8.5, TSN ettt 44
7. BeeSecured Web Interface..........cccccuemmmmmmmmn e 45
< T 1 {01 =0T o 50
8.1. Feature Implementation........... ... i 50
8.2, TSN ettt 51
TG T IV = o 0 o To | = Lo [ T 51
SR Tt IR € T To Lo | (=Y 1Y = o R A SRR 51
8.3.2. GWT Google Map ULIlItIES.........ceuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiiiiiees 51
8.3.3. MapStraCtion .......ccouuiiiiii e 51

8.4. Bug Fixes and Code Refactor...........cc.uuiiiiiiiiiiii e 52
L= TR 0o ¢ Vo7 ¥ =3 T o 53
= (=T =T 3 X 54
Y o3 o =Y o Lo [ o = OO 55
Appendix A. UML for Client Application ...........cccooeeviiiiiiiiiie e, 56
Appendix B. UML for Server Application...........c..ooovviiiiiiiiiiee e, 70
Appendix C. Database TabIes ........oiii i 72

Vii



List of Tables

Table 2.1: PEG Sensor Table............ooiii e 7
Table 2.2: TAG SensOr TabIe .. ... 8
Table 3.1: BeeSecured Web Software Requirements............ccccceeeiiiiiiiiiiiee e, 17
Table 3.2: Project SChedule .............ooiiiiiiii e 18
Table 4.1: Platform COMPariSON ...........uuiiieieee e e e e e e e e e e e e e aaaaaaaas 19
Table 4.2: Datastore Storage CompariSON .............uuuiiiiiiiiiiiiiice e 22
Table 4.3: Map APl COMPATISON ........couiiiiiii e e e e 23
Table 4.4: Method of Deployment CONCEIMNS ..........ccooiiiiiiiiiiiieie e 24
Table 4.5: SQL database COMPAIISON ... 28
Table 6.1: NOtificatioNS LiSt ..........u e 41
Table 6.2: Database relationship SymboOIS ... 43
Table 7.1: Device Status ICONS ........uiiiiiiiiiiie e 47
Table 7.1: Unimplemented Features .........cccoooiviiiiiiiiii e 50
Table C.1: Site TabIe.......oooiii e 72
Table C.2: DEVICE TabIE.......cooiiiiiiiiiiiie e 72
Table C.3: Peg Config TabIe ......... e 73
Table C.4: Tag Config TabIe .......... e 74
Table C.5: Gateway Config Table...........uuu e 75
Table C.6: Alarm Data Table ............ e 75
Table C.7: External Sensor Type Table........... 76
Table C.8: Gateway Data Table ... 76
Table C.9: Peg Data TabIle ......... e 77
Table C.10: Tag Data Table ......coo o 77
Table C.11: Tag SeNSOr TabIE ......cccoieiiiiiii e e s 78



Table C.12: DEVICE TaDIE ... oo 78

Table C.13: User RoIe TabIe ...........ouiiiiiiii e 78
Table C.14: Login Table ....coouiiiiii e 78
Table C.15: Device Type Table .......ccoooiiiiiiii e 79
Table C.16: Sensor State TabIe ... 79



List of Figures

Figure 2.1: Lantronix Xport Pro ... 6
Figure 2.2: PEG Device Deployed with Solar Panel ... 7
FIGUrEe 2.3: TAG DEVICE .....uuii it e e e e e 8
Figure 2.4: System Architecture of One Site.............coooiiiiiiiiiii e 10
Figure 2.5: System Architecture with Multiple Sites ... 11
Figure 2.6: Sequence Diagram for Raising Alarms...........ccccceeiiiiiiiiiiiii e, 13
Figure 2.7: Sequence Diagram for Clearing Alarms ...........ccceeiiiiiiiiiiiiiee e, 14
Figure 3.1: AdMINIStrator USE CasesS........ccuiuiiiiiiiiiiiiiiiie e 16
Figure 3.2: USer USe Cases ........cooeiiiiiiiie e 16
Figure 5.1: Concept Diagram of BeeSecured Web ... 30
Figure 6.1: Implementation Architecture Diagram..............cccoooiiii 34
Figure 6.2: Class UML FOrmat ............uueiiiiiiiiiii e 35
Figure 6.3: EER of BeeSecured Database ...............cccco o 42
Figure 7.1: BeeSecured Web GUI ... 45
Figure 7.2: Gateway Settings Dialog ...........ccooeiiiiiiiiii e 48
Figure 7.3: PEG Settings Dialog.........oooiiiiiiiie 48
Figure 7.4: TAG Settings Dialog ..........cooooiiiiiiiiieeeeeee 48
Figure 7.5: PEG Sensor Status Dialog ..o 49
Figure 7.6: TAG Sensor Status Dialog .........coooviieiiiiiice 49
Figure 7.7: Device Configuration Dialog ...........coooviiiiiiiiiiie 49
Figure A.1: Login Class .......coooiiiiiiieieeeeeeee e 56
Figure A.2: Config Class .......ccooiiiiiiiii e 57
Figure A.3: Constants Class..........ooooiiiiiiiii 57
Figure A.4: AlarmData Class .........ooooiiiiiiiii 58



Figure A.5: BeeSecuredWeb Class (Fields) ..........uuuiiiiiiiiiiiiiieeeeeeee e 59

Figure A.6: BeeSecuredWeb Class (Methods) ... 60
Figure A.7: GoogleMaps Class (FIieldS) .........oouuiuiiiiiiiiic e 61
Figure A.8: GoogleMaps Class (Methods)............ccooiiiiiiiiiiiii e 62
Figure A.9: Device, TagDevice, PegDevice Classes ...........cccccceeeeiiiiiiiiiiiiiiiieeeeeeeee 63
Figure A.10: DeviceService, DeviceServiceAsync Class ..o, 64
Figure A.11: DeviceType, EXtSENSOITYPE ....ccooviiiiiiiiiieeeeeee e 65
Figure A.12: SiteStorage, GwStorage, PegStorage, TagStorage, Site Classes............. 65
Figure A.13: GWSIOrage Class .......ccuuuiiiiiiiiieiiiiie ettt a e 66
Figure A.14: PegStorage Class ..o 67
Figure A.15: TagStorage Class .........ccooviiiiiiiiiiii e 68
Figure A.16: GwConfig, PegConfig, TagConfig Classes...........ccccceviiiiiiiiiiiieeeeeee 69
Figure B.1: Servlet ClasSes .........oooi oo 70
Figure B.2: Servlet Classes Continued ... 71

Xi



List of Acronyms

Acronyms Definition

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
ASP Active Server Pages

BST BeeSecured Technologies

DOS Denial of Service

DBS Database Server

EC2 Elastic Cloud 2

EER Enhanced Entity Relationship

GUl Graphical User Interface

GWT Google Web Toolkit

HRD High Replication Datastore

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
laaS Infrastructure as a Service

IDE Integrated Development Method
[0} Input/Output

JSNI JavaScript Native Interface

JSON JavaScript Object Notation

JVM Java Virtual Machine

00D Object Oriented Design

0S Operating System

PaaS Platform as a Service

RDMBS Relational Database Management System
RPC Remote Procedure Call

SDK Software Development Kit

SDLC Software Development Life Cycle
StAX Streaming API for XML

WSN Wireless Sensor Network

Xii



1. Introduction

BeeSecured Web is a web interface designed for an occupational safety
monitoring system: BeeSecured. This section will cover a brief introduction to
BeeSecured, some of the motivation, objective, and scope for the BeeSecured Web

project as well as the organization for the remainder of the report.

1.1. BeeSecured Project Background

The BeeSecured system is an integrated intrusion detection and health
monitoring solution that uses a Zigbee wireless sensor network, and it provides an end-
to-end solution to monitor for occupational safety. The motivation behind designing a
system that utilizes a Zigbee network is to implement a solution that is operationally
efficient and low maintenance, and flexible to deploy to various terrains. The system
consists of many integral components from hardware, firmware to software. Hardware
devices consist of Zigbee coordinators, routers and end-devices for the WSN as well as
external sensors that could optionally be added to these devices. Firmware components
consist of customized software that configures individual hardware devices as
coordinator, router or end-device. Software components consist of front-end
applications that are used to monitor network and sensor statuses as well as servers

that translate Zigbee messages.

1.2. Client Profiles

BeeSecured applies wireless sensor network technology to monitor and detect
the statuses of individual nodes in the network. This particular system is an innovative
solution to monitor a closed proximity of both indoor and outdoor environments; some

specific client profiles are as follows:



Building Security (Indoor)

BeeSecured can provide a solution to monitor movement and location inside any
region that is within the Zigbee network. Nodes can be installed to monitor a hazardous
area within a building to ensure the safety of all personnel through determining their

location, body position and heart rate.
Security for Mining Sites (Outdoor)

Mining sites are especially dangerous and BeeSecured can be a good solution to
monitor the safety of any personnel in a site. Existing security systems may require
miners to carry and swipe an access card to monitor entry and exit, and this may result
in unaccounted miners in or out of a site when one forgets to swipe the card. The
BeeSecured system removes this concern by replacing the swipe card with a wearable

TAG node, and automatically detecting when miners enter or leave the site.

1.3. Motivation

The motivation behind the BeeSecured Web project is to allow users easy
access to the front-end application that controls and monitors the wireless sensor
network. In the previous iteration of the system, a desktop application was implemented;
however, the lack of mobility with the application, and the additional effort required for
deployment led to the idea for a web front-end. The initial motivation behind
BeeSecured Web was to create a cloud application. As there are emerging cloud
development platforms, deploying an application into a cloud environment seemed like a
very attractive options to potential clients. However, due to various system
complications and security concerns, the decision was made to not continue with this

approach, and instead proceed with a local, more controllable deployment method.

My motivation to take on this project is to learn more about web development as
well as the Zigbee wireless sensor network and have exposure to all the components
that make the system possible from hardware, firmware to software. The BeeSecured
project has grew substantially since its initial research phase and it was really exciting to

be a part of a project with real application scope and potential.



1.4. Objective

The objective of BeeSecured Web is to deliver a user friendly update to the
current desktop application with the use of open sourced maps and database
technologies. The web application has to be in line with common web standards, as well
as software requirements drafted as the project scope. The objective is to deliver a

robust application in a short timeframe utilizing open-source map APIs.

1.5. Contribution & Project Scope

The project scope is defined by a set of software features agreed on throughout
the agile software design iterations. Features are prioritized by importance in the
implementation timeline to accommodate for potential feature completion estimation

errors. Exact feature requirements are defined in section 3.

In order to design an appropriate interface for a WSN, understanding how WSNs
work is a must. Additional research was done on communication networks and
protocols, and in particular, research on the Zigbee protocol standards, as well as
encryption, authentication, routing and other security issues contributed to the
understanding of the full capabilities of the BeeSecured WSN. Knowledge of WSN
security, such as routing security, and the understanding of various types of passive and
active attacks further contributed to deciding on an appropriate approach to working with
a WSN. From a software and database perspective, extensive knowledge from
capabilities of a particular framework, language, SDLC and best practices for designing
and working with RDBMS also were also applied to this project. Moreover, the
understandings of software concepts such as OOD and web application and server
technologies were critical to the design of the application. Furthermore, research on
cloud computing were used to make decisions to balance between the business needs
of the application and the technical constraints and costs, such as available platforms,
development time, capability and security concerns for deployment. Additional analysis
on previous versions of the BeeSecured GUI was also done for designing an interface
that provides a similar overall experience which allows a seamless transition to the new

interface for the end user.



1.6. Report Organization

The rest of the report will be organized as follows: The overall BeeSecured
system architecture will be presented in section 2; use cases, software requirements and
features will be listed in section 3; BeeSecured Web design criteria are covered in
section 4; software architecture and conceptual designs are covered in section 5;
implementation details are presented in section 6; BeeSecured Web interface overview

is in section 7; future work is discussed in section 8; and finally section 9 concludes.



2. BeeSecured Project Architecture Overview

There are several components that make up BeeSecured, and this section will
cover all the components within the system, as well as the overall system architecture

and functionalities.

2.1. System Components

The BeeSecured project consists of several hardware and software components.
Each device is configured differently by firmware to configurations of a Gateway, PEG,
or TAG devices. An additional edge device is required for the Zigbee network to
communicate with Ethernet devices, and in our system, we use the Lantronix Xport Pro

portable network server running the Evolution operating system.
2.1.1. Hardware Components

Hardware components (excluding the Xport Pro below) operate at ranges from -
40 C to +85 C, giving the system great versatility for deployment over various terrains

and weather conditions.
Edge Device (Lantronix Xport Pro)

The Xport Pro network server is an embedded networking device that acts as a
compact server. lItis easy to setup, provides security options for data transfers, and
supports an abundance of network protocols comprising of TCP/IP, and HTTP. Our
main use of the Xport Port is to forward serial data from the Zigbee network to Ethernet.
Once Zigbee messages have been converted and sent via serial port, the Xport Port
then forwards this data via TCP/IP to the BeeSecured Server to process and store into

the database.



Figure 2.1: Lantronix Xport Pro

Note. BST (2011); used with permission. Lantronix Xport Pro is the highlighted device.

Gateway Devices

Gateways are programed as Zigbee coordinators to form and coordinate data in
the Zigbee network. Certain Gateways are also programmed to convert Zigbee
messages to standard serial data to be sent over an Ethernet connection. Figure 2.1
shows a Gateway device inside a long range WiFi router.

PEG Devices

PEGs are Zigbee routers whose main purpose is to route data from coordinators
to the end devices. They also have the capability of adding external sensors (infrared,
motion, etc) which enhances the flexibility and coverage the BeeSecured security
system. PEG devices have 16 signalization pins that can be used to connect to
additional output devices based on sensor triggers, and PEG devices usually stay
stationary after system deployment. Table 2.1 lists the available sensors on a PEG

device.



Figure 2.2: PEG Device Deployed with Solar Panel

Note. BST (2011); used with permission

Table 2.1: PEG Sensor Table

PEG Sensors Description

External sensor A (optional) Extendible to external sensors such as infrared,
motion, magnetic

External sensor B (optional) Extendible to external sensors such as infrared,
motion, magnetic

Vibration sensor Sensor to detect physical tempering of the device

Temperature sensor Sensors to detect abnormal temperature conditions

that may hinder device operations

TAG devices

TAGs are the end devices in the Zigbee network, and they are wearable nodes
given to the person being monitored. They are the most power efficient devices in the
system because they do not need to be operating the entire time. TAG devices also
have the capability to monitor heart rate via ECG and body positions via accelerometers
and can alarm the system if a wearer suffers sudden physical injury or goes into cardiac

arrest.



Figure 2.3: TAG Device

Note. BST (2011); used with permission

Table 2.2: TAG Sensor Table

TAG Sensors Description

Accelerometers Sensors to detect relative positions of the Tag
wearer

Heart rate Monitors wearer heart rate for any abnormal heart
conditions

2.1.2. Software Components

BeeSecured Server

Previous versions of the Zigbee server processes Zigbee messages from the
network and sends them via a proprietary message format to the front-end client
application. In order for the server to work with BeeSecured web, it has been upgraded
to convert serial bitstream of Zigbee messages, and process them to determine
appropriate modifications or updates on the database. The server provides a HTML

interface for the administrator to analyze the network for any issues.
Front-end GUI

The front-end GUI is what the user will interact with the BeeSecured system.
There are two applications that act as the front-end Ul: BeeSecured Client, and
BeeSecured Web. BeeSecured Client is a WPF desktop application for the user to
monitor the sensor network. It offers a rich Ul using the .NET 4.0 Framework and

provides audio and visual feedback on the sensor network. BeeSecured Web is the new

8



light weight counterpart to the desktop application that will run on any web browser, and

it will interact primarily with a remote database that holds all sensor network information.
Zigbee simulator

The Zigbee simulator is an application created for generating Zigbee data to
simulate the sensor network when no hardware devices are available for testing the
software applications. The simulator will periodically generate database data for the

front-end GUI to interact with.

2.1.3. Database

In order to maintain a history record of all the data in the sensor network, and
login credentials for all users, we use a database to maintain these records. There are
several critical features we looked for in selected a database system, which will be

discussed in section 4. The database system we use in BeeSecured is SQL.



2.2. System Architecture

Figure 2.4: System Architecture of One Site

/

k Site 1

Note. BST (2011); used with permission

Figure 2.4 shows the system architecture of all the components within a single site within
the WSN. Each site consists of a Gateway, PEG, TAG and Commissioner, and the data
collected from these components are forwarded to a server and then displayed onto the

GUI. The communication channel between the site, server, and GUI are all bidirectional.

10



Figure 2.5: System Architecture with Multiple Sites

/

. Site1
. Site2
. SiteN

Note. BST (2011); used with permission

Figure 2.5 shows the architecture of multiple sites within the WSN. The BeeSecured
system supports multiple sites, each with its’ own set of Gateways, PEGs and TAGs as
well as the potential of multiple GUIs. Multiple gateways can be added to the system to
increase reliability and multiple GUI access points add flexibility for the end user to

monitor the system.

11



2.3. System Functionality

The BeeSecured system provides an end to end solution for monitoring WSN.

The current system comprises of the following functionalities:

* Multiple sites in a system

» Very large sites with 500-1000 persons per site (in progress)

» Fixed routers and tags mobile within the site (across multiple subnets)
e TCP/IP connection between sites, server, and GUIs

* Localization (in progress)

» Accounting (in progress)

» Man down detection (physiological monitoring + activity detection)

* Routers with sensors

» Periodic reporting of sensor parameters

* Real-time reporting of alarms

+ 3 months battery life for PEG device with no sensors and no solar power
* 5 days battery life for TAG

* Operation -40°C to +80°C and IP67 certification

Note that several functionalities marked as “in progress” are currently not available in the

system, and will be included in future implementations of the project.

2.4. Data Flow

As we can see from Figure 2.4 above, sensor data is collected through PEG and
TAG devices, and they are routed through PEGs and Gateways. The data then becomes
serialized and forwarded via TCP/IP to the Zigbee server. The server consists of a
database, and interprets this data and decides the appropriate actions to act on the
database. When the database is updated, the GUI will display these updates to the user.
Sensor status data will be sent periodically, and frequency can be set by the
administrator. On the event of an alarm, alarm messages will be sent asynchronously

through the network, and we will address this below.

12



2.4.1. Handling Alarms

As BeeSecured relies on alarm events to notify end users on intrusion or other
critical statuses in the system, the sequence of raising and clearing alarms generated
from sensors throughout the system is an important data flow to monitor. The diagram

below shows how each component does in the event of an alarm.

Figure 2.6: Sequence Diagram for Raising Alarms

|
Alarm Sensor A

: send alarm message

acknowledge alarm

T enter alarm in device table

D |device' stateSensorA = ALARMB|

% log alarm in alarmData table

D |a\armDala' new entry (time, device alarmﬁ

D4 request data‘[]
0 I
+ |display alarm

Note. BST (2011); used with permission

As we see in figure 2.6, when the system raises an alarm, it sends an alarm message to
the server. The server then sends an acknowledgement message back once it receives
the alarm. At the same time, the server updates the alarm status in the database and
inserts a new entry in the alarmData table as a log. The GUI periodically checks
whether the database has an updated alarm status and displays alarm conditions

accordingly.

13



Figure 2.7: Sequence Diagram for Clearing Alarms

| : 1 . \
' | peg: stateSensorA = ALARM : | display Alarm
clear SensorA alarm _{

] ]

request data _*

~data [I N
' >D display alarm cleared pending
D:requesl data : H
: uarj]
' s ———
L send clear alarm
sensorA alarm cleared -
staus .
update database

request data :

dta :
1 :
; ~ |display alarm cleared

Note. BST (2011); used with permission

The sequence to clear alarms starts by the user noticing the alarm status on the GUI.
By clearing the alarm in the GUI, the GUI sends a clearing alarm pending status to the
database. On the event that the database alarm status is updated, the server reads
from the database and sends out a clear alarm message to the device(s). Once the
device(s) clears the alarm, a status message is sent back to the server, which then
writes the updated status to the database. The GUI reads the updated clear status from

the database and displays it to the user accordingly.

14



3. Software Requirements and Constraints

BeeSecured Web aims to satisfy two distinct user profiles, commonly used in
standard IT security scenarios: the administrator, who has full privilege to modify settings
in the application and data in the database; and the standard user, who only has access
to monitoring sensor network statuses. In security systems, the standard user typically
takes the role of a security guard, who may or may not have extension experience with
software applications, therefore, BeeSecured Web must be designed with this
consideration in mind. In addition, there are also requirements for integrating the
application with a database for storing a unified copy of all sensor network data. The
requirements are determined by the uses cases for the individual roles we mentioned,
and they are created to cover scenarios that the actors in the systems will encounter.

These scenarios are shown in the section 3.1.

3.1. Uses Cases

Use cases need to be defined prior to designing software to fit a particular user
profile or scenario. Based on the two targeted roles, the fundamental use cases are

established and used to map out specific functionalities within BeeSecured Web.

15



Figure 3.1: Administrator Use Cases

Create and add new
devices to the sensor network

Modify location of
existing devices in the sensor
network

Administrator

Configure devices
in the network

Clear any alarms
triggered by sensors

Note. Administrators have targeted features focusing on the configuration and troubleshooting of
the system.

Figure 3.2: User Use Cases

Monitor statuses of
sensors in network

Monitor geographical
locations of devices

User Monitor alarm

statuses of sensors

Clear sensor alarms

Enable/disable
sensors

Note. Standard users have features targeting monitoring the system.

16



From the uses cases above, the following list of software requirements were drawn for
BeeSecured Web:

Table 3.1: BeeSecured Web Software Requirements

Feature Target User Profile
Web application must be able to communicate witha  Admin/User
server

Application must have a map that shows site Admin/User
locations via GPS coordinates

Display devices on the maps: separate icons for Admin/User
gateways, pegs, tags

Map must be able to pan and zoom Admin/User
Login capability with different user profiles Admin/User
Databases interaction Admin/User
Configuration of devices Admin
Enable/disable sensors Admin/User
Set signalization values for peg devices Admin
Display alarms (visual and acoustic) User
Display current sensor data User
Display sensor data history User
Display alarm data history User
Acknowledge/clear alarms User

Place devices on the map Admin
Replace/reconfigure devices on the map Admin

Select a region on the map display present devices ~ User

External database configuration file for application Admin

3.2. Constraints

The resources available for this application is limited to one person, and the
scope of the project will be limited to the software requirements established. The time
constraint is one semester’s timeframe of 13 weeks, distributed to research time,

learning the required technology, as well as application development. Basic unit testing

17



is covered throughout the development cycle, but a full test plan will not be implemented
or executed. The software life cycle used throughout BeeSecured Web is the agile
model, with weekly milestones and reviews with design modifications reduce the risk of a

feature not working as originally intended.
Agile Model

* Short development milestones
* Requirements may be updated or changed during development

* End of development depends on feature completion

3.3. Project Schedule

Based on the limited time allocated for the development of the project,
BeeSecured Web started from the requirements phase and carried out until the
beginning of the testing phase. Full testing phase was not be allocated to the project
schedule, nor was maintenance. Minor maintenance may be done post-mortem, but will
only go until the end of the year. The following timeline is an approximation of the

project timeline throughout development:

Table 3.2: Project Schedule

Agenda Duration (weeks)

Project scope and requirements drafting
Initial research and first requirements scoping
Technology learning

First prototype

Weekly milestones

_ N =, N

Unit testing and additional fixes
Total: 13

The agenda is an approximate time spent in each phase in the project. Due to decision
changes throughout the development phase, certain tasks were performed in parallel to

make up for time left in the remainder of the project schedule.

18



4. Design Criteria

In order to achieve our objective and design a robust, but simple to use web

application, there are many factors to consider: the application platform, database, map

technology, potential firmware implementations, and the method of deployment. In this

section, we will analyze these individual components in the system.

4.1. Application Platform

4.1.1.

Platform Research

The initial development direction is for BeeSecured Web to be a cloud

application; therefore the choice of an appropriate cloud platform was one of our initial

concerns. There are several big players that offer cloud platforms, and the following are

the platforms that were taken into consideration in the initial project research:

Table 4.1: Platform Comparison

Google Microsoft Amazon

Cloud Platform App Engine Azure EC2

Cloud Service Type PaaS PaaS laaS

Customization Low Medium High

Flexibilty

Cloud Computing Cost  Free 1GB for $0.12 per hour Free Tier 750 hours (1st
incoming/outgoing daily year). $0.12 per hour
bandwidth limit thereafter (small

instance)

Database usage Cost Free (up to $9.99 per database for  Free Tier 5GB (13t
500Mb/month) 1GB per month year), $ thereafter

Development Platform  Open Sourced (Eclipse,  Visual Studios Open
NetBeans)

Development Platform  Free Per license Open




Framework Java/Python/Go SDK NET Open
Application Type AJAX ASP.NET (AJAX) Open
Language Java/Python/Go C# Open

There are a few key factors that were used to decide on a choice for the
application: cloud platform cost, development platform cost, and the speed of
development. As with most research projects there is a budget constraint to operation
costs, so the costs of the cloud usage and development platforms weighed heavily into
the choice of development platform. In addition, there is also a need to maintain
software portability in the event that there is a need to migrate the application to a

different system.

Amazon’s EC2 provides the most flexibility in our cloud deployment, as they offer
laaS, where we are given the option to customize and choose any OS (Linux, Windows,
OpenSolaris) for our hardware emulation. This allows us to develop on any platform we
choose and use any framework we please. For new users, Amazon does offer free
quota for the first year, which is beneficial for the development phase of this project.
However, since we are developing a web application, there is very little benefit in using a
service that provides high hardware customization ability, as is provided by Amazon’s
EC2. Although it may be useful to customize cloud instances for different customer
profiles, the effort to setup the configuration outweighs the benefits. Microsoft and the
.NET framework provides a very rich set of libraries for our application, and their
integrated Visual Studios 2010 platform has an abundance of features that will allow us
to create rich web applications. Unfortunately, the costs of development licenses for
Microsoft products do not come cheap, and neither do their services. The portability of
code is also fairly low since we will be restricted to relying on the .NET framework.
Lastly, for the Google App Engine platform, we have a permanent free quota for
database and computing usage, which is a major advantage over the other frameworks.
Development for App Engine can be done on any free open-source development
platform such as Eclipse or NetBeans, which makes the choice even more appealing.
Although the flexibility of the Google platform is the most limited of our choices because
we are developing in a sandbox environment, it does cater to all of our needs for

deploying a web application.

20



Based on the mentioned criteria, the Google platform definitely comes out on top
with their offer of free quota for computation and database usage, as well as the open-

source development platform that they’ve integrated into their SDK.

4.1.2. Firmware Research

The Lantronix Xport Pro with Evolution OS provides a set of APIs for
customizations to the onboard server, as well as CGI scripting capabilities for changing
their default web interface. The Xport Pro can be used as a solution to push data onto a
web server, and have the web application display contents to the user based on that
data. However, it would be difficult for the web application to communicate with the
Xport Pro since applications run in closed sandbox environments. A potential solution to
enable the web application to communicate with Xport Pro is to have the Xport Pro
hosted on the web with a public address. Since the Xport Pro has limited hardware
capabilities, this solution can leave the system open to DOS attacks directly on the
device. One potential option to discourage DOS is to host a HTTPS server on the Xport

Pro.

The proposed architecture of BeeSecured Web is to act as an alternative solution
to both BeeSecured Client and BeeSecured Server. This architecture requires the Xport
Pro network server to not only forward Zigbee messages from serial to TCP/IP, but to
also submit it as HTTP requests to BeeSecured Web. The Xport Pro does provide
customization features for this mechanism; however it requires writing customized
firmware onto the device. On the Zigbee Gateway, there is also no functionality written
to send serial data via HTTP format, so another option would be to change the Gateway
firmware for this setup to work. Both these solutions, however, requires additional code
changes on the existing BeeSecured Client application, so the final decision was against

this system design.

After researching on potential firmware modifications, the team decided it was
best to make modifications to the BeeSecured Server application and not move forward
with combining it with BeeSecured Web. By keeping the BeeSecured Server as a

separate application, there is less risk to changing or breaking the overall system.

21



4.1.3. Database Research

Google provides their database service with App Engine, called the datastore.
The datastore is based on Google’s proprietary database system, BigTable, and it is not
distributed outside of Google, but is offered as a service as part of App Engine.
BigTable is not a RDMS, because it was designed for distributed mapping across
numerous machines. There are two data storage options in the datastore, High

Replication, and Master/Slave configurations, and they are summarized below:

Table 4.2: Datastore Storage Comparison

High Replication Master/Slave
Cost
Storage 1x 1/3x
Put/Delete CPU 1x 5/8x
Get CPU 1x 1X
Query CPU 1x 1x
Performance
Put/Delete Latency 112x = 1x 1x
Get Latency 1x 1x
Query Latency 1X 1X
Consistency
Get/Put/Delete Strong Strong
Most Queries Eventual Strong
Occasional Planned Read-Only  No Yes
Period
Unplanned Downtime Extremely rare. No data loss. Rare. Could lose a small % of

writes near downtime
(recoverable after event).

Note. Google App Engine Documentation (2012)

Both storage options can be accessed through the same datastore API provided
through App Engine. The default storage method for the datastore service is High
Replication. It is more secure than the master/slave storage because it stores data
synchronously across multiple datacenters. There is also a benefit in terms of

performance for using the HRD over master/slave; since HRD replicates data over

22



multiple data centers, users are also not prone to scheduled maintenance downtimes.

Of course, these benefits come with a price of roughly 3 times more than master/slave.

4.1.4. Map Technology Research

BeeSecured Web relies on a map system to display the location of each sensor
within the network. One possible solution is to create such a system by manipulating
custom images and adding our own functionality, but that additional effort would require
substantially more time based on the given the list of application requirements. For web
applications, there are many map systems that have open APIs with functionalities that
provide a rich user experience. The most commonly known system is arguably Google
Maps, and there are other systems such as Microsoft’s Bing Maps and Yahoo! Maps we
can also choose to integrate into BeeSecured Web. We compared the following map

services:

Table 4.3: Map API Comparison

Map Technology Free version? Free platform conditions Enterprise
License costs

Google Maps Yes Map must be publicly available (not $10,000 per year
allowed for internal applications).
Map implementation can be restricted by
login, restrictions cannot be fee based.
Currently unlimited; 25,000 map loads
per day (starting in 2012).

Bing Maps Yes Use on public facing, non-password Usage-based,
protected web sites. Known user, or
125,000 sessions or 500,000 per asset based

transactions per year.

Yahoo! Maps Yes Map must be free of charge (can be None
internet or intranet applications for
personal or business).

Unlimited Map loads.

5000 queries per IP per day for
Geocoding services.

23



Table 4.3 lists a subset of conditions for free map services by the listed
providers. In terms of costs, both Google Maps and Yahoo! Maps currently have no
restrictions on map loads, and are both great cost effective solutions. In terms of
flexibility, Yahoo! Maps provides the most robust service agreement at the moment as
we can use their services for non-public facing applications. We will discuss in the

section 4.2 our choice of map services to include in BeeSecured Web.

4.1.5. Method of Deployment

Cloud technology is fairly new and there are various concerns with using cloud
services. For this project, there are several concerns and complexities in particular that

we ran into in regards to deciding on a deployment method.

Table 4.4: Method of Deployment Concerns

Concerns Cloud Traditional Web Hosts
Data Security (excluding physical ~ Relies on service provider Secure

tempering)

Data Confidentiality Uncertain Secure

Data Communication with Requires additional firmware No edge device development
Sensors development on edge device required

Deployment Environment Setup None Yes

One of the main benefits to deploying an application in the cloud is that it does
not require much effort. However, although cloud service providers do support data
replication for their database, there is still a concern with extracting that data out for
backup or using it in another system. In addition, since the BeeSecured system can
potentially monitor personnel health status, there is a concern for data confidentiality if it

were stored in the cloud.

Asides from data and environment issues, there is a complication with the
dataflow of the system. In order for sensor data to be forwarded directly to the web
application, additional firmware needs to be written for the Lantronix Xport Pro network
server. With the proposed project timeline for feature requirements, the additional
learning curve required for firmware development may block feature development for the

application.

24



After considering data control and development requirements, we decided it was
better to internally host BeeSecured Web rather than to deploy it onto the cloud. The
initial research gone into cloud development did provide a good insight into future
potential possibilities, and also allowed us to choose a great development platform,

except that we no longer need to utilize its cloud capabilities.

4.2. 4.2 Application Type

4.2.1. Front-End (Client-Side)

Web development has come a long way since the first version of HTML and
there are many technologies and standards to govern a good application. The design
requirements for BeeSecured Web are cross-browser compatibility and platform
independency, and if we consider a Java application, one option is to develop a Java
Applet as our application front-end. However, in order to Java Applets to run on an OS,
the user must download the application and have JVM installed on their machine, which
may add unfavorable delays for the end-user. Many web applications are now written in
AJAX, which allows asynchronous retrieval of data from the server to the client based on
Ul interactions. AJAX allows dynamic displays in JavaScript without full page loads,

giving the user a smooth experience.

With AJAX, we need to write our client-side application in JavaScript. However,
Google has provided a framework used by many Google products such as AdWords and
Orkut, called GWT, and it allows us to write our application in Java and compile in AJAX
for faster development. With GWT, Google has also provided a very valuable collection
of Java wrapper libraries for different Google product APIs (Maps, Charts, Calendar, etc)

which makes it simpler to integrate Google products with our application.

Google App Engine supports three languages for development: Java, Python,
and Go. Keeping in mind the constraint of open-source development platforms, we
selected to use Java because it is the supported language for the GWT framework. One
important feature we require for our application is to have a map to display the location
of our sensor nodes. There are many maps applications with open APIs available, as

shown in Table 4.3, such as Google Maps, Bing Maps, and Yahoo! Maps, and we need

25



to select one that has JavaScript libraries in the language of our choice. Although in
terms of robustness and current future usage speculations, Yahoo! Maps offers the most
cost effective service, currently, there is no GWT library available for it. On the other
hand, GWT has Java libraries available for many Google products, including Google
Maps; therefore, the decision was made for BeeSecured Web to be developed in Java

using the Google Maps service.

4.2.2. Back-End (Server-Side)

BeeSecured Web requires a server side component because it needs to
accomplish certain tasks that cannot be implemented on the client side application, such
as directly accessing a database through JDBC and reading configuration files from the
server’s file system. As with the client-side application, our server application can be
done in various languages. The language choice for the server will depend on the type

of web container we eventually decide to use in our deployment server.

Since we are using GWT, the obvious choice is to develop the back-end with
Java. There are numerous web services that support Java servlets so for the ease of

development; BeeSecured Web uses Java Servlets as the back-end.

4.2.3. Communication Method

GWT RPC vs. HTTP Requests

Communication between the GWT client-side and server side application can be
done either through GWT RPC or HTTP requests using GWT supplied RequestBuilder
class. GWT RPC is a great way for Java front-end applications to talk to the server
because GWT takes care of all the object serialization and deserialization for you, as it is
an efficient method to serialized objects across networks using deferred bindings.
Alternatively, we can communicate with the server by submitting HTTP requests through
RequestBuilder if we choose not to use a Java backend. There are several classes in
GWT that allows us to write custom HTTP request and we can then process a JSON or

XML formatted response. GWT does not limit to these two methods of communication,

26



as you can also use JSNI methods or third party libraries as other forms of RPC

mechanisms.

Although HTTP requests potentially offer more flexibility to our choice in back-
end applications, RPC is much simpler to setup as it does not require parsing of request
URL or JSON, XML responses. With a Java backend, RPC also offers greater
performance; therefore BeeSecured Web uses RPC as the main method of

communication between client and server applications.
Serializable Types

In designing classes to work with GWT RPC, we need to be aware of the
supported serializable types to ensure data can be successfully passed between the
client and server. The list below specifies a subset of the conditions that are of concern
to BeeSecured Web.

A type is serializable if one of the following is true:

* The type is primitive, such as char, byte, short, int, long, boolean, float,
or double.

* The type is an instance of the String, Date, or a primitive wrapper such
as Character, Byte, Short, Integer, Long, Boolean, Float, or Double.

+ The type is an enumeration. Enumeration constants are serialized as a name
only; none of the field values are serialized.

* The type is an array of serializable types (including other serializable arrays).
* The type is a serializable user-defined class.
* The type has at least one serializable subclass.

Note. Google GWT (2012)
Serializable User-Defined Classes

All of the following conditions need to be met for a user-defined class to be

serializable:

» Either directly implements IsSerializable or Serializable interface or derives
from a superclass that does.

27



« All non-final, non-transient instance fields are themselves serializable

* As of GWT 1.5, it must have a default (zero argument) constructor (with any
access modifier) or no constructor at all.

Note. Google GWT (2012)

4.2.4. Deployment Environment

With the GWT SDK, a local Jetty development server has been integrated for the
use of debugging during development. The choice of our web container is not extremely

critical, given that it's stable and reliable, as long as it supports Java.

Apache Tomcat has been around for a very long time, and has proven to be
extremely reliable; therefore, we decided to use Tomcat as our servlet container for the

deployment of BeeSecured Web.

4.3. Database

Another important component to select is our database. As we decided to locally
host our application, we have a range of databases to consider. Our desktop
application, BeeSecured Client, utilizes the Microsoft SQL database for authenticating
user login information. It will eventually be migrated to an open-source database to keep
the system running on a unified database, so in order to keep our selection simple, we

decided to continue using SQL as our database system.
In selecting a SQL product, we selected from the following:

Table 4.5: SQL database comparison

Criteria Microsoft SQL MySQL PostgreSQL
Commercial Cost Yes Free for open-source Free

version
Notifications No No Yes

28



One important criterion for our database selection is the database must be able
to asynchronously notify external applications on particular modifications to a table. This
is crucial because instead of a one way communication, where the client application
initiates all requests to the server, we need a method for the application to query the
database only when there is updated data instead of periodically fetching redundant
data. We first decided to use MySQL, however, we then realized it does not support the
asynchronous notification events we needed so we migrated to PostgreSQL. Of course,
there are many other differences between these database systems, but for the purpose
of our application, the complex features that may cater to large complex queries or data

replication are not too much of a concern at this stage.

4.4. Database Connector — JDBC

In order to connect to and interact with our database, we need a database driver
for Java. JDBC is an open-source API that abstracts the implementation of Java
programs to various different database systems. This allows us to write our database
connection code once, and gives us the flexibility to change between different databases
as we please. As such, most database systems provide JDBC drivers for their systems,
and the PostgreSQL JDBC driver we use in BeeSecured Web is JDBC4 Postgresq|
Driver, Version 9.1-901.

4.5. Tools

One of our design criteria is to use free and open-source development platforms.
We selected Eclipse as the choice of development tool because GWT offers plugins for
the Eclipse IDE. GWT’s Jetty local development server is also integrated to provide fast

testing during development.

For database tools, PostgreSQL has both a command shell and a graphical user

interface, pgAdmin for managing connections the local or remote databases.

29



5. Software Architecture

As we mentioned, there are two user profiles we need to cater to in BeeSecured

Web, each with unique access rights to the application. Both profiles have access to the

same login page, where no sensitive data is presented. The main interaction with the

application is through the Google Maps API, and most of the functionality within the

application is tied with features from Maps. All data will be stored in the database, and

the application will fetch and update data to display new information on the map either

on user request, or on database notification updates.

The conceptual software architecture of the application below shows the

interaction with individual functional blocks within the application.

Figure 5.1: Concept Diagram of BeeSecured Web

Rea

User

Write

Google Maps

Rea

Administrator

Device
Configuration

Alarms

Read

Device Data

Device Properties

30

Database



Google Maps block represents all API calls made to Maps. Device configuration
block consists of settings that change the behavior of a device, such as status report
intervals, alarm delay, and external sensor types. The alarms block consists of all alarm
statuses, timestamps and alarm messages. Device data block consists of any periodic
data updates from the devices, such as temperature, battery voltage, and accelerometer
readings. Finally, device properties represent fields such as geographic positioning of

devices, the parent site a device belongs to, and the name of the device.

These functional blocks by no means represent a single class in the application
and can encapsulate multiple classes that work together to achieve the block function.
Detail implementations of each class will be explained in section 6, and please refer to

appendix C for detailed fields in the database table.

Users have mostly read privileges for monitoring the WSN, with the addition that
they can enable or disable sensors on any particular PEG or TAG device.
Administrators can also monitor the WSN, but have the ability to modify device
configurations, as well as other properties available for updates such as device names

and their parent sites.

31



5.1.1. User Case Work Flow Scenarios

A few common work flows are described below to show how a user would

typically interact with BeeSecured Web:
Administrator wants to update device configuration

1. Administrator finds device on the map.

2. Administrator clicks on device configuration menu.

3. Device configurations read from the database and displays in dialog.
4. Administrator updates configurations and commits the changes on UI.
5. Device configuration writes to the database.

User wants to clear an alarm

1. An alarm is trigged in the WSN database sends out a notification.
2. Alarm updates device status on the map.
3. User finds the devices and clicks the clear alarm option.

4. Clear alarm writes updated status to the database.

32



6. Implementation

This section covers the implementation with regards to BeeSecured Web.
Detailed descriptions about the implementation architecture, organization of each
package in the application and their classes, as well as the design criteria for the

database are covered.

6.1. Implementation Architecture

BeeSecured Web is organized into two packages:
com.ciber.beesecuredweb.client, and com.ciber.beesecuredweb.server. The client
package consists of Java code that compiles to JavaScript to run in a browser, and the
server package compiles to Java .class files to run on the Apache Tomcat web
container. The client package interacts with Google Map’s API, as well as the servlet’s
GWT RPC interface. The server package interacts with the PostreSQL database using
JDBC, as well as the file 10 interface for reading configuration files from the server’s file

system. Figure 6.1 shows the implementation architecture of BeeSecured Web.

33



Figure 6.1: Implementation Architecture Diagram

Web Browser Client App Google Maps
Components
Maps API

GWT RPC

Servilet API

Server App
Apache Tomcat Components » szagﬁas;;l‘
JDBC

Java |0 API

Server File
System

6.2. Design

6.2.1. UML Diagrams

This section describes in detail each class in BeeSecured Web and their
relationships within the program. The UML diagrams will include any fields, methods
and relations to other classes. Since there are many classes in the program, they will be
discussed separately. Classes will be explained in a standard user work flow, starting

with the client package, then moving on to the sever package.

34



UML diagrams will have the following format:

Figure 6.2: Class UML Format

<<Class, Interface, Enumeration>>
Class Name
Package Name

Class field name: Data type

Method name (parameters): Return type

Due to the size of the diagrams, please refer to appendix A for full class UML
regarding all the classes in the com.ciber.beesecuredweb.client and

com.ciber.beesecuredweb.server packages.

6.2.2. Client Package

Description of each class and their usage within the program will be described
below. The general organization and structure of classes is based off of the database

design, as we encapsulate all the table columns as variable fields in the class objects.

6.2.2.1. Classes

Login

Login class is used for authentication user credentials on accessing sensor
network data. The class encapsulates all the data fields in the login database table as

well as providing an enumeration of login statuses for the application.
Site

Site class is defined to store properties such as the name and location of a

particular site in the system.

35



Config

The Config class is to store properties for the configuration files that hold the

database connection parameters which BeeSecured Web reads on application load.
Constants

All global constants used throughout the application are defined in this class.
AlarmData

The AlarmData class encapsulates all properties of alarm events to pass

between the client and server application.
Device

Device class holds all device properties to a particular device. It is the base
class for all Gateway, PEG and TAG devices. Since Gateways do not have sensors,

they are represented as the Device object in the application.
PegDevice, TagDevice

These classes are child classes of the Device class, and hold additional fields

and methods such as sensor fields that are particular to a PEG or TAG device.
DeviceType

Device type class is used to hold the names and IDs for the types of devices in

the system. Current devices in the system are fixed to Gateways, PEGs and TAGs.
ExtSensorType

This class holds all external sensor types properties for optional sensors that

could be attached to PEG devices.

36



GoogleMaps

The GoogleMaps class handles all API calls to the Maps API, along with any

methods that keeps track of the most updated data in the application.
BeeSecuredWeb (Entry Point)

BeeSecuredWeb is the entry point to our application. It holds fields and methods
that manipulate and display the user interface, and interacts closely with the
GoogleMaps class. This class is also responsible for handling user password encryption

for the application.
GwConfig, PegConfig, TagConfig

These classes hold all configurations pertinent to each device type.
Configurations are parameters customizable by the user that govern how the device

operates, such as alarm delays, or status reporting intervals.
GwData, PegData, TagData

These classes encapsulate all information regarding the status of each device.
Data readings such as temperature levels, battery levels, and accelerometer values are

fields in these classes.
GwsStorage, PegStorage, TagStorage

The storage classes are wrapper classes that hold the device properties, data
and configuration of a particular device. These classes are created to encapsulate all
information regarding a particular device as a simple form to storing the most update to

date information in the application.
SiteStorage

The SiteStorage class holds lists of all the device storages (GwStorage,
PegStorage, TagStorage) for a particular site. The class allows a unified object to

manipulate for individual sites in the application.

37



6.2.2.2. Interfaces

DeviceService

The DeviceService interface defines all methods that are used on the server
application. This interface is accessed to use GWT RPC to pass java objects between

client and server applications.
DeviceServiceAsync

This class is defined by GWT RPC and is an asynchronous interface equivalent
to the DeviceService interface. It contains all the same methods in the DeviceService

interface except all methods have a return type of void.

6.2.3. Server package

dbConnection

dbConnection class is used for create new JDBC connections based on the

parameters read in the local configuration file.
DeviceServicelmpl

DeviceServicelmpl implements the DeviceService interface in the client package,
and provides the implementations of methods that submit different SQL commands to

PostgreSQL once it receives RPC calls from the client.
Log

The log class uses the Java file 10 API to write to a separate log file when there
are connections or SQL exceptions. The purpose of this class is to provide an easy way

for the administrator to debug the application if errors occur.
notificationListener

BeeSecured Web periodically checks for notifications coming for PostgreSQL on

table updates, and the notificationListener class spawns a separate thread on the server

38



to maintain a connection to the database; this thread will spawn on application load, and

will terminate on application exit.
StAXParser

The StAXParser class is used to parse the configuration XML that stores the
database connection strings using the StAX API. The reason for using StAX is because

it allows both pulling and pushing of XML data.

6.3. Database

The database used with BeeSecured Web is PostgreSQL, an open source
RDBMS under the PostgreSQL license. The license entitles you to distribute, modify
and make any enhances to PostgreSQL as you like. PostgreSQL is not as powerful as
other DBMS and is not capable of running enterprises, as it is a platform for in-house

development that may require RDBMS capabilities.

BeeSecured’s database server can be used by several customer networks, and
each customer uses a separate database with custom access privileges. This delivery
method is beneficial for the customer such that they do not need to maintain a database,
and can monitor their sensor networks through BeeSecured Web via any web browser
using the credentials we’ve provided them. Alternatively, a customer can use their own
private DBS and still deploy the same web application, since BeeSecured uses external
XML configuration files to access databases and Google Map APIs. If the customer
does choose to employ their own server, they still need to abide by Google’s conditions
for using their map services and expose the application to the public. This would not be
an issue in terms of sensor network data security however, since BeeSecured Web

relies on login credentials to access any proprietary information.

6.3.1. Database Design

The SQL database is designed based on the three orders of normal forms of

RDBMS design. The database model minimizes duplicate information and is designed

39



to minimize potential anomalies from user input. Due to the length of the database

tables, please refer to appendix B for the full database tables and their descriptions.
Key choice criteria

» Minimality: choose fewest columns
+ Stability: column that seldom changes

» Simplicity: simple and familiar to users
Purpose of database design

» Efficient data entry, update, deletions

+ Efficient retrieval, reporting (query calculations)
+ Self-documenting

* Changes in schema is easy to make

* Prevent anomalies
Normal Form design in tables (the higher order the better, more efficient the design)
First Normal Form (1NF)

* Only one value per row-column (atomic)

* No repeating groups in columns
Second Normal Form (2NF)

* |sin the First Normal form

* Every non-key column is fully dependent on the (entire) primary key. Entire
here means if your primary key is composite, all other columns depend on the
composite key, and not just part of it.

Third Normal Form (3NF)

* |s in Second Normal form

* All non-key columns are mutually independent

40



6.3.2. Notifications

In order to prevent needing the client application to consistently query the
database for new data when there are no updates, we need an asynchronous method to
notify the client application when there is an update to the database. PostgreSQL
supports asynchronous notifications on table events that allow external applications to
register to handle these events when they fire. The table below summarizes all

notifications supported in BeeSecured Web.

Table 6.1: Notifications List

Table Event Notification

gw_data INSERT gwDataTablelnsert
pegData INSERT pegDataTablelnsert
tagData INSERT tagDataTablelnsert
pegSensor UPDATE pegSensorTableUpdate
tagSensor UPDATE tagSensorTableUpdate

Note. BST (2011)

JDBC currently does not support asynchronously notification updates to external
applications, as the implementation has not been completed. In order to utilize the
notifications feature, BeeSecured Web spawns an alternative thread on the server to
periodically check for notification updates coming from the database. The client
application periodically make RPC calls to the server to obtain the most updated

notifications list and updates the user interface accordingly.

41



6.4. EER Diagram

Figure 6.3: EER of BeeSecured Database

] gwconfig v
idDevice INT({11)

statusReportinterva INT{11)

| devicetype v
idDeviceType INT{11)

name ¥ ARCHAR(45)

| gwdata

idGwData INT({11)

Zrdeviceld INT(11)

v routeDiscoveryInterval FLOAT timestamp DATETIME
|PRIM ARY | | modified TINYINT(1) tem peratEre FLOAT —] tageonfig ¥
& ¥ analogValue ALOAT deuce INTCIL)

] site v cl) |PRIMARY [—— acoelX FLOAT statusReportintervad FLOAT
idsite INT(11) | | accel.\‘ FLOAT DU”SEI‘ISUI’TI‘ItEI’VEl FLOAT
name V ARCHAR(45) I I accelz FLOAT ::':;’:Bd;l";:n”;i:’:[mT
|atitude DOUBLE | | errorCode INT{11)
|ongitude DOUBLE | | v alarmRefractoryTim e FLOAT

= I I PRIMARY ’—K falenTime ALOAT
IPRIMARY | | | deviceld fdlenThreshold FLOAT
| | activityThreshold FLOAT
qi | 1 device v I inactivityThreshold FLOAT
] pegdata v | I idDevice INT(11) : authenticationMask INT(11)
idPegData INT (11) } | & site INT(11) | modified TINYINT(1)
& deviceld INT(11) | L4 ©atiude DoUBLE fe-—- £
timestamp DATETIME | longitude DOUBLE | PRIMARY
temperature FLOAT I shortAddr INT(11)
batteryV ol tage FLOAT | macAddr INT(11) _| tagdata v
rechargingCurrent FLOAT L 777777777 L deviceType INT(11) idTagData INT{11)
rechargingState VARCHAR{45) gwlpAddress VARCHAR{39) <> deviceld INT(11)
accelX FLOAT Pl | |lastMsgTim estamp DATETIME O ——— timestamp DATETIME
accelY FLOAT | softwareVersion INT(11) | heartrate FLOAT
accelz FLOAT e | softwarenateTme pATETIME I accelx FLOAT
errorCode INT{11) hardwareversion INT{11) [ e accelY FLOAT
state INT{11) panld INT(11) H accelZ FLOAT
analogValue ALOAT name Y ARCHAR(45) bodyaltitude INT({11)
- activitevel INT(11)
PRIMARY y [ omne TN () = errorCode INT{11)
deviceld PRIMARY -
site PRIMARY
deviceType deviceld
_| pegconfig v ? —| tagsensors v
idDevice INT(11) J_ deviceld INT(11)
Z» typeSensorA INT(11) : dmnchf; v j e = < stateHeartrate INT(11)
& typeSensorB INT(11) R stateFalen INT(11)
idAlam Data INT(11) idDevice INT(11)
statusReportinterva FLOAT deviceld INT(11) totes, P v
pollSensorinterval FLOAT * - + statesenser - i PRIMARY
alarmAckTim eout FLOAT pmestamp DATETIME < stateSensorS INT(11) | stateHeartrate
alarmDelay FLOAT alarmMessage V ARCHAR{45) <> stateVibration INT{11) - J W
vibrationThreshold ALOAT PRIMARY ¥ stateTemperature INT(11) | :
alarmRefractoryTim e FLOAT deviceld PRIMERY b I Q
authenticationMask INT{11) B ctateSensorA B— — — — j sensorstate v
proximityRssiThreshold TNT{11) | | ctateSensorE —_———— idsensorstate INT{11)
signalizations INT{11) : ] extsensortype v stateVibration AI: —_—— 1 state VARCHAR(45)
signdizationB INT(11) | idExtSensorType INT(11) | I %
signdizationC INT(11) (|3 name VARCHAR.(45) |PRIMARY
signdizationD INT{11) Bl normalMask INT(11) .
modified TINYINT(L) | connectionMask INT(11) —| userrole v —] login v
v | alarmText V ARCHAR(45) idUserRole INT({11) login VARCH AR(45)
PRIM ARY o coneAngle ALOAT name YV ARCHAR(45) LO* 1 <> role INT{11)
typeSensora v v | password CHAR(32)
typeSensorl |PRIMARY | [PRIMARY | ll lasthame VARCHAR(45)

—

firstiame vV ARCHAR{45)
sessionld VARCHAR{45)

PRIMARY
role_fkey

Note. BST (2011); used with permission

v

Figure 6.1 shows the EER for the BeeSecured database, and shows the

relationship between each table.

42




6.4.1. Relationship explained

Table 6.2: Database relationship symbols

Symbols Description
P 0 N : 1 non-identifying relationship
—H N : 1 identifying relationship

An identifying relationship means the child table can be uniquely identified (can
exist) without the parent table; a non-identifying relationship means the child table
cannot exist without the parent table. A many-to-one (N : 1) relationship means there
can be multiple rows in the ‘N’ table for each row in the ‘1’ table, or in other words a
foreign key is added in the ‘N’ table, and it is constrained to the primary key of the ‘1’
table. As an example of the non-identifying relationship, a device can exist without
defining a site. An example of the identifying relationship: a peg (device) configuration

cannot exist without defining a device.

In a hierarchical sense, the topmost layer is the site table, and in each site, there
can be many devices. A device can either be a Gateway, Peg or Tag, and each of them

has configurations, data, and sensors.

6.4.2. Potential Performance Concerns

Since this database is not too complex, there is little concern over queries that
require joining multiple tables. In BeeSecured Web, the most join required for fetching
data is limited to 4 per query. The only performance concerns may be with the gwData,
pegData, tagData and alarmData tables. As these tables store a history of all incoming
data from the sensor network, they will grow over time and BeeSecured Web may suffer
performance issues when it needs to query for the most updated data. To guard against
potential performance degradation, the data from these tables may need to be backed

up and cleaned up on a periodic basis.

43



6.5. Testing

Due to time constraints, no formal testing schedule has been planned throughout
the project; however, each individual feature has been tested via Ad-hoc functionally
tests. Regression testing on individual features has been done throughout the project to
ensure all newly added functionality work with previously implemented features.
Because there are not enough physical devices manufactured at this stage to construct
a proper WSN, majority of testing has been done using the Zighee simulator, injecting
artificial data into the database to simulate a functional sensor network. The purpose of
testing with the simulator is to get a sense of the user experience through using
BeeSecured Web.

44



7. BeeSecured Web Interface

This section will discuss the layout of the BeeSecured Web interface. The
interface design was aimed to provide most of the functionalities of the application within

Google Maps, with an additional left side panel that gives the user additional information
and options.

Figure 7.1: BeeSecured Web GUI

BeeSecured Web Interface version: 4.0.0-M2 admin: John Smith Log out
BE!?& $5CUR!D ~ | [map_ T sateliite | Hybrid
<My | |
¥ Alarms v 1 I
| :
PEG 2 ALARM = +] 1 |
PEG 56 ALARM E
PEG 20 ALARM British I
ALAR! L Columbia I
e e 3 | Saskatchews
PEG 120 ALARM g::ru:e :
PEG 5 ALARM Tweedsmuis North * 4 ALARM Vibration Clear Alarm L&
Provincial Park and o - ﬁE’TQﬁﬁ ‘g:;'k
PEG 16 ALARM i = Protected Area amore Device ID: 2 &
: 4 Wideness Park
TAG 3 ALARM NN Temperature: 154 C
TAG 110 ALARM - A\_\ 7Y Battery Voltage: 0.0 V
| Jasper
Yo e -] . National Park Last Update: 20111228 11:12:42
emaapak | . “ o " Marm Time:  2011-12-05 11:11:10
Bigel WeidGry g “ Settings Less Sensors
P \
Gateway lg Frovincial Park B
o T Ty
0 5O
Kamk % il
gQ w08 ¥
B Gateway -~ “ . Medicine |
- Hat
12 . Kelowna y o }
C] Letil{le |
. #
1 {
B \ ‘
o Glogier !
TAG Nanaimol S elifray a Ckanogan 7 ¥| - Eonmers National
Fi "
pt i el D e sy K R £ il Hawre
; S o
Nictoria @) bt Verman % ! [ogtenail 8, ointirenan faim i ket
ot Sansponre National Forest = Glasgou
Port Angeles nE " :;gen i a‘l e A L Kalisgel
imone 4 N
¥ Device Edit Bremerton 0.@ Seattle Spokane®@ 0 1 gPalsan GreatFaks
o
" Cheney d'Alene B
Edit Mods Tecoft® fsshiigton 1 - Lewigom
¥ Mi
. Oympi ; J e Mantana
Device type: Yakima Puumsnab»«mnw ki Helena
ifford Pi Lewst I Dest Lodge Mis City
Gateway - it Kennewick e Clearwater F )
Apply Cancel i Wl alls : it Billings:
FovERED B | SRR Nezperce o
%[e eandGla R Feiielns Natonaforest # _ Bitrroot'y e SeoLingon o Hadn
S LeDiandh / National Farest tion  Map data 82017 Europa Technologies, Google - Tefms of Use

Note. This interface displays the full functional view available to administrators. Standard users
will have a more limited view to the application.

45



The left panel of the interface holds three separate disclosure panels that allow
the user to hide or expand the information based on their needs. The three panels are

as follows: Alarm, Device Explorer, and Device Edit.
Alarm Panel

The Alarm Panel shows any alarm that has been triggered by the database. As
notifications are generated from the database, the Alarm Panel displays any outstanding
(uncleared) alarms that are currently in the system. Each item in the panel is also

clickable, and directs the user to the corresponding icons displayed on Google Maps.
Device Explorer Panel

The Device Explorer Panel holds all the devices in the network and categorizes
them by their site, device type and device IDs. This panel offers the user a convenient
way to find a specific device if they know the device ID. In most cases, users will likely
monitor devices directly on the Map, so this panel acts as a supplemental view for users

to quickly find a particular device.
Device Edit Panel

This panel is only available to the administrator profile, as it contains most of the
configuration options to the application. In Edit Mode, administrators have the option to
reposition devices geographically on the map, which will update the sensor network to
their updated latitude and longitude. Devices can also be renamed, as well as relocated

to another site in another network.
Top Bar

The Top Bar is where the user go to log into the application, and it also displays
the user name and the current version number of BeeSecured Web. The position of the
items in the Top Bar will be moved systematically as the user resizes the browser

window.

46



Table 7.1: Device Status Icons

Device Type Online Alarm Offline

Gateway -
PEG - D
TAG ﬂ - D

The different device types are represented in the application with their distinct
color code as well as icons to allow the user to easily distinguish between them.
Devices in the network are represented as in either online, offline or alarm states, and
these icons are updated in real-time to reflect the most updated device information in the
network. Icons are clickable, and will display a Google Maps InfoWindow that holds all

the information to a particular device.
Google Maps InfoWindow

The InfoWindow in Google Maps is the popup window that display additional icon
information when clicked. In BeeSecured Web, the InfoWindow holds the most updated
device information from the database, and it also holds controls to configure device
settings, clear alarms, and pin or unpin icon locations depending on the application
mode. In most cases, users will use the InfoWindow to monitor device statuses and

handle any device alarms.
Configuration Settings

The figures below show all the configuration options available in BeeSecured
Web. All the configuration settings can only be accessed through the administrator
profile, except for the PEG and TAG sensor status controls that allow a user to enable or

disable a sensor conveniently.

47



Figure 7.2: Gateway Settings Dialog

Gateway Settings
Device Id: 37

Status Report Interval (sec): 0

Route Discovery Interval (sec): | 0.0

Apply

Figure 7.3: PEG Settings Dialog

PEG Settings

Cancel

Device Id: cd

Sensor A- IR EI Alarm Refractory Time (sec): | 0.0
Sensor B: Magnetic EI Authentication Mask: 0

Status Report Interval (sec): | 0.0 Prox RSSI Threshold: 0

Poll Sensor Interval (sec): | 0.0 Signalization A Configure
Alarm ACK Timeout (sec): |0.0 Signalization B: Configure
Alarm Delay (sec): 0.0 Signalization C: Configure
Vibration Threshold: 0.0 Signalization D: Configure

Apply Cancel

Figure 7.4: TAG Settings Dialog

TAG Settings

Device Id: 58

Status Report Interval (sec): | 0.0 Fallen Time (sec): 0.0
Poll Sensor Interval (sec): 0.0 Fallen Threshold: 0.0
Alarm ACK Timeout (sec): 0.0 Activity Threshold: 0.0
Mearby Beacoen Interval (sec): | 0.0 Inactivity Threshold: | 0.0
Alarm Refractory Time (sec): | 0.0 Authentication Mask: | 0

Apply Cancel

48



Figure 7.5: PEG Sensor Status Dialog

Peg Sensor Status

Device Id: 5
Sensor A Y 0n
Sensor B: Y 0n

Vibration sensor: FPending on

Temperature sensor: ¥/ COn

Apply Cancel

Note. Sensor statuses can only be set to the pending (On/Off) states from BeeSecured Web.
The Zigbee server will send messages to update the devices in the network, and only
when the physical device status has been changed will the GUI display the confirmed

updated states.

Figure 7.6: TAG Sensor Status Dialog

Tag Sensor Status

Device Id: Ge
Heartrate sensor: ¥/ On

Fall sensor: Y[ 0n

Apply Cancel

Figure 7.7: Device Configuration Dialog

Device Configuration

Device Id: 10

Device name: | peg10

Site: 2.8MS | ¥ |

0K Cancel |

Note. The Device ID cannot be changed once it is configured in the application, since the ID is
specific to the hardware. If the device is no longer needed in the system, it can be

removed in Edit Mode.

49



8. Future Work

Given the short project schedule for BeeSecured Web, there are many areas in
the application that could use further work. This section discusses areas of

improvements as well as potential new technologies to integrate into the application.

8.1. Feature Implementation

There are a few lower priority features that did not make it into BeeSecured Web
due to time constraints, and they will be the first priority to future iterations of the project.

The following features have been left out for future iterations:

Table 7.1: Unimplemented Features

Feature Profile
Display sensor data history User
Display alarm data history User

Select a region on the map display present devices ~ User

Note: The last feature will require additional third party libraries as the capability is not included with Google
Maps.

Notification Implementations

The current application cannot create additional sites from the user interface, so
a new site must be created on the database. Future iterations should support creating
additional sites as well as handling notifications from any changes to the site table.
BeeSecured Web also currently relies on an internal checker function to ensure the
consistency of displayed data to the database. In the future, it should be relying on
notifications to asynchronously check and notify the user to refresh the application if

changes have been made directly applied to the database.

50



8.2. Testing

BeeSecured Web has not gone through a full cycle of feature testing or
regression testing, and some effort will need to be allocated to this. Testing will also

need to be performed under a WSN test site with physical devices operating in real time.

8.3. Map Upgrades

8.3.1. Google Maps v3

BeeSecured Web currently uses Google Maps API version 2, which is the most
recent version with the completed GWT library. Currently there is an open source
project dedicated to wrapping Google Map’s API version 3 to the GWT library, but many
of the features are not complete and the documentation is also unfinished. Maps
version 3 has many new features including custom animations, customizable marker
information windows, deprecation of API keys that tie Google maps to a specific web
site, and many more enhancements that would improve user experience with
BeeSecured Web.

8.3.2. GWT Google Map Utilities

There are several open source JavaScript utilities written for Google Maps, and
some of which have been wrapped as GWT libraries. Integrating these utilities can
improve the overall performance of BeeSecured Web as well as add new capabilities
that are not supported natively by the Google Maps APIl. Some useful capabilities
include MarkerClusterer, which optimizes view by selectively displaying large number of

markers by geographical regions, label markers, and context view control in Maps.

8.3.3.  Mapstraction

Mapstraction is a JavaScript library that wraps all popular map services (Google
Maps, Yahoo! Maps, MapQuest, etc) into one API, which allows developers eliminate
the dependency of a particular map provider and easily change the service without
rewriting any code. Currently there is no Mapstraction library written for the GWT

framework, but if one is available in the future this would be a great direction to upgrade

51



BeeSecured Web. If the benefit of Mapstraction proves that it is worth the development

cost, BeeSecured Web can potentially move in the direction of JavaScript development.

8.4. Bug Fixes and Code Refactor

As with any software, the current version of BeeSecured Web is not bug free and
these issues should be addressed in future iterations. Refactoring code to optimize

performance of BeeSecured Web can improve the overall experience of the end user.

52



9. Conclusion

Overall this project has been very successful, as all of the high priority
requirements have been implemented into the application. The project timeline was
fairly tight as many design changes were made after the initial research phase. Some of
the requirements also came later on in the project, which caused some additional
overhead later in the project. Although there were some delays with architecture
changes and requirements, the technology learning phase was done in parallel, which

allowed the first prototype to be presented in a reasonable amount of time.

Many decisions to simplify the overall architecture, including the decision to avoid
firmware implementation on the Xport Pro, turned out favourably as the rest of the
development effort was focused on the web application itself. The decision to utilize a
local database was also a good one as it enabled smoother integration and testing

between the BeeSecured Web and the BeeSecured Server applications.

53



References

Google. (2012). Google Maps API Terms of Service. Retrieved from
http://code.google.com/apis/maps/terms.html#section_4 4

Yahoo. (2012). Yahoo Maps Terms of Use. Retrieved from
http://info.yahoo.com/legal/us/yahoo/maps/mapsapi/mapsapi-2141.html

Microsoft. (2012). Bing Maps Licensing and Pricing Information. Retrieved from
http://www.microsoft.com/maps/product/licensing.aspx

Google. (2012). Google Web Toolkit Documentation. Retrieved from
http://code.google.com/webtoolkit/overview.html

Google. (2012). Google App Engine Documentation. Retrieved from
http://code.google.com/appengine/docs/

Amazon. (2012). Amazon Web Services. Retrieved from http://aws.amazon.com/ec2/
Microsoft. (2012). Microsoft Azure. Retrieved from http://www.windowsazure.com/en-us/

Lantronix. (2011). Lantronix Xport Pro. Retrieved from http://www.lantronix.com/device-
networking/embedded-device-servers/xport-pro.html

Apache. (2012). Apache Tomcat. Retrieved from http://tomcat.apache.org/

BST. (2012). BeeSecured Database Document. Retrieved from http://ciber-
linux1.ensc.sfu.ca/redmine/projects/beesecsuite/wiki/Database_Description

54



55

Appendices



Appendix A.

UML for Client Application

Figure A.1: Login Class

<= Java Class>>
® Login

com.ciberbeesecuredweb.client

o login: String

o password: String

o |astname: String

o firstname: String

o sessionld: String

o role: int

o databaseErrorMsg: String

@ Login()

setlogin(String):void
getlogin():String
setpassword(String):void
getpassword():-String
setlastname(String)-void
getlastname(): String
setfirstname(String)-void
getfirstname(): String
setsessionld(String):void
getsessionld():String
setrole(int)void

getrole():int
setloginStatus(LoginStatus)void
getLoginStatus():LoginStatus
setdatabaseErrorMsg(String)void
@ getdatabaseErrorMsg():String

¢ OCOOOOPOOTODODTOR®D

-loginStatust 0.1

<<Java Enumeration=:
3 LoginStatus

com.ciberbeesecuredweb.client

& AUTHENTICATED: LoginStatus
& |[MCORRECT_PW: LoginStatus
o NOT_FOUND: LoginStatus

& LoginStatus()

56




Figure A.2: Config Class

Figure A.3: Constants Class

<< lava Class=>»

 Config
com.ciber.beesecuredweb.client
o url: String

o database: String
o user: String
o password: String

@ Config()

@ seturl(String):void

@ geturl():String

@ setdatabase(String):void
@ getdatabase():-String

@ setuser(String):void

@ getuser():-String

@ setpassword(String)void
@ getpassword():String

<<Java Class=>
(® Constants
com.ciberbeesecuredweb.client

% REFRESH_INTERVAL: int
% DURATION: long

% GATEWAY: String

%F PEG: String

%W TAG: String

%F VERSION: String

% GW_ICON_OMLINE: String
% GW_ICON_OFFLINE: String
% PEG_ICON_OMLINE: String
% PEG_ICON_OFFLINE: String
% PEG_ICON_ALARM: String
% TAG_ICON_OMLINE: String
% TAG_ICON_OFFLINE: String
W TAG_ICON_ALARM: String
%F URL: String

% DATABASE: String

% USER: String

% PASSWORD: String

% DOCKLAYOUTPANEL_WIDTH: int
% DOCKLAYOUTPANEL_HEIGHT: int

& Constants()

1

<=Java Enumeration=>
3 MarkerState
com.ciberbeesecuredweb.client

<<Java Enumeration=>
O3 AccessLevel
com.ciberbeesecuredweb.client

<<Java Enumeration=>=
@ DeviceType

com.ciberbeesecuredweb.client

<<Java Enumeration=>=
@ SensorState
com.ciberbeesecuredweb.client

& OMLINE: MarkerState
& OFFLIME: MarkerState
a ALARM: MarkerState

& ADMIN: AccessLevel
4 |JSER: Accesslevel

& MarkerState()

& AccessLevel()

57

& GATEWAY: DeviceType
& PEG: DeviceType
4 TAG: DeviceType

& DeviceType()

& ON: SensorState

4 OFF: SensorState

a ALARM: SensorState

a PENDING_ON: SensorState

a PENDING_OFF: SensorState

a PENDING_CLEAR: SensorState
a MOMNE: SensorState

& SensorState()




Figure A.4: AlarmData Class

<< lava Class=>»
(® AlarmData
com.ciber.beesecuredweb.client

o idAlarmData: int

o deviceld: int

o timestamp: Timestamp
o alarmMessage: String

@ AlarmData()

@ setidAlarmData(int)-void

@ getidAlarmDatai):int

@ setdeviceld(int):void

@ getdeviceld(int):int

@ settimestamp(Timestamp):void
@ gettimestamp():Timestamp

@ setalarmMessage(String):void
@ getalarmMessage():-String

58




Figure A.5: BeeSecuredWeb Class (Fields)

<< Java Class=>
(® BeeSecuredWeb
com.ciber.beesecuredweb.client

inputdb_btn: Button

query_btn: Button

alarm_disclosurePanel: DisclosurePanel
deviceExplorer_disclosurePanel: DisclosurePanel
rootPanel: RootPanel

output_textbox: TextBox

query_textbox: TextBox

map: Map\WWidget

test_disclosurePanel: DisclosurePanel
googleMaps: GoogleMaps

peg_flexTable: FlexTable

peg_treeltem: Treeltem

tag_treeltem: Treeltem

gateway_treeltem: Treeltem

scHandler: SingleClickHandler

pegSetting: Button

tag_flexTable: FlexTable
test_alarm_button: Button
dockLayoutPanel: DockLayoutPanel
deviceExplorer_tree: Tree
test_toggleButton: ToggleButton
alarms_flexTable: FlexTable
alarms_scrollPanel: ScrollPanel
refreshDialogBox: DialogBox
refreshDbButton: Button

refreshDbLabel: Label

refreshDbvp: VerticalPanel

gwCheck: int

pegCheck: int

tagCheck: int

siteCheck: int

sitelist: ArrayList<SiteStorage=
deviceEdit_toggleButton: ToggleButton
deviceEdit_listBox: ListBox
IblDeviceToBe: Label

newDeviceType: DeviceType
deviceEdit_verticalPanel: VerticalPanel
deviceEdit_horizontalPanel: HorizontalPanel
deviceEdit_applyButton: Button
deviceEdit_cancelButton: Button
refreshTimer: Timer

loginPopup: DecoratedPopupPanel
userfextBox: TextBox

password TextBox: PasswordTextBox
remembermeCheckBox: CheckBox
loginButton: Button

loginMsglLabel: Label

login_anchor: Anchar

username_label: Label
deviceEdit_disclosurePanel: DisclosurePanel
version_label: Label

beesecured logo: Image
north_userHorizontalPanel: HorizontalPanel
north_loginHorizontalPanel: HorizontalPanel
absolutePanel: AbsolutePanel
dockLayoutPanel\Width: int
dockLayoutPanelHeight: int
north_titleHorizontalPanel: HorizontalPanel

0 OO0 000 o00OoOepoDoDnoDeoDeSoEaoDeDO0OoODO OO oD ODOOOR DODODNO ODOR OooD>ODOoOO oD oD ODOeSGooDOoO eDDoDODDoDODODDQODOoODQD oD oQDQoODDQoDooaBo

59



Figure A.6: BeeSecuredWeb Class (Methods)

<< lava Class>>
(® BeeSecuredWWeb
com.ciber.beesecuredweb.client

& BeeSecurad\Web()

@ onModulelLoad()void

loadApplicationData(Login)void

refreshApplication():void

unloadApplicationData():void

startMotificationTimer():void

stopMotificationTimer()-void
getAddDeviceType(String):DeviceType

getConfig()-void

storelLogin({String)void

getSite(boolean)void
getDeviceType(int, Treeltem, boolean, SiteStorage)void
setgwCheck(int):void

setpegCheck(int)void

settagCheck(int)void

setsiteCheck(int)void
getTargetDevice(int.int, Treeltem, boolean, SiteStorage)void
getGwDeviceData(Device, Treeltem boolean.int, SiteStorage)-void
getPegDeviceData(PegDevice, Treeltem, boolean,int, SiteStorage)void
getTagDeviceData(TagDevice Treeltem boolean,int, SiteStorage)void
getPegConfig(PegDevice,int, SiteStorage)void
updatePegStorageConfig{PegConfig,int, SiteStorage)void
getAlarmData(Device,int, SiteStorage)-void
updatePegStorageAlarmiAlarmData,int, SiteStorage)void
updateTagStorageAlarm{AlarmData,int, Site Storage)-void
storeGwStorage(GwStorage, SiteStorage)-void
storePegStorage(PegStorage, SiteStorage)-void
storeTagStorage(TagStorage, SiteStorage):-void
updateGwStorage(Device, GwData.int, SiteStorage)-void
updatePegStorage(FegDevice, PegData,int, SiteStorage ) void
checkPegAlarm(PegDevice, PegStorage)-void
updateTagStorage(TagDevice TagData.int, SiteStorage)-void
checkTagAlarm(TagDevice, TagStorage)void
getMotification(boolean):void

= getDeviceData(Device, Treeltem):void

& md5(String)-String

= getAllDevice()-void

EEEEEEEEEEEREEEREEEEEEEEEEEREEREEEEE

m

-SCHE%E”EF\ZU_J

<<Java Class=>»
(& SingleClickHandler
com.ciberbeesecuredweb.client

& SingleClickHandler()

@ onClick(ClickEvent)void

@ onChange(ChangeEvent)void

@ onOpen(OpenEvent=DisclosurePanel=)void
@ onClose(CloseEvent=DisclosurePanel=)void

60



Figure A.7: GoogleMaps Class (Fields)

<<Java Class=>
® GoogleMaps
com.ciberbeesecuradweb.client

map: MapWidget

LatLngList: ArrayList<LatLng=
MarkerList: ArrayList<Marker=
markermum: int

map_options: MapOptions
pegConfigTable: FlexTable
gwConfigTable: FlexTable
tagConfigTable: FlexTable
pegSignalTable: FlexTable
extSensorTypeldList: ArrayList<Integer=
o pegSignalDialogBox: DialogBox

o settingsDialog: DialogBox

o gwSettingsDialog: DialogBox
anegSettingsDialog: DialogBox

o tagSettingsDialog: DialogBox

o signalAbutton: Button

o signalBbutton: Button

o signalCbutton: Button

o signalDbutton: Button

o schandler: SingleClickHandler

o checkBoxArray: CheckBox[]

o pegSignalAvalue: long

o pegSignalBvalue: long

o pegSignalCvalue: long

o pegSignalDvalue: long

o activePegSignalDialog: char

o signalBitArray: int[]

o mscHandler: MapSingleClickHandler
o peglnfoTable: FlexTable

o pegDeviceldLabel: Label

o pegTemperatureLabel: Label

o pegTimestamplLabel: Label

o pegBatteryLabel: Label
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a

OO o oo ooaoao

o

pegSensorAAlarmLabel: Label
pegSensorBAlarmLabel: Label
pegVibAlarmLabel: Label
pegTempAlarmLabel: Label
pegAlarmTimeLabel: Label
gwinfoTable: FlexTable
taginfoTable: FlexTable
tagDeviceldLabel: Label
tagHeartrateLabel: Label
tagTimestamplabel: Label
tagBodyAttitudeLabel: Label
tagHeartrateAlarmLabel: Label
tagFallenAlarmLabel: Label
tagAlarmTimelabel: Label
sensorConfigDialog: DialogBox
o sensorConfigTable: FlexTable
o sensorACheckbox: CheckBox
& sensorBCheckbox: CheckBox
o ysensorCheckbox: CheckBox
o tsensorCheckbox: CheckBox
nFcanceISensorConﬁgEltn: Button
o tagSensorConfigDialog: DialogBox
o tagSensorConfigTable: FlexTable
o sensorHCheckbox: CheckBox
o sensorFCheckbox: CheckBox
o tagCancelSensorConfigBtn: Buttan
o clearAlarmDialog: DialogBox
o clearAlarmVp: VerticalPanel
o cancelClearAlarmBtn: Button
o extSensorTypelist: Arraylist<ExtSensorType=
o pegStoragelist: ArraylList=PegStorage>
o gwStoragelist: ArrayList<GwStorage>
o tagStoragelist: ArrayList<TagStorage=
o showDetails: boolean
o editDevicelist: ArrayList<Device=
o editMarkerList: ArrayList<Marker=
o mapStartZoom: int
o mapStartCoord: Latlng
o accesslLevel: AccesslLevel

61



Figure A.8: GoogleMaps Class (Methods)

<<Java Class=>
(® GoogleMaps

com.ciberbeesecuredweb.client

@
=
=
=
=
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
=
=
@
=
=
@
@
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
@
@
@
@
@
@
=
=
=

& GoogleMaps()

buildmap()void

initDialogProperties():void
setupClearAlarmDialog():void
setupPegSensorConfigDialog():void
setupTagSensorConfigDialog()-void
getMap():MapWidget

resizeMap()-void
addMapHandlers(DeviceType)-void
removelMapHandlers()-void

setAddDevice Type(Device Type)-void
setMarkerDraggable(Marker,boalean)void
clearMarkers()-void
removeMarker(Marker)-void
addMarker{Marker):void
refreshExtSensorType()void
getEditDeviceLlist():ArrayList<Device=
clearEditDeviceList{)-void
getEditMarkerList()-ArrayList<Marker=
addToEditList{Device Marker)void
getlLastAddedListindesx():int
clearEditMarkerList()-void
closeMarkerinfoWindow()-void
getMapStartLevel()void
setApplicationAccessLevel(int):void
setMapDoubleClickZoom(boolean):void
createGwiMarker(GwStorage, boolean):-Marker
editMarkerClickHandler{Marker, Device,int):void
showConfiginfoWindow(Marker, Device int):void
createPegMarker(PegStorage, boolean):Marker
createTagMarker(TagStorage boolean):Marker
updatePegMarker(PegStorage)-void
updateTagMarker(TagStorage)-void
setupPeglinfoTable():void
setupTaginfoTable()-void
showGwMarkerinfolindow(GwStorage)-void
setShowDetails(boolean):void
getShowDetails():boolean
showPegMarkerlinfo\Window(PegStorage):void
showTagMarkerlnfoWWindow(TagStorage)-void
setupGwConfig():void

getGwConfig(int, FlexTable):void
setupPegConfig():void
updatePegSensor{int, String, SensorState)void
updateTagSensor{int, String, SensorState)void
getPegConfigiint,FlexTable)void
getPegSensorStatus(int,FlexTable)void
getTagSensorStatus(int.FlexTable):void

toggleSensorCheckBox(SensorState, CheckBox)void

setupTagConfig():void

getTagConfig(int, FlexTable)-void
setupPegSignalConfig()-void
convertToPegSignalBits():void
convertFromPegSignal Bits():void
getPegSignalConfig(char):void
updateGwConfig{GwConfig,Label)-void
updatePegConfig(PegConfig, Label)void
updateTagConfig(TagConfig,Label):void
getExtSensorType(int.ListBox)void
getExtSensorType(int,Label)void
initGetExtSensorType()-void
storeExtSensorType(ExtSensorType)void
centerMapToDevice(double,double):void
hideAllMarkers()-void
hideMarker(Marker)-void
showAllMarkers()-void
showMarker(Marker):void
showMarkerinfoWindows(int, String):void
createMarkers(LatLng.int):Marker
createMaxinfo\WindowMarker(LatLng):Marker
DisplayInfoWindow(LatLng):Info\WindowContent

<<Java Class=>
(® SingleClickHandler
com.ciberbeesecuredweb.client

-schandler
0.1

@"“—\_._‘_\_._._._.—'

& SingleClickHandler()
onClick(ClickEvent)void
setsensorACheckboxChanged(boolean):void
getsensorACheckboxChanged():boolean
setsensorBCheckboxChanged(boolean)-void
getsensorBCheckboxChanged():boolean
setvsensorCheckboxChanged(boolean)void
getvsensorCheckboxChanged():boolean
settsensorCheckboxChanged(boolean)void
gettsensorCheckboxChanged():boolean
setsensorHCheckboxChanged(boolean):void
getsensorHCheckboxChanged():boolean
setsensorFCheckboxChanged(boolean)-void
@ getsensorFCheckboxChanged():boolean

POOPOOOOOOOO®O

62

<« Java Class=>
(® MapSingleClickHandler
com.ciberbeesecuredweb.client
& MapSingleClickHandlar()
© onDoubleClick(MapDoubleClickEvent):-void
© setAddDeviceType(DeviceType)void




Figure A.9: Device, TagDevice, PegDevice Classes

<«Java Class=»
(= Device

com.ciberbeesecuredweb.client

idDevice: int

site” int

shortAddr: int

deviceType: int
softwareVersion: int
hardwareVersion: int

panld: int

latitude: double

longitude: double
gwlpAddress: String
macAddr: String

name: String
deviceTypeMame: String
lastMsgTimestamp: Timestamp
softwareDateTime: Timestamp
online: boolean

config: boolean

newDevice: boolean
locationChanged: boolean

<<Java Class=>
(® TagDevice

com.ciberbeesecuredweb.client

o jdDevice: int
o stateHeartrate: SensorState
o stateFallen: SensorState

& TagDevice()

setidDevice(int)void
getidDevice():int
setstateHeartrate(int)-void
setstateHeartrate(SensorState)-void
getstateHeartrate():SensorState
setstateFallen(int)-void
setstateFallen(SensorState):void
getstateFallen()-SensorState
sensorStateTolnt(SensorState):int

L

Device()

setidDevice(int)void
getidDevice()int

setsite(int):void

getsite():int

setshortAddr(int)-void
getshortAddr():int
setmacAddr{String)-void
getmacAddr():String
setdeviceType(int)void
getdeviceType():int
setsoftwareVersion(int)void

@ getsoftwareVersion():int

@ sethardwareVersion(int):void

@ gethardwareVersion():int

@ setpanld(int)-void

@ getpanld():int

@ setlatitude(double)void

@ getlatitude():double

@ setlongitude(double)void

@ getlongitude():double

@ setgwlpAddress(String):void

@ getgwlpAddress():String

@ setMame(String)-void

@ getMame():String

@ setdeviceTypeName(String)void
@ getdeviceTypeName():String

@ setlastMsgTimestamp(Timestamp):void
@ getlastMsgTimestamp():Timestamp
@ setsoftwareDateTime(Timestamp)-void
@ getsoftwareDateTime(): Timestamp
@ setOnline(boolean):void

@ getOnline():boolean

@ setConfig(boolean)void

@ getConfig():boolean

@ setnewDevice(boolean):void

@ getnewDevice():boolean

@ setEditStatus(EditStatus)void

@ getEditStatus():EditStatus

LI I IO - - - - - - - - - - I - IO -

<<Java Class=»
(& PegDevice

com.ciberbeesecuredweb.client

idDevice: int

stateSensorA: SensorState
stateSensorB: SensorState
stateVibration: SensorState
stateTemperature: SensorState

o o oa

[+

& PegDevice()

| ® setidDevice(int)void

@ getidDevice():int

@ setstateSensorAfint)void

@ setstateSensorA(SensorState)void
@ getstateSensorA():SensorState

@ setstateSensorB(int)void

@ setstateSensorB(SensorState):void
@ getstateSensorB():SensorState

@ setstateVibration(int):void

@ setstateVibration(SensorState)void
@ getstateVibration():SensorState

@ setstateTemperature(int)-void

@ setstateTemperature(SensorState):void
@ getstateTemperature():SensorState
@ sensorStateTolnt{SensorState):int

<«Java Enumerationz>
O EditStatus

com.ciberbeesecuredweb.client

4 TO_UPDATE: EditStatus
4 TO_DELETE: EditStatus

& EditStatus()

63



Figure A.10: DeviceService, DeviceServiceAsync Class

<<Java Interfaces==
& DeviceService
com.ciberbeesecuredweb.client

@ getAllDevice():Device[]

@ getTargetDevice(int,int):Device|]

@ getPegDevice(int,int):PegDevice(]

@ getTagDevice(int,int): TagDevice[]

@ getDeviceType() DaviceType[]

@ getExtSensorType():ExtSensorType|]
@ getPegConfig(int):PegConfig
updatePegConfig(PegConfig):boolean
getGwConfig(int): GwConfig
getTagConfig(int): TagConfig
updateTagConfigiTagConfig):boolean
updateGwConfig{GwConfig):boolean
getPegData(int):PegData
getGwData(int):GwData
getTagData(int): TagData
getSite():Site[]
getMotification(boolean):String(]
updatePegSensor(int,String, SensorState)void
updateTagSensor{int, String, SensorState)-void
getPegSensor(int):PegDevice
getTagSensor(int): TagDevice
parseConfig():Config
editDevice(Device[])wvoid
getDeviceByld(int):boolean

OO O OO OOOOOPOOODOEOOD

authenticateSessionld(String):Login
@ getAlarmData(Device):AlarmData

<<Java Interface==
@ DeviceServiceAsync
com.ciberbeesecuradweb.client

authenticatelogin(String, String, boolean):-Login

@ getAllDevice(AsyncCallback<Device[]=)void

@ getTargetDevice(int,int, AsyncCallback=<Device[]>)void

@ getPegDevice(int,int. AsyncCallback<PegDevice[]>)void

@ getTagDevice(int,int,AsyncCallback<TagDevice[]>)void

@ getDeviceType(AsyncCallback<DeviceType[]=):void

@ getExtSensorType(AsyncCallback<ExtSensorType[]=)void

@ getPegConfig(int, AsyncCallback<PegConfig>)void
updatePegConfig{PegConfig,AsyncCallback<Boolean=)void
getGwConfig(int, AsyncCallback<GwConfig=)void

getTagConfig(int AsyncCallback<TagConfig=):void
updateTagConfig(TagConfig, AsyncCallback=Boolean=)void
updateGwConfig(GwConfig,AsyncCallback<Boolean=):void
getPegData(int, AsyncCallback=PegData=)void
getGwData(int.AsyncCallback<GwData>=)void

getTagData(int, AsyncCallback<TagData=)wvoid
getSite(AsyncCallback<Site[]=)void

getMotification{boolean, AsyncCallback<String[]>):void
updatePegSensor(int, String, SensorState, AsyncCallback=Void=)void
updateTagSensor(int,String. SensorState AsyncCallback<Void=)void
getPegSensor(int, AsyncCallback<PegDevice=)void
getTagSensor(int, AsyncCallback<TagDevice:=)void
parseConfig{AsyncCallback<Configs=)-void
editDevice(Device[],AsyncCallback<Void=)void

getDeviceByld{int, AsyncCallback<Boolean=)void
authenticateLogin(String, String, boolean, AsyncCallback<Login=):void
authenticateSessionld(String AsyncCallback<Login=)void

@ getAlarmData(Device AsyncCallback<AlarmDatax)void

o0 OOOOOOROOCOODPORPOROTOO®

-instance 0..1

<< Java Class»»

com.ciberbeesecuredweb.client

& LUtil{)

& getinstance():Device ServiceAsync

64




Figure A.11: DeviceType, ExtSensorType

<<Java Class>> <<Java Class>>
® DeviceType (® ExtSensorType
com.ciberbeesecuredweb.client com.ciberbeesecuredweb.client
o id: int o idExtSensorType: int
= name: String o normalMask: int
& DeviceType() o connectionMask: int
©® setname(String)-void a CUW*”‘”EI'E_': float
@ getname():String =@ name: String
@ setid(int)void o alarmText: String
© getid():int & ExtSensorType()

eeCOCQEOEOCTOOOTOO

setidExtSensorType(int)-void
getidExtSensorType():int
setnormalMask(int)-void
getnormalMask():int
setconnectionMask(int)void
getconnectionMask():int
setconeAngle(float):void
getconeAngle()-float
setname(String)-void
getname():String
setalarmText(String)-void

@ getalarmText():String

Figure A.12: SiteStorage, GwStorage, PegStorage, TagStorage, Site Classes

<<Java Class=>»
(© PegStorage

com.ciberbeesecuredweb.client

pegDevice: PegDevice
pegData: PegData
pegConfig: PegConfig
markerindex: int
markerState: MarkerState
marker: Marker
alarmData: AlarmData

oo ooaoa

o

OCF'egStorage(}

& PegStorage(PegDevice, PegData)
o setPegDevice(PegDevice)void

@ getPegDevice():PegDevice

@ setPegData(PegData):void

@ getPegData():PegData

@ setPegConfig(PegConfig):void

@ getPegConfig():PegConfig

@ setMarkerindex(int)-void

o getMarkerindex():int

@ setMarkerState(MarkerState):void
@ getMarkerState():MarkerState

@ setMarker(Marker):void

@ getMarker{)-Marker

@ setAlarmData(AlarmData):void

@ getAlarmData():AlarmData

<« Java Class==
(® SiteStorage

com.ciberbeesecuredweb.client

& SiteStorage()
& SiteStorage(Site)
@ getSite():Site

+ torageList

*

+tagStoragelist 0. %gwStorageList, 0.~

-site
0.1

<<Java Class=>»
(® TagStorage

com.ciberbeesecuredweb.client

<<Java Class=>=
(® GwStorage

com.ciberbeesecuredweb.client

tagDevice: TagDevice
tagData: TagData

marker: Marker
markerState: MarkerState
alarmData: AlarmData
markerindex: int

oo oaoao

o

gwDevice: Device
gwData: GwData
markerindex: int

marker: Marker
markerState: MarkerState
locationChanged: boolean

oo oooao

& TagStorage()

& TagStorage(TagDevice TagData)
@ setTagDevice(TagDevice)void
© getTagDevice(): TagDevice

@ setTagData(TagData)void

L]

getTagData():TagData

setMarker(Marker)void
getMarker():Marker
setMarkerState(MarkerState):void
getMarkerState():MarkerState
setMarkerindex(int)-void
getMarkerindex():int
setAlarmData(AlarmData):void
getAlarmData():AlarmData

OO OOOOO

& GwStorage()

& GwStorage(Device, GwData)
setGwDevice(Device)void
getGwDevice():Device
setGwData(GwData)void
getGwData():GwData
setMarkerindex(int):void
getMarkerlndex():int
setMarker(Marker)-void
getMarker():Marker

getMarkerState():MarkerState

*PeQCOCOOCOOOOO®OD

@ getLocationChanged():boolean

setMarkerState(MarkerState)-void

setLocationChanged(boolean):void

65

<<Java Class=>
(@ Site

com.ciberbeesecuredweb.client

o idSite: int

o |atitude: double
o longitude: double
o name: String

& Site()

setidSite(int):void
getidSite():int
setlatitude(double)void
getlatitude():-double
setlongitude(double)void
getlongitude():double
setname(String):void
getname():String

OO OOOOO




Figure A.13: GwStorage Class

-markerState

A1

<<Java Class>>
(& GwStorage

com.ciberbeesecuredweb.client

o markerlndex: int
o marker: Marker
o locationChanged: boolean

& GwStorage()
GwStorage(Device.GwData)
setGwDevice(Device )void
getGwDevice():Device
setGwData(GwData):void
getGwData().GwData
setMarkerindex(int)-void
getMarkerndex(})int
setMarker(Marker)void
getMarker():Marker

getMarkerState():MarkerState

PCOOOOOOOOOCQO,

getLocationChanged():boolean

setMarkerState(MarkerState)void

setlLocationChanged(boolean)-void

-gwDevice (0.1

<<Java Enumeration>>

<<Java Class>>

<<Java Class>>

& OFFLINE: MarkerState
o ALARM: MarkerState

& MarkerState()

site- int

shortAddr: int

deviceType: int
softwareVersion: int
hardware\ersion: int

panld: int

latitude: double

longitude: double
gwlpAddress: String
machddr: String

name: String
deviceTypeMame: String
lastMsgTimestamp: Timestamp
softwareDateTime: Timestamp
online: boolean

config: boolean

editStatus: EditStatus
newDevice: boolean
locationChanged: boolean

- - T - - - T - - - O O O O - T

o

& Device()

@ setidDevice(int):void

@ getidDevice():int

@ setsite(int)void

@ getsite():int

@ setshortAddr(int)-void

@ getshortAddr()int

@ setmacAddr(String):void

@ getmacAddr():String

@ setdeviceType(int):void

@ getdeviceType()int

@ setsoftwareMersion(int):void
@ getsoftwareMersion():int

@ sethardwareVersion{int)void
@ gethardwareVersion():int

@ setpanld(int)void

@ getpanld():int

@ setlatitude(double):void

@ getlatitude()-double

@ setlongitude(double)void

@ getlongitude()-double

@ setgwlpAddress(String):void
@ getgwlpAddress():String

@ setMame(String)-void

@ getMame():String

@ setdeviceTypeMame(String)-void
@ getdeviceTypeMame():String

@ setlastMsgTimestamp{Timestamp)-void
@ getlastMsgTimestamp(): Timestamp
@ setsoftwareDateTime(Timestamp)void

@ getsoftwareDateTime() Timestamp
@ setOnline(boolean):void

@ getOnline():boolean

@ setConfig(boolean)void

@ getConfig()-boolean

@ setnewDevice(boolean)void

@ getnewDevice():boolean

@ setEditStatus(EditStatus)void

@ getEditStatus()EditStatus

66

© MarkerState & Device (& GwData
com.ciberbeesecuredweb.client com.ciberbeesecuredweb.client  -gwDat com.ciberbeesecuredweb.client
4 ONLIME- MarkerState idDevice: int 0.1 idGwData: int

o
o deviceld: int

o errorCode: int

e temperature: float

o analogValue: float

o accelX: float

o accelY: float

o accelZ: float

o timestamp: Timestamp

& GwData()
setidGwData(int)void
getidGwData():int
setdeviceld{int)void
getdeviceld{}:int
seterrorCode(int)void
geterrorCode()int
settemperature(float)void
gettemperature():float
setanalogValue(float).void
getanalogValue()float
setaccelX(float)void
getaccelX()-float
setaccelY{float)void
getaccelY()float
setaccelZ(float)void
getaccelZ()-float
settimestamp(Timestamp):void
gettimestamp(): Timestamp

PO OCOOOOOOOOCOCOOOO OO




<<Java Enumeration== 01
@ MarkerState -
com.ciberbeesecuredweb.client

4 OMNLINE: MarkerState
a OFFLINE: MarkerState
4 ALARM: MarkerState

& MarkerState()

Figure A.14: PegStorage Class

erState

<<Java Class=>>
(® PegConfig

com.ciberbeesecuredweb. client

idDevice: int
typeSensorA- int
typeSensorB: int
authenticationMask: int
proximityRssiThreshold: int
statusReportinterval: float
pollSensorinterval: float
alarmAckTimeout: float
alarmDelay: float
vibrationThreshold: float
alarmRefractoryTime: float
maodified: boolean
signalizationA: long
signalizationB: long
signalizationC: long
signalizationD: long

DD 000D O0DO0O0B@E00aao

o

& PegConfig()

@ setidDevice(int)void

@ getidDevice()int

@ settypeSensorA(int)void

@ gettypeSensorAf)int

@ settypeSensorB(int)void

@ gettypeSensorB():int

@ setauthenticationMask(int)-void
@ getauthenticationMask():int

@ setproximityRssiThreshold(int):void
@ getproximityRssiThreshold():int
@ setsignalizationA{long)void

@ getsignalizationA():long

@ setsignalizationB{long)-void

@ getsignalizationB():long

@ setsignalizationC({long):void

@ getsignalizationC({):long

@ setsignalizationD{long):void

@ getsignalizationD{):long

@ setstatusReportinterval{float)-void
@ getstatusReportinterval()-float
@ setpollSensorinterval(float):void
@ getpollSensorlnterval()-float

@ setalarmAckTimeout(float)-void
@ getalarmAckTimeout()-float

@ setalarmDelay(float)void

@ getalarmDelay()-float

@ setvibrationThreshold{float)-void
@ getvibrationThreshold()-float

@ setalarmRefractoryTime(float)-void
@ getalarmRefractoryTime():float
@ setmodified(boolean):void

@ getmodified():boolean

<<Java Class>>
(® PegStorage
com.ciberbeesecuredweb.client

o markerindex: int
o marker: Marker

& PegStorage()

& PegStorage(PegDevice, PegData)
@ setPegDevice(PegDevice)void

@ getPegDevice():PegDevice

@ setPegData(PegData)void

@ getPegData():PegData

@ setPegConfig{PegConfig):void

@ getPegConfig():PegConfig

@ setMarkerindex(int)void

@ getMarkerindex():int

@ setMarkerState(MarkerState)-void
@ getMarkerState():-MarkerState

@ setMarker(Marker):void

@ getMarker()-Marker

@ setAlarmData{AlarmData)void

@ getAlarmData():AlarmData

-pegData (0.1

<<Java Class=>
(® PegData

com.ciberbeesecuredweb. client

idPegData: int
deviceld: int

state: int

errorCode: int
temperature: float
batteryVoltage: float
rechargingCurrent: float
accelX: float

accelY: float

accelZ: float
analogValue: float
rechargingState: String
timestamp: Timestamp

[ T T T - T T T - T T .

& PegData()
setidPegData(int)void
getidPegData():int
setdeviceld(int)-void
getdeviceld()int
setstate(int)void

getstate():int
seterrorCode(int)void
geterrorCode():int
settemperature(float)-void
gettemperature():float
setbatteryVoltage(float):void
getbatteryVoltage()-float
getbatterylifePercentage()-float
setrechargingCurrent(float)-void
getrechargingCurrent()-float
setaccelX{float)-void
getaccelX()float
setaccelY(float):void
getaccelY()float

@ setaccelZ(float)void

@ getaccelZ()-float

@ setanalogValue(float):void

@ getanalogValue()-float

@ setrechargingState(String):void
@ getrechargingState(): String

@ settimestamp(Timestamp)-void

@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

L]

@ gettimestamp():Timestamp

67

-3 ta
0.1

-pegDevicl
0.1

<<Java Class=>
® AlarmData
com.ciberbeesecuredweb.client

= idAlarmData: int

= deviceld: int

o timestamp: Timestamp
o alarmMessage: String

& AlarmData()

@ setidAlarmData(int)-void

@ getidAlarmData():int

@ setdeviceld{int)-void

@ getdeviceld{int):int

@ settimestamp(Timestamp):void
@ gettimestamp():Timestamp

@ setalarmMessage(String)void
@ getalarmMessage():String

<<Java Class>>
® PegDevice
com.ciberbeesecuredweb.client

idDevice: int

stateSensorA: SensorState
stateSensorB: SensorState
stateVibration: SensorState
stateTemperature: SensorState

oo oo

o

& PagDavice()

@ setidDevice(int)void

@ getidDevice()int

@ setstateSensorA(int)void

@ setstateSensorA(SensorState)void
@ getstateSensorA()-SensorState

@ setstateSensorB(int)void

@ setstateSensorB(SensorState):void
@ getstateSensorB():SensorState

@ setstateVibration{int)-void

@ setstateVibration(SensorState):void
@ getstateVibration():SensorState

@ setstateTemperature(int)-void

@ setstateTemperature(SensorState)void

@ getstateTemperature()-SensorState
@ sensorStateTolnt(SensorState):int




Figure A.15: TagStorage Class

<<Java Class=>
(© TagStorage
com.ciberbeesecuredweb.client

o marker: Marker
o markerindex: int
OcTagStorage(}
& TagStorage(TagDevice. TagData)
setTagDevice(TagDevice)void
getTagDevice(): TagDevice
setTagData(TagData)-void
getTagData():TagData
setMarker(Marker)-void
getMarker():Marker
setMarkerState(MarkerState)-void
getMarkerState():MarkerState
setMarkerindex(int)-void
getMarkerindex():int
setAlarmData(AlarmData)-void
@ getAlarmData()-AlarmData

PO OCOCOOOCTOO®O

-markerState ( tagDevice 0.1 tagDatal 0..1
<<Java Enumeration=> <<Java Class=>> <<Java Class=> <<Java Class=>=
@ MarkerState @ TagDevice ® TagData -alarrr% ® AlarmData
com.ciberbeesecuredweb.client com.ciberbeesecuredweb.client com.ciberbeesecuredweb.client | 0.1 com.ciberbeesecuredweb.client
4 ONLIME: MarkerState o idDevice: int o idTagData: int o idAlarmData: int
& OFFLIMNE: MarkerState o stateHeartrate: SensorState o deviceld: int o deviceld: int
a ALARM: MarkerState o stateFallen: SensorState o bodyAttitude: int o timestamp: Timestamp
& MarkerState() & TagDevice() o activityLevel: int o alarmMessage: String
@ setidDevice(int)-void o errorCode: int & AlarmData()
@ getidDevice()int o heartrate: float @ setidAlarmData(int}-void
@ setstateHeartrate(int)-void a accelX: float @ getidAlarmData():int
@ setstateHeartrate(SensorState)void o accelY: float @ setdeviceld(int):void
@ getstateHeartrate(): SensorState @ accelZ: float @ getdeviceld(int)int
@ setstateFallen(int)-void o timestamp: Timestamp @ settimestamp(Timestamp)-void
@ setstateFallen(SensorState):void OcTagData(} @ gettimestamp():Timestamp
@ getstateFallen():SensorState @ setidTagDatalint)-void @ setalarmMessage(String):void
@ sensorStateTolnt({SensorState):int o getidTagDataf):int @ getalarmMessage(): String

o setdeviceld(int):void

@ getdeviceld():int

@ seterrorCode(int):void

@ geterrorCode():int

o setbodyAttitude(int)-void
getbodyAttitude():int
setactivityLevel{int)-void
getactivityLevel():int
setheartrate(float)-void
getheartrate()-float
setaccelX(float)-void
getaccelX()-float
setaccelY(float)-void
getaccelY()float

@ setaccelZ(float)-void

@ getaccelZ()-float

@ settimestamp(Timestamp):void
© gettimestamp()-Timestamp

L]

POPOOCOO®P

68



Figure A.16: GwConfig, PegConfig, TagConfig Classes

<< lava Class>>

<< lava Class>>

<< lava Class=>»

typeSensorA: int
typeSensorB: int
authenticationMask: int
proximityRssiThreshold: int
statusReportinterval: float
pollSensorinterval: float
alarmAckTimeout: float
alarmDelay: float
vibrationThreshold: float
alarmRefractoryTime: float
modified: boolean
signalizationA: long
signalizationB: long
signalizationC: long
signalizationD: long

[+ I + I -+ I+ I + IO + B -+ I + I + I + IO + I + IO + O + O + N + |

a

o statusReportinterval: int

o routeDiscoverylnterval: float
o modified: boolean

& GwConfig()

@ setidDevice(int)void

@ getidDevice()int

@ setstatusReportinterval(int):void

@ getstatusReportinterval():int

@ setrouteDiscoverylnterval(float)void
@ getrouteDiscoverylnterval()-float

@ setmodified{boolean)void

@ getmodified()-boolean

(& PegConfig ® GwConfig (® TagConfig
com.ciberbeesecuredweb.client com.ciberbeesecuredweb.client com.ciber.beesecuredweb.client
idDevice: int idDevice: int idDevice: int

authenticationMask: int
statusReportinterval: float
pollSensorinterval: float
alarmAckTimeout: float
nearbyBeaconlinterval: float
alarmRefractoryTime: float
fallenTime: float

o fallenThreshold: float

o activityThreshold: float

o inactivityThreshold: float

o modified: boolean

L+ I+ I + I + O + I + N -+ |

a

& PegConfig()
setidDevice(int):void
getidDevice()int
settypeSensorAfint)void
gettypeSensorAf):int
settypeSensorB(int)void
gettypeSensorB():int
setauthenticationMask(int):void
getauthenticationMask():int
setproximityRssiThreshold{int):void
getproximityRssiThreshold():int
setsignalizationA(long):void
getsignalizationA():long
setsignalizationB(long):void
getsignalizationB():long
setsignalizationC(leng):void
getsignalizationC():long
setsignalizationD(leng):void
getsignalizationD():long
setstatusReportintervalifloat):void
getstatusReportinterval()-float
setpollSensorinterval(float)void
@ getpollSensorinterval()-float

@ setalarmAckTimeout(float)-void
@ getalarmAckTimeout()float

@ setalarmDelay(float)void

@ getalarmDelay()-float

@ setvibrationThreshold{float):void
@ getvibrationThreshold()-float

@ setalarmRefractoryTime(float):void
@ getalarmRefractoryTime()float
@ setmodified{boolean)void

@ getmodified()-boolean

i e

PO OODPOOOCOTODOODOOTODODOOO®

69

& TagConfig()

setidDevice(int):void
getidDevice()int
setauthenticationMask(int):void
getauthenticationMask():int
setstatusReportintervalifloat):void
getstatusReportinterval()-float
setpollSensorinterval(float)void
getpollSensorinterval()-float
setalarmAckTimeout(float)void
getalarmAckTimeout()float
setnearbyBeaconinterval(float):void
getnearbyBeaconinterval()-float
setalarmRefractoryTime(float):void
getalarmRefractoryTime()-float
setfallenTimeifloat):void
getfallenTime()-float
setfallenThresholdifloat):void
getfallenThreshold()-float
setactivity Threshold{float)-void
getactivity Threshold()-float
setinactivityThresholdifloat):void
getinactivity Threshold()-float
setmodified{boolean):void

@ getmodified()-boolean

PO OODOPOOOTOOODOPOOTOODOOO




Appendix B.

UML for Server Application

Figure B.1: Servlet Classes

<<Java Class=>»
(® DeviceServicelmpl
com.ciberbeesecuredweb.server

o devicelist: ArrayList<Device=
< CON_URL: String

< CON_DB: String

< CON_USER: String

<f CON_PW: String

@ DeviceSenicelmpl()

@ getAllDevice():Device[]

@ getTargetDevice(int,int):Device(]

@ getDeviceType():DeviceType[]

@ getPegConfig(int):PegConfig
updatePegCaonfig(PegConfig):boaolean
getGwConfig(int):GwConfig
updateGwConfig{GwConfig):boalean
getTagConfig(int)- TagConfig
updateTagConfig(TagConfig)-boolean
getExtSensorType():ExtSensorType(]
getPegData(int)-PegData
getGwData(int):GwData

getTagData(int) TagData
getPegDevice(int,int):PegDevice(]
getTagDevice(int. int) TagDevice(]
getSite():Site[]
getMatification(boolean):String(]
updatePegSensor(int, String, SensorState)void
updateTagSensor(int, String, SensorState)void
parseConfig():Config

editDevice(Device[])-void
getDeviceByld(int):boalean
authenticatel ogin(String, String, boolean):Login
authenticateSessionld(String):-Login

@ getAlarmData(Device):AlarmData

@ getPegSensor(int):PegDevice

@ getTagSensor{int): TagDevice

PO COOOPODOOOOCOOODDOOOO

-dbcon |0..1

<<Java Interface=x
@ DeviceService
com.ciberbeesecuradweb client

getAllDevice():-Device[]
getTargetDevice(int.int):Device[]
getPegDevice(int,int):PegDevice[]
getTagDevice(int.int): TagDevice|]
getDeviceType():DeviceType]]
getExtSensorType():ExtSensorType(]
getPegConfig(int):PegConfig
updatePegConfig{PegConfig):boolean
getGwConfig(int):GwConfig

getTagConfig(int): TagConfig
updateTagConfig(TagConfig):boolean
updateGwConfig{GwConfig):boolean
getPegData(int):PegData
getGwData(int):GwData

getTagData(int): TagData

getSite():Site(]
getMatification(boolean):String(]
updatePegSensor(int, String, SensorState)void
updateTagSensor(int, String, SensorState)void
getPegSensor(int):PegDevice
getTagSensor(int):-TagDevice
parseConfig():Config

editDevice(Device[])void
getDeviceByld(int)-boaolean
authenticatelogin(String, String, boolean):Login
authenticateSessionld(String):-Login
getAlarmData(Device) AlarmData

-listener, 0..1

<<Java Class=>»
(® dbConnection
com.ciber beesecuredweb.server

<<Java Class=>»
(® notificationListener
com.ciberbeesecuredweb server

o url: String

o database: String
o username: String
o password: String

& dbConnection()
& dbConnection(String, String, String, String)

@ connectToDB(String, String, String, String):Connection

70

o con: Connection

o pgcon: PGConnection

o notificationList: ArraylList<String=
& notificationListener(Connection)
@ run():void

@ getMNotificationArray()-String[]




Figure B.2: Servlet Classes Continued

<< lava Class>> << lava Class=>»

® StAXParser ®Log
com.ciberbeesecuredweb.server com.ciberbeesecuredweb.server
& StAXParser() @ Log()
@ readConfigiString):Config & writeLog(String. String):void

71



Appendix C.

Database Tables

Table C.1: Site Table

Column Datatype Description Range
idSite int Primary key
name string Name of the network/site
latitude  double Position [deg]
longitude double Position [deq]
Note. BST (2011)
Table C.2: Device Table
Column Data type Description Range
idDevice int Primary key
name string Name of device
site int Ref. to the site of this device
latitude double Position [deg]
longitude double Position [deg]
shortAddr int Zigbee short address
macAddr string MAC/IEEE address of device
deviceType int type of device (see deviceType table)
gwlpAddress string IP address of gateway to device

lastMsgTimestamp dateTime

softwareVersion int Version
softwareDateTime dateTime
hardwareVersion int

panld int

online boolean

time of last received message

number of the firmware [0, 255]
Build time and date of the software

Version number of the hardware [0, 255]
PAN Id of the Zighee network 16 bit

Flags if the device is online or not

Note. BST (2011)

72



Table C.3: Peg Config Table

Column Data Description Range
type
idDevice int Primary key
typeSensorA int Ref. to the type of external sensor A
typeSensorB int Ref. to the type of external sensor B
statusReportinterval float Interval at which status reports are send [s] [0.0,
65535.0]
pollSensorlinterval float Interval at which to poll sensors [s] [0.0, 65.0]
alarmAckTimeout float Timeout for alarm acknowledgements [s] [0, 65.0]
alarmDelay float Delay before alarms are send, to give TAGs time to [0, 65.0]
disable alarms [s]
vibrationThreshold float Acceleration threshold to detect vibrations [m/s2] [0.0,4.0]
alarmRefractoryTime int Time between raising an alarm condition and raising the [0, 255]
same condition again [s]
authenticationMask int Mask to authenticate TAGs to disable alarms for smart
intrusion 16 bit
proximityRssiThreshold  int RSSI values to detect TAG proximity for smart intrusion [-128, 0]
lowerTempThreshold float Lower threshold for temperature alarm [-40.0,
125.0]
upperTempThreshold  float Upper threshold for temperature alarm [-40.0,
125.0]
signalizationA int Mask for mapping alarms to signalization channel A
signalizationB int Mask for mapping alarms to signalization channel B
signalizationC int Mask for mapping alarms to signalization channel C
signalizationD int Mask for mapping alarms to signalization channel D
modified bool True if modified by GUI (GUIs are only allowed to modify

arow if false) False if confirmed by device

Note. BST (2011)

73



Table C.4: Tag Config Table

Column Data Description Range
type
idDevice int Primary key
statusReportinterval  float Interval at which status reports are send [s] [0.0,
65535.0]
pollSensorinterval float Interval at which to poll sensors [s] [0.0,
65535.0]

alarmAckTimeout int Timeout for alarm acknowledgements [s] [0, 255]

nearbyBeaconlnterval float Interval at which to send “Hello” beacons [s]

alarmRefractoryTime int Time between raising an alarm condition and raising the [0, 255]
same condition again [s]

fallenTime float Duration all axis have to be below fallenThreshold to [0.0,
trigger fallen alarm [s] 65535.0]

fallenThreshold float Acceleration threshold, all axis below this threshold trigger  [0.0,
a fallen alarm [m/s2] 65535.0]

activityThreshold float Accelerations higher trigger high activity [m/s2]

inactivityThreshold float Acceleration lower trigger low activity[m/s2]

inactivityTime float Time window to detect inactivity [s]

authenticationMask int Mask to disable PEG alarms (smart intrusion)

modified bool True if modified by GUI (GUIs are only allowed to modify a

row if false) False if confirmed by device

Note. BST (2011)

74



Table C.5: Gateway Config Table

Column Data Description Range
type

idDevice int Primary key

statusReportinterval int Interval at which status reports are send [s] [0, 65535]

routeDiscoveryinterval int Interval in which to send many to one route discoveries [s] [0, 65535]

lowerTempThreshold  float Lower threshold for temperature alarm [-40.0,
125.0]

upperTempThreshold  float Upper threshold for temperature alarm [-40.0,
125.0]

modified bool True if modified by GUI (GUIs are only allowed to modify a

row if false) False if confirmed by device

Note. BST (2011)

Table C.6: Alarm Data Table

Column Data type Description Range
idAlarmData int Primary key

deviceld int Ref. to the device that generated the alarm
timestamp dateTime  Time of alarm

alarmMessage  string Text describing the alarm

alarmVector int alarm code as send by device

Note. BST (2011)

75



Table C.7: External Sensor Type Table

Column Data type Description Range
idExtSensorType int Primary key

name string name of sensor

normalMask int GPIO mask for normal condition (any deviation causes an alarm)
conectionMask int Masks used GPIO lines

alarmText string Text describing the alarm

coneAngle float Angle of the sensor cone [rad]

bearing float Bearing of the sensor [rad]

range float Range of the sensor [m]

Note. BST (2011)

Table C.8: Gateway Data Table

Column Data type Description Range
idGwdata int Primary key
deviceld int Ref. to the device that generated the data

timestamp  dateTime  Time stamp of the data record

temperature  float [deg C]

aanlogValue float reading from the analog input
accelX float Acceleration in X axis [m/s2]
accelY float Acceleration in Y axis [m/s2]
accelZ float Acceleration in Z axis [m/s2]
errorCode int Errors of the device

Note. BST (2011)

76



Table C.9: Peg Data Table

Column Datatype Description Range
idPegdata int Primary key

deviceld int Ref. to the device that generated the data
timestamp dateTime  Time stamp of the data record
temperature float [deg C]

batteryVoltage float V]

rechargingCurrent  float [A]

rechargingState  string ?

accelX float Acceleration in X axis [m/s2]

accelY float Acceleration in Y axis [m/s2]

accelZ float Acceleration in Z axis [m/s2]

errorCode int Errors of the device

state int State of the device

analogValue float Reading of the analog input

Note. BST (2011)

Table C.10: Tag Data Table

Column Data type Description Range
idTagdata int Primary key
deviceld int Ref. to the device that generated the data

timestamp  dateTime  Time stamp of the data record

heartrate float Heart rate [bpm]

accelX float Acceleration in X axis [m/s2]

accelY float Acceleration in Y axis [m/s2]

accelZ float Acceleration in Z axis [m/s2]

bodyAttitude int Attitude of the person wearing the tag
activityLevel int Activity level of the person wearing the tag
errorCode int Errors of the device

Note. BST (2011)

77



Table C.11: Tag Sensor Table

Column Data type Description Range
idDevice int Primary key

stateHeartrate  int State of the heart rate sensor (see sensorState)
stateFallen int State of the fallen sensor (see sensorState)

Note. BST (2011)

Table C.12: Device Table

Column Data type Description Range
idDevice int Primary key

stateSensorA int State of the external sensor A (see sensorState)
stateSensorB int State of the external sensor B (see sensorState)
stateVibration int State of the vibration sensor (see sensorState)
stateTemperature int State of the temperature sensor (see sensorState)

Note. BST (2011)

Table C.13: User Role Table

Column Datatype  Description Range

idUserRole int Primary key
name varchar(45) Name of role

Note. BST (2011)

Table C.14: Login Table

Column Datatype Description Range
login varchar(45) Primary key, login name
role int Reference to the userRole table

password char(32) MD5 hash of the password
lasthame  varchar(45) last name of the user
firstname varchar(45) first name of the user

(

sessionid varchar(45) sessionid of user connection

Note. BST (2011)

78



Fixed Value Tables

Table C.15: Device Type Table

idDeviceType name
1 GW

2 PEG
3 TAG

Note. BST (2011)

Table C.16: Sensor State Table

idSensorState state

1 On

2 Off

3 Alarm

4 Pending_On

5 Pending_Off

6 Pending_Clear

Note. BST (2011)

79



	Approval
	Partial Copyright Licence
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1. Introduction
	1.1. BeeSecured Project Background
	1.2. Client Profiles
	1.3. Motivation
	1.4. Objective
	1.5. Contribution & Project Scope
	1.6. Report Organization

	2. BeeSecured Project Architecture Overview 
	2.1. System Components
	2.1.1. Hardware Components
	2.1.2. Software Components
	2.1.3. Database

	2.2. System Architecture
	2.3. System Functionality
	2.4. Data Flow
	2.4.1. Handling Alarms


	3. Software Requirements and Constraints
	3.1. Uses Cases
	3.2. Constraints
	3.3. Project Schedule

	4. Design Criteria
	4.1. Application Platform
	4.1.1. Platform Research
	4.1.2. Firmware Research
	4.1.3. Database Research
	4.1.4. Map Technology Research
	4.1.5. Method of Deployment

	4.2. 4.2 Application Type
	4.2.1. Front-End (Client-Side) 
	4.2.2. Back-End (Server-Side)
	4.2.3. Communication Method
	4.2.4. Deployment Environment

	4.3. Database
	4.4. Database Connector – JDBC
	4.5. Tools

	5. Software Architecture
	5.1.1. User Case Work Flow Scenarios

	6. Implementation
	6.1. Implementation Architecture
	6.2. Design
	6.2.1. UML Diagrams
	6.2.2. Client Package
	6.2.2.1. Classes
	6.2.2.2. Interfaces

	6.2.3. Server package

	6.3. Database 
	6.3.1. Database Design
	6.3.2. Notifications

	6.4. EER Diagram
	6.4.1. Relationship explained
	6.4.2. Potential Performance Concerns

	6.5. Testing

	7. BeeSecured Web Interface
	8. Future Work
	8.1. Feature Implementation
	8.2. Testing
	8.3. Map Upgrades
	8.3.1. Google Maps v3
	8.3.2. GWT Google Map Utilities
	8.3.3. Mapstraction

	8.4. Bug Fixes and Code Refactor

	9. Conclusion
	References
	Appendices
	Appendix A. UML for Client Application
	Appendix B. UML for Server Application
	Appendix C. Database Tables
	Fixed Value Tables



