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Abstract

Multiview imaging technologies consist of multiple cameras which are usually highly related. In
some network settings, it is possible to reduce the operational quality of some cameras yet still
achieve high-quality image recovery. Employing low-resolution cameras can greatly decrease the
acquisition costs and complexities. The idea of Compressive Sensing (CS) is introduced to accom-
plish the role of low-quality cameras by operating at a diminished sampling rate. CS imposes a
prior distribution on the unknown variables, and allows sparse signal recovery from sub-Nyquist
measurements. In this thesis, we investigate the applications of Compressive Sensing via Belief
Propagation (CS-BP) theory for low-quality cameras.

In more detail, we take advantage of the side information from neighboring views, in improving
the performance of BP-based multiview image recovery. The main issue in the original CS-BP is
that all unknown variables have the same prior distribution, which is not true in many cases, espe-
cially in transformed data. In this thesis, we investigate the applications of multiview technology
along with methods on the generalization of the CS-BP.

To further improve the CS-BP, we explore the role of larger coefficient of the signal in assigning
the pdf sampling step-size. As large coefficient are dominant in step-size determination, the greater
the large components are, the less accurate the small components detection is. Thus, we propose
methods which deal with DC and other large coefficient to attenuate their influenc on the sampling
step-size. The proposed method greatly improves the accuracy of signal recovery, as the sampling
step-size is maintained at a reasonably small value.

In addition, we evaluate the number of large coefficient that are to be eliminated from BP iter-
ations, by introducing an adaptive technique which determines the optimum number of coefficient
according to the involving costs and complexities. Application of compressive sensing in multiview
technology is relatively a new idea and the experimental results show that the generalized CS-BP
can greatly outperform the original CS-BP technique.
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Chapter 1

Introduction

1.1 Introduction

With the advanced camera technologies and consumer demands for wider visual experiences, mul-
tiview images/videos, i.e., multiple pictures captured by several cameras around a target scene, has
drawn a lot of attention. This setup can be used in a variety of applications that may also be working
with single view images, yet improving the performance and user satisfaction. These applications
include: Free Viewpoint Television, 3DTV, virtual view synthesis, high performance imaging, ob-
ject tracking and surveillance, etc [38, 39]. In multiview image/video applications, variety of factors
are involved which requires consideration. Firstly, a system is to be designed, capable of taking and
storing huge numbers of multiview image/video data; which can be both costly and complicated. In
addition, some arrangements such as sufficien number of cameras and their suitable locations make
this process further challenging. In general, better quality and larger navigation ranges is available
by using higher quality cameras as well as large numbers of them, yet increasing the computational
costs and complexities. Therefore, there is a trade-off between costs/complications of cameras,
setup, accessories, and the system performance including image qualities and their spatial covered
ranges.

One of the important factors as mentioned above is the storage, acquisition and transfer of
the multiview data, which can be quite costly and inefficient video conferencing is one example.
Therefore, multiview image/video compression techniques (MIC/MVC) can be used in order to
improve these systems’ efficien y.

1



CHAPTER 1. INTRODUCTION 2

1.2 Multiview Image/Video Compression

Since all of the cameras capture the same scene, the captured images/videos have considerable re-
dundancy, using this redundancy at the encoding procedure is the thought behind almost all of the
MIC/MVC methods. Traditional image compression methods exploit this redundancy based on the
spatial distribution of pixels or the limitations of the human understanding structure, where multi-
view compression techniques can combine an additional dimension of redundancy because of the
overlap between the multiple views in the scene. A common way to exploit statistical dependencies
among multiple views is the disparity compensation method. In this approach, one view (some
blocks of it) is predicted from the other views by findin the best matching block in the neighboring
views; finall the error between the correct view and the prediction one is encoded. View synthesis
prediction (VSP) is another method, in which the geometrical relationship between different views
is used to produce a synthesized view for the target view. The synthesized view is then used as an
additional reference of prediction for encoding the target view. Among the VSP methods, some of
them use depth estimation, including information on cameras pattern [48], while some of them do
view interpolation-based prediction without use of depth information [47, 46].

1.2.1 Rectification-based View Interpolation for MVC

In this thesis, we are interested in the view synthesis prediction-based multiview video coding based
on rectification-base view interpolation (RVI) proposed in [46]. A robust method is used to adjust
the two reference views (left and right) which results in a reduction of their vertical mismatches.
The block diagram of this method is presented in Fig. 1.1.

In general, in most view synthesis methods, view interpolation is acquired based on the left
view and the right view, which can only be applied to half of the views. In order to cover all of the
views, in [46] RVI is modifie to rectification-base view extrapolation (RVE) method, which uses
two left or two right views. At last, the RVE method is applied to MVC to encode all views after
the firs two views. The procedure in RVE is almost similar to RVI; the extrapolation algorithm firs
performs projective rectificatio and disparity estimation to the two left views (instead of a right
and a left view). The difference is in the next step, as instead of interpolating the disparity to fin
the corresponding pixel locations in the middle view, in RVE the disparity is extrapolated and the
pixel locations in the right view is estimated after. The fina step of the process is still the same, and
it will apply the RVE to MVC, which will encode all views after encoding the firs two views.

In addition to the above, the acquisition cost of multiview dataset can further be reduced if only
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Figure 1.1: Block diagram of the RVI algorithm [46].

some of the views are sampled at high resolution, and other views are sampled at low quality. In
this thesis, we have investigated the application of the Compressive Sensing (CS) theory in this
hybrid multiview image acquisition scenario [12]. Compressive sensing which is closely related to
the problem of solving an under-determined system of linear equation under a sparseness constraint
is described next.

1.3 Compressive Sensing

In conventional applications, firs the � -dimensional data � is measured (encoded), then the en-
coded signal will be compressed (using wavelet, DCT, etc), and the compressed set of basis-function
coefficient are stored. However, based on the signal pattern (such as sparsity), at this stage a large
fraction of the transform coefficient may be useless and therefore thrown away, while still achiev-
ing accurate data reconstruction. This seems wasteful, since there are many applications for which
data collection is expensive or time-consuming (such as MRI). The fact that after compression, a
large fraction of data are possibly discarded, raised the following question: Why not use compressed
measurements directly, i.e., measure only the informative part of the data while reducing the mea-
surement costs and complexity of the encoder system at the same time? This question introduced a
new fiel named Compressive Sensing [12]. The idea is to develop methods by using lower number
of required samples i.e., perform compression exactly at the time of sampling, which results in an
efficien and less complex system. Although signal recovery from the condensed measurements
appears to be an ill-posed inverse problem because there are more unknowns than the observations,
imposing a prior knowledge of sparsity on the signal, will make this setting reasonable and solvable
even when having extrem underdetermined systems of equations.

The Shannon (Nyquist) sampling theorem states that to avoid losing information when sampling
a signal, the number of the samples must be at least two times greater than the signal bandwidth.
Compressive Sensing however, allows almost perfect recovery of sparse signals from far fewer
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Figure 1.2: Compressive Sensing encoding process [2].

samples than that required by the Nyquist rate, under some conditions. It is important to note that,
compressive sensing does not violate the Nyquist sampling theorem as CS reconstruction is based
on the prior knowledge of the sparsity of the signal, and therefore, it is not able to reconstruct non-
sparse signals. By CS, as described in Fig. 1.2 the � -length signal � can be reconstructed from the
� -length observation � (� � � ); where � � ��, and ���� is the projection (measurement)
matrix. If � itself is not sparse (a signal that most of its components are zero), a proper transform that
represents � in a sparse format, should be used in order to CS theory. More specificall , applying
the transform, will represent a general signal (in the spatial domain) into a sparse signal (in the
transform domain), which can then be applied to the CS algorithm. Consider that the general signal
is sparse in basis �, i.e., � � ��, (where � is a sparse vector), then a solution for � can be found if
� and � satisfy the incoherence condition, also known as Restricted Isometric Property (RIP) [8].

�� Æ� � ���� �����
�������

� � 	 Æ� (1.1)

where � � Æ� � � is the isometry constant.
RIP states the existence of robust algorithms to exactly reconstruct the sparse signals from their

compressed measurements. More specificall , it guarantees that none of the �-sparse inputs, i.e.,
signals with � � � large coefficients fall in the null space of the sampling matrix.

There is a general criteria on the number of required samples (the number of columns of the
measurement matrix) when sampling a sparse signal, which depends on the knowledge about the
locations of non-zero coefficient in the transform domain. If the location of non-zero elements is
known, then the number of samples in the space (time) domain is required to be at least equal to
the number of non-zero coefficient (Nyquist rate). If the location of non-zero elements is unknown
however, the number of needed samples is at least twice the number of non-zero coefficients For
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both cases, depending on the type of sparsity (random, lowpass or bandpass) and the type of sam-
pling (random, uniform or periodic nonuniform), we need to sample more than the minimum rate to
guarantee stability (a characteristic of sampling matrix obtained by RIP). Another way to guarantee
stability is to use combinations of samples rather than the direct sampling of the signal, which will
ease the possibility of designing new methods to capture and represent compressible signals at a
rate significantl below the Nyquist rate [25]. Considering that, a sparse signal can be reconstructed
from its compressed samples with a probability of almost one, if:

� �  � 
��
�

�
� (1.2)

where  is a positive constant [7].
The inequality in (1.2) can be further described as follows [5]:

� � ������
� 
��


(1.3)

where ����� is the maximum coherence between the rows of � and �.
Hence, it is clear that in order to decrease the number of required samples, one should search

for the matrix � that have low coherence with �.
In [12], it is shown that the Gaussian random matrix is largely incoherent with any f xed basis

�. More precisely, the inequality in (1.3) is closely related to RIP, as if � is a Gaussian random
matrix satisfying (1.3), ��� is also a Gaussian random matrix with the same number of rows, thus
satisfie RIP. Therefore random matrices (such as Gaussian, Binary, etc) can be a proper choice
for the measurement matrix � [33]; whereas, in many applications a more sophisticated sampling
matrix is desired, such as structured matrices [6] or sparse matrices, which can further improve
encoding and decoding [21].

Sparse coding, which accounts for the methods involved in findin the sparse representation of
general signals, is widely used in areas such as signal processing, statistics and machine learning.
Dictionary learning is a common approach accounts for designing the sparsifying according to the
original non-sparse signal [20]. Considering the signal � in �� , we can fin a sparse representation
of it over a dictionary � in ���� ; where � � � � columns referred to as atoms. Mallat was
the firs one who used the wavelet in linear decomposition of signals using the atoms of a learned
dictionary rather than a predefine one [23].

The CS reconstruction procedure is to fin the sparsest solution (with the smallest ��-norm)
from the observed measurements:



CHAPTER 1. INTRODUCTION 6

���
�
������ subject to � � ��� (1.4)

where �� � ��.
Since ��-norm optimization is NP-hard [14], various alternative methods have been proposed to

solve the problem in a tractable way, ��-norm optimization based method is an example [20], [10].
In general, depending on several factors, such as the sparsity pattern, the type of sampling, complex-
ity issue, and speed matter, different reconstruction algorithms can be used, which can be generally
categorized into three groups [25]:

� Geometric Methods: The old methods which use ��-normminimization techniques for re-
constructing a �-sparse signal from a set of � � ��
���� �� measurements [12] are
geometric. It is good to mention that replacing ��-norm with the faster implemented ��-
normwill not always produce reasonable answers, although there are iterative methods which
have faster performance compare to ��-norm.

Knowing the position and amplitude of samples as well as the location of sparsity in the
transform domain, applying iterative techniques between these two domains will result in
the original signal [13]. As mentioned before in the case of unknown sparsity positions, we
need more samples in order to evaluate the number of sparse coefficients the position and the
values of nonzero coefficients modifie iterative methods are used for this purpose, which are
greedy algorithms; Matching pursuit that recovers the �-sparse � -dimensional signal after
� steps [24] Basis pursuit which decompose signals into a linear expansion of waveforms
that are chosen from a redundant dictionary and reconstructs the signal using ��-norm[36] are
some examples.

� Combinatorial: This is another standard category in reconstructing signals from compressed
samples. According to this section, the measurement matrix� is generally formed by Binary
entries and is define using bipartite graphs; a famous encoding system using this approach,
is Low Density Parity Check (LDPC), which provides fast coding process. Message passing
technique using graphical model is then used for reconstructing the signal, Belief Propagation
(BP) decoder is commonly used for this purpose. BP basically identifie the column of� that
have maximum correlation with the measurement vector � [18].

� Information Theoretic Methods: This category contains more recent approaches in CS re-
construction. In this method, the signal � is assumed to be an instance of a vector random
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Figure 1.3: Description of a Bipartite graph with 4 variable nodes � and 3 factor nodes ��

variable, and the ��	 row of the measurement matrix � is constructed using the value of the
previous measurement �
��. The theory of Huffman coding is used to construct the binary
sampling matrix such that it minimizes the average number of required measurements [1].

Thus, as mentioned, there are several encoding and decoding algorithms proposed in the litera-
ture, among them is Belief Propagation decoder along with sparse LDPC-based CS encoder which
lead to a fast manipulation, is the area of our interest as well.

1.3.1 Belief Propagation

Belief Propagation is a message passing algorithm invented in 1982 to calculate the marginal distri-
butions in Bayesian networks and Markov random fields It can be used to fin marginal distribu-
tions or to obtain estimates such as MAP, MMSE, etc. BP can exactly fin the marginal distributions
if it is not loopy, i.e., its corresponding graph does not contain any loops (tree, chain, etc), otherwise,
it will provide estimates for the distributions. Belief Propagation technique is thus considered as a
proper choice for signal reconstruction, and can be used as a fast decoder in Bayesian frameworks
[3].

Belief Propagation operates on a factor graph named Bipartite graph, which is composed of two
disjoint types of nodes: variable and factor nodes. The edges in this graph only exist between nodes
of opposite type, i.e., there is no edge between a node and the nodes in its own group.

Belief Propagation can be basically described as a message passing algorithm. Messages are



CHAPTER 1. INTRODUCTION 8

Figure 1.4: A section of a factor graph, illustrating the evaluation of marginal distribution f(x) [4].

actually real functions corresponding to probability distributions on the variable nodes, which are
traveling among the nodes of different groups. According to Fig.1.3, there are basically two types
of messages:

� �������: the message sent from a variable node � to one of its neighbors in the bipar-
tite graph, a factor node ��. According to the “sum-product” algorithm [4], this message is
computed by taking the product of all the received messages on node � (except the message
coming from node ��), this procedure is called multiplication of beliefs at variable nodes:

�������
� �
�

�����������

�
��
���

��
��
�

�
� �

�
�����������

�������
� (1.5)

� �������: the reverse message is computed similarly, but the corresponding constraint of the
factor node �� should be considered and the result will be marginalized at the end, this is
called convolution at check nodes.

������� �
�
��

������� �
�
��

� � �
�
��

���� ��� � � � �� �
�


����������

�������
�

(1.6)
where ��� and ���� are sets of neighbors of � and ��, respectively. As it is shown marginal-
ization is taken over all the variable nodes connected to �� except �.
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Finally, as shown in Fig. 1.4 the marginal distribution ��� for each variable node is obtained
from the product of all the incoming messages directed towards that node,

��� �
�

������

��
��

�������

�
�

�
������

������� (1.7)

This thesis is mainly focused on the applications of Compressive Sensing especially the Belief
Propagation technique in multiview image systems. Being able to make some cameras to function
at lower quality, can extremely decline the acquisition, storage and transmission costs. This can be
achieved by applying compressive sensing framework to these views, i.e., we capture the data of
some views in a diminished sampling rate thus great amount of costs will be reduced, while other
views are still being acquired in high quality.

1.4 Main Contribution

In this thesis, we apply Compressive Sensing using a sparse encoding and a Belief Propagation
decoding scheme, in multiview image coding system. Employing CS in multiview applications
is quite new and there are not a lot contributions on this topic in the literature [22, 9]. Although
the idea of this compressive sensing framework was initially developed in [3] named (CS-BP), this
method assumed the original sparse signals which is not a proper assumption for general images. In
addition, according to CS-BP assumption, all unknown variables in the BP decoder have the same
prior distribution, which is not true in many cases, especially images. In this thesis we propose
a generalization algorithm which is capable of handling different prior distributions, general input
data. In addition, we make use of side information at the belief propagation decoder in multiview
scheme.

We propose an algorithm to improve CS-BP scheme, which deals with the largest coefficien
(DC) of � -dimensional signal differently by removing its contribution on DC effected measure-
ments, and updates the measurements after iteratively. At the last step, from the � � � recovered
coefficients the DC coefficien is calculated. Moreover, we further improve CS-BP scheme, by
dealing with larger signal coefficient one after another in an iterative manner. In this case by
diminishing the larger coefficient effects on the whole signal coefficient recovery, we can even
further improve the performance of the CS-BP systems.

In addition, we develop a decoding scheme, which can take advantage of the side information
(SI) of left and right views around a target view. By this scheme, only the left and right views need
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to be gathered in high quality and the target view exploits side information from them and can be
obtained using lower quality sampling schemes. Experimental results show that these modification
greatly improve the performance of the original CS-BP algorithm. Part of the algorithms and the
results presented in this thesis have been published in [45].

1.5 Thesis Outline

Chapter 2 describes some fundamental methods on Bayesian compressive sensing techniques, es-
pecially the CS-BP algorithm. Chapter 3 introduces the firs step of the proposed method, which is
application of CS-BP by utilizing side information in multiview image coding. In Chapter 4, two
methods are proposed as the generalization of the CS-BP, which deals with DC component of data
efficientl and significantl outperforms the recovery results. Chapter 5 presents two further tech-
niques and adaptive algorithm which deal with larger coefficient profoundly. Finally, in Chapter 6
conclusions and discussions on the future works are explained.



Chapter 2

Background

2.1 Introduction to Bayesian Compressive Sensing

The Bayesian approach to the statistical problems is a probabilistic technique that jointly describes
the unknown parameters as well as the observed data. Generally, the probability distribution on the
correctness of a “hypothesis” conditioned on the observed data is used to interpret a correct choice
amongst different choices. More specificall , the probability of a hypothesis is evaluated by definin
some prior probabilities, which eventually is updated to form a “posterior” probability in obtaining
the best choice. Bayesian model selection is a technique which selects the statistical models of an
observed data based on “Bayes” factors. In Bayesian modeling, all unknown coefficient are as-
signed a prior probability distribution conditioned on the observations. In a simple model selection
scenario for example, the best choice should be obtained out of two models based on the observed
data (�). The comparison between the two models �� and �� is define as follows:

Bayes factor �
� �����

� �����
�

	
� ������� �����������	
� ������� �����������

(2.1)

where �� and �� are model parameter vectors.
Compressive Sensing algorithms rely on the sparsity of the target signal �, whether in its own

or another basis (� � ��). In many applications the statistical characteristics of the signal � is
available in advance. In these cases, Bayesian inference can provide more precise estimation of �

and reduce number of CS measurements. Ji et al. [35] proposed a Bayesian compressive sensing
technique, where signal estimation is done using the Relevance Vector Machines (RVM). In RVM,
rather than imposing a Laplace prior on �, the sparse representation of �, a hierarchical prior is

11
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used, which has similar properties as the Laplace prior yet allows convenient conjugate-exponential
analysis, an important factor in Bayesian framework. Based on this method, in addition to recon-
structing the sparse signal as the estimation of the original signal, “error bars” are also provided;
hence, it provides us a measure of confidenc in the reconstructed signal. In addition, by using the
knowledge of the error bars one can determine when a sufficien number of compressive-sensing
measurements have been used. Babacan et al. [34] also proposed a hierarchical Bayesian approach,
which uses Laplace prior to model sparsity of the unknown data. Compared to most of the meth-
ods in the literature, the advantage of this method is that model parameters are not required to be
tuned to the data and they can be estimated along with the unknown signal coefficients The method
of sparse Bayesian learning [11] adopts a Bayesian framework, where �� are independent, and
zero-mean Gaussian distributions with unknown variance ��� are assigned to them. The unknown
variances are then given the Gamma conjugate prior, and expectation maximization (EM) will itera-
tively compute a MAP estimate of �. The primary focus in the literature can be seen on the detection
of the few significan entries of the sparse signal known as basic selection, in [29] however, Schniter
et al. have proposed a method which adopts a minimum mean-squared error (MMSE) estimation
framework and maximum likelihood approach by a weighted mixture of the most likely models.
Multiuser decoding techniques have also used Bayesian theory in signal estimation. As most of
the users are inactive in this framework, the setup is similar to the compressive sensing decoding
structure. In [17] for example, multiuser decoding is developed using sparse spreading sequences
and belief propagation decoder. Baron et al. [3] also make use of sparse encoding matrices belief
propagation decoding, which is our interest in this thesis.

2.2 Bayesian Compressive Sensing (BCS) Using Hierarchical Prior

In this technique, by the knowledge of �, the quantities to be estimated based on the CS mea-
surements are the coefficient of � and the noise variance ��� (in the case of noisy measurements
� � �� 	 �). As mentioned before, the advantage of using hierarchical priors than the Laplace
prior for example, is in that hierarchical prior is conjugate1 to the Gaussian likelihood, thus the cor-
responding Bayesian inference can be derived in closed form [35]. To better discuss the algorithm,
consider the graphical representation of the model as shown in Fig. 2.1. Whereas the accuracy of
this method is not as well as some other techniques, the main advantage of using RVM techniques

1In Bayesian theory, a prior probability distribution ���� is said to be conjugate with a likelihood function ������ if
the resulting posterior distribution ������ is in the same family as ���� [35]
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Figure 2.1: Graphical model of the Bayesian CS scenario [35]

is its efficien computation as described bellow.

2.2.1 Bayesian CS inversion via RVM

As described in Fig. 2.1, there are parameters �� � ����� , the inverse-variance of signal coeffi
cients prior and ��, the inverse of noise variance are known. A zero mean Gaussian distribution
is assigned as the prior for each signal coefficien ��. In addition, Gamma distribution is generally
used as the prior for �, since Gamma distribution is the conjugate prior for Gaussian distribution
(for the existing noise). Finally by marginalizing over all � coefficient of �, the overall prior of �
conditioned on � and  can simply be obtained. Consider the CS measurements � and the projection
matrix �, the posterior for � is then expressed as a multivariate Gaussian distribution with mean
� � ��



�� �� and covariance 



� ���

��	����, where � � diag��� ���� ���.
In this method, it can be seen that most of the �� tend to infinit which correspond to the small

coefficients therefore only a few numbers of �� for which the corresponding �� remains relatively
small, contribute for representation of � and the level of sparseness (size of �) is determined au-
tomatically. Also, it is shown that there is no need to set ��  �  and � on the Gamma hyperpriors,
thus uniform hyperpriors on � and �� have been used [35]. Since calculation via RVM is slow
for large dimension �, a fast RVM algorithm has been developed which achieves highly efficien
computations. This technique operates in a constructive manner, i.e., it eventually adds (or deletes)
candidate basis function to the model until all the “relevant” basis functions (for which the corre-
sponding weights are nonzero) have been included. Thus, the complexity of the algorithm is more
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related to � than � (which makes it more efficient)

2.2.2 Selecting Projections to Reduce Signal Uncertainty

Previous CS algorithms focused on estimating � (and hence �) using point estimation. These ap-
proaches do not provide a measure of uncertainty in �; therefore, adaptive design of � was not
possible. However, the BCS algorithm, specificall the fast RVM algorithm allows efficien com-
putation of � and associated error bars with the goal of reducing uncertainty, and determining the
enough number of measurements for reliable signal reconstruction. In other words, in the case that
the change in uncertainty is not significan it is possible that simply the noise is reconstructed and
adaptive sensing may be stopped. There are also some comparisons between BCS and other CS
methods (such as orthogonal matching pursuit (OMP)), which indicate that the adaptive CS may be
one of the unique advantages of BCS over other CS algorithms.

2.3 Bayesian Compressive Sensing using Laplace Priors

In this model [34], a hierarchical form of the Laplace prior is assigned to model the sparsity of the
unknown signal �, which is shown as a generalized case of RVM. Two algorithms resulting from
this model are presented; one global optimization algorithm and one constructive (greedy) algo-
rithm designed for fast reconstruction which is useful in practical settings. Unlike most existing
CS reconstruction methods, both algorithms are “fully-automated”, i.e., the unknown signal coef-
ficient and the model parameters are estimated separately from the observations and therefore no
user-intervention is needed. Additionally, these algorithms can provide estimates of the uncertainty
of the reconstructions.

2.3.1 Bayesian Modeling Using Laplace Priors

In order to deal with the problem that the Laplace distribution is not conjugate to the observation
model which is Gaussian (due to the existing noise), similar to [35], the solution is to model it
in a hierarchical way by utilizing Gamma distribution and definin some additional prior distribu-
tions (hyperpriors). The dependencies in the joint probability model !�� �� "� ����� are shown in
Fig. 2.2. Where " is the Laplace parameter, and # the hyperparameter to defin " (!"�#�). Simi-
lar to other Bayesian techniques, the goal here is to fin the posterior distribution !���� �� ��� "�,
which is multivariate Gaussian distribution 	 ��



� with mean and covariance define as before,
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Figure 2.2: Directed acyclic graph representing the Bayesian model [34]

i.e., � � ��


���� and 



� ���

��	����, where � � �$����� ���� ���. The idea here is
to iteratively estimate the distribution of �, given an estimate of �, �� and ". Analysis shows, how-
ever, that this method has some disadvantages such as number of required calculations, numerical
errors, etc. Hence, a practical algorithm has been presented, in which, to promote sparsity and to
decrease the computational requirements, only a single �� will be updated at each iteration of the
algorithm instead of updating the whole vector �. Moreover, it is described that by starting with an
empty model (� � �) and iteratively adding components to the model, the algorithm will become
more efficient Compared to the separate Gaussian priors employed on the entries of � in the RVM
framework, Laplace priors enforce the sparsity constraint more heavily by distributing the posterior
mass more on the axes so that signal coefficient close to zero are preferred. In addition, the Laplace
distribution promotes sparsity to the largest extent due to being log-concave, providing the useful
advantage of eliminating local minima while leading to unimodal posterior distributions as well.
Based on the results obtained from a particular image, although BCS and Laplace have nearly the
same error rate, Laplace is faster and the reconstructed image is sparser [34].

2.4 Sublinear Compressive Sensing Reconstruction via Belief Propa-

gation Decoding

This compressive sensing scheme is based on codes of graphs, which allows for joint design of
sensing matrices and low complexity reconstruction algorithms. The designed compressive sensing
matrix can be shown to perform asymptotically optimal when used in combination with OMP meth-
ods [18]. As mentioned before, in CS theory, �� optimization problem is NP-hard; therefore, other
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methods such as Linear Programming have been considered so far, which do not have fast speed
(the important factor in some applications even if more measurements are needed). The focus of
attention in this work is for low computational complexity and faster algorithms. In this regard, Be-
lief Propagation (BP) algorithm is used which operates on the columns of the measurement matrix
� which have the most correlation with the measurements �. In this approach, the major challenge
to reconstruct the sparse signal is to determine in which subspace, generated by not more than � (a
define value based on the Restricted Isometry Property (RIP) method) columns of the matrix �,
the measured signal lies in. Once the correct subspace is obtained, the non-zero signal coefficient
are calculated by applying the pseudo-inversion technique. The basic idea here is to fin the sup-
port (set of indices of the non-zero elements of �) of the unknown signal � sequentially; in each
iteration, the candidate column indices are used as current estimates of the support set of �, until
the indices in the correct support set are included in the estimated support set [18].

2.4.1 Problem Analysis Using LDPC codes

Normalized code words of Low Density Parity-Check (LDPC) are used as the columns of the mea-
surement matrix �. As mentioned before, this algorithm is combined with OMP to improve its
performance. Note that standard OMP algorithm guarantees exact recovery of the signal � as long
as � � ���� , where � is the mutual coherence of the matrix � and � is the parameter define by
RIP for the columns of � [41]. Hence, in order to satisfy this condition, for all signals, we need to
identify LDPC codes under the condition �

�� �
�� %

���������
� % �

�	
�
�� 
 $ �� &. The most important

part of the CS recovery based on LDPC sensing matrices is that the columns of maximum correla-
tion correspond to the most likely codewords, which can then be efficientl determined by applying
iterative methods such as BP. It is worth noting that the suitable BP decoders in this framework must
be able to handle high interference noise (in identifying a column '�, the remaining columns act as
interference) and determine sets of most likely codewords. For ��� (binary) �, BP decoder has the
purpose to identify the column of � that maximizes the correlation with the measurement vector
�. By adjusting different entries of �, different BP decoder outputs may be produced; therefore, a
list of potential columns will be basically obtained. Therefore, the idea is that in the case that the
output list has more than � codewords, the algorithm will output only � codewords from the list
that have largest correlations with �. Otherwise, if the list has less than � entries, the whole list
can be considered [18]. The algorithm summary of BP and BP-OMP is described in Table 2.1.
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Table 2.1: BP algorithm in (a) and in combination with OMP in (b) [18]
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2.5 Bayesian Compressive Sensing via Belief Propagation (CS-BP)

In this Bayesian scheme, a sparse encoder matrix� and Belief Propagation (BP) decoder is utilized
with the aim of accelerating both the encoding and decoding procedures. The Bayesian inference
is approximately accomplished using BP decoder which perform the encoding on graphical mod-
els. Using sparse encoding matrices can further increase the speed of computational analysis as
the size of the graphical model, i.e., the number of involved “edges” will decrease. A kind of a
Low Density Parity Check (LDPC) code is used for the encoding matrix �, which is sparse and
therefore results in fast computations. This matrix can be represented by a bipartite graph, where
BP decoder operates on, using message passing technique. Due to sparsity, the number of loops in
the graph decreases thus enhancing the convergence of the message passing technique. In order to
decode a �-sparse � -dimensional signal, the CS-BP requires � � �� 
����� measurements
and �� 
������ computations. It is worth noting that CS-BP does not necessarily ensure conver-
gence, although the experimental results are satisfactory [3]. We will describe the stages of CS-BP
process in more detail in the following.

2.5.1 Signal Prior Distribution Model

In this method, the signal to be recovered is �-sparse � -dimensional signal � which takes two-
state mixture Gaussian model [26] as the prior distribution. Consider a random vector � �

����� � � � ����� in �� , and � � ����� � � � � ���� as an outcome of it. Next, the mixture Gaus-
sian prior distribution will be assumed for each of ��, as well as a state variable ($�. According to
the signal model which consists of � large coefficient and � �� small ones, large and small co-
efficient are classifie by assigning two different values � and � to the state variable, respectively.
Therefore, the state random vector � � �(��� � � � � (���, where ($�’s are iid with Bernoulli
distribution (�)($� � �� � � and �)($� � �� � �, where � � ��� is the sparsity rate). In
addition, smaller entries are mostly located around zero, therefore smaller variance will be assigned
for their Gaussian prior, whereas, larger for coefficient larger variance is a proper choice. Next, as
shown in Fig. 2.3, the prior distribution on all of the signal coefficient will be define similarly as
follows:
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Figure 2.3: Mixture Gaussian model for signal coefficient [3].
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2.5.2 Low Density Parity Check Codes

As mentioned before, in order to increase the speed of both the encoding and decoding, a sparse
LDPC-like matrix called CS-LDPC is assigned. LDPC codes are specifie by matrices that contain
mostly ��* and only a few ��*. Low Density Parity Check codes are linear error correcting codes,
which perform by transmitting messages over noisy channels [16]. The main advantage of these
codes is that they perform very closely to the capacity of a lot of different channels in a higher
speed. LDPC codes can be represented by matrices or graphical models.

� Matrix representation

LDPC matrix is sparse, i.e., most of its coefficient are zero. To defin this type of matrix,
firs the matrix should be a parity check matrix, i.e., it must consists of only � and � entries.
Second, the matrix should be low density, i.e., the number of ��* must be a lot fewer than the
matrix dimension. In more detail, for a �� �� matrix, we defin the number of ��* in each
row and column by +� and +�, respectively. If +� � � and +� � �, then this matrix is
called low-density. The following matrix is a parity-check �� �� matrix, but as it is obvious
it is not called a low-density matrix. In general, parity check matrix should be relatively large
in order to be eligible to classifie as low-density.
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Figure 2.4: Tanner graph corresponding to the equation (2.3)
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�
������ (2.3)

� Graphical representation

Tanner in [40] introduced an efficien graphical representation of LDPC codes, known as Tan-

ner graphs. Tanner graphs are bipartite graphs which especially is used to represent analysis
related to error correcting codes. More specificall , in coding theory, Tanner graphs are used
to construct long error-correcting codes from smaller ones. The two types of nodes in this
bipartite graph are called variable nodes (,-nodes) and check nodes (-nodes). For instance,
in Fig. 2.4 the tanner graph for the matrix described in 2.3 is shown. This graph consists of
� check nodes (the number of parity bits) and � variable nodes (the number of bits in a code-
word). Check node � is connected to variable node ,� if the $&’th entry of the corresponding
matrix is �.

An LDPC code is called regular if +� and +� � +����� are constant for every column and
row, respectively. The example matrix in the equation (2.3) is regular with +� � � and +� � �. It
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Figure 2.5: Factor graph of the CS-BP encoder [3].

is also possible to observe the regularity of the code from the graphical model. In a regular LDPC
code, there is the same number of incoming edges to every ,-node and also to every the -node. If
the numbers of �s in each row or column are not constant in an LDPC code, the code is called an
irregular LDPC code.

2.5.3 Sparse Encoding

The sparse encoding matrix used in this method is CS-LDPC matrix, which is slightly different from
the LDPC matrix, as CS-LDPC consists of �� entries as well as �’s and �’s. Baron et al. in [3]
states that adding negative elements to the sensing matrix will result in performance improvement.
As the entries of � are only ��� � and �, basic additions and subtractions are needed to produce
the measurements. In addition, constant row, column weight constraints (	, �) on � makes it
a regular LDPC matrix. The number of measurements is calculated as sample rate times �, i.e.,
� � �����	�. Significan assumption in this method is sparsity of the original signal, i.e., the
sparsifying basis � � � , which is not an applicable assumption. The factor graph describing the
CS encoder is shown in Fig. 2.5.

2.5.4 CS-BP Decoding

Decoding procedure can be treated as a Bayesian inference problem using Belief Propagation. The
goal is to recover � in � � ��, knowing � and �, where � has a mixture Gaussian prior model.
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Next, we need to calculate the “beliefs” or “messages” that are to pass the graphical model. The
idea is to sample the pdf of each coefficien (variable node) and then send the samples as a � -
dimensional message vector. Based on the Belief Propagation technique described in Chap. 1, the
marginal distribution for a given variable node �� is calculated (1.7). Using the marginal distribution
in order to solve the ill-posed problem � � ��, the idea in [3] is to choose the solutions that match
the prior signal best. More specificall , signal is estimated using Minimum Mean Square Error
(MMSE) and Miniumum a Posteriori (MAP) estimates:

	����� � arg min
��

-���� ������ s.t. � � ���

	���� � arg max
��

�� � ��� s.t. � � ��� (2.4)

where the expectation is taken over the prior distribution of �.
It is worth noting that loops in the graph may violate the convergence to precise distributions

or even cause BP algorithm to diverge. Although using sparse � can reduce the number of loops
and help in developing less complex message passing methods, some stabilizing techniques are
further required. In [3], the message damped belief propagation (MDBP) [31] is utilized, where
old and new estimates of messages are weighted averaged to produce new messages. Using MDBP
will ensure the convergence, which is not feasible without it. The summarized CS-BP algorithm is
described in Table 2.2.

2.6 Summary

According to Bayesian Compressive Sensing viewpoint, having a prior knowledge of sparsity of the
signal in some bases �, one can reconstruct the signal from compressed measurements, with the
objective to provide posterior distribution for the recovered signal as well. In this chapter, we have
investigated wide variety of compressive sensing Bayesian inference problems, especially Bayesian
compressive sensing using Belief Propagation which is essentially in connection with the area of
this thesis.
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Table 2.2: CS-BP Decoding algorithm [3].

� Step 1: Initialization.

1. Initialize the iteration counter � � �.

2. Initialize messages from variable to check nodes
with the signal prior.

� Step 2: Convolution.

1. For each measurement, compute the convolution
in (1.6) considering all neighboring variable nodes.
Convolve further with a noise prior in the presence
of noise.

2. Apply damping methods such as MDBP [32].

� Step 3: Multiplication.

1. For each coefficient compute the multiplication
in (1.5) considering all neighboring check nodes.

2. Apply damping methods as needed.

3. If the iteration counter has yet to reach its maximal
value, go to step 2.

� Step 4: Output.

1. For each coefficient compute MMSE or MAP esti-
mates based on the marginal distribution ����.



Chapter 3

Proposed SI-Assisted CS-Based

Multiview Imaging

3.1 Introduction

In the following chapters, we are going to analyze the connection between Bayesian Compres-
sive Sensing approach and Multiview Image coding scenario. Multiview imaging technology is an
emerging fiel and is progressing by development of cost-reducing techniques in storage and acqui-
sition. Compressive sensing, a framework which allows reliable sparse signal recovery using few
samples can accomplish this goal, and may bring up highly efficien methods in multiview imaging
field We have specificall investigated the application of the Bayesian compressive sensing via
belief propagation (CS-BP) theory to Multiview image framework. The reason is that using CS-BP
algorithm provides us with a proper environment to add prior information, by facilitating the use
of side information from neighboring views. As mentioned before, according to this Bayesian in-
ference technique, a prior distribution is define for the signal coefficients which imposes sparsity
on the signal. As discussed earlier, the original CS-BP algorithm [3] assumes that all unknown
variables have the same prior distribution, i.e., zero mean Mixture Gaussian. This assumption is not
true in many cases, especially images as the transform coefficient in images have different means
and variances; therefore, some specialized adaptations should be taken into account. In this chapter,
we utilize the information obtained of view interpolation on multiview images, in providing better
prior distribution for signal coefficients The side information-assisted CS decoding can converge
much faster and give better reconstruction performance. In addition, the CS-BP technique only

24
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Figure 3.1: Block diagram of the proposed algorithm.

considers original sparse signals, which is not the case in most applications; instead, we generalize
the algorithm for non-sparse signals by adding the sparsifying bases at the encoder side. We have
therefore, introduced a block-based scheme which is able to take in any general non-sparse signal.
The presented experimental results will discuss the effect of considering these assumptions and will
depict how much improvement CS-MIC has compared to the original CS-BP method.

3.2 Side Information Incorporation in Multiview Image Recovery

In multiview imaging scheme, several views from a scene are captured by the surrounding cameras.
The storage, acquisition and transmission cost of high quality images is a critical issue when dealing
with applications such as surveillance. As the number of views increases, these costs increase
considerably as well. There are some ways mentioned in the literature in order to reduce the cost,
“virtual image” is an example. The virtual images can be obtained by utilizing the real views
taken from other directions as well as disparity information. In this thesis the following scenario is
considered: if some views are coded using the existing high-quality methods, and others are coded
via compressive sensing encoder, how to achieve the best CS performance by taking advantage of
the side information? In this regard, the assumption of the proposed setup is that CS camera would
have lower cost and complexity compared to the conventional cameras. For simplicity we focus
on the case with � views, where the left and the right views are coded using existing methods such
as H.264 multiview video coding, whereas the middle view 
 is CS encoded. The general block
diagram of this system is shown in Fig. 3.1.
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3.2.1 Block-Based CS Encoder

At the CS-BP encoder, we use the same sparse CS-LDPC matrix as in [3]. However, since nat-
ural images are not sparse, we use the 2D discrete cosine transform (DCT) to generate a sparse
representation of the image.

DCT is the approximation of the KLT (��)./�0� � 	��0,0 1)��*��)�) of 2��� signal
when its correlation coefficien (3) is close to �. KLT is used to express a signal as a linear com-
bination of orthogonal functions; DCT represents a sequence of finitel many signal coefficient in
terms of a sum of cosine functions at different frequencies, and it can be considered as a sparsifying
basis for images. 1D DCT is calculated as bellow:

��� �
����
���

�� ����
4

�
�	

�

�
��� � � �� � � � � � � � (3.1)

The equation above can be treated as a simple matrix multiplication as well � � ��� , where
� and � are the 1D DCT and the transformed data, respectively. For large images, block-based
DCT can be used to reduce the computational time and complexity. Typical block sizes used in the
CS literature include �� � �� and �� � ��. More information regarding DCT map is presented in
Chapter 4.

Let � be a � � � block of the input image, and � represents the � � � 1D DCT. The 2D
DCT on the � is the result of a 1D Row DCT followed by a 1D Column DCT. The transformed
block is then given by,

 � ���� �� � ���� � (3.2)

In addition, in order to apply the CS theory, we also need to convert 2D image data into 1D.
This can be achieved by concatenating all columns of a 2D block into one vector. In this case, the
whole CS-MIC scheme can then be established in a block-based format. Let � and � be the 1D
stacked vector of � and , respectively; the equation above can be written as follows:

� � ����� ���� (3.3)

where, ��� is the Kronecker product of �.
After obtaining the sparse representation of each block of the input data, we apply it to the

LDPC encoding system. The corresponding CS measurements are then,
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� � �� � ����� (3.4)

3.2.2 Side Information Assistance in BP Decoder

One useful property of the CS-BP algorithm is that it can easily utilize prior information to help
the decoding. As discussed in Section 2.5, in CS-BP, a simple two-state mixture Gaussian model
is used as the prior knowledge, which is based on the sparsity of the signal. In more detail, signal
coefficient are assigned prior distributions of zero-mean mixture Gaussian, having two alternate
variances (�� or ��). As mentioned before, state variable � is Bernoulli with probability � and
� � �, for large and small coefficients respectively. Therefore, the CS-BP prior model for each
coefficien is calculated as follows:

���� � �	 �� ���� 	 �� ��	 �� ����� (3.5)

As discussed earlier, this simple prior model is not suitable for many applications, such as
image/video coding, where different coefficient usually have different pdfs. Some coefficient
might have non-zero mean values, as well. In particular, if some side information is available, such
as the interpolated view as in [46], we properly make use of the side information in definin prior
distributions. The proposed prior pdf is such that it is centered around that side information, instead
of �. Hence, we defin the following prior distribution for signal coefficients

���� � 	 	�$�� ��� � (3.6)

where 	� is the side information, ��� is the variance of each unknown variable, which can be obtained
from, e.g., some training data. Specificall , we utilize the statistics of side information in definin
the variance, as shown in Table 3.1.

Table 3.1: Obtaining variance for prior distribution

� Adjust threshold value �� for SI coefficient

� Find small SI coefficient (SI(i) � ��� ”)

� Find standard deviation of them �� ��

� Skip DC

� Do similarly for other large components �� ��
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In the following theorem we will determine the number of required measurements of the pro-
posed algorithm and compare it with that of the original CS-BP. This theorem is analyzed based on
the directions of the firs theorem in [3], and the proof appears in the Appendix A.

Theorem 1 Consider � as a Gaussian signal (	 	�� ���), with sparsity rate � � ��� , and �
as a CS-LDPC matrix with 	 �

����
�
�	�������
��

, where 5� 6 7 �. In order to decode � such that
�� ��� % ��� with probability �� ���� , we need,

� � �

�
� 	 5���� 	 6�

��
� 	��

�

��
�� 
���

�
(3.7)

number of measurements.

3.3 Experimental Results

For a fair comparison, we generate the 1D “sparse” signal with sparsity rate � � ��� as [3],
and compare the result of the CS-MIC and CS-BP recovered signals with original signal � in Fig.
3.2. The model of the signal is the mixture of two randomly produced signal vectors, where �

of the components have variance �� and others have variance �. � � ��� samples of pdf are set
as messages in the BP decoder; this choice of � can provide fast FFT computation [3]. In this
experiment, we use 	 � �� and vary the sampling rate ��� from ��� to ��� for � � ���� number
of coefficients The side information in CS-MIC is generated by addition of a Gaussian noise. In
order to check how similar are the generated SI and the signal �, we calculate the relative error
between them as the difference between the signal power and the noise power (����� ���������),
which is ������� in this experiment. As the results show, adding the side information in the
proposed method has great effect on the accuracy of the reconstructed signal, especially for larger
coefficients

The Mean Squared Error as a function of the number of measurements for � different row
weights 	 is presented in Fig. 3.3. The test signal is generated as before, with the same number
of pdf samples as messages. As shown in the figure for both the CS-BP and CS-MIC, smaller row
weights may cause loss of some of the large signal components, thus resulting in higher MSE. As we
increase 	, for both CS-BP and CS-MIC, fewer measurements are required to reconstruct the signal
under the same recovery error. The MSE results for CS-MIC are obtained under the generation of
SI with relative error ������� . Results demonstrate up to ��� improvement over CS-BP, which is
more sensed for lower sample rates.
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Figure 3.2: Comparison of the CS-BP method and the proposed one, at two different sampling rates:
(a) 0.2 and (b) 0.7. � � ����� � � ���� �� � ��� �� � �, and �� � �.
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Figure 3.3: MSE as a function of the number of measurements � , for different row weights 	.
(� � ����� � � ���� �� � ��� �� � � and noiseless measurements.)

In another experiment we apply the CS-BP, which is “slightly” modifie for non-sparse signals,
and the proposed CS-MIC to the image sequences Rena and Akko. To compare the performance of
the proposed method with the original CS-BP we use PSNR (Peak Signal to Noise Ratio).

PSNR is a term that basically compares the image qualities, and is usually used in image com-
pression techniques. In more detail, PSNR determines the ratio between the maximum possible
power of the data and the power of the compression noise and is define in logarithmic scale as
bellow:

���� � �� 
����

�
Max��

MSE(e)

�
(3.8)

where, 0 is the error between the original image and the noisy one, and Max� is the maximum possi-
ble pixel value of the obtained image, which is equal to ��� in the case of �-bit pixel representations
per sample. Therefore, in this case which is the case of our experiments as well, PSNR is simplifie
to �� 
����

�
�����MSE(e)

�
.

The PSNR comparison of the proposed method and the CS-BP for 	 � �� is described in Fig.
3.4.

We test the impact of the SI quality on the performance of the algorithm firstl with the signal
model produced as the mixture of two Gaussian distributions as before. In a similar experiment we
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generate a different signal model, which can resemble the data in the next chapters of this thesis.
This model stimulates the DCT transformed signal by generating the signal as the mixture of many
Gaussian signals with different variances. Specificall , large coefficient are set to have decreasing
variances and for simplicity, small coefficient have a f xed variance ��� � �, for simplicity. This
signal model is similar to the DCT transformed signal, which is the sparsifying basis used for
non-sparse signals in this thesis. The impact of SI quality is depicted in Fig. 3.5, representing an
increasing sequence of � SI SNR values by decreasing the variances.

As mentioned earlier, using the prior information results in a faster convergence, and slower
run time. For instance, for �� � �� blocks of the ��� � ��� Rena sequence, the average number
of sufficien iterations and the CPU time usage for the original CS-BP and the proposed one, are
[�� ����� sec] and [�� ����� sec], respectively.

3.4 Summary

In this chapter, we introduced an algorithm on generalization of the compressive sensing belief
propagation method for multiview image coding scheme. In multiview image coding, compressive
sensing techniques can efficientl improve the time and storage requirements. In addition, belief
propagation decoder as well as sparse LDPC-based CS encoder will greatly increase the speed of
the analysis. However, the original CS-BP method considers similar prior distributions for all the
signal coefficients which is not proper for multiview applications. The proposed method in this
chapter improves the performance of CS-BP for multiview case, by enabling CS-BP to take side
information. The generalized CS-BP firstl make it feasible for the decoder to fully utilize side
information and the method can efficientl handle variables with different distributions, as a result.
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Figure 3.4: PSNR comparison of CS-MIC and CS-BP for (a) Rena (b) Akko
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Figure 3.5: MSE as a function of the number of measurements � on the signal produced as: mixture
of (a) two Gaussians and (b) many Gaussians. (� � ����� � � ���� �� � ��� �� � � and noiseless
measurements.)



Chapter 4

DC-Based Rectified CS-MIC

4.1 Introduction

In the CS-MIC, converging performance of loopy belief propagation decoder, is a significan issue,
which can be maintained using damping methods or by adjusting the “step-size” of the pdf samples.
In image coding, after the transform, different coefficient have dramatically different amplitudes
and variances; however, having fi ed step-size and number of samples, imposed an over-bound
region for the smaller coefficients This causes the fi ed number of samples to be taken over the
large sampling region, which will result in an inaccurate recovery of these smaller coefficients
Besides, if smaller sampling bound is used for all the coefficients large amount of data about
the larger coefficient will be lost. Therefore, a proper method should be used which can gain
perfect recovery for both the smaller and larger coefficients In this chapter, we have proposed an
algorithm which will overcome this difficult by moderating the effect of the largest coefficien on
the recovery of the smaller coefficients thus result in a greatly improved the performance. In more
detail, generalizing the CS-BP method by implementing the proposed DC disjoint technique can
greatly outperform the original CS-BP. Numerical results demonstrate that the proposed generalized
algorithms on transformed images can achieve up to �� dB of improvement compared to the original
CS-BP method which is quite promising.

4.2 Message Passing in BP Decoder

As discussed in Section 2.5, messages in message passing scheme, are actually samples of pdfs.
Using samples of pdfs, makes the algorithm fl xible to different prior distributions. For instance,

34
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the algorithm can easily support the mixture Gaussian prior, and the message passing process will
follow efficientl . However, there are some issues in using this method, such as high memory stor-
age requirements and quantization error. To produce samples that result in more precise recovery,
pdfs should be sampled with a relatively small step-size. In Section 2.5, the step-size is chosen to
be less than ��, the stadard deviation of the narrow mixture Gaussian component.

As discussed earlier messages in this method are � dimensional vectors of pdf samples and as
a result point-wise computations occur in message passing technique. In CS-BP, the fast Fourier
transform (FFT) is used for computing the convolutions at constraint nodes. Since a high percentage
of CPU time is spent on FFT computations, the CS-BP code is accelerated using an odd message
length that factors well (an artifact of the implementation) [3]; therefore, the choice of � � ���

samples is used in the experiments.
Maximal sample values of the Gaussian pdfs will determine the bound on which the data is sam-

pled. Based on the choice of samples, the produced messages may be a result of the measurements
that consist of several large coefficients For example, in the simulations presented in previous
chapter, for 	 � �� and � � ���, an average of 	 � � � � larger coefficient occupied a message,
so the choice of � ��� for the bound may seem reasonable at first However, it is possible that some
messages contain more than � larger coefficients Consequently, some messages have amplitudes
that surpass � � ��, so limiting the absolute magnitude of messages to � � �� causes the loss of data
and results in lower performance. Therefore in [3], the range (������	����) is used which com-
pared to smaller bounds offers better performance. In the analysis based on the choices of �� � ��

and �� � �, and the assumption of step-size equal to ��, the approximate �� � �� � ��� number
of samples is an acceptable choice. Although, as mentioned earlier for better FFT computation the
choice of ��� is used.

According to the Table 2.2, in Chapter 1, messages are firs initialized by signal priors, then for
each measurement coefficient �� � � � �� , the convolution of beliefs is computed which is followed
by the multiplication at the variable nodes for �� � � � � � signal coefficients in the reverse direction.
In a simple example we will study the impact of produced messages in signal recovery. For the factor
graph shown in Fig. 4.1, with the assumption of only one iteration, we can derive the following
equations which directly determine the reconstructed signal using the statistical characterizations of
the marginal distributions. In this example � variable nodes are initialized by the prior distributions,
and after a �-stage computation, the marginal distribution for the coefficient are derived.

Note that these � coefficient have the same mixture Gaussian prior distributions; therefore the
factor �
��� ���, is define as �

� 	 �
� ���� 	
�
�� �

�

� 	 �
� ����, where � � ��� �� is the



CHAPTER 4. DC-BASED RECTIFIED CS-MIC 36

x1

x
2

x
3

f
1

f
2

1

2

1

1

1

2

2

2

Figure 4.1: A factor graph which describes BP decoder, simply consisting of � measurements and
� signal coefficient to be reconstructed.

Figure 4.2: �-point DCT transform on an �x� test image

index of measurements.

4.3 Reduction of the PDF sampling step-size

As mentioned before, an important issue of the original CS-BP algorithm is that all pdfs are sampled
with the same step-size, as each unknown variable is assumed to have the same (mixture Gaussian)
pdf. However, in image coding applications, after the DCT, different coefficient will have different
amplitudes and variances. As a case in point, 2D DCT is the sparsifying basis which is widely used
for images. Based on this transform, most of the signal energy is in the firs transformed coefficients
especially DC. The effect of 2D DCT on an �x� test image is shown in Fig. 4.2.

As it is shown, there exists a large coefficien (DC) in the transformed signal due to DCT.
This large coefficien as well as other relatively large coefficient require larger sampling region
for the prior to be best fi in. Larger sampling bound and a f xed number of samples will cause
the sampling step-size to increase which will result in more quantization error. As studied in Table
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Table 4.1: BP decoding algorithm for the graph presented in Fig. 4.1.

� Stage 1: Initialization.
�� �

�
�
� ��� ��

�� �
�
�� �

�

�
� ��� ��

��

���������� � ��

���������� � ��

���������� � ��

���������� � ��

� Step 2: Convolution.

���������� �
�

�����

������ �������������

���������� �
�

�����

������ �������������

���������� �
�

�����

������ �������������

���������� �
�

�����

������ �������������

� Step 3: Marginalization.

����� � ����������

����� � ��������������������

����� � ����������

4.1, the accuracy of the pdf samples have great influenc on the signal recovery. If the same pdf
sampling step-size is used for all coefficients the step-size has to be very large, in order to cover
the range of the large coefficient (specificall DC). This will introduce more quantization errors
and will limit the resolution in the small coefficient recovery as a result. On the other hand, if
small step-size is used instead, a lot portion of the larger coefficient data will be lost. Therefore,
in order to get good reconstruction, the same step-size for all coefficient does not seem to be a
reasonable assumption and a method should be introduced which can effectively choose the step-
size among different coefficients In the following we will propose two methods on how to overcome
the sampling step-size issue.
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4.3.1 Direct DC Encoding

Generally, to decrease the quantization error, the sampling step-size should be reduced, and as
mentioned earlier, step-size is determined by the largest signal coefficient thus we need to somehow
remove the DC (and possibly other larger coefficients from the belief propagation iterations so that
other coefficient will not be sacrifice because of DC. The easiest way to remove the DC from the
belief propagation is to transmit the DC coefficien directly in the CS-MIC encoder. This situation
can be viewed as an irregular CS-LDPC for the encoder, where one of the measurement nodes
is only connected to the DC. Since the decoder will not estimate the DC, it can use smaller pdf
sampling step-size to estimate other coefficients therefore leading to a better reconstruction quality.
The block diagram of this scheme in the CS-MIC system can be simply viewed as Fig. 4.3.

As compared to original CS-BP, this approach of CS-MIC to DC component can greatly improve
the performance of the generalized CS-BP, and make it suitable for different kinds of transforma-
tions. Basically the original CS-BP can be seen as a non-applicable approach for transformed data,
and that’s why its performance is very poor. Although our proposed approach on DC removing
technique greatly outperforms original CS-BP, in most applications separating DC coefficien from
the whole data is not desired. Therefore, a better approach which is able to reduce the sampling
step-size without detached DC analysis should be introduced.

LDPC 
Encoder

BP
Decoder

Noisy
Channel

Signal Coefficients 
x

DC

Measurements
Y

Reconstructed 

Signal

x

Φ

Figure 4.3: Block diagram of the direct DC encoding technique

4.3.2 Iterative DC Updating

In this section, we propose a method on dealing with DC coefficient which is more applicable and
suitable if direct transmitting of DC is not desired. In our set-up we firs estimate the DC using the
DC of the side information (interpolated data), then we remove the DC node and its contribution
from the bipartite graph of the encoder. In more detail, as what is available at the decoder is only
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the compressed sensed version of the data, with the assumption of knowledge about sensing matrix,
we omit the DC effect from the measurement vectors, using the DC estimate. This is done by the
assumption that DC of the target block equals to the DC of the SI. In addition, the factor graph
edges that are connected to DC will be omitted thus BP iterations occur on updated � matrix, as
described in the Fig. 4.4.

DC

Signal Coefficients 
Measurements

(n-1)(n)

DC Update

New LDPC

Figure 4.4: Block diagram of the DC updating technique

As shown in the figure in the proposed DC updating technique, the DC connected edges are
removed from the BP iterations. In addition, the contribution of the estimated DC will be also
subtracted from the check nodes that are connected to the DC. The measurements update is thus
applied as follows:

��� � �� ����
������ � (4.1)

where �� is one of the measurements that are affected by the DC, ��� (1 or -1) is the $� ��-th entry
of the CS-LDPC matrix which connects the DC to the measurement ��, ������ is the DC of the side
information obtained from view interpolation, and ��� is the updated measurement after removing
the DC contribution.

After taking off the DC and the corresponding edges from the factor graph, the belief propaga-
tion can be applied on the remaining nodes and connections of the graph. After sufficien iterations,
the estimations of the other ��� variable nodes can be calculated, which can then be used to refin
the DC as follows:

���� � ����� �
��
���

���
������ $ � �� � � � � 1� (4.2)

where ���� is the $-th refinemen of the DC, ��� is the reconstructed &-th coefficien and��� is the $&-th
entry of the CS-LDPC matrix which connects the &-th signal coefficien to the $-th measurement.
The average of the 1 refinement of the DC is then used as the fina refinement
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Table 4.2: Generalized CS-BP decoding Algorithm.

� Initialization:

1. Remove the edges affected by DC from the LDPC fac-
tor graph.

2. Initialize the iteration counter � � �.

3. Initialize the DC value with the DC of the side infor-
mation.

4. Remove the DC contribution from the measurements.
	�� � 	� ����

��	
�

� BP Decoder:

1. Apply the updated measurements and new factor
graph to the BP decoder.

� DC update:

1. Estimate the DC from each connected check node.
��� � ����	� �

��

�������
����

2. Average the estimates above to refin the DC.
�
� � �



�

���
���

3. If the iteration counter has yet to reach its maximal
value, go to step II. (i = i+1)

��8 �
�

1

��
���

���� (4.3)

The updated DC is closer to the DC of the original signal, compared to the DC of the side infor-
mation, thus it is better to be used for DC extraction. The generalized CS-BP decoding algorithm is
shown in Table 4.2.

After omitting DC, the pixel values of the � � � remaining coefficient are smaller, therefore,
the pdf sampling step-size can be reduced compared to the existence of all � samples; therefore,
better reconstruction will be accomplished. The accuracy of the estimated DC during � consecutive
iterations for sequence Rena is listed in Table 4.3. As it is clear in the results, among the � tested
blocks, the DC of the blocks �� � and the DC of the blocks �� � are updated the best with � and �

iterations, respectively. If an adaptive technique can be used to determine the number of iterations
that make the prediction with the less error, then the method would be more efficien in the case of
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costs and reconstruction quality. This adaptive technique will be discussed in Chapter 5.

Table 4.3: DC refreshment for 4 random blocks

DC value Block#1 Block#2 Block#3 Block#4
Side information 3.8894k 3.9505k 3.5050k 3.6419k
��� iteration 3.7695k 3.8824k 3.4643k 3.5549k
��� iteration 3.7012k 3.8663k 3.4359k 3.5173k
��� iteration 3.6630k 3.8690k 3.4077k 3.4966k
Original DC 3.6556k 3.8650k 3.4272k 3.4965k

4.4 Performance Comparison

In this section, we test the result of the two proposed techniques on one frame of two different
sequences Rena and Akkon, and obtain the PSNR comparisons. In the experiments, the size of each
frame is ��� � ��� and the block size of block-based CS-MIC is ��� ��. The results of the direct
DC encoding technique is summarized in Fig. 4.5. It is worth noting that the firs method (direct
DC encoding) can be seen as an upper bound for the second method (iterative DC updating). The
comparison between the two methods is described in Fig. 4.6.

4.5 Summary

In this chapter, sampling step-size reduction, as a key point on improving the performance of CS-BP
algorithms for transformed signals, especially images was introduced. Knowing that the sampling
step-size value is enforced by the largest signal coefficient we have proposed two methods which
deal with the DC of the signal separately. In both of the proposed techniques, DC is somehow
removed from the BP iterations, and as a result, the second largest coefficien will determine the
sampling step-size, thus signal recovery for smaller coefficient will be improved greatly.
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Figure 4.5: PSNR results of direct DC encoding technique for (a) Rena (b) Akko
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Figure 4.6: PSNR comparison of the DC updating technique on (a) Rena (b) Akko



Chapter 5

CS-MIC Rectification Using Largest

Coefficients

5.1 Introduction

As mentioned before, converging performance of loopy belief propagation is a significan issue
which can be maintained using damping methods and by adjusting the step-size of the pdf samples.
If the data contains large-valued coefficients the original CS-BP technique requires a very large
sampling region, and thus large sampling step-size. Therefore, this scheme poorly handles the
smaller coefficient and leads to inaccurate recovery. As CS-BP is not suitable for transformed data,
especially images, in the previous chapter, we have introduced two possible methods to overcome
this issue. The proposed methods dealt with DC component of the transformed data, and lead to
improved accuracy of the reconstruction by reducing the sampling step-size in the BP decoder. One
of the methods, the direct DC encoding acts as a benchmark for the other method, the iterative
DC update, which is more applicable. In this chapter, we will study the previous methods not
only on DC but also on other larger coefficient using an iterative manner. Simulation results show
that depending on the data set, updating more coefficient rather than DC can further improve the
reconstruction. In addition, in another experiment we propose an adaptive method which determines
the number of coefficient that are to be updated, based on how much the SI coefficient are far off.
Simulation results shows how efficien the latter method can be regarding the cost and storage
requirements.

In the following we will describe some approaches on reducing the effect of DC as well as

44
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other larger coefficients In the firs two schemes, the method deals with a f xed number of larger
coefficients In these methods especially the second one, updating more large coefficient requires
more computation costs and storages. Therefore, at the end of this chapter, we have proposed an
adaptive technique which simply determines the number of required larger coefficient based on the
trade-off between the costs and the reconstruction accuracy. At the end, simulation results state the
advantages of using the adaptive technique.

5.2 Fixed Large Coefficients Refinement

5.2.1 Direct Large Coefficients Encoding

As what we have done in Chapter 4.3.1, we are now going to follow the same approach not only
for the DC but for other larger coefficient as well. The block diagram of the introduced method
in the CSMIC system is shown in Fig. 5.1. As shown in the figure larger coefficient of the data
are sent directly to the encoder. To recover these coefficient one can also make use of the SI larger
coefficients which are good estimates in most cases. The other coefficient will be applied to the
LDPC-based CS encoder and BP decoder. The performance of this approach for different sample
rates is tested on two sequences Rena and Akko and is shown in Fig. 5.2.

LDPC 
Encoder

BP
Decoder

Noisy
Channel

x Y x

Figure 5.1: Block diagram for our algorithm

5.2.2 Iterative Large Coefficients Updating

The method in this section is a generalization of the method presented in Section 4.3.2. In the
proposed algorithm, 
 larger coefficient in the data will sequentially get updated one after another.
The idea is basically the same as iterative DC updating, however it is done on large coefficient
rather than DC in a sequential manner. The block diagram of the updated encoding matrix is shown
in Fig. 5.3.
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Figure 5.2: PSNR results of direct large coefficient technique for (a) Rena (b) Akko
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As shown in the figure such as the DC updating method, the edges that are connected to the

 large coefficient will be ommited from the LDPC matrix and other coefficient will be decoded
using the new LDPC matrix. Considering the amount of improvement based on the number of
larger coefficient that get updated, as well as the introduced complexity, we fin out that up to �

coefficient involvement is good enough. Note that according to the choice of 	, the constant row
weight of LDPC matrix, and the choice of the number of updated larger coefficients the number
of involved measurements remain the same. In other words, there are at least � edges connected to
each measurement node, then even after � coefficient update, there is still one edge connected to the
measurement nodes. In addition, the contribution of the 
 larger coefficient should also get omitted
from the affected measurement nodes. The summary of the large coefficient updating technique is
summarized in Table 5.1.

Table 5.1: Large Coefficient Updating Algorithm.

� Initialization:

1. Initialize the iteration counter � � �.

2. Remove the edges affected by the �th largest coeffi
cient (L.C.) from the LDPC factor graph.

3. Initialize the L.C. with the �th largest coefficien of the
side information.

4. Subtract the L.C. contribution from the measure-
ments.
	�� � 	� ����

��	
�

� BP Decoder:

1. Apply the updated measurements and new factor
graph to the BP decoder.

� L.C. update:

1. Estimate the L.C. from each connected check node.
��� � ����	� �

��

�������
����

2. Average the estimates above to refin the L.C.
����� � �



�

���
���

3. If the iteration counter has yet to reach its maximal
value, go to step I.

4. i = i+1. Go to step II.
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Update
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New LDPC

i-th (At i-th step)

Figure 5.3: Block diagram for our algorithm

As the pixel values of the � � 
 remaining coefficient are smaller, better reconstruction might
be accomplished. However, the updated large coefficient introduce some error in addition. Besides,
the computational complexity of the algorithm will increase as 
 increases. The result of the method
is described in Fig. 5.4 and as it is shown direct large coefficien technique is considered as an upper
bound.

We have tested the algorithm on the two sequences Rena and Akko, with the frame size of ���
and the block size of �� � ��, and obtained the PSNR results. It is well noticed that as 
 increases
the advantage of the method will decrease.

As mentioned earlier, more larger coefficient update, introduces more storage and computa-
tional complexities. In addition, determining the larger coefficient from the side information (in
the second method) will introduce error in the recovery of large coefficient themselves. Also, 
th
largest coefficien gets closer to (
 � �)th largest coefficien as 
 increases, therefore, removing the

th largest coefficien will not decrease the step-size profoundly, thus will not have a great effect on
the performance. According to the existing trade-offs, an adaptive technique which decides on the
value of 
 based on the proximity of the large coefficients can make a great adaptation.

5.3 Adaptive Large Coefficients Refinement

In this section, we introduce the adaptive technique, which will decide on the number of coefficient
that should be refined This technique is applied to both of the previous methods and the results are
discussed:

� Adaptive Large Coefficients Removal

In this technique, 
 largest coefficient will be coded directly, and the smaller LDPC will be
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assigned and utilized for decoding the remaining � � 
 coefficients It is basically acting
similar to the scheme in section 5.2.1, however, 
 is not fi ed for all images here. In the new
scheme, the best choice for 
 is assigned according to the image. We use the term relative

distance to discuss how far the original signal coefficient are. In more detail we defin a
threshold on the relative distance between the signal large coefficients For coefficient *�

and *� , the relative distance which is simply calculated as �*� � *�����*�� will determine how
many coefficient are sufficien to get encoded separately.

� Adaptive Large Coefficients Update

In this scheme, similar to the idea presented in section 5.2.2, 
 largest coefficient will get
updated sequentially, and the LDPC matrix get revised at the end of each iteration, which
will then be employed in BP iterations for decoding the remaining � � 
 coefficients The
difference however, is in the choice of 
 which is adaptively selected in the new scheme. The
relative error will determine how many coefficient are sufficien to get updated separately
and how many are good to be processed using the CS-MIC path.

The adaptive large coefficient refinemen technique is summarized in Table 5.2. The perfor-
mance of adding this technique to both of the previous methods is applied on Rena sequence and is
discussed in Fig. 5.5.
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Figure 5.4: PSNR results of large coefficient updating technique for (a) Rena (b) Akko, with 
 � �
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Table 5.2: Obtaining variance for prior distribution

� Adaptive DC Removal:
Initialize the iteration counter � � �, and the threshold value
�� .

1. Remove the �th largest coefficien to be processed in-
dividually.

2. Apply the remaining coefficient to the CS-MIC sys-
tem.

3. Calculate the relative distance (��) between �th and
�� �th larger coefficients

4. If RD � TH then � � �� � and proceed to step 1.

5. END

� Adaptive DC Updating Initialize the iteration counter � � �,
and the threshold value �� .

1. Remove the edges affected by the �th largest coeffi
cient from the LDPC factor graph.

2. Initialize the �th largest coefficien value with the �th
of the side information.

3. Subtract the �th largest coefficien contribution from
the measurements.

4. Calculate the relative distance (��) between �th and
�� �th larger coefficients

5. If RD � TH then � � �� � and proceed to step 1.

6. END

In the following section, we will discuss the simulation results for all the approaches that pro-
posed in this thesis, and we compare them with the original CS-BP method.

5.4 Performance Evaluation

In this section we will compare the methods proposed in the previous sections. The proposed
techniques are tested in a block-based framework and the results are depicted for a ���� ��� Rena
and Akko frames. Figure  � represents the result of view interpolation on two neighboring views,
where the interpolated result has shift at border pixels [46]. Due to the fi sampling bound in the
original CS-BP method, this technique has a very poor performance and a very low PSNR as listed
in Chapter 3, thus we have not presented it here. Methods shown in � and �� have improved the
performance of the original CS-BP to a great extent. Finally the results of 0 and especially � have
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Figure 5.5: PSNR results of the proposed adaptive technique on Rena sequence

greatly outperformed the previous methods. The PSNR results for figure  � � are listed in Table
5.3. As presented in previous chapters, proposed techniques can achieve up to � dB improvement
in border pixels recovery regarding the side information, and up to �� dB improvement compared
to the original CS-BP method. The performance depends on the image, the sampling rate and
the employed method. Figures 0� and �� have greater PSNR regarding (b), which shows better
reconstruction of border pixels.

Table 5.3: PSNR comparison of the proposed schemes

Figure (b) Original CS-BP (c) (d) (e) (f)
Rena PSNR 28.10 dB 6.43 dB 30.13 dB 32.49 dB 35.56 dB 36.35 dB
Akko PSNR 35.29 dB 7.34 dB 31.78 dB 30.24 dB 37.13 dB 38.02 dB
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5.5 Summary

In this chapter, we have extended the idea of sampling step-size reduction from mere DC com-
ponent to more large coefficients Two methods are proposed which deal with largest coefficient
differently. In an iterative process, the effect of largest coefficient are cleared away from the BP
iterations, thus the signal recovery for other coefficient will be preciser. In addition, because of the
trade-off between the accuracy of smaller signal coefficient and computational costs, we proposed
an adaptive technique which will determine how many larger coefficient are to be updated. This
method can efficientl bypass the unnecessary computations, which is required in image processing
especially in multiview technology.
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(a) Original middle view (b) Interpolated middle view

(c) SI-assisted CS-BP result (d) DC updating CS-BP result

(e) DC updating CS-MIC result (f)  � 
 Large coeff. updating CS-MIC result

Figure 5.6: Comparison of the proposed recovery techniques, for ������� Rena frame and �����
block size and sampling rate ���.
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(a) Original middle view (b) Interpolated middle view

(c) SI-assisted CS-BP result (d) DC updating CS-BP result

(e) DC updating CS-MIC result (f)  � 
 Large coeff. updating CS-MIC result

Figure 5.7: Comparison of the proposed recovery techniques, for ������� Akko frame and �����
block size and sampling rate ���.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis, we have proposed a multiview image coding scheme which is well suited for trans-
formed signals. The method of reconstruction used for this system is LDPC encoding and BP
decoding (CSBP). In more detail, we firstl proposed a multiview image coding setup, which is
perfectly adapted to utilizing side information in image reconstruction. The side information is the
result of view interpolation technique on adjacent views of an image, which can greatly outperform
the compressive sensing image recovery. The firs proposed method can perfectly match itself to
multiview scenario, and it can be employed to general non-sparse signals as well.

Secondly, we have generalized the original CSBP algorithm which adjusts itself to transformed
signals that dramatically have different coefficien values. In original CSBP the prior pdf which is
used for sparse signal reconstruction, is sampled over a fi ed sampling region which is assigned
based on largest coefficien values. This approach in assigning the sampling area will increase the
sampling step-size and thus is not favorable in recovery of smaller coefficients In the firs step in
our generalized method we have proposed techniques that peel off DC in the CSBP decoding, and
improved the accuracy of signal recovery especially for smaller coefficients

We have further improved the signal recovery by removing more larger coefficien rather than
DC. For a f xed number of coefficients we sequentially remove other large coefficient to further
reduce the pdf sampling step-size and improve the reconstruction quality, which can be considered
as scalable quantization.

Finally we introduced an adaptive method which will choose the number of larger coefficient
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that are to be removed. According to the image, and the relations among signal coefficient val-
ues, the proper number of large coefficient removal will be obtained. This approach have great
advantages in saving costs and storage requirements, as updating coefficient will increase both
complexity and costs.

6.2 Future Work

6.2.1 Various Compressive Sensing techniques

Compressive sensing applications in multiview image scenario is relatively a new topic. Due to the
high volume of the analysis and experiments needed for the current setup, we have just considered
the belief propagation based compressive sensing technique. There is still a lot of work needed to
test other compressive sensing methods as well, which will be employed as the future work.

6.2.2 Multiview Video Coding

The current program is explicitly designed for multiview image network. Studying the compressive
sensing techniques on sequences of videos is also of a great interest and can introduce low complex
applications for video compression. Designing compressive sensing multiview video coding setup
will result in even a more efficien scheme, as analysis of high volume of frames of videos is costly
computationally complex and time consuming. As a case in point, one may encode the reference
frames using compressive sensing methods, while other frames are encoded based on conventional
techniques.

6.2.3 Investigation of other prior pdfs

In this thesis, Gaussian pdf is used as the prior distribution; however, other prior pdfs may also be
used. Thus, an interesting part of the future work is to assess the use of other prior pdfs such as
Laplace, and determine their capability compared to Gaussian pdf.



Appendix A

Proof of Theorem 1

Our goal is to show that the proposed algorithm obviously achieves a better performance than the
original CS-BP. We follow the same approach as [3] in the proof of the theorem, and describe the
improved performance in terms of the number of measurements and sparsity of the measurement
matrix �. We firs obtain some probabilistic bounds on ��� and ���, then, using the results
obtained by Wang et al. in [44], the proof is completed.

Upper bound on ���: Consider ��� �

�

��� �
�
� , where �� has the Gaussian distribution

	 	�$�� ��� �. Therefore, ��
� is distributed based on the non-central Chi-square distribution with

parameter " �  ��� �
� as follow:

��
� � 9���� (A.1)

Next step is to calculate the moment generating function (MGF) of ��
� . For the non-central

chi-squared random variable with � degree of freedom, the MGF is define as,

�!�:� �
0�!

�
"�

����

�
�
�� �:

(A.2)

Since �� are iid, MGF of ��� is obtained as the multiplication of MGF of ��’s. For simplicity
and to reduce the computations, we have considered the same mean and variance for all ��, and
MGF is thus calculated as follow:

�	�	�
�

:� �
�
���

� ���

��
�

0�!
�
� � �

� ���

������

�
�� �:����#�

(A.3)
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As -���� � ��	��, �)��� 7 ���� is greater than �)��� % ����. Then after applying
the Chernoff bound, for : % � we have,

�)��� % ���� % 0�!�:����
0�!

�
�  �

������

�
�
�� �:����

(A.4)

Let � � �:�� 7 �, we defin two functions ���� and ���� as follows:

�)��� % ���� %
0�!���  ���

�
�$��
� 	 ����

�
����

����
(A.5)

Based on the Taylor series, ���� and ���� are estimated by ���� 	 � �����	����, and the
above result is obtained as bellow,

����

����
�
�
� 	�������	����

� �
���� 	 ������
�#���	����

�
(A.6)

As it is obvious, the term���	������
�#��� is negative and dominant over ���� for small
�. Therefore, there exists � which results in ��������� % �, and we can show [3],

�)��� % ���� � ����� (A.7)

Lower bound on ���: Similar to the approach in [3], to obtain the upper bound, we utilize the
expected squared ��-normand obtain,

�)��� 7 ���� 	 ���� (A.8)

Based on the choice of � in our algorithm which is obtained from some training data, and the
value of �, we conclude that �� 	 �� 7 ��� 7 � 	 ����, where � % � % � is the sparsity rate.
Therefore, �)��� 7 ����	���� is less than �)��� 7 ��	�����; this amount is a proper
value for later analysis. Following the details in [3], we conclude that,

�)��� 7 �� 	 ����� � ����� (A.9)

Bound on ��: As known �� is define as ������� � � � � � �����. In order to provide
clearer comparison between our method and the original CS-BP, to calculate the upper bound on
��, we compare our proposed signal model (	 ��� ���) with a non-zero mean mixture Gaussian
model (�	 ��� ����	����	 ��� ����), where �� and �� are define as before. Based on the signal
models we can conclude that for the same �, ��� %&'��( % ��� ���( %&'��(. Therefore, for a
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clearer comparison we employ the �� upper bound for our method, which, according to analysis
in [3], is

�
� 
����
�����.

After obtaining the required statistical bounds, we then employ the theorem by [44], to calculate
the required number of measurements to estimate the signal.

According to theorem � in [44], if � � �
� satisfie 	�	

�

	�	
�

� 1 , and ; be the matrix of �

vectors that satisfie +�� � � � � +� � �
� . Consider the encoding matrix � � �

��� satisfying
-�'
�� � �� -�'�
�� � �� -�'�
�� � *, where �

� � )
� is the ratio of the non-zero elements in �.

In this case, the random projections �
��� and �

��+� can reconstruct ��+� with the probability
����� and with the error less than < �� +��, if the number of measurements � satisfies

� �

�
��
�

*�
*1 � 
����� if *1 � � ���

��
�
*�


����� if *1 � � ���
(A.10)

According to our analysis, �� � 
�
���

�
�� 	 ���� and �� %

�
� 
����
���� with

probability � � ��� [3]; therefore, 1 � ��
�

�
� �	�������

� . Similar to the approach in [3], +�’s are
chosen as the canonical vectors of the identity matrix =� , providing ��+� � ��. Moreover, based
on the define 	, * � �

) � ���

����
�
�	�������

. Finally we set < as,

< �
����

�� 	 ���
(A.11)

Now based on the result of theorem 1 in [44], ���� � � � � ��� satisfy ���� � ��� �
����� � ��+�

�� �
< �� +�� % ���, with probability lower bounded by � � ��� . Which will then lead to
�� ��� % ��� with probability lower bounded by �� ���� [3].

The proof is then finalize by obtaining the number of measurements based on (A.10),
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which confirm both the fewer number of 	 and the number of measurements.
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