
ALGORITHMS AND THEORETICAL TOPICS ON

SELECTED COMBINATORIAL OPTIMIZATION

PROBLEMS

by

Arman Kaveh

BS, Simon Fraser University, 2006

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the Department

of

Mathematics

© Arman Kaveh 2010

SIMON FRASER UNIVERSITY

Fall 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

We study the Quadratic Assignment Problem (QAP), Three Dimensional Assignment Prob-

lem (3AP) and Quadratic Three Dimensional Assignment Problem (Q3AP), which combines

aspects of both QAP and 3AP. The three problems are known to be NP-hard. We propose

new algorithms for obtaining near optimal solutions of QAP and 3AP and present compu-

tational results. Our algorithms obtain improved solutions in some benchmark instances of

QAP and 3AP. We also discuss theoretical results on 3AP and Q3AP such as polynomially

solvable special cases and approximation algorithms. A special case of 3AP is the constant

3AP where every feasible solution has the same cost. Necessary and sufficient conditions

are presented for an instance of 3AP to have a constant solution and the result is extended

to Multidimensional Assignment Problems (MAP).

iii

Acknowledgments

I would like to thank my senior supervisor, Dr. Abraham Punnen, for his guidance, support

and patience throughout my graduate studies. He took me under his wings as an under-

graduate student and introduced me to the field of Operations Research and Optimization.

I have learned so much from him over the years in academics and life in general that will

stay with me forever. I would like to thank Dr. Tamon Stephen for the invaluable lessons

I have learned from him in optimization and the inspirations for many ideas used in this

thesis. A sincere thank you to Dr. Zhaosong Lu for teaching me everything I know in

continuous optimization. I am also indebted to Dr. Natalia Kouzniak and Dr. Randall

Pyke for life-changing advice and never-ending support throughout the years. I would like

to thank Dr. Snezana Mitrovic-Minic for the opportunity to work with her on different

hands-on projects and providing me with tools of the trade for computational studies.

A great thank you is in order to my parents, brothers and sister for supporting me and

giving me unconditional love. A heartfelt thank you to my fiancé, Neda, for always being

there for me during my student years and giving me strength. Last but not least, I would

like to thank my colleagues for helping me throughout my thesis while having their own

work to attend to. So thank you Annie Zhang, Daniel Benvenuti, Bradley Woods, John

LaRusic, Hua Zheng and Yong Zhang.

iv

Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Introduction to Quadratic Assignment Problem 1

1.1.1 Alternative Formulations . 2

1.2 Applications of QAP . 3

1.2.1 Facility Location Problem . 3

1.2.2 Steinberg Wiring Problem . 4

1.3 Computational Complexity of QAP . 4

1.4 Lower Bounds for QAP . 5

1.4.1 Combinatorial Bounds . 6

1.4.2 Reformulation Bounds . 6

1.4.3 Algebraic Bounds . 7

1.5 Exact Algorithms for QAP . 7

1.5.1 Branch and Bound . 7

1.5.2 Cutting Plane . 8

v

1.5.3 Dynamic Programming . 8

1.6 Heuristic Algorithms for QAP . 8

1.6.1 Construction Methods . 8

1.6.2 Limited Enumeration Methods . 9

1.6.3 Improvement Methods . 9

1.6.4 Metaheuristics . 10

1.6.5 Simulated Annealing . 10

1.6.6 Genetic Algorithms . 10

1.7 Introduction to 3-Dimensional Assignment Problem 11

1.7.1 Axial 3-Dimensional Assignment Problem 11

1.7.2 Planar 3-Dimensional Assignment Problem 12

1.7.3 Multidimensional Assignment Problem 13

1.8 Complexity of 3AP . 13

1.8.1 Polynomially Solvable Special Cases 14

1.8.2 Approximation Algorithms . 16

1.9 Applications of 3AP . 18

1.9.1 Assignment of Workers to Jobs to Machines 18

1.9.2 Scheduling of Teaching Practices . 19

1.9.3 Dynamic Facility Location . 20

1.9.4 Applications of 3PAP and MAP . 20

1.10 Exact Algorithms for 3AP . 21

1.11 Heuristic Algorithms for 3AP . 22

1.11.1 GRASP with Path Relinking . 22

1.11.2 Hybrid Genetic . 23

1.12 Introduction to Quadratic 3-Dimensional Assignment Problem 25

1.13 Complexity of Q3AP . 27

2 Randomized Local Search for QAP 28

2.1 Local Search and QAP . 28

2.2 Randomized Local Search . 30

2.3 The QAP and Proposed Heuristics . 32

2.3.1 RandLS-Sim for the QAP . 32

2.3.2 Tabu Thresholding Algorithm . 34

vi

2.4 Computational Results . 34

34PA3nosmhtiroglAdnayroehT3

3.1 Polynomially Solvable Special Cases . 43

3.1.1 Constant 3AP . 43

3.1.2 Constant MAP . 49

3.1.3 Other Special Cases . 52

3.2 Approximation Algorithms . 54

3.3 Proposed Algorithms . 58

3.3.1 Fix Mapping . 59

3.3.2 Lagrangian Relaxation . 62

3.3.3 Linear Programming Peeling . 71

3.4 Computational Results . 73

3.4.1 Balas and Saltzman Dataset . 74

3.4.2 Burkard, Rudolf and Woeginger Dataset 74

3.4.3 Crama and Spieksma Dataset . 75

3.5 Three Dimensional Traveling Salesman Problem 76

3.5.1 An Application of 3TSP . 76

87PA3QnoscipoT4

4.1 Polynomially Solvable Special Cases . 78

4.2 Approximation Algorithms . 83

68noisulcnoC5

5.1 Appendix 1 . 88

5.1.1 Border Length instances . 89

5.1.2 Conflict Index Instances . 92

vii

Bibliography 96

2.4 Computational Results . 34

34PA3nosmhtiroglAdnayroehT3
3.1 Polynomially Solvable Special Cases . 43

3.1.1 Constant 3AP . 43
3.1.2 Constant MAP . 49
3.1.3 Other Special Cases . 52

3.2 Approximation Algorithms . 54
3.3 Proposed Algorithms . 58

3.3.1 Fix Mapping . 59
3.3.2 Lagrangian Relaxation . 62
3.3.3 Linear Programming Peeling . 71

3.4 Computational Results . 73
3.4.1 Balas and Saltzman Dataset . 74
3.4.2 Burkard, Rudolf and Woeginger Dataset 74
3.4.3 Crama and Spieksma Dataset . 75

3.5 Three Dimensional Traveling Salesman Problem 76
3.5.1 An Application of 3TSP . 76

87PA3QnoscipoT4
4.1 Polynomially Solvable Special Cases . 78
4.2 Approximation Algorithms . 83

68noisulcnoC5
5.1 Appendix 1 . 88

5.1.1 Border Length instances . 89
5.1.2 Conflict Index Instances . 92

Bibliography 96

List of Tables

2.1 Border Length Instances . 39

2.2 Conflict Index Instances . 39

2.3 RandLS-Sim Algorithm with initial solution as RandLS-Tabu output 40

2.4 RandLS-Tabu with initial solution as RandLS-Sim output - Border Length

instances . 40

2.5 RandLS-Tabu with initial solution as RandLS-Sim output - Conflict Index

instances . 40

2.6 Border Length Instances - initial solution from website [3] 41

2.7 Conflict Index Instances - initial solution from website [3] 41

2.8 Comparison of algorithms used for QAPLIB instances 42

3.1 Balas and Saltzman Dataset . 74

3.2 Burkard, Rudolf and Woeginger Dataset . 75

3.3 Crama and Spieksma Dataset, Type 1 . 75

3.4 Crama and Spieksma Dataset, Type 2 . 75

3.5 Crama and Spieksma Dataset, Type 3 . 76

5.1 Border Length Instances . 89

5.2 Conflict Index Instances . 89

viii

List of Figures

2.1 RandLS-Sim . 35

2.2 RandLS-Tabu . 35

ix

Chapter 1

Introduction

In this thesis we consider three combinatorial optimization problems: Quadratic Assign-

ment Problem (QAP), Three Dimensional Assignment Problem (3AP) and Quadratic Three

Dimensional Assignment Problem (Q3AP). Each problem is rich in theory and applications.

We introduce the problems in this chapter and discuss the existing literature. Subsequent

chapters include our contribution to these problems.

1.1 Introduction to Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) was first proposed by Koopmans and Beckmann

in 1957 [81]. It can be formulated as follows. Suppose we are given two n × n matrices A

and B where A = [aij] is the distance between locations and B = [bij] is the flow between

facilities. The objective is to

min
π∈πn

n∑
i=1

n∑
j=1

bijaπ(i)π(j) (1.1)

where πn denotes permutations on n. Research on QAP has led to interesting theory,

applications and solution techniques. We will briefly describe some applications and solution

techniques in this chapter. The reader is referred to some books and surveys in the literature

as listed in [38, 99, 100].

1

CHAPTER 1. INTRODUCTION 2

1.1.1 Alternative Formulations

An Integer Programming formulation is stated as follows

min
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

bijaklxikxjl

s.t.

n∑
j=1

xij = 1 ∀ i = 1, . . . , n

n∑
i=1

xij = 1 ∀ j = 1, . . . , n

xij ∈ {0, 1}

(1.2)

The above formulation is due to Koopmans and Beckmann [81]. The variables can be

interpreted as

xij =

1 if facility i is assigned to location j

0 otherwise

The formulation proposed by Lawler [84] is more generic and is given by

min
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

cijklxijxkl

s.t.

n∑
j=1

xij = 1 ∀ i = 1, . . . , n

n∑
i=1

xij = 1 ∀ j = 1, . . . , n

xij ∈ {0, 1}

(1.3)

This formulation can be expressed in terms of permutations

min
π∈πn

n∑
i=1

n∑
j=1

ciπ(i)jπ(j) (1.4)

Consider the following formulation of Assignment Problem (AP)

min

n∑
i=1

n∑
j=1

cijxij

s.t.

n∑
j=1

xij = 1 ∀ i = 1, . . . , n

n∑
i=1

xij = 1 ∀ j = 1, . . . , n

xij ≥ 0 ∀ i, j = 1, . . . , n

(1.5)

CHAPTER 1. INTRODUCTION 3

and the corresponding permutation formulation

min
π∈πn

n∑
i=1

ciπ(i) (1.6)

The Lawler formulation (1.3) extends AP to QAP by making the objective function

quadratic. The Koopmans and Beckmann formulation (1.2) assumes that the four-dimensional

cost matrix C in (1.3) is generated by a pair of n×n matrices A and B where cijkl = bikajl.

There is another slightly different formulation which introduces a linear term in the

objective function

min
π∈πn

n∑
i=1

n∑
j=1

bijaπ(i)π(j) +
n∑
i=1

ciπ(i) (1.7)

In the case that cij = 0 for all 1 ≤ i, j ≤ n, we get the formulation (1.1). Our focus in

this work is on formulations (1.1) and (1.2). Formulation (1.2) has a quadratic term in the

objective function. It is possible to represent the problem in a linear form [54, 79].

A trace formulation was introduced by Edwards in [46, 47]. Given the matrices A and

B, a function fA,B can be defined on the set Πn of permutation matrices such that

fA,B(X) = tr(AXBXt)

where the superscript t denotes the transpose of a matrix. Then the trace formulation is

min
X∈Πn

fA,B(X) = tr(AXBXt) (1.8)

Trace formulation is used for deriving eigenvalue lower bounds as referenced in Section

(1.4.3).

1.2 Applications of QAP

The QAP originated in 1957 from assigning a set of economic activities to a set of locations

[81]. Therefore its first application was related to facility location problems which remains

as one of its major applications to this date. Another dominant application of QAP is in

wiring problems.

1.2.1 Facility Location Problem

Facility location or facility layout is the problem of assigning n facilities to n locations. The

n × n matrices A and B represent the distance between locations and the flow between

CHAPTER 1. INTRODUCTION 4

facilities respectively. A complete assignment can be represented by a permutation π ∈ πn
as follows. Consider assigning facility i to the location π(i) and facility j to the location π(j).

Since each unit of flow between facilities i and j has to travel the distance between locations

π(i) and π(j), the associated cost is bijaπ(i)π(j). The total cost for such permutation π is

n∑
i=1

n∑
j=1

bijaπ(i)π(j)

We are interested in finding the permutation which leads to the minimum cost, thus formu-

lation (1.1). A comprehensive discussion of facility layout problem can be found in [51].

A related problem is the hospital layout problem [48]. It involves the location of various

departments within a hospital so as to minimize the distance traveled by patients (per

year) while moving from one department to another. The annual flow between each pair

of departments is known and so is the distance between each pair of locations. The n × n
matrices A and B represent the distances and flows respectively. The problem formulation

is the same as (1.1) above.

1.2.2 Steinberg Wiring Problem

In this problem n components have to be placed on a board with n available slots where

pairs of components are connected by wires. Let the n× n matrix A represent the distance

between pairs of slots on the board and the n× n matrix B represent the number of wires

between pairs of components. The objective is to place the components on the board in

such a way to minimize the total length of wires used [112]. The problem formulation is

that of QAP in (1.1).

Other applications of QAP include: typewriter keyboards [103], parallel and distributed

computing [25], economic problems [74] and scheduling parallel production lines [59]. Some

recent applications in bio-informatics can be found in [111, 120, 122, 123].

1.3 Computational Complexity of QAP

QAP is among the hardest combinatorial optimization problems. In 1976 Sahni and Gon-

zales showed that QAP is strongly NP-hard [109] which indicates that finding an efficient

algorithm to solve the problem in polynomial time is very unlikely. They also showed that

unless P = NP , it is not possible to find an ε-approximation algorithm for any constant ε in

CHAPTER 1. INTRODUCTION 5

polynomial time. An ε-approximation algorithm for a minimization problem finds a solution

with cost at most (1 + ε) of the optimal cost. For more on the theory of NP-completeness

please refer to [56].

Many NP-complete problems such as Traveling Salesman Problem (TSP), Graph Par-

titioning Problem and Maximum Clique Problem are special cases of QAP. In the case of

TSP, the distance matrix of QAP corresponds to the distance matrix of TSP and the flow

matrix corresponds to the adjacency matrix of a cycle of length n in TSP.

Some special cases of QAP are solvable in polynomial time. The distance and flow ma-

trices of such instances have a special structure which leads to polynomial time algorithms.

For instance, if both matrices are weighted adjacency matrices of a tree, or one of the ma-

trices is a weighted adjacency matrix of a double star then the problem can be solved in

polynomial time [40]. Adolphson and Hu showed that if one matrix represents the weighted

adjacency matrix of a tree while the other represents the distance matrix of a grid graph the

problem is solvable in O(n log n) [40]. The reader is referred to [38] for more polynomially

solvable cases of QAP.

A set of benchmark instances of QAP can be found in a unified collection called QAPLIB

[33] accessible to the scientific community. It contains instances which have been solved to

optimality and instances for which researchers are currently working on to obtain improved

solutions. As a measure of how difficult QAP is consider the following. The time taken to

find the optimal solution to the problem Kra30b with n = 30 available on QAPLIB would

amount to the equivalent of 2.7 years on a single cpu HP-3000 workstation [11]. This shows

that even a QAP problem of size n = 30 can prove to be computationally challenging. A

study of the distribution of objective values of QAP can be found in [19].

1.4 Lower Bounds for QAP

A lower bound for a QAP instance is a value smaller than or equal to the optimal solution

value of QAP. There is extensive literature on finding lower bounds for QAP from theoretical

and computational perspectives. Despite the efforts, finding tight and computationally

efficient lower bounds remains a challenge. The quality of lower bounds is crucial for many

exact algorithms such as branch and bound. Exact methods perform implicit enumeration

of search space by using lower bounds to avoid an exhaustive search. Also, lower bounds

can be used to measure the quality of solutions obtained from heuristic algorithms. For the

CHAPTER 1. INTRODUCTION 6

QAP there are three main categories of lower bounds: combinatorial bounds, reformulation

bounds and algebraic bounds.

1.4.1 Combinatorial Bounds

Combinatorial based bounds include Gilmore-Lawler bound (GL) [62, 84] and Christofides-

Gerrard bound (CG) [41]. GL bound is one of the original bounds proposed for QAP. Given

the matrices A and B consider the new n× n matrix C defined as follows

cij = min
π∈πn

n∑
k=1

aiπ(k)bjk 1 ≤ i, j ≤ n (1.9)

It takes O(n3) to calculate the matrix C. Given a permutation π the following inequality

holds
n∑
i=1

n∑
j=1

bijaπ(i)π(j) ≥
n∑
i=1

cπ(i)i (1.10)

which implies the inequality

min
π∈πn

n∑
i=1

n∑
j=1

bijaπ(i)π(j) ≥ min
π∈πn

n∑
i=1

cπ(i)i = GL(A,B) (1.11)

After calculating matrix C, it takes O(n3) to calculate GL(A,B) by solving a linear assign-

ment problem. GL bounds are one of the simplest and cheapest bounds to compute but are

not strong.

1.4.2 Reformulation Bounds

A reformulation of a QAP instance is another QAP instance with different matrices A and

B such that any permutation generates the same objective value in both instances. The

underlying idea behind reformulation bounds is to generate a sequence of reformulations

P1, P2, . . . , Pk for a given problem P0 and obtain bounds B1 ≤ B2 ≤ · · · ≤ Bk. One would

aim to use the previous reformulation and bound to make the current calculation easier.

Bounding techniques based on reformulation are addressed by Carraresi and Malucelli [37]

and Assad and Xu [12]. Both authors use GL bounds in each iteration.

CHAPTER 1. INTRODUCTION 7

1.4.3 Algebraic Bounds

Algebraic bounds include eigenvalue related bounds [49, 69, 70, 107], variance reduction

bounds [87] and semidefinite relaxation bounds [77]. Eigenvalue related bounds are the

major type in algebraic bounds.

An introduction is in order for next section. Algorithms for solving NP-hard combina-

torial optimization problems can be classified into three main categories: exact algorithms,

heuristic algorithms and approximation algorithms. Exact algorithms strive to obtain the

optimal solution and result in extensive computational time. As the problem size grows, the

time required to obtain the optimal solutions grows exponentially. This is where heuristic

algorithms defend their merit. Heuristic algorithms are able to find a near optimal solution

in a much more reasonable time, especially for large instances. One drawback of heuristic

algorithms is that they provide no guarantee of the solution quality. On the other hand,

approximation algorithms provide a guarantee of solution quality, which makes them ap-

pealing from a theoretical perspective. However, approximation algorithms do not generally

perform as well as heuristics in practice, which is why heuristic methods remain widespread

in the industry and academia. In the case of the general QAP, as discussed in section 1.3,

approximation algorithms cannot exist unless P=NP. Therefore any attempts to discover

approximation algorithms have to be restricted to special cases of QAP.

1.5 Exact Algorithms for QAP

Methods for finding the exact optimal solution for QAP fall into three main categories:

branch-and-bound, cutting plane and dynamic programming.

1.5.1 Branch and Bound

Many authors have proposed sequential and parallel branch-and-bound methods for QAP.

These methods are among the most successful ones for QAP. They start with an empty initial

solution and iteratively extend it to a full solution. The general idea is to avoid exhausting

the entire search space by excluding certain assignments. Once we choose to branch on

the possible values of a variable, we can use different methods to find bounds on these

branches in order to determine which branches to avoid. Branch and bound methods can

be characterized in three main categories with respect to branching rule: single assignment

CHAPTER 1. INTRODUCTION 8

methods [62, 84, 31, 47, 97], pair assignment methods [58, 83, 94] and relative positioning

methods [91].

1.5.2 Cutting Plane

Cutting plane methods for QAP are described in [22, 21]. These methods involve solving

the linear programming relaxation of the underlying integer program. In case the optimal

solution to this linear program is an integer then it is the optimal solution to the integer

program. Otherwise, the algorithm adds a constraint to the linear program which cuts away

this non-integer solution but leaves all integer solutions in the feasible region. The integer

linear programming formulation for these methods can be extremely large even for moderate

size problems. As a result, computational experience with these methods is not satisfactory.

1.5.3 Dynamic Programming

Christofides and Benavent [39] used a dynamic programming approach to solve a special

case of QAP. Dynamic programming solves a problem of size n by starting from subproblems

of size 1, 2, . . . , n − 1. After solving subproblems of size k it upgrades the solutions to size

k + 1. Problems may arise in dynamic programming if the solution to a subproblem or the

upgrade procedure cannot be performed in polynomial time.

1.6 Heuristic Algorithms for QAP

Many researchers have studied heuristic methods for solving QAP instances as the problem

remains NP-complete and even finding an ε-approximate solution for any constant ε is NP-

complete. Exact algorithms can only solve small instances with n ≤ 20 whereas heuristic

methods can obtain near optimal solutions for large problems (e.g. n ≥ 40) in reasonable

time. There are six main types of heuristics in the literature: construction methods, lim-

ited enumeration methods, improvement methods, metaheuristics, simulated annealing and

genetic algorithms.

1.6.1 Construction Methods

Construction methods start with an empty partial permutation p and expand p into a full

permutation with every step of the algorithm. Such methods are considered to be relatively

CHAPTER 1. INTRODUCTION 9

simple approaches with a poor solution quality. Gilmore introduced construction methods

in 1962 [62]. A revised construction method was proposed by Burkard [28].

1.6.2 Limited Enumeration Methods

These methods are strongly related to exact methods such as branch-and-bound and cutting

planes. The idea behind these algorithms is that a good suboptimal solution may be pro-

duced early in an enumerative search while finding an optimal solution takes much longer.

Also an optimal solution may be found earlier in the search whereas the rest of the time is

spent on proving the optimality of this solution. There are many ways to limit enumeration

of the search space. One approach is to impose a time limit. Enumeration stops when

the algorithm reaches a time limit or no improvement has been made in a predetermined

time interval. These prespecified parameters can be problem specific. A second option is

to decrease the requirement for optimality. For example, if no improvement has been made

after a certain prespecified time interval, then the upper bound is decreased by a certain

percentage resulting in deeper cuts in the enumeration tree. Although the optimal solution

may be cut off, it differs from the obtained solution by the above percentage.

1.6.3 Improvement Methods

Most heuristics on QAP can be classified as improvement methods. One major subcategory

is Local Search. Local search algorithms start with a feasible solution and iteratively try to

find a better solution in the neighborhood of the current one. This process is repeated until

no further improvement can be made. Local search methods rely heavily on the definition

of neighborhood. A local optimum with respect to one neighborhood may not be optimum

with respect to another neighborhood. The most common neighborhoods used for QAP are

pair exchanges and cyclic triple exchanges. A combination of neighborhoods may be used

in a local search algorithm. One can run local search several times with different initial

solutions in order to get better solutions. Construction methods can be used to obtain the

initial solution. However, Bruijs [27] proved that generally there is no strong argument for

good quality initial solutions. Some local search based algorithms are discussed in [91, 93].

CHAPTER 1. INTRODUCTION 10

1.6.4 Metaheuristics

An example of metaheuristics is tabu search introduced by Glover [63, 64]. Tabu search

tries to escape local optima in combinatorial search. It consists of neighborhood structure,

a move, a tabu list and an aspiration criterion. A move in QAP is usually a pair-exchange

that generates a new solution from the existing one. A tabu list is a list of forbidden moves.

An aspiration criterion allows a tabu move to be executed if it is perceived to lead to a very

good solution. A description of tabu search for QAP can be found in [20, 110, 114].

1.6.5 Simulated Annealing

Simulated annealing approaches try to overcome local optimality in hard combinatorial

optimization problems by drawing analogies from statistical mechanics. The analogy led

to a method called simulated annealing developed by Kirkpatrick, Gelatt and Vecchi [80].

They showed how the Metropolis algorithm [90] for simulating the behavior of a physical

particle system can be used to apply techniques from statistical mechanics to optimization.

They applied those ideas on Traveling Salesman Problem. Burkard and Rendl [35] applied

simulated annealing to QAP and showed that simulated annealing is a general approach for

combinatorial optimization problems which possess a neighborhood structure. Wilhelm and

Ward further investigated simulated annealing for QAP [121].

1.6.6 Genetic Algorithms

Genetic algorithms are based on the ideas from natural selection. They maintain a popula-

tion of solutions and apply evolutionary mechanisms to obtain a new population of solutions

with better fitness values on average. The main point is to adapt these simple evolutionary

mechanisms to combinatorial optimization problems. Genetic algorithms were first devel-

oped by Holland [75] and did not receive much enthusiasm until the advent of parallel

computers.

A genetic algorithm starts with a set of initial feasible solutions called initial popula-

tion. The algorithms selects a number of pairs of parents from the current population and

produces a new feasible solution from each pair by crossover rules. A good description

of genetic algorithms can be found in [44, 67]. Tate and Smith [116] developed a standard

genetic algorithm for QAP and revealed some drawbacks of this approach despite the promis-

ing numerical results. Fleurent and Ferland [50] proposed hybrid approaches obtained by

CHAPTER 1. INTRODUCTION 11

combining genetic algorithms with other algorithms such as local search and tabu search.

They improved the best known solution to some large scale test problems in QAPLIB [33].

Ahuja, Orlin and Tiwari [9] developed a greedy genetic algorithm and also obtained very

good results on large scale problems from QAPLIB.

1.7 Introduction to 3-Dimensional Assignment Problem

The 3-Dimensional Assignment Problem was first introduced by Pierskalla in 1967 [101] as

an extension of the Assignment Problem (AP) described in (1.5). A classical application of

AP is the assignment of n people to n jobs, where cij denotes the cost of assigning person i

to job j. The objective is to assign exactly one person to each job such that the total cost

of assignments is minimized.

The 3-Dimensional Assignment Problem is an extension of AP and has two variations;

axial (3AP) and planar (3PAP). The focus of this thesis is on the axial version 3AP.

1.7.1 Axial 3-Dimensional Assignment Problem

The 3AP is formulated as the following

min
n∑
i=1

n∑
j=1

n∑
k=1

cijkxijk

s.t.

n∑
j=1

n∑
k=1

xijk = 1 ∀ i = 1, . . . , n

n∑
i=1

n∑
k=1

xijk = 1 ∀ j = 1, . . . , n

n∑
i=1

n∑
j=1

xijk = 1 ∀ k = 1, . . . , n

xijk ∈ {0, 1} ∀ i, j, k = 1, . . . , n

(1.12)

A real value cijk is assigned to each triple (i, j, k). In general, cijk is arbitrary and cannot

be represented by the sum of two edge costs (i.e. cijk 6= c′ij + c′′jk). Otherwise, as discussed

later in this chapter, the problem becomes fairly straightforward.

Alternatively, 3AP can be considered as an optimization problem on a complete tripartite

graph Kn,n,n = (I ∪ J ∪K, (I × J) ∪ (I ×K) ∪ (J ×K)), where I, J,K are disjoint sets of

size n. The cost of choosing a triangle (i, j, k) ∈ I × J ×K is cijk. The objective is to find

CHAPTER 1. INTRODUCTION 12

a subset A ⊆ I × J ×K of n disjoint triangles, such that every element of I ∪ J ∪K occurs

in exactly one triangle of A and the total cost c(A) is minimized, where

c(A) =
∑

(i,j,k)∈A

cijk (1.13)

An alternative formulation is

min
p,q∈πn

n∑
i=1

cip(i)q(i) (1.14)

where πn denotes permutations on n. Therefore this problem has (n!)2 feasible solutions.

The 3AP as formulated in (1.12) is a special case of the Set Partitioning Problem (SPP),

which is formulated as

min {cx | Ax = e, x ∈ {0, 1}q} (1.15)

where A is a matrix of zeros and ones, and e is a vector of ones. The reader is referred to

[13, 57] for more details on SPP.

1.7.2 Planar 3-Dimensional Assignment Problem

The Planar 3-Dimensional Assignment Problem (3PAP) can be formulated as

min
n∑
i=1

n∑
j=1

n∑
k=1

cijkxijk

s.t.

n∑
i=1

xijk = 1 ∀ j, k = 1, . . . , n

n∑
j=1

xijk = 1 ∀ i, k = 1, . . . , n

n∑
k=1

xijk = 1 ∀ i, j = 1, . . . , n

xijk ∈ {0, 1} ∀ i, j, k = 1, . . . , n

(1.16)

In contrast to finding n triples in 3AP, the 3PAP finds n2 triples such that each pair of

elements from (I × J) ∪ (I ×K) ∪ (J ×K) occurs in exactly one triple and the total cost

is minimized. Every “flat” in the 3-dimensional array xijk must contain a 2-dimensional

assignment. Thus the number of feasible solutions of 3PAP corresponds to Latin squares of

order n [85] and hence increases very fast. The number of different Latin squares of order

n equals n!(n − 1)!T (n), where T (n) is the number of reduced Latin squares. T (n) grows

very large. For instance, T (9) was discovered to be 377,597,570,964,258,816 [16] and T (9)

was calculated as 5,363,937,773,277,371,298,119,673,540,771,840 [89].

CHAPTER 1. INTRODUCTION 13

1.7.3 Multidimensional Assignment Problem

The 3-Dimensional Assignment Problem can be further extended to higher dimensions re-

sulting in Multidimensional Assignment Problem (MAP). MAP was considered for the first

time by Pierskalla [102]. The axial MAP of dimension d is formulated as follows

min

n∑
i1=1

· · ·
n∑

id=1

ci1...idxi1...id

s.t.

n∑
i2=1

· · ·
n∑

id=1

xi1...id = 1 ∀ i1 = 1, . . . , n

n∑
i1=1

· · ·
n∑

ik−1=1

n∑
ik+1=1

· · ·
n∑

id=1

xi1...id = 1 ∀ k = 2, . . . , d− 1,

∀ ik = 1, . . . , n
n∑

i1=1

· · ·
n∑

id−1=1

xi1...id = 1 ∀ id = 1, . . . , n

xi1...id ∈ {0, 1} ∀ i1, . . . , id = 1, . . . , n

(1.17)

An equivalent formulation is an extension of (1.14). Let φ1, φ2, . . . , φd−1 be permutations

on n. Then the problem is

min
φ1,φ2,...,φd−1

n∑
i=1

ciφ1(i)φ2(i)...φd−1(i) (1.18)

1.8 Complexity of 3AP

3AP belongs to the class of NP-hard problems [56] and therefore an efficient algorithm to

solve 3AP in polynomial time seems highly unlikely. 3AP is related to the 3-Dimensional

Matching Problem (3DM), which is one of the original problems to be proven NP-hard by

Karp [78]. The 3DM states that given a set U ⊆ T × T × T where T is a finite set, is there

a set W ⊆ U such that |W | = |T | and no two elements of W agree in any coordinates. The

reduction from 3DM to 3AP is as follows. Given an arbitrary instance of 3DM, create an

instance of 3AP with

cijk =

1 if (i, j, k) ∈ U

0 otherwise

Then a minimum cost solution to 3AP corresponds to a “yes” answer for 3DM if and only

if its cost is zero.

CHAPTER 1. INTRODUCTION 14

In addition to 3AP, the planar version 3PAP is NP-hard as well [52]. On the other hand,

the AP is polynomially solvable in O(n3) [82].

1.8.1 Polynomially Solvable Special Cases

Although the general 3AP is NP-hard, some special cases of 3AP can be solved in polynomial

time. A trivial case is where the costs cijk can be represented as two sums such that

cijk = c′ij + c′′jk. Then the problem can be viewed as two separate Assignment Problems on

matrices C ′ and C ′′ which can be solved in polynomial time.

Furthermore, if the cost matrix satisfies a Monge property as defined below, then the

problem is polynomially solvable by a lexicographical greedy algorithm [23].

Definition 1.1. An m× n matrix C is called a Monge matrix if

ci1j1 + ci2j2 ≤ ci1j2 + ci2j1 ∀ i1 < i2, j1 < j2

Aggarwal and Park [7, 8] extended this notion to higher dimensional matrices.

Definition 1.2. For d ≥ 2, an n1 × n2 × · · · × nd d-dimensional matrix C = ci1,i2,...,id has

the Monge property if for all entries ci1,i2,...,id and cj1,j2,...,jd we have

cs1,s2,...,sd + ct1,t2,...,td ≤ ci1,i2,...,id + cj1,j2,...,jd

where for 1 ≤ k ≤ d, sk = min{ik, jk} and tk = max{ik, jk}.

Another special case which is polynomially solvable is discussed by Burkard et al.

[36]. Consider three n-element sequences ai, bi, di of nonnegative real numbers such that

the cost matrix C can be decomposed as cijk = aibjdk. They show that the problem

maxp,q∈πn
∑n

i=1 cip(i)q(i) is solvable in polynomial time whereas the minimization version

minp,q∈πn
∑n

i=1 cip(i)q(i) remains NP-hard (Theorems (1.2) and (1.4) below). The maximiza-

tion version is a special case of the minimization version as follows. The array defined as

cijk = −aibjdk fulfills the three-dimensional Monge property as first proposed by Aggarwal

and Park [7, 8]. Therefore Theorems (1.2) and (1.3) can be seen as a special case of a

more general result of Bein, Brucker, Park and Pathak [23]. These authors have shown

that the lexicographical greedy algorithm solves the Multidimensional Transportation Prob-

lem if and only if the cost array possesses the Monge property. The Multidimensional

Transportation Problem is an extension of the Multidimensional Assignment Problem. We

CHAPTER 1. INTRODUCTION 15

provide the formulation for Three Dimensional Transportation Problem (3TP) and leave the

multidimensional case as a simple exercise for the reader.

min
n∑
i=1

n∑
j=1

n∑
k=1

cijkxijk

s.t.
n∑
j=1

n∑
k=1

xijk = ai ∀ i = 1, . . . , n

n∑
i=1

n∑
k=1

xijk = bj ∀ j = 1, . . . , n

n∑
i=1

n∑
j=1

xijk = ek ∀ k = 1, . . . , n

xijk ≥ 0

xijk ∈ Z

(1.19)

where
n∑
i=1

ai =
n∑
j=1

bj =
n∑
k=1

ek

Note that 3TP can be turned into 3AP if ai = bj = ek = 1 for all i, j, k = 1, . . . , n.

Burkard et al. [36] discuss more special cases of the 3AP where cijk = aibjdk and

the sequences ai, bi, di satisfy certain properties. Both the 2-dimensional versions of the

minimization and maximization problems, i.e. minp∈πn
∑n

i=1 cip(i) and maxp∈πn
∑n

i=1 cip(i)

are trivial by the following proposition [73].

Proposition 1.1. Let ai and bi be two n-element sequences of real numbers sorted in non-

decreasing order and let p be an arbitrary permutation. Then

n∑
i=1

aibn−i+1 ≤
n∑
i=1

aibp(i) ≤
n∑
i=1

aibi

The following theorems are due to Burkard et al. [36].

Theorem 1.2. Given three sequences ai, bi and di consisting of n nonnegative numbers

sorted in non-decreasing order, we have

n∑
i=1

aibidi = max
p,q∈πn

n∑
i=1

aibp(i)dq(i)

CHAPTER 1. INTRODUCTION 16

Theorem 1.3. Let p
(j)
i be m n-element sequences with nonnegative elements sorted increas-

ingly and let φj be m arbitrary permutations on n. Then

n∑
i=1

m∏
j=1

p
(j)
i = max

φ1,...,φm

n∑
i=1

m∏
j=1

p
(j)
φj(i)

Theorem 1.4. Let three n-element sequences ai, bi and di of nonnegative rational numbers

and a bound S be given.

1. Then it is NP-complete to decide whether there exist permutations p and q such that∑n
i=1 aibp(i)dq(i) ≤ S.

2. For each k ≥ 1 it is NP-hard to approximate the optimum solution within a factor of

nk.

Theorem 1.5. Consider sequences of the form A = (1, . . . , 1, x, . . . , x), B = (1, . . . , 1, y, . . . , y)

and D = (1, . . . , 1, z, . . . , z) with 1 < x ≤ y ≤ z. Then 3AP with cijk = aibjdk can be solved

in O(n) time.

Theorem 1.6. Consider sequences of the form A = (1, . . . , 1, x, . . . , x), B = (1, . . . , 1, y, . . . , y)

and D = (d1, d2, . . . , dn) with 1 < x ≤ y and 1 = d1 ≤ d2 ≤ · · · ≤ dn. Then 3AP with

cijk = aibjdk can be solved in O(n) time.

Theorem 1.7. If the sequences A and B contain together at most k distinct values, where

k ≥ 1 is some fixed integer, then 3AP with cijk = aibjdk can be solved in O(nk
2+1 log n).

Theorem 1.8. If the sequence A contains (n− k) times the value x, where k ≥ 1 is some

fixed integer, then 3AP with cijk = aibjdk can be solved in O(n2k+1 log n).

1.8.2 Approximation Algorithms

As part 2 Theorem (1.4) by Burkard et al. [36] indicates, it is NP-hard to approximate the

general 3AP (with arbitrary cost matrix) to a constant factor. However, the first researchers

to show this result are Crama and Spieksma [43], as stated in Theorem (1.9). On the other

hand, Theorem (1.4) indicates a stronger result than that of Theorem (1.9) in the sense

that the general 3AP cannot be approximated to any polynomial factor unless P = NP .

The proof by Crama and Spieksma follows by investigating the special case described

next. Consider the formulation discussed in equation (1.13). Each edge (u, v) ∈ (I ×

CHAPTER 1. INTRODUCTION 17

J) ∪ (I × K) ∪ (J × K) is assigned a nonnegative length duv and the cost of a triangle

(i, j, k) ∈ (I ∪ J ∪K) is defined by either tijk or sijk, where

tijk = dij + dik + djk (1.20)

sijk = min{dij + dik, dij + djk, dik + djk} (1.21)

In other words, tijk is the total length of a triangle and sijk is the sum of the lengths of its

two shortest edges. The 3AP with cijk = tijk or cijk = sijk is referred to as problem T or S

respectively.

Theorem 1.9. (Crama and Spieksma [43]) Unless P = NP , there is no ε-approximate

polynomial algorithm for problems T and S for any ε ≥ 0.

Since T and S are speical cases of 3AP, this theorem proves that the general 3AP with

arbitrary cost cannot be approximated to any constant factor in polynomial time unless

P = NP .

Unlike the general 3AP, Crama and Spieksma [43] proved that some special cases can

be approximated within a constant factor as described next. Consider the special cases of

T and S for which the following triangle inequality holds

duv ≤ duw + dvw ∀ u, v, w ∈ I ∪ J ∪K (1.22)

These problems are referred to as T4 and S4 respectively.

Theorem 1.10. (Crama and Spieksma [43]) Problems T4 and S4 are NP-hard.

They present a 1
2 -approximate algorithm for both T4 and S4, i.e. a heuristic which

always returns a feasible solution whose cost is at most 3
2 of the optimal cost. The algorithm

proceeds in two phases.

Phase 1. Find an optimal solution x∗ of

min
∑
i∈I

∑
j∈J

dijxij

s.t.
∑
i∈I

xij = 1 ∀ j ∈ J∑
j∈J

xij = 1 ∀ i ∈ I

xij ≥ 0 ∀ i ∈ I, j ∈ J

(1.23)

CHAPTER 1. INTRODUCTION 18

Let M = {(i, j) | x∗ij = 1}.
Phase 2. Find an optimal solution y∗ of

min
∑

(i,j)∈M

∑
k∈K

cijkyijk

s.t.
∑

(i,j)∈M

yijk = 1 ∀ k ∈ K∑
k∈K

yijk = 1 ∀ (i, j) ∈M

yijk ∈ {0, 1} ∀ (i, j) ∈M,k ∈ K

(1.24)

where cijk = tijk or cijk = sijk depending on whether the problem is an instance of T4
or S4. This algorithm is denoted by HIJ (since it minimizes the assignment from I to J)

and its cost is denoted by cost(HIJ). One can obtain two similar algorithms HIK and HJK

by modifying the problems (1.23) and (1.24) above. Notice that both problems (1.23) and

(1.24) are instances of AP and hence can be solved in O(n3) [82]. It follows that HIJ can

be solved in O(n3) as well. Let OPTτ denote an optimal solution to a 3AP instance τ .

Theorem 1.11. (Crama and Spieksma [43]) HIJ is a 1
2 -approximate algorithm for problems

T4 and S4. Moreover, there exist arbitrary large instances τ of T4 and S4 such that

cost(HIJ) = 3
2cost(OPTτ).

One can easily modify the proof to obtain the same result for HIK and HJK . Consider

now the heuristic H which applies all three heuristics HIJ , HIK and HJK separateley to an

instance of T4 or S4 and retains the best solution. Let γ denote the solution obtained by

H. Then cost(γ) = min{cost(HIJ), cost(HIK), cost(HJK)}.

Theorem 1.12. (Crama and Spieksma [43]) H is a 1
3 -approximate algorithm for problems

T4 and S4. Moreover, there exist arbitrary large instances τ of T4 and S4 such that

cost(γ) = 4
3cost(OPTτ).

1.9 Applications of 3AP

There are some practical applications of 3AP in the literature which we discuss next.

1.9.1 Assignment of Workers to Jobs to Machines

Consider the following example. There are n workers, n jobs and n machines. For each

triple (i, j, k) the time required for worker i to complete job j on machine k is cijk. Each

CHAPTER 1. INTRODUCTION 19

worker is assigned to exactly one job and exactly one machine. The objective is to minimize

the total time taken by the workers to complete the jobs using the available machines. The

formulation (1.12) above solves this problem [61]. Each xijk is an indicator variable for

worker i doing job j on machine k. The first set of constraints specifies that each worker

is assigned to exactly one job-machine pair. The second set of constraints enforces that

each job gets assigned to exactly one person and one machine. The third set of constraints

requires each machine to be worked on by one person and for the purpose of one job.

1.9.2 Scheduling of Teaching Practices

Student teachers at colleges of education have to undertake teaching practices. Each student

teacher is supervised by a tutor who monitors the student and provides feedback. There

are a number of schools available for the student teacher to choose from. Arranging which

school each student is assigned to and which tutor will supervise the student is complicated

by the fact that students, tutors and schools have requirements and preferences.

Frieze and Yadegar [53] considered this problem and provided the following formulation.

Suppose there are m students, n tutors and p schools. Let I = {1, . . . ,m}, J = {1, . . . , n},
K = {1, . . . , p}. For each student i, tutor j and school k let vijk be a satisfaction value

associated with the assignment of student i to school k under the supervision of tutor j.

Tutor j is willing to supervise no more than tj students and school k can have at most sk

student teachers assigned to it. The problem formulation is

max
∑
i∈I

∑
j∈J

∑
k∈K

vijkxijk

s.t.
∑
j∈J

∑
k∈K

xijk = 1 ∀ i ∈ I∑
i∈I

∑
k∈K

xijk ≤ tj ∀ j ∈ J∑
i∈I

∑
j∈J

xijk ≤ sk ∀ k ∈ K

xijk ∈ {0, 1} ∀ i, j, k = 1, . . . , n

(1.25)

The above formulation can be easily converted to the more convenient formulation (1.12) by

means of adding duplicate nodes in I, J and K and turning the max into min by replacing

vijk with M − vijk where

M = max {vijk | i ∈ I, j ∈ J, k ∈ K}

CHAPTER 1. INTRODUCTION 20

1.9.3 Dynamic Facility Location

Consider the case where a company has to add p new warehouses at q potential sites over

the next r years. The company is not only faced with the problem of where to locate the

warehouses but also when should the warehouses be built. Each cijk is the total cost of

building warehouse i on site j at time k. Many factors such as discounted construction

costs, future transportation costs for shipping, operating costs, etc could be incorporated

into each cijk. The company is interested in minimizing the total cost associated with this

expansion [102].

Other notable applications include assembly of printed circuit boards [42], military

troops assignment [101] and satellite coverage optimization [102].

1.9.4 Applications of 3PAP and MAP

An application of 3PAP involves trade-show scheduling [60]. At a trade show there are r

vendors, s customers and t time slots, where r ≥ s ≥ t. Vendors and customers are to meet

one-on-one at different times. Each vendor can meet at most one customer per time slot and

each customer can meet one vendor at a time. For each vendor, customer and time triple

(i, j, k) the cost cijk is known, where lower cost indicates greater desirability. The problem

formulation is as follows

min
r∑
i=1

s∑
j=1

t∑
k=1

cijkxijk

s.t.

r∑
i=1

xijk = 1 ∀ j = 1, . . . , s, ∀ k = 1, . . . , t

s∑
j=1

xijk ≤ 1 ∀ i = 1, . . . , r, ∀ k = 1, . . . , t

t∑
k=1

xijk ≤ 1 ∀ i = 1, . . . , r, ∀ j = 1, . . . , s

xijk ∈ {0, 1} ∀ i, j, k = 1, . . . , n

(1.26)

The first set of constraints states that each customer must meet exactly one vendor in each

time slot. The second constraints set allows each vendor to meet at most one customer per

time slot. The third constraint set prevents customers and vendors from meeting each other

more than once.

A dominant application of MAP is in the area of multi-sensor multi-target tracking

CHAPTER 1. INTRODUCTION 21

[104]. Suppose that we are given a sequence of observations made at times t1, t2, . . . , tn.

Each observation contains objects with their respective positions. The goal is to match

objects in each of the observations so that the matched objects in different observations

have the maximum probability of being the same actual objects. By doing so we track the

objects throughout the observations. An example is recognizing airplanes in a radar screen.

1.10 Exact Algorithms for 3AP

There are numerous exact algorithms in the literature for solving 3AP. These algorithms

obtain the optimal solution and prove the optimality of the obtained solution. Balas and

Saltzman [14] introduced a branch-and-bound method for 3AP. Branch-and-bound algo-

rithms split the current problem into two subproblems by fixing one variable xijk to 1 and

0 in order to decrease the subproblem size. The method of Balas and Saltzman exploits

the polyhedral structure of the problem by fixing several variables at each branching step.

Instead of the LP-relaxation, bounds are computed using a Lagrangian relaxation which

incorporates facets of 3AP polytope. This relaxation is solved by a modified subgradient

optimization method. Also, new and efficient primal heuristics are used to obtain succes-

sively improved approximate solutions.

Frieze and Yadegar [53] proposed another subgradient procedure for solving a Lagrangian

relaxation approach to 3AP together with computational results. An example of a subgra-

dient approach is discussed in [29, 32]. Consider taking two blocks of the constraints of

formulation (1.12) into the objective function via Lagrangian multipliers. The Lagrangian

relaxation is

L(π, ε) = min


n∑
i=1

n∑
j=1

n∑
k=1

(cijk + πj + εi)xijk −
n∑
j=1

πj −
n∑
i=1

εi

 (1.27)

such that
n∑
i=1

n∑
j=1

xijk = 1 ∀ k = 1, . . . , n

xijk ∈ {0, 1} ∀ i, j, k = 1, . . . , n

π ∈ Rn

ε ∈ Rn

(1.28)

L(π, ε) is a concave function and a subgradient method can be used to find its maximum.

Let r be a counter of iterations. Algorithm (1.1) describes the procedure.

CHAPTER 1. INTRODUCTION 22

Algorithm 1.1: Maximizing L(π, ε)

Start with r ← 0, πr ← 0, εr ← 0.

Use a greedy algorithm to minimize L(πr, εr). Let xrijk be the corresponding optimal

solution. Let

vri0 = |{xri0,j,k | xi0,j,k = 1}| − 1 for i0 = 1, . . . , n and

wrj0 = |{xri,j0,k | xi,j0,k = 1}| − 1 for j0 = 1, . . . , n.

if vr = wr = (0, 0, . . . , 0)) then

the maximum is reached. Terminate.

end if

if a prespecified number of iterations is not yet reached then

πr+1 ← πr + λrw
r

εr+1 ← εr + λrv
r, where λr is a suitable step length. Go to step 2.

else

terminate

end if

1.11 Heuristic Algorithms for 3AP

There are many heuristic algorithms in the literature for obtaining near optimal solutions

for 3AP. Heuristic algorithms give no guarantee of the solution quality but in practice obtain

good suboptimal and possibly optimal solutions. Pierskalla [101] was the first to propose a

heuristic method for 3AP. In this section we discuss two of the more successful heuristics

in terms of solution quality for benchmark instances; GRASP with path relinking [10] and

Hybrid Genetic [76].

1.11.1 GRASP with Path Relinking

GRASP is a greedy randomized adaptive search procedure. It is a multistart metaheuristic

for combinatorial optimization. GRASP includes a construction phase based on a greedy

randomized algorithm and a local search phase. Path relinking is an intensification proce-

dure which investigates trajectories that connect high quality solutions. The best overall

solution is kept as the result. GRASP with path relinking was able to improve the solution

quality of heuristics proposed by Balas and Saltzman [14], Burkard et al. [36], and Crama

and Spieksma [43] on all instances proposed in those papers.

CHAPTER 1. INTRODUCTION 23

In the construction phase a feasible solution is iteratively constructed one element at a

time. The choice of the next element to be added is determined by ordering all candidate

elements according to a greedy function. This function measures the benefit of selecting each

element. In order to make GRASP adaptive, the benefits associated with every element are

updated at each iteration of the construction phase to reflect the changes brought on by the

previous element. The random component stems from randomly choosing one of the best

candidates in the list, which is not necessarily a top candidate.

In the local search phase the current solution is improved by searching its neighborhood.

If an improvement is found the solution is updated and neighborhood search continutes. If

no improvement is detected, then local search stops. Given a solution s, the definition of

the neighborhood N(s) is crucial for the performance of local search.

Definition 1.3. For two permutations p and p′ the Hamming distance between them is

defined to be d(p, p′) = |{i | p(i) 6= p′(i)}|.

A solution s contains two permutations p and q. GRASP uses a 2-exchange neighborhood

defined as

N2(p, q) = {p′, q′ ∈ πn | d(p, p′) + d(q, q′) = 2} (1.29)

In other words, a 2-exchange swaps either 2 entries in p or q. Hence the size of the neigh-

borhood is |N2(p)|+ |N2(q)| = 2
(
n
2

)
.

Path relinking was first introduced in the context of tabu search [66] as an approach to

combine intensification and diversification in the search. Path relinking explores trajectories

that connect high quality solutions. It achieves this by starting from an initial solution and

generating a path in the neighborhood of this solution towards another solution called

the guiding solution. This path is generated by selecting moves that introduce in the initial

solution attributes of the guiding solution. At each step all moves that incorporate attributes

of the guiding solution are analyzed and the move that best improves the initial solution is

chosen.

1.11.2 Hybrid Genetic

The GRASP algorithm discussed in the previous section obtained superior results to other

existing heuristics. The hybrid genetic algorithm proposed by Huang and Lim [76] outper-

formed GRASP in every instance with regards to solution quality. This indicates that the

CHAPTER 1. INTRODUCTION 24

hybrid genetic algorithm is the most successful algorithm in the literature. In addition, the

computation time was much shorter than that of GRASP.

Genetic algorithm (GA) is one of the most successful evolutionary algorithms and is

based on an analogy with Darwin’s evolution theory of natural selection and survival of the

fittest [75]. Genetic algorithm has been applied to solve general combinatorial optimiza-

tion problems [75]. The results can be further improved if problem specific knowledge is

incorporated into GA. The hybridization between local search (LS) and GA reflects this

idea.

The local search phase of the hybrid genetic algorithm takes advantage of formulation

(1.14). Given two permutations p and q which map I to J and I to K respectively, let

r = q ◦ p−1 be the mapping from J to K. We can reduce the problem 3AP to AP in 3 ways:

• Case (1): fix the mapping from I to J (permutation p)

• Case (2): fix the mapping from I to K (permutation q)

• Case (3): fix the mapping from J to K (permutation r)

Consider case (1). Define an n× n matrix D such that

dij = cp−1(i)ij (1.30)

Then the problem reduces to the following AP with D as the cost matrix

min
r∈πn

n∑
i=1

dir(i) (1.31)

and the permutation q has to be updated by q = r ◦ p.
Consider case (2). Matrix D is constructed by

dij = cijq(i) (1.32)

Then the corresponding AP is

min
p∈πn

n∑
i=1

dip(i) (1.33)

and q is unchanged.

Consider case (3). Let

dij = cijr(j) (1.34)

CHAPTER 1. INTRODUCTION 25

and the corresponding AP is the same as (1.33) and q is updated by q = r ◦ p. After

reducing the 3AP to an AP, the hybrid genetic algorithm solves the AP to optimality by the

Hungarian Method, which can be done in O(n3) [82]. Algorithm (1.2) describes the local

search phase of hybrid genetic.

Algorithm 1.2: Local Search stage of Hybrid Genetic

Start with any initial solution to 3AP

finishFlag ← false

while not finishFlag do

finishFlag ← true

for cases 1 to 3 do

Construct corresponding bipartite graphs according to Eqs. (1.30), (1.32) and

(1.34). Solve the resulting AP by Hungarian Method.

if objective value decreases then

finishFlag ← false

end if

end for

end while

1.12 Introduction to Quadratic 3-Dimensional Assignment

Problem

Pierskalla (1967) introduced the Quadratic 3-Dimensional Assignment Problem (Q3AP) in

a technical memorandum. The work was never published in the open literature. Since

then nothing on the subject appeared in the literature until [71] rediscovered Q3AP while

working on a problem arising in data transmission system design.

Consider the Lawler [84] formulation of QAP as discussed in (1.3). This formulation

extends AP to QAP by making the objective function quadratic. Consider the 3AP formu-

lation mentioned in (1.12). Similar to extending AP to QAP, we can extend 3AP to Q3AP

CHAPTER 1. INTRODUCTION 26

by making the objective function in (1.12) quadratic as follows

min

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

n∑
m=1

n∑
r=1

cijklmrxijkxlmr

s.t.
n∑
j=1

n∑
k=1

xijk = 1 ∀ i = 1, . . . , n

n∑
i=1

n∑
k=1

xijk = 1 ∀ j = 1, . . . , n

n∑
i=1

n∑
j=1

xijk = 1 ∀ k = 1, . . . , n

xijk ∈ {0, 1} ∀ i, j, k = 1, . . . , n

(1.35)

The constraints of Q3AP in equation (1.35) indicate that the quadratic expression in the

objective function of Q3AP need not include any xijkxlmr terms for which i = l or j = m

or k = r unless all three equalities hold. If i = l, j = m and k = r, then xijkxlmr = xijk,

otherwise xijkxlmr = 0. Therefore, from a computational perspective, Q3AP can be more

efficiently represented as

min
n∑
i=1

n∑
j=1

n∑
k=1

bijkxijk+
n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1
l 6=i

n∑
m=1
m6=j

n∑
r=1
r 6=k

cijklmrxijkxlmr

s.t.
n∑
j=1

n∑
k=1

xijk = 1 ∀ i = 1, . . . , n

n∑
i=1

n∑
k=1

xijk = 1 ∀ j = 1, . . . , n

n∑
i=1

n∑
j=1

xijk = 1 ∀ k = 1, . . . , n

xijk ∈ {0, 1} ∀ i, j, k = 1, . . . , n

(1.36)

where bijk = cijkijk. The permutation version of Q3AP is

min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j) (1.37)

Viewd differently, Q3AP in (1.35) is the extension of the QAP formulation (1.3) to the

three dimensional version.

CHAPTER 1. INTRODUCTION 27

1.13 Complexity of Q3AP

Since Q3AP is an extension of the NP-hard problems 3AP and QAP [56, 109], it is easy

to verify that Q3AP is also NP-hard. Simply let cijklmr = 0 in (1.36) to reduce Q3AP to

the special subproblem 3AP, or project the three dimensions to two dimensions in (1.35)

to obtain QAP as a special subproblem. In Chapter 4 we discuss special cases of Q3AP as

well as approximation algorithms and derive new theoretical results.

Chapter 2

Randomized Local Search for

Quadratic Assignment Problem

In this chapter we propose a method called Randomized Local Search (RandLS) and ap-

ply it to Quadratic Assignment Problem (QAP). Although RandLS can be easily applied

to other combinatorial optimization problems, the focus of this chapter is on QAP. We

apply the algorithm to solve benchmark instances of QAP. Our algorithm produced an im-

proved solution for the largest QAP benchmark problem arising from microarray studies in

very reasonable running time. Also, we obtained very good experimental results on other

benchmark instances. This chapter contains a discussion of our heuristic algorithm and is

computational in nature.

2.1 Local Search and QAP

A mathematical optimization problem can be represented by an ordered pair (F, f) where

F is the family of feasible solutions, f : F −→ R is the objective function which is used

to compare solutions and R is the set of real numbers. Many optimization problems of

practical interest are difficult to solve to optimality. Researchers and practitioners depend

on good quality heuristic algorithms to compute near optimal solutions for such problems.

Local search is perhaps the most well studied heuristic approach to handle hard optimiza-

tion problems. Starting with a feasible solution, x0, a local search algorithm explores its

neighborhood, N(x0) for an improving solution. If no improving solution is found, x0 is

28

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 29

a local optimum and the algorithm outputs this solution. If N(x0) contains an improving

solution x1, then x1 takes the role of x0 and the process is continued until a locally optimal

solution is identified. In some variations of local search, x1 is chosen as the best improving

solution in N(x0). The major drawback of local search is that, for simple neighborhoods,

the resulting local optimum could be far from a global optimum.

Research in overcoming this difficulty has resulted in various classes of meta-heuristics

which include Tabu Search [63, 64, 66], Simulated Annealing [80, 118], Variable Neighbor-

hood Search [72, 92], Tabu Thresholding [65] etc. We discuss a very simple strategy, called

Randomized Local Search(RandLS) that uses ideas parallel to Simulated Annealing, Tabu

Search and Tabu Thresholding. The simplicity of this algorithm and quality of the solutions

obtained makes it a viable alternative to other local search based algorithms. We primarily

consider two variants of randomized local search - A Simulated Annealing variant which

we call RandLS-Sim and a Tabu Search variant. A preliminary version of RandLS-Sim

was introduced by Punnen and Aneja [106] and reported limited experimental results on

the Quadratic Assignment Problem (QAP). The Tabu Search version of RandLS is known

as Tabu Thresholding and was introduced by Glover [65]. Successful application of Tabu

Thresholding was reported by various authors on several classes of optimization problems

[117, 119]. No experimental results using Tabu Thresholding is available for the QAP.

In this chapter we discuss the general Randomized Local Search paradigm which sub-

sumes RandLS-Sim and Tabu Thresholding. Detailed experimental results are reported for

the QAP using RandLS-Sim and Tabu Thresholding. Most interestingly, we obtained solu-

tions that either match or are better than the best known solutions for the QAP benchmark

instances arising out of microarray studies [3]. We also tested our algorithms on the QAPLIB

[33] benchmark problems. These problems are thoroughly investigated by various authors

[35, 50, 88] using a variety of heuristic algorithmic ideas. No heuristic algorithm uniformly

outperformed other heuristics on these test problems. Some of the best known heuristic al-

gorithms for QAP include Robust Tabu Search [115], Genetic Hybrid [50], GRASP [88] and

Simulated Annealing [35]. Out of 135 QAPLIB instances, our algorithm obtained optimal

or best known solutions for 111 problems. Among the RandLS algorithms we tested, Tabu

Thresholding appears more robust and is a good alternative to compute quality solutions

for QAP in very reasonable running time.

We next discuss the general RandLS algorithm and its specializations RandLS-Sim and

Tabu Thresholding.

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 30

2.2 Randomized Local Search

Let x0 be a feasible solution. An eligible candidate list (ECL) with respect to x0 is a finite

subset E(x0) of N(x0) such that x ∈ N(x0) \ E(x0) implies f(x) ≥ f(y)∀y ∈ E(x0). That

is E(x0) is the set of k best solutions in N(x0) where k = |E(x0)|. The number k is referred

to as degree of freedom. The RandLS algorithm starts with an initial value of the degree

of freedom, an initial solution x and constructs the candidate list E(x). Then it selects a

solution randomly from E(x) and moves to this solution. Also, the algorithm maintains

a “current best solution” which is updated, if possible, while exploring the neighborhood

N(x0). The process is repeated until a prescribed transition property P is satisfied. After

this, the value of degree of freedom is reset and the process is continued until a prescribed

termination criterion is satisfied. A formal description of RandLS is given by Algorithm

(2.1) below.

Algorithm 2.1: RandLS

Input: k: initial degree of freedom; P : transition property; x: initial solution; f(x):

value of x

Output: xbest, the best solution found and its value f(xbest)

xbest ← x;

f(xbest)← f(x);

while termination criterion is not satisfied do

repeat

Construct the candidate list E(x);

y ← best element of E(x);

if f(y) < f(xbest) then
xbest ← y; x← y; f(xbest)← f(y);

else
x← a random element of E(x);

end

until P is satisfied ;

update k and (if necessary) P ;

end

output xbest and f(xbest);

Let us now consider two important variations of Algorithm (2.1); RandLS-Sim and

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 31

Tabu Thresholding. In RandLS-Sim, we set the termination criterion as k < 1. That is, the

algorithm terminates when the degree of freedom k < 1. The transition property P is an

iteration limit on the number of times the repeat loop is executed between two consecutive

updates of k. After the transition property is satisfied, k is updated as k ← (k−1). RandLS-

Sim is comparable to Simulated Annealing where the degree of freedom corresponds to the

temperature parameter which is set high initially and brought down gradually.

In the Tabu Thresholding version, updating the transition property P and k is handled

by Algorithm (2.2) below. Throughout the algorithm, the “repeat loop” refers to the one

in Algorithm (2.1).

Algorithm 2.2: Update-Transition

Input: k: Degree of freedom; iter(k): Iteration limit per degree of freedom

k′ ← k;
k ← 1 in the repeat loop;
P is satisfied when the current solution is optimal;
k ← k′ in the repeat loop;
P is satisfied when the repeat loop is performed iter(k) number of times;

In other words, the transition property P is set initially as “local optimality of the

current solution” with respect to the neighborhood N and k = 1. Thus the repeat loop is

essentially a standard local search. Once a local minimum is reached, increase k to the degree

of freedom, which is an input parameter usually between 10 and 20. Then P is modified

as an iteration limit of the repeat loop, which is the input parameter iter(k) usually set

between 10 and 30. After checking the termination criterion, k is updated back to 1 and P is

updated back to local optimality and the sequence is alternated until termination criterion

is satisfied which is an iteration limit. Thus Tabu Thresholding performs a sequence of local

search operations while upon reaching a local optimum, random moves (controlled by the

degree of freedom) are employed to escape from the local minimum while restricting to stay

within a “not so bad” region. Tabu Thresholding is analogous to the Tabu Search but Tabu

list has size 1 and includes the last move so that we avoid reversing the most recent move.

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 32

2.3 The QAP and Proposed Heuristics

The definition of neighbourhood is an integral part of local search. The next definition

shines light on how we form neighbourhoods in our RandLS algorithm.

Definition 2.1. For any permutation π ∈ πn the neighborhood N(π) is defined as

N(π) ={σ | σ ∈ F and σ can be obtained from π by interchanging

two locations (i.e. the location of two facilities)}.

We call N(π) the two-exchange neighborhood of π. Thus σ ∈ N(π) can be obtained by

exchanging the locations of r and s for some 1 ≤ r, s ≤ n. Let ∆(π, r, s) = f(σ) − f(π).

Then ∆(π, r, s) is given by [115]

∆(π, r, s) =brr(aπsπs − aπrπr) + brs(aπsπr − aπrπs) + bsr(aπrπs − aπsπr)+

bss(aπrπr − aπsπs) +

n∑
k=1,k 6=r,s

(bkr(aπkπs − aπkπr)+

bks(aπkπr − aπkπs) + brk(aπsπk − aπrπk) + bsk(aπrπk − aπsπk))

(2.1)

Thus given the matrices A = (aij) and B = (bij), ∆(π, r, s) can be obtained in O(n)

time. The change in the objective function due to a swap can be evaluated faster using

information from a preceding exchange operation. Suppose ψ is the assignment obtained

by exchanging the locations r and s in π. Then the effect of swapping facilities u and v in

ψ, where ({r, s} ∩ {u, v} = ∅), can be evaluated in constant time [115] using the equation

∆(ψ, u, v) =∆(π, u, v) + (bru − brv + bsv − bsu)(aπsπu − aπsπv + aπrπv−

aπrπu) + (bur − bvr + bvs − bus)(aπuπs − aπvπs + aπvπr − aπuπr)
(2.2)

Using equation (2.1) finding the neighborhood N(π) for the first time takes O(n3) time.

For subsequent iterations, the neighborhood can be evaluated in O(n2) time using equations

(2.1) and (2.2).

2.3.1 RandLS-Sim for the QAP

Let us now discuss our implementation of the RandLS-Sim algorithm for the QAP. Let

initial(k) be the starting degree of freedom. In each iteration we select a random member

from the k best members of the 2-exchange neighborhood of the current permutation π,

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 33

where k is the degree of freedom during the iteration. This is obtained by choosing the jth

smallest element of the set {∆ (π, r, s) | 1 ≤ r, s,≤ n} where j is a random number between

1 and k. This can be achieved in O(n3) time for the first iteration and in O(n2) time in

subsequent iterations using the formula (2.1) and (2.2) and the linear time algorithm [105]

for computing the jth best element of a set. After selecting an element from N(π) the

algorithm moves to this solution and the current best solution is updated if applicable. Let

iter(k) be the number of iterations allowed at degree of freedom k and when this limit is

exceeded, k is reduced by one. The algorithm terminates when a local minimum is reached

after k = 1. A formal description is presented in Algorithm (2.3) below.

Algorithm 2.3: RandLS-Sim-QAP

Input: k: Initial degree of freedom; iter(k): Iteration limit per degree of freedom;

Output: The best solution found and its value

π ← A random permutation of {1, 2, . . . , n};
Compute f(π);

solution ← π;

value ← f(π);

repeat

count ← 0;

repeat

∆(π, p, q)← min{∆(π, r, s) | 1 ≤ r, s ≤ n};
σ ← The permutation obtained from π by interchanging locations p and q;

if value > f(σ) then

solution ← σ; value ← f(σ); π ← σ;

else

j ← A random integer in [1, k];

∆(π, u, v)← jth best element of {∆(π, r, s) | 1 ≤ r, s ≤ n};
π ← The permutation obtained from π by interchanging locations u and v;

end

count ← count+1;

until count = iter(k);

k ← k-1;

until k = 1;

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 34

During the experiments we observed that the stopping criteria of k = 1 causes the

solution to cycle in the neighborhood. Therefore we decided to stop when k = 4. The

performance of the basic algorithm may be enhanced by using multiple starts using different

starting permutations. During these multiple starts, the parameters k and iter(k) may be

changed as well to further diversify the search. When k becomes very small, we noticed that

the algorithm goes into cycling. Thus it is recommended that when k reaches 4 go directly

into the local search phase.

Another variation that we tested uses occasional peek into bad regions to diversify the

search. This is implemented as follows. After completing iter(k) iterations at the degree of

freedom k, we reach into “bad” regions by setting k =
(
n
2

)
, the neighborhood size. Then we

are able to make a random move outside the smallest k neighbors. A number of peek moves

are done before reverting k to its previous value.

2.3.2 Tabu Thresholding Algorithm

As indicated earlier, this scheme was originally proposed by Glover [65] and it is a variation

of our general RandLS paradigm. The algorithm starts with a random permutation and

performs a local search (i.e. choosing k = 1). Upon reaching a local minimum, we increase

the value of k to a fixed number and iter(k) iterations are performed at this level of k.

During these iterations, if we encounter a solution better than the best solution so far, we

always move to this solution and start local search again. Otherwise, after completing iter(k)

moves at degree of freedom k, we switch back to local search and the process is continued

until a fixed number of iterations are performed and output the best solution obtained. A

formal description is given in Algorithm (2.4). We found it useful to include a Tabu list of

size 1 during the iter(k) iterations to avoid going back to the preceding permutation.

2.4 Computational Results

Recently, de Carvalho Jr. and Rahmann [45] studied the layout problem of Oligonucleotide

microarrays and formulated the microarray placement problem as QAP. The resulting test

problems are available at [3] and their best known solutions are available at [1]. Specializing

RandLS-Sim and Tabu Thresholding to QAP, we obtained efficient heuristics for QAP which

resulted in improved solution to the largest instance in the Conflict Index class. Appendix

1 lists the improved solution.

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 35

Figure 2.1: RandLS-Sim Figure 2.2: RandLS-Tabu

Algorithms (2.3) and (2.4) have been coded in C++ and tested on a Dell Precision

workstation with 512 MB of memory and a 2 GHz Intel Xeon processor running Linux

Mandrake operating system. The experiments were conducted in two stages. Stage 1 was

designed to calibrate algorithm parameters to fix default values of the parameters. Using the

default values identified in Stage 1, experiments were conducted using benchmark problems

from the QAPLIB [33] and Microarray layout QAP problems [3].

After careful experimentation and fine-tuning we have concluded that we set the pa-

rameters k = n initially and iter(k) = 200 for algorithm RandLS-Sim. The peek operation,

although gave improved solutions in some isolated cases, was not found very effective and

hence we did not use it in Stage 2 of our experiments. When k reaches value 4, we proceed

to local search directly to complete the algorithm. For the RandLS-Sim-QAP algorithm,

Figure 1 gives the progression of current objective function against the number of itera-

tions on a typical test problem and Figure 2 gives corresponding information for algorithm

RandLS-Tabu-QAP for a particular instance. For algorithm RandLS-Tabu, we set default

values as k = 15 during the random move phase and iter(k) = 30. The total number of

iterations is set as count− limit = 1, 000, 000.

Using the default values indicated above we have tested QAP instances developed out of

microarray layout problems [3]. The results are given in Tables (2.1) and (2.2) for the two

different groups. The initial solution was chosen at random. After running our algorithms

we compared our results with the best known solutions available on [1] as of March 2010.

The “best known” column refers to those solutions. The run times in [1] range from less

than 2 minutes per single run for the n = 36 instance to less than 9 hours for the n = 144

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 36

problems. RandLS-Sim and RandLS-Tabu are each run 5 times with the same default

parameters as described above. The column “Obj Value” refers to the solution cost, which

includes the average (rounded to the nearest integer) and the best cost over the 5 trials.

Time is measured in seconds and has been rounded to the nearest integer. It includes the

average time and the time taken to obtain the best solution (not necessarily the shortest

time).

The bold entries in Tables (2.1) and (2.2) indicate the best known solutions. Underlined

entries indicate that we matched the best known solutions. According to those tables, we did

not outperform the best known solutions from [1], which may be deceiving. However, after

fine-tuning the parameters for the specific instances, we did obtain better results. Appendix

1 lists the overall best solutions we obtained among all experiments (and the parameters

used to obtain these solutions), which may not necessarily be reported in Tables (2.1) and

(2.2). Out of the 14 test problems, our algorithm with fine-tuned parameter values obtained

an improved solution for the Conflict Index instance with n = 144 and matched some of the

best known solution to the remaining Conflict Index instances. As the table in Appendix 1

indicates, Tabu Thresholding worked better for most of the problems. The corresponding

parameters used to obtain the table are reported as well.

For the microarray test problems, Table (2.3) summarizes the results obtained by using

RandLS-Tabu solution as the initial solution for RandLS-Sim. The initial solution was

chosen as the output generated by one of the five trials of RandLS-Tabu. More specifically,

we used the trial which outperformed the remaining four. This experiment was run 3 times

and the results are provided in Table (2.3). The column “Improved runs” shows how many

trials out of 3 resulted in an improved solution compared to the initial solution. The column

“init obj value” states the cost of initial solution. As Table (2.3) demonstrates, we obtained

improved results for only 3 instances belonging to the Conflict Index group. Similarly,

Tables (2.4) and (2.5) summarize the results obtained by using RandLS-Sim solution as the

initial solution for RandLS-Tabu. RandLS-Tabu was able to improve the initial solution

in all 14 instances. This seems to indicate that RandLS-Tabu can potentially reach better

solutions in the search space than RandLS-Sim.

For the same class of microarray test problems, we performed 3 trials of RandLS-Sim and

RandLS-Tabu using the solution reported in the website [3] as the initial solution. Each

algorithm is run 3 times and the results are presented in Tables (2.6) and (2.7). Empty

entries indicate that the algorithm did not improve the initial solution. Since the solutions

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 37

reported on [3] are good quality local minima, the purpose of this experiment was to assess

the ability of our algorithm to get out of deep local minima to achieve better solutions.

In addition to microarray test problems, we tested RandLS-Sim and RandLS-Tabu

against QAPLIB instances [33]. Out of the 135 test problems, 86 were solved to opti-

mality as of March 2010. The remaining 49 had best known solutions reported by various

algorithms. Out of the 135 test problems RandLS-Sim obtained optimal solutions for 77

problems and matched the best known solution value for 24 problems. Likewise, RandLS-

Tabu produced optimal solutions for 81 problems and matched the best known solution for

23 problems. RandLS-Sim and RandLS-Tabu together matched 111 of 135 QAPLIB optimal

or best known solutions. The best known solution to the non-optimal problems is due to

many different algorithms. Of these algorithms, Robust Tabu Search [115], Genetic Hybrid

[50], GRASP [88] and Simulated Annealing [35] appear more often as the first heuristic to

reach the best known solution. Other algorithms may reach the same solution as well but

QAPLIB only recognizes the first such algorithm. It may be noted that no known algorithms

reportedly produced uniformly better solutions for all problems.

This raises the question of how our algorithms RandLS-Sim and RandLS-Tabu compare

to the 4 algorithms mentioned above in the instances not proven to be optimal. Table

(2.8) gives a comparison of these algorithms and ours in these “non-optimal” instances.

A checkmark in the first 4 columns indicates which method first reported the best known

solution to that problem as recognized by QAPLIB. A “Y” or “N” indicates whether the

algorithm matches the best known solution. Blank entries indicate that the authors did not

report a solution in their paper.

In addition to the QAPLIB and microarray benchmark instances, one can use QAP

instance generators with known optimal solutions. Two such generators are developed by

Palubeckis [96], Li and Pardalos [86].

In summary, our RandLS-Tabu algorithm obtained an improved solution for the largest

instance of the Conflict Index class arising from microarray studies. Our solution and the

time taken by the algorithm are reported in Appendix 1.

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 38

Algorithm 2.4: RandLS-Tabu-QAP

Input: k: Degree of freedom; iter(k): Iteration limit per degree of freedom;
count-limit: Total number of iterations;

Output: The best solution found and its value

π ← A random permutation of {1, 2, . . . , n};
Compute f(π);
solution ← π;
value ← f(π);
count ← 0;
repeat

while π is not a local minimum do
∆(π, p, q)← min{∆(π, r, s) | 1 ≤ r, s ≤ n};
π ← The permutation obtained from π by interchanging locations p and q;
count ← count+1;

end
if value > f(π) then solution ← π; value ← f(π);
i← 1;
repeat

j ← A random integer in [1, k];

∆(π, u, v)← jth best element of {∆(π, r, s) | 1 ≤ r, s ≤ n};
π ← The permutation obtained from π by interchanging locations u and v;
i← i+ 1;
∆(π, p, q)← min{∆(π, r, s) | 1 ≤ r, s ≤ n};
σ ← The permutation obtained from π by interchanging locations p and q;
if value > f(σ) then

solution ← σ;
π ← σ;
value ← f(σ);
i← iter(k);

end
count ← count+1;

until i = iter(k);

until count ≥ count-limit ;
output solution and value;

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 39

T
ab

le
2.

1:
B

or
d

er
L

en
gt

h
In

st
an

ce
s

R
an

d
L

S
-S

im
R

a
n
d

L
S
-T

a
b
u

O
b

j
V

al
u

e
T

im
e

O
b

j
V

al
u

e
T

im
e

si
ze

b
es

t
k
n

ow
n

av
g

b
es

t
av

g
b

es
t

av
g

b
es

t
av

g
b

es
t

36
3
2
9
6

33
29

33
20

26
26

33
1
0

33
0
4

22
6

22
6

49
4
5
4
8

46
10

45
92

67
68

45
8
2

45
7
6

43
7

43
6

64
5
9
8
8

60
78

60
56

1
56

15
6

60
4
3

60
2
4

74
6

74
5

81
7
5
3
6

76
61

76
48

3
23

32
1

76
0
5

75
8
0

1
21

0
1
21

0
10

0
9
2
7
2

94
39

94
28

6
17

61
3

93
6
1

93
3
6

1
86

3
1
86

5
12

1
1
1
4
1
2

11
65

4
11

63
6

1
09

8
1
09

5
1
15

35
1
15

1
6

27
5
7

27
5
4

14
4

1
3
4
7
2

13
79

5
13

76
0

1
89

2
1
88

1
1
36

27
1
36

1
6

39
5
7

39
5
1

T
ab

le
2.

2:
C

on
fl

ic
t

In
d

ex
In

st
an

ce
s

R
an

d
L

S
-S

im
R

a
n
d

L
S
-T

a
b
u

O
b

j
V

al
u
e

T
im

e
O

b
j

V
al

u
e

T
im

e
si

ze
b

es
t

k
n

ow
n

av
g

b
es

t
av

g
b

es
t

av
g

b
es

t
av

g
b

es
t

36
1
6
8
,6

1
1
,9

7
1

16
8,

85
2,

95
4

1
68

,7
3
4,

93
2

2
5

2
5

16
8
,6

11
,9

7
1

16
8,

6
11

,9
7
1

2
2
1

2
1
9

49
2
3
6
,3

5
5
,0

3
4

23
6,

94
4,

12
4

2
36

,6
1
8,

78
5

6
7

6
6

23
6
,3

63
,2

4
7

23
6
,3

55
,0

3
4

4
2
3

4
1
9

64
3
2
5
,6

7
1
,0

3
5

32
6,

52
3,

03
1

3
26

,1
7
7,

30
7

15
7

15
6

32
6
,1

70
,0

2
5

32
5
,6

71
,0

3
5

7
3
8

7
4
5

81
4
2
7
,4

4
7
,8

2
0

42
8,

69
4,

42
9

4
28

,4
3
0,

58
6

31
8

32
2

42
9
,5

43
,6

0
7

42
8
,5

81
,9

6
4

1
2
0
3

1
2
2
0

10
0

5
2
3
,1

4
6
,3

6
6

52
4,

29
2,

57
4

5
23

,5
5
2,

20
3

61
2

61
1

52
5
,6

05
,5

0
3

52
4
,0

10
,7

7
4

1
8
4
8

1
8
4
2

12
1

6
5
3
,4

1
6
,9

7
8

65
6,

10
0,

36
9

6
55

,0
3
8,

92
4

1
09

5
11

13
66

0
,8

17
,1

5
6

65
7
,7

59
,7

7
0

2
7
5
1

2
7
6
9

14
4

7
9
5
,0

0
9
,8

9
9

79
8,

91
4,

43
5

7
98

,3
2
6,

69
2

1
87

3
18

88
80

6
,1

11
,1

8
9

80
3
,6

51
,0

4
8

4
0
2
9

3
8
8
7

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 40

T
ab

le
2.

3:
R

an
d

L
S

-S
im

A
lg

or
it

h
m

w
it

h
in

it
ia

l
so

lu
ti

on
as

R
an

d
L

S
-T

ab
u

ou
tp

u
t

O
b

j
V

al
u

e
T

im
e

Im
p

ro
ve

d

si
ze

in
it

ob
j

va
lu

e
av

g
b

es
t

av
g

b
es

t
ru

n
s

81
42

8,
5
81

,9
6
4

42
8
,5

05
,9

9
2

42
8
,4

38
,8

6
9

31
7

3
16

2
12

1
66

3,
3
72

,0
6
1

65
6
,3

40
,7

8
8

65
6
,1

87
,8

9
5

10
91

10
87

3
14

4
80

5,
9
82

,3
3
0

79
8
,4

11
,8

4
7

79
7
,7

76
,1

2
5

18
76

18
73

3

T
ab

le
2.

4:
R

an
d

L
S

-T
ab

u
w

it
h

in
it

ia
l

so
lu

ti
on

as
R

an
d

L
S

-S
im

ou
tp

u
t

-
B

or
d

er
L

en
gt

h
in

st
a
n

ce
s

O
b

j
V

al
u
e

T
im

e
Im

p
ro

ve
d

si
ze

in
it

ob
j

va
lu

e
av

g
b

es
t

av
g

b
es

t
ru

n
s

36
3
34

0
3
30

7
33

04
22

9
22

8
3

49
4
59

2
4
58

4
45

80
42

8
42

8
2

64
6
08

4
6
03

1
60

20
75

9
76

3
3

81
7
66

0
7
61

1
76

00
12

34
12

3
1

3
10

0
94

32
93

61
93

40
18

99
18

9
6

3
12

1
1
16

5
6

1
15

5
1

1
15

3
6

28
1
6

28
0
0

3
14

4
1
38

0
0

1
36

3
9

1
36

2
0

40
1
0

39
8
6

3

T
ab

le
2.

5:
R

an
d

L
S

-T
ab

u
w

it
h

in
it

ia
l

so
lu

ti
on

as
R

an
d

L
S

-S
im

ou
tp

u
t

-
C

on
fl

ic
t

In
d

ex
in

st
a
n

ce
s

O
b

j
V

al
u

e
T

im
e

Im
p

ro
ve

d

si
ze

in
it

ob
j

va
lu

e
av

g
b

es
t

av
g

b
es

t
ru

n
s

36
16

8,
8
89

,1
2
2

16
8
,6

11
,9

7
1

16
8,

6
11

,9
7
1

22
8

22
5

3
49

23
7,

1
98

,6
5
3

23
6
,3

65
,5

8
1

23
6,

3
55

,0
3
4

42
7

42
6

3
64

32
6,

2
52

,4
3
0

32
6
,0

39
,3

2
0

32
6,

0
39

,3
2
0

75
1

74
7

3
81

42
8,

4
30

,5
8
6

42
8
,1

47
,8

7
5

42
8,

1
29

,2
5
2

12
32

12
2
5

3
10

0
52

4,
7
42

,0
3
3

52
4
,1

75
,2

51
52

4,
0
35

,1
6
9

18
85

18
8
1

3
12

1
65

5,
0
38

,9
2
4

65
4
,4

64
,8

10
65

4,
4
16

,6
9
4

27
63

27
6
2

3
14

4
79

8,
3
26

,6
9
2

79
7
,3

83
,2

03
79

7,
1
87

,4
4
5

39
79

39
8
6

3

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 41

T
ab

le
2.

6:
B

or
d

er
L

en
gt

h
In

st
an

ce
s

-
in

it
ia

l
so

lu
ti

on
fr

om
w

eb
si

te
[3

]
R

an
d
L

S
-S

im
R

an
d
L

S
-T

ab
u

O
b

j
V

al
u
e

ti
m

e
Im

p
ro

ve
d

O
b

j
V

a
lu

e
ti

m
e

Im
p
ro

ve
d

si
ze

b
es

t
k
n

ow
n

av
g

b
es

t
av

g
b

es
t

ru
n
s

av
g

b
es

t
av

g
b

es
t

ru
n
s

64
60

48
0

60
3
5

60
2
4

76
2

7
6
3

3
81

76
44

0
76

1
3

76
1
2

1
23

9
12

3
5

3
10

0
94

32
0

93
6
7

93
4
8

1
89

4
18

9
3

3
12

1
11

64
0

11
62

4
1
16

2
4

11
10

1
11

0
1

11
5
43

11
5
24

28
00

28
0
7

3
14

4
13

83
2

13
76

9
1
37

4
0

18
93

1
89

5
3

13
6
19

13
5
68

40
11

40
1
2

3

T
ab

le
2.

7:
C

on
fl

ic
t

In
d

ex
In

st
an

ce
s

-
in

it
ia

l
so

lu
ti

on
fr

om
w

eb
si

te
[3

]
R

an
d
L

S
-S

im
R

an
d
L

S
-T

a
b
u

O
b

j
V

al
u
e

ti
m

e
Im

p
ro

ve
d

O
b

j
V

al
u

e
ti

m
e

Im
p
ro

ve
d

si
ze

b
es

t
k
n

ow
n

av
g

b
es

t
av

g
b

es
t

ru
n

s
av

g
b

es
t

av
g

b
es

t
ru

n
s

36
16

9,
01

6,
90

7
16

8,
70

3,
82

0
16

8,
70

3,
82

0
2
6

25
3

16
8
,6

11
,9

7
1

16
8
,6

11
,9

7
1

2
2
8

2
2
5

3
49

23
7,

07
7,

37
7

23
6,

70
0,

82
7

23
6,

38
6,

67
6

6
7

67
3

23
6
,4

78
,8

8
2

23
6
,3

55
,0

3
4

4
3
3

4
3
0

3
64

32
6,

69
6,

41
2

32
6,

36
3,

49
6

32
6,

12
1,

51
5

15
6

15
6

3
32

6
,1

66
,3

1
2

32
6
,0

77
,7

0
1

7
5
7

7
5
8

3
81

42
8,

68
2,

12
0

42
8,

42
4,

24
8

42
8,

42
4,

24
8

31
7

31
7

3
42

7
,7

20
,7

6
8

42
7
,5

01
,7

7
3

1
2
3
3

1
2
2
5

3
10

0
52

5,
40

1,
67

0
52

5,
14

3,
83

3
52

5,
06

7,
90

6
61

2
61

2
3

52
3
,9

26
,6

3
6

52
3
,8

07
,9

7
1

1
8
8
1

1
8
6
9

3
12

1
65

8,
31

7,
46

6
65

6,
76

1,
67

7
65

6,
00

6,
17

6
10

94
10

94
3

65
5
,5

20
,2

0
2

65
4
,9

93
,8

2
8

2
7
9
4

2
7
6
8

3
14

4
80

3,
37

9,
68

6
79

7,
96

3,
33

1
79

7,
76

0,
82

3
18

82
18

82
3

80
0
,1

77
,7

0
0

79
9
,9

08
,5

2
5

3
9
9
6

4
0
2
1

3

CHAPTER 2. RANDOMIZED LOCAL SEARCH FOR QAP 42

Table 2.8: Comparison of algorithms used for QAPLIB instances
name size Ro-TS GEN GRASP SIM RandLS-Sim RandLS-Tabu

bur26b 26 X Y Y
bur26c 26 X Y Y
bur26d 26 X Y Y
bur26e 26 X Y Y
bur26f 26 X Y Y
bur26g 26 X Y Y
bur26h 26 X Y Y
esc32a 32 X Y Y Y
esc32b 32 X Y Y Y
esc32c 32 Y X Y Y
esc32d 32 X Y Y Y
esc32h 32 X Y Y Y
esc64a 64 Y X Y Y
esc128 128 X Y Y
sko42 42 X N Y Y
sko49 49 X N N Y
sko56 56 X N Y Y
sko64 64 X N Y Y
sko72 72 X N N N
sko81 81 X N Y N
sko90 90 X N N N

sko100a 100 X N N
sko100b 100 X N N
sko100c 100 X N N
sko100d 100 X N N
sko100e 100 X N N
sko100f 100 X N N
tai25a 25 X N N
tai30a 30 X N Y
tai30b 30 X Y N
tai35a 35 X N Y
tai35b 35 X Y N
tai40b 40 X Y N
tai50a 50 X N N
tai50b 50 X N N
tai60a 60 X N N N
tai60b 60 X N N
tai64c 64 X Y Y
tai80a 80 X N N N
tai80b 80 X N N
tai100b 100 X N N
tai150b 150 X N N
tho40 40 X N N
tho150 150 X N N
wil50 50 Y X Y Y
wil100 100 N X N Y Y

Chapter 3

Theory and Algorithms on Three

Dimensional Assignment Problem

The general 3AP, as discussed in Chapter 1, is NP-hard to solve to optimality and approx-

imate. Some polynomially solvable special cases were discussed in Chapter 1 as well as

approximation algorithms for special cases. The theoretical contents of this chapter include

new special cases and approximation algorithms for special cases. The most notable special

case is the constant 3AP where any feasible solution is optimal. We provide necessary and

sufficient conditions for an instance to be a constant 3AP and extend the result to MAP.

We then present heuristic algorithms for the general 3AP in order to obtain near optimal

solutions in reasonable time and present computational results. Two of our three algorithms

outperform the most successful heuristics in the literature in terms of solution quality.

3.1 Polynomially Solvable Special Cases

In this section we introduce new special cases of 3AP which can be solved in polynomial

time.

3.1.1 Constant 3AP

Let G = Kn be the complete graph on n nodes. Associate a cost cij for each edge (i, j) of

G. A Hamiltonian cycle (tour) H of G is a cycle that visits all the nodes in G exactly once.

The cost of a tour H is given by c(H) =
∑

(i,j)∈H cij . The Traveling Salesman Problem

43

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 44

(TSP) is the problem of finding the tour with minimum length.

Let πkn denote the set of permutations on n constituting the product of k independent

cycles. Each Hamiltonian tour H is an element of π1
n. The TSP can be formulated as

min
p∈π1

n

n∑
i=1

cip(i) (3.1)

Essentially TSP is a constrained version of AP where we only consider a specific subset of

πn, namely the cycles of length n.

Definition 3.1. The Traveling Salesman Problem (TSP) is called constant if every tour

π ∈ π1
n has the same cost.

Theorem 3.1. (Gabovich [55]) The TSP is constant if and only if there exist real numbers

a1, a2, . . . , an and b1, b2, . . . , bn such that the cost matrix satisfies cij = ai + bj for all i, j =

1, 2, . . . , n.

It is easy to verify the claim when cij = ai + bj . In this case every solution has a cost

equal to
∑n

i=1(ai + bi). Gabovich proved the converse that if every solution has the same

cost, then it must be possible to break up the costs cij as a sum.

Corollary 3.2. The AP is constant if and only if there exist real numbers a1, a2, . . . , an

and b1, b2, . . . , bn such that the cost matrix satisfies cij = ai + bj for all i, j = 1, 2, . . . , n.

Proof. Since all permutations π ∈ πn have the same cost in AP, so do all permutations

π ∈ π1
n. Considering only the permutations π ∈ π1

n reduces the AP to an instance of TSP.

Apply Theorem (3.1).

We next present an alternative proof of Corollary (3.2) which will be extended to higher

dimensions later in this chapter. The following definition will prove useful for our discussion.

Definition 3.2. Given two vectors (i1, j1) and (i2, j2) in AP, a 2-exchange on these two

vectors results in the vectors (i2, j1) and (i1, j2).

Proof. If cij = ai + bj for all i, j = 1, 2, . . . , n, then any feasible solution has a cost equal to∑n
i=1(ai + bi). For the converse, given an instance AP and the cost matrix C, define a new

problem AP ′ and a matrix C ′ such that

c′ij = cij − cin − cnj (3.2)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 45

Note that the above transformation does not change the optimal solution of problems

AP and AP ′ in the sense that any optimal solution to AP is optimal for AP ′ and vice-versa,

although the transformation may change the optimal cost.

If at least one index is equal to n, then equation (3.2) yields the following results

c′in = cin − cin − cnn = −cnn
c′nj = cnj − cnn − cnj = −cnn
c′nn = cnn − cnn − cnn = −cnn

(3.3)

Hence if i, j or both are equal to n, then c′ij = −cnn. We next prove that if i, j 6= n, then

c′ij = −cnn as well.

Consider any edge (i, j) where i, j 6= n (the case where i and j are equal is allowed). Let

S be a solution of AP ′ where the edges (i, j), (n, n) ∈ S. By Definition (3.2), a 2-exchange

of the two vectors (i, j) and (n, n) produces the vectors (n, j) and (i, n). Since any solution

to AP ′ is optimal and this 2-exchange does not affect other vectors in S, we have

c′ij + c′nn = c′nj + c′in

c′ij − cnn = −cnn − cnn by (3.3)

c′ij = −cnn

Therefore, combining this result with equation (3.3) shows that

c′ij = −cnn for all i, j = 1, . . . , n (3.4)

We next construct the numbers ai, bi for i = 1, . . . , n. Let an = 0 and bn = cnn. Compute

the real numbers a1, . . . , an−1 by letting

c1n = a1 + bn

c2n = a2 + bn
...

cn−1,n = an−1 + bn

(3.5)

Compute the real numbers b1, . . . , bn−1 by letting

cn1 = b1

cn2 = b2
...

cn,n−1 = bn−1

(3.6)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 46

We next prove that the seqeunces A and B obtained above satisfy cij = ai + bj for all

i, j = 1, . . . , n. Consider

c′ij = cij − cin − cnj by (3.2)

−cnn = cij − (ai + bn)− bj by (3.4), (3.5) and (3.6)

−bn = cij − ai − bn − bj
cij = ai + bj for all i, j = 1, . . . , n

We now extend Corollary (3.2) to 3AP. We first define the notion of 2-exchange in 3AP.

Definition 3.3. Given two vectors (i1, j1, k1) and (i2, j2, k2) in 3AP, a 2-exchange can be

obtained in three different ways:

1. A 2-exchange on the first coordinates leads to the vectors (i2, j1, k1) and (i1, j2, k2).

2. A 2-exchange on the second coordinates leads to the vectors (i1, j2, k1) and (i2, j1, k2).

3. A 2-exchange on the third coordinates leads to the vectors (i1, j1, k2) and (i2, j2, k1).

Theorem 3.3. The 3AP with n ≥ 3 (i.e. |K| ≥ 3) is constant if and only if there exist

real numbers a1, a2, . . . , an, b1, b2, . . . , bn and d1, d2, . . . , dn such that the cost matrix satisfies

cijk = ai + bj + dk for all i, j, k = 1, 2, . . . , n.

Proof. If cijk = ai + bj + dk for all i, j, k = 1, 2, . . . , n, then any feasible solution has a cost

equal to
∑n

i=1(ai + bi + di). Hence any feasible solution is optimal. For the converse, given

an instance 3AP and the cost matrix C, define a new problem 3AP ′ and a matrix C ′ such

that

c′ijk = cijk − cinn − cnjn − cnnk (3.7)

Note that the above transformation does not change the optimal solution of problems

3AP and 3AP ′ in the sense that any optimal solution to 3AP is optimal for 3AP ′ and

vice-versa, although the transformation may change the optimal cost.

If at least two indices are equal to n, then equation (3.7) yields the following results

c′inn = cinn − cinn − cnnn − cnnn = −2cnnn

c′njn = cnjn − cnnn − cnjn − cnnn = −2cnnn

c′nnk = cnnk − cnnn − cnnn − cnnk = −2cnnn

c′nnn = cnnn − cnnn − cnnn − cnnn = −2cnnn

(3.8)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 47

Hence if at least two of i, j, k are equal to n, then c′ijk = −2cnnn.

Consider the case where no index is equal to n. Let S1 be a solution of 3AP ′ where

(i, j, k), (n, n, n) ∈ S1 and i, j, k 6= n. By Definition (3.3), a 2-exchange of these two vectors

on first coordinates produces the vectors (n, j, k), and (i, n, n). Since any solution to 3AP ′

is optimal and this 2-exchange does not affect other vectors in S1, we have

c′ijk + c′nnn = c′njk + c′inn

c′ijk − 2cnnn = c′njk − 2cnnn by (3.8)

c′ijk = c′njk

Similarly, if given vectors (i, j, k) and (n, n, n) we perform a 2-exchange on second or third

coordinates instead, then the result is

cijk =

c′ink if 2-exchange on second coordinates

c′ijn if 2-exchange on third coordinates

Therefore

c′ijk = c′njk = c′ink = c′ijn for all i, j, k 6= n (3.9)

Consider the case where exactly one index is equal to n. Let S2 be a solution of 3AP ′

such that the vectors (n, j, k), (i, n, v) ∈ S2, where i, j, k, v 6= n and v 6= k. Such a v ∈ K
exists as |K| ≥ 3 by the theorem assumption. Performing a 2-exchange on index j produces

the vectors (n, n, k) and (i, j, v). Since any solution to 3AP ′ is optimal and this 2-exchange

does not affect other vectors in S2, we have

c′inv + c′njk = c′nnk + c′ijv (3.10)

Substituting c′inv = c′ijv from equation (3.9) into (3.10) gives

c′njk = c′nnk = −2cnnn by (3.8) (3.11)

Combining equations (3.8), (3.9) and (3.11) proves that

c′ijk = −2cnnn for all i, j, k = 1, . . . , n (3.12)

Hence all entries in C ′ are equal to −2cnnn. We next construct the numbers ai, bi, di for

i = 1, . . . , n. Let an = bn = 0 and dn = cnnn. Compute the real numbers a1, . . . , an−1 by

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 48

letting

c1nn = a1 + dn

c2nn = a2 + dn
...

cn−1,n,n = an−1 + dn

(3.13)

Compute the real numbers b1, . . . , bn−1 by letting

cn1n = b1 + dn

cn2n = b2 + dn
...

cn,n−1,n = bn−1 + dn

(3.14)

Compute the real numbers d1, . . . , dn−1 by letting

cnn1 = d1

cnn2 = d2

...

cn,n,n−1 = dn−1

(3.15)

We next prove that the sequences A,B and D obtained above satisfy cijk = ai + bj + dk for

all i, j, k = 1, . . . , n. Consider

c′ijk = cijk − cinn − cnjn − cnnk by (3.7)

−2cnnn = cijk − (ai + dn)− (bj + dn)− dk by (3.12) to (3.15)

−2dn = cijk − ai − bj − dk − 2dn

cijk = ai + bj + dk

We remark that the condition n ≥ 3 in Theorem (3.3) is necessary as we can provide a

counter-example for n = 2. Consider the 3AP with n = 2 and cost matrix defined as

cijk =

0 if 2 or 3 indices are equal to 2

1 if 0 or 1 indices are equal to 2

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 49

All possible feasible solutions of the above 3AP can be listed as

(1, 1, 1) and (2, 2, 2) (3.16)

(1, 1, 2) and (2, 2, 1) (3.17)

(1, 2, 2) and (2, 1, 1) (3.18)

(1, 2, 1) and (2, 1, 2) (3.19)

It is an easy exercise to show that any feasible solution has cost equal to 1. If there exist

a1, a2, b1, b2, d1, d2 such that cijk = ai + bj + dk, then

c111 = a1 + b1 + d1 (3.20)

c112 = a1 + b1 + d2 (3.21)

c121 = a1 + b2 + d1 (3.22)

c211 = a2 + b1 + d1 (3.23)

Since c111 = c112 = c121 = c211 = 1, comparing equations (3.20) and (3.21) shows that

d1 = d2. Similarly, comparing equations (3.20) and (3.22) leads to b1 = b2. Finally, equations

(3.20) and (3.23) yield a1 = a2. Since c222 = a2 + b2 + d2, we get c222 = a1 + b1 + d1 = c111,

which is impossible since c222 = 0 but c111 = 1.

3.1.2 Constant MAP

In this section we generalize Theorem (3.3) to any MAP with d, n ≥ 3, where d is the

dimension and n is the number of elements in each independent set.

Theorem 3.4. The MAP with d ≥ 3 and n ≥ 3 is constant if and only if there exist real

sequences a(1), a(2), . . . , a(d) such that the cost matrix satisfies ci1,i2,...,id = a
(1)
i1

+a
(2)
i2

+· · ·+a(d)
id

for all i1, i2, . . . , id = 1, 2, . . . , n.

Proof. If ci1,i2,...,id = a
(1)
i1

+a
(2)
i2

+ · · ·+a
(d)
id

for all i1, i2, . . . , id = 1, 2, . . . , n, then any feasible

solution has a cost equal to
∑n

i=1(a
(1)
i +a

(2)
i + · · ·+a

(d)
i). For the converse, given an instance

MAP and the cost matrix C, define a new problem MAP ′ and a matrix C ′ such that

c′i1,i2,...,id = ci1,i2,...,id − ci1,n,...,n − cn,i2,n,...,n − · · · − cn,...,n,id (3.24)

Note that the above transformation does not change the optimal solution of problems

MAP and MAP ′ in the sense that any optimal solution to MAP is optimal for MAP ′ and

vice-versa, although the transformation may change the optimal cost.

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 50

If at least d− 1 indices are equal to n, then equation (3.24) yields the following results

c′i1,n,...,n = ci1,n,...,n − ci1,n,...,n − cn,...,n − · · · − cn,...,n︸ ︷︷ ︸
d− 1 times

= −(d− 1)cn,...,n

c′n,i2,n,...,n = cn,i2,n,...,n − cn,...,n − cn,i2,n,...,n − · · · − cn,...,n = −(d− 1)cn,...,n
...

c′n,...,n,id = cn,...,n,id − cn,...,n − · · · − cn,...,n − cn,...,n,id = −(d− 1)cn,...,n

c′n,...,n = cn,...,n − cn,...,n − · · · − cn,...,n = −(d− 1)cn,...,n

(3.25)

Hence if at least d− 1 indices are equal to n, then c′i1,i2,...,id = −(d− 1)cn,...,n.

Consider the case where no index is equal to n. Let S1 be a solution of MAP ′ where

the vectors (i1, i2, . . . , id), (n, . . . , n) ∈ S1 and i1, i2, . . . , id 6= n. A 2-exchange of these two

vectors on first coordinates produces the vectors (n, i2, . . . , id) and (i1, n, . . . , n). Since any

solution to MAP ′ is optimal and this 2-exchange does not affect other vectors in S1, we

have
c′i1,i2,...,id + c′n,...,n = c′n,i2,...,id + c′i1,n,...,n

c′i1,i2,...,id − (d− 1)cn,...,n = c′n,i2,...,id − (d− 1)cn,...,n by (3.25)

c′i1,i2,...,id = c′n,i2,...,id

Similarly, by performing different 2-exchanges on (i1, i2, . . . , id) and (n, . . . , n) we obtain

c′i1,i2,...,id = c′n,i2,...,id = c′i1,n,i3,...,id = · · · = c′i1,i2,...id−1,n
for all i1, . . . , id 6= n (3.26)

Suppose the r-th coordinate of an element c′i1,i2,...,ir,...,id is not equal to n (i.e. ir 6= n).

We next prove that we can replace the r-th coordinate by n so that

c′i1,i2,...,ir−1,ir,ir+1,...,id
= c′i1,i2,...,ir−1,n,ir+1,...,id

(3.27)

Let I1, I2, . . . , Id denote the independent sets in MAP . Choose numbers j1, j2, . . . , jd

such that
jr = n

js ∈ Is − {is, n} for s = 1, . . . , d and s 6= r

Each js as defined above exists since |Is| ≥ 3. Let S2 be a solution to MAP ′ where

(i1, i2, . . . , id), (j1, j2, . . . , jd) ∈ S

A 2-exchange of these two vectors on r-th coordinates produces the vectors

(i1, i2, . . . , ir−1, n, ir+1, . . . , id) and

(j1, j2, . . . , jr−1, ir, jr+1, . . . , jd)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 51

Since any solution to MAP ′ is optimal and this 2-exchange does not affect other vectors in

S2, we have

c′i1,i2,...,ir−1,ir,ir+1,...,id
+ c′j1,j2,...,jr−1,n,jr+1,...,jd

= c′i1,i2,...,ir−1,n,ir+1,...,id
+ c′j1,j2,...,jr−1,ir,jr+1,...,jd

(3.28)

Equation (3.26) indicates that in equation (3.28) we have

c′j1,j2,...,jr−1,ir,jr+1,...,jd
= c′j1,j2,...,jr−1,n,jr+1,...,jd

(3.29)

Therefore, substituting equation (3.29) in (3.28) leads to

c′i1,i2,...,ir−1,ir,ir+1,...,id
= c′i1,i2,...,ir−1,n,ir+1,...,id

which asserts the claim (3.27).

Equation (3.27) states that one can start with any element of C ′ and iteratively replace

the coordinates not equal to n with n in at most d steps. Since the subsequent values are

equal, we have

c′i1,i2,...,id = c′n,n,...,n = −(d− 1)cn,...,n for all i1, . . . , id = 1, . . . , n (3.30)

We next construct the sequences a(1), a(2), . . . , a(d). Let a
(1)
n = a

(2)
n = · · · = a

(d−1)
n = 0

and a
(d)
n = cn,n,...,n. For all r = 1, . . . , d− 1 and all ir = 1, . . . , n, compute the r-th sequence

a(r) by letting

cn,...,n,ir,n,...,n = a
(r)
ir

+ a(d)
n (3.31)

Compute a(d) by letting a
(d)
id

= cn,n,...,n,id for all id = 1, . . . , n. It remains to show that

ci1,i2,...,id = a
(1)
i1

+ a
(2)
i2

+ · · ·+ a
(d)
id

for all i1, i2, . . . , id = 1, 2, . . . , n. Consider

c′i1,i2,...,id = ci1,i2,...,id − ci1,n,...,n − cn,i2,n,...,n − · · · − cn,n,...,id−1,n − cn,...,n,id

−(d− 1)cn,...,n = ci1,i2,...,id − (a
(1)
i1

+ a
(d)
n)− (a

(2)
i2

+ a
(d)
n)− · · · − (a

(d−1)
id−1

+ a
(d)
n)− a(d)

id

−(d− 1)cn,...,n = ci1,i2,...,id − (a
(1)
i1

+ a
(2)
i2

+ · · ·+ a
(d)
id

)− (d− 1)cn,...,n

ci1,i2,...,id = a
(1)
i1

+ a
(2)
i2

+ · · ·+ a
(d)
id

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 52

3.1.3 Other Special Cases

Consider formulation (1.14) of 3AP. We may also reformulate this problem as

min
p,r∈πn

n∑
i=1

ci,p(i),r(p(i)) (3.32)

The relationship between formulations (1.14) and (3.32) is that q = r ◦ p. Note that p is a

permutation that maps I to J , r maps J to K and q maps I to K. The following theorem

addresses the case where cijk = ai + bj + djk for all i, j, k = 1, . . . , n and ai, bj , djk are

arbitrary numbers.

Theorem 3.5. The 3AP cost matrix with n ≥ 3 can be decomposed as cijk = ai + bj + djk

if and only if any specific permutation r leads to solutions with the same cost regardless of

p (i.e. the cost of a solution depends only on the permutation r).

Proof. Suppose that cijk = ai + bj + djk for every i, j, k = 1, . . . , n. Then for a fixed r∗ ∈ πn
and any p ∈ πn we have

n∑
i=1

ci,p(i),r∗(p(i)) =
n∑
i=1

(
ai + bp(i) + dp(i),r∗(p(i))

)
(3.33)

=
n∑
i=1

ai +
n∑
i=1

bp(i) +
n∑
i=1

dp(i),r∗(p(i)) (3.34)

=
n∑
i=1

ai +
n∑
i=1

bi +
n∑
i=1

dp(i),r∗(p(i)) (3.35)

=
n∑
i=1

ai +
n∑
i=1

bi +
n∑
i=1

di,r∗(i) (3.36)

Equation (3.35) follows from (3.34) since p is a permutation and omitting p merely changes

the order of terms in the summation. Similarly, equation (3.36) follows from (3.35). Note

that given r∗, equation (3.36) is a constant regardless of p. This also shows that if r∗ is

not fixed, then the optimal solution to 3AP reduces to solving the assignment problem in

equation (3.36).

Conversely, suppose that any specific r leads to solutions with the same cost regardless

of p. Fix a permutation r∗ and reduce 3AP to an instance of AP with the cost matrix

eij = cijr∗(j) as per equation (1.34). Then the AP instance has the property that any

permutation yields the same cost. Therefore, by Corollary (3.2), there exist real numbers

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 53

a1, a2, . . . , an and b1, b2, . . . , bn such that eij = ai + bj for all i, j = 1, . . . , n. Thus

cijr∗(j) = ai + bj for all i, j = 1, . . . , n (3.37)

We next construct the elements djk. Equation (3.37) indicates that we may let djr∗(j) = 0

for all j = 1, . . . , n. We obtain the remaining elements djk by letting

cnjk = an + bj + djk for all j, k = 1, . . . , n (3.38)

Note that in equation (3.38) if k = r∗(j), then djr∗(j) = 0 as expected. It remains to show

that cijk = ai + bj + djk for any i 6= n and any j, k = 1, 2, . . . , n. Choose an arbitrary vector

(i, j, k) such that i 6= n. We may assume that k 6= r∗(j); otherwise equation (3.37) applies.

Let k = r∗(u) for some u ∈ J − {j}. Choose an arbitrary j′ ∈ J − {j, u}. Such a j′ exists

since n ≥ 3 by assumption. Note that k 6= r∗(j), r∗(j′).

Let S1 be a solution of 3AP where (i, j, k), (n, j′, r∗(j′)) ∈ S1 and the permutation r in

S1 for the remaining elements in J is arbitrary. A 2-exchange of these two vectors on first

coordinates produces the vectors (n, j, k) and (i, j′, r∗(j′)). Since the cost of a solution only

depends on the permutation r and this 2-exchange does not affect other vectors in S1, we

have

cijk + cnj′r∗(j′) = cnjk + cij′r∗(j′)

cijk + (an + bj′) = (an + bj + djk) + (ai + bj′) by (3.37) and (3.38)

cijk = ai + bj + djk

We remark that the condition n ≥ 3 in Theorem (3.5) is necessary as we can provide

a counter-example for n = 2. Suppose that an instance of 3AP has the property that for

a given permutation r, the cost of a solution is constant regardless of p. Choose arbitrary

real numbers a1, b1, d11 such that c111 = a1 + b1 +d11. Let b2 be an arbitrary number. Then

compute a2, d22, d12 and d21 by following the equations below in the order specified.

c211 = a2 + b1 + d11

c122 = a1 + b2 + d22

c212 = a2 + b1 + d12

c221 = a2 + b2 + d21

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 54

The four possible feasible solutions are listed in (3.16) to (3.19). Since equations (3.16)

and (3.18) share the same r, they have the same solution cost. Therefore

c111 + c222 = c122 + c211

a1 + b1 + d11 + c222 = a1 + b2 + d22 + a2 + b1 + d11

c222 = a2 + b2 + d22

This shows that c222 must satisfy c222 = a2 + b2 + d22 as expected. Consider the cost of

solutions (3.17) and (3.19). Since they share the same r we must have

c112 + c221 = c121 + c212

c112 + a2 + b2 + d21 = c121 + a2 + b1 + d12

c112 = c121 + b1 − b2 + d12 − d21 (3.39)

Let c121 be an arbitrary number such that c121 6= a1 + b2 +d21. Then as long as c112 satisfies

equation (3.39) the 3AP instance has the same cost for a given r regardless of p.

The following two theorems can be proven by a similar argument as Theorem (3.5).

Theorem 3.6. The 3AP cost matrix with n ≥ 3 can be decomposed as cijk = aij + bj + dk

if and only if any specific permutation p leads to solutions with the same cost regardless of

r.

Theorem 3.7. The 3AP cost matrix with n ≥ 3 can be decomposed as cijk = ai+ bj +dik if

and only if any specific permutation q leads to solutions with the same cost regardless of p.

3.2 Approximation Algorithms

Consider the problems T and S in Section (1.8.2) where the cost matrix is defined by tijk

and sijk respectively, where

tijk = dij + dik + djk

sijk = min{dij + dik, dij + djk, dik + djk}

If the distances satisfy the triangle inequality such that

duv ≤ duw + dvw ∀ u, v, w ∈ I ∪ J ∪K (3.40)

then the problems are referred to as T4 and S4. The triangle inequality (3.40) can be

generalized to the parameterized triangle inequality by the following.

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 55

Definition 3.4. For a parameter δ ≥ 1
2 , the parameterized triangle inequality is character-

ized by

duv ≤ δ (duw + dvw) ∀ u, v, w ∈ I ∪ J ∪K (3.41)

Note that δ = 1
2 forces duv to be a constant for all u, v ∈ I∪J∪K and δ < 1

2 is infeasible.

If δ > 1, then the problem is said to satisfy a relaxed triangle inequality.

We refer to problems T4 and S4 that satisfy the parameterized triangle inequality in

(3.41) as T4δ and S4δ respectively and provide approximation algorithms whose ratio is

a function of δ.

The proposed algorithm exploits the fact that tijk = dij+djk+dik, where i ∈ I, j ∈ J, k ∈
K. The 3AP formulation (1.14) motivates us to let permutations p, q and r correspond to

mappings from I to J , I to K and J to K respectively as also described in Section (1.11.2).

Note that q = r ◦ p and r = q ◦ p−1. Consider the following three separate problems.

min
p∈πn

∑
i∈I

dip(i) (3.42)

min
q∈πn

∑
i∈I

diq(i) (3.43)

min
r∈πn

∑
j∈J

djr(j) (3.44)

Consider the following algorithm.

Algorithm 3.1: Approximate T4δ and S4δ

Let A1 be the solution comprised of optimal p and r in (3.42) and (3.44).
Let A2 be the solution comprised of optimal p and q in (3.42) and (3.43).
Let A3 be the solution comprised of optimal q and r in (3.43) and (3.44).
Let Approx be the best solution among A1, A2, A3.
Return Approx as the approximate solution.

Theorem 3.8. The solution Approx from Algorithm (3.1) satisfies

cost(Approx) ≤ 2

3
(1 + δ) cost(OPT)

for any instance in T4δ.

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 56

Proof. Let F denote an optimal solution of a given T4δ instance. By equation (1.20) we

have

cost(A1) =
∑

(i,j,k)∈A1

(dij + djk + dik) (3.45)

=
∑

(i,j,k)∈A1

dij +
∑

(i,j,k)∈A1

djk +
∑

(i,j,k)∈A1

dik (3.46)

≤
∑

(i,j,k)∈F

dij +
∑

(i,j,k)∈F

djk +
∑

(i,j,k)∈A1

δ (dij + djk) (3.47)

=
∑

(i,j,k)∈F

dij +
∑

(i,j,k)∈F

djk + δ
∑

(i,j,k)∈A1

dij + δ
∑

(i,j,k)∈A1

djk (3.48)

≤
∑

(i,j,k)∈F

dij +
∑

(i,j,k)∈F

djk + δ
∑

(i,j,k)∈F

dij + δ
∑

(i,j,k)∈F

djk (3.49)

= (1 + δ)
∑

(i,j,k)∈F

(dij + djk) (3.50)

Equation (3.47) follows from (3.46) since A1 contains the optimal p and r. The third

summand in (3.47) is due to (3.41). Similarly equation (3.49) follows from (3.48) since A1

contains the optimal p and r. Therefore, since cost(Approx) ≤ cost(A1), we have

cost(Approx) ≤ (1 + δ)
∑

(i,j,k)∈F

(dij + djk) (3.51)

Similarly we have

cost(A2) =
∑

(i,j,k)∈A2

(dij + djk + dik)

=
∑

(i,j,k)∈A2

dij +
∑

(i,j,k)∈A2

djk +
∑

(i,j,k)∈A2

dik

≤
∑

(i,j,k)∈F

dij +
∑

(i,j,k)∈A2

δ (dij + dik) +
∑

(i,j,k)∈F

dik

=
∑

(i,j,k)∈F

dij + δ
∑

(i,j,k)∈A2

dij + δ
∑

(i,j,k)∈A2

dik +
∑

(i,j,k)∈F

dik

≤
∑

(i,j,k)∈F

dij + δ
∑

(i,j,k)∈F

dij + δ
∑

(i,j,k)∈F

dik +
∑

(i,j,k)∈F

dik

= (1 + δ)
∑

(i,j,k)∈F

(dij + dik)

and hence

cost(Approx) ≤ (1 + δ)
∑

(i,j,k)∈F

(dij + dik) (3.52)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 57

A similar argument for cost(A3) shows that

cost(Approx) ≤ (1 + δ)
∑

(i,j,k)∈F

(dik + djk) (3.53)

Combining inequalities (3.51), (3.52) and (3.53) shows that

3 cost(Approx) ≤ 2(1 + δ)
∑

(i,j,k)∈F

(dij + djk + dik)

cost(Approx) ≤ 2

3
(1 + δ) cost(OPT)

Note that if δ = 1, then cost(Approx) ≤ 4
3cost(OPT) as obtained by algorithm H in

Theorem (1.12). We can also prove that cost(A1) ≤ (δ + 1
2)cost(OPT) by the same ideas

in the proof of Theorem (3.8). However, we omit this since Theorem (3.8) is a stronger

result. Solutions A2 and A3 exhibit the same approximation ratio as well and if δ = 1, then

cost(A1) ≤ 3
2cost(OPT) as obtained by Algorithm HIJ in Theorem (1.11).

Theorem 3.9. The solution Approx from Algorithm (3.1) satisfies

cost(Approx) ≤ 2

3
(1 + δ) cost(OPT)

for any instance in S4δ.

Proof. Let F denote an optimal solution of a given S4δ instance. By equation (1.21) we

have

cost(A1) =
∑

(i,j,k)∈A1

min {dij + djk, dij + dik, djk + dik}

≤
∑

(i,j,k)∈A1

(dij + djk) by minimality of sijk

≤
∑

(i,j,k)∈F

(dij + djk) by optimality of p, r

Since cost(Approx) ≤ cost(A1), we have

cost(Approx) ≤
∑

(i,j,k)∈F

(dij + djk) (3.54)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 58

Similarly by considering A2 and A3 we can show that

cost(Approx) ≤
∑

(i,j,k)∈F

(dij + dik) (3.55)

cost(Approx) ≤
∑

(i,j,k)∈F

(djk + dik) (3.56)

Combining (3.54), (3.55) and (3.56) results in

cost(Approx) ≤ 2

3

∑
(i,j,k)∈F

(dij + djk + dik) (3.57)

Suppose that sijk = dij + djk for some (i, j, k) ∈ F . Then

dij + djk + dik ≤ dij + djk + δ (dij + djk) = (1 + δ) sijk

By a similar reason we can conclude that regardless of how sijk is obtained we have

dij + djk + dik ≤ (1 + δ) sijk (3.58)

Substituting (3.58) in (3.57) proves that

cost(Approx) ≤ 2

3
(1 + δ)

∑
(i,j,k)∈F

sijk

and thus cost(Approx) ≤ 2
3(1 + δ) cost(OPT).

We next discuss our proposed algorithm that builds on ideas from Algorithm (1.2).

3.3 Proposed Algorithms

As 3AP is NP-hard, numerous heuristic algorithms have been proposed in the literature. We

propose three heuristic algorithms and compare them with two most successful heuristics;

GRASP and Hybrid Genetic [10, 76]. Computational studies show that 2 of our 3 algorithms,

namely Lagrangian Relaxation and LP Peeling, outperform GRASP and Hybrid Genetic in

terms of solution quality in a reasonable time.

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 59

3.3.1 Fix Mapping

This method is derived from the generic iterative local search. In local search, starting with

a feasible solution x0, the algorithm explores the neighborhood of x0, denoted N(x0), for

an improving solution. If no improving solution is found, x0 is a local optimum and the

algorithm outputs this solution. If N(x0) contains an improving solution x1, then x1 takes

the role of x0 and the process is continued until a locally optimal solution is identified.

In iterative local search we incorporate multiple re-starts. After finding a locally optimal

solution, the algorithm moves to a new starting solution x0 and local search is repeated

until some termination criterion is satisfied.

In the case of 3AP, we can alternate fixing the three mappings of I to J , I to K and J

to K as described in Section (1.11.2). As a result, we will reduce the current 3AP feasible

solution to an AP feasible solution using the same cost matrix as in equations (1.30), (1.32)

and (1.34). Our approach, however, differs from that of hybrid genetic algorithm where

the authors solve the resulting AP to optimality. In our approach, after reducing the 3AP

solution to an AP solution, we merely strive to obtain a better AP solution rather than

optimizing it. Obtaining an improved solution was implemented using the primal method

by Balinski and Gomory [15]. Our algorithm will take longer to terminate, due to small

improvements in each step, but experimental studies indicate that the solution quality will

be better. A full description of the algorithm follows.

In line (1), we solve the LP relaxation using CPLEX. CPLEX is a software for solving

mathematical programming problems including linear programming, integer programming

and mixed integer programming. If xijk = 1 for some i, j, k, then we include the (i, j, k)

vector in x0. Note that in this chapter we use the term “vector (i, j, k)” to denote xijk = 1.

If we proceed in this way, x0 may not be a complete solution. In order to make x0 feasible we

add the missing vectors by a greedy algorithm which is based on the following observation.

If x0 does not contain n vectors, then there must be some i ∈ I, j ∈ J, k ∈ K such that i, j, k

are not in any vectors of x0. Consider all such i ∈ I, j ∈ J, k ∈ K and the corresponding

cost cijk. The next algorithm describes the procedure.

In line (4) the value of MAX is an input and is set toMAX = 10 in our experiments. Line

(9) needs more explanation. Suppose we are given two vectors (i1, j1, k1) and (i2, j2, k2).

A 2-exchange on these two vectors can be done in three ways; switching i’s, j’s or k’s.

Switching i1 and i2 generates the vectors (i2, j1, k1) and (i1, j2, k2). Switching j1 and j2

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 60

Algorithm 3.2: Fix Mapping

1: Get initial x0 by LP relaxation
2: x← x0

3: iteration← 0
4: while iteration < MAX do
5: repeat
6: repeat
7: Alternate fixing the 3 mappings using equations (1.30), (1.32) and (1.34) and

update x
8: until x does not improve
9: Perform 3-exchange on x to escape local min

10: until x does not improve
11: Save x in elite solutions E
12: Diversify from x
13: iteration← iteration+ 1
14: end while
15: Run CPLEX on E to get xbest

Algorithm 3.3: Greedy Initial

Let an incomplete solution x0 be given.
for i = 1 to n in I do

if i is not a vector in x0 then
Find the minimum cijk such that j, k are not in vectors of x0.
Add the vector (i, j, k) to x0.

end if
end for

yields the vectors (i1, j2, k1) and (i2, j1, k2). Switching k1 and k2 results in vectors (i1, j1, k2)

and (i2, j2, k1).

Proposition 3.10. If fixing the three mappings of I to J , I to K and J to K does not

improve the current solution (i.e. line (9) of Algorithm (3.2)), then none of the 2-exchanges

of i’s, j’s or k’s above can improve the current solution.

Proof. Switching i’s cannot improve the solution since after fixing the mapping of J to K

the current AP solution is already optimal. Similarly, switching j’s or k’s is redundant since

fixing the mapping of I to K, or I to J results in an optimal AP solution.

A 3-exchange involves a rearrangement of three vectors (i1, j1, k1), (i2, j2, k2) and (i3, j3, k3).

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 61

A simple counting argument shows that there are (3× 2)2 = 36 different arrangements for

these three vectors. Some (not all) 3-exchanges can help the current solution escape local

minimum in line (9) of Algorithm (3.2). After considering all 36 arrangements it is a trivial

exercise to show that only 20 cases can improve the current solution since fixing the three

mappings already considers 16 of those 3-exchanges. Given x, we consider all
(
n
3

)
possible

3-exchanges and from the 20
(
n
3

)
resulting cases we perform the 3-exchange with the most

improvement in the objective value of x.

If no improving 3-exchange can be found, we proceed to line (11) and add the current

solution x to the list E. The list E contains all solutions from previous iterations. Since we

set MAX = 10, we have |E| ≤ 10. Line (15) solves a small subproblem of the original 3AP

using the list E. The subproblem is constructed as follows. Instead of having all n3 cost

entries cijk, the subproblem only consists of cijk for which xijk = 1 in some x ∈ E. Therefore,

we only consider up to 10n cost entries and solve the corresponding integer program to

optimality using CPLEX. The list E simulates the “gene pool” in genetic algorithms and

by solving the integer program we simulate all the gene pool operations. In other words,

we combine all elite solutions in the gene pool to obtain the best one, xbest, which is the

program output.

In line (12) we diversify from the current solution in an attempt to move away from the

local minimum. We move to another region in the search space in a systematic way similar

to Algorithm (2.3), i.e. the RandLS-Sim algorithm for QAP in Section 2.3.1 . The backbone

of our diversification method is finding the 2-exchange neighborhood of the current solution

x and moving to a random member from the k best members of the neighborhood, where k

is a prespecified parameter. Given two vectors (i1, j1, k1) and (i2, j2, k2) in x, we have three

options for a 2-exchange; swapping i’s, j’s or k’s. Define

N2(x) ={2-exchanges of x obtained by swapping two elements in

I, J or K}
(3.59)

The following algorithm describes the diversification procedure. In line (2), iter(k) is

a prespecified parameter as per the RandLS-Sim method in Section 2.3.1. In line (5) the

objective value of x is denoted by f(x) and xincumbent denotes the incumbent solution,

which is the best solution encountered so far by Algorithm (3.2). If in the process of

diversification the algorithm finds a better solution y than xincumbent, then we should save

y and exit diversification so that Algorithm (3.2) explores the newly found solution y. We

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 62

observed through computational experiments that appropriate values for k and iter(k) are

15 and 20 respectively.

Algorithm 3.4: 3AP-Diversification

1: i← 1
2: while i < iter(k) do
3: Find N2(x) as described in Eqn. (3.59)
4: y ← the best neighbor in N2(x)
5: if f(xincumbent) > f(y) then
6: xincumbent ← y
7: x← y
8: i← iter(k)
9: else

10: j ← a random integer in [1, k]

11: x← jth best neighbor in N2(x)
12: i← i+ 1
13: end if
14: end while

3.3.2 Lagrangian Relaxation

In this section we propose a heuristic method that is based on Lagrangian relaxation. The

algorithm reformulates the 3AP as a Minimum Cost Flow problem (MCF) with additional

constraints and moves the constraints to the objective function using weights. The process

of moving constraints to the objective function is referred to as Lagrangian relaxation. After

solving the resulting MCF problem, we recover the corresponding 3AP solution, x. However,

x may not be a feasible 3AP solution as some constraints in the objective function of MCF

may have been violated. We continually modify the weights in an attempt to satisfy more

constraints and make x feasible. As discussed next, if a solution to MCF is feasible for

3AP, then it is optimal for 3AP. In this situation, our heuristic method is able to prove the

optimality of x for 3AP, which is a potential feature of the algorithm. Heuristic methods

are not generally capable of proving the optimality of a solution which gives our Lagrangian

relaxation algrithm an added benefit.

On the other hand, finding the appropriate weights for constraints in order to force fea-

sibility of the solution is not trivial. In fact, it is NP-hard. Otherwise one could formulate a

Lagrangian relaxation of the problem and find the right weights to make the solution feasible

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 63

in polynomial time. This is where subgradient optimization techniques prove useful. A sub-

gradient optimization algorithm addresses the problem of modifying the constraint weights

in Lagrangian relaxation by generating a sequence of weights that eventually converge to a

solution λ. Using λ as constraint weights makes the solution feasible. There are, however,

some practical issues associated with subgradient optimization such as convergence rate. At

some point one has to stop the algorithm and convert the obtained solution to a feasible

solution, which may prove to be difficult and not lead to an optimal solution. Therefore, we

propose an alternative for subgradient optimization that tries to achieve the same goal by

a different approach.

The Minimum Cost Flow problem is described as follows. Let G = (N,A) be a directed

network defined by a set N of n nodes and a set A of m directed arcs. Each arc (i, j) ∈ A
has three values associated with it: cij , uij and lij . The value cij denotes the cost per unit

flow on the arc (i, j). The values uij and lij denote the upper and lower capacities on each

arc (i, j) and represent the maximum and minimum amount that can flow on the arc. We

associate with each node i ∈ N an integer number b(i) representing its supply or demand.

If b(i) > 0, node i is a supply node and if b(i) < 0, node i is a demand node. A node with

b(i) = 0 is a transshipment node. The decision variables xij are arc flows and represent the

amount of flow on arc (i, j). The MCF is formulated as

min
∑

(i,j)∈A

cijxij

s.t.
∑

j:(i,j)∈A

xij −
∑

j:(j,i)∈A

xji = b(i) ∀ i ∈ N

lij ≤ xij ≤ uij ∀ (i, j) ∈ A

(3.60)

where
∑n

i=1 b(i) = 0.

The transformation of 3AP to MCF is as follows. Given formulation (1.12), create the

node set N in MCF with N = R ∪ S ∪ T such that

R = {r1, r2, . . . , rn}
S = {s1, s2, . . . , sn2}
T = {r1, r2, . . . , rn}.

(3.61)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 64

Create the arc set A where

A = R× S
∪ {(sj , t1) : j = 1, . . . , n}
∪ {(sj , t2) : j = n+ 1, . . . , 2n}
...

∪ {(sj , tn) : j = (n− 1)n+ 1, . . . , n2}

(3.62)

In other words, the edges between R and S form a complete bipartite graph with all arcs

oriented from R to S. For every n nodes in S there is only one adjacent node in T with arcs

oriented from S to T . As a result, there are n3 arcs from R to S and n2 arcs from S to T .

All lower capacities in this network are 0 and upper capacities are 1. The node supplies

are

b(i) =


1 if i ∈ R

0 if i ∈ S

−1 if i ∈ T

(3.63)

Before describing what the arc costs represent, we will demonstrate the purpose of

the above network. The sets R and T in MCF correspond to the sets I and K in 3AP

respectively. The supply of +1 for nodes in R and −1 for nodes in T enforces that every

element in R and T appears in exactly one solution of 3AP. The set J in 3AP corresponds

to the set S in MCF as follows

• node j1 corresponds to nodes s1, sn+1, s2n+1, . . . , s(n−1)n+1

• node j2 corresponds to nodes s2, sn+2, s2n+2, . . . , s(n−1)n+2

...

• node jn corresponds to nodes sn, s2n, s3n, . . . , sn2

We will refer to this as “expanding the set J”. After solving the MCF problem, a solution

to 3AP can be recovered by the following procedure, as also described by Algorithm (3.6). If

xri,sj = 1 for some ri ∈ R and sj ∈ S, since sj is a transshipment node with supply of zero,

we must have xsj ,tk = 1 for some tk ∈ T (where k = d jne to be exact). These two arc flows

correspond to the vector (i, j mod n, k) in 3AP if j mod n 6= 0, and (i, n, k) if j mod n = 0.

Hence every element of I and K appears in exactly one vector. The drawback is that there

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 65

may be elements of J which appear in more than one vector. For example, for node j1 in

3AP, more than one of {s1, sn+1, s2n+1, . . . , s(n−1)n+1} may be present in an MCF solution.

We introduce additional constraints in MCF to avoid this problem. Consider

xs1,t1 + xsn+1,t2 + xs2n+1,t3 + · · ·+ xs(n−1)n+1,tn = 1

xs2,t1 + xsn+2,t2 + xs2n+2,t3 + · · ·+ xs(n−1)n+2,tn = 1
...

xsn,t1 + xs2n,t2 + xs3n,t3 + · · ·+ xsn2 ,tn = 1

(3.64)

Each line in the equations above ensures that the corresponding j ∈ J in 3AP is unique.

We can summarize the constraints (3.64) in one line as follows

n∑
k=1

xs(k−1)n+j ,tk = 1 ∀ j = 1, . . . , n (3.65)

The arc costs in the MCF formulation are denoted by matrix D to avoid confusion with

C in 3AP. The relationship between them is

cijk = dri,s(k−1)n+j
(3.66)

and

dri,sj =

ci,j mod n,d j
n
e if j mod n 6= 0

ci,n,d j
n
e otherwise

(3.67)

Also, ds,t = 0 for every s ∈ S, t ∈ T where (s, t) ∈ A. Therefore, 3AP can be formulated as

MCF with equation (3.65) added as a constraint set to produce

min
n∑
i=1

n2∑
j=1

dri,sjxri,sj +

n∑
j=1

dsj ,t1xsj ,t1+
2n∑

j=n+1

dsj ,t2xsj ,t2

+ · · ·+
n2∑

j=(n−1)n+1

dsj ,tnxsj ,tn

s.t.

n2∑
j=1

xri,sj = 1 ∀ i = 1, . . . , n

xsj ,td jn e
−

n∑
i=1

xri,sj = 1 ∀ j = 1, . . . , n2

n∑
k=1

xs(k−1)n+j ,tk = 1 ∀ j = 1, . . . , n

0 ≤ xij ≤ 1 ∀ (i, j) ∈ A

(3.68)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 66

Our next task is to move the additional constraints (3.65) to the objective function using

Lagrangian multipliers (i.e. weights) m1,m2, . . . ,mn as constants. Consider the objective

function

min

n∑
i=1

n2∑
j=1

dri,sjxri,sj +

n∑
j=1

dsj ,t1xsj ,t1 +

2n∑
j=n+1

dsj ,t2xsj ,t2

+ · · ·+
n2∑

j=(n−1)n+1

dsj ,tnxsj ,tn +m1

(
n∑
k=1

xs(k−1)n+1,tk − 1

)

+m2

(
n∑
k=1

xs(k−1)n+2,tk − 1

)
+ · · ·+mn

(
n∑
k=1

xs(k−1)n+n,tk − 1

)
(3.69)

After multiplying the weights m1,m2, . . . ,mn through, the objective function will have

the term M = −m1 −m2 − · · · −mn at the end. Since M is a constant, it can be removed

from the objective function without affecting the solution x. The updated objective function

is

min
n∑
i=1

n2∑
j=1

dri,sjxri,sj +

n∑
j=1

dsj ,t1xsj ,t1 +

2n∑
j=n+1

dsj ,t2xsj ,t2

+ · · ·+
n2∑

j=(n−1)n+1

dsj ,tnxsj ,tn +m1

n∑
k=1

xs(k−1)n+1,tk

+m2

n∑
k=1

xs(k−1)n+2,tk + · · ·+mn

n∑
k=1

xs(k−1)n+n,tk

(3.70)

Also, we can rearrange the constraints in the objective function so that the weights

appear as part of the cost in the summation. Therefore, given the weights m1,m2, . . . ,mn,

we are finally able to formulate the MCF with Lagrangian relaxation.

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 67

min

n∑
i=1

n2∑
j=1

dri,sjxri,sj +

n∑
j=1

(dsj ,t1 +mj)xsj ,t1 +

2n∑
j=n+1

(dsj ,t2 +mj−n)xsj ,t2

+ · · ·+
n2∑

j=(n−1)n+1

(dsj ,tn +mj−(n−1)n)xsj ,tn

s.t.

n2∑
j=1

xri,sj = 1 ∀ i = 1, . . . , n

xsj ,td jn e
−

n∑
i=1

xri,sj = 1 ∀ j = 1, . . . , n2

0 ≤ xij ≤ 1 ∀ (i, j) ∈ A

(3.71)

The MCF formulation above was based on “expanding the set J”. We can derive a very

similar network by expanding the set I or K. As a result, there are three different ways

of obtaining the MCF network. The only difference is that the cost matrix D in equations

(3.66) and (3.67) has to be set up accordingly, whereas equations (3.61), (3.62), (3.63),

(3.65) and (3.68) apply to all three cases.

In order to expand the set I, let R,S and T correspond to J, I and K respectively.

Define

cijk = drj ,s(k−1)n+i
(3.72)

and

dri,sj =

cj mod n,i,d j
n
e if j mod n 6= 0

cn,i,d j
n
e otherwise

(3.73)

Also, ds,t = 0 for every s ∈ S, t ∈ T where (s, t) ∈ A. After solving the MCF problem, the

3AP solution can be recovered as follows. Given xri,sj = xsj ,tk = 1 for some ri ∈ R, sj ∈ S
and tk ∈ T (where k = d jne), add the vector (j mod n, i, k) in 3AP if j mod n 6= 0, and

(n, i, k) if j mod n = 0. This recovery procedure is described in Algorithm (3.6).

Similarly, in order to expand the set K, let R,S and T correspond to I,K and J

respectively. Then

cijk = dri,s(j−1)n+k
(3.74)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 68

and

dri,sj =

ci,d jn e,j mod n if j mod n 6= 0

ci,d j
n
e,n otherwise

(3.75)

Also, ds,t = 0 for every s ∈ S, t ∈ T where (s, t) ∈ A. After solving the MCF problem, the

3AP solution can be recovered by Algorithm (3.6) as follows. Given xri,sj = xsj ,tk = 1 for

some ri ∈ R, sj ∈ S and tk ∈ T (where k = d jne), add the vector (i, k, j mod n) in 3AP if

j mod n 6= 0, and (i, k, n) if j mod n = 0.

Expanding the sets I, J and K is not symmetric with respect to the MCF optimal

solution. In other words, expanding I or J may lead to different objective values in the

MCF formulation (3.71).

Algorithm 3.5: Lagrangian Relaxation

1: for i = 1, . . . , n do
2: Initialize mi ← 1000
3: end for
4: for i = 1, . . . , MAX do
5: Solve the MCF problem (3.71)
6: Recover the 3AP solution, x, by Algorithm (3.6)
7: if x is feasible for 3AP then
8: x is optimal for 3AP
9: Report optimality of x and exit

10: end if
11: for all n nodes j ∈ J do
12: pickedj ← number of times nodes j appears in x
13: if pickedj > 1 then
14: weightj ← weightj + 2(pickedj − 1)
15: else if pickedj = 0 and weightj > 0 then
16: weightj ← weightj − 1
17: end if
18: end for
19: Convert x to a feasible solution by the greedy algorithm (3.7)
20: Add x to elite solutions E
21: end for
22: Run CPLEX on E to get xbest

Algorithm (3.5) describes the Lagrangian relaxation using the MCF formulation. In line

(2) we initialize the weights mi to 1000 so that we can decrease the weights in line (16)

while keeping them non-negative. Line (4) uses the input parameter MAX to determine

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 69

how many Lagrangian relaxation problems we solve. The value of MAX depends on the

problem size n, where n = |I| = |J | = |K|. Setting MAX = 10n gave the best results in our

experiments. The MCF solver used for solving the MCF problem was developed by Loebel

[2], available for academic use free of charge. It uses a network simplex algorithm.

Algorithm 3.6: Recovering 3AP Solution from Lagrangian Relaxation

Let y denote the MCF solution
Initialize the 3AP solution x← ~0
for i = 1, . . . , n do

Find the nodes ri ∈ R, sj ∈ S such that yri,sj = 1

k ← d jne
if the set I was expanded then

if j mod n 6= 0 then
xj mod n,i,k ← 1

else
xn,i,k ← 1

end if
else if the set J was expanded then

if j mod n 6= 0 then
xi,j mod n,k ← 1

else
xi,n,k ← 1

end if
else

if j mod n 6= 0 then
xi,k,j mod n ← 1

else
xi,k,n ← 1

end if
end if

end for

The following proposition proves why an optimal solution to (3.71) which is feasible for

3AP is also optimal for 3AP.

Proposition 3.11. Consider the optimization problem

min L(x) = cTx

s.t. Ax = b

x ∈ D
(3.76)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 70

where D is some domain, b is a vector and x1 is an optimal solution. Consider the La-

grangian relaxation

min L(x,m) = cTx+mT (Ax− b)
s.t. x ∈ D

(3.77)

where m is a given vector and x2 is an optimal solution. Then

L(x2,m) ≤ L(x1)

Furthermore, if x2 is feasible for (3.76) then it is also optimal for (3.76).

Proof. Any feasible solution to (3.76) is also feasible for (3.77) but (3.77) may consider more

feasible solutions since the constraint Ax = b is removed. Thus L(x2,m) ≤ L(x1). If, in

addition, x2 is feasible for (3.76), then L(x2,m) = L(x2) = L(x1) and x2 is also optimal for

(3.76).

Algorithm 3.7: Greedy Conversion from Lagrangian to Feasible

Initialize x′ ← ~0
for all j with pickedj = 1 do

Find the vector (i, j, k) with xijk = 1
x′ijk ← 1
Remove i from I, j from J and k from K

end for
for all j with pickedj > 1 do
L← {(i, j, k) | xijk = 1, i ∈ I, j ∈ J, k ∈ K}
(i, j, k)← the vector in L with minimum cijk
x′ijk ← 1
Remove i from I, j from J and k from K

end for
for all j with pickedj = 0 do

(i, j, k)← the vector with minimum cijk where i ∈ I, j ∈ J, k ∈ K
x′ijk ← 1
Remove i from I, j from J and k from K

end for
x← x′

The for loop in lines (11) to (18) modifies the weights mi in order to encourage x to

be feasible in the next MCF solution. If pickedj = 1 for some node j ∈ J , then the

corresponding constraint in the objective function is satisfied and if pickedj 6= 1, then the

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 71

corresponding constraint is violated. In the case that pickedj > 1, increasing mj discourages

multiple occurences of node j by driving up the cost in the objective function. In line

(13) node j appears (pickedj − 1) times more than allowed. It seems reasonable to take

the value (pickedj − 1) into consideration when increasing mj . In fact our experiments

indicate that an increase of 2(pickedj − 1) leads to better results. On the other hand, if

pickedj = 0, decreasing mj (provided mj stays non-negative) encourages going through

node j. Experiments showed that a decrease of 1 is more suitable.

Similar to Algorithm (3.2), line (20) adds x to the list of elite solutions E in order for

line (22) to solve the 3AP subproblem by an exact integer solver such as CPLEX. Since the

number of triangles in E is at most n×MAX compared to n3 in the original 3AP, finding

an exact solution is very quick.

Modifying the weights of Lagrangian relaxation leads to different solutions where each

solution may exhibit signs of being in an optimal solution. We predict that the method of

generating elite solutions E using Lagrangian relaxation and using an exact integer solver on

E can be successfully applied to other combinatorial optimization problems. We believe that

this approach can be a powerful tool in obtaining good quality solutions to many NP-hard

optimization problems. The choice of how to generate elite solutions E may be problem

dependent.

3.3.3 Linear Programming Peeling

This simple and efficient algorithm is based on solving the linear programming relaxation

of 3AP and continually reducing the problem size by “peeling” (i.e. removing) the nodes

i ∈ I, j ∈ J, k ∈ K for which xijk = 1.

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 72

Consider the integer programming (IP) formulation (1.12). The associated linear pro-

gramming (LP) relaxation is

min
n∑
i=1

n∑
j=1

n∑
k=1

cijkxijk

s.t.
n∑
j=1

n∑
k=1

xijk = 1 ∀ i = 1, . . . , n

n∑
i=1

n∑
k=1

xijk = 1 ∀ j = 1, . . . , n

n∑
i=1

n∑
j=1

xijk = 1 ∀ k = 1, . . . , n

xijk ∈ [0, 1] ∀ i, j, k = 1, . . . , n

(3.78)

If IP ∗ and LPR∗ are the optimal solutions to the IP and LP relaxation respectively and

f is the objective function, we have f(LPR∗) ≤ f(IP ∗) since IP ∗ is a feasible solution to

the LP relaxation as well.

A mixed integer program (MIP) is a combination of IP and LP where some variables

only take on integer values and the remaining variables assume real values. An example of

MIP for 3AP is where xijk ∈ {0, 1} for some variables and xijk ∈ [0, 1] for the remaining

variables.

The LP Peeling algorithm deals with an MIP. We may assume that the original LP

relaxation is an MIP with all real variables and no integer variables. Let

S=1 = {xijk | xijk = 1 in the MIP solution}
S<1 = {xijk | xijk < 1 in the MIP solution}

(3.79)

The algorithm forces some variables to be integer (i.e. either 0 or 1 due to the constraints)

and some variables to be zero in the next MIP. Note that after peeling the current MIP,

the remaining solution in S<1 remains feasible for the new MIP and potentially optimal. In

this case, S=1 = ∅ in the new MIP. In order to avoid this, we modify some variable types in

MIP addition to removing some nodes. Define

Fint = {xijk | the algorithm forces to be integer}
F0 = {xijk | the algorithm forces to be zero}

(3.80)

The size of the MIP throughout the algorithm is denoted by |MIP| and we define it to

be equal to |I| in the current MIP. Note that the peeling process removes equal number of

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 73

nodes from the sets I, J and K and hence |I| = |J | = |K| in the MIP . Algorithm (3.8)

below describes the LP Peeling algorithm.

Algorithm 3.8: LP Peeling

1: Fint ← ∅
2: F0 ← ∅
3: MIP ← LP relaxation of original 3AP
4: while |MIP| > inputSize do
5: Solve MIP using CPLEX
6: if S=1 6= ∅ then
7: Remove all variables in S=1 from MIP
8: F0 ← ∅
9: else

10: F0 ← F0 ∪ Fint
11: end if
12: Fint ← 5 largest variables in S<1

13: Apply Fint, F0 to MIP
14: end while
15: Solve the remaining IP using CPLEX

In line (4) of the algorithm we set inputSize = 4. This is due to the size of benchmark

instances used for testing the algorithm. These instances start with n = 4, 6, 8, 10, . . . and

setting the value of inputSize any higher reduces the algorithm to solving those instances

as an exact IP. For practical applications one could solve instances of size up to n = 10 by

CPLEX at almost the same time as n = 4 in less than a second. Removing the variables

in S=1 in MIP requires removing the corresponding nodes in I, J and K from MIP and

therefore reduces |MIP| by at least one. Line (13) forces the variables in Fint to take on

integer values and the variables in F0 to be equal to zero in the new MIP.

3.4 Computational Results

In this section we present the results of algorithms (3.2), (3.5) and (3.8). These are the Fix

Mapping, Lagrangian Relaxation and LP Peeling algorithms respectively. The experiments

were implemented using C++ and conducted on the same machine as described in Section

2.4. There are three types of benchmark instances available in the literature: Balas and

Saltzman instances, Burkard, Rudolf and Woeginger instances and instances due to Crama

and Spieksma. They are available for download from the OR Library [4] under Quadratic

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 74

Assignment Problem. The OR library is a collection of operations research related bench-

mark instances.

Tables 1 to 5 below summarize the results obtained by the three algorithms Fix Mapping,

Lagrangian Relaxation and LP Peeling. The columns named “Obj” refer to the objective

value of the solution and the “Time” columns report the time in seconds taken by the

algorithm. The bold entries indicate the best solution value among the five algorithms. We

also ran CPLEX to solve the integer program to optimality. Interestingly, every solution

reported by Lagrangian Relaxation turned out to be optimal. The entry “CPLEX Time”

reports the time taken by CPLEX to solve the integer problem to optimality.

3.4.1 Balas and Saltzman Dataset

This dataset is generated by Balas and Saltzman [14]. It includes 60 test instances with the

problem size n = 4, 6, 8, . . . , 22, 24, 26. For each n, five instances are randomly generated

with the integer cost coefficients cijk uniformly distributed in the interval [0,100].

Table 3.1: Balas and Saltzman Dataset
GRASP Hybrid Gen. Fix Mapping Lagrangian LP Peel. CPLEX

n Obj Time Obj Time Obj Time Obj Time Obj Time Time

4 - - 42.2 0.00 42.2 0.01 42.2 0.01 42.2 0.01 0.014
6 - - 40.2 0.01 40.2 0.02 40.2 0.02 41.2 0.01 0.016
8 - - 23.8 0.03 25.4 0.03 23.8 0.04 24.6 0.02 0.034
10 - - 19 0.37 21.8 0.03 19 0.07 19 0.04 0.056
12 15.6 74.79 15.6 0.87 23.2 0.10 15.6 0.13 16.6 0.10 0.142
14 10 106.55 10 1.73 15.2 0.22 10 0.21 12 0.22 0.224
16 10.2 143.89 10 1.89 14 0.39 10 0.38 10.4 0.37 0.412
18 7.4 190.88 7.2 2.95 9.4 1.11 6.4 0.76 6.6 0.94 0.74
20 6.4 246.70 5.2 4.01 5.6 1.89 4.8 1.34 5 3.24 1.432
22 7.8 309.64 5.6 4.54 13 1.47 4 2.13 4 4.11 2.71
24 7.4 382.45 3.2 5.66 5.8 2.13 1.8 4.68 2.2 6.10 8.042
26 8.4 465.20 3.6 10.78 2.6 7.46 1 8.75 1.6 11.15 25.894

3.4.2 Burkard, Rudolf and Woeginger Dataset

Burkard et al. [36] described this dataset with decomposable cost coefficients, which means

that cijk = aibjdk as described in Section 1.8.1. For each problem size n = 4, 6, 8, . . . , 16

they generated 100 instances.

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 75

Table 3.2: Burkard, Rudolf and Woeginger Dataset
GRASP Hybrid Gen. Fix Mapping Lagrangian LP Peel. CPLEX

n Obj Time Obj Time Obj Time Obj Time Obj Time Time

4 - - 443.6 0.00 443.6 0.01 443.6 0.01 443.6 0.01 0.0061
6 - - 633.72 0.01 633.71 0.01 633.71 0.01 633.71 0.01 0.014
8 - - 819.16 0.03 819.16 0.02 819.16 0.03 819.16 0.01 0.0318
10 - - 959.41 0.07 959.42 0.03 959.41 0.04 959.41 0.03 0.0555
12 1186.81 68.30 1186.81 0.13 1186.84 0.05 1186.81 0.06 1186.85 0.06 0.0992
14 1467.74 98.10 1467.74 0.23 1468.05 0.10 1467.74 0.11 1467.75 0.13 0.1715
16 1475.13 139.30 1475.13 0.40 1475.43 0.18 1475.13 0.19 1475.13 0.32 0.3031

3.4.3 Crama and Spieksma Dataset

Crama and Spieksma generated this dataset by restricting coefficients to be cijk = dij+dik+

djk [43] as discussed in Section 1.8.2. There are three types of instances in this dataset. For

each type, three instances of size n = 33 and three instances of size n = 66 are generated.

Table 3.3: Crama and Spieksma Dataset, Type 1
GRASP Hybrid Gen. Fix Mapping Lagrangian LP Peel. CPLEX

n Obj Time Obj Time Obj Time Obj Time Obj Time Time

33 1608 660.50 1608 0.03 1608 0.71 1608 2.17 1608 0.50 1.31
33 1401 680.50 1401 0.11 1401 0.65 1401 2.79 1401 0.69 2.67
33 1604 676.10 1604 0.11 1604 0.68 1604 2.25 1604 0.51 1.29
66 2664 15470.10 2662 0.55 2662 8.14 2662 7.34 2662 7.08 16.95
66 2449 15010.90 2449 0.27 2449 9.26 2449 7.83 2449 7.72 17.5
66 2759 15084.60 2758 0.58 2760 10.06 2758 11.21 2758 10.01 31.06

Table 3.4: Crama and Spieksma Dataset, Type 2
GRASP Hybrid Gen. Fix Mapping Lagrangian LP Peel. CPLEX

n Obj Time Obj Time Obj Time Obj Time Obj Time Time

33 4797 766.06 4797 0.11 4797 1.33 4797 2.56 4797 1.23 2.02
33 5068 772.84 5067 0.26 5067 1.23 5067 2.89 5067 1.14 2.76
33 4287 762.19 4287 0.26 4287 1.27 4287 2.97 4287 1.14 2.81
66 9694 14629.10 9684 4.86 9685 68.23 9684 31.22 9684 69.72 138.16
66 8954 14922.90 8944 3.35 8948 65.77 8944 30.19 8945 117.98 131.06
66 9751 14391.70 9745 3.09 9746 62.98 9745 28.06 9745 70.52 93.87

In addition to these benchmark instances, Grundel and Pardalos devised an algorithm to

generate Multidimensional Assignment Problems of controlled size with a known optimum

solution [68]. They made the code publicly available on their website [5].

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 76

Table 3.5: Crama and Spieksma Dataset, Type 3
GRASP Hybrid Gen. Fix Mapping Lagrangian LP Peel. CPLEX

n Obj Time Obj Time Obj Time Obj Time Obj Time Time

33 133 490.79 133 0.01 133 0.82 133 2.53 133 1.03 2.41
33 131 471.21 131 0.03 131 0.78 131 2.69 131 1.28 2.47
33 131 451.72 131 0.02 131 0.69 131 2.57 131 0.71 2.53
66 286 5322.97 286 0.15 286 13.21 286 10.91 286 13.15 28.19
66 286 5126.86 286 0.16 286 10.65 286 8.35 286 9.84 19.15
66 282 5059.06 282 0.23 282 8.91 282 9.52 282 8.59 24.05

3.5 Three Dimensional Traveling Salesman Problem

In this section we introduce a new problem, Three Dimensional TSP (3TSP), as an extension

of TSP and provide an application for it.

The TSP is a special case of AP where the permutation is a cycle of length n. Consider

the 3AP formulation (1.14). If the permuation p is a tour consisting of one cycle, then

we refer to the problem as 3TSP. Alternatively, we can obtain 3TSP from 3AP if the

permutation q is a cycle of length n. An application of 3TSP is the following.

3.5.1 An Application of 3TSP

An application of TSP can be stated as follows. A traveling salesman has some dictionaries

that he needs to sell in different cities on the tour. He packs the dictionaries before the

trip and sells them as he goes through the cites. Imagine a “Marco Polo” version where the

traveling salesman buys products from cities on the trip and sells them in the next city. In

other words, the salesman has only one luggage which he fills in city i and sells in city j as

he travels from i to j. Each item has a purchase price in city i and a selling price in city j.

The traveling salesman is interested in making the most profit as he goes through the cities.

For this purpose, let each cijk in 3AP be obtained by

cijk = dij + ejk + fik (3.81)

where dij is the distance between cities i and j, ejk is the cost of selling item k in city j (or

the negative of the selling price in city j), and fik is the cost of purchasing item k in city i.

Then 3TSP can be formulated as

min
p∈π1

n,q∈πn

n∑
i=1

cip(i)q(i) (3.82)

CHAPTER 3. THEORY AND ALGORITHMS ON 3AP 77

where πn denotes permutations on n and π1
n denotes cycles on n.

3TSP is NP-complete since as a special case, it considers matrices e and f to be the

same as distance matrix d [43]. Alternatively, if the matrices e and f are identically zero,

then 3TSP cotains TSP as a special case.

In this chapter we discussed the necessary and sufficient conditions for an instance of 3AP

to be constant. The result was extended to Multidimensional Assignment Problems. Other

polynomially solvable special cases were discussed as well as an approximation algorithm

for a special case. Also, three heuristic algorithms were introduced and computational

experiments were conducted. Out of the three proposed algorithms, Lagrangian Relaxation

outperforms the competing heuristics in the literature.

Chapter 4

Topics on Quadratic Three

Dimensional Assignment Problem

The Quadratic Three Dimensional Assignment Problem can be considered an extension of

QAP or 3AP as discussed in Section (1.12). One may obtain Q3AP as the quadratic version

of 3AP, or the three-dimensional version of QAP. This natural extension lends itself to

studying the Q3AP through QAP and 3AP. This chapter focuses on theoretical aspects of

Q3AP such as polynomially solvable special cases and approximation algorithms for special

cases. In addition to extending results in QAP and 3AP, we present a new polynomially

solvable case that does not rely on QAP nor 3AP.

4.1 Polynomially Solvable Special Cases

We propose new theorems to extend the special cases of 3AP and QAP to Q3AP.

Theorem 4.1. If the cost coefficients of Q3AP are decomposable as cijklmr = dijkdlmr where

dijk is the cost coefficient in 3AP, then Q3AP and 3AP have the same optimal solution and

min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j) =

(
min
p,q∈πn

n∑
i=1

dip(i)q(i)

)2

(4.1)

78

CHAPTER 4. TOPICS ON Q3AP 79

Proof. Let p∗, q∗ be the permutations that minimize
n∑
i=1

dip(i)q(i). Then

min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j) (4.2)

= min
p,q∈πn

n∑
i=1

n∑
j=1

dip(i)q(i)djp(j)q(j) (4.3)

= min
p,q∈πn

 n∑
i=1

dip(i)q(i)

n∑
j=1

djp(j)q(j)

 (4.4)

=

(
min
p,q∈πn

n∑
i=1

dip(i)q(i)

) min
p,q∈πn

n∑
j=1

djp(j)q(j)

 (4.5)

=

(
min
p,q∈πn

n∑
i=1

dip(i)q(i)

)2

(4.6)

=

(
n∑
i=1

dip∗(i)q∗(i)

)2

(4.7)

Equation (4.5) follows from equation (4.4) since both summands in (4.4) are identical. In

other words, the same permutations p∗ and q∗ in 3AP minimize both sums in (4.4). Note

that p∗ and q∗ are optimal for Q3AP as well.

Theorem 4.2. If the cost coefficients of Q3AP are decomposable as cijklmr = dijk + dlmr

where dijk is the cost coefficient in 3AP, then Q3AP and 3AP have the same optimal solution

and

min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j) = 2n min
p,q∈πn

n∑
i=1

dip(i)q(i) (4.8)

CHAPTER 4. TOPICS ON Q3AP 80

Proof. Let p∗, q∗ be the permutations that minimize
n∑
i=1

dip(i)q(i). Then

min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j)

= min
p,q∈πn

n∑
i=1

n∑
j=1

(
dip(i)q(i) + djp(j)q(j)

)
= min

p,q∈πn

 n∑
i=1

n∑
j=1

dip(i)q(i) +
n∑
i=1

n∑
j=1

djp(j)q(j)


= min

p,q∈πn

n n∑
i=1

dip(i)q(i) + n

n∑
j=1

djp(j)q(j)


= 2n min

p,q∈πn

n∑
i=1

dip(i)q(i)

= 2n

n∑
i=1

dip∗(i)q∗(i)

The permutations p∗ and q∗ in 3AP are also feasible for Q3AP and therefore minimize

Q3AP.

The following corollary describes how to extend polynomially solvable special cases of

3AP to polynomially solvable cases of Q3AP. Therefore, we can extend the special cases in

Section (1.8.1) to Q3AP, as well as new special cases of 3AP to be discovered in the future

by researchers.

Corollary 4.3. Consider an instance of 3AP with entries dijk and construct an instance

of Q3AP where cijklmr = dijkdlmr or cijklmr = dijk + dlmr. If an algorithm H solves 3AP to

optimality in polynomial time, then H also solves Q3AP to optimality in polynomial time.

Proof. The result follows from Theorems (4.1) and (4.2) as well as the value of the solution

in Q3AP.

We next present a polynomially solvable class of Q3AP that is obtained independently

rather than an extension of QAP or 3AP. Suppose that each entry cijklmr can be character-

ized as

cijklmr = a
(1)
ij + a

(2)
jk + a

(3)
kl + a

(4)
lm + a(5)

mr + a
(6)
ri (4.9)

where A(1), . . . , A(6) are two-dimensional matrices with arbitrary real entries.

CHAPTER 4. TOPICS ON Q3AP 81

Theorem 4.4. If the coefficients of Q3AP can be characterized as equation (4.9), then the

optimal solution of Q3AP is obtained in polynomial time by solving the following problems

min
p∈πn

n∑
i=1

bip(i) (4.10)

and

min
r∈πn

n∑
i=1

dir(i) (4.11)

where bij = a
(1)
ij +a

(4)
ij and dij = a

(2)
ij +a

(5)
ij . The optimal solution is comprised of p as above

and q = r ◦ p.

Proof.

min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j) (4.12)

= min
p,q∈πn

n∑
i=1

n∑
j=1

(
a

(1)
ip(i) + a

(2)
p(i)q(i) + a

(3)
q(i)j + a

(4)
jp(j) + a

(5)
p(j)q(j) + a

(6)
q(j)i

)
(4.13)

= min
p,q∈πn

 n∑
i=1

n∑
j=1

a
(1)
ip(i) +

n∑
i=1

n∑
j=1

a
(4)
jp(j)

+
n∑
i=1

n∑
j=1

a
(2)
p(i)q(i) +

n∑
i=1

n∑
j=1

a
(5)
p(j)q(j) +

n∑
i=1

n∑
j=1

a
(3)
q(i)j +

n∑
i=1

n∑
j=1

a
(6)
q(j)i

 (4.14)

= min
p,q∈πn

n n∑
i=1

a
(1)
ip(i) + n

n∑
j=1

a
(4)
jp(j)

+ n
n∑
i=1

a
(2)
p(i)q(i) + n

n∑
j=1

a
(5)
p(j)q(j) +

n∑
i=1

n∑
j=1

a
(3)
q(i)j +

n∑
i=1

n∑
j=1

a
(6)
q(i)j

 (4.15)

The terms

n∑
i=1

n∑
j=1

a
(3)
q(i)j and

n∑
i=1

n∑
j=1

a
(6)
q(i)j in equation (4.15) are constant regardless of choice

of q. They are simply the sum of all entries in a(3) and a(6). Hence the optimal solution of

(4.12) is the same as the optimal solution of

min
p,q∈πn

n n∑
i=1

a
(1)
ip(i) + n

n∑
j=1

a
(4)
jp(j) + n

n∑
i=1

a
(2)
p(i)q(i) + n

n∑
j=1

a
(5)
p(j)q(j)

 (4.16)

= n min
p,q∈πn

(
n∑
i=1

(
a

(1)
ip(i) + a

(4)
ip(i)

)
+

n∑
i=1

(
a

(2)
p(i)q(i) + a

(5)
p(i)q(i)

))
(4.17)

CHAPTER 4. TOPICS ON Q3AP 82

Define matrices B and D such that bij = a
(1)
ij + a

(4)
ij and dij = a

(2)
ij + a

(5)
ij . Then solving

(4.17) is equivalent to solving the following

min
p,q∈πn

(
n∑
i=1

bip(i) +
n∑
i=1

dp(i)q(i)

)
(4.18)

= min
p,r∈πn

(
n∑
i=1

bip(i) +

n∑
i=1

dir(i)

)
(4.19)

=

(
min
p∈πn

n∑
i=1

bip(i)

)
+

(
min
r∈πn

n∑
i=1

dir(i)

)
(4.20)

Equation (4.19) follows from equation (4.18) since p is a permutation and ignoring p in

the second summand has the effect of changing the order of terms in the summation. This

change requires the permutation q to be replaced by r. The reason is that q in equation

(4.18) maps I to K whereas the second sum in equation (4.19) indicates a mapping from

J to K. We keep track of this change by noting that q = r ◦ p. Equation (4.20) indicates

that in order to find the optimal solution of (4.12), we can solve the two separate instances

of AP in equation (4.20). Since AP can be solved in O(n3) [82], problem (4.12) can also be

solved in O(n3).

We next construct Q3AP instances from QAP instances in an attempt to extend the

results in QAP to Q3AP.

Theorem 4.5. If cijklmr = bilajm + bildkr, then

min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j) =

min
p∈πn

n∑
i=1

n∑
j=1

bijap(i)p(j)

+

min
q∈πn

n∑
i=1

n∑
j=1

bijdq(i)q(j)


(4.21)

Proof.

min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j)

= min
p,q∈πn

n∑
i=1

n∑
j=1

(
bijap(i)p(j) + bijdq(i)q(j)

)
= min

p,q∈πn

 n∑
i=1

n∑
j=1

bijap(i)p(j) +
n∑
i=1

n∑
j=1

bijdq(i)q(j)


=

min
p∈πn

n∑
i=1

n∑
j=1

bijap(i)p(j)

+

min
q∈πn

n∑
i=1

n∑
j=1

bijdq(i)q(j)



CHAPTER 4. TOPICS ON Q3AP 83

Theorem 4.6. If cijklmr = bilajm + ajmdkr, then

min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j) =

min
p∈πn

n∑
i=1

n∑
j=1

bijap(i)p(j)

+

min
r∈πn

n∑
i=1

n∑
j=1

aijdr(i)r(j)


(4.22)

where q = r ◦ p.

Proof.

min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j) (4.23)

= min
p,q∈πn

n∑
i=1

n∑
j=1

(
bijap(i)p(j) + ap(i)p(j)dq(i)q(j)

)
(4.24)

= min
p,q∈πn

 n∑
i=1

n∑
j=1

bijap(i)p(j) +

n∑
i=1

n∑
j=1

ap(i)p(j)dq(i)q(j)

 (4.25)

= min
p,r∈πn

 n∑
i=1

n∑
j=1

bijap(i)p(j) +
n∑
i=1

n∑
j=1

aijdr(i)r(j)

 (4.26)

=

min
p∈πn

n∑
i=1

n∑
j=1

bijap(i)p(j)

+

min
r∈πn

n∑
i=1

n∑
j=1

aijdr(i)r(j)

 (4.27)

Equation (4.26) follows from equation (4.25) by the same reason mentioned in the proof of

Theorem (4.4) and noting that q = r ◦ p.

Theorems (4.5) and (4.6) describe two scenarios where Q3AP can be reduced to solving

two instances of QAP.

Corollary 4.7. Suppose an instance of Q3AP is of the form stated in Theorem (4.5) or

(4.6), and in addition, each resulting QAP instance is polynomially solvable. Then the

original Q3AP instance is polynomially solvable with solution provided by Theorem (4.5) or

(4.6) respectively.

4.2 Approximation Algorithms

In this section we propose a theorem that extends any approximation algorithm for 3AP to

an approximation algorithm for Q3AP.

CHAPTER 4. TOPICS ON Q3AP 84

Let OPT3AP and OPTQ3AP denote the optimal solutions of 3AP and Q3AP respectively.

Any feasible solution S to 3AP is also feasible for Q3AP. Let cost(S3AP) and cost(SQ3AP)

denote the costs of S in 3AP and Q3AP respectively.

Theorem 4.8. Consider an instance of 3AP with entries dijk and construct an instance of

Q3AP such that cijklmr = dijkdlmr. Suppose H is an approximation algorithm to 3AP which

returns a solution S with cost(S3AP) ≤ α cost(OPT3AP). Then H is also an approximation

algorithm for Q3AP where cost(SQ3AP) ≤ α2cost(OPTQ3AP).

Proof. Let OPT3AP be comprised of permutations p∗ and q∗. Let S, the solution of H, be

comprised of permutations p′ and q′. Then since H is an approximation algorithm for 3AP,

we have

cost(S3AP) =

n∑
i=1

dip′(i)q′(i) ≤ α
n∑
i=1

dip∗(i)q∗(i) = cost(OPT3AP) (4.28)

and hence we have

cost(SQ3AP) =
n∑
i=1

n∑
j=1

cip′(i)q′(i)jp′(j)q′(j)

=
n∑
i=1

n∑
j=1

dip′(i)q′(i)djp′(j)q′(j)

=

n∑
i=1

dip′(i)q′(i)

n∑
j=1

djp′(j)q′(j)

≤

(
α

n∑
i=1

dip∗(i)q∗(i)

)2

by equation (4.28)

= α2 min
p,q∈πn

n∑
i=1

n∑
j=1

cip(i)q(i)jp(j)q(j) by Theorem (4.1)

= α2cost(OPTQ3AP)

Therefore, cost(SQ3AP) ≤ α2cost(OPTQ3AP).

In order to make Theorem (4.8) more general, we do not require α to be a constant. It

may be a function of problem input such as log(n). This theorem allows us to extend the

approximation algorithms to 3AP in Section (1.8.2) to Q3AP, as well as new approximation

algorithms for 3AP to be discovered in the future by researchers.

Corollary 4.9. If the cost coefficients of Q3AP are decomposable as cijklmr = dijkdlmr

where dijk is the cost coefficient in 3AP of type T4 or S4 (as defined in Section 1.8.2),

CHAPTER 4. TOPICS ON Q3AP 85

then the algorithm H in Theorem (1.12) returns a solution within 16
9 of the optimal Q3AP

solution.

Proof. Algorithm H in Theorem (1.12) returns a solution within 1
3 of the optimal 3AP

solution. The result follows by Theorem (4.8).

In this chapter we presented special cases of the Q3AP as extension of special cases of

QAP and 3AP. Also, a new special case was discussed without relying on the QAP or 3AP

problems. Approximation algorithms were discussed as well for special cases of Q3AP.

Chapter 5

Conclusion

Chapter 1 introduced three combinatorial optimization problems: Quadratic Assignment

Problem (QAP), Three Dimensional Assignment Problem (3AP) and Quadratic Three Di-

mensional Assignment Problem (Q3AP). These problems are NP-hard.

In Chapter 2 we discussed a general heuristic paradigm called Randomized Local Search.

Extensive experimental results are reported using two variations of the algorithm on the

Quadratic Assignment Problem; RandLS-Sim and RandLS-Tabu, with benchmark QAPLIB

problems and microarray instances as the test bed. Out of the 14 microarray instances, our

algorithm obtained an improved solution for the largest instance and matched 3 others in the

Conflict Index class. RandLS-Sim and RandLS-Tabu together matched 111 of 135 QAPLIB

instances with optimal or best known solutions.

We expect that RandLS works well for other combinatorial optimization problems as

well. A preliminary implementation of the method for Quadratic Minimum Spanning Tree

problem is reported in [95].

In Chapter 3 we presented new polynomially solvable cases of the Three Dimensional

Assignment Problem. The most notable such special case is the constant 3AP where every

feasible solution is optimal. We provided full characterization of the constant 3AP: a 3AP

instance is constant if and only if the cost matrix can be decomposed as the sum of three one-

dimensional arrays. The result was extended to Multidimensional Assignment Problems.

Other special cases involve cost matrices that are decomposable as the sum of two one-

dimensional arrays and a two-dimensional array.

We also provided approximation algorithms for 3AP instances where tijk = dij+dik+djk

or sijk = min{dij + dik, dij + djk, dik + djk}. These problems are referred to as T and S

86

CHAPTER 5. CONCLUSION 87

respectively. If the distances satisfy the parameterized triangle inequality with parameter δ,

then the problems are referred to as T4δ and S4δ. Our approximation algorithms return

solutions whose cost is at most 2
3(1 + δ) times the optimal cost.

Chapter 3 also introduced three heuristic algorithms for the general 3AP: Fix Mapping,

Lagrangian Relaxation and LP Peeling. The Lagrangian Relaxation and LP Peeling algo-

rithms outperform the two most successful heuristics in the literature in terms of solution

quality. Experimental results were presented using benchmark instances. We expect that

the methods used in our Lagrangian Relaxation algorithm can be successfully applied to

other combinatorial optimization problems. The chapter concluded with a new problem

called Three Dimensional Traveling Salesman Problem (3TSP) as a three-dimensional ver-

sion of the well-known Traveling Salesman Problem (TSP). We are hoping that 3TSP gets

the attention of researchers as a potential application is illustrated.

In Chapter 4 we presented polynomially solvable special cases of the Quadratic Three

Dimensional Assignment Problem, as well as approximation algorithms for special cases of

Q3AP. Since there are only a few papers written on the Q3AP, we anticipate more work in

the future on this problem.

CHAPTER 5. CONCLUSION 88

5.1 Appendix 1

The improved solution obtained for one of the Conflict Index Instances from the QAP mi-

corarray dataset is given below.

n: 144

cost: 794811636

assignment: 19 101 16 47 107 129 48 59 61 137 35 108 85 40 134 57 36 63 69 53 18 139 87

120 37 130 15 76 78 43 75 111 58 128 86 33 10 82 39 13 117 45 14 62 143 44 38 4 132 56

141 95 74 136 124 66 77 68 126 60 71 105 6 79 80 52 27 123 98 94 93 125 24 67 99 81 70

131 12 8 3 23 144 133 55 73 109 91 31 122 34 65 112 41 21 119 72 22 142 7 50 121 42 114

138 100 30 11 1 102 89 32 26 103 64 46 25 9 116 5 118 140 28 97 135 54 90 49 2 96 20 88

110 127 115 51 106 17 92 113 83 84 104 29

algorithm: RandLS-Tabu

k: 30

iter(k): 30

total number of iterations: 2000000

We present below the best solutions we have obtained over all experiments for the

microarray QAP test problems. These results are due to fine-tuning parameters for specific

instances, whereas Tables (2.1) and (2.2) use default parameter values as reported earlier.

The bold entries indicate the best known solutions so far and the underlined entries match

the best known solutions that we obtained.

In addition, the run times in [1] range from less than 2 minutes per single run for the

n = 36 instance to less than 9 hours for the n = 144 problems. As the following 2 tables

indicate, our solution to n = 144 take far less time.

CHAPTER 5. CONCLUSION 89

Table 5.1: Border Length Instances

size best known our best solution time algorithm used

36 3296 3304 28 RandLS-Sim
226 RandLS-Tabu

49 4548 4572 648 RandLS-Tabu
64 5988 6020 763 RandLS-Tabu
81 7536 7580 1210 RandLS-Tabu
100 9272 9336 1865 RandLS-Tabu
121 11412 11504 2755 RandLS-Tabu
144 13472 13588 1977 RandLS-Tabu

Table 5.2: Conflict Index Instances

size best known our best solution time algorithm used

36 168,611,971 168,611,971 219 RandLS-Tabu

49 236,355,034 236,355,034 419 RandLS-Tabu

64 325,671,035 325,671,035 98 RandLS-Sim

745 RandLS-Tabu
81 427,447,820 427,501,773 1197 RandLS-Tabu
100 523,146,366 523,552,203 611 RandLS-Sim
121 653,416,978 654,416,694 2780 RandLS-Tabu
144 795,009,899 794,811,636 8042 RandLS-Tabu

The following sections describe the specifics of the algorithms used in order to obtain

the two tables above.

5.1.1 Border Length instances

n: 36

cost: 3304

assignment: 4 9 20 28 26 30 29 7 34 19 1 25 21 3 8 6 31 32 2 33 15 5 13 12 10 18 24 22 35

16 23 14 27 11 36 17

algorithm: RLS-Sim

initial k: n

initial iter(k): 100

When k = 4 , jump to local search

Multiple start parameters:

CHAPTER 5. CONCLUSION 90

number of repeats: 4

number of peeks at local minimum: 10

increments of iter(k): 100

increments of k: 0.5 * initial k

Alternative solution

assignment: 23 10 24 22 2 29 14 18 33 15 35 13 21 8 3 5 6 31 12 16 20 34 19 32 36 17 9 7 1

25 28 26 30 4 27 11

algorithm: RLS-Tabu

k: 15

iter(k): 30

Total number of iterations: 1000000

n: 49

cost: 4572

assignment: 39 12 37 2 30 28 32 6 22 27 19 48 45 40 47 18 31 34 36 43 42 23 13 35 4 15 11

8 16 46 33 17 24 25 10 26 5 41 7 21 29 14 1 44 9 20 49 3 38

algorithm: RLS-Tabu

k: 15

iter(k): 30

total number of iterations: 1500000

n: 64

cost: 6020

assignment: 9 58 32 50 18 26 13 53 61 33 60 48 10 43 54 47 38 16 22 59 2 36 62 28 35 1 15

24 20 37 29 34 8 25 51 6 42 45 63 12 4 3 46 31 17 41 23 19 21 56 14 40 5 39 52 30 57 49 55

7 11 27 44 64

algorithm: RLS-Tabu

k: 15

iter(k): 30

total number of iterations: 1000000

n: 81

CHAPTER 5. CONCLUSION 91

cost: 7580

assignment: 46 59 67 61 24 48 25 16 53 34 79 9 19 8 81 44 39 15 51 71 76 23 80 3 33 43 36

29 57 55 7 11 18 54 1 45 14 6 52 30 2 26 49 10 74 58 63 32 72 64 4 56 70 38 62 40 5 41 35

27 42 28 37 17 47 66 77 60 31 21 78 65 69 50 68 20 12 22 73 75 13

algorithm: RLS-Tabu

k: 15

iter(k): 30

total number of iterations: 1000000

n: 100

cost: 9336

assignment: 23 13 54 5 26 92 56 68 44 4 35 69 61 65 80 87 45 98 14 74 9 22 73 20 75 84 93

94 79 53 6 72 58 59 55 38 66 17 19 63 21 8 34 100 25 99 12 50 52 36 91 10 78 33 16 67 28

83 2 43 90 70 86 15 41 88 27 42 32 47 89 60 71 95 1 31 97 57 29 96 7 49 3 30 51 39 64 81

40 82 11 48 77 18 62 46 37 85 24 76

algorithm: RLS-Tabu

k: 15

iter(k): 30

total number of iterations: 1000000

n: 121

cost: 11504

assignment: 48 32 55 72 104 17 105 11 53 98 113 37 99 62 117 80 14 69 43 2 36 46 85 71

115 111 84 116 15 114 3 57 51 10 42 91 73 23 82 64 100 52 41 4 58 31 119 66 19 49 87 45

76 8 107 103 5 108 1 97 16 65 33 28 60 67 24 118 102 63 86 56 20 21 121 59 95 77 26 6 47

112 70 92 89 27 120 68 50 109 13 61 81 78 12 30 35 40 74 39 22 18 29 38 94 83 54 44 110

93 9 90 34 75 25 7 79 101 96 106 88

algorithm: RLS-Tabu

k: 15

iter(k): 30

total number of iterations: 1000000

n: 144

CHAPTER 5. CONCLUSION 92

cost: 13588

assignment: 32 51 17 87 120 76 140 89 11 6 8 23 64 85 35 128 4 3 12 68 94 24 123 113 46 9

58 111 38 126 143 93 25 138 114 49 110 96 60 125 86 104 14 131 10 37 54 75 130 40 44 77

27 29 97 7 13 117 90 52 103 134 15 81 133 84 115 91 95 74 136 124 26 50 67 21 144 83 122

31 141 69 45 98 108 135 73 55 101 2 34 121 127 36 43 47 99 92 142 28 105 39 42 82 5 59 63

129 66 118 41 109 106 33 112 56 20 61 19 48 72 1 100 53 102 88 107 132 116 78 16 70 22

119 62 18 30 137 139 71 57 79 65 80

algorithm: RLS-Tabu

k: 15

iter(k): 30

total number of iterations: 500000

5.1.2 Conflict Index Instances

n: 36

cost: 168611971

assignment: 29 18 22 24 5 19 2 21 33 15 6 27 28 26 1 35 31 32 36 17 3 13 12 10 30 7 4 9 25

23 8 16 34 20 11 14

algorithm: RLS-Tabu

k: 15

iter(k): 30 total number of iterations: 1000000

n: 49

cost: 236355034

assignment: 1 3 38 2 40 32 28 24 49 5 7 9 20 39 4 21 45 41 19 23 12 6 34 33 46 8 27 22 30

29 26 16 47 18 31 37 25 11 42 44 35 13 48 17 36 43 15 14 10

algorithm: RLS-Tabu

k: 15

iter(k): 30 total number of iterations: 1000000

n: 64

cost: 325671035

assignment: 13 9 14 29 37 12 28 30 53 58 33 34 45 62 36 47 21 32 18 11 63 19 2 59 56 60 50

CHAPTER 5. CONCLUSION 93

27 55 23 61 22 16 48 42 39 52 54 3 15 38 64 44 5 49 57 25 51 24 10 20 41 31 35 1 7 6 26 43

4 8 17 46 40

Algorithm: RLS-Sim

initial k: n

initial iter(k): 200

when k = 4 , jump to local search.

Multiple start parameters:

number of repeats: 3

number of peeks at local minimum: 15

increments of iter(k): 50

increments of k: 0.5 * initial k

Alternative solution

assignment: 6 24 38 16 56 21 53 13 26 10 64 48 60 32 58 9 43 20 44 42 50 18 33 14 4 41 5

39 27 11 34 29 8 31 49 52 55 63 45 37 17 35 57 54 23 19 62 12 46 1 25 3 61 2 36 28 40 7 51

15 22 59 47 30

algorithm: RLS-Tabu

k: 15

iter(k): 30

total number of iterations: 1000000

n: 81

cost: 427501773

assignment: 74 23 25 55 26 66 68 50 16 38 24 48 7 18 77 43 39 37 65 8 80 11 3 33 10 44 62

22 19 9 81 76 54 1 15 53 40 47 79 2 28 52 57 49 70 67 73 59 30 75 42 4 56 6 21 61 34 46 13

27 72 32 71 31 69 17 64 35 41 45 63 5 12 60 20 14 29 51 36 78 58

algorithm: RLS-Tabu

k: 30

iter(k): 30

total number of iterations: 1000000

n: 100

cost: 523552203

CHAPTER 5. CONCLUSION 94

assignment: 94 3 14 69 85 80 16 55 23 1 6 71 86 61 22 65 78 9 35 81 10 70 20 73 58 34 5 21

2 54 11 95 13 72 8 59 56 100 45 60 24 7 47 96 15 92 83 28 26 90 36 63 52 17 33 88 19 50 37

89 43 31 97 57 87 53 68 44 40 98 82 32 29 42 27 79 93 4 12 46 76 51 30 18 77 74 66 38 99

39 67 62 41 49 48 75 91 84 64 25

algorithm: RLS-Sim

initial k: n

initial iter(k): 200

when k = 4 , jump to local search.

Multiple start parameters:

number of repeats: 4

number of peeks at local minimum: 15

increments of iter(k): 50

increments of k: 0.5 * initial k

n: 121

cost: 654416694

assignment: 54 101 28 35 76 41 98 58 66 113 57 39 77 33 36 85 43 10 103 38 25 52 92 30 65

2 50 109 45 15 79 7 97 46 81 5 9 53 90 34 83 69 112 1 20 12 8 104 51 26 74 110 17 86 63 70

94 96 72 108 3 22 18 105 56 14 32 78 48 106 44 114 31 13 6 84 23 80 117 62 87 100 93 42

11 102 116 19 118 99 115 37 29 88 67 121 59 120 55 47 71 91 75 49 16 60 27 89 40 24 21 73

111 64 82 119 107 4 95 61 68

algorithm: RLS-Tabu

k: 15

iter(k): 30

total number of iterations: 1000000

n: 144

cost: 794811636

assignment: 19 101 16 47 107 129 48 59 61 137 35 108 85 40 134 57 36 63 69 53 18 139 87

120 37 130 15 76 78 43 75 111 58 128 86 33 10 82 39 13 117 45 14 62 143 44 38 4 132 56

141 95 74 136 124 66 77 68 126 60 71 105 6 79 80 52 27 123 98 94 93 125 24 67 99 81 70

131 12 8 3 23 144 133 55 73 109 91 31 122 34 65 112 41 21 119 72 22 142 7 50 121 42 114

138 100 30 11 1 102 89 32 26 103 64 46 25 9 116 5 118 140 28 97 135 54 90 49 2 96 20 88

CHAPTER 5. CONCLUSION 95

110 127 115 51 106 17 92 113 83 84 104 29

algorithm: RLS-Tabu

k: 30

iter(k): 30

total number of iterations: 2000000

Bibliography

[1] Results for de Carvalho et al. Problems:

http://cbeweb-1.fullerton.edu/isds/zdrezner/Carvalho.htm.

[2] A. Loebel, (2004). MCF Version 1.3 - A network simplex implementation: www.zib.de.

[3] Microarray Library: http://gi.cebitec.uni-bielefeld.de/comet/chiplayout/qap.

[4] OR Library website: http://people.brunel.ac.uk/∼mastjjb/jeb/info.html.

[5] Test problem generator for Multidimensional Assignment Problem:

www.math.ufl.edu/∼coap.

[6] A. Aggarwal and J.K. Park. Notes on searching in multidimensional monotone arrays.

In Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer

Science, pages 497–512, 1988.

[7] A. Aggarwal and J.K. Park. Parallel searching in multidimensional monotone arrays.

Research Report RC 14826, IBM T.J. Watson Research Center, Yorktown Heights,

NY, 1989. Portions of this paper appeared in [6].

[8] A. Aggarwal and J.K. Park. Sequential searching in multidimensional monotone

arrays. Research Report RC 15128, IBM T.J. Watson Research Center, Yorktown

Heights, NY, 1989. Portions of this paper appeared in [6].

[9] R.K. Ahuja, J.B. Orlin, and A. Tiwari. A greedy genetic algorithm for the quadratic

assignment problem. Computers and Operations Research, 27:917–934, 2000.

[10] R.M. Aiex, M.G.C. Resende, P.M. Pardalos, and G. Toraldo. Grasp with path re-

linking for three-index assignment. INFORMS Journal on Computing, 17:224–247,

2005.

96

BIBLIOGRAPHY 97

[11] K. Anstreicher, N. Brixius, J.P. Goux, and J. Linderoth. Solving large quadratic

assignment problems on computational grids. Mathematical Programming, 91:563–

588, 2002.

[12] A.A. Assad and W. Xu. On lower bounds for a class of quadratic 0,1 programs.

Operations Research Letters, 4:175–180, 1985.

[13] E. Balas and M.W. Padberg. Set partitioning: a survey. SIAM Review, 18:710–760,

1976.

[14] E. Balas and M.J. Saltzman. An algorithm for the three-index assignment problem.

Operations Research, 39:150–161, 1991.

[15] M.L. Balinski and R.E. Gomory. A primal method for the assignment and transporta-

tion problems. Management Science, 10:578–593, 1964.

[16] S.E. Bammel and J. Rothstein. The number of 9 × 9 latin squares. Discrete Mathe-

matics, 11:93–95, 1975.

[17] H.J. Bandelt, Y. Crama, and F.C.R. Spieksma. Approximation algorithms for multi-

dimensional assignment problems with decomposable costs. Discrete Applied Mathe-

matics, 49:25–50, 1994.

[18] H.J. Bandelt, A. Maas, and F.C.R. Spieksma. Local search heuristics for multi-index

assignment problems with decomposable costs. Journal of the Operational Research

Society, 55:694–704, 2004.

[19] A. Barvinok and T. Stephen. The distribution of values in the quadratic assignment

problem. Mathematics of Operations Research, 28(1):64–91, 2003.

[20] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on Computing,

6:126–140, 1994.

[21] M.S. Bazaraa and H.D. Sherali. Benders’ partitioning scheme applied to a new for-

mulation of the quadratic assignment problem. Naval Research Logistics Quarterly,

27:29–41, 1980.

BIBLIOGRAPHY 98

[22] M.S. Bazaraa and H.D. Sherali. On the use of exact and heuristic cutting plane

methods for the quadratic assignment problem. Journal of the Operational Research

Society, 33:991–1003, 1982.

[23] W.W. Bein, P. Brucker, J.K. Park, and P.K. Pathak. A monge property for the d-

dimensional transportation problem. Discrete Applied Mathematics, 58:97–109, 1995.

[24] M. Blum, R.W. Floyd, V.R. Pratt, R.L. Rivest, and R.E. Tarjan. Time bounds for

selection. Journal of Computer and System Sciences, 7:448–461, 1973.

[25] S.H. Bokhari. Assignment Problems in Parallel and Distributed Computing. Kluwer

Academic Publishers, 1987.

[26] N.W. Brixius and K.M. Anstreicher. The steinberg wiring problem. Technical report,

Microsoft Corporation, Department of Management Scineces, University of Iowa, 2001.

[27] P.A. Bruijs. On the quality of heuristic solutions to a 19 x 19 quadratic assignment

problem. European Journal of Operational Research, 17:21–30, 1984.

[28] R.E. Burkard. Locations with spatial interactions: the quadratic assignment problem.

In P.B. Mirchandani and R.L. Francis, editors, Discrete Location Theory, pages 387–

437. John Wiley and Sons, 1991.

[29] R.E. Burkard. Selected topics on assignment problems. Discrete Applied Mathematics,

123:257–302, 2002.

[30] R.E Burkard and T. Bonniger. A heuristic for quadratic boolean programs with appli-

cations to quadratic assignment problems. European Journal of Operational Research,

13:374–386, 1983.

[31] R.E. Burkard and U. Derigs. Assignment and matching problems: solutions methods

with Fortran programs, volume 184 of Lectures Notes in Economics and Mathematical

Systems. Springer, 1980.

[32] R.E. Burkard and K. Fröhlich. Some remarks on 3-dimensional assignment problems.

Methods of Operations Research, 36:31–36, 1980.

BIBLIOGRAPHY 99

[33] R.E. Burkard, S. Karisch, and F. Rendl. QAPLIB - a quadratic assignment

problem library. European Journal of Operational Research, 55:115–119, 1991.

http://www.opt.math.tu-graz.ac.at/qaplib.

[34] R.E. Burkard, B. Klinz, and R. Rudolf. Perspectives of monge properties in optimiza-

tion. Discrete Applied Mathematics, 70:95–161, 1996.

[35] R.E. Burkard and F. Rendl. A thermodynamically motivated simulation procedure

for combinatorial optimization problems. European Journal of Operational Research,

17(2):169–174, 1984.

[36] R.E. Burkard, R. Rudolf, and G.J Woeginger. Three dimensional axial assignment

problems with decomposable cost coefficients. Discrete Applied Mathematics, 65:123–

139, 1996.

[37] P. Carraresi and F. Malucelli. A new lower bound for the quadratic assignment

problem. Operations Research, 40(1):S22–S27, 1992.

[38] E. Çela. The Quadratic Assignment Problem: Theory and Algorithms. Kluwer Aca-

demic Publishers, 1998.

[39] N. Christofides and E. Benavent. An exact algorithm for the quadratic assignment

problem on a tree. Operation Research, 37(5):760–768, 1989.

[40] N. Christofides and M. Gerrard. Special cases of the quadratic assignment problem.

Technical report, Management Science Research Report 391, Carnegie Mellon Univer-

sity, 1976.

[41] N. Christofides and M. Gerrard. A graph theoretic analysis of bounds for the quadratic

assignment problem. In Studies on Graphs and Discrete Programming, pages 61–68.

North-Holland, 1981.

[42] Y. Crama, A.W.J. Kolen, A.G. Oerlemans, and F.C.R. Spieksma. Throughput rate

optimization in the automated assembly of printed circuit boards. Annals of Opera-

tions Research, 26:455–480, 1990.

[43] Y. Crama and F.C.R. Spieksma. Approximation algorithms for three-dimensional

assignment problems with triangle inequalities. European Journal of Operational Re-

search, 60:273–279, 1992.

BIBLIOGRAPHY 100

[44] L. Davis. Genetic Algorithms and Simulated Annealing. Morgan Kaufmann Publishers,

1987.

[45] S.A. de Carvalho Jr. and S. Rahmann. Microarray layout as quadratic assignment

problem. In Proceedings of the German Conference on Bioinformatics P-83, pages

11–20, 2006. Lecture Notes in Informatics.

[46] C.S. Edwards. The derivation of a greedy approximator for the koopmans-beckmann

quadratic assignment problem. In Proceedings of the 77-th Combinatorial Program-

ming Conference (CP77), pages 55–86, 1977.

[47] C.S. Edwards. A branch and bound algorithm for the koopmans-beckmann quadratic

assignment problem. Mathematical Programming Study, 13:35–52, 1980.

[48] A.N. Elshafei. Hospital layout as a quadratic assignment problem. Operational Re-

search Quarterly, 28(1):167–179, 1977.

[49] G. Finke, R.E. Burkard, and F. Rendl. Quadratic assignment problems. Annals of

Discrete Mathematics, 31:61–82, 1987.

[50] C. Fleurent and J.A. Ferland. Genetic hybrids for the quadratic assignment prob-

lem. In P.M. Pardalos and H. Wolkowicz, editors, Quadratic Assignment and Related

Problems, volume 16 of DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, pages 173 – 187. American Mathematical Society, 1994.

[51] R.L. Francis and J.A. White. Facility layout and location: An analytical approach.

Prentice-Hall, 1974.

[52] A.M. Frieze. Complexity of a 3-dimensional assignment problem. European Journal

of Operational Research, 13:161–164, 1983.

[53] A.M. Frieze and J. Yadegar. An algorithm for solving 3-dimensional assignment prob-

lems with application to scheduling a teaching practice. Journal of the Operational

Research Society, 32:989–995, 1981.

[54] A.M. Frieze and J. Yadegar. On the quadratic assignment problem. Discrete Applied

Mathematics, 5:89–98, 1983.

BIBLIOGRAPHY 101

[55] E.Y. Gabovich. Constant discrete programming problems on substitution sets. Trans-

lated from Kibernetika, 5:128–134, 1976. in Russian.

[56] M.R. Garey and D.S. Johnson. Computers and intractibility - A guide to the theory

of NP-completeness. W.H. Freeman, 1979.

[57] R.S. Garfinkel and G.L. Nemhauser. The set-partitioning problem: set covering with

equality constraints. Operations Research, 17:848–856, 1969.

[58] J.W. Gavett and N.V. Plyter. The optimal assignment of facilities to locations by

branch-and-bound. Operations Research, 14:210–232, 1966.

[59] A.M. Geoffrion and G.W. Graves. Scheduling parallel production lines with changeover

costs: practical applications of a quadratic assignment/lp approach. Operations Re-

search, 24:595–610, 1976.

[60] K.C. Gilbert and R.B. Hofstra. An algorithm for a class of three-dimensional as-

signment problems arising in scheduling operations. Institute of Industrial Engineers

Transactions, 19:29–33, 1987.

[61] K.C. Gilbert and R.B. Hofstra. Multidimensional assignment problems. Decision

Sciences, 19:306–321, 1988.

[62] P.C. Gilmore. Optimal and suboptimal algorithms for the quadratic assignment prob-

lem. SIAM Journal on Applied Mathematics, 10:305–313, 1962.

[63] F. Glover. Tabu search–part I. ORSA Journal on Computing, 1(3):190–206, 1989.

“orsa” is called informs today.

[64] F. Glover. Tabu search–part II. ORSA Journal on Computing, 2(1):4–32, 1990.

[65] F. Glover. Tabu thresholding: Improved search by nonmonotonic trajectories. ORSA

Journal on Computing, 7(4):426–442, 1995.

[66] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

[67] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, 1989.

BIBLIOGRAPHY 102

[68] D.A. Grundel and P.M. Pardalos. Test problem generator for the multidimensional

assignment problem. Computational Optimization and Applications, 30:133–146, 2005.

[69] S.W. Hadley, F. Rendl, and H. Wolkowicz. Bounds for the quadratic assignment prob-

lem using continuous optimization techniques. In Integer Programming and Combi-

natorial Optimization, pages 237–248. University of Waterloo Press, 1990.

[70] S.W. Hadley, F. Rendl, and H. Wolkowicz. A new lower bound via projection for

the quadratic assignment problem. Mathematics of Operations Research, 17:727–739,

1992.

[71] P.M. Hahn, B.J. Kim, T. Stützle, S. Kanthak, W.L. Hightower, H. Samra, Z. Ding, and

M. Guignard. The quadratic three-dimensional assignment problem: exact and ap-

proximate solution methods. European Journal of Operational Research, 184(2):416–

428, 2008.

[72] P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applica-

tions. European Journal of Operational Research, 130:449–467, 2001.

[73] G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press,

1967.

[74] D.R. Heffley. The quadratic assignment problem: A note. Econometrica, 40:1155–

1163, 1972.

[75] J.H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan

Press, 1975.

[76] Gaofeng Huang and Andrew Lim. A hybrid genetic algorithm for the three-index

assignment problem. European Journal of Operational Research, 172:249–257, 2006.

[77] S.E. Karisch. Nonlinear approaches for quadratic assignment and graph partition prob-

lems. PhD thesis, Graz University of Technology, 1995.

[78] R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer

Computations, pages 85–103. R.E. Miller and J.W. Thatcher, editors, Plenum Press,

1972.

BIBLIOGRAPHY 103

[79] L. Kaufman and F. Broeckx. An algorithm for the quadratic assignment problem

using bender’s decomposition. European Journal of Operational Research, 2:204–211,

1978.

[80] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated annealing.

Science, 220:671–680, 1983.

[81] T.C. Koopmans and M.J. Beckmann. Assignment problems and the location of eco-

nomic activities. Econometrica, 25:53–76, 1957.

[82] H.W. Kuhn. The Hungarian method for the assignment problem. Naval Research

Logistics Quarterly, 2:83–97, 1955.

[83] A.M. Land. A problem of assignment with interrelated costs. Operational Research

Quarterly, 14:185–198, 1963.

[84] E.L. Lawler. The quadratic assignment problem. Management Science, 9:586–599,

1963.

[85] C.F. Laywine and G.L. Mullen. Discrete Mathematics Using Latin Squares. John

Wiley & Sons, New York, 1998.

[86] Y. Li and P.M. Pardalos. Generating quadratic assignment test problems with known

optimal permutations. Computational Optimization and Applications, 1:163–184,

1992.

[87] Y. Li, P.M. Pardalos, K.G. Ramakrishnan, and M.G.C. Resende. Lower bounds for

the quadratic assignment problem. Operations Research, 50:387–410, 1994.

[88] Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search

procedure for the quadratic assignment problem. In P.M. Pardalos and H. Wolkowicz,

editors, Quadratic Assignment and Related Problems, volume 16 of DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, pages 237–261. American

Mathematical Society, 1994.

[89] B.D. McKay and I.M. Wanless. On the number of latin squares. Annals of Combina-

torics, 9:335–344, 2005.

BIBLIOGRAPHY 104

[90] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations

of state calculations by fast computing machines. Journal of Chemical Physics,

21(6):1087–1092, 1953.

[91] P. B. Mirchandani and T. Obata. Algorithms for a class of quadratic assignment

problems. 1979. Presented at the Joint ORSA/TIMS National Meeting, 1979, New

Orleans.

[92] N. Mladenović and P. Hansen. Variable neighborhood search. Computers and Opera-

tions Research, 24(11):1097–1100, 1997.

[93] K.A. Murthy, P. Pardalos, and Y. Li. A local search algorithm for the quadratic

assignment problem. Informatica, 3:524–538, 1992.

[94] C.E. Nugent, T.E. Vollmann, and J. Ruml. An experimental comparison of techniques

for the assignment of facilities to locations. Operations Research, 16:150–173, 1968.

[95] T. Öncan and Punnen A.P. The quadratic minimum spanning tree problem: A lower

bounding procedure and an efficient search algorithm. Computers and Operations

Research, 37(10):1762–1773, 2010.

[96] G.S. Palubeckis. Generation of quadratic assignment test problems with known opti-

mal solutions. U.S.S.R. Comput. Maths. Math. Phys., 28:97–98, 1988. (in Russian).

[97] P. M. Pardalos and J. V. Crouse. A parallel algorithm for the quadratic assignment

problem. In Proceedings of the 1989 ACM/IEEE conference on Supercomputing, pages

351–360. ACM Press, 1989.

[98] P. M. Pardalos, K. A. Murthy, and T. P. Harrison. A computational comparison of

local search heuristics for solving quadratic assignment problems. Informatica, 4:172–

187, 1993.

[99] P.M. Pardalos, F. Rendl, and H. Wolkowicz. The quadratic assignment problem:

A survey and recent developments. In P.M. Pardalos and H. Wolkowicz, editors,

Quadratic Assignment and Related Problems, volume 16 of DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, pages 1–42. American Mathematical

Society, 1994.

BIBLIOGRAPHY 105

[100] P.M. Pardalos and H. Wolkowicz. Quadratic Assignment and Related Problems, vol-

ume 16 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

American Mathematical Society, 1994.

[101] W.P. Pierskalla. The tri-substitution method for the three-dimensional assignment

problem. Journal of the Canadian Operational Research Society, 5:71–81, 1967.

[102] W.P. Pierskalla. The multidimensional assignment problem. Operations Research,

16:422–431, 1968.

[103] M.A. Pollatschek, N. Gershoni, and Y.T. Radday. Optimization of the typewriter

keyboard by simulation. Angewandte Informatik, 17:438–439, 1976.

[104] A.P. Poore, N. Rijavec, M.E. Liggins, and V.C. Vannicola. Data association prob-

lems posed as multidimensional assignment problems: problem formulation. In O.E.

Drummond, editor, Signal and Data Processing of Small Targets, volume 1954, pages

552–563. SPIE, 1993.

[105] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes

in C: The Art of Scientific Computing. Cambridge University Press, 1992.

[106] A.P. Punnen and Y.P. Aneja. Randomized local search algorithms. In TIMS/ORSA

Chicago, 1993.

[107] F. Rendl and H. Wolkowicz. Applications of parametric programming and eigen-

value maximization to the quadratic assignment problem. Mathematical Programming,

53:63–78, 1992.

[108] A.J. Robertson. A set of greedy randomized adaptive local search procedure (grasp)

implementations for the multidimensional assignment problem. Computational Opti-

mization and Applications, 19:145–164, 2001.

[109] S. Sahni and T. Gonzales. P-complete approximation problems. Journal of the Asso-

ciation for Computing Machinery, 23:555–565, 1976.

[110] J. Skorin-Kapov. Tabu search applied to the quadratic assignment problem. ORSA

Journal on Computing, 2:33–45, 1990.

BIBLIOGRAPHY 106

[111] M. Solimanpur, P. Vrat, and R. Shankar. Ant colony optimization algorithm to the

inter-cell layout problem in cellular manufacturing. European Journal of Operational

Research, 157:592–606, 2004.

[112] L. Steinberg. The backboard wiring problem: A placement algorithm. SIAM Review,

3:37 – 50, 1961.

[113] L.W. Swanson. N-dimensional scheduling. Unpublished manuscript, Northwestern

University, 1976.

[114] E. Taillard. Robust taboo search for the quadratic assignment problem. Parallel

Computing, 17:443–455, 1991.

[115] E.D. Taillard. Comparison of iterative searches for the quadratic assignment problem.

Location Science, 3:87–105, 1995.

[116] D.E. Tate and A.E. Smith. A genetic approach to the quadratic assignment problem.

Computers and Operations Research, 22:73–83, 1995.

[117] V. Valls, R. Mart́ı, and P. Lino. A tabu thresholding algorithm for arc crossing

minimization in bipartite graphs. Annals of Operations Research, 63(2):233–251, 1996.

[118] P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Applica-

tions. Kluwer Academic Publishers, 1987.

[119] D. Vigo and V. Maniezzo. A genetic/tabu thresholding hybrid algorithm for the

process allocation problem. Journal of Heuristics, 3(2):91–110, 1997.

[120] S.J. Wang and B.R. Sarker. Locating cells with bottleneck machines in cellular man-

ufacturing systems. International Journal of Production Research, 40:403–424, 2002.

[121] M.R. Wilhelm and T.L. Ward. Solving quadratic assignment problems by simulated

annealing. IEEE Transactions, 19(1):107–119, 1987.

[122] H. Youssef, S.M. Sait, and H. Ali. Fuzzy simulated evolution algorithm for vlsi cell

placement. Computers and Industrial Engineering, 44:227–247, 2003.

[123] J. Yu and B.R. Sarker. Directional decomposition heuristic for a linear machine-cell

location problem. European Journal of Operational Research, 149:142–184, 2003.

