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ABSTRACT 

Optical Coherence Tomography (OCT) is a non-invasive, depth-resolved 

imaging modality that has become a prominent ophthalmic diagnostic technique. 

We present a novel segmentation algorithm based on Chan-Vese's energy-

minimizing active contours to detect intra-retinal layers in OCT images. A multi-

phase framework with a circular shape prior is adopted to model the boundaries 

of retinal layers and estimate the shape parameters using least squares. We use 

a contextual scheme to balance the weight of different terms in the energy 

functional. The results from various synthetic experiments and segmentation 

results on rat OCT images are presented, demonstrating the strength of our 

method to detect the desired layers with sufficient accuracy even in the presence 

of intensity inhomogeneity. Our algorithm achieved an average Dice similarity 

coefficient of 0.84 over all segmented layers, and of 0.94 for the combined nerve 

fiber layer, ganglion cell layer, and inner plexiform layer, which are critical layers 

for glaucomatous degeneration. 

 

 
Keywords: Biomedical imaging, Image segmentation, Level set, Optical Coherence 
Tomography (OCT), Retina, Shape, Active contours, Energy minimization 
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1. INTRODUCTION 

Retinal degenerative diseases are known as a major cause of untreatable 

blindness in the world. Optical Coherence Tomography (OCT) is a relatively new, 

non-invasive, depth resolved imaging modality that has become a prominent 

ophthalmic diagnostic technique and can be used to visualize the retinal cell 

layers in order to detect and monitor a variety of retinal diseases, including Age-

related Macular Degeneration (AMD), diabetic retinopathy and glaucoma [1], [2]. 

OCT can be also adapted for imaging rodent eyes in order to complement 

medical research and gene therapy to combat retinal degeneration [3]-[7]. Due to 

the vast amount of data provided by OCT scanners, automated tools for the 

analysis of these images become critical for extracting useful information from 

the acquired data. This thesis develops and evaluates an automated intra-retinal 

layer segmentation in OCT images, which plays a crucial role in studying the 

retinal degenerative diseases. 

1.1. Research Motivation 

Visual impairment is a global problem affecting about 160 millions of 

people worldwide, of whom ~37 millions are blind. A total of 81% of blind people 

are more than 50 years of age. The second leading cause of vision loss is 

glaucoma (12.3%), next to cataract (47.8%) [8]. Cataract is any opacification of 

the lens, i.e. it affects the front of the eye, while glaucoma impairs the retina and 
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optic nerve head at the back of the eye. Glaucoma has no early warning signs, 

causing substantial damage unless diagnosed early. In contrast, cataract can be 

treated adequately since it is usually noticeable by the patient in the early stage. 

Glaucoma is a chronic, irreversible eye disease, which is correlated with 

the gradual loss of the retinal ganglion cells and their optic nerve axons. In 

addition to the major factor of elevated intraocular pressure (IOP), the risk of 

glaucoma is higher due to increasing age, black race, family history of glaucoma, 

myopia, and abnormal blood pressure. There are several types of glaucoma. The 

two most common are angle closure glaucoma, having sudden and acute onset, 

and primary open angle glaucoma, which is more common and tends to be 

progress at a slower rate [9].  

Successful treatment of glaucoma is highly dependent on early diagnosis 

of this disease. The clinical assessment of glaucoma includes measurements of 

IOP via tonometry, the optic nerve head examination using indirect 

ophthalmoscopy and optic disc stereo biomicroscopy. The other key components 

consist of the anterior-chamber angle examination using anterior segment slit 

lamp biomicroscopy or gonioscopy,  and assessing the retinal nerve fiber layer 

using the imaging techniques such as scanning laser polarimetry (GDx), confocal 

scanning laser ophthalmoscopy (e.g., heidelberg retinal tomography or HRT), 

and  OCT.  

Among the imaging modalities used in diagnosis of ocular diseases, OCT 

provides images with higher resolution and is the first imaging technique allowing 

the delineation of retinal substructure in vivo. In addition, OCT can provide direct 
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information on the dimensions of retinal structure (e.g. thickness) and can detect 

changes bellow the threshold for detection on a standard ophthalmoscopic 

examination of the en face. These advantages make OCT a more appropriate 

tool in diagnosis of glaucoma since this chronic disease affects the thickness of 

retinal structures as well, i.e. thinning of retinal nerve fiber and ganglion cell 

layer. In vivo measurement of the retinal layer thickness is important for studying 

retinal diseases. OCT can be also adapted for imaging rodent eyes to study the 

small animal model of diseases in order to understand the disease mechanisms, 

monitoring the disease progression, and response to therapies [3]-[7]. Rodent 

models have contributed to a wide range of scientific achievements for a 

significant number of ocular diseases. 

Due to the vast amount of image data provided by OCT scanners, the 

need and potential impact of image analysis methods are high. Automated intra-

retinal layer segmentation creates a quantitative tool enabling ophthalmologists 

to diagnose and monitor retinal diseases. In this thesis, we propose a novel 

active contour based algorithm to address the segmentation of intra-retinal layers 

in OCT images. We evaluate this approach on various synthetic data and OCT 

images of rats. Intra-retinal layer segmentation has several applications. One 

example is the extraction of individual layer properties, such as thickness, shape, 

or texture, to understand what features from OCT images are associated with 

visual dysfunction in retinal diseases. Other examples include the earlier 

detection of macular area ganglion cell loss in cases of concurrent optic nerve 
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swelling and creating an atlas including information about normal layer properties 

and typical inter-subject variations [10]. 

1.2. The Eye and the Retina 

The eye is a special sense organ in human body, which is approximately a 

sphere consisting of two parts: the cornea and the sclera. The cornea is the 

smaller sphere anteriorly, with the greater curvature than the sclera, which 

constitutes the larger sphere. The dimension of the eye is 25 mm with the volume 

of 6.5 ml and has many specialized structures and tissues [11]. Figure 1-1 shows 

a schematic cross sectional of the human eye structure. Travelling through the 

cornea, pupil, and the lens, light is focused on the retina lining the inner surface 

at the back of the eye. Retina is a light-sensitive tissue forming a circular disc 

with diameter of approximately 42 mm in total and thickness of 0.5 mm. The 

retinal consists of two regions: central and peripheral. The peripheral retina is the  

 

 

 

 

 

 

large portion of the retina, which is rich in rods and detects gross shapes and 

motion. The central retina is, however, designated for visual acuity and is cones 

 

Figure 1-1. Schematic cross sectional of the human eye anatomy 
(National Eye Institute, National Institutes of Health Ref #: NEA09). 
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dominate and has more ganglion cells per area. A darkened region in the central 

retina is called macula which is ~5.5 mm in diameter. The fovea, the centre of the 

macula, is a slightly oval-shaped, blood vessel-free reddish spot, located 

approximately 4.5-5 mm to the left of the optic disc. The optic nerve head, or 

optic disc, is a circular to oval white area where ganglion cell axons accumulate 

and exit the eye. The horizontal diameter of the disc is ~1.7 mm and the vertical 

diameter is ~1.9 mm [11]. Striking the retina, light initiates a cascade of chemical 

and electrical events triggering nerve impulses, sent to various visual centres of 

the brain through the optic nerve. As schematically represented in Figure 1-2, the 

retina is composed of several layers of neurons interconnected by synapses, 

from outermost to innermost [10], [11]: 

• Reginal Pigment Epithelium (RPE): single layer of pigmented hexagonal 

cells.  

• Photoreceptor layer: the Outer and Inner Segments (IS/OS) of rods and 

cones. 

• Outer Nuclear Layer (ONL): rod and cone cell bodies.  

• Outer Plexiform Layer (OPL): synapses between photoreceptor cells and 

cells from the inner nuclear layer. 

• Inner Nuclear Layer (INL): cell bodies of bipolar cells, horizontal cells, 

amacrine cells, interplexiform neurons, Müller cells, and some displaced 

ganglion cells. 

• Inner Plexiform Layer (IPL): synaptic connections between bipolar cell 

axons and ganglion cell dendrites. 
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• Ganglion Cell Layer (GCL): mostly ganglion cell bodies. 

• Nerve Fiber Layer (NFL): ganglion cell axons. 

Figure 1-2. Retinal layers, from outermost to innermost [12]. 

The visual system of the rat as a rodent is very similar to other mammalian 

species. Figure 1-3 shows a schematic of a rat eye. Rat has relatively small eyes 

having an axial length of about 6-8 mm. Similar to other nocturnal mammals, the 

rat eye is characterized by relatively large cornea and lens, where the lens 

accounts for about 60% of the axial length [13]. The basic functional structure of 

the rat retina resembles that of the human; however, the rat retina does not have 

a fovea centrials and does not have the corresponding variation in the thickness 

in retinal layers. The retina has a total thickness of about 230± 10 µm and 

consists of the following layers similar to human: NFl, GCL, IPL, INL, OPL, ONL, 

IS/OS, and RPE. 
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Figure 1-3. Schematic cross sectional of the rat eye anatomy [14]. 

1.3. Review of the Related Works on Intra-Retinal layer 
Segmentation 

In this section, we provide a review on automated approaches employed in OCT 

segmentation [15]-[24]. Some methods rely on pixel-level edge detection 

algorithms [25] or are based on performing a 1-D intensity peak detection 

procedure for each A-scan [16]-[18]. This could potentially lead to detection of 

broken boundaries and erroneous edges. Moreover, since OCT images are 

highly corrupted by speckle noise, these algorithms required pre-processing to 

reduce the effect of noise. The de-noising procedure, however, affects the 

sharpness of the edges, which subsequently reduces the segmentation 

performance. The aforementioned methods do not consider the intensity 

inhomogeneity in the image which can lead to inaccurate segments and inability 

to detect all layers. In [19] and [20], a Support Vector Machine (SVM) algorithm 

is used to perform segmentation of retinal layers. By considering the mean 

intensity of six neighbors at each voxel, the SVM approach can handle noisy 

OCT images. However, this approach is not only dependent on a user to mark a 

set of points for the purpose of training and segmentation but also fails to 
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segment the layers accurately if the feature and background points are not 

chosen properly. Further, SVM is computationally expensive and is not able to 

segment all layers at the same time. Mishra et al. propose a two-step kernel 

based optimization scheme to segment intra-retinal layers [26]. To 

simultaneously delineate the retinal layers, they perform a set of local 

optimization strategies, but it is unclear how the algorithm considers the 

interaction between the segmented regions to avoid the ambiguity in the 

segmentation results. In addition, they did not provide any quantitative 

evaluations of the algorithm. A method to segment the retinal pigment epithelium 

(RPE) using a polarization sensitive optical coherence tomography (PS-OCT) 

[27] is demonstrated by [28]. Their method relies on the depolarizing property of 

the RPE and it requires a PS-OCT instrument. Garvin et al. [21] and Haeker et al. 

[22], [23] model the segmentation problem as finding the minimum s–t cut of a 

geometric graph. The cost function is the summation of an edge-based term and 

one or more region-based terms. They have developed a sequential approach to 

segment the intra-retinal layers. First, the three easier-to-segment surfaces are 

found (upper surface of NFL and upper and lower surfaces of OS). The position 

of the previous segmented surfaces is incorporated into the cost function to 

delineate the remaining surfaces. The problem arises when the previous 

surfaces are segmented inaccurately. This may result in an inaccurate 

segmentation of the remaining surfaces. Recently, Garvin et al. [24] have 

proposed an extension to their algorithm. By learning the surface feasibility 

constraints using a training set, they can segment the layers in two stages 
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incorporating both the image edge and true regional information in the cost 

function. 

1.4. Contributions 

The major contributions of this thesis are as follows: 

• Develop and validate a new method, termed Active Contours 

without Edge with Shape constraint and contextual Weights 

(ACWOE-SW), to address the segmentation of intra-retinal layers in 

OCT images. This novel segmentation method: 

o Incorporates the shape prior based on expert anatomical 

knowledge of the retinal layers into a multi-phase, level-set 

Mumford–Shah model.  

o Employs temporally and specially adaptive (i.e. contextual) 

weights to balance the cost terms in the energy functional.   

o Compensates the intensity inhomogeneity in OCT images 

which can lead to inaccurate segments and inability to 

detect all the layers.  

• Validate the performance of ACWOE-SW for segmentation of intra-

retinal layers using 80 OCT images from 7 rats. Also, the 

quantitative comparisons between our proposed method (ACWOE-

SW) and the classical Chan–Vese’s active contours (ACWOE) and 

the ACWOE with shape constraint only are reported. Manual 

segmentation of the retinal layers is used as the gold standard. 
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• Assess ACWOE-SW method quantitatively with respect to the 

noise, algorithm parameters, and the initial curve in order to 

demonstrate its robustness. The computation time of the algorithm 

is also evaluated. 

• Report experimental longitudinal study of acute neuro-degeneration 

in rats to perform a pilot analysis on the NGI (NFL+GCL+IPL) 

complex thickness over 14 days post-axotomy. 

The work in this thesis was published in the Medical Image Computing 

and Computer-Assisted Intervention (MICCAI) [14] and an extended 

version has been recently accepted for publication in the IEEE 

Transactions on Medical Imaging (TMI) [29]. The longitudinal study of 

acute neuro-degeneration was published in Optics Express [30]. 

1.5. Thesis Organization 

This dissertation develops and evaluates a new algorithm based on the 

Chan–Vese active contours without edges [31] to address the segmentation of 

intra-retinal layers in OCT images. Chapter 2 reviews the principles of the 

Spectral Domain OCT (SDOCT) as the image modality used in this study. 

Chapter 3 provides an introduction to active-contour-based approaches and the 

level set methods for image segmentation. The methodology of our work is 

described in detail in Chapter 4. Chapter 5 provides quantitative longitudinal 

study of acute neuro-degeneration in rat using the developed segmentation 
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approach. We provide the summary and conclusions of this dissertation along 

with a discussion of the future research in Chapter 6. 
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2. OPTICAL COHERENCE TOMOGRAPHY 

This chapter reviews the state of the art in Optical Coherence 

Tomography (OCT). After a brief introduction to spectral domain OCT, the image 

acquisition procedure is described. Finally, some properties of the rodent retina 

OCT images are addressed. 

2.1. Introduction 

Optical coherence tomography is a non-invasive, noncontact imaging 

modality which uses low coherence light to provides subsurface morphological or 

structural information of a sample. The resolution in OCT systems approaches 

that of histology; the lateral resolution depends on the sample arm optical 

configuration (typically 10-20 µm) and the axial resolution is dependent only on 

the source spectrum (typically ~4 µm) [32]. OCT is a powerful tool for ophthalmic 

imaging and can be used to visualize the retinal cell layers in order to detect and 

monitor a variety of retinal diseases. This technology can be also adapted for 

imaging rodent eyes in order to understand the disease mechanisms and 

response to therapies to provide better clinical management of retinal diseases. 

The standard OCT system is based on a Michelson interferometer that 

interferes light back scattered or reflected from a sample with reference light. In 

Fourier domain (FD) OCT, the optical path length difference between sample and 

reference reflections is obtained by the frequency of the interferometic fringes as 
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a function of the source spectrum without movement of the reference arm. The 

location of scatterers are revealed by the magnitude of the Fourier transformation 

of interferograms fringes observed when sample and reference waves coherently 

interfere. Two types of FDOCT system have been demonstrated based on the 

combination of the source and detector used. Spectral-domain (or spectrometer-

based) systems referred to as SDOCT uses the low coherence source but a 

spectrometer in the detector arm spatially disperses the interferometric signal 

spectrum across an array-type detector. In Swept-Source systems (SSOCT), 

however, using a wavelength swept source laser the spectrum is acquired in a 

single detector. In this thesis, only SDOCT systems will be discussed. 

2.2. Image Acquisition 

The images used in this study were acquired using a custom spectrometer 

based Fourier domain SDOCT system. The SDOCT system used a continuous 

Super Luminescent Diode (SLD) light source operating at a central wavelength of  

826 nm with a spectral bandwidth full width half maximum of 72 nm. The axial 

resolution was nominally ~4 µm (in air). The interferometer was constructed 

using a 2×2 fiber coupler with a 70/30 splitting ration, providing 30% of the 

source light to the sample arm. In this configuration, 70% of the light collected in 

the sample arm of the interferometer was directed back to the spectrometer, 

improving the attainable signal to noise ratio. The high speed spectrometer was a 

custom design constructed using a 1200 lines/mm transmission diffraction 

grating. The detector was a 1024 element high speed Gigabit Ethernet (GigE) 

camera from Dalsa (Waterloo, Canada), with 14 µm square pixels and was 
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operated at a line rate of 20 KHz for imaging. The reference arm consisted of a 

collimating lens, a reflective attenuator (metallic neutral density filter), and a 

mirror. The sample arm comprised of a collimating lens, a beam expander and 

an objective lens with scanning provided by a pair of galvanometric mounted 

mirrors (galvos) (Cambridge Technology).  

2.2.1. Spectral-Domain OCT (SDOCT) 

This section focuses on theory of the SDOCT systems. An optical layout of a 

typical SDOCT system, schematically illustrated in Figure 2-1, consists of a 

superluminescent source, Michelson type interferometer, and CCD camera in the 

detector arm. Light from the source is divided by a 2×2 fibre coupler into the 

sample and reference arm. The recombined beam interfere at the detector to 

produce fringes corresponding to the optical path length mismatch between the 

two paths, ∆z. For the case of a single reflector in the sample, and for a system 

without dispersion, the signal acquired at the detector, DI , can be expressed as 

[33],[34]: 

( )( ) ( ) 2 cos(2 )D R S R SI k S k R R R R zk⎡ ⎤= + + Δ⎣ ⎦ , (2-1) 

where ( )S k  is the intensity profile of the source with Gaussian spectrum, RR  and 

SR  represent the reflectivity of the sample and reference object. The location of 

reflector in the sample is extracted by taking the Fourier transform of equation 

(2-1): 
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Figure 2-1. Schematic of SDOCT system consists of a superluminescent source, 
Michelson type interferometer, and CCD camera in the detector arm. 

 

( ) ( )ˆˆ ( ) ( ) ( ) 2 ( 2 ) ( 2 ) ,D R S R SI z S z R R z R R z z z zδ δ δ⎡ ⎤= + + − Δ + + Δ⎣ ⎦  (2-2) 

where ( )δ ⋅  is the Dirac delta function, and ˆ( )S ⋅  is the Fourier transform of the 

source spectrum. The results from equation (2-2) include three terms. The first 

term is referred to as DC offset, resulting from the non-interfering components of 

the sample and reference arms. The second and third terms represent the 

location of the reflector and its complex conjugate, respectively. 

2.2.2. Scanning Scheme 

The A-scan is a depth-resolved reflectivity profile of the sample at a single 

point. A cross-sectional image, or B-scan, is created by transversally scanning 

the beam across the sample and acquiring an axial scan at each location (i.e. 

multiple A-scans). Volumetric imaging is performed by acquiring sequential 

cross-sectional images by scanning the spot across the surface of the sample 

(acquiring multiple B-scans). For rat retinal imaging, the scanning protocol was a 
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dense raster scan that acquired 3-D OCT data consisting of 400 images with 512 

axial scans each in the fashion shown in Figure 2-2, where the fast scan axis is 

in the X-direction, and the slow scan axis (adjacent frames) is in the Y-direction. 

The dashed lines represent a B-scan and correspond to a scan rate of ~30 

frames per second (30 ms), with each axial scan (A-scan) consisting of 1024 

points. The dimension of each OCT scan is 1024 ×  512 ×  400 voxels covering 

1.7 ×  4.0 ×  4.0 mm3 and the voxel size is 1.67 ×  7.80 ×  10.00 μm3. 

   

 

 

Figure 2-2. Scanning sequence of the galvo in volumetric image acquisition. Axial scans 
(A-scans) measure the backreflection or backscattering versus depth. Cross-sectional 
images (B-scan) are generated by performing a series of axial scans by transversally 
scanning the beam across the sample. Volumetric imaging is performed by raster scanning 
a series of two-dimensional images (B-scans). 

2.2.3. Post-Processing Steps  

Real-time data acquisition was performed using a custom software 

package developed by Biomedical Optics Research Group (BORG) at SFU 

called OCTViewer. The software package was written in C++ for rapid image 

acquisition, post-processing and display of two dimensional images. Post-

processing was performed in real-time and included DC subtraction of the 

reference arm spectrum, re-sampling of the interferometric data from linearly 

sampled in wavelength space to linear sampling in wavenumber space, fast 
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Fourier transform, second and third-order dispersion compensation, and contrast 

and brightness enhancement. Dispersion imbalance between the sample and 

reference arms of the interferometer was compensated numerically by correcting 

the phase of the interference fringe pattern. 

2.3. Rodent Retina OCT Images 

The image acquisition was performed on rat retina using the SDOCT system 

described in Section 2.2. Figure 2-3 shows the morphological depth information 

in a multi-layer sample, the retinal layers acquired from a rat. The adjacent layers 

are visualized as horizontal bright and dark bands due to intrinsic differences in 

optical properties (e.g. reflectivity). The retinal layers encompasses the following 

layers: NFL, GCL, IPL, INL, OPL, ONL, and IS/OS. This interpretation of the 

layers in rodent retina OCT images is consistent with histology as can be seen in 

Figure 2-3. The NFL, IPL and OPL are known to be highly light-scattering, while 

INL and ONL are relatively low-scattering layers. NFL, GCL, and IPL are not 

consistently resolvable in most of the OCT images. This may be due to 

polarization effects of the NFL coupled with the thinness of this layer. For these 

reasons, we consider NFL, GCL, and IPL together as a combined layer, termed 

NGI. Similar to human retinal images, the photoreceptor retinal pigment 

epithelium complex consists of three reflective layers: IS, OS, and RPE. 
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Figure 2-3. An OCT B-scan image presenting a horizontal retinal cross-section with the 
labels indicating the retinal layers in comparison with a histological section. 

OCT images are contaminated with speckle noise, resulting from 

constructive and destructive interferences of backscattered waves and appearing 

as a random granular pattern [35], [37]. In addition to the optical properties (e.g. 

multiple scattering and phase aberrations of the propagating light beam) and 

sample motion, speckle is influenced by the size and temporal coherence of the 

light source and the aperture of the detector. Speckle is a multiplicative noise and 

modelled as a Rayleigh distribution [38]. Applying a logarithmic transformation 

converts the multiplicative speckle noise to an additive white Gaussian noise 

[38]-[41]. To consider the correlation nature of the speckle, a correlated Gaussian 

model can be also used [38]. It is worth noting that the size of the speckle in 

relation to the retinal layers is substantial, particularly in the OPL and hard to 

eliminate, as it caries information about tissue micro-structure.  

Similar to other medical data, OCT images also suffer from different types 

of artifacts. Evident in the B-scan is the presence of intensity inhomogeneities 

(the red circles in Figure 2-4 (b)), bright saturation/shouldering artifact (the red 

rectangle in Figure 2-4 (c)). The intensity inhomogeneity, as a general artifact in  
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(a)  (b) 

(c) (d) 

Figure 2-4. Artifacts in retinal OCT images. (a) An en face image, created by axial 
summation of 3D OCT data. (b)–(d) Typical OCT B-scan image presenting a horizontal 
retinal cross-section with different types of artifacts: the intensity inhomogeneity, the 
saturation artifact, and the intensity nonuniformity along the layers within a B-scan. The red 
arrows on the en face correspond to the region from which the images were taken. 

OCT retina images [42], [44], results from the absorption and scattering of light 

by the blood vessels in the retina. These inhomogeneities are vertical, or 

nearly perpendicular to the layers, because of imaging geometry. The bright 

saturation artifact, observed as vertical lines in the images, is due to high back 

scattering intensity from the vitreo-retinal interface. The optical power is highest 

at the vitreo-retinal interface because it has not been scattered or absorbed in 

the retinal layers, and the higher detected intensity leads to bright “shoulders” in 

the axial direction of the Fourier transformed images. Furthermore, the intensity 

may not be uniform along the layers within a B-scan as presented in Figure 

1-2(d) resulting from nonuniformity of the signal strength during scan acquisition 

(e.g. because of defocusing, decentration, or shaking galvo).  

Intensity inhomogeneity  
Background noise  

Saturation artifact  

Shouldering artifact  Nonuniform intensity   
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(a) (b)  

Figure 2-5. A typical rat  B-scan image (a) in comparison with human B-scan image (b). 

Another source of distortion in OCT imaging is the motion artifact which 

may result from animal motion, some physiological phenomena (such as 

breathing, cardiac motion, pulsation, and blood flow), or environmental changes 

including mechanical vibration, sound waves, and temperature drift, to name a 

few. The axial motion of the sample results in corruption of the signal (SNR) due 

to the phase washout, and the transverse sample motion leads to decreasing of 

SNR as well as degradation in transverse resolution, causing blurriness in OCT 

images. 

In addition, imaging the retina in rodents is significantly more challenging 

than for human subjects due to the small size of the rodent eyes. The high radius 

of curvature of the rodent cornea introduces optical aberrations which blur the 

focal spot at the retina. Also, rodent retinal layers are thinner than those in 

humans, approaching the resolution of standard OCT systems. As a result, the 

OCT cross sectional images of rodent retina are of a lower quality than can be 

acquired in human subjects. Figure 2-5 compares a typical rodent OCT B-scan 

with that of human (the acquisition procedure was described in detail in [45]). 

100μm 
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2.4. Chapter Summary 

This chapter presented some background on OCT with emphasis on 

SDOCT, used to acquire data in this thesis. The details of the image acquisition 

procedure including our SDOCT optic setup, the scanning scheme, and the 

custom software OCTViewer were explained.    

In the next chapter, an overview of active contour approaches for image 

segmentation will be provided with the objective of motivating the development of 

our novel multiphase intra-retinal layer segmentation method, presented in 

Chapter 4 and evaluated using the OCT data described in the current chapter.  
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3. ACTIVE CONTOURS METHODS FOR IMAGE 
SEGMENTATION 

Image segmentation is a key step in analysis and interpreting of image 

data and its main goal is to partition an image into non-overlapping, constituent 

regions, which are homogeneous with respect to one or more characteristics or 

features.  

 Among the wide variety of segmentation algorithms, active contours-

based methods have received considerable interest, particularly in the medical 

imaging. In active contour methods, first introduced by Kass, Witkin, and 

Terzopoulos [46], a contour defined within an image domain evolves under the 

influence of internal and external forces (i.e. energy forces), through the solution 

of an energy minimization problem or dynamic force formulation. The internal 

forces specify the tension or smoothness of the contour during deformation while 

the external forces are derived from image data to move the curve toward the 

salient boundary of an object or other desirable image features. External forces 

vary from local image gradients to global region statistics such as means and 

standard deviations. Energy forces can be also based on other quantities such 

as contour orientation or position [47]. 

This chapter provides a general overview of several active contour based 

image segmentation methods. Section 3.1 illustrates the concept of level set 

methods, as a tool for implementing the curve evolution. In Section 3.2, the 
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traditional active contour (snake) and some of its extensions are reviewed, 

addressing the shortcomings with the original approach. Section 3.3 discusses 

the Chan-Vese active contour and its advantages over edge-based methods. 

Finally, some of the unique challenges in segmentation of OCT images are 

addressed in Section 3.4, which motivate our proposed segmentation algorithm. 

3.1. Level Set Methods 

In the problem of curve evolution, a contour can be tracked by 

straightforward numerical schemes such as Lagrangian approaches or by more 

sophisticated numerical schemes such as the Eulerian level set methods. 

In the Lagrangian representation, the contour is parameterized discretely 

into a set of interconnected control points. Each control point advances to its new 

location under the influence of the forces to represent the updated curve front. 

This approach suffers from several drawbacks. First, the time steps must be 

impractically small to achieve a stable evolution. The contour must be re-

parameterize during the evolution process to faithfully recover the object 

boundary since the initial contour may be significantly different in size and shape 

from the desired object boundary (e.g. the control points tend to come together 

near high curvature regions if there is no re-parameterizing procedure). The 

Lagrangian approach is not also able to handle the topological changes of the 

contour. As the contour splits or merges, ad hoc techniques [48], [49] are 

required to make this approach work. 
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(a) Original Curve (b) Original hyper-surface 

 

(c) Curve changed topology after a few iteration (d) Hyper-surface showing topological 
changes in contour at later steps in evolution 

Figure 3-1. An example of embedding a curve as a level set. A curve (left) and its level set 
representation (right) are shown. The curve is given by the zero level set of the hyper-
surface in higher dimension. As the hyper-surface evolves, the zero level set splits into two 
curves. 

Osher and Sethian [50], [51] developed the level set technique for 

evolving curve in the Eulerian framework. In the level set representation of a 

contour, the curve is embedded as a zero-level set of a function or hyper-surface 

that has a larger dimension than the curve (usually the same dimension of the 

image). The curve is manipulated through the changes in shape, orientation, and 

location of the embedding hyper-surface implicitly, based on approximations to 

the equations of motion. Following the topological changes (splitting and 

merging) of the curve becomes much easier with the level set technique because 

the hyper-surface remains defined and differentiable (smooth) everywhere. For 

the illustration purpose, consider Figure 3-1 where each row describes the 
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contour and its corresponding hyper-surface. As we can see in Figure 3-1(c), the 

topology of the curve changes quite easily while the level set function evolves.  

In two dimensions, a level set method represents the curve C as a zero-

level set of a function 2: [0, )φ × ∞ → : 

{ }( ) ( , ) | ( , , ) 0C t x y x y tφ= ∈Ω = , (3-1) 

Starting with an initial level set function ( 0)tφ = , the evolution of the curve is given 

by its zero level set moving according to the desired flow of the contour. A typical 

example of a level set function is a signed distance function with respect to the 

curve. By defining the sign of the level set function to be positive inside and 

negative outside the contour, the unit normal vector n  of the contour C is defined 

as: 

| |
φ
φ

∇
=

∇
n  (3-2) 

The curvature κ , which measures how fast the curve bends at any spot along 

the contour, is defined as: 

( )
2 2

3/22 2

2
( )
| |

xx y x y xy yy x

x y

div
φ φ φ φ φ φ φφκ

φ φ φ

− +∇
= =

∇ +
 (3-3) 

The curvature of the contour is positive if the unit normal vectors diverge and 

negative where the unit normal vectors converge. 
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3.2. Edge-Based Active Contours 

The classical snake or active contour model [46] turns the segmentation 

problem into an energy minimization problem. A snake is a parameterized 

curve ( ) [ ( ) ( )]TC s x s y s= , [0,1]s∈  which is influenced by external forces and 

images forces that push it towards features such as lines and edges. The snake 

energy functional is a weighted summation of internal and external forces: 

int( ) ( ) ( )extE C E C E C= +  (3-4) 

The internal force intE  comes from the shape of the snake to control the 

smoothness and the continuity of the contour: 

1 1

int
0 0

| ( ) | | ( ) |E C s ds C s dsα β′ ′′= +∫ ∫
 

(3-5) 

where ( )C s′  and ( )C s′′ are the first and second derivative of the contour with 

respect to parameter s, respectively. The weighted positive parameters α  and β  

specify the elasticity and stiffness of the snake, respectively. In practice, α  and 

β  are often chosen to be constants. 

The external force extE  emanates from the image data as an integral of a 

potential energy function ( , )P x y  along the contour: 
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1

0

( , )extE P x y ds= ∫
 

(3-6) 

The potential energy function ( , )P x y  must take small values at the salient 

features of interest to minimize the external force. A typical potential energy 

function, depending on the gradient of the image I, is: 

1( , ) ,   p 1
1 | ( , ) ( , ) |pP x y

G x y I x yσ

= ≥
+ ∇ ∗  

(3-7) 

Where *G Iσ  is the convolution of image I  with a Gaussian function ( , )G x yσ with 

variance 2σ . The potential energy function ( , )P x y  is positive in homogeneous 

regions and approaches zero at the edges. From the calculus of variation, the 

contour C which minimizes the energy functional E defined in (3-4) must satisfy 

the following Euler-Lagrange equation [46]: 

2 2 2

2 2 2

( )( ) ( ) ( ( )) 0C sC s P c s
s s s

α β∂ ∂ ∂
− −∇ =

∂ ∂ ∂
, (3-8) 

To solve the Euler-Lagrange equation, suppose an initial estimate of the solution 

is available and the contour C is a function of time t and parameter s, i.e. C(s,t). 

Then, the evolution equation is obtained as: 

2 2 2

2 2 2

( , ) ( , )( , ) ( ) ( ( , ))C s t C s tC s t P C s t
t s s s

α β∂ ∂ ∂ ∂
= − −∇

∂ ∂ ∂ ∂
, (3-9) 

The solution is found when the contour C(s,t) stabilizes, i.e.    

( , ) / ( ) 0C s t t∂ ∂ =  [52]. Minimizing the snake energy functional is not 

straightforward. Different parameters including weight of force terms and iteration 

step should be defined appropriately. The initial snake must be placed close 
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enough to the true boundary of the object. In addition, the Euler-Lagrange 

solution suffers from numerical instability.  

Many efforts have been made to address these problems. Cohen et al. 

[53] proposed balloon snake approach to allow the snake avoid spurious isolated 

edge points. An additional pressure force is added to the external force 

component of equation (3-6) by considering the curve as a balloon which is 

inflated: 

( , )ext constE P x y E= −∇ + n , (3-10) 

where constE is an arbitrary constant and n  is the unit normal vector on the contour 

front. However, adjusting the strength of the balloon force is difficult, i.e. the 

balloon force must be large enough to pass through weak edges and overcome 

the noise but small enough not to crush a true boundary. Moreover, since the 

balloon force is not derived from the image, the snake may continue to inflate at 

the points where the legitimate boundary is missing or weaker than the inflation 

force. 

Xu and Prince [54], [55] proposed the Gradient Vector Flow (GVF) snake 

method. In this method, a new external force was introduced to extend the 

capture range of the snake. The diffusion of the gradient vectors of the edge map 

(new external force) is maximum near the edges and decreases as moving away 

from the true edges (see Figure 3-2 (b)), pulling the contour that is located far 

away from the true edges. In the original snake, however, contour evolves based 

on the edge map (gradient of the image), which only exists in the neighbourhood 
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of the true edges (see Figure 3-2 (c)). Therefore, if the initial contour is located 

far a way from the true edges, the evolving contour might stop at undesirable 

superior edges or not move at all. 

  

 
(a) (b) (c)  

Figure 3-2. Potential force field of edge map: (a) Original image, (b) Gradient of the edge 
map, and (c) GVF field. 

Malladi et al. [56] and Caselles et al. [57] proposed edge-based geometric 

active contours based on the theory of curve evolution where the contour is 

represented by Eulerian level set methods, allowing for automatic topological 

changes. The contour evolves only based on geometric measures such as the 

curvature and the normal vectors, and therefore there is no need for re-

parameterization which is the case in parametric active contours. Other active 

contour methods based on level sets were proposed in [58]-[60] using a local 

edge-based energy (e.g. image gradient) to stop the curve.  

All these classical snakes and active contour models are edge-based and 

depend on the image gradient to stop the curve evolution. Therefore, they work 

well for objects that have well-defined edge map. However, if the image is very 

noisy or the object boundary is occluded which is very frequent in medical 
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imaging, the contour may pass through the boundaries resulting in incorrect 

segmentation. To overcome this drawback, the region-based methods are 

proposed which use global information instead of local information and are less 

sensitive to the initial location of the contour as well as noise. 

3.3. Region-Based Active Contours 

Chan and Vese [31] describe a new active contour scheme, which does 

not use edges, and combine an energy minimization approach with a level set 

based solution. Considering a given image 2:I Ω→ , and C as a contour in the 

image domain Ω, the Mumford-Shah functional [61] for the segmentation of a 

piecewise constant model can be rewritten as follows according to [50]: 

1 2

2 2
1 1 2 2

( ) ( )

( , , ) ( )

| ( , ) | | ( , ) |
inside C outside C

F c c C Length C

I x y c dxdy I x y c dxdy
ε μ

λ λ

= ⋅

+ − + −∫ ∫  (3-11) 

where μ, λ1, and λ2 are fixed positive parameters to weight the different terms in 

the energy function, and c1 and c2 are the average intensity value of the image I 

inside and outside of the curve C, respectively. Representing C as a zero level 

set of the level set function φ , minimizing the functional (3-11) is equivalent to 

solving the following partial differential equation [31]: 

2 2
1 1 2 2( )  ( ) ( )

| |
div I c I c

t ε
φ φδ φ μ λ λ

φ
⎡ ⎤⎛ ⎞∂ ∇

= − − + −⎢ ⎥⎜ ⎟∂ ∇⎝ ⎠⎣ ⎦
, 0(0, , ) ( , )x y x yφ φ=  (3-12) 

where div ( ⋅ ) denotes the divergence and 2 2( )εδ ε π ε φ= +  is the regularized 

delta function [31]. The first term in equation (3-12), the divergence term is the 
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internal force, which depends on the curve itself such as its curvature or 

smoothness [50]: 

( ) ( )
| |

div Cε
φ δ φ κ
φ

⎛ ⎞∇
=⎜ ⎟∇⎝ ⎠

, (3-13) 

where  ( )Cκ  is the curvature of the contour C. Therefore, equation (3-12) 

corresponds to the curve evolution: 

2 2
1 1 2 2 ( ) ( ) ,C I c I c

t
μ κ λ λ∂ ⎡ ⎤= − − + −⎣ ⎦∂

n  (3-14) 

where n  denotes the exterior normal of contour C. The evolution of contour C 

results from the last two terms in equation (3-12). Based on the current position 

of the contour, term 2
1 1( ) ( )I c ελ δ φ−  can be smaller or greater than term 

2
2 2( ) ( )I c ελ δ φ− . If 2

1 1( ) ( )I c ελ δ φ− , square difference between intensity value of 

pixels on the contour from c1, is greater than 2
2 2( ) ( )I c ελ δ φ− , square difference 

between intensity value of pixels on the contour from c2, the contour will move 

outward, and vice versa the contour will move inward (i.e. when 2
1 1( ) ( )I c ελ δ φ−  is 

smaller). The evolution of the contour will continue until these two terms become 

equal, which results in segmenting the image into two constant-intensity regions.  

Chan-Vese active contour model, in contrast to edge-based models, is 

less sensitive to the initial location of the contour and noise. In addition, the 

topological changes of the contour are handled automatically through the level 

set implementation. Figure 3-3 (a) shows an example of a noisy image 

segmented using Chan-Vese active contour. The interior contour of the torus is 
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(a) 

        

(b) 

Figure 3-3. Segmentation results of Chan-Vese active contour: (a) A noisy 
image with an interior contour which is segmented with the algorithm. (b) The 
case that object and background have the same mean but different variances. 
The algorithm fails to segment the object. 

 automatically segmented due to the level set implementation of the method. 

However, Chan-Vese active contour has its own limitations. For example, it fails 

to segment the images which are not piecewise-constant, such as objects with 

the same mean but different variances or statistically inhomogeneous objects. As 

an instance, we refer to Figure 3-3 (b) where the algorithm fails to segment the 

object with the same mean as the background but different variance. This 

shortcoming is due to the fact that Chan-Vese active contour is a reduced case 

of the Mumford-Shah model, so-called “minimal partition problem”. That is, the 

intensity of desired object is modelled as the average intensity of the image 

inside the corresponding contour. 
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3.4. Problem in Retina OCT Images 

In this section, we introduce the principles of our novel segmentation 

algorithm to address the problems inherent in OCT images posing some unique 

challenges for segmentation.   

As discussed in Section 2.3, rodent OCT images are of lower quality than 

human images due to optical aberrations resulting from the high radius of cornea 

curvature and thinner retinal layers comparable to the resolution of standard OCT 

systems. Also, evident in the B-scan is the presence of intensity inhomogeneities 

and bright saturation artifact presenting additional challenges for segmentation 

algorithms. OCT images are highly corrupted by speckle noise as well.  The size 

of the speckle in relation to the retinal layers is substantial and presents an 

obstacle for image segmentation algorithms. 

OCT provides images with micrometer resolution which is suited to 

ophthalmic applications. For the FDOCT system used in this work, the axial 

resolution is nominally ~4 µm (in air) resulting in pixel size of 1.67 µm. Therefore, 

since the precision of segmentation algorithms is limited by the resolution of the 

imaging system, in order to quantitatively analyze the pathological changes in 

retinal layers, the needed precision for a segmentation algorithm would be ~1-2 

pixels.  

Addressing the abovementioned problems, we have developed a new 

algorithm based on the Chan–Vese active contours without edges to 

simultaneously delineate the retinal layers in OCT images. Our multi-phase 

segmentation algorithm incorporates a shape prior term resembling the 
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morphology of the retinal layers to improve the segmentation accuracy in the 

presence of artefacts. Introducing an adaptive contextual scheme makes the 

algorithm more robust when the image information is not sufficient to accurately 

detect the layers, as in the low contrast OCT images. The proposed method is 

region-based and performs well on noisy OCT images. The implicit 

implementation of the contour based on level set resulting in a continuous metric 

space provides the precision of sub-pixels for the proposed algorithm. In the next 

chapter, the details of our proposed methodology are presented. 

3.5. Chapter Summary and Conclusions 

The present chapter reviewed the active contour methods. Active contour 

models start from an initial estimation of the curve based on the higher level 

knowledge and the initial curve is refined through optimization approach (e.g. 

minimizing an energy functional). The curve can be represented explicitly by a 

set of marker points or implicitly based on level set methods. The level set 

methods offer several advantages over conventional parametric models, 

including flexible topology, no need for re-parameterization, and concise 

descriptions of differential structure. During the curve evolution, image data, 

initial estimate, desired contour properties, and knowledge-based constraints are 

considered. The image data can be derived form the local image information 

(edge-based) or from the global image information (region-based). Edge-based 

models are greatly affected by noise and low contrast images and they are very 

sensitive to the initial placement of the curve. In contrast, region-based active 

contours are more robust to the noise and initial placement because they use the 
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statistics of the entire image. However, they fail to segment object with intensity 

inhomogeneity or object that is not piecewise constant. Due to the problem in 

OCT images, the existing method fail to delineate the retinal layers. Therefore, 

we proposed a novel active contour based segmentation method to overcome 

these problems which is elaborated in the next chapter. 
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4. MULTI-PHASE SEGMENTATION: ACTIVE CONTOUR 
WITHOUT EDGE PLUS SHAPE AND WEIGHT 
APPROACH 

In this chapter, we propose a novel algorithm based on the Chan–Vese 

active contours without edges [31] to address the segmentation of intra-retinal 

layers in OCT images. To the best of our knowledge, we are the first to segment 

OCT data using a multi-phase, level-set Mumford–Shah model that incorporates 

a shape prior based on expert anatomical knowledge of the retinal layers, 

avoiding the need for training. Our approach has four main features. First, it can 

segment all intra-retinal layers simultaneously due to the multi-phase property of 

the algorithm. Second, we incorporate a shape prior term that enables the 

algorithm to accurately segment retinal layers, even where the region-based 

information is missing, such as in inhomogeneous regions. The predominant 

source of these inhomogeneities is the blood vessels in the retina which absorb 

light strongly, reducing the backscattered optical intensity of the underlying retinal 

tissue. Third, our method is region-based and performs well on noisy OCT 

images. Finally, our algorithm is robust and avoids the re-initialization problem 

that is associated with the level set approach [62] . 

To achieve the needed accuracy and robustness for our application, we 

employ temporally and spatially adaptive (i.e. contextual) weights that balance 

the cost terms of our energy functional. In contrast to earlier methods for spatially 

adaptive regularization that rely on reliability and curvature measures [63]-[65], 
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our proposed adaptive weights not only control the effect of the shape prior 

spatially based on gradient of the image, but also vary temporally based on 

simulated annealing schedule. We include concentric circles as a shape prior 

which mimic the geometrical retinal layer structure, and estimate the shape 

parameters using least squares. The methodology of our work is described in 

detail in Section 4.1. We apply the algorithm to 80 retinal OCT images acquired 

for both eyes of seven rats. In Section 4.1.4, we explain the minimization process 

of the energy functional that designed in Section 4.1. The numerical 

implementation of our method is explained in Section 4.2 using the first order 

convex scheme within the level set frame work. The process of data acquisition 

is briefly discussed in Section 4.4. To evaluate the segmentation method, in 

Section 4.5, we compare the automated segmentation with the ground truth 

manual segmentation using three different and complementary error metrics: 

Dice Similarity Coefficient (DSC), Hausdorff Distance (HD) and absolute 

thickness differences. In addition, we compare the proposed method with two 

other active-contour-based approaches. The work in this chapter has been 

recently accepted for publication in the IEEE Transactions on Medical Imaging 

(TMI) [29]1. 

4.1. Energy Functional 

Our objective is to segment a given OCT image, 2I : Ω⎯→ , defined on 

the image domain, into R  disjoint sub-regions, which accurately label the retinal 

                                            
1 © 2010 IEEE.  Reprinted, with permission, from IEEE Transactions on Medical Imaging, 

Segmentation of Intra-Retinal Layers from Optical Coherence Tomography Images using an 
Active Contour Approach, A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic. 
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layers. The decomposition of the image I  will be modeled using the level set 

framework as a set of 1R −  Signed Distance Functions (SDFs), φ . The distance 

function captures the distance from any point in the image domain to the object 

boundary and assigns this distance to that point’s location. The SDF assigns 

opposite signs to the interior versus exterior of the object. Formally, the SDF is 

an implicit function with positive values in the interior region +Ω , negative values 

in the exterior region −Ω , and zero on the boundary ∂Ω  with the property that 

1φ|∇ |=  [66]. Further details of this representation are provided in Section 4.1.1. 

To determine a segmentation, we developed a variational algorithm that 

minimizes the following energy functional: 

( ) ( ) ( ) ( )I I S S RE E E Eφ λ φ λ φ φ= + + .  (4-1) 

Each term of the energy functional captures a separate aspect of the 

problem. The first term, IE , incorporates region-based information derived from 

the image. SE  incorporates the prior shape knowledge of the anatomy of the 

retinal layers. The third term, RE  is a regularizing term which keeps region 

boundaries smooth and encourages each φ  to be a SDF. That is, RE  is defined 

as a weighted summation of two terms, RE′  and RE′′ , as follows:  

R RR RRE E Eλ λ= + .′ ′′′ ′′  (4-2) 

Positive valued parameters Iλ , Sλ , Rλ′  and Rλ′′  weight the different terms in the 

energy functional. 
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4.1.1. Region-Based Term 

The first term of equation (4-1) follows the work of Chan and Vese [31] 

and encourages each region of the segmentation to have an approximately 

constant intensity. The intensity of the thi  sub-region will be approximated by the 

constant iμ , and the spatial extent will be represented by a characteristic function 

iχ .  

2

1
( ( ) ) ( )

R

I i i
i

E I x y x y dxdyμ χ
Ω

=

= , − , .∑ ∫  (4-3) 

 

 

Figure 4-1.The segmentation of the image domain into multiple regions ( iχ , 

1 6i …= , , ) is represented by set operations on regions defined by the zero contours 

of the signed distance functions ( iφ , 1 5i …= , , ). The first region, 1χ , consists of the 

region inside of 1φ . The final region, 6χ , is the region outside of all zero contours. 

Intermediate regions, iχ , are defined as the regions outside of all jφ , j i< , and 

inside iφ . 

By definition, each characteristic function takes the value 1 inside the 

region, and 0  outside. Following the approach of Mansouri et al. [67], each iχ  is 

represented using the level set method as a function of 1R −  SDFs, φ . Simply, 

iχ  is the region inside the zero contour of the thi  SDF, and outside all previous 

SDFs zero contours. The final region Rχ , is the region outside the zero contours 
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of all SDFs. Figure 4-1 shows the iχ  for a case of six regions of segmentation 

(five SDFs). Using this partitioning, we guarantee unambiguous segmentation of 

R  regions using 1R −  SDFs. The characteristic function for the thi  region is 

defined as follows, using the Heaviside step function, H , and the Kronecker 

delta function, δ  [68]:  

1
1 [ ]

1

( ) (1 ( ))
i

R i
i i k

k

H Hδχ φ φ
−

− −

=

⎡ ⎤
= − .⎢ ⎥

⎣ ⎦
∏  (4-4) 

 

4.1.2. Shape Prior Term 

OCT images may not always be piecewise constant. Intensity 

inhomogeneity may exist in regions due to the “shadows” cast by retinal blood 

vessels which absorb and scatter light strongly. To compensate for these 

intensity inhomogeneities, we incorporated a shape prior term. Based on prior 

knowledge of retinal anatomy, a circular shape prior is used to model the retinal 

layer boundaries, and assists the algorithm when region-based information is 

insufficient to segment a layer accurately. In our model, each circular prior will 

share a common center point, but has a unique radius. The squared distance 

from a point, ( )x y, , to the shape prior constraining the thi  boundary, can be 

defined as: 

2 2 2 2( ) [( ) ( ) ]i x y iD x y x c y c r, = − + − − ,  (4-5) 
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where ( )x yc c,  is the common center of the prior terms encouraging concentric 

layers, and ir  is the radius of the circular prior of the interface between the thi  

and the ( 1)thi +  layer. 

 
 

(a) (b) 

Figure 4-2. Shape prior energy functional. (a) A typical scheme of the shape prior 
and the signed distance function. (b) The values of 1( )D x y, , 1( )x yφ , , and 

1( )sE φ  from P to Q along the line profile. The distance between 1 0φ =  and α  in 
(b) is exaggerated for illustration. 

For each SDF iφ , a shape constraint encourages the region boundary (the 

zero level set) to lie on a circle, minimizing the squared distance of the zero level 

set to the prior. Consequently, the shape term in the energy functional is: 

1

1

( ) ( ( )) ( )
R

S i i i
i

E D x y x y x y dxdyδ φ φ
−

Ω
=

= , , | ∇ , | .∑ ∫  (4-6) 

The term ( ( )) ( )i ix y x yδ φ φ, | ∇ , |  selects out the zero level set of iφ  using the Dirac 

delta function ( )δ ⋅ . This causes the shape term to have a non-zero value only on 

the region boundaries, and the term SE  is minimized when iφ  lies exactly on the 

circular shape. 
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Figure 4-2 (a) shows an example configuration of the shape prior and the 

signed distance function, overlaid on a typical OCT image. The red arcs 

represent the zero level sets of SDFs 1φ  and 2φ . The blue lines indicate two 

circular shape priors with center ( )x yc c,  and radii 1r  and 2r . The dotted green line 

is a “line profile” providing sampling of this information (shape priors, SDFs, 

image data) along the path from P to Q. Figure 4-2 (b) shows the values of 

1( )D x y, , 1( )x yφ , , and 1( )sE φ , as we move from P to Q along the line profile in 

Figure 4-2 (a). The point labeled α  indicates the point along the line profile which 

is on the edge of the shape prior, corresponding to distance of 1r  from ( )x yc c, . As 

we move from P to Q, the value of 1D  decreases as we approach the boundary 

(at distance 1r ) and then increases again as we move away. For 1φ , its value is 

positive as it approaches the zero level set and then becomes negative as we 

cross the boundary. This information can be combined to get the SE  term of the 

energy, i.e. when 1φ  is zero (the zero level set), the Dirac delta is 1, and the 1D  

term contributes to SE  to give a value. 

The shape parameters xc , yc , and ir  for SE  are defined using a least 

square fit, with iφ  and iμ  held fixed. For this purpose, the parameter vector 

1 2 1[ ]T
x y Rc cθ τ τ τ −=  (where 2 2 2

i i x yr c cτ = − − ) is estimated such that the error ε  in 

b θ ε= Ψ +  is minimized, where Ψ  and b  are determined by points ( )x y,  lying on 

1R −  boundaries as follows: 
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1 2 1 1 2 1
T T

R Rb b b bψ ψ ψ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦Ψ = , , , , = , , , .  (4-7) 

Defining the pixels on the thi  circle by ( )ik ikx y,  (1 ik M≤ ≤ ), ib  and iψ  are 

2 2
1 1

2 2
2 2

2 2
iM iMi i

i i

i i
i i i i

x y
x y

b V W

x y

ψ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

+
+

= , = ,

+
 

(4-8) 

where iV  is defined as  

1 1

2 2

2 2
2 2

2 2
iMiM ii

i i

i i
i

x y
x y

V

x y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= .

 

(4-9) 

Matrix iW  is determined by shifting the columns of the following matrix 1i −  times 

to the right.  

0

1

1 0 0 0
1 0 0 0

1 0 0 0
iM R

W

× −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦  

(4-10) 

Finally, the shape parameters are estimated using least squares:  

1ˆ ( )T Tbθ −= Ψ Ψ Ψ .  (4-11) 
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4.1.3. Regularization Term 

Regularization terms are added to keep the boundaries of the segmented 

layers smooth [31], and iφ  as a valid SDF. Smooth boundaries are encouraged 

by adding a contour length term ( RE′ ), and iφ  can be kept close to a SDF by 

adding the penalty term of Chunming et al. ( RE′′ ) [62]:  

1

1
( ( )) ( )

R

R i i
i

x y x y dxdyE δ φ φ
−

Ω
=

= , | ∇ , | ,′ ∑ ∫
 

1
2

1

1 ( ( ) 1)
2

R

R i
i

x y dxdyE φ
−

Ω
=

= | ∇ , | − .′′ ∑ ∫
 

(4-12) 

Recalling from (4-2), RE  is the weighted summation of RE′  and RE′′ . Therefore, 

we have:  

( )
1

2

1
( ( )) ( ) ( ( ) 1)

2

R
R

RR i i i
i

E x y x y x y dxdyλδ φ φ φλ
− ⎡ ⎤

⎢ ⎥
⎢ ⎥

Ω ⎢ ⎥⎣ ⎦=

′′= , | ∇ , | + | ∇ , | − .′∑ ∫
 

(4-13) 

4.1.4. Minimization of the Energy Functional 

By substituting the energy terms defined by (4-3), (4-6), and (4-13) into 

(4-1), and re-arranging slightly, the minimization problem associated with our 

model is defined as:  

1
2 2

1 1
inf ( ) ( ) ( ) ( 1)

2i i

R R
R

I i i i i i i
i i

E I A x y dxdy
μ ϕ

λλ μ χ δ φ φ φ
− ⎡ ⎤

⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦Ω, ⎢ ⎥⎣ ⎦= =

′′= − + , | ∇ | + | ∇ | − ,∑ ∑∫
 

(4-14) 

where ( ) ( )Ri S iA x y D x yλλ, = + ,′ .  
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To minimize this functional, we followed the approach of Chan and Vese [31] and 

performed an alternating minimization. First, we hold the SDFs fixed, and solve 

for the unknown intensities iμ :  

( ) i

i
i

I x y dxdy

dxdy

χ
μ

χ
Ω

Ω

,
= .
∫
∫  

(4-15) 

Next, holding the intensities fixed, we use the Euler–Lagrange equation with 

respect to iφ  and parameterize the descent direction using an artificial time t . 

The derivation of the Euler–Lagrange equation corresponding to (4-14) is 

presented in Appendix A, which results in the following update equation.  

2

1

( )
R

j i
I i

i j

I
t
φ χλ μ

φ=

∂ ∂
= − −

∂ ∂∑
 

div( ) ( )j j
j j j

j j

A A
φ φ

δ φ
φ φ

⎡ ⎤∇ ∇
+ ∇ ⋅ +⎢ ⎥

| ∇ | | ∇ |⎢ ⎥⎣ ⎦  

div j
R j

j

φ
φλ

φ

⎡ ⎤⎛ ⎞∇
+ − ,⎢ ⎥′′ ⎜ ⎟⎜ ⎟| ∇ |⎢ ⎥⎝ ⎠⎣ ⎦  

(4-16) 
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H

H i R j i

H i R j i

i R j i

δ
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χ
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−
− −

=

−
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=

⎧ − ×
⎪
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∏

 

(4-17) 

Note that, in practice, we use regularized versions of H  and δ  to obtain a well–

defined descent direction. The regularization of Chan and Vese [31] was used:  

where
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1 2( ) 1 arctan
2

zH zε π ε
⎛ ⎞⎛ ⎞= + ,⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  

2 2

1( )z
zε

εδ
π ε

= .
+  

(4-18) 

4.2. Numerical Implementation 

In this section, we present the numerical approximation of the method by using a 

finite differences scheme. Let h  be the spacing step, lx lh=  and my mh=  denote 

the grid points ( l  and m  are nonnegative integers and 0h > ), and tΔ  be the time 

step for each iteration. Let ( )n n
l m l mn t x yφ φ< , > = Δ , ,  be an approximation of ( )t x yφ , , , 

with 0n ≥ , 0
0φ φ= , where 0φ  is the initial set of signed distance functions. The 

initial contour is estimated based on three points that are provided by the user 

(we elaborate on this in Section 4.5). The required finite differences can be 

approximated as:  

1 1
x x

l m l m l m l m l m l mφ φ φ φ φ φ+ < , > < + , > < , > − < , > < , > < − , >Δ = − , Δ = −  

1 1
y y

l m l m l m l m l m l mφ φ φ φ φ φ+ < , > < , + > < , > − < , > < , > < , − >Δ = − , Δ = −  
(4-19) 

The numerical approximation to (4-16) is as follows:  

1
2

1
( )

n n nR
j l m j l m i l m

I l m i n
i j l m

I
t

φ φ δχ
λ μ

δφ

+
< , > < , > < , >

< , >
= < , >

−
= − −

Δ ∑
 

div ( )
n n
j l m j l m n

j l m j l m j l mn n
j l m j l m

A A
φ φ

δ φ
φ φ

< , > < , >
< , > < , > < , >

< , > < , >

⎡ ⎤⎛ ⎞∇ ∇
+ ∇ ⋅ +⎢ ⎥⎜ ⎟⎜ ⎟| ∇ | | ∇ |⎢ ⎥⎝ ⎠⎣ ⎦  

div
n
j l mn

R j l m n
j l m

φ
φλ

φ
< , >

< , >
< , >

⎡ ⎤⎛ ⎞∇
+ − ,⎢ ⎥′′ ⎜ ⎟⎜ ⎟| ∇ |⎢ ⎥⎝ ⎠⎣ ⎦  

(4-20) 
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2 2

1 1( ) ( )n x x n y y n
j l m j l m j l mh h

φ φ φ< , > − + < , > − + < , >= Δ Δ + Δ Δ
 

(4-23) 

Rj l m S j l mA Dλλ< , > < , >= +′  

2 2

1 1x y
j l m S j l m S j l m j l mA D D D

h h
λ λ

⎛ ⎞
⎜ ⎟
⎜ ⎟< , > < , > + < , > + < , >⎜ ⎟
⎝ ⎠

∇ = ∇ = Δ , Δ .
 

(4-24) 

Given sufficiently small time steps, subject to the Courant–Friedrichs–

Lewy (CFL) condition, convergence of the above iterative process is guaranteed 

based on a standard result in the theory of numerical methods [66], [69]. Note 

that we use the method from [70] for the discretization of the divergence 

operator.  

We optimize the segmentation model using an alternating, iterative, 

minimization over the SDFs, unknown intensities iμ , and parameter θ  of the 

where 
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shape prior in (4-6). During each iteration, each parameter is updated using 

(4-16), (4-15) and (4-11) while holding the other two parameters fixed. The 

algorithm steps are repeated until the maximum number of iterations N  is 

reached. Another possible stopping criterion is checking whether the solution is 

stationary or not. We choose a large number of iterations such that the stability of 

the contour is guaranteed as confirmed by the experimental results in Section 

4.5. The principal steps of the algorithm are as follows:  

I. Initialize  0
0 by φ φ , n=0. 

II. Estimate parameter θ  of the shape prior (concentric circles) by (4-11). 

III. Estimate the intensities iμ  by (4-15). 

IV. Update 1n
jφ
+  by solving  the PDE form (4-20). 

V. n=n+1, and if n ≤  N, repeat steps II to V. 

4.3. Adaptive Weighting of the Energy Terms 

Choosing “good” weights for energy terms in segmentation is an open 

problem, and finding the correct tradeoff that results in a desirable segmentation 

is usually treated empirically. In this work, we automatically adapt the weights 

both temporally and spatially, i.e. the weights change with iteration number and 

along the spatial dimensions. Intuitively, in early iterations, the region-based term 

should be more dominant, allowing the curve freedom to evolve toward the 

boundary of each layer. As the algorithm progresses, the shape term becomes 

more important to assist the algorithm when image information is insufficient to 

segment the image. Given that our approach is based on Chan–Vese active 
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contours without edges, reversing this procedure (i.e. fitting the model according 

to shape prior first, then intensity) would bring about an inaccurate segmentation. 

It is necessary to focus on detecting regions of homogeneous intensity to reach 

the vicinity of the correct solution. Only then will the shape prior be useful. 

Therefore, we define Iλ  and Sλ  in terms of the thn  iteration as mentioned in [71]:  

( ( ) (1))( ) (1) I I
I I

n Nn
N

λ λλ λ −
= + ,

 
( ) (1)( ) (1)

cosh[8( 1)]
S S

S S n
N

Nn λ λλ λ −
= + .

−  

(4-25) 

where N  is the total number of iterations. Figure 4-3 shows the plots of λ  as a 

function of iteration.  

 

Figure 4-3. Adapting the parameters Iλ  and Sλ  as a function of iteration. The initial 

and final values for Iλ  and Sλ  are set as (1) 1Iλ = , ( ) 0 5I Nλ = . , (1) 0Sλ = , and 

( ) 1S Nλ = . 

We also want the shape term to have a greater effect where image 

intensity information is missing, as in the inhomogeneous regions. Therefore, 

contextual information must be utilized. By choosing the weight of the shape term 
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proportional to the inverse of the image gradient magnitude, we employ a 

spatially adaptive Sλ  in each iteration. As a result, for pixels on weak edges, the 

shape term has a higher weight than the region-based term. This also has the 

beneficial effect that image pixels with higher gradient (strong edges) have a 

stronger influence when solving for shape prior parameters. More plainly, the 

least squares fitting of the shape prior parameters is weighted by image gradient.  

4.4. Data Acquisition 

Images used in this study were acquired using a custom spectrometer 

based Fourier domain (FD)OCT system which has been previously described in 

detail in Section 2.2. Non-invasive OCT imaging was performed on seven Wistar 

strain albino rats. The dimension of each OCT scan was 1024 ×  512 ×  400 

voxels covering 1.7 ×  4.0 ×  4.0 3mm  and the voxel size was 1.67 ×  7.80 ×  10.00 

3mμ . One eye on each rat underwent an axotomy procedure (severing the optic 

nerve); the other eye was maintained as a control in order to monitor retinal 

degeneration. The axotomy procedure is an accelerated model of glaucoma and 

causes the retinal nerve fiber layer to thin as the ganglion cells die. Each rat was 

imaged four times over a period of two weeks using OCT. All animal imaging 

procedures were compliant with animal care protocols and were performed with 

approval from the animal care committee. To evaluate the proposed algorithm, 

80 OCT images were chosen randomly from this data set. This random image 

selection was restricted to the central slices of the volumes where the retinal 

layers were visible. OCT images from the periphery of the retinal volumes 
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suffered de-focus due to the crystalline lens, as also reported in other OCT 

studies [72], and were unusable for our experiments because the retinal layers 

were not clearly discernable. Figure 4-4 shows an image selected from the 

central area of the volume along with some images chosen from the outside of 

the central area.  

(a) (b) (c) 

Figure 4-4. Sample of OCT images selected from (a) the central area of a 
volume where the retinal layers are visible, (b)-(c) outside of the central area 
where the retinal layers are not discernable.  

4.5. Results 

We applied our approach to OCT images acquired as described in Section 

4.4 and for which manual segmentation was provided. We compared our 

segmentation approach with two other active-contour-based approaches. We 

refer to our method as the Active Contours without Edge with Shape constraint 

and contextual Weights (ACWOE–SW). The two other approaches are the 

classical Chan–Vese’s active contours (ACWOE) and the ACWOE with shape 

constraint only (ACWOE–S). We assessed ACWOE–SW using three different 

and complementary error metrics: Dice similarity coefficient (DSC), Hausdorff 

Distance (HD), and absolute thickness differences. The quantitative assessment 

of ACWOE–SW with respect to the noise, algorithm parameters, and the initial 

curve was carried out in order to demonstrate the robustness of ACWOE–SW. 
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The computation time of the algorithm is also evaluated. An overview of the steps 

used for segmenting OCT data is illustrated in Figure 4-5.  

 

Figure 4-5. The steps used for segmenting OCT data. 

4.5.1. Assessment of the Segmentation Algorithm 

To qualitatively evaluate the performance of our approach, we compared 

the segmentation resulting from our method (ACWOE–SW) and from two other 

approaches (ACWOE and ACWOE–S), using the ground truth manual 

delineations provided by one human expert on 80 OCT images.  

For each method, the parameters were chosen to give the best results. 

Based on our experience, the parameters were set as follows: the initial and final 

values for Iλ  were (1) 1Iλ =  and ( ) 0 5I Nλ = .  respectively. The initial and final 

values for Sλ  were 0 and 1 respectively. Rλ′  was set to 20 1 255. ×  to scale the 

regularization term into the range of the other terms and Rλ′′  was set to 

0 2 t. / Δ  [62]; tΔ  is the time step. The Chan and Vese regularization of H  and δ  

( 1ε = ) was used to obtain a well–defined descent direction. A maximum of 100 

iterations ( N ) were used, which guaranteed convergence in all our experiments. 

For all layers, the initial curve, which is a zero level set of a SDF, was estimated 

A Typical OCT 
B-scan  Initialization 

Retinal layers 
Segmentation 



 

 53

based on three points manually selected close to the interface of each layer as 

shown in Figure 4-5. The total number of points are three times number of layer 

interfaces (e.g. for the images presented in this chapter, this is 18 points per 

image for 6 interfaces). Every three points are used to estimate a circle. These 

circles are then used to create SDFs, each of which corresponds to one layer 

interface. 

Figure 4-6 and Figure 4-7 show examples of the segmented results (with 

color coding) by each method for typical OCT retinal images. We can see that 

the ACWOE contour does not fit perfectly to the vitreo-retinal interface for most 

cases because there is not enough force to push the contour towards the 

boundary. Also, ACWOE does not show a good performance on the edges of the 

layers since the algorithm attempts to converge to a set of closed contours. The 

results with ACWOE-S, which is an extension of ACWOE by incorporating the 

shape prior term into the energy functional, demonstrate that ACWOE-S can 

delineate the vitreo-retinal interface and it does not introduce closed boundaries 

on the edges of the layers. However, ACWOE-S has a poor performance in the 

inhomogeneous regions. For example, we see a failure of this algorithm in Figure 

4-7 (b). The results when applying our ACWOE-SW show that the six interfaces 

of retinal layers are correctly segmented specially in the presence of the intensity 

inhomogeneity and low contrast regions.  

The segmentation results for Figure 4-6 (c) are superimposed in Figure 

4-8, to appreciate the differences in segmentation quality between the three 

different algorithms. As shown, ACWOE–SW detects the six interfaces of the five 



 

 54

retinal layers properly, highlighting the performance of this method on the images 

with intensity inhomogeneity. Even very thin layers such as INL and OPL, which 

are difficult to distinguish visually, are segmented by our proposed algorithm. In 

contrast, ACWOE fails to segment the IPL, INL, and IS+OS layers due to the 

intensity inhomogeneity and low contrast of the images. ACWOE–S shows better 

segmentation than ACWOE, but it still has poor performance in inhomogeneous 

regions. 

Overall, ACWOE-SW performs significantly better in comparison to two 

other approaches, although it may introduce minor local inaccuracy in some 

segmentation results. For instance, Figure 4-7 (c) shows that the contour in the 

location of the arrow is not completely fit to the vitreo-retinal interface because of 

the bright intensity artifact appearing in this location (red circle in the original 

image). In addition, we can see that the contours representing the 

(NFL+GCL+IPL)-INL and INL-OPL interfaces touch each other at the location 

indicated by the arrow. We contribute the lower quality of the segmentation 

results to the bright intensity (green circle in the original image) that connects the 

combined NFL+GCL+IPL layer to the OPL layer. It is worth noting that the other 

two approaches not only introduce similar or even worse local inaccuracy in the 

above-mentioned regions but also show other failures. ACWOE contour does not 

fit to the vitreo-retinal interface and we also see the closed contour effect at the 

edges of layers. ACWOE-S illustrates a poor performance in inhomogeneity 

regions as well. 
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                                       Original Image              Manual 

 
                                            Original Image              Manual 

 
                                             Original Image              Manual 

 

Figure 4-6. Examples of automated segmentation results shown on the OCT retinal 
image using different algorithms. The corresponding interfaces of retinal layers are 
color coded as follows: the vitreo-retinal (red), (NFL+GCL+IPL)-INL (green), INL-OPL 
(yellow), OPL-ONL (pink), ONL-(IS+OS) (cyan), and (IS+OS)-Retinal Pigment 
Epithelium (RPE) (purple). 

 

ACWOE                                 ACWOE–S                          ACWOE–SW 

ACWOE                                  ACWOE–S                            ACWOE–SW 

ACWOE                                  ACWOE–S                           ACWOE–SW 

a) 

b) 

c) 
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                                                  Original Image            Manual 

 

                                                    Original Image             Manual 

   
                                             Original Image               Manual 

  

Figure 4-7. Examples of automated segmentation results shown on the OCT retinal image 
using different algorithms. The corresponding interfaces of retinal layers are color coded as 
follows: the vitreo-retinal (red), (NFL+GCL+IPL)-INL (green), INL-OPL (yellow), OPL-ONL 
(pink), ONL-(IS+OS) (cyan), and (IS+OS)-Retinal Pigment Epithelium (RPE) (purple). The red 
and green circles on the original image in Case (c) show the bright intensity artifact resulting 
in local inaccuracy of the three methods (highlighted by arrows for ACWOE-SW). 

ACWOE                                 ACWOE–S                        ACWOE–SW 

a) 

ACWOE                                  ACWOE–S                           ACWOE–SW 

c) 

ACWOE                                  ACWOE–S                            ACWOE–SW 

b) 
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(a) ACWOE‐SW (red) vs. ACWOE‐S (green)  (b) ACWOE‐SW (red) vs. ACWOE (yellow) 

Figure 4-8. The results of the different algorithms are superimposed on each other for 
Case (c) in Figure 4-6 (with color coding). 

To provide a quantitative evaluation of our approach, we measured the 

area similarity between the manual (X) and automated (Y) segmentation using 

DSC [0 1]∈ ,  which is defined as the ratio of twice their common area to the sum 

of the individual areas:  

2 X YDSC
X Y
| |

= .
| | + | |
∩  (4-26) 

More accurate segmentations correspond to higher DSC values. The DSC 

for the different retinal layers for the 80 OCT images is summarized in Figure 4-9 

(a), providing a quantitative comparison of the DSC of ACWOE–SW versus 

ACWOE–S, and ACWOE. Our method is superior to the other approaches for all  



 

 58

(a)  (b) 

Figure 4-9. Quantitative evaluation of ACWOE-SW: (a)  DSC mean and standard deviation 
over 80 OCT images for different retinal layers. (b) Hausdorff distance mean and standard 
deviation (μm) over 80 OCT images for different retinal layers.  

the examined layers. Specifically for NFL+GCL+IPL, the DSC of our algorithm is 

0 94.  resulting in 0 06%.∼  error (a tolerable error for monitoring degeneration of 

retinal layers).  

In addition, the mean Hausdorff distance defined in (4-27) was computed 

for the segmented and ground–truth boundaries of each retinal layer over 80 

OCT images. Figure 4-9 (b) summarizes the computed maximal boundary 

mismatch (HD) for our method, ACWOE–SW, versus two other methods, 

ACWOE–S and ACWOE. 

( ) max(max min max min )
b B a Aa A b B

HD A B { { a b }} { { a b }}
∈ ∈∈ ∈

, = || − || , || − || ,  (4-27) 

where A  and B  are sets of points extracted form the segmented and ground 

truth boundaries respectively. According to Figure 4-9 (b), ACWOE–SW results 

in the smallest average Hausdorf distance for all layers. The average HD 

achieved is 9 77 mμ. . Considering the typical total retinal thickness of 190 mμ  [4], 

the error of our algorithm is 5.1%  in total. 
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Finally, the mean thickness of retinal layers was computed for all images 

using three algorithms, ACWOE–SW, ACWOE–S, and ACWOE. The layer 

thicknesses from the manual segmentation was used as a gold standard. Table 

4-1 and Table 4-2 show the absolute and relative thickness differences, 

respectively. As shown, the smallest thickness difference for our method, 

ACWOE–S, and ACWOE were achieved for ONL layer ( 2 54 1 16 mμ. ± .  for our 

approach, 2 84 1 23 mμ. ± .  for ACWOE–S and 3 49 1 19 mμ. ± .  for ACWOE). In 

contrast, the maximum thickness difference for our approach occurred in 

NFL+GCL+IPL layer (3 76 1 47 mμ. ± . ) which is acceptable considering the total 

thickness of 61 76 mμ.  for this layer. Note that the thickness difference averaged 

over all the layers for our method (3 15 1 37 mμ. ± . ) is less than the two other 

methods. 

Table 4-1. Mean and standard deviation of thickness differences calculated using the 
results of different methods (ACWOE–SW, ACWOE–S, and ACWOE) and the ground 
truth manual segmentation, over 80 OCT images for retinal layers. Absolute thickness 
differences (μm) along with the average thickness (μm) of each layer are reported. 

Layers Average 
thickness (μm)

Absolute thickness differences (μm) 
(Mean ± SD) 

  ACWOE-SW ACWOE-S ACWOE 
NFL+GCL 

+IPL 61.76 3.76 ± 1.47 4.12 ± 1.70 5.90 ± 2.37 

INL 17.74 2.94 ± 1.11 3.30 ± 1.09 4.18 ± 1.77 

OPL 21.46 3.06 ± 1.38 3.33 ± 1.77 3.84 ± 1.36 

ONL 52.05 2.54 ± 1.16 2.84 ± 1.23 3.49 ± 1.19 
IS+OS 35.76 3.43 ± 1.77 4.52 ± 2.72 5.06 ± 2.66 

Overall 188.77 3.15 ± 1.37 3.62 ± 1.70 4.49 ± 1.87 
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Table 4-2. Mean and standard deviation of thickness differences calculated using the 
results of different methods (ACWOE–SW, ACWOE–S, and ACWOE) and the ground 
truth manual segmentation, over 80 OCT images for retinal layers. Relative thickness 
differences along with the average thickness (μm) of each layer are reported. 

Layers Average 
thickness (μm) 

Relative thickness differences 
(Mean ± SD) 

  ACWOE-SW ACWOE-S ACWOE 
NFL+GCL 

+IPL 61.76 0.06 ±  0.02 0.07 ±  0.03 0.10 ±  0.04

INL 17.74 0.16 ±  0.06 0.18 ±  0.06 0.23 ±  0.10

OPL 21.46 0.14 ±  0.06 0.16 ±  0.08 0.18 ±  0.06

ONL 52.05 0.04 ±  0.02 0.05 ±  0.02 0.07 ±  0.02
IS+OS 35.76 0.09 ±  0.05 0.13 ±  0.08 0.14 ±  0.07

Overall 188.77 0.10 ±  0.04 0.12 ±  0.06 0.14 ±  0.06

 

4.5.2. Noise Tolerance 

In order to evaluate the robustness of our algorithm to noise, controlled 

synthetic retinal OCT-like images were created with known ground truth 

segmentation but corrupted with varying degrees of noise. OCT images are 

contaminated with speckle noise which results from constructive and destructive 

interferences of backscattered waves and appears as a random granular pattern 

[35], [73], [74]. Applying a logarithmic transform to the image converts the 

multiplicative speckle noise into additive white Gaussian noise [38]-[41], [75]. To 

create the synthetic OCT-like images, after applying a logarithmic transform, the 

ground truth segmentation was corrupted by additive white Gaussian noise with 

probability density function 2(0 )N σ, , where the noise variance, 2σ , was changed 

in the range of 2[0 0 8] 255. × . Synthetic images were constructed with and without 

artifacts to simulate typical features of OCT images. Examples of these synthetic 

images are presented in Figure 4-10. The dark blood vessel attenuation (intensity  
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(a)  (b) 

Figure 4-10. Synthetic retinal OCT-like images (for σ2=0.05×2552): 
(a) without artifact, (b) with intensity inhomogeneity (red arrows) 
and bright saturation (yellow arrow) artifacts. 
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(a) (b) 

Figure 4-11. Dice similarity coefficient for different noise levels in the synthetic data, 
(a) without artifacts, (b) with artifacts. 

inhomogeneity) and bright saturation artifact were considered as predominant 

sources of artifacts affecting the OCT images. The latter is due to high back 

scattering intensity from the vitreo–retinal interface, while the intensity 

inhomogeneity, as a general artifact in OCT retina images [42]-[44], results from 

the absorption of light by the blood vessels in the retina. As shown in Figure 

4-11, the DSC performance results reveal that adding a shape constraint to the 

energy functional makes the algorithm more accurate than standard ACWOE, 

while remaining robust in the presence of noise. Adding artifacts to the synthetic 

images decreases the DSC for all three methods while ACWOE–SW still exhibits 

the highest accuracy. 
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4.5.3. Parameters and Initialization Perturbations 

The objective of this section is to investigate the sensitivity of the algorithm 

with respect to the parameters Iλ , Sλ , and Rλ′  as well as the initial curve. 

Recalling from Section 4.1, the energy functional is a weighted summation of 

three energy terms with different weights. Also, a contextual scheme was used to 

balance the weight of different terms. The parameters Iλ , Sλ , and Rλ′  were 

selected empirically ( Rλ′′  was set to 0 2 t. / Δ , where tΔ  is the time step).  

As Iλ  and Sλ  are two different functions of iteration number n , we related 

Iλ  to Sλ  using their initial values by (1) (0 1 (1))S Imaxλ λ= , − . Then, we varied the 

value of the (1)Iλ  from 0.8 to 1.2 (i.e. (1) 20I %λ ± ) and applied the algorithm on 

the same data set of 80  OCT images. To assess the sensitivity of the algorithm 

with respect to change in parameters, we compared our method’s segmentation 

results with the corresponding ground truth manual segmentation using DSC and 

HD. As we can see in Figure 4-12(a), changing (1)Iλ  by 20%±  resulted in an 

average change of 0 55%± .  in DSC, specifically 0 41%± .  for the NFL+GCL+IPL 

layer. In addition, the same change in (1)Iλ  brought about a change of 1 7%± .  for 

HD averaged over all layers and 1 30%± .  for the NFL+GCL+IPL as illustrated in 

Figure 4-12 (b). The results reveal the robustness of our approach with respect to 

the change in these parameters.  
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 (a) (b) 

Figure 4-13. Sensitivity of the algorithm to the regularization parameter Rλ′ . (a) DSC 
mean and standard deviation over 80 OCT images for different values of Rλ′ . (b) 
Hausdorff distance mean and standard deviation over 80 OCT images for different 
values of Rλ′ .  

 To investigate the effect of changes in parameter Rλ′  on the algorithm 

performance, we applied the algorithm on the data set of 80 images with different 

values of this parameter, while holding the other parameters fixed. The values 
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(a)  (b) 

Figure 4-12. Sensitivity of the algorithm to the contextual parameters defined in 
(4-25). (a) DSC mean and standard deviation over 80 OCT images for different 

(1)Iλ . (b) Hausdorff distance mean and standard deviation over 80 OCT images 

for different (1)Iλ . 
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selected for Rλ′  were 2[0 0 01 0 05 0 1 0 2 0 5 1 2] 255, . , . , . , . , . , , × . In each case, the 

algorithm segmentation results were compared with the corresponding ground 

truth manual segmentation using DSC and HD. The results of this assessment 

are shown in Figure 4-13, suggesting that with the goal of achieving a correct 

segmentation of retinal layers, the value selected for parameter Rλ′  in this work 

is appropriate. 

We performed a similar experiment for assessing the algorithm sensitivity 

to the initialization using 80 OCT images. Retinal layers have different 

thicknesses; therefore, the initial curve radius was changed according to the 

related retinal layer thickness. In particular, the radius was varied by up to 30%  

of the corresponding layer thickness. Considering the structure of the retinal 

layers and the average thickness reported in Table 4-1, varying the initial contour 

by more than 30%∼  of the corresponding layer thickness is not feasible because 

doing so would potentially result in the initial contour for a layer falling between 

the boundaries of the adjacent layers, resulting in segmenting the wrong 

interfaces.  

The results of the algorithm sensitivity to the user initialization are 

presented in Figure 4-14 for DSC and HD metrics. Overall, the algorithm 

segments the retinal layers with an average change of 10.54%  and 2.92%  for 

DSC and HD, respectively. The sensitivity to the initialization for the other two 

methods was similarly assessed, resulting in an average DSC of 12.94%  and 

17.10%  and an average HD of 3.78%  and 4.03%  for ACWOE–SW and 

ACWOE, respectively.  
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(a) (b) 

Figure 4-14. Change in DSC and HD as the initial contour is perturbed.  (a) DSC mean 
and standard deviation over 80 OCT images for different initial curves. (b) Hausdorff 
distance mean and standard deviation over 80 OCT images for different initial curves. 

RΔ is the change in the radius of initial contour in pixels. 

4.5.4. Computation Time 

The processing time for the different methods was also assessed in this 

study. Table 4-3 reports the average (± standard deviation) computation time of 

different methods applied to the set of 80 OCT images using a personal 

computer (Microsoft Windows 7 Professional 64-bit edition, Intel Core i7, CPU 

2.67 GHz, 6.00 GB of RAM). The OCT image size was 1024 pixels axially and 

512 pixels laterally. As a pre-processing step, each image was cropped axially to 

the region of interest (600 ×  512 pixels) that included the retina.   

Table 4-3. The average (± standard deviation ) processing time of different methods over 
80 OCT images. 

Method Average (± SD) 
Time (s) 

Time per 
iteration (s) 

ACWOE-SW 95 ± 0.28 0.95 ± 0.03 
ACWOE-S 94 ± 0.16 0.94 ± 0.03 
ACWOE 58 ± 0.15 0.58 ± 0.02 
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The average (± standard deviation) of the mean computation time per 

iteration for ACWOE–SW, ACWOE–S, and ACWOE is 0 95 0 03. ± . s, 0 94 0 03. ± . s, 

and 0 58 0 02. ± . s, respectively, calculated over the set of 80 images. For each 

method, the DSC was calculated at each iteration. Figure 4-15 illustrates the 

average DSC over 80 images as a function of iteration. A maximum of 100 

iterations is sufficient for convergence of the algorithms; additional iterations do 

not change the calculated segmentation accuracy given by DSC. According to  

 

the results, ACWOE–SW is fast enough for our practical purposes and provides 

more accurate segmentation. In addition, our method can be optimized to run 

faster using algorithm optimization approaches such as the multi-grid methods.    

4.6. Chapter Summary and Conclusions  

In this chapter, we discussed a novel iterative algorithm to segment OCT 

images of retinal layers using a multi-phase framework with a circular shape 

prior. The methodology and numerical implementation of our algorithm were 

described in detail. In order to evaluate the segmentation method, automated 
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Figure 4-15. The average DSC calculated over 80 OCT 
images for each iteration. Since the standard deviation 
of DSC is very small (less than 0.005) in comparison to 
the mean value, it is not shown in the plot. 
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segmentation results were compared with the ground truth manual segmentation 

as well as the results of two other active-contour-based approaches.  

We have demonstrated that our approach is able to accurately segment all 

of the intra-retinal layers, even when the small size and similar texture make 

them difficult to distinguish visually. Our approach also shows that the inclusion 

of a shape prior constraint improves performance on regions with intensity 

inhomogeneity. We also introduced a contextual scheme to balance the weight of 

different terms in the energy functional, which makes the algorithm more robust 

when the image information is not sufficient to accurately detect the layers.  

Our method is a region-based segmentation approach combining the 

intensity information and the implicit use of edge information, through the shape 

term, to improve the final segmentation accuracy. The proposed method, 

ACWOE–SW, was shown to be more accurate in the presence of noise than the 

other region-based active contours methods. The sensitivity of ACWOE–SW with 

respect to changes in parameters and the initial curve was also investigated, 

revealing the robustness of the ACWOE–SW with respect to these changes. 

Assessing the computation time of the algorithm, it was shown that ACWOE–SW 

is fast enough for our practical purposes. 
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5. LONGITUDINAL STUDY OF RETINAL DEGENERATION 
IN RAT 

In this chapter, we investigate the quantitative measurement of 

longitudinal retinal thickness in rat retinal degeneration using our intra-retinal 

layer segmentation algorithm, described in Chapter 4. Volumetric OCT images of 

the retina in a time course study were segmented using the segmentation 

algorithm. Then, thickness of the NGI (NFL+GCL+IPL) layer was quantified 

across the surface of the retina for multiple volume segmentations. The resulting 

retinal thickness maps over time were used to quantify the thinning of the NGI 

during injury. 

5.1. Data 

The images used in this work were acquired using a custom spectrometer 

based Fourier domain (FD) OCT, described in Section 2.2. Volumetric OCT 

imaging was performed over 14 days post-axotomy (Days 3, 7, 10, and 14) 

according to the image acquisition procedure discussed previously in Section 

2.2. The right eye on each rat underwent an axotomy procedure (severing the 

optic nerve); the contralateral eye was maintained as a control in order to monitor 

retinal degeneration. The axotomy procedure is an accelerated model of 

glaucoma and causes an acute injury that induces degeneration over the whole 

retina. Following the axotomy, the death of the ganglion cells and nerve fibers 

results in thickness changes in the corresponding retinal layers. All animal 
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imaging procedures were compliant with animal care protocols and were 

performed with approval from the animal care committee.  

5.2. Methods 

The rat retina volumes were pre-processed for axial motion correction, 

and cropped to exclude the Optic Nerve Head (ONH) and the edges of the 

volume. The OCT volumetric images were acquired from the peripapillary region 

near the ONH, where the retinal layers disappeared as illustrated in  

Figure 5-1 (b). Therefore, to segment these images, we have cut the region 

inside of the ONH and performed the segmentation on the rest of the volume. In 

addition, OCT images from the periphery (the edges) of the volumes suffered de-

focus due to the crystalline lens, as also reported in other OCT studies [72], and 

were unusable for our experiments because the retinal layers were not clearly 

discernable. The retinal layers were segmented in each OCT  

B-scan using ACWOE-SW. The algorithm segmented five intra-retinal layers 

simultaneously, but only the NGI layer was considered for this study. An example 

of the segmented results for typical OCT retinal images is shown in  

Figure 5-1 (c). The volume segmentation is defined as surfaces bounding the 

NGI in 3D space. Following the segmentation, the thickness of the retina layers 

was calculated in 3D using the Laplacian Streamline Correspondence Thickness 

(LSCT) method [30], [76]. 
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(a) (b) 

  
(c) 

Figure 5-1. (a) An en face image centered at ONH, (b) a typical OCT B-scan 
extracted from the position of red arrow. Retinal layers disappear in ONH region. 
(c) Results of automatic segmentation of NGI layers on OCT images (right), along 
with the original image (left). 

5.3. Results 

The 2D colour coded NGI thickness maps from Days 3, 7, 10, and 14 

post-axotomy are shown in Figure 5-2 overlaid on their corresponding 

reconstructed en face images.  

The change in thickness of the NGI as a function of distance from the 

ONH and time can be extracted from the thickness maps in Figure 5-2. The 

mean and standard deviation of the thickness values for the pixels lying between 

each two consecutive circles and falling within the strip (i.e. the common sector 

between two consecutive circles and the strip) were then calculated. The strip 

was manually selected by the user for each volume due to the realignment 
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Figure 5-2. Summary of 2D colour code thickness maps of the 
combined NGI layers are superimposed on the summed voxel 
projection of retinal volumes acquired in a time course study of 
retinal degeneration in a rat following optic nerve transection [30].  

Issues. Since the OCT system only provides a two dimensional depth profile of 

the retina in real time, alignment of the OCT system to the same point on the 

retina (e.g. ONH) in a longitudinal study is challenging. Alignment of the OCT 

scan area to the ONH is performed based on the fly-through images observed in 

real time during volumetric acquisition. Another problem is that the orientation of 

the eye is different between imaging sessions because the rats roll their eyes 

when anesthetized. 

Figure 5-3 presents the NGI thickness results at different distances from 

ONH for both the control and axatomy eyes. In the case of axatomy, the 

thickness changes are depicted at different time points. Overall, the thickness 

reduces gradually as the distance from ONH increases. Also, selecting a specific 

distance from ONH, the thickness plots from the axotomy eye show a decreasing 
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100 μm
 

40 μm
 

100 μm
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40 μm
 



 

 72

trend in NGI thickness in successive days. As a case in point, at ~1500 μm from 

ONH, the thickness changes from 78 μm (day3) to 66 μm (day 14). 

 

Figure 5-3. Average thickness of the NGI as a function of distance from 
the ONH. OS: left eye, control; OD: right eye with optic nerve transaction 
[30]. 

5.4. Chapter Summary and Conclusions 

We demonstrated quantitative measurement of the longitudinal thinning of 

the combined NGI in a rat that had undergone optic nerve transection. Using the 

active-contour algorithm proposed in Chapter 4, the layers of the rodent retina in 

both the control and axatomy eyes were segmented, and the NGI complex 

thickness over time was quantified by the Laplacian streamlines adopted from a 

previous publication [30], [76]. Automated segmentation, avoiding manual inter- 

and intra-rater variability, holds the potential to reduce the time and effort 

required to delineate the retinal layers and also to provide repeatable, 

quantitative results. The combination of our segmentation algorithms and 

thickness measurements of the retinal cell layers from FD OCT volumes provides 

a powerful computational anatomical tool for vision scientist. While we focus on 

the quantitative measurement of the NGI layers in a model of acute retinal injury 
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in this chapter, the proposed computational pipeline can be readily extended to 

investigate rodent models of retinal degenerative diseases affecting other retinal 

cell layers, such as the outer nuclear layer.  
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6. SUMMARY AND CONCLUSIONS 

This thesis introduced a novel active contour based segmentation 

approach and evaluated its performance when applied to delineate the intra-

retinal layers from OCT images. Quantitative measurement of the longitudinal 

retinal thickness in rat retinal degeneration was also demonstrated using our 

intra-retinal layer segmentation algorithm as a pre-clinical application of our 

proposed method. 

6.1. Summary 

We reviewed the state of the art OCT as a prominent ophthalmic 

diagnostic technique. We adapted OCT for imaging rodent eyes in order to 

complement medical research and study retinal degeneration. As discussed, 

OCT images of rat eye are of relatively low quality and highly corrupted by 

speckle noise and suffer from intensity inhomogeneities and bright saturation 

artifact, presenting challenges for retinal layer segmentation algorithms. We 

proposed a novel iterative algorithm to segment OCT images of retinal layers to 

address these problems. Our approach is able to segment all of the intra-retinal 

layers simultaneously due to the multi-phase property of the algorithm. Each 

region is represented by estimating its corresponding characteristic function. The 

inclusion of a shape prior constraint improves performance on regions with 

intensity inhomogeneity. The shape prior was concentric circles based on expert 

anatomical knowledge of the retinal layers, avoiding the need for training.  The 
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proposed shape prior is a soft constraint rather than a hard one and does not 

hurt the segmentation results when the layers are less likely to resemble the 

assumed shape prior. 

We also employed temporally and spatially adaptive weights to balance 

the weight of different terms in the energy functional. The contextual scheme 

provides an intricate balance between image and prior, which makes the 

algorithm more robust when the image information is not sufficient to accurately 

detect the layers.  

Our method is a region-based segmentation approach combining the 

intensity information and the implicit use of edge information, through the shape 

term, to improve the final segmentation accuracy. Our preliminary comparison to 

active contour segmentation approaches, which rely solely on image 

intensity [31] or edge information [57], revealed that these methods fail to 

properly segment the retinal layers especially INL, OPL, and IS+OS. We also 

found that edge-based active contours were much more sensitive to initialization 

and noise than the region-based approaches. The proposed method, ACWOE–

SW, was shown to be more accurate in the presence of noise than the other 

region-based active contours methods.  

The sensitivity of the proposed algorithm with respect to changes in 

parameters and the initial curve was also investigated, revealing the robustness 

of the ACWOE–SW with respect to these changes. The robustness and accuracy 

of the algorithm was also demonstrated through application to both synthetic data 

and retinal images from rats. The segmentation results were validated by 
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comparing them with the ground truth manual expert delineations using Dice 

similarity coefficient, Hausdorff Distance, and absolute thickness differences.  

The experimental results showed that the algorithm detects the desired retinal 

layers, and achieves an acceptable level of accuracy. 

The developed segmentation approach is based on the level set 

framework which naturally handles topological changes and extends easily to 

higher dimensions. The circular shape prior can be also extended to a spherical 

or a more general shape, such as an ellipsoid, by incorporating the third 

dimension in the relevant equations. The 3-D model of our proposed method is 

obtained by generalizing the formulation given in Section 4.1. Doing so, one may 

extend our work to 3-D active surface and segment the volumetric OCT images. 

The major issue is the high computational cost, which is a function of the image 

resolution and can be tackled by incorporating accelerating methods, such as the 

fast marching methods [77]-[79] or narrowband techniques [80], [81].  

Finally, the proposed segmentation approach was applied to illustrate the 

longitudinal study on a rat that had undergone optic nerve transection. The layers 

of the rodent retina were segmented using ACWOE-SW, and the thickness of 

NGI over time was measured. While the NGI thickness in both the axotomy and 

contralateral eyes decreases by increasing distance from the optic nerve head, 

the NGI complex thickness in the affected eye decreases in successive days as 

well. Our segmentation algorithm provides a powerful computational anatomical 

tool for vision scientists to investigate retinal degenerative diseases affecting 



 

 77

other retinal cell layers by extraction of individual layer properties (e.g. 

thickness). 

6.2. Future work 

The segmentation method developed in this study has a number of 

potential applications and future directions. Although demonstrated here for the 

segmentation of the retinal layers in OCT images, the contributions of spatially 

and temporally adaptive parameters discussed in this thesis are not restricted to 

rat OCT applications specifically, or even OCT in general. These contributions 

can benefit other applications and assist in improving the accuracy and 

convergence of other methods as well. Further, we believe the simultaneous 

segmentation of multiple layers may be generalized to address segmentation of 

multiple objects where there are more elaborate spatial relationships between 

objects, e.g. one is a subset of or is adjacent to the other.  

Future improvements to our algorithm include making it more independent 

of the user by automating the setting of the parameters based on machine 

learning methods [82]-[88] or based on image cues [89], [64]. An additional 

direction for improvement is to develop an automatic initialization method which 

results in initial contours close to the surfaces of retinal layers, guaranteeing the 

convergence of the algorithm to desirable local minima (i.e. segmenting the 

interface of retinal layers). However, an alternative approach is to eliminate the 

dependency on the position of the initial curve based on investigating convex 

formulations with globally optimal solutions [90]-[93]. 
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Application of the algorithm on a larger database of rats suffering from a 

variety of retinal diseases is also of interest and is left for future work. The 

ACWOE–SW can be also extended to human OCT images. Because the human 

eye is a significantly better optical system than that of rodents, human retinal 

OCT images are of higher quality than the rodent retinal images presented here. 

Migrating our ACWOE–SW method to segment human retinal images will require 

customizing the shape prior to incorporate the foveal pit and/or the cup shape of 

ONH, but otherwise is anticipated to provide similar segmentation results. The 

discontinuity of the retinal layers due to ONH and fovea constitutes additional 

issues, which can be addressed by customizing the weights of energy terms and 

applying the algorithm in two steps. In the first step, the vitreo-retinal interface 

would be segmented. Then by considering the location of the vitreo-retinal 

interface, the rest of the layers can be segmented. We would also need to find 

the optimal weight for each term in energy functional as well as to define different 

weighting scheme for different layers in order to segment the cup shape of ONH 

in human data. 
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APPENDICES 

Appendix A: 

Euler Lagrange based evolution equations of the Functional E 

In this work, the energy functional defined by (4-14) is minimized using the 

calculus of variations, which states that the Euler-Lagrange equation (A-1) 

provides a sufficient condition for a stationary point of the functional. Applying the 

Euler-Lagrange equation to our energy functional (4-14) yields:  

0,
j jx jy

F d F d F
dx dyφ φ φ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (A-1) 

where:   
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′′= − + |∇ | + | ∇ | −∑ ∑
 

(A-2) 

Note that the Euler-Lagrange equation can be treated independently for each jφ . 

The partial derivative of F in (A-2) with respect to jφ , jxφ , and jyφ respectively are: 
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1
( ) ( ) ,

R
i

I i j j j
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( )( ) 1 ,jy jy
Rj j j

jy j j

F A
φ φ

δ φ φλ
φ φ φ
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where jδ δ φ′ = ∂ ∂ .  

Taking the derivative of (A-4) with respect to x , we have:  
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Similarly, the derivative of (A-5) with respect to y  is:  
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By substituting the terms (A-3), (A-6), and (A-7) in (A-1), and re-arranging 

slightly, the Euler-Lagrange corresponding to the functional (4-2) is defined as:  
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In the equation above we made use of the fact that:  
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where ‘ ⋅ ’ is a vector dot product. 




