
Using Dynamic Geometry to Explore Linear 
Algebra Concepts: the Emergence of Mobile, 

Visual Thinking 

by 
Shiva Gol Tabaghi 

M.T.M. (Mathematics), Concordia University, 2007 
B.Sc. (Mathematics), Islamic Azad University, 1997 

Dissertation Submitted in Partial Fulfillment  

of the Requirements for the Degree of  

Doctor of Philosophy 

in the  

Mathematics Education Program 

Faculty of Education 

 Shiva Gol Tabaghi 2012 

SIMON FRASER UNIVERSITY  
Spring 2012 

All rights reserved.  
However, in accordance with the Copyright Act of Canada, this work may 

be reproduced, without authorization, under the conditions for  
“Fair Dealing.” Therefore, limited reproduction of this work for the 

purposes of private study, research, criticism, review and news reporting 
is likely to be in accordance with the law, particularly if cited appropriately. 



Name: 

Degree: 

Title of Thesis: 

Examining Committee: 

Chair: 

APPROVAL 

Shiva Gol Tabaghi 

Doctor of Philosophy 

Using Dynamic Geometry to Explore Linear Algebra 
Concepts: the Emergence of Mobile, Visual Thinking 

Peter Liljedahl, Associate Professor 

Nathalie Sinclair, Associate Professor 
Senior Supervisor 

Rina Zazkis, Professor 
Committee Member 

David John Pimm, Adjunct Professor 
Committee Member 

Tom Archibald, Professor 
Internal Examiner 

By video from Camden, United Kingdom 

John Mason, Professor Emeriti 
Mathematics and Statistics, Open University 
External Examiner 

Date Defended/Approved: April 11 ,2012 
--~-------------------------

ii 



 

iii 

Partial Copyright Licence 
 

  

 



Ethics Statement 
 

 

The author, whose name appears on the title page of this work, has obtained, for the 
research described in this work, either: 

a. human research ethics approval from the Simon Fraser University Office of 
Research Ethics, 

or 

b. advance approval of the animal care protocol from the University Animal Care 
Committee of Simon Fraser University; 

or has conducted the research  

c. as a co-investigator, collaborator or research assistant in a research project 
approved in advance,  

or 

d. as a member of a course approved in advance for minimal risk human research, 
by the Office of Research Ethics. 

A copy of the approval letter has been filed at the Theses Office of the University Library 
at the time of submission of this thesis or project.  

The original application for approval and letter of approval are filed with the relevant 
offices. Inquiries may be directed to those authorities.  

Simon Fraser University Library 
Burnaby, British Columbia, Canada 

update Spring 2010 



 

iv 

Abstract 

This dissertation sheds lights on aspects of students’ thinking as they interacted with a 
dynamic geometric diagram of the concepts of eigenvector and eigenvalue. Given that 
the phenomenon of thinking is not directly observable, I attend to their use of the 
dragging tool, shifts in their attention and emerging ways of communicating the concepts 
through gestures and speech. I present the transcripts of one-on-one videotaped 
interviews with five university students and analyze isolated episodes.  

My analytic frame is informed by the theories of shifts of attention and instrumental 
genesis. The latter reveals evidence of the transformation of tool into an instrument of 
semiotic mediation by the process of internalization while the former highlights the 
significant role of attention and awareness in learning and understanding mathematics. 
The complementary use of the theories enables me to analyze the cognitive 
development of a student in a digital technology environment, because the student’s use 
of different dragging modalities can provide easily-visible evidence of shifts in her 
structure of attention and consequently can reveal her understanding of the concepts. 
Moreover, the dynamic geometric diagram stimulated the formation of kinaesthetic and 
dynamic imagery, as evidenced by the students’ ways of communicating. I thus 
incorporate aspects of embodied cognition into my analysis in order to account for the 
important role played by the body in students’ exploring and communication.  

My analysis suggests that the students mostly used a synthetic-geometric mode of 
thinking, but more importantly, their thinking involved facilities of process and time and 
vision, spatial sense, kinesthetic (motion) sense. These facilities enabled them to 
communicate dynamic and kinesthetic imagery using embodied expressions and 
gestures. I thus argue that dynamic geometric representations of eigenvectors enabled 
the students to develop dynamic-synthetic-geometric thinking. I also discuss the role of 
dynamic geometric diagram of the concepts in enabling students to experiment with the 
behaviour of eigenvectors. This is in opposition to static diagrams that can be found in 
textbooks. I conclude this dissertation with some pedagogical suggestions in terms of 
the use of dynamic geometric diagrams of the concepts of eigenvector and eigenvalue.    

Keywords: Students’ thinking, linear algebra concepts, dynamic geometric 

environments, instrumental genesis, shifts of attention, dynamic and kinesthetic imagery   
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1. Introduction 

In fall 2006 and spring 2007, I taught sections of an elementary linear algebra 

course at a medium-sized North-American university. The university offered multiple 

sections of the course each semester and the course outline, schedule, assignments 

and final exam were written by the course coordinator to structure all sections in a 

similar way. Each class contained about fifty students. Being a new instructor, in fall 

2006, I was encouraged by the course coordinator to attend and learn from experienced 

instructors’ lectures. I thus chose to attend an instructor’s classes whose lectures 

seemed to me cohesive and clear. He employed a traditional, lecture-based approach 

with no integration of technology. Following his lead closely, I gained skill in making 

explicit connections among concepts and in selecting appropriate examples to introduce 

or exemplify ideas.      

Given that the course was an introduction course to linear algebra, it was based 

on a matrix-vector approach, with a particular emphasis on Euclidean vector spaces to 

provide students with geometric representational models of concepts. In fact, the 

geometric representations were limited to the same static diagrams that one can find in a 

linear algebra textbook. The first topic of the course was studying systems of linear 

equations and finding the solution sets of systems using the Gauss-Jordan elimination 

method. I observed that many students seemed to struggle with understanding that the 

solution set of a system of linear equations is invariant under elementary row operations. 

A few were applying the elimination or substitution methods that they had learned 

before, even if a given system involved more than three variables. Drawing their 

attention to planar geometric representations of systems with two variables seemed to 

help them understand the possible outcomes of such systems (i.e. no solution/parallel 

lines, infinitely many solutions/the same line, or unique solution/two intersecting lines), 

but it was still difficult for them to visualize the possible outcomes of systems with three 

variables. Although a textbook may include diagrams of linear systems with three 

variables and three equations, students seemed to find it challenging to understand 
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these diagrams. Consider, for example, the two diagrams in Figure 1. They depict the 

geometric representation of two different systems of linear equations each with three 

linear equations in three variables, and are meant to illustrate that one system has a 

single solution of (29, 16, 3) and the other is an inconsistent system (no solution). The 

diagrams use quadrilaterals bounded in cubes to illustrate geometric representations of 

equations with three variables. The two diagrams are drawn from different angles of 

view, but use the same color shade and size. A few students who were not familiar with 

the illustration of three-dimensional geometry on a piece of paper considered these 

diagrams as illustrations of the intersections of three rectangles captured from different 

angles of view.  

  

(a) A system of three planes with the solution 
set of (29, 16, 3) (Lay, 2006, p. 7) 

(b) An inconsistent system of three planes 
(Lay, 2006, p. 9) 

Figure 1.  Geometric representations of two linear systems 

As mentioned above, the course included a particular emphasis on Euclidean 

vector spaces that helped most of students become acquainted with the geometry of 

linear systems in two- and three-dimensional spaces. Still, it seemed to me that the 

students’ understanding was compromised by the overwhelming number of new 

definitions and theorems, their personal lack of geometric intuition, and the failure to 

coordinate algebraic representations with geometric ones. As a result, many of them 

developed only a limited procedural knowledge of matrices and vectors. It seemed that 

my attempt to provide them with clear and cohesive notes was not enough.  
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This experience caused me to wonder about other teaching approaches, 

particularly ones in which geometrical representations could be used more widely and 

successfully. It also made me reflect on my own ways of understanding linear algebra 

concepts as I was doing my teaching preparation. I realized my inclination was to make 

sense of geometrical representations of concepts (where they were provided) before 

focusing on the formal definitions. I found myself sketching diagrams for my own 

understanding of ideas and also introducing ideas to my students using these diagrams. 

Pursuing my geometric intuition, I started reviewing textbooks written by different 

authors to find better resources where students would be given opportunities to 

construct geometrical representations and also to coordinate algebraic representations 

with geometric ones. The textbooks mostly used similar approaches to introducing 

concepts, all characterized by a limited number of diagrams and a few examples on 

linear algebra applications in other fields. Reviewing a sample1 of linear algebra 

textbooks published from 1998 to 2009, I found that mostly textbooks do not include a 

diagram for systems of linear equations with three variables and Lay’s book includes 

more diagrams in comparison with others.  In Figure 2, I include another example of a 

pair of diagrams that are used to illustrate systems of linear equations.  

My review made me conjecture that these linear algebra textbooks were partly to 

blame for students’ lack of geometric intuition and their reliance on procedural 

knowledge. I became interested in the potential of technology as a tool to provide 

students with powerful representational models in linear algebra where they can build 

their own, more geometric, understanding of concepts. This was the beginning of my 

journey to explore the use of technology to represent linear algebra concepts 

geometrically. Before that, I never used calculators or computer technology as a 

computational or representational tool to learn linear algebra. I remember my 

undergraduate linear algebra courses were theory-based approaches that focused on 

the theory of vector spaces.  

 
1  This was an informal review of the existing linear algebra textbooks in a library of a medium-

sized university.  
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a) A system of two planes with the line of 
intersection (infinitely many solutions) 

(Poole, 2003, p. 77) 

b) A system of three planes with no solution 
(Poole, 2003, p. 83) 

Figure 2.  Geometric representations of two linear systems 

Reviewing the literature, I learned about the Linear Algebra Curriculum Study 

Group’s recommendation (1991) concerning the use of technology as a tool to run 

computations. This recommendation encouraged a few instructors to integrate Computer 

Algebra Systems (CASs) into linear algebra courses, particularly in North America. 

Although the plotting facilities of CASs, in particular Maple and MATLAB, provide visual 

representations of some basic linear algebra concepts, the use of these visual 

representations was not the main focus of this software. Instead, instructors, as well as 

researchers, valued CASs for their use as a computational tool.  

Besides CASs though, I found other digital technologies being used, such as 

dynamic geometry environments (DGEs). In particular, it seemed to me that the 

integration of dynamic geometry software into teaching linear algebra facilitated 

students’ articulation of the meaning of linear transformation, in problem-solving 

situations, using terms such as operations, positioning and relationships (Sierpinska, 

Dreyfus, & Hillel, 1999). These findings motivated me to investigate in more depth the 

effects of the use of dynamic geometric representations on students’ understanding of 

the concepts of eigenvector and eigenvalue. I was intrigued by the geometric and 

dynamic affordances of this software, which contrasted with the algebraic, static, and 

symbolic representations that were prevalent in textbooks. Given that DGEs offer the 
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possibility for geometric interactive representation of concepts (in two-dimensional vector 

spaces), I wondered whether they could facilitate students’ understanding of the 

concepts of eigenvector and eigenvalue.  

Elementary linear algebra students are mostly introduced to the concepts of 

eigenvector and eigenvalue after they learn the concept of linear transformation. But, 

they use the procedural algebraic method to find eigenvalues (i.e. the roots of the 

characteristic equation, 0)det( =− IA λ ) and then, subsequently, to find a particular set 

of associate eigenvectors (i.e. the non-trivial solutions of 0)( =− xIA λ  given a specific 

value for λ ) of a particular square matrix. The algebraic method does not reveal the 

connections among the concepts of linear transformation, eigenvectors and 

eigenvectors. In fact, algebraic strategies (such as writing a characteristic equation, 

finding its roots and then finding the associated eigenvectors) lead students to develop 

procedural knowledge of how to find eigenvalues and their associated eigenvectors of 

square matrices without being explicitly aware that they are identifying a special vector 

that is transformed into its scalar multiple under a given matrix of transformation.  

Similar to other textbook geometric representations, understanding the static 

geometric diagrams of eigenvectors and eigenvalues was difficult for some students. 

Consider, for example, the diagram in Figure 3. It depicts two examples of transformed 

vectors, Au and Av , and is meant to illustrate that v  is an eigenvector, but u is not. 

Some of its deficiencies are: it is only limited to two examples of vectors; the vector u  is 

visually almost at right angles to v ; the vector Av  looks like a free vector starting at v  

and ending at Av . A  is introduced as a matrix rather than a linear transformation and 

the diagram is labelled “effect of multiplication by A ”. Also, the domain and range of the 

transformation, A , are both presented in one diagram.   
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Figure 3.  Geometric representation of eigenvectors (Lay, 2006, p. 303) 

This diagram is different from a diagram that one might draw to visualize a 

problem-solving situation (such as graphing linear equations with two variables to 

visualize the solution set of the system). It illustrates the final result of two matrix-vector 

multiplications. To construct it, one needs first to find the eigenvalue of 2 (by finding the 

roots of the characteristic equation) and then to use the eigenvalue to find the 

associated eigenvector of 







1
2

. This led many students to ignore the diagram and just 

focus on learning the algebraic procedure for finding eigenvalues and eigenvectors. 

Also, it is unlikely to ask students to draw a diagram for eigenvectors but very common 

to ask them to find eigenvalues and eigenvectors of a given square matrix.   

Having explored a few online Java sketches, I began seeing DGEs’ affordances 

to generate infinitely many examples of concepts, to represent a concept in both 

arithmetic and geometric representational systems at the same time, and to promote 

geometric intuition of concepts. This motivated me to design several sketches using The 

Geometer’s Sketchpad (Jackiw, 1989) to represent basic linear algebra concepts.  

I made a dynamic geometric sketch that could be used to identify eigenvector(s) 

and then the associated eigenvalue(s) of any 2×2 matrix. This representation, unlike 

static ones, does not require finding eigenvectors and eigenvalues of a square matrix in 

order to be able to construct the geometric representation. It is not limited to a few 

examples of vectors. In fact, it enables one to experiment with linear transformations of 
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infinitely many vectors, to identify specific vectors (eigenvectors) that are being 

transformed into their scalar multiples, and then to find the associated scaling factor 

(eigenvalue). Unlike the algebraic method, the dynamic geometric diagram privileges 

and foregrounds the concept of eigenvector over the concept of eigenvalue. My 

approach in this dissertation is captured in the phrase ‘eigenvectors and their associated 

eigenvalues’, whereas the norm (in courses and textbooks) is the algebraic privileging of 

‘eigenvalues and their associated eigenvectors’. This is because the property of an 

eigenvector (i.e. invariant collinearity) of a 2×2 matrix becomes evident from its 

geometric representation and the span of it is always a line; but the associated 

eigenvalue comes with a generality within that property, namely the same dilation factor 

no matter which vector we choose along the line of the span.   

My speculation about the potential use of DGEs to provide students with powerful 

representational models and awareness of the affordances of Sketchpad led me to focus 

on two main research questions. (1) Given that I had seen how students’ typical 

experiences led them to highly procedural, algebraic conceptions of eigenvalues and 

eigenvectors, I wondered what effect dynamic geometric representations of concepts 

would have on their conceptions. (2) Supposing they do develop more geometric 

understandings through their interactions with DGEs, I wondered how they would relate 

these representations to the more symbolic and static ones that are to be found in 

undergraduate textbooks.  

This dissertation is organized into 8 chapters, including this Introduction 

presented as Chapter 1. Chapter 2 includes a review of the existing literature on 

students’ learning difficulties in linear algebra. It discusses students’ conceptual 

difficulties, the use of different representational modes in linear algebra, and the need for 

the development of different modes of thinking. I also include a brief examination of 

textbook representations of concepts of vector, linear transformation, eigenvector and 

eigenvalue, and the basis of a vector space. Chapter 3 focuses on literature related to 

the use of CASs and DGEs in the teaching and learning mathematics, with a particular 

focus on linear algebra. In this chapter, I explain why I opted for a DGE and discuss 

some of the ways in which I thought DGEs could help address some of the difficulties 

discussed in Chapter 2.   
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Chapter 4 includes a review of theories on attention and awareness, visualization 

and visual imagery, and tools and instruments. I include Mason’s theory of shifts of 

attention since it provides a broad theoretical scope in order to highlight the significant 

role of attention and awareness in learning and understanding mathematics. Given that 

my participants interacted with the dynamic geometric sketches through a use of 

dragging tool (mouse), I also draw on the theory of instrumental genesis. Lastly, I include 

a review of visualization and different categories of visual imagery, given the visual and 

interactive nature of the sketches that affected the participants’ ways of thinking about 

the concepts. The use of kinesthetic and dynamic imagery by participants additionally 

led me to include theories on embodied cognition and gesture. My review of these 

theories made me conjecture that triangulating a participant’s dragging modalities, shifts 

in her attention, and her use of imagery could provide me with a richer understanding of 

her learning and thinking process.       

In Chapter 5, I describe my research methodology. I include a description of the 

design of the sketches that the participants of this study interacted with. I also discuss 

my data collection technique and provide information about the academic background of 

the participants.   

Analyses of data are presented in Chapter 6. It includes a detailed analysis of the 

participants’ interactions with the eigen sketch in order to identify eigenvector(s) and 

associated eigenvalue(s) of the given four matrices. I first provide an analysis of each 

participant’s interactions with the sketch applying each theoretical framework 

independently. Then, I provide a synthesized analysis by triangulating my analysis using 

the three theoretical frameworks jointly.  

In Chapter 7, I provide an extension of the analysis of the data that I presented in 

Chapter 6. I discuss the results of the participants’ interaction with the eigen sketch from 

three perspective: (1) a focus on the participants’ understanding of eigenvectors and 

eigenvalues, (2) their linguistic expressions and (3) the gestures used by participants in 

describing the geometric representation of eigenvectors.  

Chapter 8 includes my response to the research questions posed in Chapter 5. I 

also discuss my contribution to research and the limitations of my study. At the end, I 

provide pedagogical implications of this study.  
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This dissertation has three Appendices. Appendix A shows the worksheet given 

to the participants. Appendix B includes transcripts of the participants’ discourse and a 

description of their interaction with the dynamic geometric representation of the 

concepts. Appendix C includes a list of questions that I used to prompt the participants 

during the interviews.    
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2. The teaching and learning of linear algebra    

Learning linear algebra is a challenging experience for many university students 

and its teaching is also regarded as a frustrating experience for instructors (Dorier, 2000; 

Hillel, 2000). Although research on learning and teaching linear algebra has been going 

on since the late 1980s, teaching and learning difficulties still persist. In 1991, a group of 

linear algebra instructors in the U.S. formed the Linear Algebra Curriculum Study Group 

(LACSG) that aimed at improving the undergraduate linear algebra curriculum. They 

recommended a matrix-oriented linear algebra course, including a wide variety of 

application problems to address the needs of client disciplines and to attract students’ 

interest. They also recommended the use of technology, especially Computer Algebra 

Systems (CASs) as a tool to carry out computations (Carlson, Johnson, Lay & Porter, 

1993). In fact, Gilbert Strang, an expert professor in linear algebra, has represented 

some linear algebra concepts in his book using a Computer Algebra System (MATLAB) 

since 1988 (see Strang, 1988; Strang & Borre, 1997). A much smaller number of 

instructors have used Dynamic Geometry Environments (DGEs) such as Cabri-

géomètre II or The Geometer’s Sketchpad (see, for example, Sierpinska, Dreyfus & 

Hillel, 1999; Meel & Hern, 2005) to represent linear algebra concepts geometrically. A 

review of studies on the implementation of technology in the teaching and learning 

mathematics and, more specifically, in linear algebra is provided in Chapter 3. In this 

chapter, however, I focus on some of the possible sources of difficulties that students 

and instructors are faced with in learning and teaching linear algebra.  

2.1. Linear Algebra Curriculum reforms  

Until the 1960s, the study of linear equations comprised the main part of the 

linear algebra curriculum. But mathematics curriculum reform drastically changed the 

teaching of linear algebra. The axiomatic theory of vector spaces became the core part 

of undergraduate linear algebra courses. The theory provides a unified and generalized 

approach to and setting for modelling finite- and infinite-dimensional linear problems. 
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The use of an axiomatic theory of vector spaces seems natural and useful from a 

mathematician’s perspective, but it does not take into account students’ needs, abilities 

and their mathematical background. To address these, as I mentioned above, LACSG 

recommended a matrix-oriented course including a variety of application problems, 

whereas the theoretical approach focuses on introducing the axiomatic theory of vector 

spaces (Carlson, Johnson, Lay & Porter, 1993).  A less apparent approach has also 

been used by Banchoff and Wermer (1991) that involves the use of vector geometry to 

provide intuitive meaning for basic linear algebra concepts.   

2.2. Learning linear algebra and possible sources of 
students’ difficulties 

Despite the U.S. curriculum reforms that took place in 1991, research shows that 

students still have difficulties in learning linear algebra concepts. In his book, Jean-Luc 

Dorier (2000) provides a substantial overview of research work on the teaching and 

learning of linear algebra in both France and North America. Studies conducted in 

France were longitudinal, aimed at identifying the nature of students’ difficulties, 

evaluating experimental teaching, and providing an epistemological analysis of linear 

algebra concepts. Dorier (2000) refers to a survey study (see Robert & Robinet, 1989) in 

which French students criticized the overwhelming number of new definitions and 

theorems, representational language and the use of formalism in first-year university 

linear algebra courses. Dorier also considers French instructors’ observations about 

students’ lack of basic logic and set theory to help them understand the formal 

representational language, and also students’ lack of geometric intuition to allow them to 

visualize geometric representations of the basic concepts. Being involved in several 

studies, Dorier and his colleagues conclude that students had difficulties understanding 

the use of concepts, interpreting them in more intuitive contexts such as plane geometry, 

and making connections among and within concepts (Dorier, Robert, Robinet & 

Rogalski, 2000). Given that the difficulties are perceived as being due to formalism, they 

refer to them jointly as the formalism obstacle. A formalist approach to vectors, for 

example, involves seeing them simply as elements of any vector space. In contrast, a 

non-formalist approach to a vector is to consider it as an ordered array of numbers or as 

an arrow in two (or more) dimensions that has a certain magnitude and direction. The 
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obstacle often makes students develop automatic behaviour in problem-solving 

situations. One such behaviour involves finding a reduced form of a given matrix 

whenever they can, regardless of the actual problem (Sierpinska, Dreyfus & Hillel, 

1999). Studies suggest that anchoring the notions of vector space, linear transformation, 

and eigenvector in geometric intuitions can help students overcome the formalism 

obstacle (Sierpinska, Dreyfus & Hillel, 1999; Dorier, Robert, Robinet & Rogalski, 2000). 

As Dorier et al. (2000) suggest, the use of analytic geometry can promote visualization 

of linear equations, curves, skewed surfaces, and their solution sets in connection with 

geometric loci.  

Another source of difficulty is associated with the representational language of 

linear algebra. A formal symbolic language is used to present definitions of concepts and 

the presentation mostly follows a systematic approach by means of reference to other 

definitions and previously proof-based theories. According to Hillel (2000), the formal 

symbolic language of linear algebra consists of three modes of description—abstract, 

algebraic and geometric—and their associated representational systems. The abstract 

mode involves the language and concepts of the general theory including vector spaces, 

dimension, linear transformations of vector spaces, general eigenvalue theory, and so 

on. The algebraic mode provides the language and concepts of nR  including n-tuples, 

matrices, solution of systems of linear equations, and so on. The geometric mode is the 

language of the two- and three-dimensional spaces, including directed line segments, 

points, lines, planes, and the transformation of geometric figures. The modes are not 

equivalent, but co-exist and are sometimes interchangeable. For example, a geometric 

representation of a vector (use of an arrow in a plane that has vertical shift of x  and 

horizontal shift of y from any starting point) is not equivalent to its algebraic 

representation ( ),( yxv = ), but they co-exist and can be interchangeable when working 

on a problem involving the coordinate grid. In his study, Hillel (2000) shows that North 

American students had difficulties with the use of different modes of description of basic 

objects and processes, and with the transition from one mode to another, particularly 

from the algebraic to the abstract mode.  

Sierpinska (2000) argues the need for the development of different modes of 

thinking to understand different modes of description and representation. Synthetic-

geometric, analytic-arithmetic and analytic-structural are three different modes of 
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thinking corresponding to different modes of representation. She points out that these 

three modes of thinking are “equally useful, each in its own context, and for specific 

purposes, and especially when they are in interaction” (p. 233). Analytic-arithmetic 

thinking involves describing a proper set-up to carry out the computations. For example, 

consider a system of three linear equations when the task is to find the solution set. The 

analytic-arithmetic mode of thinking invokes use of Gauss-Jordan elimination to find the 

solution set. Synthetic-geometric thinking involves use the geometric mode of 

description to visualize equations geometrically in two- and three- dimensional space. In 

the example above, it draws on the visual representation of the intersection set of three 

planes in a three-dimensional space. Analytic-structural thinking “synthesizes the 

algebraic elements of the representations into structural wholes” (p. 235): for example, 

finding a solution set of a system of linear equations through determining the singularity 

or non-singularity of the coefficient matrix of the system. In other words, analytic-

structural thinking enables thinking of an object in terms of its properties, whereas 

analytic-arithmetic thinking specifies an object by a formula. The development of 

different modes of thinking is not exclusive to a linear algebra context. For example, 

Sfard (1991) argues for an operational-structural duality of mathematical conceptions 

more generally. According to her, mathematical concepts such as function or number 

can be conceived both structurally (as objects) and operationally (as processes). 

Although these two modes are ostensibly incompatible, in fact they are complementary. 

However, the transition from an operational mode to a structural one is a long and 

difficult process.   

In the linear algebra context, Sierpinska makes a distinction between analytic-

arithmetic and analytic-structural thinking, and notes that, historically, the dialectic 

between analytic-arithmetic and analytic-structural thinking has provoked the 

development of mathematical ideas in linear algebra and also in the calculus. She 

further argues that synthetic-geometric thinking supports the geometric intuition of 

concepts and allows the identification of invariants in reference to several 

representations of concepts. However, synthetic-geometric arguments do not belong to 

linear algebra, since linear algebra studies properties that do not have to be geometric. 

According to her, there are common features between synthetic-geometric and structural 

ways of thinking in linear algebra. One feature is independence from the coordinate 
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system and another is that both ways of thinking are based on properties of objects not 

calculations. As she exemplifies:   

In the structural mode, the notion of eigenvalue cannot be reduced 
anymore to that of a root of a polynomial. It must be thought of as a scalar 
related to invariant one-dimensional subspaces of a linear operator. It is 
an object of reflection and a concept; not an outcome of a calculation. (p. 
236)     

Synthetic geometry concerns only geometric properties of figures or concepts, 

whereas analytic geometry goes further to include relations between figures. As I 

mentioned before, Dorier et al. (2000) suggest the use of analytic geometry to promote 

visualization and to enable the development of analytic thinking. But Hillel argues that 

the students’ familiarity with analytic geometry can become an obstacle in the transition 

from a geometric mode to an abstract mode of description (e.g. working with standard 

coordinates being an obstacle to thinking about the notions of basis and change of 

basis). He also mentions that the language of nR  can become an obstacle to learning 

the axiomatic theory of vector spaces and conceptualizing mathematical objects such as 

functions, matrices or polynomials as vectors.  

The aforementioned difficulties are due to the nature of linear algebra and can be 

categorized as conceptual difficulties. Considering the existence of such conceptual 

difficulties, learning and understanding linear algebra is a cognitively demanding 

process. The research of Alves Dias indicates that understanding linear algebra 

necessitates the development of cognitive flexibility between modes of thinking. She 

hypothesizes that cognitive flexibility is not a semiotic process and cannot be reduced to 

change of semiotic registers2 (Alves Dias & Artigue, 1995). In this connection, other 

researchers acknowledge that understanding linear algebra requires a trans-object level 

of thinking (Hillel, 2000; Dorier & Sierpinska, 2001). According to Dorier and Sierpinska, 
 
2 Semiotic registers refers to registers of semiotic representation. For example, axes, points, 

segments and arrows are elements of a register for graphing representation. According to 
Duval (2006), changing register signals a threshold of mathematical comprehension for 
students. He suggests the coordination of several registers of semiotic representations is 
required in order for students understand mathematical concepts.    
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such a trans-object level of thinking consists of the building of conceptual structures out 

of what, at previous levels, were objects, actions on these objects and transformations of 

both objects and actions. In other words, a trans-object level of thinking calls for 

cognitive flexibility among modes of thinking, modes of description and representations. 

For example, a trans-object level of thinking about the eigenvectors of a square matrix 

requires thinking flexibly between perceiving eigenvectors as n-tuples (an algebraic 

mode of thinking and description) and eigenvectors as special vectors resulting from a 

specific transformation that can form a linear subspace called an eigenspace (abstract 

mode of thinking and description).   

International studies show linear algebra students mostly develop procedural 

knowledge and their level of thinking does not advance to a trans-object level (Hillel & 

Sierpinska, 1994; Alves Dias and Artigue, 1995; Stewart, 2008). The persistence of 

conceptual difficulties in learning linear algebra has motivated several educators to look 

for other ways of representing concepts. Given that calculators and computer technology 

show the potential to reduce cognitive processing load in doing computations, several 

educators have integrated these technologies in to their teaching practices. Chapter 3 

provides a more detailed literature review of the use of technology in the teaching and 

learning of linear algebra.  

In the next section, I will evaluate that the way linear algebra textbooks represent 

concepts highly influences the development of procedural knowledge and perhaps 

affects the achievement of a trans-object level of thinking. In order to identify textbooks’ 

contributions to students’ ways of learning and thinking, in the following section, I include 

a brief evaluation of a popular textbook introducing the concepts of system of linear 

equations, linear transformation, basis, and eigenvector and eigenvalue.   

2.3. Teaching approaches: textbooks’ representations of 

concepts    

At the undergraduate level, in North America, two approaches to teaching linear 

algebra —theoretical and practical—are prevalent. The theoretical one focuses on a 
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systematic development of the axiomatic theory of vector spaces where proof plays an 

important role. The practical one is a matrix-vector approach, including a variety of 

applications as recommended by LACSG. Both approaches normally start by introducing 

systems of linear equations and finding the solution sets of systems using the Gauss-

Jordan elimination method (see Lay, 2006; Anton & Rorres, 2004). The method relies on 

notions of elementary row operations and the relation of row equivalence of matrices. It 

can become tedious for students who do not see a practical reason for carrying out such 

operations. Moreover, students do not understand why the solution set of a system of 

equations is invariant under elementary row operations (Sierpinska, 2000). 

Conceptualizing the solution set of a system ( n  linear equations in n  variables) as a set 

of n -tuples is a problematic concept for some students (de Vries & Arnon, 2004). 

Although researchers have identified that the sources of difficulties include a lack of prior 

knowledge in elementary set theory (Dorier et al., 2000) and equivalence classes 

(Sierpinska, 2000), linear algebra textbooks do not usually include a supplementary 

section on the concepts of equivalence relations and set theory. Furthermore, the 

connection between systems of linear equations and the concepts of vector and vector 

spaces are not emphasized in textbooks. For example, Lay (2006) introduces the 

concept of vector to connect “equations involving vectors” to “ordinary systems of 

equations” and further states that “we will use vectors to mean a list of numbers” (p. 28). 

This symbolic introduction to the concept of vector is disjoint from its embodied 

representation in physics and mechanics. The rich yet complex mathematical structure 

of a vector (as a force, a transformation, a velocity, a quantity having magnitude and 

direction, an element of a vector space) requires a flexible way of introducing the 

concept of vector (Watson, Panayotis & Tall, 2003).  Watson et al.’s study shows that 

the concept of vector can be a representative of each of the embodied, symbolic and 

formal mathematical worlds. They believe that the development of these three 

mathematical worlds, in the particular development of the concept of vector, is 

sequential. However, my brief analysis of linear algebra textbooks shows that the 

connection among the three worlds there, especially between the embodied and 

symbolic worlds, is not explicitly developed.    

The textbooks’ representation of the concept of linear transformation may very 

well lead to certain difficulties for students. In his textbook, Lay (2006) first introduces a 

linear transformation in terms of matrix-vector multiplication; a transformation AxxT =)(  
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where A  is a nm ×  matrix and x  is an 1×n  vector. This representation may invite 

students to think of A , at best, as a coefficient matrix of a system of linear equations 

and, at worst, as a random array of numbers (Meel & Hern, 2005), rather than realizing 

that the column vectors of A  are the coordinates of the images of the standard basis 

vectors under this transformation. The axiomatic definition of linear transformation, in 

textbooks, is mostly included after introducing the concept of linear transformation as a 

matrix-vector multiplication. But, students do not spontaneously refer to the axiomatic 

definition in problem-solving situations (Sierpinska, Dreyfus & Hillel, 1999). Sierpinska 

(2000) observes that students mostly think of the defining properties of linear 

transformation ( )()()( 22112211 vTkvTkvkvkT +=+ , for all vectors 1v  and 2v  and scalars 

1k  and 2k ) in terms of an equation. They try to perform typical actions on this apparent 

‘equation’ for certain vectors and scalars. This is an example of thinking in terms of 

prototypical examples and also procedural thinking rather than a trans-object level of 

thinking. Although thinking in terms of prototypical examples brings some progress in 

understanding the notion of linear transformation, it is not sufficient to generalize the 

concept and to interrelate it with the matrix representation of a linear transformation 

(Sierpinska, 2000).    

The use of the matrix-vector multiplication representation of a linear 

transformation is continued when introducing the concept of eigenvectors and 

eigenvalues (see Figure 4). The symbolic verbal definition of the concepts of eigenvector 

and eigenvalue in textbooks represents the concepts in terms of matrix-vector 

multiplication, emphasizing the equality xAx λ= . The definition does not draw attention 

to the fact that eigenvectors are special vectors that are transformed into a scalar 

multiple of themselves. Also, it does not include the fact that eigenvalues are the dilation 

factors of the linear transformation represented by A.   

This textbook representation leads to a procedural algebraic method for finding 

eigenvalues and associated eigenvectors of a square matrix. It also causes students to 

develop an automatic reaction to the term “eigenvector”. As observed by Sierpinska et 

al.’s (1999), many students in their classes automatically set up the characteristic 

equation to find its roots regardless of whether this is necessary or useful in solving the 
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given problem. In connection to this, another study draws attention to students’ lack of 

geometric meaning for eigenvectors (Stewart & Thomas, 2007).  

 
Figure 43.  Formal definition of eigenvector and eigenvalue (Lay, 2006, p. 303) 

In most linear algebra textbooks, the concepts of basis and change of basis are 

introduced after the theory of vector spaces. Sierpinska et al. (1999) notice that students 

have a tendency to visualize the representation of the basis in the horizontal/vertical 

position (as they turned their heads to view the basis in the horizontal/vertical position), 

although they accepted that a basis can be provided by any pair of non-collinear vectors 

in a two-dimensional space. Furthermore, Hillel’s (2000) study shows that students have 

difficulties in finding the matrix representation of a linear transformation when the vector 

spaces, nR , have nonstandard bases. This suggests that their understanding of the 

concept of basis is limited to the standard basis in finite-dimensional vector spaces, such 

as 2R and .3R   

The limited number of diagrams in textbooks (see Lay, 2006; Kolman & Hill, 

2000; Banchoff & Wermer, 1991) and the vague descriptions of diagrams are not 

sufficiently helpful in providing the geometrical meaning of concepts. Chartier’s (2006) 

review of Linear Algebra Through Geometry, written by Banchoff and Wermer (1991), 

claims that 92% of the drawings represent situations in R , 2R  and ,3R  6% of them 

illustrate situations in 4R ,  and only 2% of the drawings (2 out of 92 drawings) illustrate 

general situations in an arbitrary vector spaces. She points out that there are almost no 

drawings to accompany notions such as vector space, vector subspace, spanned 

subspace and basis. Furthermore, the text does not suggest referring to an associated 

 
3 The footnote 1 on the end of the definition states that an eigenvector must be a non-zero vector, 

but an eigenvalue could be zero.  
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drawing in 2R  and 3R when it introduces abstract vector spaces. She further studied 

French mathematicians’ use of drawings, by asking them to fill out questionnaires 

prompting them to produce diagrams they might use in their teaching. Her findings 

reveal that French mathematicians made limited use of figural models to indicate the 

geometric meaning of concepts in 2R  and 3R , nor did they extend these models to nR . 

These findings indicate that students are assumed to comprehend and to conceptualize 

abstract modes of description without extensive preparation. However, studies show that 

students have serious difficulties in learning and understanding linear algebra (see 

Dorier et al., 2000; Sierpinska, 2000; Hillel, 2000). Hence, new approaches to teaching 

linear algebra are needed, particularly ones that provide students with powerful 

representational models where they can build their own, more geometric, understanding 

of concepts.  

2.4. Representing linear algebra concepts: a geometric 

approach      

Harel (2000) compares achievements of two groups of students in linear algebra. 

Group A was only presented with an abstract description of ideas, whereas group B was 

presented with abstract ideas and also references to geometric interpretations of these 

ideas. The comparison showed that the achievements were significantly different. Group 

B students used more geometric interpretations and provided more correct answers to a 

test on the vector-space concept than Group A students. These findings led to Harel 

proposing three pedagogical principles for designing and implementing linear algebra 

curricula. First, the concreteness principle is that students should be able conceptualize 

abstract ideas and structures from concrete contexts and structures. For example, 

geometric representations of vector spaces with dimension less than or equal to three 

can provide concrete contexts to conceptualize basic concepts of linear algebra. He 

recommends incorporating MATLAB in an instructional design to meet the conditions of 

the concreteness principle.  
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Second, the necessity principle involves offering problem-solving activities that 

are realistic to students, so that students can apply their learning to the solutions of 

problems and modify their strategies when they encounter cognitive conflicts. Third, the 

generalizability principle asserts that concrete contexts should allow and encourage the 

generalizability of concepts. For example, a spanning set of a vector space can be 

explored to lead students to grasp that a minimal spanning set (a basis) can still be used 

to generate the entire vector space.  

In connection to Harel’s concreteness principle, the implementation of the 

dynamic geometric diagram of concepts (in two-dimensional vector spaces) in linear 

algebra curricula seems to be a promising approach that could enable students’ to 

conceptualize basic concepts. Dynamic geometry software offers the possibility for 

geometric representation of concepts such as vector, span of (a set of) vector(s) or 

linear transformation. It is also possible to design a sketch to represent a concept in both 

arithmetic and geometric representational systems. Such representations can provide 

concrete contexts for abstract notions and also can prompt synthetic-geometric thinking 

about concepts. Through the interaction with the sketch, a student can identify the 

invariants in reference to arithmetic and geometric representations of a concept and may 

come to conceptualize the concept. Understanding the invariance property of the 

concept can enable the student to generalize the concept in higher dimensions. But the 

sketch representation may not be seen as a realistic problem-solving activity to fulfill 

Harel’s necessity principle.  

2.5. Summary  

In this chapter, I provided a literature review of studies on students’ difficulties in 

learning linear algebra. According to Hillel (2000), the formal representational language 

of linear algebra consists of three different modes of description (abstract, algebraic and 

geometric) and their associated representational systems. The use of different modes of 

description of basic objects and processes, and the transition from one mode to another, 

both cause difficulties for students. To help students understand different modes of 

description and representation, Sierpinska (2000) argues the need for the development 

of three different modes of thinking (synthetic-geometric, analytic-arithmetic and analytic-
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structural). In connection to this, other researchers acknowledge that understanding 

linear algebra requires a trans-object level of thinking (Hillel, 2000; Dorier & Sierpinska, 

2001). However, international studies show that linear algebra students mostly develop 

procedural knowledge and their level of thinking does not advance to a trans-object level 

(Hillel & Sierpinska, 1994; Alves Dias & Artigue, 1995; Stewart, 2008).  

Students’ lack of geometric intuition in order to visualize geometric 

representations of the basic concepts also causes difficulties in learning and 

understanding linear algebra. It seems that a lack of geometric intuition and the 

development of primarily procedural knowledge are both associated with the way linear 

algebra textbooks represent concepts. In section 2.3, I provided a brief evaluation of a 

popular textbook in use in North America in order to stress its representational 

approaches in introducing the concepts of system of linear equations, linear 

transformation, basis, and eigenvector and eigenvalue. My evaluation led me to argue 

for new approaches to teaching linear algebra, particularly ones that provide students 

with powerful, dynamic, representational models where they can build their own, more 

geometric, understanding of concepts. 

 A review of studies on the use of computer algebra systems (CASs) and 

dynamic geometry environment (DGE) in teaching and learning linear algebra is now 

provided in Chapter 3, in order to offer insights into the design of learning environments 

and possible difficulties that students may be faced with in such environments.  
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3. The teaching and learning of linear algebra in 

technology—enhanced environments   

As discussed in Chapter 2, studies show that students develop primarily 

procedural knowledge of linear algebra concepts, and often fail to grasp connections 

between concepts (see Dorier et al., 2000; Sierpinska, 2000; Hillel, 2000; Harel, 2000). 

To promote students’ understanding, instructors have studied the implementation of a 

variety of technological tools such as graphing calculators, computer algebra systems 

(Harel, 2000), and dynamic geometry software (Sierpinska, Dreyfus & Hillel, 1999; Meel 

& Hern, 2005). Graphing calculators and computer algebra systems illustrate static and 

algebraic representations of concepts, and also facilitate computations. On the other 

hand, dynamic geometry software has been shown to facilitate students’ construction of 

their own mathematical objects and to avoid the obstacle of formalism. For example, the 

study by Sierpinska, Dreyfus and Hillel (1999) shows that students articulated the 

meaning of linear transformations, in problem-solving situations, using terms such as 

operations, positioning and relationships. Although it is possible to represent some 

concepts geometrically using CASs, the resulting representations are not inherently 

interactive, and thus are not as well suited to exploring, conjecturing and constructing in 

a geometric mode. The sections below include a brief review of literature on the use of 

CASs and DGEs in teaching and learning mathematics, with a particular focus on linear 

algebra.   

3.1. Use of Computer Algebra Systems in learning and 
teaching mathematics  

Recent digital technologies, such as CASs and symbolic calculators (TI-89 and 

TI-92), have changed the possibilities for improving student learning (see Trouche, 2005; 



 

23 

Lagrange, 2005; Artigue, 2005; Kieran, 2003). Lagrange (2005) suggests that computer 

algebra environments could assist students in problem-solving situations, provide visual 

representations of situations, and enable pattern perception and investigation. But such 

affordances of CASs do not happen so easily. Factors such as students’ prior knowledge 

in algebra and about the system, the types of problem-solving situations, and the 

representations of concepts all influence the affordances of CASs and so their 

integration in teaching and learning. Moreover, the integration of symbolic calculators 

(such as the TI-89) in mathematics curricula challenges both the pragmatic and 

epistemic values4 of traditional paper-and-pencil techniques. For example, using paper-

and-pencil techniques to find the limit of a function retains little pragmatic value when 

students have access to the limit command on a symbolic calculator. However, using a 

symbolic calculator may make the epistemic value of limit more visible, since its 

routinization is no longer a necessity. Similarly, in the context of linear algebra, using 

paper-and-pencil techniques to find the determinant of a matrix retains little pragmatic 

value when students have access to the determinant command on a graphing calculator.  

Although graphing calculators provide potentialities for visualization (such as the 

graphical representation of a function) and animation (zooming in and out), they do not 

necessarily help students to establish relationships between algebraic and graphical 

representations (Trouche, 2005). Trouche’s study shows that a student was able to 

articulate the meaning of a function having an infinite limit by referring to the table of 

values in a graphic calculator environment (rather than referring to the graph of the 

function), since it was difficult for him to define an appropriate window for graphing the 

function on a large scale. Four months later, the student could not articulate the concept 

of limit in a symbolic calculator environment. This shows that the student’s conception of 

limit changed from a process to an operation as the representational environment 

changed from graphical to symbolic. Each environment imposes potentialities and 

 
4 Lagrange (2005) uses the routines of pragmatic and epistemic value to evaluate techniques that 

one may use in a problem solving situation. The pragmatic value focuses on techniques’ 
productive potential (such as efficiency, cost and field of validity), whereas, the epistemic 
value concerns the contribution of techniques to the understanding of the objects they 
involve.   
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constraints on the student’s processes of adaptation to computer algebra environments 

and consequently influences the development of concepts.  

In a linear algebra context, the use of technology as a tool to run computations 

has been recommended by the LACSG since 1991. This recommendation has directed 

some instructors’ attention to the possible integration of CASs in linear algebra courses, 

particularly in North America. Although CASs facilitate computations and illustrate 

symbolic representations of concepts, they may not necessarily assist students in 

understanding the concepts. A recent study on students’ ways of thinking in a 

technology-assisted environment (a linear algebra with Maple course) shows that the 

software did not have positive, significant effects on students’ ways of thinking (Pruncut, 

2008). Pruncut’s study confirms the findings of other studies in regard to students’ 

behaviour and difficulties in CAS environments. She observes that students’ behaviour 

consisted of oscillating among several techniques and strategies (a phenomenon also 

observed by Defouad, 2000), use of trial-and-error procedures without attempting to 

validate the results, and memorizing strategies to apply in different situations (also 

observed by Trouche, 2005). These common observations led her to conjecture that 

such behaviour may occur in any CAS environment. She also identifies didactical 

obstacles caused by the CAS environment: for instance, learning concepts using Maple 

commands could result in thinking about these concepts in terms of commands. And 

students’ reliance on Maple calculations could also lead them to complex situations that 

might be difficult to manage.       

Although the plotting facilities of CASs, in particular Maple and MATLAB, provide 

visual representations of some basic linear algebra concepts, the use of these visual 

representations has not been a focus in studies. The literature only includes their use as 

a computational tool; the full evaluation of CASs visual tools is beyond the scope of my 

study.   

3.2. Use of Dynamic Geometry Software in teaching and 
learning mathematics 

The use of DGEs has been found to be effective in teaching a variety of school 

mathematics subject areas, including geometry and algebra, and, also, the teaching of 
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calculus, both at the high school and undergraduate levels (Hollebrands, 2003; Falcade, 

Laborde & Mariotti, 2007; Habre & Abboud, 2006). Given that a DGE simulates a 

geometric environment, it is widely used and studied in the context of the geometry 

curriculum. However, the dynamic and interactive features of DGEs, enhanced by the 

dragging tool, enables the design of interactive sketches appropriate for representing 

algebraic concepts. For example, Falcade et al. (2007) designed a teaching experiment 

using Cabri-géomètre (Baulac, Bellemain & Laborde, 1988) to introduce students to the 

idea of function as covariation between dependent and independent variables. Their 

findings show that the combined use of the Dragging and the Trace tools enabled 

students to develop meaning for both variation and covariation. The DGEs also enabled 

students to perform multiple actions and generate a large number of examples 

effortlessly (Hollebrands, 2007; Laborde, 1992; Mariotti, 2000).   

However, despite its appropriateness to other undergraduate subject areas, its 

potential in courses such as linear algebra has received little attention. Meel and Hern 

(2005) designed interactive web-based tools for various concepts of linear algebra using 

The Geometer’s Sketchpad. They provide some technical details of the design of 

GridMaster, Transformer 2D and Eigenizer, and include samples of exploratory 

activities. Figure 5 shows a snapshot of the Eigenizer tool that enables students to 

explore eigenvalues and eigenvectors of matrices. Their description includes students’ 

responses to several prompts about the tools. Although, they used prior research 

findings to design these tools carefully, they do not provide insight into the effect of these 

presentations on students’ ways of thinking. Based on their classroom observations and 

on students’ responses to prompts, Meel and Hern suggest that the use of these tools 

facilitates transition between algebraic and geometric modes of representations. Their 

work sparked my interest to study the effect of dynamic geometric representations on 

students’ thinking. It seems that the existence of two modes of representations and the 

use of these tools could result in the development of different modes of thinking, as 

discussed in section 2.2.   
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Figure 5.  A snapshot of Eigenizer tool 

Cabri-géomètre II software has also been used as a pedagogical aid to design a 

learning environment to help students to develop geometric intuitions about basic linear 

algebra concepts (see Sierpinska, Deryfus & Hillel, 1999). Sierpinska et al. were 

particularly concerned with students’ difficulties in distinguishing vector from its 

coordinates with respect to a particular basis and a linear transformation from its matrix 

representation relative to a given basis. They believed that introducing vectors as arrays 

of numbers and reducing the notion of linear transformation to linear substitutions on the 

entries of vectors (e.g. )2,2(),( yxxyxT +−= ) are sources of students’ difficulty. Using 

Cabri, they designed a geometric model of a two-dimensional vector space, one where 

vectors represented position of points with respect to a fixed point (the origin). Using 

Cabri, they also provided sketches where students could verify the linearity of a given 

transformations by checking the conditions of the axiomatic definition (a transformation 

preserving the operations of vector addition and scalar multiplication). Furthermore, the 

representation consisted of arbitrary vectors and their image vectors under a 



 

27 

transformation (not given by formulas) to prevent students from thinking in terms of 

prototypes or typical examples.  

Sierpinska et al. (1999) hypothesized that the dynamic and interactive 

representation of concepts would enable students to construct mathematical objects by 

means of identifying the invariants with respect to several semiotic representations. For 

example, identifying the defining invariants of a linear transformation is to notice that it 

preserves the operations of vector addition and scalar multiplication. Although the 

geometric model enabled students to construct mathematical objects, there were 

discrepancies between students’ interpretations of mathematical objects and the 

intended interpretations of the Cabri representations of linear transformations. For 

example, students called a dynamic pair of vectors (one free and one dependent) a 

linear transformation if the dilations of the free vector were accompanied by proportional 

dilations of the dependent vector. They also did not explicitly verify whether the given 

transformation preserves the operation of vector addition. This suggests that students 

could not see the link between the definitional properties of linear transformations 

( )()()( wTvTwvT +=+ , )()( vkTkvT = ) and the geometric model of representation, 

because they tended to interpret )()( vkTkvT =  in terms of proportions between lengths 

of vectors rather than a multiplication property of a transformation of a vector space. 

According to Sierpinska et al. (1991), “the dynamic Cabri representation of the dilation 

property of linear transformation led students to focus on a proportionally changing pair 

of vectors” (p. 35), when they were asked to verify linearity of a transformation.   

Not all of the difficulties resulted from the Cabri representation. Students also had 

difficulties using the axiomatic definition of linear transformation in problem situations, 

and in understanding the notions of basis and the span of a plane by a pair of non-

collinear vectors. Despite the aforementioned difficulties, Sierpinska et al. pointed out 

that the Cabri environment helped students articulate given problem-solving situations 

(in the context of linear transformation), using terms such as operations, positioning and 

relationships. For example, in the problem-solving situation: “put five vectors 1v , 2v , 1w , 

2w  and v  on the screen; assume that )( 11 vTw = , )( 22 vTw =  under a linear 

transformation T . From the information given, would you know where the vector )(vT  

should be? Can you construct it?” (p. 31). A student, after interacting with the sketch and 
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analyzing arithmetic representations of the images of the basis vectors ( 1w  and 2w ), 

states that “when we apply the same operations on v we should get )(vT ” (p. 34).  The 

student’s use of the term operations suggests that he was not just manipulating Cabri 

figures; instead, he was interacting with Cabri figures in a meaningful manner, although 

he seemed unaware that operations are not necessarily linear transformations.  

3.3. Summary 

In this chapter, I focused on the prior studies that integrated digital technologies 

(CASs and DGEs) in the teaching and learning of linear algebra. Although, the use of 

technology as a to date tool to run computations has been recommended by the LACSG 

since 1991, only a few studies have reported on the impact of the integration of digital 

technologies on students’ understanding.  

In regard to the use of CASs, several researchers have observed that students’ 

behaviour consisted of oscillating among several techniques and strategies (Pruncut, 

2008; Defouad, 2000), use of trial-and-error procedures without attempting to validate 

the results, and memorizing strategies to apply in different situations (Pruncut, 2008; 

Trouche, 2005). These common observations led Pruncut to conjecture that such 

behaviour may occur in any CAS environment.  

On the other hand, Sierpinska et al. (1999) hypothesize that the dynamic and 

interactive representations of concepts would enable students to construct mathematical 

objects through identifying the invariants in reference to several semiotic 

representations. Their study led them to conclude that the Cabri environment helped 

students articulate given problem-solving situations (in the context of linear 

transformation), using terms such as operations, positioning and relationships.  

Sierpinska et al.’s findings motivated me to investigate the effect of the use of 

dynamic geometric representations on students’ conceptualizations of eigenvectors and 

eigenvalues. Using The Geometer’s Sketchpad, I designed several sketches to 

represent the main concepts of linear algebra that undergraduate students are 

introduced to in their first linear algebra course. To justify the use of a DGE to represent 

mathematical ideas and concepts further, I now provide a review of theories on the role 
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of tools, visualization, and attention in the development of mathematical thinking and 

understanding. 
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4. Theoretical influences   

This chapter provides an overview of the multiple theoretical frameworks that I 

draw on in order to study the effect of the dynamic geometric representation on students’ 

conceptualizations of eigenvectors and eigenvalues. I start with Mason’s theory of shifts 

of attention, since it provides a broad theoretical account in order to highlight the 

significant role of attention and awareness in learning and understanding mathematics. 

Given that my study involves the use of dragging tool, I draw on the theory of 

instrumental genesis to understand the participants’ use of this tool and its internalization 

into an instrument. I also include a review of research findings on the specific use of 

different dragging modalities since the participants used different dragging strategies 

and modalities while they interacted with the dynamic geometric representation of 

eigenvectors and eigenvalues. I then include a review of visualization and different 

categories of visual imagery given the visual and interactive nature of this 

representation. Moreover, I consider here the importance of kinaesthetic and dynamic 

imagery in mathematical thinking and draw on the theories of embodied cognition in the 

development of mathematical thinking. Theories of the role of embodied cognition and 

gestures in mathematics education have broadened my perspective in terms of noticing 

the role of time and motion—and not just visualization—in the development of 

mathematical thinking and learning.  

4.1. Attention and awareness   

Mason (2008) believes that attention and awareness are two aspects of the 

human psyche in the developmental process of mathematical being. Awareness refers 

to what enables us to act, calling upon our conscious and unconscious powers, and is 

closely connected to the sensitivity to detect changes and to choose proper actions in 

certain situations (Gattegno, 1987; Mason, 2008). To educate one’s awareness involves 

drawing attention to actions which are being carried out with lesser or greater 

awareness. Attention can be drawn not only to mathematical objects, relationships and 
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properties, but also to manifestations of mathematical themes, and to heuristic forms of 

mathematical thinking.  

According to Mason, the structure of attention comprises both macro and micro 

levels; how something is being attended to is as important as what is being attended to. 

At the macro level, Mason describes the nature of attention as follows: “attention can 

vary in multiplicity, locus, focus and sharpness” (p. 5). At the micro level, he 

distinguishes five different states of attending: holding wholes, discerning details, 

recognizing relationships, perceiving properties, and reasoning on the basis of agreed 

properties. Holding wholes occurs when a student gazes at a definition, a collection of 

symbols and/or a diagram. The student may not focus on anything in particular, while 

“waiting for things to come to mind” (p. 36). Looking at the wholes, the student may 

discern and identify useful sub-wholes or details. Discerning details is a process that is 

involved in and contributes to subsequent attending. As the student discerns details, she 

may recognize relationships between symbolic and geometric representations of 

mathematical concepts. When she becomes aware of possible relationships in the 

particular situation, she may perceive these as instantiations of a property. As she 

continues attending, she can use the perceived properties as a basis for mathematical 

reasoning.  

Molina and Mason (2009) note that these described states of attention are not 

levelled or ordered. They often last for a few micro-seconds and alternate among other 

states. Those that become stable and robust against alteration for varying periods of 

time may block further development of awareness.   

Mason argues that different states of attention can be triggered more prominently 

than others by different cues. The flexibility of shifts among various forms of attention is 

a factor that influences one’s awareness. Also, a lack of accumulated necessary 

experience of the different forms of attention can cause difficulties for learners. For 

example, a learner’s attention may not advance to recognizing relationships or a learner 

may not attend to reasoning on the basis of properties. This suggests providing learners 

with opportunities where their attention can be drawn to identifying the invariants of a 

mathematical concept which would enable them to perceive properties of the concept.  
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Mason’s theory of shifts of attention seems very relevant to use in analyzing a 

student’s attention in a mathematical activity. But given the important role of the digital 

tool in DGE-based activity, a suitable theory for analyzing a student’s structure of 

attention involved in such an activity needs to take into account the effect of a student’s 

interactions with the tool. The following section includes a review of the theory of 

instrumental genesis to describe processes involved in the interactions between a 

learner and a digital tool. Given that the participants of my study mainly used the 

dragging tool, I also include a review of research findings on the specific use of different 

dragging modalities.      

4.2. Tools and instruments  

The theory of instrumental genesis (Verillon & Rabardel, 1995) draws on actions 

and procedures undertaken by a student in using a tool. The tool can be transformed 

into an internally oriented tool (an instrument of semiotic mediation) by the process of 

internalization (Vygotsky, 1978) that occurs through semiotic processes. For example, 

given a specific task in a dynamic geometry environment, the dragging tool can be 

transformed into an instrument referring to the idea of function as covariation between 

dependent and independent variables (Falcade et al., 2007). Similarly, with the eigen 

sketch, the dragging tool can be transformed into an instrument for detecting the 

presence of the geometric representation of an eigenvector as a non-zero special vector 

collinear with its transformation under a 22× matrix.      

The development of instrumental genesis is a complex process that depends 

upon several factors, such as the potentialities and constraints of the tool, actions and 

procedures taken by the student, the student’s knowledge of mathematical concept in 

the task, and also the student’s awareness of the affordances of the tool. The two 

interconnected components of instrumental genesis—instrumentalization and 

instrumentation—are used to describe the processes involved in the interactions 

between the student and the tool. The instrumentalization process, directed toward the 

tool, involves development of the skill necessary to use the tool, as well as the 

personalization and the transformation of the tool. It is about what the student thinks the 

tool was designed for and how the student uses the tool. It requires attending to tool use. 
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The instrumentation process, directed by the tool, involves the constraints and 

potentialities of the tool that shapes the student’s knowledge acquisition (Trouche, 

2005). This involves a shift of attention from tool use to what the tool can do, so that the 

tool becomes not the object of attention, but something that focuses and directs attention 

in particular ways—a mediating tool.  

These two components are concerned mostly with processes involved in 

transforming a tool into an instrument, not the role of the instrument in knowledge 

acquisition. As researchers point out, the role of the instrument in cognitive development 

is a delicate issue (Verillon and Rabardel, 1995), and the theory of instrumental genesis 

has shortfalls in putting forward the potentialities of the instrument in the development of 

mathematical thinking. As discussed above, Mason’s theory of shifts of attention 

appears potentially fruitful in terms of revealing the developmental process of 

mathematical being. In my study, I attempted to show that in a digital technology 

environment, instrumentation and instrumentalization processes cause shifts of 

attention. To do so, I suggest combining the theory of instrumental genesis with the 

theory of shifts of attention to enable a deeper analysis of the cognitive development of a 

learner in a digital technology environment.  

 Moreover, prior study of the use of the dragging tool from a cognitive perspective 

suggests that dragging can mediate the relationships between perceptual and 

conceptual entities. Arzarello, Olivero, Paola, and Robutti (2002) point out that “dragging 

supports the production of conjectures: exploring drawings by moving them, looking at 

the ways after which their forms change (or do not change), [and] allows users to 

discover their invariant properties” (p. 66). They identify different dragging, modalities 

such as wandering dragging, guided dragging, dummy-locus dragging, and line 

dragging. Wandering dragging refers to moving a draggable object on the screen 

randomly, without a plan, in order to explore the relationships among the other parts of 

the object in the sketch. Guided dragging involves dragging an object in order to locate a 

particular configuration. Dummy-locus dragging refers to dragging an object in such a 

way that dragging preserves a discovered property. Line dragging is dragging along a 

line in order to preserve the regularity of the discovered configuration. For example 

consider an arbitrary triangle and its circumcircle: wandering dragging involves randomly 

dragging vertices or edges of the triangle in order to explore the relationship between 



 

34 

triangles and the center of its circumcircle. Guided dragging, for example, could involve 

dragging vertices in a way to make the triangle look like a right-angle triangle. An 

example of dummy-locus dragging in this setting would be to drag the vertex (opposite to 

hypotenuse) in such a way as to make isosceles triangles, thus the vertex which is 

dragged follows a straight path (even though the locus of the vertex may not be visible). 

An example of a line dragging would be to drag a vertex of the triangle along the edge 

(that passes through it) toward the other vertex.    

In connection with the use of tool, Artigue (2002) points out a theoretical 

perspective on the use of ostensive objects in mathematics education:   

Mathematical objects are not directly accessible to our senses: they are 
non-ostensive objects; we work with them through ostensive 
representations which can be of very diverse nature: discourse in natural 
language, schemas, drawings, symbolic representations, gestures, 
manipulatives. Work with ostensive objects both shapes the development 
of the associated non-ostensive objects, and is shaped by the state of 
development of these. (p. 270)  

This suggests that dynamic interactive diagrams can also act as ostensive 

objects to shape the development and the state of development of mathematical objects. 

The developmental processes of a learner can be described through analyzing shifts in 

her attention. Nonetheless, these representations may stimulate the formation of visual 

imagery. Next, I focus on the role of visualization and dynamism in thinking in learning 

mathematics.               

4.3.  Visualization    

The role of visualization, visual imagry and visual thinking has been long 

recognized in learning and generalizing mathematical concepts (see Krutetskii, 1976; 

Presmeg 1986; Zimmermann & Cunningham, 1991). A mental visual image is a mental 

representation of an object or a process. Visualization or visual imagery refers to the 

processes of forming and transforming visual images with or without the presence of the 

object or process. Visualization involves internal processes in the mind, and can be 

identified through external activities such as articulating mental images, drawing 

diagrams on paper or even manipulating diagrams on a computer screen. Arguably, 
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Individuals vary in their ability to use visual imagery, since their external activities vary. 

Five categories of visual imagery of relevance to mathematics are: (1) concrete, pictorial; 

(2) pattern; (3) memory images of formulae; (4) kinaesthetic; (5) dynamic imagery 

(Presmeg, 1986). Concrete imagery involves a concrete image of an object. For 

example, a concrete image of a vector in two-dimensional space involves visualizing it 

as a fixed arrow in the plane. Although concrete imagery is identified as the most 

prevalent imagery used by high school students, studies show that use of it can promote 

thinking in terms of prototypical examples, and so hinder mathematical generalization 

(Presmeg, 1997; Sierpinska, Deryfus & Hillel, 1999).  

Pattern imagery is imagery in which concrete details are disregarded and 

relationships are depicted. An example of pattern imagery is to recall the span of vectors 

as a pattern: the span of one arbitrary vector is a line and the span of two arbitrary 

vectors is a plane, without evoking any particular image of a line or plane. This recall of 

span disregards the linear relationship between two vectors in finding the span, and 

considers the span of two linearly dependent vectors to be a plane (the span of two 

linearly dependent vectors is a line). But one could argue that pattern imagery involves 

the quick recall of some mathematical facts. Considering imagery as a continuum of 

visual mental images may lead one not to include pattern imagery as a distinct category 

of visual imagery. However, given that pattern imagery does not derive from a 

prototypical example, Presmeg argues that its use could be effective in the development 

of mathematical thinking and generalization.  

The memory image of a formula is another category of visual imagery. It refers to 

evoking a formula. For example, one may evoke the vector equation 

0332211 =++ vxvxvx  (where },,{ 321 vvv is a set of vectors in nR and 
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solution set) in verifying the relationship among a given set of vectors (i.e. linear 

dependence or independence). The use of memory images of formulae have been 

shown to be ineffective in certain circumstances the development of mathematical 

thinking (Presmeg, 1992).        
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The two last categories of imagery—kinesthetic and dynamic imagery—both 

involve motion. Dynamic imagery refers to a mental construction of a movement: it 

involves moving and transforming objects in the mind. It could lead to the kinesthetic 

sensation of making that movement (Kosslyn, Ganis & Thompson, 2009). Kinesthetic 

imagery involves bodily movements in evoking mathematical ideas or concepts. For 

example, a dynamic image of a vector in two-dimensional space involves evoking an 

arrow and moving it everywhere on the plane, whereas kinesthetic imagery of a vector 

involves use of fingers of the hand to draw, trace or position a vector in two- or three-

dimensional space. I talk about dynamic and kinaesthetic imagery in Chapter 7.  

Studies of mathematicians’ ways of thinking about mathematical concepts and 

ideas have shown the importance of dynamic and kinesthetic imageries in their thinking 

(Núñez, 2006; Sinclair & Gol Tabaghi, 2010). Despite this, research on students’ ways of 

thinking reveals the absence of the use of kinesthetic and dynamic imagery (Presmeg, 

1992).  

4.4. Dynamism in thinking 

Recent research, drawing on neuroscientific theories, suggests the central 

importance of the body in thought (Seitz, 2000). This perspective confirms the 

importance of motor capacities and perception in the development of cognition. 

Cognitive scientists assume that, “the human propensity for categorization is structured 

by metaphoric, imagistic, and schematizing abilities that are themselves undergirded by 

perceptual and motor capacities” (Seitz, 2000, p. 25 referred to in Jackson, 1983; 

Johnson, 1987). Drawing on biological and cognitive studies, Seitz hypothesizes that 

“we think kinesthetically, too” (p. 24) and “movement and thinking do not exist in a 

biological and cognitive vacuum” (p. 28).  He proposes that there exist three core 

cognitive abilities central to human action. The first is motor logic and the motor 

organization that comprises one’s neuromuscular skill with regard to the articulation and 

ordering of movement. Motor organization refers to organizing movement and motor 

logic refers to the syntax of that movement. The second is kinesthetic memory that 

enables one to think in terms of movement by mentally reconstructing objects and 

imposing motion on and positioning them in space. This is to say that kinesthetic 
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memory comprises kinesthetic and dynamic imageries. The last, kinesthetic awareness 

concerns having information about our bodies and objects coming in contact with them. 

These abilities reveal the relationship of thought to movement that are well evidenced 

from the use of sign language and aesthetic (dance) movement. In particular, kinesthetic 

sense and memory has a significant role in learning through the senses, hands and 

body. In summary, Seitz asserts:  

Thinking is an embodied activity. Although humans may be best 
characterized as symbol-using organisms, symbol use is structured by 
action and perceptual systems that occur in both natural environments 
and artifactual contexts. Indeed, human consciousness may arise not just 
from some novel feature of human brains, but way of the body's 
awareness of itself through its exteroceptive and proprioceptive senses. 
Indeed, the body structures thought as much as cognition shapes bodily 
experiences (p. 36). 

His claims are interesting in light of Lakoff and Núñez’s (2000) work on “where 

mathematics comes from”. They propose that “mathematical objects are embodied 

concepts—that is, ideas that are ultimately grounded in human experience and put 

together via normal human conceptual mechanisms, … [such as] conceptual metaphors” 

(p. 366). Other evidence of the importance of kinesthetic sense in learning mathematics 

is offered by mathematicians such as William Thurston (1994), who includes “process 

and time” and “vision, spatial sense, kinesthetic (motion) sense” as two of the six major 

facilities that are important for mathematical thinking (pp. 4-5). More recent research in 

mathematics education that studies the way in which mathematicians think about 

mathematical concepts and ideas reveals the role of time, motion and gesture in 

mathematicians’ description of mathematical concepts (see Sinclair and Gol Tabaghi, 

2010). These theories and studies challenge inattention to (and sometimes ignorance of) 

the role of time, motion, and gesture in mathematical thinking.  

In regard to the role of gesture, Núñez (2006) writes that gestures have become 

“a forgotten dimension of thought and language” (p. 174). Researchers claim that 

gestures provide complementary content to speech content (Kendon, 2000) and 

gestures are co-produced with abstract metaphorical thinking (McNeill, 1992). Within a 

psychological perspective, McNeill identifies different types of gesture: deictic, iconic, 

metaphoric, beat. A deictic gesture is a pointing gesture that can be used to indicate 

existing or virtual, objects or events. Pointing to an object on a computer screen using 
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index finger can be an example of deictic gesture. An iconic gesture bears a close 

relationship to the semantic content of speech.  An example of iconic gestures is to use 

hands and arms to illustrate a L-shaped desk as it is described with words. A metaphoric 

gesture is pictorial like an iconic gesture, but it illustrates an abstract idea rather than a 

concrete picture or event. Tracing a triangle in the space as describing it with words can 

be an example of a metaphoric gesture. Beat gestures are repeated gestures that have 

the same form regardless of the content, such as a poet making rhythm as she reads. In 

the context of mathematics, the distinction between iconic and metaphoric gestures is 

not clear given the debatable status of mathematical objects as being abstract or 

concrete.  

McNeill’s gesture classification has been used in analyzing students’ use of 

gesture in learning mathematics (Cook, Mitchell & Goldin-Meadow, 2008), teachers’ use 

of gesture (Alibali and Nathan, 2007) and also mathematician’s use of gesture (Núñez, 

2006) in teaching mathematics. Other studies have shown that gestures play an 

important role in cognition and can contribute to creating mathematical ideas (Arzarello 

et al., 2005; Edwards, Radford, & Arzarello, ESM special issue 2009).   

A more recent perspective on gesture highlights the relationship between gesture 

and diagram seen as a technology that accompanies the development of mathematical 

ideas. This perspective draws on Châtelet’s work whose interest was the implications of 

gesture on diagram rather than any sort of classification of gesture. According to de 

Freitas and Sinclair:  

Gestures, for Châtelet, are elastic and never exhausted; they cannot be 
reduced to a set of descriptive instructions. If a gesture functions in terms 
of reference or denotation or exemplification, it is already stale and 
domesticated. Châtelet is concerned with gesture as a kind of 
interference or intervention that has driven mathematics and the sciences 
forward, not as a semiotic divorced from the event, but as a dynamic 
process of excavation that conjures the sensible in sensible matter (2011, 
p.6).  

Like gestures, diagrams are “the natural accomplice of thought experiment” and 

“reveal themselves capable of appropriating and conveying all this talking with the 

hands” (Châtelet, 2000, p. 11). This suggests that, for Châtelet, gestures give rise to 

sketches and diagramming, and diagrams give rise to new possibilities for gesturing.  
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4.5. Summary 

As discussed in section 4.1, Mason’s theory of shifts of attention appears 

potentially fruitful in terms of revealing the developmental process of a learner’s 

mathematical understanding. Accumulated experience of the different forms of attention 

and the flexibility of shifts among various forms of attention are important factors in the 

mathematical development of the learner according to Mason. Moreover, biological and 

cognitive studies reveal that attention can influence mental processes and perception, 

and human ability to rapidly shift attention both within and between sensory modalities 

contributes to learning process (Seitz, 2000). These authors suggest that providing the 

learner with opportunities where her attention can be drawn to identifying the invariants 

of a mathematical concept would enable her to perceive properties of the concept. In my 

research, the use of dynamic geometric diagram of the concepts of eigenvector and 

eigenvalue provide an opportunity for the participants to study their mathematical 

developmental process.  

Given that the study involves the use of a dragging tool, I draw on the theory of 

instrumental genesis to identify evidence of instrumentation and instrumentalization 

processes in the participants’ use of dragging tool. As I mentioned in section 4.2, the 

theory of instrumental genesis provides a framework to analyse students’ interactions 

with tools and transformation of tools into instruments. But it falls short in putting forward 

the potentialities of the instrument in the development of mathematical thinking. 

Therefore, I suggest the complementary use of the theory of instrumental genesis and 

the theory of shifts of attention to enable analysing cognitive development of a learner in 

a digital technology environment.  

Beyond the role of the dragging tool and its effect on shifts of attention, I 

conjecture that the dynamic geometric representation may stimulate the formation of 

imagery. I then provided a review of the literature on visualization and different types of 

visual imagery in learning mathematics, in section 4.3. In section 4.4, drawing on recent 

theories on thinking, I discussed the importance of the role of time, motion and gesture 

in the development of mathematical thinking.  

Drawing on these accounts, I decided to analyze each participant’s interactions 

with the sketches using the theories of shifts of attention, instrumental genesis and the 
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dragging tool, and embodied cognition and gestures independently. Then, I provide a 

synthesized analysis for each participant’s interaction by triangulating my analysis using 

these three theoretical frameworks jointly. The analysis of data begins in Chapter 6. The 

next chapter describes the methodology of my study.  
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5. Methodology of the study   

In this chapter, I describe the sketches that I designed to represent the concepts 

of vector, scalar multiple of a vector, and eigenvector and eigenvalue. I then introduce 

the participants of my study and describe their academic background and their familiarity 

with Sketchpad. In section 5.3, I include the task that I used to collect data using task-

based interviews. Given that my research methodology involves clinical interviewing, in 

section 5.4, I briefly review the use of clinical interviewing by Piaget (Ginsburg 1981) and 

diSessa’s (2007) recent argument on clinical interviewing as a scientific method of data 

collection.         

In Chapter 1, I included the two main research questions that guided my 

research. My overview of the multiple theoretical frameworks and the methodology of my 

study enabled me to structure those questions and to develop another research 

question. The goal of my study is to respond to the research questions: 

 1.  What is the effect of dynamic geometric representations of eigenvectors 

on a student’s modes of thinking?  

2.  How do students relate these representations to the more symbolic and 

static ones that are found in undergraduate textbooks?  

3.  What can the complementary use of the theory of instrumental genesis 

and the theory of shifts of attention offer in regard to analyzing a participant’s interaction 

with the eigen sketch? 

5.1. Design of sketches   

Using The Geometer’s Sketchpad (Jackiw, 1989), I designed three sketches to 

represent the concepts of vector, scalar multiple of a vector, and eigenvector and 

eigenvalue. The first two sketches (one illustrating the concept of vector, arithmetically 
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and geometrically, and the other depicting the concept of scalar multiples of a vector) 

were intended to familiarise anyone who had not used Sketchpad before with the 

aspects of the software. The sketches are fundamentally dynamic, representing 

relationships and behaviour over time.  

As shown in Figure 6, the vector sketch includes a draggable vector v , its 

numerical representation, and a ‘show axes’ button. The user can select the tip of vector 

v  and drag it on the sketch, so that she could notice numerical changes that occur as 

she drags v . She can also select the vector (the segment part of the vector v ) and drag it 

on the sketch, so that she might notice invariant properties of the vector v . Although the 

construction of the vector sketch involved specifying a Cartesian coordinate system, I 

decided not to show that system (unless one clicks on the ‘show axes’ button) in order to 

support the geometric intuition of the concept of vector as suggested by Sierpinska et al. 

(1999). I was also inspired by the literature that I reviewed in section 2.2. Thus, I 

included the geometric and arithmetic representations of a vector to enable one to 

identify invariants of a vector with respect to two different representations. The use of 

two representations, arithmetic and geometric, can also bring forth the coordination 

between embodied and symbolic mathematical worlds that Watson et al. (2003) describe 

(see section 2.3).   

 
Figure 6.  A snapshot of the vector sketch 

The second sketch is one representing a scalar multiple of vector v . As shown in 

Figure 7, the sketch includes both arithmetic and geometric representations of v and av . 
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It also includes a slider for a to enable the user to change its value. Following Sierpinska 

et al.’s design of sketches, I included a coordinate-free representation of vectors 

v and av  to enable participants to develop a geometric intuition of the concept of scalar 

multiple of a vector. The user can drag a and describe the behaviour of av . It is also 

possible to drag the tip of vector v  or the segment part of it to generate arbitrary vectors.  

 
Figure 7.  A snapshot of the sketch representing a scalar multiple of vector v 

The last sketch, which I called eigen, was designed to enable exploration of the 

eigenvectors and eigenvalues of a 22 ×  matrix. As shown in Figure 8, the sketch 

includes a draggable vector x  and its image vector Ax . The sketch also includes an 

arithmetic representation of Ax (i.e. matrix-vector multiplication). The user can change 

the values of matrix A . It is also possible to represent the vectors on a Cartesian 

coordinate system by clicking on the ‘Show axes’ button. The sketch shown in Figure 8 

is the improved version of the eigen sketch that I mostly used in collecting data. In 

improving the first version of eigen sketch design, I drew on Sierpinska et al.’s study 

design (1999), which suggests using a coordinate-free representation of vectors and 

transformations to enable students to develop synthetic-geometric mode of thinking. 
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Figure 8.  A snapshot of the improved version of the eigen sketch 

The earlier design of the eigen sketch, as shown in Figure 9, includes a 

Cartesian coordinate system and also geometric representations of column vectors of 

the matrix A . I used this first sketch as the basis of an interview with two participants 

(Mike and Jack). I then noticed that the geometric representations of the column vectors 

of A are not really necessary in order to identify the eigenvectors and eigenvalues of the 

given matrices. Moreover, one of the two participants (Mike) who used the sketch 

became puzzled by the geometric representation of the column vectors.  
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Figure 9.  A snapshot of the first version of the eigen sketch 

5.2. Participants 

The participants in the study were four undergraduate students and one graduate 

student, three males and two females, from a large North American university. The 

participants were selected from among students who had either completed a linear 

algebra course (3 students) in the Mathematics Department or were enrolled in a linear 

algebra course at the time of the interview (2 students). The three students who had 

previously taken linear algebra were chosen because they had prior experience using 

Sketchpad. The two students, at the time of interview, enrolled in a linear algebra class 

were students who had volunteered to participate in the study after I had made a general 

request to the whole class. A total of eight students volunteered and I interviewed them 

all, but I used a slightly different methodology for the 6 that were not included in this 

study. In particular, these six students were not given the definition of the concepts of 

eigenvector and eigenvalue. For this dissertation, I decided to focus on the five 

interviews in which participants were given the definition so that I would be able to study 

the particular question of how students relate the symbolic definition of the concepts to 

the dynamic diagrams.  

 The participants all volunteered their time. Of the five, three of them were 

relatively familiar with Sketchpad because of its being part of their education course 



 

46 

work. Appendix B includes transcripts of the interviews and a description of the 

participants’ interaction with the sketches and their gestures. I used pseudonyms to 

identify the participants.  

Mike and Jack  

Mike was a graduate student pursuing a Master of Science degree in secondary 

mathematics education. He had completed a linear algebra course during his bachelor’s 

degree, but said that he could not recall the concepts of eigenvector and eigenvalue at 

the beginning of the interview. The interview was conducted by Dr. Nathalie Sinclair. I 

mainly observed the conversation between her and Mike in order to gain some 

interviewing experience. Mike was relatively familiar with Sketchpad.  

Jack was a third-year undergraduate student pursuing his Bachelor of Science 

degree. He had completed a linear algebra course during his second year of study.  He 

was relatively familiar with Sketchpad because of being a part of his education course 

work.  

The eigen sketch that Mike and Jack interacted with was my first design, a 

snapshot of which is shown in Figure 9. They neither interacted with the vector sketch 

nor with the sketch representing a scalar multiple of vector v because, they were both 

familiar with Sketchpad.  

Kate, Tom and Rose 

Kate, Tom and Rose interacted with the improved version of the eigen sketch (a 

snapshot of which is shown in Figure 8), the vector sketch and the sketch representing a 

scalar multiple of vector v . At the beginning, before they started their interaction with the 

sketches, they were prompted with the question “what is an eigenvector?”  

Kate was pursuing a certificate program in education. She had completed a 

linear algebra course during her Bachelor of Science degree program and had used 

Sketchpad before in her spare time to expand her knowledge of geometry.  

Tom was a second-year undergraduate student pursuing a bachelor degree in 

science. He successfully completed both calculus I and II courses, and was concurrently 
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enrolled in a linear algebra course at the time of interview. He had not used Sketchpad 

before.  

Rose was a first-year student who was pursuing her undergraduate degree, 

majoring in science. She had successfully completed a calculus course and, at the time 

of interview, she was concurrently enrolled in a linear algebra course. She did not recall 

studying matrices and vectors in high school. It was her first time using Sketchpad.  

5.3. The interview task  

The participants were given the sketches and a worksheet. The worksheet 

included a formal definition of eigenvectors and eigenvalues (see Appendix A) and a 

task as shown in Figure 10.    

 
Figure 10.  The interview task used to collect data 

The task includes four different transformation matrices and invites the 

participants to find eigenvectors and associated eigenvalues of the given matrices using 

the eigen sketch. These four matrices were chosen to provide examples of four different 

cases that may occur in finding eigenvectors and eigenvalues of 2×2 matrices. The 

matrix in (a) has two sets of eigenvectors and associated eigenvalues: a set of 







1
1

t  

(where { }0−∈ Rt ) with associated eigenvalue of 1=λ  and a set of eigenvectors of 









1
2

t (where { }0−∈ Rt ) with associated eigenvalue of 2=λ . The matrix (b) has only 
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one set of eigenvectors of 







1
1

t (where { }0−∈ Rt ) with associate eigenvalue of 3=λ . 

The matrix (c) has two sets of eigenvectors; one associated with a positive eigenvalue 

and another with a negative one. The sets of eigenvectors of matrix (c) are 







1
1

t  (where 

{ }0−∈ Rt ) with eigenvalue of 7=λ and 







− 5
6

t  (where { }0−∈ Rt ) with associated 

eigenvalue of 4−=λ .  The matrix (d) does not have any real eigenvectors or 

corresponding eigenvalues because the characteristic equation ( 06)1( 2 =+− λ ) does 

not have any real roots.  

5.4. Data collection  

Data was collected using one-on-one, task-based semi-structured, clinical 

interviews. Each interview lasted about 30 minutes and was videotaped. The participants 

were given the sketches and the worksheet that included the definition of the concepts of 

eigenvector and eigenvalue taken from Lay’s book (as shown in Figure 4, Chapter 2) 

and the task (as shown in Figure 10). By providing them with the definitions, the vector 

and scalar multiple of vector sketches, I tried to avoid putting participants in an unfamiliar 

situation. For example, the vector and scalar multiple of a vector sketches enabled 

participants who were not familiar with the dynamic diagrams of a vector to familiarise 

themselves with such representations and the dragging affordances of Sketchpad. Also, 

the provided definitions were useful since no one recalled the definition of eigenvectors 

and eigenvalues (as I predicted).     

The videotapes captured the participants’ interactions with the sketch, their 

speech and bodily movements. I watched the videotapes a number of times and 

captured single images using a stop-frame technique. I also transcribed everything that 

was said and what my participants wrote. I present the transcripts of the interviews, 

description of the participants’ interaction with the sketches and snapshots of their 

gestures in Appendix B. To analyze the data, I watched the videotapes many times and 

isolated episodes of dragging by means of time codes. I attended to the participants’ 
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gaze directions and how they moved among different foci in the interview. Their speech 

also reflected what they were attending to and how the structure of their attention shifted 

as they interacted with the eigen sketch. I also considered their use of gestures. I made 

use of their written responses when it helped me to complete my analysis, but I did not 

focus just on the written production of the participants which is generally very sparse.      

The use of semi-structured task-based clinical interviewing seemed to be a 

suitable method for data generation and collection in respect to my research questions 

which were: (1) what is the effect of dynamic geometric representations of eigenvectors 

on a student’s modes of thinking? (2) how do students relate these representations to 

the more symbolic and static ones that are found in undergraduate textbooks? (3) what 

can the complementary use of the theory of instrumental genesis and the theory of shifts 

of attention offer in regard to analyzing a participant’s interaction with the eigen sketch? I 

would not have been able to identify the effect of dynamic geometric representations on 

the students’ ways of thinking if I had not used the clinical interview technique.   

According to Ginsburg (1981), the roots of clinical interviewing go back to Piaget 

who used it to explore the richness of children’s thought, to identify the structure of that 

thought, and to evaluate the child’s cognitive competence. My purpose for the use of 

clinical interviewing is identification that is to identify and describe cognitive processes 

underlying interesting intellectual phenomena. To identify the structure of thought 

processes, the clinical interview may involve some degree of standardization and the 

interviewer’s prompts are contingent on the participant’s engagement with a task. In my 

study, the use of the task and sketches provided some degree of standardization. To 

semi-structure the interviews, I used a few common questions to prompt the participants 

as they interacted with the eigen sketch. A list of these questions is provided in Appendix 

C. However, the participants were prompted differently depending on their interaction 

with the sketches. I should acknowledge that in a few situations during the interviews I 

found myself acting more as an instructor rather than as an interviewer. For example, I 

directed them to drag x  in a specific quadrant when they missed out a position in the 

quadrant where x  and Ax  were collinear. In a few situations, I needed to confirm their 

findings of eigenvectors and eigenvalues to assure them that they were doing it right.    

Reflecting on my data-collection technique, I concur with diSessa (2007) that 

clinical interviewing provides rich data when it derives naturally from a form of mutual 
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inquiry through engaging participants in a task. The technique enabled me to triangulate 

(a) the modes of each participant’s thinking; (b) the range of strategies and dragging 

modalities that the five participants used; (c) something of the dynamics of the 

conceptualizations. The dynamics of conceptualizations addresses issues like how they 

develop, how much confidence and facility the participants exhibit, and how ideas may 

shift.  

5.5. Summary  

In chapter 5, I described the design of the sketches that I used in collecting data 

and also my rationale of the design by making connections to my findings in the 

literature. I discussed the importance of the use of clinical interviewing technique in 

collecting data in reference to my study questions. Qualitative analysis of data, which 

follows in Chapter 6, is based on the theoretical constructs described in the previous 

chapter. Appendix B includes data transcripts and description of the participants’ 

interaction with the sketches.  
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6. Analysis of data 

This chapter includes analysis of the the participants’ interactions with the 

sketches drawing on multiple theoretical frameworks (as overviewed in Chapter 4). I 

used four main categories to conduct my data analysis. I first analyse the episodes in 

terms of these three theoretical perspectives: 1) instrumental genesis and dragging tool, 

2) embodied cognition and 3) shifts of attention. The last category provides a reflection 

on the participant’s interactions merging all the theories to give an insight of the 

participant’s modes of thinking. At the end of this chapter, I include a comparative 

summary of the participants’ interactions with the sketches.  

I begin my analysis of the participants’ interactions with the eigen sketch with 

attending to their use of the dragging tool. I incorporate aspects of embodied cognition 

into my analysis in order to account for the important role played by the body in 

participants’ exploring and communication. I then use Mason’s theory of shifts of 

attention to analyze the participants’ structures of attention. In this way my analysis of 

their use of the dragging tool, and linguistic and gestural expressions can provide 

evidence of shifts in the structure of the participants’ attention and consequently reveal 

their understanding of the concepts. In my overview of the underlying theoretical 

frameworks in Chapter 4, I began with Mason’s theory of shifts of attention since it 

provides a broader theoretical scope.     

Given that data is analyzed using different theoretical frameworks, I often need to 

include the same excerpts in more than one category. Also, I realize that I am making a 

number of interpretations of the intentions or purposes of the participants when I use the 

verb ‘verify’. For instance, on page 61, I say “Mike also used line dragging to verify the 

collinearity of x  and Ax  [...]”. In this way, I make explicit the understanding I have of 

their surface actions and words.    

As I mentioned in Chapter 5, two participants of my study, Mike and Jack, 

interacted with the first design of the eigen sketch (a snapshot of the sketch is shown in 
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Figure 9, Chapter 5). The others, Kate, Tom and Rose, interacted with the improved 

version of the eigen sketch (a snapshot of it is shown in Figure 8, chapter 5). The order 

of presentation reflects the chronological order of my interviews.  

6.1. Mike 

6.1.1. Dragging modalities and strategies 

6.1.1.1. Finding eigenvectors and eigenvalues of matrix (a)  

Mike began his interaction with the sketch by using wandering dragging to drag 

the vector x slowly around its given position (fourth quadrant of the coordinate system). 

As he continued dragging, x overlapped with the x -axis and Ax  overlapped with the 

vector u , as shown in Figure 11.  

  
Figure 115. A snapshot of the first eigen sketch shows vectors u and Ax  are 

co-linear as x is collinear with x -axis 

 
 
5 The vector u and v  on the sketch are the geometric representations of the column vectors of 

the transformation matrix A .   
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This representation enabled him to use line dragging to drag x toward the origin, 

along the line where x and the x -axis overlapped, until Ax became the same length as 

u . Mike’s use of line dragging provides evidence of the instrumentalization process, in 

that it enabled him to explore the varying lengths of Ax and to make Ax  the same 

length as u while keeping u and Ax overlapped. Although the relationship between 

Ax and u is not a mathematically interesting one to identify, his exploration of places 

where Ax  overlaps with u is interesting. Seeing that Ax  overlapped with the vector u  

may have enabled Mike to recall the symbolic representation xAx λ= from the given 

definition. This represents the instrumentation process, since through the use of 

dragging tool Mike recalled xAx λ= . This means that the dragging tool enabled him to 

focus on and direct his attention to the equality or congruence of the two lengths.    

Recalling the given definition, he noticed that he needed to make Ax equal to 

xλ , so he used guided dragging and dragged the vector x in the first quadrant until he 

found a position where x and Ax  overlapped. With respect to Arzarello et al.’s dragging 

modalities, Mike used guided dragging since he dragged x to make Ax  equal to 

xλ (instead of, say, dragging x increasingly away from the origin). Next, he used line 

dragging to explore further the relationship between x and Ax . As he dragged x  along 

the line where x overlapped Ax for 1=λ , far away from the origin in the first quadrant, 

he realized that x  and Ax  stay overlapped and must have the same length. Having  

explored the collinearity between x and Ax  using line dragging, he dragged the vector 

x into the third quadrant in an anti-clockwise direction. Upon finding a position where 

x overlapped with Ax in the third quadrant, he used line dragging and dragged x along 

the line away from the origin to verify whether the collinearity between x and Ax would 

hold and possibly also to see whether the ratio of lengths of x and Ax would remain 

invariant. In fact, Mike used line dragging to test the relationship between x and Ax .  

The interviewer prompted him by asking “do you think there is another 

eigenvector?” in turn [24]. In response, Mike used a circular clockwise direction to drag 

x from the third quadrant into the first quadrant. He dragged x slowly (perhaps he was 

uncertain about the existence of another eigenvector), in the first quadrant, until he 

found a position where x and Ax overlapped for 2=λ . His dragging modality in finding 
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2=λ was in contrast to those that he used before, which were more exploratory, in 

which he happened to find an overlap position. Now, he intentionally used the dragging 

tool to find a position where x and Ax overlapped. This is because he has already found 

such position (i.e. he identified the first eigenvector and its associated eigenvalue, 1=λ ), 

thus he knew he needed to drag x to find another position where x and Ax  overlap. His 

intentional use of the dragging tool provides evidence of an instrumentalization process.  

Mike then dragged x back and forth between the two positions where x and Ax  

overlapped in the first quadrant (for both 1=λ and 2=λ ) as he attended to the 

geometric and the arithmetic representation of eigenvectors to distinguish the 

eigenvector (2.7, 2.74) associated with 1=λ  from the eigenvector (5, 2.3) associated 

with 2=λ . This modality of dragging is a kind of guided dragging that Mike used to 

verify the two positions where x  and Ax overlapped. It seems that Mike considered 2.7 

and 2.74 to be equal values, and 2.3 to be equal to 2.5. He might have been aware that 

the sketch has precision issues, or he might have thought that a range of values would 

be accepted. However, in approximating the eigenvalue of matrix (b), he became precise 

in finding the exact value. I return to the question of approximation versus exactness in 

the final chapter.  

His use of the different dragging modalities shows evidence of both the 

instrumentalization and instrumentation processes, in that the use of the dragging tool 

enabled him to find positions where x and Ax overlapped and also to verify the 

collinearity of x and Ax  where they overlapped.  

6.1.1.2. Finding eigenvectors and eigenvalues of matrix (b) 

Based on the fact that Mike attended to the collinearity of the vectors, as well as 

to the ratio of their lengths, he could be seen as using a geometric understanding of an 

eigenvector’s position in regard to its transformation under A . He used the guided 

dragging, carefully attending to the positions of the two vectors on the sketch, and found 

a position where x and Ax  overlapped (for which 3=λ ). He continued dragging x  

slowly around the overlapped position where he realized that the geometric 

representation of the two vectors was not very accurate since the two vectors, on the 

sketch, almost overlapped for an eigenvalue ranging from 2.7 to 3.2 for matrix (b). He 
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then dragged x in a circular clockwise direction into the third quadrant and stopped 

dragging when he noticed that the two vectors overlapped. He used line dragging and 

dragged x along the overlapped line away from the origin as he attended to the 

geometric and arithmetic representations on the sketch to find the exact value of the 

associated eigenvalue. He then dragged x back into the first quadrant where x and Ax  

overlapped before. He stopped dragging and said “that [overlap position] is the only one 

there”. His statement suggests that he visually verified the collinearity of the two 

overlapped positions in the first and the third quadrants since he concluded “that is the 

only one there”.   

6.1.1.3. Finding eigenvectors and eigenvalues of matrix (c) 

Mike used guided dragging and found a position, in the first quadrant, where x  

and Ax  overlapped for 7=λ . He then used line dragging to drag x  along the 

overlapped line to verify the collinearity of the two vectors in the first quadrant. He also 

checked whether he could get a range of eigenvalues for matrix (c) as he said “it 

[eigenvalue] definitely looks like 7”. He then dragged x  in a clockwise direction into the 

third quadrant, where he noticed that the two vectors overlapped in the third quadrant, 

for 7=λ . This strategy is similar to the strategy that he used in finding  eigenvectors 

and associated eigenvalue for matrix (b).  

As he was explaining his strategy in turn [36] and dragging x in a circular path 

into the other quadrants, he found a position where x and Ax  were collinear but had 

opposite directions ( x was in the fourth quadrant whereas Ax  was in the second 

quadrant). Noticing this geometric configuration of the two vectors, Mike immediately 

announced λ to be -4 (the sketch did not show the actual value of the eigenvalue, it only 

showed the absolute value of the ratio of length of Ax  to the length of x ). He then 

dragged x in a circular clockwise path into the second quadrant to verify further the 

collinearity of the two vectors and the value of the associated eigenvalue. He found a 

position where the two vectors were collinear ( x being in the second quadrant and Ax  

being in the fourth quadrant) and said “yeah, having negative four there too”. Mike’s use 

of the dragging tool to identify eigenvectors associated with a negative eigenvalue 

shows evidence of the instrumentalization process in that he worked with a geometric 

manifestation of the two collinear vectors (having opposite directions). It also reveals the 
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instrumentation process, since Mike found out that the two opposite but collinear vectors 

were also eigenvectors of matrix (c). This suggests that the dragging tool was 

transformed from a tool simply to move a point into an instrument detecting the presence 

of the geometric representation of an eigenvector associated with a negative eigenvalue.  

6.1.1.4. Finding eigenvectors and eigenvalues of matrix (d) 

Mike dragged x slowly in a circular anti-clockwise direction. He then dragged it in 

a circular clockwise direction, this time more speedily. He immediately realized that the 

two vectors do not overlap in this case and commented that “this [matrix (d)] one is not 

too promising.” His dragging actions showed that he had developed strategies such as 

dragging in both circular clockwise and anti-clockwise directions to try to find positions 

where x and Ax  overlapped. Mike also used line dragging to verify the collinearity of 

x and Ax , dragging x far away from the origin (in the quadrant where x and Ax  

overlapped). He also verified the collinearity of the two vectors in the opposite quadrant 

of the one in which he first identified their collinearity.       

6.1.2. Embodied cognition: gesture and speech  

6.1.2.1. Mike: Eigenvectors line up   

Shortly after his first interaction with the eigen sketch, Mike was prompted to 

explain his thoughts. In doing so, he used the verb “to line up” (see turn [1]). His use of 

this verb could be related to his interpretation of xAx λ= in the definition. Thus, “to line 

up” in the same direction for Mike can be an embodied way of describing Ax  is equal to 

xλ . It is interesting to note that he persisted with “line up” even when the word 

“overlapping” was offered in turn [4]. The verb “to line up” was used five times during the 

process of completing the task. His use of the verb “line up” in turns [36] and [43] 

suggests that he developed dynamic imagery of the geometric representation of an 

eigenvector. In explaining his strategy of finding eigenvectors, in turn [36], he said “[...] if 

I go around 360 degrees I am interested in the spots like there [position where 

x overlapped Ax ]” as he dragged x in a circular path. This shows that the use of the 

dragging tool enabled him to construct his kinaesthetic imagery of finding eigenvectors.   

Through his interaction with the sketch, Mike started thinking about vector x as a 

material object that can be moved by him since he said“[...] I started moving this [...]” in 
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turn [3]. After completing the task, in turn [43], he moved his index finger as a vector. He 

said “I would move x around [rotates his right index finger as tracing a circle as shown in 

Figure 15] 360 degrees to see if these two cases [puts his hands together as shown in 

Figure 13 and14 ] showed up”. This suggests that the dynamic diagram gave rise to 

gesture.  

6.1.2.2. Mike gestured at eigenvectors associated with positive or negative 
eigenvalues 

At the beginning of the interview, Mike used his right index finger to trace the 

equality, xAx λ= , on the given worksheet as he tried to recall the definition (as shown in 

Figure 12).  

 
Figure 12.  Mike’s use of index finger to trace the equality xAx λ=    

He then used the mouse pointer several times to indicate the geometric 

representation of the vectors x and Ax  on the sketch, as he tried to match the symbolic 

representations used in the definition with the ones used on the sketch. He also used the 

mouse pointer to indicate the arithmetic representation of the vector x and the 

transformation matrix on the eigen sketch. His use of the mouse pointer to indicate the 

symbols on the sketch is a kind of deictic gesture. After putting aside the worksheet, he 

used his right index finger to indicate the vectors x and Ax  in the sketch as he tried to 

match the symbols on the sketch with the ones used on the definition. At this point, he 

moved his right index finger along the geometric representation of the vectors u and v  

as he was tracing the vectors from tail to tip. His use of his right index finger to move 
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along the vectors can be seen as an iconic gesture which suggests evidence of dynamic 

imagery.   

In explaining how he went about finding eigenvectors, Mike used his hands to 

illustrate eigenvectors. He put up his hands with fingers extended and placed his right-

hand palm upward on top of his left-hand palm downward (both hands slightly slanted to 

the right such that his right-hand little finger overlapped with his left index finger) as he 

said “[...] x and Ax  to line up in the same direction, [...]”, shown in Figure 13. He then 

rotated his hands while keeping his wrists together such that his right- hand extended 

fingers pointing to the right and his left-hand pointing to the left , as shown in Figure 14, 

to illustrate collinear eigenvectors that have opposite directions. He also rotated his right 

index finger around (like tracing a circle in space), as shown in Figure 15, while he said 

“I would move x  around 360 degrees to see if these two cases showed up”. Referring to 

McNeill’s classification of gestures, Mike used metaphoric gestures in describing his way 

of finding eigenvectors.  

As mentioned above, Mike started with deictic and then iconic gestures, and at 

the end he used metaphoric ones. Using deictic gestures, he referred to the symbols 

and the objects, and matched symbols on the definition to their geometric referents on 

the sketch, but did not have much sense of what they are since he did not recall the 

definition. At the end, his hands and arms have become the vectors and he used 

gestures to express his dynamic imagery that was triggered from his interaction with the 

sketch. This confirms Châtelet’s (2000) ideas on the diagram/gesture relationship in that 

the dynamic representation (diagram) gave rise to gesture, since the gestures came 

right out of his interaction with the dynamic representation of concepts. These gestures 

are new and, as such, imply the development of new understandings for Mike. Mike’s 

gestures and speech suggest that he experienced an embodied geometric description of 

finding an eigenvector as he used his hands to gesture the geometric representation of 

x and Ax  where x is an eigenvector. This also suggests that he developed synthetic-

geometric modes of thinking through his interaction with the dynamic representations of 

the concepts.  
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Figure 13.  Mike’s hands 
point to the 
same 
direction 

 

Figure 14.  Mike’s hands 
point to the 
opposite 
directions 

 

Figure 15.  Mikes’ index 
finger rotates 
around a 
circle 
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6.1.3. Shifts of attention  

Mike first focused his attention on the definition since he gazed at the formal 

definition of eigenvector on the given worksheet. He then shifted his locus of attention to 

the sketch and dragged the vector x slowly around its given position. His initial 

interaction with the dragging tool suggests that he waited for visual feedback from the 

sketch and his attention was what Mason calls holding wholes. As he dragged the vector 

x , his attention shifted to the position of Ax on the sketch. He focused on a position 

where Ax overlapped with the vector u and when x overlapped with the x -axis. His 

focus on these positions resulted from his recall of the definition, as he said “I knew the 

two things need to be the same” (see turn [3]). His attention was blocked for a few 

seconds because he focused on the position where u and Ax overlapped as he 

thought that was what he was looking for. 

He then re-read the definition and shifted his attention back and forth between 

the definition and the sketch matching the symbolic notations used on the definition with 

the symbolic or geometric representations on the sketch. This matching process enabled 

him to shift his attention to λ , and more particularly, to its absence in the sketch. Given 

that the sketch represents a geometric representation of an arbitrary vector x and its 

transformation under the matrix A , this allows a visible representation of eigenvectors 

(i.e. x and its transformation being collinear), whereas the associated eigenvalue is not 

visible.  

In turn [17], he articulated “ λ is what I am multiplying x  by, so that it ends up 

being the same as the Ax .” This suggests that Mike started recognizing the relationship 

between the symbolic representation (i.e. xAx λ= ) and the geometric representation on 

the sketch. Mike then found a position on the sketch and said “yeah, that would be it 

because now I have Ax here and a scalar multiplication of x  by an amount which is λ , 

to make it equal to the same thing, so yeah that is right.” (see turn [19]). This suggests 

that Mike instrumentalized the dragging tool and attended to the direction and the length 

of the vectors x  and Ax as he identified a position where Ax overlapped x and both 

had the same length. He then used line dragging to explore further the relationship 

between x  and Ax , and concluded that 1=λ . This shows that the use of line dragging 
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enabled Mike to recognize the invariance property of the eigenvalue. At this point, his 

attention was drawn to recognizing properties of eigenvectors and eigenvalues, although 

he did not show any evidence of understanding that there are infinitely many 

eigenvectors associated with 1=λ . 

Mike continued dragging x  into the other quadrants as he attended to the 

geometric configuration of the two vectors on the sketch. Thus, he identified a position in 

the third quadrant where x  and Ax overlapped for 1=λ . He then dragged x  more and 

found another position in the first quadrant where x  and Ax overlapped, for which 

2=λ . Although he was first puzzled by distinguishing the two eigenvectors from each 

other, the use of the dragging tool and attending to the arithmetic representation of x  on 

the sketch enabled him to differentiate them. This happened through dragging x  back 

and forth between the two positions where x  and Ax overlapped and attending to the 

geometric and numeric changes on the sketch. It seems that his attention is transitory; 

alternating between discerning details and recognizing geometric relationships, in this 

stage. His actions also reveal that his attention was completely drawn to the vector x  

and to Ax . He was not attending anymore to u  and v .  

In finding an eigenvector and its associated eigenvalue of matrix (b), Mike used 

guided dragging and immediately noticed a position in the first quadrant where the two 

vectors overlapped. After finding the position, he shifted his attention to finding the exact 

value of the eigenvalue. Although he used the Measure command and Calculator tool, 

he could not find the exact value because the geometric representation of the sketch 

suggested that x  and Ax overlap for a range of eigenvalues from 2.7 to 3.2 (on a 

square grid scaled 2 centimetres per unit). Overall, Mike’s strategy was to make x  line 

up with Ax in the first quadrant, approximate the eigenvalue, drag x  into the third 

quadrant to find a position where x  and Ax  overlap and verify the invariance property of 

eigenvalues in the third quadrant. He used the same strategy in finding the eigenvalue of 

7 for matrix (c). He attended to the position of the two vectors and to the ratio of the two 

lengths, but he did not articulate that there were infinitely many eigenvectors associated 

with the eigenvalue of 7. This suggests that his attention was transitory, alternating 

between recognizing geometric relationships and perceiving properties of specific 

eigenvectors and eigenvalues. After finding the eigenvalue of 7, he dragged x  in circular 
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paths as he explained his strategy in turn [36]. Doing so, he noticed a position where the 

two vectors were collinear, but not in the same direction as shown in Figure 16.  

 
Figure 16.  A snapshot of the eigen sketch shows that x  and Ax are collinear 

vectors with opposite directions 

The representation shown in Figure 16 made him shift his attention to the 

definition. He gazed at the definition and said “now we want to Ax equal to um this 

would work. Because, in this case lambda would be negative four” (see turn [38]). This 

suggests that he became aware of the collinear property between x  and Ax  (where x  

was an eigenvector) as he was able to identify the position where x  and Ax  were 

collinear but had opposite directions. It seems that his attention was perceiving 

properties of eigenvectors as a special vector that lines up with its scalar multiples in the 

opposite or the same direction. This implies that the dynamic interactive representation 

of eigenvectors enabled him to shift the state of his attention. He had also become more 

aware of his ways of dragging, thus started to drag x  in both clockwise and anti-

clockwise directions several times. Mike’s interactions suggest that the dragging tool 

caused shifts in his attention in which he identified another geometric interpretation of 

lining up of the two vectors.  
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In finding an eigenvalue and an associated set of eigenvectors of matrix (d), he 

dragged x  in circular clockwise and anti-clockwise paths as tried to find a position where 

the two vectors were collinear.  

6.1.4. Dragging, shifts of attention and gesture    

The use of wandering dragging enabled Mike to notice that Ax changes as he 

drags x . He immediately attended to the length-wise and direction-wise changes that 

occurred to Ax  as he dragged x . This observation made him shift his attention back and 

forth between the sketch and the definition, so that he matched the symbolic 

representations used in the definition with the ones used on the sketch. From the 

definition, he knew that xAx λ=  thus he dragged x  so as to make it equal to Ax . This 

modality of dragging can be classified as an intentional dragging modality because he 

intentionally dragged x  to make it equal to Ax . Upon finding a position where x  and Ax  

overlapped he used the line dragging modality to verify the invariance property of 

eigenvalues. Shifts in his attention at both the macro- and micro levels enabled him to 

use different dragging modalities and to develop dragging strategies such as dragging x  

in clockwise and anti-clockwise circular paths.   

Moreover, the use of the dragging tool and the dynamism of the representation 

affected his modes of thinking as evidenced from his gestures and speech. At the very 

beginning of his interaction with the eigen sketch he mostly produced deictic gestures 

using his right index finger or the mouse pointer. After completing the task, when he 

explained his strategy of finding eigenvectors and eigenvalues (see turn [43]), he used 

metaphoric gestures to illustrate his mental imagery of the geometric representation of 

eigenvectors as shown in Figures 13 and 14. This suggests that the dragging tool 

contributed to his ways of communicating the concepts since he used his hands and 

arms as he explained his strategy of finding eigenvectors. In fact, he provided an 

embodied geometric description of finding an eigenvector and used his hands to gesture 

the geometric representation of x  and Ax where x  is an eigenvector. This suggests 

that his mode of thinking was synthetic-geometric. In contrast, when he was asked “what 

is an eigenvector?”, Mike described an eigenvector as a vector that resulted from a 

multiplication operation between a vector and a matrix (see turn [45]). In other words, at 

this point, he recognised a relationship that the eigenvector has to the product operation 
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of the vector and matrix, but did not perceive any properties of the eigenvector. The 

result of this multiplication, according to Mike, was equal to the matrix multiplication by a 

scalar. He made an error by saying “matrix multiplied by scalar”, since that was not the 

case. He did not also pay attention to the fact that the commutative law of multiplication 

does not hold for matrix and vector multiplication. Surprisingly and strikingly, he did not 

integrate the ways that he went about finding eigenvectors (see turn [43]) in his final 

description of eigenvectors (see turn [45]). His description in turn [45] suggests that Mike 

used analytic-arithmetic mode of thinking. It seems that his mode of thinking suddenly 

shifted from synthetic-geometric to analytic-arithmetic in a few minutes. The shift might 

have happened because of the given prompt (that was “what is an eigenvector?”), which 

is static and depersonalised. In contrast, the prompt “Tell me how you are looking for the 

other one” in turn [35], which focuses more on human process, triggered the use of 

synthetic-geometric mode of thinking.   

6.2. Jack 

6.2.1. Dragging modalities and strategies 

6.2.1.1. Finding eigenvectors and eigenvalues of matrix (a)  

As with Mike, Jack began his interaction with wandering dragging to drag the 

vector x  around its given position (fourth quadrant of the coordinate system) where he 

noticed that dragging x  changes the position of Ax . His use of wandering dragging 

provides evidence of an instrumentalization process in that it enabled him to explore the 

relationship between x  and Ax . In turn [57], Jack recognized relationships between x  

and Ax  as he said “by dragging it, it is maintaining the eigenvectors”. He stopped 

dragging, re-read the definition and asked about the sketch representation of the 

associated eigenvalue. After being told that lambda does not appear on the sketch, Jack 

seemed to infer that he needed to make the two vectors collinear. He dragged x  into the 

first quadrant until it overlapped with Ax  and said “I guess I could have λ  there” in turn 

[59]. In doing so, he intentionally dragged x  in the first quadrant to find a position where 

x  and Ax  overlapped. He approximated the eigenvector by reading off the coordinate of 

x  from the arithmetic representation on the sketch, and the associated lambda to 2 by 

attending to the ratio of the length of two vectors. While I invited him to seek other 
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eigenvectors, Jack used line dragging to drag x  along its path collinear with Ax  (see 

Figure 17) to verify further the relationship between x  and Ax . His use of line dragging 

shows instrumentalization process. By using line dragging, Jack noticed that eigenvalue 

is a fixed scalar as he said “ λ  still looks like two, x  has changed” in turn [63]. This 

shows evidence of an instrumentation process because Jack noticed the invariance 

property of an eigenvalue.  

 
Figure 17.  A snapshot of the eigen sketch shows vectors x  and Ax  

overlapped in the same direction. 

In response to my prompt in turn [66], Jack used guided dragging to drag x  in an 

anti-clockwise direction into the third quadrant. After finding a position where x  and Ax  

overlapped, he used line dragging to drag x  along its path collinear with Ax  in the third 

quadrant. He then used line dragging to drag x  back and forth along the straight line 

passing through the origin and said “the value of lambda wouldn’t change but there are 

infinitely many eigenvectors”, in turn [71]. His use of line dragging suggests evidence of 

instrumentalization process in that he dragged x  along the straight line passing through 

the origin. His dragging strategy also suggests evidence of an instrumentation process 

because he articulated that “there are many eigenvectors” associated with 2=λ .  
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Jack was about to proceed to the next question when I prompted him to look for 

a different eigenvector from the set he gave before. After dragging x  in an anti-

clockwise circular fashion, Jack could not identify another set, until I asked him to drag x  

to (1, 1). At this point, Jack noticed that the two vectors overlapped for λ  of 1. The use 

of line dragging enabled him to verify the collinearity of x  and Ax  where they 

overlapped for 1=λ .  

6.2.1.2. Finding eigenvectors and eigenvalues of matrix (b) 

In finding the eigenvectors and eigenvalues of matrix (b), Jack used guided 

dragging and dragged x  in a circular path to find a position where x  and Ax  overlap. He 

found a position in the third quadrant where the two vectors overlapped. After 

approximating the lambda, he was prompted to find the associated eigenvectors. In 

response to the prompt, he used line dragging to drag x  along the line (where the two 

vectors overlapped) away from the origin in the third quadrant. He then dragged x  along 

the line passing through the origin into the first quadrant. As he dragged x , he 

mentioned eigenvectors “are the ones on this line”. The use of line dragging to locate the 

set of eigenvectors shows evidence of an instrumentation process because Jack located 

infinitely many eigenvectors associated with a single eigenvalue.    

6.2.1.3. Finding eigenvectors and eigenvalues of matrix (c) 

Upon changing the entries of the matrix A  to (c), Jack noticed that x  and Ax  

both fall in the third quadrant. He used guided dragging and dragged x  so that the two 

vectors overlapped in the third quadrant. He then dragged x  along the line (of overlap) 

passing through the origin into the first quadrant. In finding another set of eigenvectors, 

he used guided dragging to drag x  in an anti-clockwise circular path focusing on the 

positions where x  and Ax  overlap. Finding nothing, I asked him to drag x  into the 

second quadrant. He dragged x  from the first quadrant into the second quadrant as he 

carefully attended to the position of Ax  on the sketch. He found a position where x  and 

Ax  were collinear but had opposite directions. He then dragged x  along the collinear 

line passing through the origin. It seems that he used line dragging to verify the 

invariance property of the negative eigenvalue ( 4−=λ ).  This is evidence of instrumental 
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genesis in that the dragging tool was transformed from a tool into an instrument for 

detecting another interpretation of ‘lining up’.  

6.2.1.4. Finding eigenvectors and eigenvalues of matrix (d) 

He used guided dragging and dragged x  in anti-clockwise circular paths with 

different radii several times. He then continued dragging x  in a spiral fashion, starting far 

from the origin and ending at the origin. This suggests that Jack developed new 

dragging strategies (dragging in a circular or spiral path) to verify the existence of 

eigenvectors on the given sketch.      

6.2.2. Embodied cognition: gesture and speech  

6.2.2.1. Jack: Eigenvectors are scalar transformations that line up geometrically     

In finding the first set of eigenvectors of matrix (a) and the associated eigenvalue, 

Jack said “I guess I line them up. I guess I could have lambda there” in turn [59]. He 

made such an inference based on the given equality as he said “I looked at this 

[ xAx λ= ] and I realized that there was a scalar transformation” (see turn [61]). Jack’s 

use of the verb “to line up” could be related to his interpretation of xAx λ=  in terms of 

collinearity of Ax  with xλ . I discuss this in Chapter 7. Jack used the verb “to line up” 

three times during the process of completing the task. With his second use of the verb 

“to line up”, he used his hands to represent the position of the two vectors as shown in 

Figures 18 and 19. This suggests that he developed dynamic imagery of the geometric 

representation of an eigenvector and an embodied way of describing collinearity of the 

two vectors. 

 From the very beginning of his engagement with the task, Jack used the term 

“linear transformation”, although the term is not indicated on the given definition. It 

seems that Jack recalled the concept of linear transformation from his course work. His 

use of the term shows that he constantly got to coordinate the geometric representation 

of the concepts of vectors, linear transformation of vectors and eigenvectors with their 

symbolic representations as indicated in the given definition (see turns [61], [65] and 

[69]). Jack also used the term “linear transformation” in describing the set of 

eigenvectors associated with a negative eigenvalue of matrix (c).  
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Figure 18.  Jack’s hands 
are positioned 
parallel to each 
other 

 

Figure 19.  Jack’s hands 
are exactly 
placed on each 
other 

 
 

6.2.2.2. Jack gestured at eigenvectors associated with positive eigenvalues and 
diagrammed an eigenvector associated with a negative eigenvalue  

Jack used his right index finger to point to the given symbols on the worksheet as 

he read the definition. He then used the mouse pointer several times to indicate the 

matrix A  and the geometric representation of the vectors x  and Ax  on the sketch as 
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he tried to match the symbolic representations used in the definition with the ones used 

on the sketch. His use of the mouse pointer and his right index finger to indicate the 

symbols on the sketch and on the worksheet is a kind of deictic gesture. 

In finding the set of eigenvectors of matrix (a) associated with lambda of 1, Jack 

found a position where x  and Ax  overlapped and wrote down xAxx λ==  on the 

worksheet. Although, he knew Axx = , he was slightly puzzled with coordinating the 

geometric representation of the vectors (when 1=λ ) with the symbolic representation 

(i.e. Axx = ). In expressing his way of seeing the geometric representation of 

eigenvectors (when 1=λ ), he used his hands to represent the two vectors as shown in 

Figure 18. He put up his hands, moved his right-hand and placed it exactly on his left-

hand (as shown in Figure 19) to illustrate the geometric representation of vectors when 

lambda was one. This shows that the use of the dragging tool enabled him not only to 

coordinate the geometric representation with the symbolic one but also to evoke a 

kinaesthetic imagery of eigenvector associate with 1=λ . Referring to McNeill’s 

classification, Jack used metaphoric gestures to communicate kinaesthetically his 

imagery of the eigenvector for 1=λ . And, according to Châtelet (2000), the dynamic 

diagram of the eigenvectors associated with 1=λ  gave rise to gestures that shown in 

Figures 18 and 19.  

Jack also used his hands after seeing the geometric representation of 

eigenvectors associated with a negative eigenvalue on the sketch. He positioned his 

hands extended fingers in an angular shape but not attached from his wrists as shown in 

Figure 20. He then moved his right-hand toward his left-hand, placed it on the top of his 

left hand (as shown in Figure 21) and moved it away from his left-hand. He repeated this 

gesture a few times. Then he said “because of ninety degrees um I’m trying to recall” as 

he held his hands in an angular form attached from his wrists for a few seconds as 

shown in Figure 22.  It is hard to say whether Jack used his hands to illustrate opposite 

vectors (a vector and its dilation by a negative factor) or to depict a vector and its 

quarter-turn rotational transformation (since he mentioned ninety degrees). 

Nevertheless, his gesture suggests that he tried to illustrate a geometric representation 

of an eigenvector. His gesture is a metaphoric gesture in McNeill’s classification which 

enabled him to construct his kinaesthetic imagery of eigenvectors.  
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Figure 20.  Jack positions 
his hands in an 
angular shape   

 

Figure 21.  Jack brings his 
hands together.  

 

Figure 22.  Jack holds his 
hands in an 
angular form for 
a few seconds. 
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His use of the dragging tool to gesture his way of looking for eigenvectors is also 

interesting. In turn [92], he said “I tried to make x  touch Ax ” as he dragged x  in a spiral 

fashion beginning far from the origin, turning in an anti-clockwise direction, and ending at 

the origin. His strategy of dragging was a new strategy that he developed through his 

interaction with the sketch. He then drew a diagram to illustrate eigenvectors for a 

negative eigenvalue as shown in Figure 23. In fact, his diagram conveys ‘talking with 

hands’ that occurred in describing the negative eigenvalue of matrix (c) (see Figure 20). 

This seems consonant with Châtelet’s assertion that “the gesture envelopes before 

grasping and sketches its unfolding long before denoting or exemplifying” (2000, p.10).    

 
Figure 23.  Jack’s drawing of eigenvectors 

As mentioned above, Jack started with deictic gestures, and at the end he used 

metaphoric gestures. Using deictic gestures, Jack referred to the symbols and the 

objects. At the end, his hands and arms have become the vectors expressing his 

dynamic imagery of eigenvectors. This implies that the gestures came right out of his 

interaction with the dynamic representation of the concepts.  

Jack’s speech and gesture show that he perceived matrix multiplication in terms 

of linear transformation. His interactions with the sketch suggest that he coordinated 

geometric representation with the given symbolic representation of the concept of 

eigenvectors and eigenvalues. Using his hands, dragging tool and drawing he provided 

an embodied geometric description of finding eigenvectors. This suggests that Jack 

drew on a synthetic-geometric mode of thinking though his interaction with the sketch. 
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He also coordinated synthetic-geometric with analytic-arithmetic thought, since he made 

explicit references to the definition and the concept of linear transformation.  

6.2.3. Shifts of attention   

Jack focused his attention on the definition, discerning details as he articulated 

every symbol one by one. He then shifted his locus of attention to the sketch and to the 

draggable vector

 

x . His initial tentative dragging suggests he did not quite know what to 

expect and, indeed, he looked back at the definition again. As he engaged in wandering 

dragging, Jack’s attention involved holding wholes as he watched and waited for 

feedback, not quite knowing what he was looking for. In turn [57], Jack began to 

recognise relationships as he said “by dragging it, it is maintaining the eigenvectors”. 

This suggests that he came to notice the relationship between two vectors in that 

changing the position of x  results in a changing of the vector Ax  on the screen. He then 

shifted his attention to lambda, and, more particularly, to its absence from the sketch. 

After being told that λ  does not appear on the sketch, Jack seemed to infer that he 

needed to make the two vectors collinear, thereby shifting his attention to perceiving 

properties. In turn [61], Jack responded to my prompt by focusing his attention back to 

the definition. He reasoned in terms of the properties of the definition, noticed that Ax  is 

a vector that is a scalar multiple of x . In going back to the definition, Jack inferred the 

collinearity from the scalar transformation whereas, in his actions with the sketch, the 

collinearity preceded the identification of lambda. He approximated λ  to 2 and the 

eigenvector by attending to the ratio of the length of two vectors and by reading off the 

coordinate of x  from the arithmetic representation on the sketch. By using line dragging, 

Jack noticed that an eigenvalue is a fixed scalar as he said “lambda still looks like two, x  

has changed” in turn [63]. This suggests that Jack’s attention shifted to perceiving the 

invariance property of eigenvalues.  

In turn [65], Jack integrated the symbolic representation of the definition with the 

geometric representation on the sketch. He inferred from the definition that Ax  is the 

linear transformation of x , he then referred to the sketch saying that “it [ Ax ] looks like 

it’s a linear transformation of this [ x ]”. The use of the term ‘linear transformation’ 

suggests that he shifted his attention to the relationship between x  and Ax . Upon 
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finding the position were the two vectors overlapped, he engaged in line dragging to 

drag x  along the line of invariant collinearity. The use of line dragging enabled him to 

move from tentative statement about visual perception (“they look very”) to one that 

seems more certain (“they are all on the same axis”) in turn [71]. At this point, Jack’s 

attention was involved in reasoning on the basis of the properties.  

Given his haste to move to the next question, and his statement that there should 

only be one eigenvector, I infer that Jack’s attention was blocked to the possibility of 

finding another. This is exacerbated by the difficulty he had in seeing the second 

eigenvector, probably because of the unit value of lambda—the two vectors coincide, 

which makes them difficult to see. He himself admitted that and clapped his hands (as 

shown in Figure 19) to show a geometric representation of the two vectors that lined up 

and had the same length.   

In finding the eigenvalue and eigenvectors of the matrix (b), Jack used an explicit 

circular dragging strategy. His dragging strategy suggests a shift in attention that 

involved two components: first, an awareness that there could be more than one 

eigenvector, and second, use of line dragging that was intended not only to locate one 

eigenvector, but also to identify all possible eigenvectors. Using the same dragging 

strategy, he found a set of eigenvectors associated with a positive eigenvalue for matrix 

(c) and used a parametric notation to represent the set of eigenvectors (as he wrote 

]32.1,28.1[ λλ ). But, he did not identify another set of eigenvectors associated with a 

negative eigenvalue for matrix (c).  It seems that his stable and robust state of attention 

(i.e. attending only to the positions where the two vectors overlap) blocked him from 

realising another interpretation of collinearity (i.e. positions where the two vectors were 

collinear but had opposite directions). My intervention (i.e. inviting him to drag x  into the 

second quadrant) helped Jack re-direct his attention to the existence of another 

interpretation of ‘lining up’, one where the two vectors were collinear but had opposite 

directions. His use of parameters ( λ and 2λ ) in representing the sets of eigenvectors of 

matrix (c) is unclear in the sense that he did not identify whether λ  and 2λ  refer to the 

eigenvalues or there are parameters to represent the set of vectors. In any case, he 

made explicit references to the concept of scalar transformation.  
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In seeking an eigenvector and its associate eigenvalue of matrix (d), he first 

dragged x  in an anti-clockwise circular path as he drew his attention to find a position 

where the two vectors were collinear. He then dragged x  in a spiral fashion, that varied 

both the angle and the distance from the origin of the vector, as he said “I cannot make 

x  to touch Ax ”.  

6.2.4. Dragging, shifts of attention and gesture  

Focusing on the definition, Jack discerned details from the definition as he 

articulated every symbol one by one. He then interacted with the sketch. His attention 

was drawn to the changes that occurred to Ax  as he dragged x . He shifted his attention 

back and forth between the sketch and the definition, matched the symbolic 

representations used in the definition with the ones used on the sketch, and immediately 

mentioned that “it doesn’t output lambda”.  From the given equality on the definition, he 

inferred that “there was a scalar transformation, so the vectors have to be collinear” (see 

turn [61]). This made him to use an intentional dragging modality to drag x  to make it 

collinear with Ax . The use of line dragging enabled him verify the invariance property of 

eigenvalues and also to realize that there are infinitely many eigenvectors associated 

with a single eigenvalue.   

His constant coordination between the geometric representation of the concepts 

on the sketch and symbolic representations from the definition reveals evidence of shifts 

in his attention at both macro-level and micro-level. The shifts in his attention enabled 

him to use different dragging modalities and to develop dragging strategies such as 

dragging x  in clockwise and anti-clockwise circular and spiral paths.   

Moreover, similar to Mike, the use of the dragging tool and the dynamism of the 

representation affected Jack’s modes of thinking as evidenced from his gestures and 

speech. At the very beginning of his interaction with the eigen sketch he mostly 

produced deictic gestures using his right index finger or the mouse pointer. After finding 

eigenvectors and associated eigenvalues of matrix (a), he used metaphoric gestures to 

illustrate his mental imagery of the geometric representation of eigenvectors (for 

eigenvalue of one) as shown in Figures 18 and 19. This suggests that the dragging tool 

affected his ways of communicating the concepts since he started using his hands and 
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arms as he articulated his mental imagery. He also used his hands and arms (as shown 

in Figures 20, 21 and 22) after visualizing the sketch representation of eigenvectors 

associated with the negative eigenvalue for matrix (c). Although he did not make any 

gestures using his hands, in response to my prompt about finding eigenvector, he drew 

a diagram to represent the geometric position of two vectors (when eigenvalue is 

negative as shown in Figure 23). His words suggest evidence of the development of 

embodied description, as he said “I tried to make x  touch Ax ” in turn [92].  

In his response to my prompt (what is an eigenvector?), he referred to the 

multiplication operation between a matrix and a vector, and between a matrix and a 

scalar. However, Jack used the term “linear transformation” to describe the relationship 

between x  and Ax  as shown in turns [61] and [65]. This suggests that Jack perceived 

matrix multiplication in terms of linear transformations even though his final response 

contained the word “multiplication” (see turn [94]). Given only his final response, one 

could argue that Jack used the analytic-arithmetic mode of thinking. But, considering the 

entire process of completing the task shows that his thought process integrated the 

synthetic-geometric mode of thinking with an analytic-arithmetic one. This is because he 

constantly coordinated geometric representation with the given symbolic representation 

of the concept of eigenvectors and eigenvalues. His final response, like Mike, might be 

because of the given prompt (that was “what is an eigenvector?”), which is static and 

depersonalised.  

6.3. Kate 

6.3.1. K.1 Dragging modalities and strategies  

6.3.1.1. Finding eigenvectors and eigenvalues of matrix (a) 

Kate started dragging x  after carefully attending to the definition. She used 

wandering dragging to drag x  slowly around its given position in the first quadrant. As 

she dragged x  in a clockwise direction, she noticed that the position of x  and Ax  was 

changing from being perpendicular to being overlapped. She stopped dragging when x  

and Ax  overlapped for 2=λ  and gazed at the screen. She then started dragging x  in 

an anti-clockwise direction until the two vectors became about perpendicular to each 
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other, and then dragged x  in a clockwise direction until the vectors overlapped for 1=λ . 

She then used line dragging to explore further the relationship between the two vectors 

and said “these two [points to xAx λ= ] are the same so Ax  is the same as x ” in turn 

[105].  Although Kate found two positions, in the first quadrant, where x  and Ax  

overlapped, she first attended to the position where x  and Ax  overlapped and had the 

same length. Kate’s use of wandering dragging provides evidence of an 

instrumentalization process in that she dragged x  to explore the relationship between x  

and Ax , and thus found positions where x  and Ax  overlapped. She identified λ  by 

attending to the geometric representation of x  and Ax . This suggests evidence of 

instrumentation process in that line dragging enabled her to coordinate the geometric 

relationship between the two vectors on the screen with the symbolic representation (as 

she wrote xAx =  in turn [105]), finding 1=λ ). As she dragged x  along the overlapped 

line, she said “the top value is the same as the bottom value” in turn [109].  She 

generalized her findings as she wrote down 







=

a
a

x  on a paper sheet to represent the 

set of eigenvectors associated with 1=λ  in turn [111]. Her use of line dragging in finding 

the set of eigenvectors is another evidence of instrumentation because she dragging 

enabled her to find out that there were infinitely many eigenvectors associated with 

1=λ . 

She then intentionally dragged x  in a clockwise direction in the first quadrant to 

find another position where x  and Ax  overlapped. She said “for this situation Ax  is not 

the same as x ” in turn [112]. She wrote down xAx 2=  and 







=

a
a

x
2

on the given paper 

sheet. After identifying the sets of eigenvectors and associated eigenvalues of matrix (a), 

Kate tried to locate another position where λ  is 3 as she said “can we get a three?”. This 

suggests that she did not recall that a 22× matrix can have at most two eigenvalues. 

 Kate continued dragging x  in clockwise and anti-clockwise directions to explore 

further the relationship between x  and Ax . In doing so, she found a position in the third 

quadrant where x  and Ax  overlapped and said “that’s still positive two. It’s possible to 

go to the opposite direction” as she dragged x  along the line passing through the origin 
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into the first quadrant. This suggests evidence of instrumentation in that through the use 

of dragging tool, she noticed x  and Ax  preserve collinearity in the first and third 

quadrants.    

6.3.1.2. Finding eigenvectors and eigenvalues of matrix (b) 

Kate used guided dragging to drag x  in the third quadrant. She immediately 

found a position where x  and Ax  overlapped. She then dragged x  in an anti-clockwise 

direction into the first quadrant and found a position where the vectors overlapped. She 

used line dragging to drag x  back and forth along the line where x  and Ax  overlapped. 

She then conjectured that “actually the λ  is the ratio of this length [points to Ax ] to this 

one [points to x ]” in turn [119]. Despite her conjecture, she confused the ratio of the 

lengths of x  and Ax  with the relationship (or the ratio) between the coordinates of the 

vector x .  She immediately realized her error, approximated lambda to be 3 by attending 

to the ratio of the lengths and represented the set of eigenvectors by writing down 









=








=

a
a

x
5.1

32.2
18.3

 in turn [127]. As she dragged x  along the line (where x  and Ax  

overlapped) far away from the origin, her approximated ratio between the coordinates of 

the vector x  (i.e. 5.1/ 21 =xx ) did not hold. In turn [131], she noticed that the ratio 

between the coordinates of the vector x  is 1.1 (the actual ratio is one). This difficulty 

happened because the sketch representation of the collinearity of the two vectors is not 

error-free. In this case, the two vectors are collinear when the ratio of x - and y -

coordinates of vectors is equal to one (i.e. 1/ 21 =xx ). But, the sketch, for the 

transformation matrix (b), suggests that the two vectors are collinear when 21 / xx  ranges 

from 0.7 to 1.3 (on a square grid scaled 2 centimetres per unit).  

In turn [131], she described that “lambda is a fixed number” that can be found 

when the two vectors “are on the same line”. This suggests that the use of line dragging 

and the dynamism of the representations enabled her to clarify her understanding of the 

relationships between the two vectors as she dragged vector x . Her interaction with the 

dragging tool suggests evidence of instrumentation process since she attended to the 

ratio of the lengths of the two vectors.  
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She then dragged x  in circular clockwise and anti-clockwise paths into all of the 

four quadrants as she attended to the behaviour of x  and Ax  in the first and third 

quadrants. This dragging strategy enabled her to recognize the collinearity of the two 

positions, in the first and third quadrants, where the vectors overlapped.   

6.3.1.3. Finding eigenvectors and eigenvalues of matrix (c) 

She used guided dragging to find a position where x  and Ax  overlap in the first 

quadrant. After, finding the position, she used line dragging to drag x  along the line 

(where x  and Ax  overlapped) away from the origin. She then dragged x  into the third 

quadrant in a clockwise circular direction and found a position where the two vectors 

overlap in the third quadrant. Her dragging strategies suggest that she verified the 

collinearity of x  and Ax  in the first and third quadrants (for 8=λ ). She found the set of 

eigenvectors (i.e. 







a
a

) by attending to the relationship between the x - and y-coordinates 

of the vector x  from the arithmetic representation on the sketch. She also approximated 

the value of the associated eigenvalue by attending to the ratio of the length of two 

vectors. 

To find a set of eigenvectors associated with the negative eigenvalue, I prompted 

her by asking her to drag x  into the fourth quadrant. She dragged x  in a clockwise path 

into the fourth quadrant and stopped dragging when x  and Ax  became collinear. This 

representation drew her attention to another interpretation of collinearity. It also shows 

evidence of instrumentation, in that the dragging tool was transformed into an instrument 

for detecting the presence of the geometric representation of an eigenvector associated 

with a negative eigenvalue. In turn [143] she used the Measure command and Calculator 

tool to calculate the ratio between the lengths of x  and Ax .  Although, she attended to 

the direction of the two vectors, she thought that the lambda is 4 until I prompted her in 

turns [144] and [146]. It seems that her attention was blocked by calculating the value of 

the ratio using the Measure command and Calculator tool. Her immediate attention to 

the direction of the vectors enabled her to notice that lambda was -4. This shows 

instrumentalization and instrumentation processes in that by the use of dragging tool she 

explored another interpretation of collinearity of two vectors.  
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6.3.1.4. Finding eigenvectors and eigenvalues of matrix (d) 

Kate used guided dragging and dragged x  in anti-clockwise and clock-wise 

circular paths several times. She concluded that “there is no lambda” as she said 

“because you are not able to put x  vector, on the same line with vector Ax ”. Her 

dragging strategies suggest that Kate developed new dragging strategies (dragging in 

circular paths with different radii) to verify the existence of eigenvectors on the given 

sketch.      

6.3.2. Embodied cognition: gesture and speech  

6.3.2.1. Kate: Eigenvectors are parallel and on the same line    

In her exploration of geometric representation of x  and its transformation under 

the matrix (a), Kate said “they’re parallel but how about non-parallel”. This shows that 

she used the terms “parallel” and “non-parallel” in referring to the relationship between 

the two vectors.  She also used the term “parallel” in turns [121] and [152].  Her use of 

the term “parallel” could be triggered by her initial interaction with the sketch. In her initial 

interaction, Kate dragged x  in the first quadrant in a clockwise direction as she attended 

to the changes in the position of Ax . In doing so, she noticed that the position of x  and 

Ax  was changing from being perpendicular to being overlapped. This representation 

could have made her to articulate the existence of eigenvectors in reference to parallel 

property of vectors.  

Upon recognition of the relationship among eigenvectors associated with an 

eigenvalue, Kate described the existence of eigenvectors using the term “on the same 

line” in turns [131] and [152]. This suggests that the use of line dragging enabled her to 

develop dynamic imagery of the geometric representation of infinitely many 

eigenvectors. It also enabled her to expand her visual perception of eigenvectors from 

“they’re parallel” to “they’re on the same line”. In turn [152], in describing her ways of 

finding eigenvectors, she said “because they’re equal that means they’re parallel to each 

other or I can say they’re on the same line”. This shows that the dynamic representation 

of concepts enabled her to construct her geometric imagery of eigenvectors.    

She also used the term “the same” to refer to the equality between two lengths in 

turn [105]. Although her use of the term “the same” could be related to the use of the 
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equals sign on the definition, the term “the same” could also imply an embodied way of 

describing “equal”.   

6.3.2.2. Kate gestured at a span of eigenvectors that it geometrically is a line   

Kate used her right index finger and also the mouse pointer to indicate the 

geometric representation of the vectors x  and Ax  on the sketch as she interacted with 

the sketch. Her use of the mouse pointer and her right index finger is evidence of deictic 

gesture.   

In approximating the eigenvalue of matrix (b), kate used her right and left index 

fingers to indicate the lengths of x  and Ax . Shortly after, she used her right index finger 

and thumb to indicate (or to measure) the lengths of x  and Ax . These can be classified 

as iconic gestures. In approximating the positive eigenvalue of matrix (c), she did not just 

rely on her visual perception. She used her fingers as a measurement unit. She first 

measured the length of x  by using the distance between her index finger and thumb. 

She then used the length of x  (the distance between her index finger and thumb) to 

approximate the length of Ax , thus she found the ratio of two lengths. This can be 

classified as an iconic or metaphoric gesture.   

In her final explanation to my prompt “what is an eigenvector?”, Kate said “[…] if 

these two vectors can be on the same line so at this time this x  is an eigenvector” as 

she gestured a line rising her left hand extend fingers in space as shown in Figure 24. 

Kate used metaphoric gesture to kinaesthetically communicate her imagery of a set of 

eigenvectors (or an eigenspace).   

Kate’s metaphoric gesture, similar to Mike’s and Jack’s gestures, came right out 

of her interaction with the dynamic representation of eigenvectors. This suggests that 

she developed synthetic-geometric modes of thinking through her interaction with the 

dynamic representations of the concepts. It also confirms Châtelet’s ideas on the 

importance of the gesture/diagram relationships in the development of the concept of 

eigenvectors and eigenvalues.   
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Figure 24.  Kate’s gesture that describes eigenvectors 

6.3.3. Shifts of attention  

Kate focused her attention on the definition, read it twice word by word and said 

“it’s too hard to me to understand the concept right now.” She discerned details from the 

definition as she described lambda as a real number and Ax  as a matrix times a vector.  

She then shifted her attention to Ax  as she said “a matrix times a vector should be still a 

matrix, um, I cannot remember that one.” She even used a numeric example to validate 

her conjecture that a matrix times a vector is a matrix as shown in Figure 25. But she did 

not recall how to do matrix-vector multiplication, so that she left it incomplete.  

  
Figure 25.  Kate’s example of a matrix-vector multiplication 

I drew her attention to the sketch by asking her to drag 

 

x . She then shifted her 

locus of attention to the sketch and to the draggable vector

 

x . Her initial dragging 
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suggests that her state of attention involved in holding wholes as she watched the 

changes in the position of Ax  while dragging x . She began to recognise relationships 

between x  and Ax  by noticing that the position of two vectors was changing from being 

perpendicular to being overlapped as she dragged x  in the first quadrant in a clockwise 

direction. Using wandering dragging, she found two positions, in the first quadrant, 

where the two vectors overlapped. She attended to the position where two vectors 

overlapped and had the same length. It seems that, in the beginning of her exploration, 

her interpretation of xAx λ=  was to search for vectors that have the same direction and 

the same length. She estimated 1=λ  in turn [107], attended to the arithmetic 

representation of the eigenvector in turn [109] and generalized her finding by wring down 









=

a
a

x  on a paper sheet.  She then shifted her attention to the sketch to identify 

another set of eigenvectors. After identifying the two lambdas of matrix (a) and 

associated sets of eigenvectors, in her exploration of the eigen sketch, Kate tried to 

locate another position where lambda is 3 as she said “can we get a three?”. She even 

attended to a position where the two vectors did not overlap as she said “how about non-

parallel”. This suggests that she started to perceive properties of eigenvectors. The use 

of dragging tool and dynamism of the representation enabled her to explore further the 

relationships between two vectors, thus she noticed that the two vectors preserve 

collinearity in the third quadrant.  

In turn [119], Kate attended to the length of the vectors as she said “actually the 

lambda is the ratio of this length [points to Ax ] to this one [points to x ]”. Despite her 

statement, she confused lambda as being the ratio of the two lengths with being the ratio 

of the coordinates of vector x . She immediately realized her error by attending to the 

ratio of lengths of the two vectors. In turn [131], she described that “lambda is a fixed 

number” that can be found when the two vectors “are on the same line”. This suggests 

that her use of line dragging and the dynamism of the representations enabled her to 

distinguish an eigenvalue as a ratio of two lengths (when two vectors overlap) from the 

geometric representation of eigenvectors. In response to my prompt asking her about 

the number of eigenvectors, she said “many, infinitely many [...] on the same line” in turn 

[131].  This shows that she perceived properties of eigenvectors (invariant collinearity) 

and eigenvalues (as the ratio of lengths of two overlapped vectors).    
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Kate also experienced a difficulty reading off the values of eigenvectors from the 

sketch in turn [131]. She attended to the ratio between x- and y- coordinates of vector x  

to find a parametric representation of the set of eigenvectors. Using the numeric values, 

she calculated ratio equal to 1.1 (the actual ratio is one). This difficulty happened 

because the sketch representation of the collinearity of the two vectors is not error-free. 

As mentioned before, the two vectors are collinear when the ratio of the coordinates of 

vectors is equal to one (i.e. 1/ 21 =xx ). But, the sketch, for the transformation matrix (b), 

shows that the two vectors are collinear when 21 / xx  ranges from 0.7 to 1.3 (on a square 

grid scaled 2 centimetres per unit).  

Using guided dragging, Kate found a set of eigenvectors associated with the 

positive eigenvalue for matrix (c). After receiving a prompt in turn [138], she dragged x  

into the fourth quadrant and attended to their directions until she noticed a position 

where vectors had opposite directions, but they were still collinear. This representation 

drew her attention to another interpretation of collinearity. She then used the Measure 

command and Calculator tool to find the ratio of Ax  and x  since she thought that the 

ratio of the lengths was the lambda (as it was the case when the two vectors 

overlapped).  Although, she shifted her attention to the direction of the two vectors as 

she said “they’re opposite to each other” in turn [139], she concluded that the lambda is 

4. It seems that her attention was blocked by considering the ratio of the lengths as 

lambda. My prompts in turns [146] and [148] helped her to re-draw her attention to the 

direction of x  and Ax , thus she concluded that lambda was -4. In turn [149], she 

reasoned on the basis of agreed properties of eigenvectors as she said “yeah they have 

opposite directions so the lambda should be negative”. This suggests that Kate 

perceived properties of eigenvectors and eigenvalues.  

In finding an eigenvector and an associated eigenvalue of matrix (d), she 

dragged x  in anti-clockwise and clockwise circular paths as she drew her attention to 

finding a position where the two vectors were collinear.  

6.3.4. Dragging, shifts of attention and gesture   

Reading the definition, Kate discerned details about Ax , xλ  and xAx λ= . She 

articulated that λ  is a real number acting as a scalar multiple. But she was surprised by 
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finding out that a matrix-vector multiplication would result in a vector. She interacted with 

the sketch drawing her attention to the changes that occurred to Ax  as she dragged x . 

Her strategy of dragging x  enabled her to find positions in the first quadrant where the 

two vectors overlapped. She then coordinated the symbolic representations used in the 

definition ( xAx λ= ) with the geometric representation of Ax  and x  on the sketch ( Ax  

overlapped with x  and had the same length), and found the lambda and the associated 

set of eigenvectors of matrix (a). In finding another set of eigenvectors, she dragged x  

intentionally to make x  co-linear with Ax . The dynamic geometric representation of the 

concepts enabled her to articulate lambda as the ratio of the lengths of x  and Ax  in turn 

[121]. The use of line dragging enabled her to verify the invariance property of 

eigenvalues and also to realize that there are infinitely many eigenvectors associated 

with one eigenvalue (see turn [131]).  

As mentioned above, she articulated λ  as a real number (right after reading the 

definition), λ  as a ratio of lengths (in turn [121]), and λ  as a fixed number (in turn [131]).  

This reveals evidence of shifts in her attention both macro-level and micro-level. The 

shifts in her attention enabled her to use different dragging modalities and to develop 

dragging strategies such as dragging x  in clockwise and anti-clockwise circular paths.    

Moreover, the use of the dragging tool and the dynamism of the representation 

affected Kate’s modes of thinking as evidenced from her gesture and speech. At the 

very beginning of her interaction with the eigen sketch she produced deictic and iconic 

gestures using her fingers or the mouse pointer. In her final explanation of an 

eigenvector, Kate produced a metaphoric gesture. She positioned her left hand 

extended fingers in space to illustrate a line (see Figure 24). This suggests that Kate 

developed a dynamic imagery of a set of eigenvectors (or an eigenspace) and used her 

hand to communicate kinaesthetically her imagery. Her gesture was resulted from her 

interaction with the dynamic representation of the concepts.   

Kate’s description of an eigenvector in turn [154] included the collinear property 

of eigenvectors as well as the multiplication operation. She used the multiplication 

operation in describing Ax  and xλ . She then emphasized that the results of both 

multiplication operations are vectors and said “if these two vectors [the results of 

products] can be on the same line so at this time this x  is an eigenvector”. Her 
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explanation suggests that her thought processes integrated two modes: synthetic-

geometric and analytic-arithmetic. It seems that her thought processes had a potentiality 

to achieve to analytic-structural mode of thinking since Kate articulated her thinking of an 

eigenvector of a 2×2 matrix in terms of its property (collinearity) in [152] and [154].    

6.4. Tom 

6.4.1. Dragging modalities and strategies  

6.4.1.1. Finding eigenvectors and eigenvalues of matrix (a) 

After reading the definition, Tom used wandering dragging to drag x everywhere 

on the sketch. In doing so, he noticed a position where x  and Ax  overlapped in the first 

quadrant. He then re-read the definition, looked back to the sketch and said “lambda 

seems to be 2”. This suggests that Tom instrumentalised the dragging tool, in that he 

used it to explore the relationships between the two vectors. It seems that he identified 

lambda by attending to the geometric representation of x  and Ax . This also suggest 

that he coordinated the symbolic representation of eigenvectors (i.e. xAx λ= ) with the 

geometric representation (i.e. the position where the two vectors overlapped) on the 

sketch, thus he approximated the eigenvalue to be 2. Using line dragging, he dragged x  

along the line (where the two vectors overlapped) away from the origin in the first 

quadrant. He found two eigenvectors ( 







=

1
2

x and 







=

5.4
9

x ) associated with 2=λ . The 

use of line dragging suggests an instrumentalization process in that Tom developed a 

new dragging modality. It also provides evidence of an instrumentation process, in that 

the dragging tool was transformed into an instrument detecting the presence of the 

geometric representation of eigenvectors associated with 2=λ .  

 In response to my prompt asking him to find a different eigenvector from the 

other he gave before, he dragged x  intentionally to make x  collinear with Ax  in the first 

quadrant. He found a position where x  and Ax  overlapped and had the same length. He 

then used line dragging to drag x  along the line (where the two vectors overlapped), 

thus explored further the relationship between x  and Ax . This suggests that the use of 

line dragging enabled him to verify the invariance property of eigenvalues.   
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6.4.1.2. Finding eigenvectors and eigenvalues of matrix (b) 

Tom used guided dragging to drag x  in a clockwise direction in the first 

quadrant. He immediately found a position where x  and Ax  overlapped. He 

approximated the value of lambda (by attending to the ratio of two lengths) and the 

eigenvector of 







=

1
5.1

x
 
(by attending to the arithmetic representation of x  on the 

sketch).  He then used line dragging to drag x  further along the line as he said “it 

[overlap position]’s the same thing because of being multiple” in turn [161]. This provides 

evidence of an instrumentation process in that the use of dragging tool enabled him to 

perceive the relationships among a set of eigenvectors associated with 3=λ  (his 

approximation of eigenvalue was 4). In response to my prompt about the relationship 

between eigenvectors, he said “scalar [multiple] with the same basis.” in turn [165]. His 

articulation suggests that Tom used the notion of basis in identifying a vector space (i.e. 

eigenspace associated with 3=λ ).   

   Tom then used guided dragging to drag x  in a circular anti-clockwise direction 

to explore further the relationship between x  and Ax . In doing so, he noticed that x  and 

Ax  overlapped in the third quadrant. However, he immediately said “that [overlap 

position] is the same thing”, and continued dragging. This suggests that he completely 

perceived properties of eigenvectors (invariant collinearity) and eigenvalues (as the ratio 

of lengths of two vectors when they overlap).   

His interactions with the sketch suggest that he developed clockwise and anti-

clockwise circular dragging strategies in verifying relationships between the two vectors. 

He also used different dragging modalities (wandering dragging, intentionally dragging, 

line dragging and guided dragging) in his interaction with the sketch. The strategies and 

modalities enabled him to perceive properties of eigenvectors and eigenvalues.       

6.4.1.3. Finding eigenvectors and eigenvalues of matrix (c) 

Tom used guided dragging to find a position where x  and Ax  overlap in the first 

quadrant. As he dragged x , he attended to the changes in the position of Ax  as he said 

“first, it [ Ax ] goes to the opposite direction” in turn [168]. After dragging x  a few times 
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into all of the four quadrants, he found a position in the first quadrant where x  and Ax  

overlapped. He approximated the eigenvalue and the eigenvector.  

I then prompted him to drag x  to find a different eigenvector from the one he 

gave before. He dragged x  slowly in an anti-clockwise circular direction and said “I 

guess it looks like tracing each other”. He stopped dragging when x  and Ax  lined up, 

stared at the screen for a few seconds and said “this one goes to the opposite direction”. 

He then used line dragging to drag x  along the line where they were collinear, and said 

“six times, it’s six times more than x , I mean opposite direction”. This shows evidence of 

an instrumentation process in that the dragging tool was transformed into an instrument 

detecting the presence of the geometric representation of an eigenvector associated 

with the negative eigenvalue. This geometric representation led Tom to attend to another 

interpretation of the collinearity of two vectors.  

6.4.1.4. Finding eigenvectors and eigenvalues of matrix (d) 

Tom used guided dragging and dragged x  in clockwise circular paths with 

different radii a few times. He then dragged x  in anti-clockwise circular paths with 

different radii and said “[...] the Ax  is never on top of the x ”. His dragging strategies 

suggest that Tom developed new dragging strategies (dragging in circular paths with 

different radii) for finding eigenvectors using the eigen sketch.        

6.4.2. Embodied cognition: gesture and speech  

6.4.2.1. Tom: Eigenvectors are scalar multiples    

Tom used the concepts of scalar multiple and basis in describing eigenvectors. In 

turns [161] and [165], he described the relationship among eigenvectors using the two 

clauses: “being multiple” and “scalar [multiple] with the same basis”. His use of the term 

“multiple” in describing eigenvectors could be triggered by his use of line dragging on the 

sketch. This suggests that the use of line dragging enabled him to develop dynamic 

imagery of the geometric representation of infinitely many eigenvectors associated with 

one eigenvalue.  

Tom also mentioned that eigenvectors are “linear transformations” and 

“eigenvector changes [...] if you have a multiple of the same vector” in turn [179]. He, like 
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Jack, used the term “linear transformation”, although the term is not indicated on the 

given definition. It seems that Tom recalled the concept of linear transformation from his 

course work. His articulation in turns [179] and [181] suggest that he became aware that 

an eigenvector is a special vector that becomes collinear with its scalar multiple as a 

result of linear transformation.     

His articulation of the geometric relationship between x  and Ax  in turn [170] 

suggests that he started developing an embodied meaning for the notions of linear 

transformation and vector. He used the verbs “to rotate” and “to go” as he said “rotates, 

like when I go clockwise it [ Ax ] goes anti-clockwise”. In fact, the subjects of all these 

action verbs are vectors, but he used the clause “I go” since he imposed motion on 

vector x  by dragging it around. The use of action verbs to describe mathematical 

objects was resulted from his interaction with the sketch. His use of action verbs 

conveys a sense of motion in his thinking which is in accordance with mathematicians’ 

use of motion in describing the concept of eigenvectors (see Nathalie and Gol Tabghi, 

2010).  

6.4.2.2.  Tom gestured and diagrammed even before his interaction with the 
eigen sketch    

At the very beginning of his interview, before interacting with the eigen sketch, 

Tom used his right index finger and drew a vector on the desk as he said “I guess a 

vector is a line”. He immediately drew (on a sheet of paper) a ray starting from the origin 

and ending with an arrow in the first quadrant, and then extended it into the third 

quadrant to illustrate his mental imagery of a vector as shown in Figure 26.  

His drawing and description of a vector suggest that Tom evoked  geometric 

thinking of a vector since he used his right index finger to trace it on the desk and then 

on the paper. His gesture can be classified as an iconic or metaphoric gesture. His use 

of gesture and diagram in describing his thought process of a vector confirms Châtelet’s 

ideas on the diagram/gesture relationships.   
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Figure 26.  Tom’s representation of a vector on a sheet of paper 

In describing a scalar multiple of a vector, Tom evoked it as a straight line that 

goes to infinity. He used his hands and arms to communicate kinaesthetically his mental 

imagery of a scalar multiplication of a vector.  He said “it [a scalar multiple of a vector] is 

just a straight line that goes to infinity” as he moved his right hands extend index finger 

toward up right corner and his left hands extended index finger and arms down toward 

the left corner of his body as shown in Figure 27. His gesture is a metaphoric gesture 

referring to McNeill’s classification. His description of vector and scalar multiple of vector 

suggest that he employed synthetic-geometric mode of thinking that Sierpinska (2000) 

describes.    

 
Figure 27.  Tom gestures as describes a scalar multiple of a vector  
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While he interacted with the sketch, in describing the relationship between x  and 

Ax , Tom used the verb “to rotate” in turn [170] as he rotated his right index finger around 

a circular path to represent the behaviour of Ax .  He used the same gesture in 

describing eigenvectors in turn [179]. He first rotates his right index finger around a 

circular path and then he moved his right hand extended index finger back and forth 

along a path as he was tracing a straight path (as shown in Figure 28) to communicate 

kinesthetically his mental imagery of finding eigenvectors. It seems that his gestures in 

turn [170] and [179] resulted from his interaction with the dynamic geometric diagrams of 

the concepts. This confirms Châtelet’s idea on the diagram/gesture relationships in the 

development of mathematical thought processes.  

 
Figure 28.  Tom rotates and moves his index finger as describes eigenvectors   

 Tom, who revealed synthetic-geometric mode of thinking at the beginning of the 

interview, had made connections among the concepts of linear transformation, 

eigenvectors, eigenvalues, scalar multiples and basis through interacting with the eigen 

sketch. His mode of thinking had not been changed, but became extended given that he 

made connections among concepts as he interacted with the sketch.  

6.4.3. Shifts of attention   

Tom focused his attention on the definition since he first read the formal definition 

of eigenvector on the given worksheet. He then shifted his locus of attention to the 
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sketch and dragged the vector x  randomly everywhere on the sketch. His initial 

interaction with the dragging tool suggests that he waited for visual feedback from the 

sketch and his attention was holding wholes. As he dragged x , he drew his attention to 

the position of Ax  on the sketch. He stopped dragging when Ax overlapped with x  in 

the first quadrant. He shifted his locus of attention to the definition and re-read the 

definition. He then shifted his locus of attention to the sketch and approximated the 

eigenvalue by attending to the lengths of x  and Ax . It seems that he coordinated the 

symbolic notations used on the definition with the geometric representations of vectors 

on the sketch, thus he approximated the eigenvalue ( 2=λ ) and the eigenvector 

( 







=

1
2

x ) of matrix (a). He then used line dragging to explore further the relationship 

between x  and Ax  and found out that another eigenvector (i.e. 







=

5.4
9

x ) that 

associates with 2=λ . This shows that the use of line dragging enabled Tom to perceive 

the invariance property of the eigenvalue and also the existence of more than one 

eigenvector associated with 2=λ .  

In response to my prompt asking him to find a different eigenvector from the 

others he gave before, Tom continued dragging x  into the other quadrants as he 

attended to the geometric configuration of the two vectors on the sketch. In doing so, he 

attended to x  and Ax  directions, identified a position in the first quadrant where x  and 

Ax  overlapped and approximated the eigenvalue and the eigenvector (or the basis of 

eigenspace).   

In finding an eigenvalue and an associated set of eigenvectors of matrix (b), Tom 

used guided dragging and immediately noticed a position in the first quadrant where the 

two vectors overlapped. After finding the position, he approximated the eigenvalue and 

the basis of the eigenspace. He then used line dragging to drag x  along the line (where 

x  and Ax  overlapped) and mentioned that there exist infinitely many eigenvectors that 

are “scalar [multiple] with the same basis” in turn [165]. This suggests that Tom 

perceived the invariant collinearity of eigenvectors associated with the eigenvalue 

( 3=λ ) and also made connections among the concepts of basis, scalar multiples, and 

eigenvectors.    
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Overall Tom’s strategy was to drag x  to find a position where x  and Ax  overlap 

and then to approximate the eigenvalue and the basis of eigenspace. He used the same 

strategy in finding the eigenvalue of 7 and 







=

1
1

x for matrix (c).  

In response to my prompt asking him to find a different eigenvector from the one 

he gave before, he dragged x  in an anti-clockwise circular path and stopped dragging 

when he noticed a position where the two vectors were collinear, but not in the same 

direction. He said “this one goes to opposite direction”, used line dragging to drag x  

along the line (where x  and Ax  lined up), and in turn [174] said “eigenvalue is probably 

negative six. Eigenvector is one and one”. This suggests that he attended to the 

direction of vectors, their ratio, and position on the sketch, therefore he immediately 

approximated the eigenvalue to be -6. This suggests that his attention was involved in 

reasoning on the basis of the properties of eigenvectors (invariant collinearity) and 

eigenvalues (dilation factor).  

In finding an eigenvector and an associated eigenvalue of matrix (d), he first 

dragged x  in clockwise circular paths (with different radii) as he drew his attention to 

find a position where the two vectors were collinear. Finding nothing, he dragged x  in an 

anti-clockwise circular path and said “[…] the Ax  is never on top of the x ”.  

6.4.4. Dragging, shifts of attention and gesture    

Tom discerned details from the definition as he read it to himself. He then 

interacted with the sketch drawing his attention to the changes that occurred to Ax  as 

he used wandering dragging to drag x  everywhere on the sketch. He shifted his 

attention back to the definition when he found a position where x  and Ax  overlapped. 

He then drew his attention to the sketch and approximated the two specific eigenvectors 

associated with one eigenvalue for matrix (a). This suggests that he matched the 

symbolic representations used in the definition with the ones used on the sketch as he 

shifted his attention back and forth between the sketch and the definition.   

From the given equality on the definition and his initial interaction with the sketch, 

he inferred that he needed to find positions where x  and Ax  become collinear. This 
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made him to use intentionally dragging modality to drag x  to make it collinear with Ax  

in finding the second eigenvalue of matrix (a). His use of line dragging enabled him to 

verify the invariance property of eigenvalues and also to realize that there were infinitely 

many eigenvectors associated with one eigenvalue.   

 As Tom interacted with the eigen sketch, he made connections among the 

concepts of linear transformation, eigenvectors, eigenvalues, scalar multiples and basis 

see turns [165] and [179]. Through the interaction, his attention shifted at both macro-

level and micro-level. The shifts in his attention enabled him to use different dragging 

modalities and to develop dragging strategies such as dragging x  in clockwise and anti-

clockwise circular paths.   

Despite revealing synthetic-geometric mode of thinking in describing the 

concepts of vector and scalar multiples of a vector (before interacting with the eigen 

sketch), Tom’s way of communicating the concepts of eigenvectors was changed as 

evidenced from his gestures and speech. Before his interaction with the eigen sketch, he 

mostly produced iconic gestures in describing the notions of vector and scalar multiples 

of a vector. In finding the eigenvalue and associated set of eigenvectors of matrix (c), he 

gestured to communicate kinaesthetically his mental imagery of the changes in the 

position of vectors. He also used action verbs, “to rotate” and “to go”, as he rotated his 

right index finger around. His use of action verbs conveys a sense of motion in his 

thinking. I should recall that Tom used the verb “to go” even before his interaction with 

the sketch in describing a scalar multiple of a vector he said “it[a scalar multiple of a 

vector] is just a straight line that goes to infinity”.     

In his response to my prompt (what is an eigenvector?), he said “they’re linear 

transformations”. Then, he referred to the concept of eigenvalue as he rotated his right 

index finger around, and to the concept of eigenvector as he moved his right hand index 

finger back and forth along a straight path (see turn [179]). His gestures illustrate an 

embodied way of finding an eigenvector using the eigen sketch. His statement, “the 

eigenvector is on top of Ax ” in turn [181], is also evidence of the development of 

embodied description of eigenvectors. His responses in turn [179] and [181] suggest that 

Tom used synthetic-geometric mode of thinking. Although he used the term “linear 

transformation”, it is hard to comment on interactions among different modes of thinking 
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by only analysing turns [179] and [181]. His mode of thinking might not been changed, 

but it became extended given that he made connections among concepts as he 

interacted with the sketch.  

6.5. Rose  

6.5.1. Dragging modalities and strategies  

6.5.1.1. Finding eigenvectors and eigenvalues of matrix (a) 

Rose used wandering dragging, not appearing to expect anything in particular, to 

drag x randomly from its given position (at about (4, 1)). She stopped dragging when she 

observed that x  and Ax  were positioned perpendicular to each other (vector x  being in 

a vertical position and vector Ax being in a horizontal position) and said "here it [position 

of x  and Ax on the sketch] is ninety degrees" (see Figure 29). Her interaction with the 

dragging tool suggests that she was guided by the visual representation generated by 

the sketch. It also shows evidence of an instrumentalization process in that she was 

using the dragging tool in order to identify the relationship between the vectors.  

 
Figure 29.  Snapshot of sketch where x and Ax  are perpendicular to each other 

In response to my prompt, “is that what you are asked to find?”, she switched her 

attention to the definition and then used wandering dragging to drag x  in the first 
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quadrant. She dragged x  trying to keep its length fixed, thus using a kind of locus 

dragging. In doing so, she noticed that x  and Ax overlapped. She continued dragging x  

slightly down from the overlapped position and then used an anti-clockwise direction to 

drag it back up. This made her notice that the length of vector Ax changes, as she 

dragged vector x  in a clockwise direction in the first quadrant, from being smaller than 

to being twice as long as x , and then to being more than twice as long as x . Noticing 

these changes, she conjectured that "um it seems no matter [what] x  is, Ax  is twice 

[its] value". To verify her conjecture, she used line dragging to drag x  along the line 

where x  and Ax overlapped in the first quadrant. She then looked back to the definition, 

and said "that means Ax  is going to be just two times x " and then wrote down xx λ=2  

right below xAx λ= on the worksheet.  

Her interaction suggests that line dragging and the dynamism of the 

representation enabled her to verify her conjecture about the ratio of the lengths of two 

vectors. It also enabled her to coordinate the geometric representation of the sketch with 

the symbolic one from the definition as she wrote xx λ=2 . The use of line dragging 

suggests evidence of an instrumentalization process, in that she used line dragging to 

verify the collinearity of the vectors. It also reveals evidence of an instrumentation 

process, since she realized that the ratio of the lengths of two vectors was invariant 

despite dragging x  along the line (where x  and Ax overlapped) away from the origin in 

the first quadrant.     

  In response to my prompt asking her to find an eigenvector associated with 

2=λ , Rose said “ x  is just two, isn’t it?” in turn [194]. Her comment suggests that she 

had difficulties with identifying a vector. Indeed, she was attending to the lengths of x  

and Ax rather than to their components. The use of line dragging enabled her to identify 

the eigenvector, 







=

3
6

x  and its scalar multiple,  







=

6
12

x  in turns [196] and [198]. The 

use of line dragging enabled her to recognize that there were infinitely many 

eigenvectors associated with 2=λ  (dragging x only in the first quadrant). This suggests 

evidence of an instrumentation process in that Rose recognized infinitely many 

eigenvectors were associated with 2=λ .   



 

96 

In finding a different eigenvector from the one she gave before, she used guided 

dragging to drag x  to find a position where x  and Ax overlapped. She dragged x  from 

the first quadrant into the fourth and then into the third. She found a position in the third 

quadrant and said “right here. But this time it is equal to it” (see turn [202]).  She 

immediately mentioned that the eigenvalue was one (since x  and Ax  had the same 

length) and the eigenvector was “negative seven and negative seven” in turns [204] and 

[206]. This suggests evidence of instrumentation process in that Rose perceived 

eigenvalue as the ratio of lengths (where x  and Ax  overlapped).  

6.5.1.2. Finding eigenvectors and eigenvalues of matrix (b) 

Rose used guided dragging to drag x  in the first quadrant. She immediately 

found a position where x  and Ax  overlapped, said “it [the ratio of lengths]’s three 

times”, and approximated the eigenvector of 







=

34.3
02.4

x by attending to the arithmetic 

representation of x  on the sketch. She then used line dragging to drag x  further along 

the line (in the first quadrant) where x  and Ax  overlapped and said “it [overlap position] 

goes to infinity that way” in turn [210]. To verify the collinearity of the two vectors in the 

third quadrant, she did not drag x  along the line (where x  and Ax  overlapped) passing 

through the origin into the third quadrant. In fact, she avoided dragging very close to 

zero and also through zero because as x  gets closer to zero (point O on the sketch), x  

and Ax  both approach the zero vector. After receiving the prompt in turn [213], she 

recognized that she could continue dragging along the line through the origin, passing 

from the first quadrant to the third. In this case, the line (excluding (0,0)) was the 

geometric representation of the eigenspace associated with the eigenvalue of 3 since an 

eigenvector is a non-zero vector.     

In response to my prompt asking her to look for a different eigenvector, she used 

guided dragging to drag x  in a clockwise circular path into all of the four quadrants. She 

found a position where x  and Ax  overlapped in the third quadrant, but she immediately 

noticed that the position was not a new one, and said “it [overlapped position] looks the 

same to me”. This suggests that the dynamic geometric diagram enabled her to develop 

a visual imagery of the position of vectors on the sketch.  
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6.5.1.3. Finding eigenvectors and eigenvalues of matrix (c) 

Rose used guided dragging to drag x  in a clockwise circular direction in the first 

quadrant to find a position where x  and Ax  overlap. She immediately found such a 

position and approximated the eigenvalue to be 7. It seems that she read the value of 

eigenvalue by attending to the sketch representation of the ratio of the two lengths (as 

she had activated the Calculator tool and Measure command in verifying her 

approximation of eigenvalue of the matrix (b)). I then prompted her to drag x  to find a 

different eigenvector from the one she gave before. She dragged x  into the all four 

quadrants as she attended to the changes that occurred to Ax . She noticed that the 

geometric behaviour of x  and Ax  was different from the previous ones. And, she said 

“usually they [ x  and Ax ] go in the same direction but this [points to Ax  using her right 

index finger] goes opposite direction. Is it because there is no negative value on this one 

[matrix]?” in turn [224]. Even though she attended to the direction of two vectors, she 

related it to the positive values of the entries of the matrix (c). Receiving my comment in 

turn [225], she focused on the geometric representation of the two vectors and found a 

position where x  and Ax  were collinear (but not overlapping). It seems that she read 

the value of the eigenvalue by attending to the sketch measure of the ratio of two lengths 

as she thought it was 4. She then attended to the arithmetic representation of x on the 

sketch and used a numerical example of vector x  and Ax , thus realized that the 

eigenvalue is -4.  This shows the occurrence of instrumental genesis in that the dragging 

tool was transformed into an instrument detecting the presence of the geometric 

representation of an eigenvector associated with the negative eigenvalue. This 

geometric representation led Rose to attend to another interpretation of the collinearity of 

two vectors. In turn [230], she reflected on her findings from comparing the geometric 

representations of two collinear vectors having positive and negative eigenvalues.  

6.5.1.4. Finding eigenvectors and eigenvalues of matrix (d) 

Rose used guided dragging and dragged x  in clockwise circular paths with 

different radii a few times. She then mentioned that x  and Ax  “do not meet at all”. The 

use of different dragging modalities (such as wandering dragging, locus dragging and 

guided dragging) and strategies (dragging in circular paths with different radii) suggest 

that Rose developed new strategies in finding eigenvectors using the eigen sketch.       
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6.5.2. Embodied cognition: gesture and speech  

6.5.2.1. Rose: Eigenvectors lie on top of each other    

Before Rose interacted with the sketch, she described a vector in terms of its 

components as she said “you know that in the class we learned like 1x  and 1y ”. This 

suggests that she evoked a symbolic representation of a vector. According to Watson et 

al.’s account of the development of the concept of vector, Rose had not developed an 

embodied representation of a vector nor was she evidently aware of the connections 

between symbolic and embodied worlds. Her difficulties with identifying a vector were 

persisted when she was asked to give an eigenvector associated with 2=λ for matrix 

(a).  Her comment in turn [194] suggests that she was attending to the length of vectors 

rather than to the components of each vector. As she interacted with the sketch, she 

became acquainted with the geometric representation of vectors and the coordination 

between the geometric representation of concepts with the arithmetic representation on 

the sketch. After completing the task, in describing her way of finding eigenvectors she 

said “I tried to make the vectors lie on top of each other and then find the scaling value”. 

This suggests that the dynamic geometric diagram enabled her to develop a mental 

imagery of the concept of vectors and eigenvectors in which eigenvectors “lie on top of 

each other”.   

In turns [210] and [212], she used the verb “to go” to articulate the behaviour of 

Ax . She said “it [overlapped position] goes to infinity that way” (in turn [210]) while using 

line dragging to drag x along the line where x  and Ax  were collinear. Her statements 

show that she developed a dynamic imagery of the geometric representation of an 

eigenspace of a 2×2 matrix (that is, a straight line), in that she used the verb “to go” to 

communicate her dynamic imagery of the representation.     

Her use of the verb “to look” suggests evidence of the use of dynamic imagery as 

she said “it [overlapped position] looks the same to me” in exploring eigenvectors of 

matrix (b). She perhaps recalled her dynamic imagery of finding eigenvectors in the first 

quadrant and then imagined a line would pass through the overlapped vectors in the first 

and third quadrants. 
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6.5.2.2. Rose produced deictic gestures  

Rose used her right index finger to point to the symbols on the definition as she 

read the definition. She also used it to point to the vectors on the sketch as indicated in 

turn [224]. Her gestures were deictic gestures.   

6.5.3. Shifts of attention  

Rose first focused her attention on the definition, discerning details as she 

articulated every symbol one by one. She then shifted her locus of attention to the 

sketch and to the draggable vector x . Using wandering dragging, she encountered a 

position (see Figure 29) where the two vectors were perpendicular to each other and so, 

her attention shifted to the relationship between x  and Ax . Her attention was blocked 

by the right-angle relationship, which she seems to think is important (with good reason, 

since perpendicularity is frequently important in geometric configurations).  

My prompt (is that what you are asked to find?) helped her to draw her locus of 

attention to the definition and then back to the sketch. She continued dragging x  and 

tried not to change its length. As she dragged x  in a clockwise direction in the first 

quadrant, she realized that the length of vector Ax  changes from being smaller than to 

being twice as long as x , and then to being more than twice as long as x . Attending to 

those changes, she asked “is x  double Ax ?”. Her interactions suggest that she 

attended to the lengths of x  and Ax  (where x  and Ax  overlapped) and estimated the 

ratio between the two lengths.  She dragged x  along the line where x  and Ax  

overlapped, then looked back to the definition, said "that means Ax  is going to be just 

two times x " and then wrote down xx λ=2  right below xAx λ= on the worksheet. This 

suggests that she attended to the relationships between the geometric representation of 

the sketch and the symbolic one from the definition since she wrote xx λ=2 . She 

identified 2=λ , but had difficulties in identifying eigenvectors associated with 2=λ . 

Her statements in turns [192] and [194] suggest that she focused her attention on the 

positions of vectors (where the two vectors overlapped) trying to discern more details 

about the relationship between the two vectors rather than the position of x  (such as (4, 

2)). My prompt in turn [195] enabled her to direct her attention to the arithmetic 

representation of the vector x  on the sketch, thus she found the associated 
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eigenvectors with 2=λ .  This suggests that Rose started to recognize the invariant 

collinearity of eigenvectors and also the existence of infinitely many eigenvectors 

associated with 2=λ (see turn [200]).  

In response to my prompt asking her to find a different eigenvector of matrix (a), 

Rose continued dragging x  into other quadrants as she attended to the geometric 

configuration of the two vectors on the sketch. In doing so, she attended to x  and Ax  

directions and the lengths of vectors as she said “right here. But this time it is equal to it. 

Isn’t it?” in turn [202]. This suggest that she attended to the position and the lengths of 

the two vectors where x  and Ax  overlapped. It also suggests that her state of attention 

was drawn to discerning details, such as the position of the vector, its length and its 

relationship to Ax .   

In finding an eigenvector and associated eigenvector of matrix (b), Rose used 

guided dragging and immediately noticed a position in the first quadrant where the two 

vectors overlapped. She approximated the eigenvalue by attending to the ratio of lengths 

as she said “it’s three times”. She then approximated the eigenvector by attending to the 

arithmetic representation of x  on the sketch. She then attended to the relationship 

between x  and Ax  as she dragged x  along the line where x  and Ax  overlapped.  Her 

statements in turns [210] and [212] suggest that she recognized the existence of 

infinitely many eigenvectors associated with 3=λ . In response to my prompt asking her 

to look for a different eigenvector from the one she found before, she dragged x  in the 

third quadrant and found a position where x  and Ax  overlapped. She immediately 

noticed that the position was not a new one, and said “it looks the same to me”. This 

suggests her attention was drawn to comparing the visual representation of the two 

overlapped vector in the first quadrant (length-wise and position-wise) with the 

representation in the third quadrant.  

Rose used a similar dragging strategy in finding the positive eigenvalue and an 

associated eigenvector of matrix (c). She could also read the ratio of the two lengths 

from the sketch (since she had activated the Calculator tool and Measure command in 

verifying her approximation of eigenvalue of the matrix (b)). In response to my prompt 

asking her to find a different eigenvector, she dragged x  and said “oh it changes this 

time” in turn [222]. This suggests that she attended to the changes that occurred in the 
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direction of the two vectors. She then said “usually they [ x  and Ax ] go in the same 

direction, but this [ Ax ] goes opposite direction. Is it because there is no negative value 

on this one [matrix]?” in turn [224]. Her articulation suggest that she attended to the 

direction of x  and Ax . But, her attention was blocked by the values of the entries of 

matrix (c) since they were all positive. My prompt in turn [225] helped her to shift her 

attention from the entries of the matrix to the geometric representation of the two vectors 

that represent collinearity of vectors (but not overlapping). She stopped dragging, gazed 

at the representation for a few seconds, and said “oh. It’s completely straight here”. This 

suggests that Rose’s attention was drawn to another interpretation of the collinearity of 

two vectors. It seems that she read the value of the eigenvalue by attending to the 

sketch measure of the ratio of two lengths as she thought it was 4. She then attended to 

the arithmetic representation of x  on the sketch and used a numerical example of vector 

x  and Ax , thus realized that the eigenvalue is -4. Her reflection of the geometric 

representation of eigenvectors associated with positive or negative eigenvalues in turn 

[230] suggest that her state of attention was involved in perceiving geometric properties 

of positive and negative eigenvalues.  

In finding an eigenvector and associated eigenvalue of matrix (d), she dragged x  

in clockwise circular paths with different radii a few times as she drew her attention to 

find a position where x  and Ax  were collinear.  

6.5.4.  Dragging, shifts of attention and gesture    

Rose drew her attention to the definition trying to make sense of the symbols and 

the equality xAx λ= . She then interacted with the sketch using wandering dragging to 

drag x around its given position. She stopped dragging when she observed that the 

vector x  and Ax  were positioned perpendicular to each other. It seems that her 

attention was blocked for a few seconds by the right-angle relationship, which she 

seemed to think was important.  My prompt helped her to draw her locus of attention to 

the definition and then back to the sketch. She then used wandering dragging to drag x  

as she attended to the lengths of x  and Ax  and to their position on the sketch. 

Attending to the changes, she conjectured that “um it seems no matter [what] x  is, Ax  

is twice [its] value ". She then looked back to the definition, and said "that means Ax  is 
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going to be just two times x " and then wrote down xx λ=2  right below xAx λ= on the 

worksheet. This shows that she coordinated the symbolic representations used in the 

definition ( xAx λ= ) with the geometric representation of Ax  and x on the sketch and 

found the lambda and the eigenvectors of matrix (a). In interacting with the sketch, she 

developed some dragging strategies. These strategies caused shifts in the structure of 

her attention. For instance, the use of line dragging suggests that she shifted her 

attention to a position where x  and Ax  overlapped. It also shows that her state of 

attention was drawn to discerning details, such as the position of the vector, its length 

and its relationship to Ax .   

Rose’s use of dragging tool to explore further the relationship between x  and 

Ax  where they overlapped enabled her to develop a dynamic imagery of the geometric 

representation of an eigespace of a 2×2 matrix (that is a straight line), in that she used 

the verb “to go” to communicate her dynamic imagery of the geometric representation. 

Visualizing the constant overlap of the two vectors led her to become acquainted with 

the geometric representation of a set of eigenvectors. The eigen sketch representation 

enabled her to see how dynamic geometric interactive representation relate to the 

symbolic representations of eigenvectors and eigenvalues.  

Despite revealing analytic-arithmetic mode of thinking in describing the concepts 

of vector (before interacting with the eigen sketch), Rose’s way of communicating the 

concept of eigenvectors was changed as evidenced from her final statement. In that, she 

said “I tried to make the vectors lie on top of each other and then find the scaling value.” 

In contrast to the order used in pencil-and-paper algebraic approaches, she described 

finding the eigenvector first, and then the “scaling factor,” or the eigenvalue. Her 

embodied description of finding eigenvectors is evidence that Rose has started to 

develop synthetic-geometric mode of thinking.  

6.6.  Summary  

In this chapter, I included a detailed analysis of the each participant’s interactions 

with the eigen sketch drawing on multiple theoretical frameworks. An extension of this 

analysis is included in Chapter 7 to extend my understanding of the participants’ 
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development of mathematical thinking and learning. In this section, I include a 

comparative summary of the participants’ interactions with the sketches.  

Mike did not recall the concepts of eigenvector and eigenvalue at the beginning 

of the interview. Initially, he frequently shifted his locus of attention between the eigen 

sketch and the definition. He dragged x  in non-circular and circular (clockwise and anti-

clockwise) paths and used wandering dragging, intentional dragging, line dragging and 

guided dragging. His interactions with the eigen sketch suggest that his attention was 

structured by perceiving properties of eigenvectors since he understood eigenvector as 

a special vector that lines up with its scalar multiples in the opposite or the same 

direction. At the end of the interview, he used his hands and arms as vectors to gesture 

eigenvectors in a way that communicated dynamic, visual imagery that seemed 

triggered from his interaction with the eigen sketch. He employed a synthetic-geometric 

mode of thinking throughout his interactions with the eigen sketch.  

Jack, unlike Mike, recalled the concepts of eigenvector and eigenvalue and made 

a connection to the notion of linear transformation. His dragging strategies and 

modalities were similar to Mike’s, except that he also dragged x  in a spiral path at the 

end of his interaction with the eigen sketch. His state of attention included reasoning on 

the basis of the properties of eigenvectors and eigenvalues, which is the most 

sophisticated according to Mason. During the interview, he used his hands as vectors, 

thus also communicating dynamic, visual imagery of eigenvectors that seemed triggered 

from his interaction with the eigen sketch. He integrated the synthetic-geometric mode of 

thinking with an analytic-arithmetic one since he constantly coordinated geometric 

representation with the given symbolic representation of the concepts of eigenvectors 

and eigenvalues. He explicitly articulated that there are infinitely many eigenvectors 

associated with one eigenvalue. He also sketched a diagram of an eigenvector 

associated with a negative eigenvalue.      

Kate, like Mike, did not recall the concepts of eigenvector and eigenvalue. She 

was surprised to discover that a matrix-vector multiplication would result in a vector. Her 

dragging strategies and modalities were similar to those of Mike and Jack. She explicitly 

articulated that lambda is the ratio of the lengths of two overlapped vectors and there are 

infinitely many eigenvectors. Her state of attention, like Jack, included reasoning on the 

basis of agreed properties of eigenvectors. She integrated two modes of thinking—
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synthetic-geometric and analytic-arithmetic. Kate had the potential of achieving an 

analytic-structural mode of thinking since she articulated her thinking of an eigenvector 

of a 2×2 matrix in terms of its property (collinearity). She used a gesture that was 

different from those of Jack and Mike: instead of using her arms or hands as 

eigenvectors she used her left hand to gesture a span of a set of eigenvectors (or an 

eigenspace) that is a line.  

Tom evoked synthetic-geometric thinking of a vector and a multiple of a vector 

from the beginning of the interview. He recalled studying the concept of eigenvector, but 

did not know more about it. By interacting with the eigen sketch, Tom made connections 

among the concepts of linear transformation, eigenvector, eigenvalue, scalar multiple of 

a vector and basis. His dragging modalities were similar to ones used by Mike, Jack and 

Kate. He went beyond Jack’s and Kate’s articulation of the existence of infinitely many 

eigenvectors as he used the idea of “scalar [multiple] with the same basis” in describing 

a set of eigenvectors. His state of attention included reasoning on the basis of the 

properties of eigenvectors (invariant collinearity) and eigenvalues (dilation factor). 

Although, his mode of thinking did not change, it was extended given that he made 

connections among concepts. He also used his right index finger as a vector and rotated 

it around as described his mental imagery of eigenvectors.   

Rose, like Mike and Kate, did not recall the concepts of eigenvector and 

eigenvalue. She employed an analytic-arithmetic mode of thinking in describing the 

concepts of vector (before interacting with the eigen sketch) and had difficulties with 

identifying a vector. Upon dragging x , she, like Kate, attended to the position where x  

and Ax  were perpendicular to each other. But, unlike Kate, her attention was blocked 

for a few seconds since she thought perpendicularity of x  and Ax  was important to 

know in order to complete the task. She used wandering dragging, locus dragging 

guided dragging and line dragging. Her interactions with the eigen sketch suggest that 

her state of attention included perceiving geometric properties of positive and negative 

eigenvalues. She also articulated that there exist infinitely many eigenvectors associated 

with one eigenvalue. At the end of the interview, she described her way of finding 

eigenvectors as she said “I tried to make the vectors lie on top of each other and then 

find the scaling value”. This suggests that Rose started to develop a synthetic-geometric 

mode of thinking.  
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7. An extension of the analysis 

This chapter provides an extension of the analysis of data that I presented in 

Chapter 6. It starts with an overview of the interview task and the participants. Then, I 

discuss the analysis of the participants’ interaction with the eigen sketch from three main 

perspectives: 1) a focus on the participants’ mathematical understanding of eigenvectors 

and eigenvalues, 2) their linguistic expressions and 3) the gestures used by the 

participants in describing a geometric representation of eigenvectors. I have chosen to 

present the analysis through these perspectives since the participants developed their 

understanding of the properties of eigenvectors and eigenvalues through interaction with 

the eigen sketch. Also, their linguistic and gestural expression of the concepts reveal 

emergent ways of communicating about the concepts and often aspects of their thinking.   

I draw on the differences between the two representations (symbolic verbal 

definition and the eigen sketch) of the concepts and their effects on the students’ modes 

of thinking. The symbolic verbal definition of the concepts of eigenvector and eigenvalue 

(as shown in Figure 4) emphasizes the equality xAx λ= . The equals sign can be 

interpreted in terms of the vector equality of Ax and xλ (i.e. both length-wise and 

position-wise) or in terms of collinearity between the two vectors Ax and xλ . I argue that 

the collinear interpretation of the equality sign in xAx λ=  requires the use of a 

synthetic-geometric mode of thinking, whereas the equality interpretation can result from 

the use of analytic-arithmetic thinking.   

7.1. An overview of the participants and the task  

The participants were four undergraduate students (Jack, Tom, Kate and Rose) 

and one graduate student (Mike). Of the five, Mike, Jack, and Kate had completed a 

linear algebra course at the time of the interview. Jack recalled the concepts of 

eigenvector and eigenvalue as he read the given definition, but Mike and Kate seemed 
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to have trouble making sense of the given definition. The other two, Rose and Tom, 

were enrolled in a linear algebra course at the time of the interviews and had already 

been introduced to the concepts of eigenvector and eigenvalue. Tom recalled the 

concepts of vector and scalar multiple of a vector and described them. He also recalled 

studying the concept of eigenvector, but did not seem to know more about it. Rose did 

not recall studying matrices and vectors in high school. She seemed to recall only a 

symbolic representation of the concept of vector and did not recall the notion of 

eigenvector. 

The participants were given the versions of the eigen sketch (see Figures 8 and 

9) and the worksheet (see Appendix A) that included a formal definition of eigenvector 

and eigenvalue and the task. The task was to find the eigenvectors and eigenvalues of 

the given four matrices using the eigen sketch.   

7.2. Participants’ mathematical understanding of 
eigenvectors and eigenvalues   

The participants first focused on reading the definition, a symbolic verbal 

specification of the concepts of eigenvector and eigenvalue that presents them in terms 

of matrix-vector multiplication, emphasizing the equality xAx λ= . Then they read the 

task and interacted with the eigen sketch, which was designed to enable exploration and 

discovery of the eigenvectors and associated eigenvalues of the first matrix, 








 −
=

01
23

A . This matrix has two sets of eigenvectors; one set has a dilation factor of 

one ( 1=λ ), thus a geometric representation of the task involved finding vectors x  such 

that they are collinear with their image vector ( Ax ), and x  and Ax have the same 

length. Another set has a dilation factor of two ( 2=λ ) and a geometric representation 

involved finding vectors x  such that they are collinear with their image and each image 

is twice as long as x .   

As the participants interacted with the eigen sketch, they coordinated the 

geometric representation on the sketch with the algebraic one from the definition, and 

explored relationships between the two. Their interaction enabled them to perceive 
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properties of eigenvectors and eigenvalues. I identified three aspects of their work that I 

would like to discuss in more detail here, both because they shed light on some issues 

that were raised in the literature review and because they involve particular (and 

unexpected) differences between the two representations:  

1) equity versus collinearity: coordination between the symbolic and geometric 

representation of eigenvectors; 

 2) infinitely many eigenvectors associated with each particular eigenvalue; 

3) the geometric representation of a set of eigenvectors associated with a 

negative eigenvalue.    

7.2.1. Equality versus collinearity: coordination between the 
algebraic and geometric representation of eigenvectors   

The participants tried to coordinate the symbolic representation, xAx λ=  and the 

geometric representation of eigenvectors on the eigen sketch. Both representations use 

the symbol x  to indicate a vector, Ax  to indicate the image of x , A  to indicate the 

matrix of transformation; but the eigen sketch does not show λ  explicitly. In coordinating 

the two representations, only Mike and Jack verbally acknowledged that λ is not on the 

sketch. Others did not comment on the absence of λ from the eigen sketch.   

In their exploration of the eigenvectors and eigenvalues of 






 −
=

01
23

A , Mike 

and Kate first identified the set of eigenvectors associated with 1=λ , whereas Jack, 

Tom and Rose first identified the set of eigenvectors associated with 2=λ .  It seems 

that Mike interpreted the equality xAx λ= in terms of equity as he said he wanted to find 

the “same-length vectors that line up”. Kate, like Mike, focused on identifying vectors 

with the same length and said “these two [points to xAx λ= ] are the same so Ax  is the 

same as x ”. Kate also mentioned that “they’re [ x  and Ax ] parallel”. Their interpretation 

of the equality xAx λ=  in terms of equality (length-wise and position-wise) made them 

first identify eigenvectors associated with 1=λ  because the geometric representation of 

an eignvector associated with 1=λ  and its image are two equivalent collinear vectors. It 
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is noteworthy that Mike and Kate found positions where x  and Ax  were collinear for 

both 1=λ  and 2=λ  as they dragged x , but they only articulated eigenvectors 

associated with 1=λ . Then, when prompted by the interviewers to find a different 

eigenvector from the ones they gave before, they found the eigenvectors associated with 

2=λ .   

In contrast, for Jack and Tom, the equality xAx λ= was more about the 

collinearity of x  and Ax (rather than equality of the two vectors), because they first 

identified a set of eigenvectors associated with 2=λ . Jack and Tom referred to the 

notion of scalar transformation. Jack said that he needed to “line them [ x  and Ax ] up” 

because he knew that “the vectors have to be collinear”. Tom, like Jack, was aware of 

the shared geometric relationship between the vectors of a set of eigenvectors because 

he commented that eigenvectors are “scalar [multiple] with the same basis”.  

Rose, who initially attended to the angles between x  and Ax , focused on the 

lengths of the two vectors when they became collinear for 2=λ . She relied on her 

algebraic strategies and wrote xx λ=2  right below xAx λ= on the worksheet. But it is 

hard to say whether she interpreted the equality as collinearity given that she had hard 

time distinguishing the concept of eigenvector from that of eigenvalue.  

Mike’s and Kate’s first interpretation of the equality sign (from the xAx λ= ) were 

related to the general use of equality sign in mathematics, that is to consider the equals 

sign as equality. Mike and Kate both employed analytic-arithmetic thinking when they 

first interacted with the eigen sketch. Recall that Kate conjectured that “a matrix times a 

vector should be still a matrix” and Mike tried to make Ax  equal to xλ (length-wise and 

position-wise) at the beginning of their interaction. Unlike Mike and Kate, Jack and Tom 

interpreted the equals sign (from the xAx λ= ) as collinearity which is more relevant in a 

linear algebra context. Jack and Tom referred to the notion of linear transformation and 

employed synthetic-geometric thinking from the beginning of their interaction with the 

sketch.  

Despite their different interpretations, the eigen sketch and the dragging tool 

enabled them to visualize the collinearity of Ax  with x (for specific vectors x ) and thus 

to understand the geometric meaning of the equality sign embedded in xAx λ= . I 
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discuss the effect of the eigen sketch on their modes of thinking in Chapter 8.  In 

connection with the equals sign, Larson et al. (2009) showed that students were 

uncertain about the balance of the equation, xAx 2= , because the left side included the 

matrix A  while the right side included the scalar 2. The participants’ interactions with the 

DGE sketch suggest that the use of the eigen sketch could help students to overcome 

their difficulties in interpreting the equality sign in xAx λ= .   

7.2.2. Infinitely many eigenvectors associated with each particular 
eigenvalue  

Through their interactions with the eigen sketch, in particular with the use of line 

dragging, the participants became aware of the existence of infinitely many eigenvectors 

associated with one eigenvalue. All participants except Mike used the term ‘infinity’ to 

describe the number of eigenvectors associated with an eigenvalue, and they did not 

limit themselves to a single example; rather, they provided at least two eigenvectors 

associated with a particular eigenvalue. Jack, Kate and Rose communicated their 

exploration of infinitely many eigenvectors associated with one eigenvalue when they 

were engaged in finding eigenvectors and their associated eigenvalues of the first 

matrix. Tom talked about the existence of infinitely many eigenvectors when he identified 

a set of eigenvectors of the second matrix. Mike, like the others, used line dragging to 

explore the relationship between x  and Ax  when they were collinear, but he did not 

comment on the number of eigenvectors and he was not prompted to explain.       

Jack provided two examples of eigenvectors associated with one eigenvalue. He 

used line dragging as he said, “I would deduce that the value of lambda wouldn’t change 

but that there are infinitely many eigenvectors”. Kate provided a symbolic notation, 









=

a
a

x  of a set of eigenvectors, and shortly after said “many, infinitely many [...] so if 

they’re on the same line we find lambda is a fixed number”. Tom, in his first finding of 

eigenvectors, provided two examples of eigenvectors associated with one eigenvalue. 

After that, he provided a basis for each eigenspace and commented that there are 

“infinitely” many eigenvectors that are “scalar [multiple] with the same basis”. Rose also 

used the term ‘infinity’, but she was uncertain about it as she said “would not be infinity!”. 

As mentioned above, Mike never explicitly commented on the existence of infinitely 
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many eigenvectors associated with an eigenvalue, but the use of the dragging tool 

enabled him to find more than one position where x  and Ax  were collinear and 

associated with the same eigenvalue.  For instance, after finding a position in the first 

quadrant where x  and Ax  were collinear and associated with 1=λ , he dragged x  into 

the third quadrant and found a position where x  and Ax  were collinear and still 

associated with 1=λ (in working on the first given matrix). 

The eigen sketch enabled the participants to change the specific numerical 

values of entries of matrix A  to make it correspond to the second matrix, 






 −
=

21
14

A . 

This matrix has only one set of eigenvectors. The participants’ strategies were similar to 

the strategies they used in exploring eigenvectors of the first matrix.  The exploration of 

eigenvectors of the first and second matrices enabled Jack, Kate and Tom to articulate 

the span of a set of eigenvectors. They communicated the geometric representation of 

the span of the set of eigenvectors when they interacted with the geometric 

representations of eigenvectors of the second matrix. Tom explicitly mentioned the 

concept of “basis”. Jack and Kate both used the term “line” in describing a set of 

eigenvectors, although the eigen sketch does not display a line. Jack said eigenvectors 

are “all the ones on this line” as he dragged x  along its collinear path with Ax  far away 

from the origin and then in toward the origin. Kate, like Jack, stated that eigenvectors lie 

“on the same line”.  

As mentioned above, the participants were not explicitly asked to find multiple 

eigenvectors associated with each eigenvalue. Despite that, all but one of them 

identified at least two eigenvectors associated with an eigenvalue. In fact, the use of line 

dragging enabled them to explore the relationship between x  and Ax  where they were 

collinear, and thus to develop an awareness of the existence of infinitely many 

eigenvectors, a fact that is rather hidden in the algebraic procedure for finding 

eigenvectors of a square matrix based on finding the eigenvalues first.    
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7.2.3. Geometric representation of a set of eigenvectors associated 
with a negative eigenvalue 

The third matrix 







=

25
61

A that the participants were given has two sets of 

eigenvectors; one has a dilation factor of seven ( 7=λ ), and the geometric 

representation of its set of eigenvectors is similar to the other two matrices (i.e x  and 

Ax  are collinear and have the same direction). Another set has a dilation factor of 

negative four ( 4−=λ ). The geometric representation of it can be shown by finding a 

vector x  collinear with Ax  where the two vectors have exactly opposite directions and 

Ax  is four times longer than x .  

The participants first explored the geometric representation of a set of 

eigenvectors and an associated positive eigenvalue. Their strategies were similar to the 

strategies that they used in identifying eigenvectors of the first two matrices. Then, they 

were all prompted to find another set of eigenvectors. They dragged x  and found a 

position where x  and Ax  were collinear and had opposite directions. Mike, Jack and 

Tom approximated the value of the negative eigenvalue, but Kate and Rose initially 

thought that the eigenvalue was positive.  

Mike found the position where x  and Ax  were collinear and had opposite 

directions and called it “an interesting point”, re-read the definition and said “now we 

want to Ax  equal to, um, this would work. Because, in this case lambda would be 

negative four”. Jack, like Mike, said “it is still like the opposite eigenvector”, re-read the 

definition and said “it [lambda] would be minus eight”.  Tom, who carefully attended to 

the direction of the two vectors, said “this one goes to the opposite direction”, used line 

dragging, and said “eigenvalue is probably negative six”.   

Kate, like Tom, attended to the direction of the two vectors and stated that 

“they’re opposite to each other”. Despite her attention to the direction of the vectors, 

Kate first thought that the eigenvalue was positive, then she re-attended to the 

directions, of the two vectors and said “they have opposite directions so the lambda 

should be negative”. Rose, like Kate, commented on the vectors’ directions as she said 

“usually they [ x  and Ax ] go in the same direction but this [ Ax ] goes [in the] opposite 
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direction”. She first thought that the eigenvalue was 4 by attending to the ratio of vectors. 

Then, she attended to the arithmetic representation of x  on the sketch and used a 

numerical example of vector x  and Ax , and thus realized that the eigenvalue was -4.   

The last given matrix, 






 −
=

13
21

A , does not have any eigenvectors in the plane 

or real-number eigenvalues. The participants interacted with the eigen sketch trying to 

find eigenvectors of A , and they realized that the behaviour of two vectors differed from 

the other three matrices in the sense that x  and Ax  never became collinear.  

The geometric representation of an eigenvector associated with a negative 

eigenvalue re-directed the participants’ attention to a broader interpretation of the 

collinearity of vectors; that is, two vectors can be collinear but still have opposite 

directions. Although this representation was new for everyone, they referred to the 

direction of collinear vectors to coordinate the geometric representation of opposite- 

directed vectors with the existence of a negative eigenvalue.   

7.3. Linguistic expressions used in describing the concepts 
of eigenvector and eigenvalue   

Given that all the participants (except Rose) used linguistic and gestural 

expressions to communicate their thinking of concepts, I provide a summary of the 

emerging ways in which the participants communicated their mathematical thinking 

through linguistic expressions and gestures. I focus on each mode, one at a time, in the 

sections below and also provide a comparison with the linguistic and gestural 

expressions that mathematicians used in describing eigenvectors, as described in 

Sinclair and Gol Tabaghi (2010). I provide this comparison because the students’ ways 

of thinking (in particular Mike’s and Jack’s thinking) about the eigenvectors was similar to 

mathematicians’ ways of thinking, including both temporal and kinetic aspects.     

Mike used the verb “to line up” to describe the geometric representation of 

eigenvectors. He used the verb “to line up” five times in phrases such as “I am lining 

these two up” and “I want the x  to line up with the Ax ”. In coordinating the two 

representations, he said “lambda is what I am multiplying x  by, so that it ends up being 
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the same as the Ax ”. After identifying the first eigenvector, he said “eigenvalue is the 

scalar multiple applier that made these two things [ x  and Ax ] line up”. Upon completing 

the task, Mike was prompted to explain his way of finding eigenvectors in which he 

gestured (his gesture is described in the next section) as he talked. He said “at first I was 

looking for where I can get x  and Ax  to line up in the same direction [gestures], but 

then the third one I realized could be in the same direction [gestures] or [gestures] 

opposite direction”. It is interesting that Mike’s exploration of the eigenvectors of the third 

matrix shifted his ways of thinking of negative eigenvalues. It seems that Mike’s 

expressions were being shifted from a physical perception (i.e. use of the verb ‘line up’ in 

a sense that vectors are physically one on top of the other) to the mathematical notion of 

scalar multiple and then again to a physical perception.     

Jack used the verb “to line up” and the notions of “collinear”, “linear 

transformation”, and “scalar transformation” during the process of completing the task. 

Jack used the verb “to line up” three times and in his second use of it his speech was 

accompanied by a gesture. Unlike Mike, Jack referred to the notion of scalar 

transformation to justify his action of lining up the vectors as he said “there was a scalar 

transformation, so the vectors have to be collinear”. Jack used the term “linear 

transformation” three times, although the term is not mentioned in the given definition. 

After completing the task, he was prompted to describe his way of finding eigenvectors 

in which he said “I tried to make x touch Ax”. Jack, unlike Mike, used mathematical 

notions at the beginning of his interaction with the eigen sketch, but after completing the 

task he used a more physical description by using the verb “to touch”.   

Kate used the term “the same” to describe the relationship between x  and Ax , 

as she said “ Ax  is the same as x ” upon finding the first set of eigenvectors of the first 

matrix ( 1=λ ). After finding the set of eigenvectors of the first matrix, she dragged x  to 

explore further the relationship between x  and Ax . Then, she stated that “they’re [ x  

and Ax ] parallel but how about non-parallel?”. In exploring the fourth matrix, she 

commented that it does not have any eigenvectors because she was not able “to put x  

vector on the same line with vector Ax ”. In her final explanation to my prompt “what is 

an eigenvector?”, Kate said “[…] if these two vectors can be on the same line so at this 

time this x  is an eigenvector” as she gestured. In her final expression, “vectors […] on 
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the same line”, Kate meant to point out the collinear property of eigenvectors. Kate’s 

expression, like Mike and Jack, includes a trace of physicality because vectors can be 

on the same line.   

Tom used the concepts of scalar “multiple”, “basis” and “linear transformation” in 

describing eigenvectors. In exploring the eigenvectors of the first matrix, he described 

the relationship among eigenvectors using the two phrases: “being multiple” and “scalar 

[multiple] with the same basis”. After completing the task, in response to “what is an 

eigenvector?”, Tom said “ they’re linear transformations” and “you have a multiple of the 

same vector”. Tom, like Jack, used the term “linear transformation”, although it is not 

included in the given definition. Tom also described his way of finding eigenvectors as 

he said “when the eigenvector is on top of Ax  then that’s where they [eigenvectors] 

exist or the other one going on top of it that exists”. Tom used the term “on top of” to 

describe physically the positions of vectors where eigenvectors exist.  

Rose described a vector in terms of its components as she said “you know that in 

the class we learned like 1x  and 1y ”. Despite her symbolic description, she was unable 

to identify a vector numerically since she was attending to the length of the vector rather 

than to the components of it. As she interacted with the sketch, she became acquainted 

with the geometric representation. She, unlike the others, did not use any physical 

language to describe what she was doing while dragging the vectors. However, after 

completing the task, in describing her way of finding eigenvectors she said “I tried to 

make the vectors lie on top of each other and then find the scaling value”. 

At the beginning of the interview, Mike, Kate and Rose did not recall the concepts 

of eigenvector and eigenvalue; moreover, they had difficulties in making sense of the 

formal definition of the concepts. By the end of the interview, they had developed an 

understanding of the behaviour of eigenvectors as evidenced by their use of the verbs 

“to lie on” and “to line up” to describe eigenvectors. In fact, the expressions suggest 

ways of communicating the dynamic and kinesthetic imagery of eigenvectors that 

participants developed through their interaction with the eigen sketch. Jack and Tom, 

unlike the others, used the concept of linear transformation to describe eigenvectors. 

However, like others, they also evoked dynamic and kinesthetic imagery, as evidenced 
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by their use of the terms “touch” and “line up” in describing the behaviour of 

eigenvectors.  

The use of such expressions suggests the development of temporal and kinetic 

ways of thinking about eigenvectors which are similar to mathematicians’ ways of 

thinking. In their study, Sinclair and Gol Tabaghi (2010) identify diverse temporal and 

kinetic ways of thinking that a group of mathematicians used to describe eigenvectors. 

The mathematicians neither talked about the equality

 

Ax = λx  nor about matrix-vector 

multiplication. Instead, they used metaphors (such as arrows, clocks, ellipses, 

resonance, and plates) as well as gestures to describe eigenvectors in terms of special 

vectors that are mapped into their scalar multiples under a linear transformation. One of 

the mathematicians, similar to Mike and Jack, used the verb “to line up” and gestured 

eigenvectors using his index fingers as vectors. Their metaphors and gestures convey a 

sense of motion and time in their thinking and, in particular, the gestures underline the 

continuity of motion and time in describing the effect of a matrix on a vector.   

7.4. Gestures used by the participants   

In the beginning of the interview, all participants used their fingers to point to the 

representation of concepts on the eigen sketch and also to indicate symbols used in the 

definition. Mike, Jack and Kate even used the mouse pointer (in place of their fingers) 

several times to indicate the representations of the concepts on the sketch. As they 

interacted with the eigen sketch, all participants, except Rose, produced gestures that 

emerged from their interaction with the eigen sketch.  

Mike used his right index finger to trace the equality, xAx λ= , on the given 

worksheet (as shown in Figure 12). He also moved his right index finger along the 

geometric representation of the vectors u and v  on the screen as he was tracing the 

vectors from tail to tip. In explaining how he went about finding eigenvectors, Mike used 

his hands to illustrate eigenvectors. He put up his hands extended fingers and placed his 

right-hand palm upward on his left-hand palm downward (slightly slanted to the right 

such that his right-hand little finger overlapped with his left index finger) as he said “ x  

and Ax  to line up in the same direction”, shown in Figure 30. He then rotated his hands 

while keeping his wrists together such that his right- hand extended fingers pointing to 



 

116 

the right and his left-hand pointing to the left, as shown in Figure 31, as he said 

“opposite direction”. His hands metaphorically became vectors to gesture the geometric 

representation of eigenvectors. 

Figure 30.  (same as 
Figure 13) Mike’s 
hands point to the 
same direction. 

 

 

Figure 31.  (same as 
Figure 14). 
Mike’s hands 
point to the 
opposite 
directions. 

 

 

Figure 32.  (same as 
Figure 15). 
Mikes’ index 
finger rotates 
around a 
circle. 
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He also rotated his right index finger around (like tracing a circle), as shown in 

Figure 32, while he said, “I would move x  around 360 degrees to see if these two cases 

showed up”. In this case his index finger acted as a vector.  

Jack, like Mike, used his hands as vectors. He found the set of eigenvectors of 

matrix (a) associated with 1=λ and then used his hands to represent the two vectors as 

shown in Figure 33. He put up his hands, moved his right-hand and placed it exactly on 

his left-hand (as shown in Figure 34) to illustrate the geometric representation of vectors 

when lambda was one as he said “I am not very used to the Sketchpad and they kind of 

lined up”. 

 

 

Figure 33.  (same as Figure 
18). Jack’s hands 
are positioned 
parallel to each 
other 

 

 

 

 

 

Figure 34.  (same as Figure 
19). Jack’s hands 
are exactly 
placed on each 
other 
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Jack also used his hands after seeing the geometric representation of 

eigenvectors associated with a negative eigenvalue on the sketch. He said “Oh yeah, I 

guess it is still like the opposite eigenvector” as he positioned his hands extended fingers 

in an angular shape but not attached from the wrists as shown in Figure 35. He moved 

his right-hand toward his left-hand, placed it on the top of his left hand (as shown in 

Figure 36) and moved it away from his left-hand. He repeated this gesture a few times. 

Then he said “because of ninety degrees um I’m trying to recall” as he hold his hands in 

an angular form attached from the wrists for a few seconds as shown in Figure 37. It is 

hard to say whether Jack used his hands to illustrate opposite vectors (a vector and its 

dilation by a negative factor) or to depict a vector and its quarter turn rotational 

transformation (since he mentioned ninety degrees). However, he used his hands as 

vectors to communicate his mental imagery of eigenvectors that arose through his 

interaction with the eigen sketch. 

 In response to the prompt “how did you go to find eigenvectors?”, he said “I tried 

to make x  touch Ax ” as he dragged x  in a spiral fashion beginning far from the origin, 

turning in an anti-clockwise direction, and ending at the origin. His strategy of dragging 

can be considered as a new gesture in that he dragged x  to find a position where x  

“touches” Ax . He then said “I guess for the third one we tried to make that happen” as 

he drew a diagram to illustrate eigenvectors for a negative eigenvalue as shown in 

Figure 38.  Jack not only used his hands as vectors to gesture a geometric 

representation of eigenvectors, but also sketched a diagram to represent eigenvectors 

associated with a negative eigenvalue.   
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Figure 35. (same as 
Figure 20). Jack 
positions his 
hands in an 
angular shape 

 

 

 

 

Figure 36.  (same as 
Figure 21). Jack 
brings his 
hands together. 

 

 

 

 

Figure 37.  (same as 
Figure 22). 
Jack holds 
his hands in 
an angular 
form for a 
few 
seconds. 
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Figure 38.  (same as Figure 23). Jack’s drawing of eigenvectors 

Kate used her right and left index fingers to indicate the lengths of x  and Ax  in 

approximating the eigenvalue of the second matrix.  Shortly after, she used her right 

index finger and thumb to indicate (or to measure) the lengths of x  and Ax . Kate used 

her fingers as a measurement unit, in approximating the positive eigenvalue of the third 

matrix. She first measured the length of x  by using the distance between her index 

finger and thumb. She then used the length of x  (the distance between her index finger 

and thumb) to approximate the length of Ax , thus she found the ratio of two lengths. In 

her final explanation to my prompt “what is an eigenvector?”, Kate said “[…] if these two 

vectors can be on the same line [gestures] so at this time this x  is an eigenvector”. She 

held her left hand extended fingers as shown in Figure 39 and moved it forward and 

backward as she said “on the same line”. Her gesture depicts a span of a set of 

eigenvectors and does not include the associated eigenvalue.   
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Figure 39.  (same as Figure 24) Kate’s gesture that describes eigenvectors 

Tom used his right index finger and traced a vector on the desk as he said “I 

guess a vector is a line” before interacting with the eigen sketch. He immediately drew a 

ray starting from the origin and ending with an arrow in the first quadrant, and then 

extended it into the third quadrant to illustrate his mental imagery of a vector as shown in 

Figure 40. 

  
Figure 40.  (same as Figure26). Tom’s representation of a vector on a sheet of 

paper 

 



 

122 

In describing a scalar multiple of a vector, Tom evoked it as a straight line that 

goes to infinity. He used his hands and arms to kinaesthetically communicate his mental 

imagery of a scalar multiplication of a vector.  He said “it [a scalar multiple of a vector] is 

just a straight line that goes to infinity” as he moved his right hands extend index finger 

toward up right corner and his left hands extended index finger and arms down toward 

the left corner of his body as shown in Figure 41.   

 
Figure 41.  (same as Figure 27) Tom gestures as describes a scalar multiple of 

a vector  

During his interaction with the eigen sketch, in describing the relationship 

between x  and Ax , Tom used the verb “to rotate” as he moved his right index finger 

around a circular path to represent the behaviour of Ax . He first rotated his right index 

finger around a circular path and then he moved his right hand extended index finger 

back and forth along a path as he was tracing a straight path (as shown in Figure 42) to 

communicate his mental imagery of finding a set of eigenvectors. This gesture was given 

rise from his interaction with the sketch.  
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Figure 42.  (same as Figure 28). Tom rotates and moves his index finger as 

describes eigenvectors   

As mentioned above, Mike and Jack used their hands as vectors to gesture 

geometric representation of eigenvectors associated with a positive or a negative 

eigenvalue. In addition to using their hands, they also developed new dragging 

strategies that can be considered as gestures. Tom, unlike Jack and Mike, used his right 

index finger as a vector and Kate used her hand to gesture the span of a set of 

eigenvectors.   

The participants’ use of hands and fingers in describing eigenvectors that arose  

from their interaction with the eigen sketch offer evidence of a time- and motion-based 

conceptualization of the concept of eigenvectors, as was the case in mathematicians’ 

use of gestures. Sinclair and Gol Tabaghi (2010) included a mathematician’s gestures 

whose conceptualization of eigenvectors was affected by his use of Eigenizer tool (see 

Figure 2). The mathematician, JJ, used his index fingers to gesture a vector and its 

image under a linear transformation as he described eigenvectors. He gestured and 

said:  

[puts up his hands extended index fingers, see Figure 43a] you go up 
here and [rotates his hands, extends right index fingers, see Figure 43b] 
sort of move around as you play with this. [right and left index fingers 
coming towards each other, see Figure 43c] If you set the matrix up by 
some inputs they’re gonna come inside and then obviously you say 
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[opens up his hands, see Figure 43d] what is the important direction [right 
and left index fingers are placed on each other, see Figure 43e] when the 
two line up.  

 
 
 
 

a) index fingers are vectors 

 

 
 
 
 
 

b) moves vectors around 

 
 
 
 
 
 
 

c) vectors are getting toward each other 
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d) opens up his hands 

 
 
 
 
 
 

e) vectors line up 

 

Figure 43.  Gestures accompanying JJ’s description of eigenvectors. 

JJ, similar to Mike and Jack, used the verb “to line up” as he described the 

process of finding eigenvectors. JJ’s used his index fingers as vectors, whereas Mike 

and Jack used their hands as vectors. Despite their distinct ways of gesturing a vector, 

their gesticulation is similar in the sense that they moved their hands and fingers to 

make them line up. This suggests that the dynamic interactive representation of 

eigenvectors has given them a way of moving their body (or dragging vector on the 

sketch) to gesture the process of finding eigenvectors and also the invariant collinear 

property of eigenvectors.   

It is worth pointing out that Mike’s and Jack’s verbal utterances in describing the 

invariance property of eigenvectors (i.e. line up, same direction or opposite direction) 

and their gestures occurred together. Their speech described an action performed in 
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relation to finding eigenvectors, and their gestures showed the collinear property of 

eigenvectors. Both gestures and speech conveyed the same semantic intent thus were 

coequally generated according to psycholinguistic theories (Quek et al., 2002).  In 

contrary to Mike’s and Jack’s discourse, JJ’s gestures occurred before his speech. He 

moved and rotated his index fingers before he said “sort of moving around”. His index 

fingers lined up before he said “the two line up”.  

It is not easy to say why JJ’s gestures occurred before his speech whereas 

Mike’s and Jack’s gestures happened at the same time as their verbal expressions in 

describing the invariance properties of eigenvectors. One possibility is that JJ gestured 

the process of finding eigenvectors by moving his fingers (as vectors) in many directions. 

Thus he drew his attention first to his fingers’ movement rather than to his speech. But, 

Mike and Jack gestured the collinear property of eigenvectors and did not move their 

hands in any directions apart from making them collinear. Thus, their gestures and 

linguistic expressions were coequally generated. Another possibility is the importance of 

dynamic and kinaesthetic imagery in JJ’s thinking about eigenvectors that enabled him 

to construct his imagery of eigenvectors before he communicated their properties 

linguistically.  

The results suggest that analyzing gestural and linguistic expressions of the 

participants reveals the emerging ways of communicating the concepts of eigenvector 

and eigenvalue inspired through interaction with the eigen sketch. The gestural 

expressions also relate to the participants’ understanding of the concepts. For examples, 

the participants’ gesticulation of the collinear property of eigenvectors reveals their 

understanding of properties of the concept of eigenvectors. Prior research on the effect 

of gesture on learning suggests that gesture can play a causal role in learning (Cook, 

Mitchell and Goldin-Meadow, 2008). These authors suggest that gesture analysis, in 

addition to linguistic expressions, could inform educators better about students’ 

understanding of mathematical concepts. The gesturing also reveals evidence of 

temporal and kinetic dimensions of thinking that are discussed in Chapter 8. 
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7.5. Summary        

In this chapter, I described the participants’ understanding of the concepts of 

eigenvector and eigenvalue. The eigen sketch representation enabled the participants to 

explore the collinearity of Ax  with xλ  (when x  is an eigenvector). As a result, they 

extended their interpretation of the equals sign embedded in xAx λ= from equality 

between Ax  and xλ  to collinearity between the two. By exploring the collinear property 

of eigenvectors through the use of dragging tool, they developed an awareness of the 

existence of infinitely many eigenvectors associated with a fixed eigenvalue. Moreover, 

the geometric representation of an eigenvector associated with a negative eigenvalue 

re-directed the participants’ attention to a broader interpretation of collinearity of vectors 

that is when vectors are collinear but have opposite directions.  

Given the importance of linguistic and gestural expressions in communicating 

mental imagery, in sections 7.3 and 7.4, I provided a summary of the participants’ 

expressions. In their linguistic description of the behaviour of eigenvectors they used 

verbs such as “to lie on”, “to line up”, “to be on”, and “to touch” to communicate their 

dynamic and kinesthetic imageries that were stimulated through interacting with the 

eigen sketch. In some cases, their linguistic expressions were accompanied by gestural 

expressions. In particular, four (out of five) participants used their hands or fingers as 

vectors to gesture the geometric representation of eigenvectors. My comparison of the 

participants’ linguistic and gestural expressions with the ones of mathematicians (as 

described by Sinclair and Gol Tabaghi, 2010) led me to conclude that my participants’ 

ways of thinking became similar to mathematicians’ ways of thinking about eigenvectors 

both temporally and kinetically. The participants’ use of hands and fingers in describing 

eigenvectors (that were given rise from their interaction with the eigen sketch) offer 

evidence of a time- and motion-based conceptualization of the concept of eigenvectors. I 

discuss further the effect of the eigen sketch on their modes of thinking in Chapter 8.   
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8. Research contributions, limitations and 

implications  

In this final chapter, I discuss my research contribution to the literature drawing 

both on the results of this study and on the theories discussed in Chapters 2 and 4. I 

then provide answers to the research questions posed in Chapter 5. At the end, I 

discuss the limitations of my study and some of its pedagogical implications.   

8.1. Modes of students’ thinking in understanding the 
concepts of eigenvectors and eigenvalues      

In Chapter 2, I reviewed prior studies’ findings on possible sources of students’ 

difficulties in learning linear algebra. Given claims for the existence of three modes of 

description and their associated representational systems, Sierpinska (2000) argues for 

the development of different modes of mathematical thinking: synthetic-geometric, 

analytic-arithmetic and analytic-structural. My study has shed light on aspects of the 

students’ thinking as they interacted with the dynamic geometric representation of the 

concepts of eigenvector and eigenvalue.   

Similar to students’ modes of thinking, a study of mathematicians’ ways of 

thinking about mathematical concepts and ideas in general—not specified to linear 

algebra—suggests the existence of different modes of thinking (see Burton, 2004). Yet, 

evidence offered by mathematicians such as Thurston (1994) reveals more about the 

aspects of mathematicians’ thinking as opposed to a classification of different modes of 

thinking. Process and time and vision, spatial sense, kinesthetic (motion) sense are two 

of the six major facilities of mind whose importance Thurston highlights in the 

mathematical thinking of a mathematician. More recent research  that studies the way in 

which mathematicians think about mathematical concepts and ideas reveals the role of 
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time and motion in mathematicians’ description of mathematical concepts, and in 

particular the concept of eigenvector (see Sinclair and Gol Tabaghi, 2010). These 

findings challenge the lack of attention to (and sometimes ignorance of) the role of time 

and motion in mathematical thinking. In particular, it draws attention to the aspects of 

students’ thinking about mathematical concepts.   

Turning to my study, I used Sierpinska’s classification of the modes of thinking in 

linear algebra to classify the participants’ ways of thinking as they interacted with the 

eigen sketch. I found that the participants mostly integrated the synthetic-geometric 

mode of thinking with the analytic-arithmetic one. One reason for this is that they were 

given the eigen sketch and the symbolic verbal definition of the concepts. Thus, they 

needed to coordinate the geometric representation of vectors from the eigen sketch with 

the given symbolic verbal definition of the concepts. Another reason is the design of the 

eigen sketch itself, which includes an arithmetic representation of Ax (i.e. matrix-vector 

multiplication) and a geometric representation of the vectors, x  and Ax . The sketch 

enabled the participants to notice numerical changes that occurred as they changed the 

vector x  by dragging it on the screen. My design of the eigen sketch that was inspired 

by the literature enabled the participants to develop cognitive flexibility among modes of 

thinking, modes of description and representations. My findings suggest that the use of 

the dynamic geometric diagram (that includes both the geometric and arithmetic 

representations of the concepts) could enable the development of synthetic-geometric 

and analytic-arithmetic modes of thinking and the ability to move flexibly between them.  

Nevertheless, given the powerful role of geometry in the development of 

mathematical ideas and the genesis of the concept of eigenvector in studying discrete 

mechanical systems6, the participants mostly relied on a synthetic-geometric mode of 

thinking more than on other modes. In fact, they perceived an eigenvector as a special 
 
6 According to Hawkins (1975), the concept of eigenvector first arose in the 18th century 

describing the motion of a string fixed at one end and swing at the other end. In the latter part 
of the 18th century, D’Alembert solved the string problem by defining a system of differential 
equations with constant coefficients describing horizontal and vertical displacement of the 
string. He described the roots of these equations in terms of the stability of the mechanical 
system under consideration.   



 

130 

vector that was collinear with its scalar multiple and the associated eigenvalue as the 

ratio of the lengths of the special vector and its scalar multiple (where the vectors had 

the same direction). The use of the dragging tool and the dynamism of the 

representation affected their modes of thinking as evidenced by their gestures and 

speech. Drawing on my findings, below I respond to the first research question.    

What is the effect of dynamic geometric representations of eigenvectors on a 

student’s modes of thinking? My study reveals that interacting with the eigen sketch 

enabled the participants to develop dynamic and kinesthetic images of the concepts. 

They mostly used a synthetic-geometric mode of thinking, but more importantly, their 

thinking involved Thurston’s facilities of process and time and vision, spatial sense, 

kinesthetic (motion) sense. These facilities enabled them to communicate dynamic and 

kinesthetic imagery using embodied expressions and gestures. Their use of gestures 

enabled them to make explicit (at least to me, the researcher) the “implicit dynamism of 

thinking” (Leung, 2008).  

I thus argue that dynamic geometric representations of eigenvectors enabled the 

participant to develop dynamic-synthetic-geometric thinking. This mode of thinking 

comprises kinesthetic and dynamic imagery, thus enabling one to reconstruct mentally 

objects, to impose motion on them and to position them in space. This affirms my 

conjecture, from chapter 4, that the dynamic geometric representation of eigenvectors 

stimulated the formation of kinesthetic and dynamic imagery.  

The development of dynamic-synthetic-geometric thinking might anticipate the 

development of structural ways of thinking in linear algebra since they share common 

features. One feature is the independence from the coordinate system and another is 

that both ways of thinking are based on properties of objects not calculations. These 

features are the same ones identified by Sierpinska (2000) in discussing the 

development of synthetic-geometric and structural ways of thinking. But, they have 

become more apparent when I take into account the participants’ use of the facilities of 

process and time and vision, spatial sense, kinesthetic (motion) sense. In fact, the 

participants’ embodied expressions in communicating the collinear property of 

eigenvectors—without providing a specific numerical example—might enable the 

development of analytic-structural thinking that is thinking of an object in terms of its 

properties.  
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8.2. Dynamic geometric representations as diagrammatic 
experiments: the role of time and motion   

In Chapter 7, I described the participants’ understanding of the behaviour of 

eigenvectors, focusing on their understanding of (1) the equality xAx λ=  as vector 

equality or collinearity between Ax  and xλ , (2) the existence of infinitely many 

eigenvectors associated with a fixed eigenvalue, and (3) the geometric representation of 

a set of eigenvectors associated with a negative eigenvalue. The participants’ use of 

verbs such as “to be on”, “to lie on”, “to line up” and “to touch” in describing the 

behaviour of eigenvectors evidence their ways of communicating their dynamic and 

kinesthetic imagery of eigenvectors. It is also evident from the data that dynamic 

geometric representations gave rise to gestures and other embodied expressions. The 

participants’ use of hands and fingers as vectors in describing eigenvectors that arose 

from their interaction with the eigen sketch offers evidence of time- and motion-based 

conceptualization of the concept of eigenvectors. This suggests that their aspects of 

thinking have become mobile and temporal, similar to the mathematicians’ ways of 

thinking about mathematical concepts and ideas (see Núñez, 2006; Sinclair & Gol 

Tabaghi, 2010).  

In addition to the development of aspects of thinking, the eigen sketch 

exploration of eigenvectors and eigenvalues enabled the participants to understand the 

concepts of eigenvectors and eigenvalues by identifying the invariant properties of them. 

In contrast to this, as I discussed in Chapter 2, prior research shows that many students 

automatically set up the characteristic equation to find its roots regardless of whether 

this is necessary or useful in solving the given problem (Sierpinska, Dreyfus and Hillel, 

1999). This is because students are mostly introduced to a procedural algebraic method 

for finding eigenvalues and, subsequently, their associated eigenvectors. The method 

requires them first to find eigenvalues (by finding the roots of the characteristic equation 

( 0)det( =− IA λ )) and then to find the associated eigenvectors (by finding non-trivial 

solutions for 0)( =− xIA λ  given λ ). This method leads students to the development of 

procedural knowledge for finding eigenvalues and eigenvectors. It does not reveal that 

they are identifying a special vector that is being transformed into its scalar multiple 

under a given linear transformation. It neither draws attention to the invariant collinearity 

of eigenvectors nor reveals a geometric interpretation of a set of eigenvectors.  
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 In my study, I did not ask the participants to find eigenvectors algebraically nor 

make a comparison between a textbook representation and dynamic representation of a 

linear algebra concept. But, I can infer my response to the second question by looking 

specifically at how the participants managed to coordinate the formal definition of the 

concepts of eigenvector and eigenvalue with the eigen sketch representation of the 

concepts. Below is my response to the second question.  

How do students relate these representations to the more symbolic and static 

ones that are found in undergraduate textbooks? My study shows ways in which the 

participants coordinated the eigen sketch representation of the objects and concepts 

with the given formal definition of eigenvector and eigenvalue. They matched the 

symbols on the sketch with the ones used in the definition. Then they dragged the vector 

x  to find a position where the image of x  under matrix A (i.e. the vector Ax ) was 

collinear with a scalar transformation of the vector x  (i.e. xλ ). As a result, they first 

identified an eigenvector and then they drew attention to the scaling factor of x  that was 

the associated eigenvalue. More importantly, the eigen sketch enabled them to 

experiment with the behaviour of eigenvectors in order to identify the invariant properties 

of eigenvectors and eigenvalues. In fact, the dragging tool and the dynamism of the 

representation offered a diagrammatic experiment where time and motion are inherited 

characteristics of such diagrams.    

In contrast to dynamic diagrams, the absence of time and motion in the static 

diagrammatic representation of eigenvectors that was shown in Figure 44 makes it 

difficult to understand the construction of the diagram. In fact, the diagram illustrates the 

final result of two different matrix-vector multiplications, Av  and Au . A student must find 

the eigenvalue and associate eigenvector ( v ) (presumably using the procedural 

algebraic method) before sketching v  and Av , whereas u is an arbitrary vector not an 

eigenvector of A . Further, the use of curved dashed arrows may seem unnecessary for 

the student. This static diagram (that was discussed in detail in Chapter 1) neither 

reveals the process of finding the eigenvector v  nor does it draw attention either to the 

invariance property of v  (i.e. its collinearity with Av ) or to the existence of infinitely 

many eigenvectors collinear with v . It, in contrast to the eigen sketch, neither stimulates 

the formation of dynamic and kinaesthetic imagery nor enables students to communicate 

the mobile and temporal aspects of mathematics.   
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Figure  44.  (same as Figure 3) Geometric representation of eigenvectors (Lay, 

2006, p. 303) 

In connection with the use of the eigen sketch as diagrammatic experiment, 

Châtelet’s (2000) historical investigation of diagrams shows that they have played a 

central role in the development of new mathematical ideas. These diagrams do not 

simply illustrate or translate an already available content; they invent new spaces and 

new ways of conceptualizing that emerge from the mobile, material acts of 

experimenting on the page. For Châtelet, the diagram is a mid-station between the 

embodied gesture and the more formal mathematics; he writes that diagrams “can 

transfix a gesture, bring it to rest, long before it curls into a sign” (p. 10). For Châtelet, 

the gesture is an impulse in the sense that “one is infused with the gesture before 

knowing it” (p. 10).  

It is helpful to think about how Châtelet might have seen the diagram in Figure 44 

in light of his theory. The curved dashed arrows reflect the dynasties of cutting-out 

gestures. Those gestures are meant to indicate linear transformation (or mapping); one 

suggests dilation and the other a rotation although they both have a similar construct. 

The diagram captures or transfixes the cutting-out gestures, thus creating a new fold on 

the surface. The diagram is born with these cutting-out gestures. No longer are the tips 

of the curved dashed arrows cleaving to the points Av or Au ; the arrows embody the 

effort of abstraction (that is, the linear transformation of v  and u under matrix A ) by 

participating in the concrete process of constituting a system of linear transformation.  
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Châtelet’s philosophical view has given rise to a more recent hypothesis that 

working systematically with dynamic imagery could increase students’ material 

interaction (see de Freitas and Sinclair, 2011). This is in contrast to the static and 

confining aspects of textbook diagrams that take away students’ inventive acts by which 

mathematics can be grasped through using gestures and embodiment.  

Drawing on Châtelet’s (2000) thesis about diagrams as thought experiments and 

my analysis of the participants’ interaction with the eigen sketch, I agree with de Freitas 

and Sinclair that interacting with dynamic geometric representations could increase 

one’s material interaction and consequently could enable one to invent new spaces and 

new ways of conceptualizing that emerge from the mobile, material acts of 

experimenting on the page.  

In discussing my response to the first and second research questions, I mostly 

drew on the theories of cognition, dynamism in thinking and embodied cognition. 

However, I could not understand the development of aspects of the participants’ thinking 

without analysing their use of dragging tool and the effect of the use of different dragging 

modalities and strategies on shifts in the structure of their attention. Triangulating a 

participant’s dragging modalities, shifts in her attention, and her use of imagery did 

provide me with a richer understanding of her learning and thinking process, as I 

conjectured in Chapter 1. To respond to my last research question, I drew on the 

complementary use of theories of instrumental genesis, dragging modalities and shifts of 

attention in framing the study.  

8.3. Complementary use of the theory of instrumental 
genesis and the theory of shifts of attention  

Based on the theory of instrumental genesis, I identified evidence of both 

instrumentation and instrumentalization processes in the participants’ use of the 

dragging tool. This evidence was mostly concerned with processes involved in 

transforming a tool into an instrument, rather than the role of the instrument itself in 

knowledge acquisition. As researchers have pointed out, the role of the instrument in 

cognitive development is a delicate point (e.g.Verillon and Rabardel, 1995), and the 

theory of instrumental genesis has shortcomings in putting forward the potentialities of 
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the instrument in the development of mathematical thinking. For example, consider the 

participants’ initial use of line dragging. The use of line dragging is evidence of an 

instrumentalization process since all participants dragged x  along its path collinear with 

Ax . It is also evidence of an instrumentation process because it enabled the participants 

to identify the existence of infinitely many eigenvectors.  

But what can be said about the participants’ knowledge acquisition? Mason’s 

theory of shifts of attention provides some assistance in answering this question by 

revealing the developmental process of the participants’ mathematical understanding as 

they interacted with the eigen sketch. Indeed, Figure 45 shows how the use of different 

dragging modalities and the different states of attending can be brought together in 

analyzing the participants’ initial interaction with the eigen sketch. In particular, it shows 

shifts in the locus and the available state of attention as a participant interacts with the 

eigen sketch using the dragging tool. In general, as I hypothesized in Chapter 4, 

providing the participants with the eigen sketch caused shifts in the structure of their 

attention and, consequently, enabled them to identify the invariants of the concepts of 

eigenvector and eigenvalue. These findings enabled me to provide my response to the 

third research question here.     

What can the complementary use of the theory of instrumental genesis and the 

theory of shifts of attention offer in regard to analyzing a participant’s interaction with the 

eigen sketch? I argue that the complementary use of these theories provides an 

understanding of the participants’ development of mathematical thinking in a DGE-based 

task. As discussed above, Figure 45 illustrates an instance of the complementary use of 

the theories. More specifically, observing how the participants used the dragging tool 

while they were engaged in the interview task, I noticed that some participants dragged 

the vector x  with the intention of making it collinear with Ax . I called this dragging 

modality intentional dragging. It is to drag a point with the intention of producing a certain 

configuration. Intentional dragging differs from guided dragging as it is used to produce a 

certain configuration that has been identified beforehand, whereas guided dragging, 

dragging that is more exploratory, enables one to locate a particular configuration.        
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Figure 45.  An illustration of the complementary use of the theories of 

instrumental genesis and shifts of attention in analysing an initial 
interaction of a participant with the eigen sketch to find a set of 
eigenvectors 

As evidenced by my analysis of the participants’ interaction with the eigen sketch 

(in Chapter 6), I drew on the multiple theoretical frameworks in order to study the effect 

of the dynamic geometric representation on students’ understanding of eigenvectors and 

eigenvalues. Given that the participants interacted with the dragging tool, I first analyzed 

the data using the theory of instrumental genesis. But my intention was to provide insight 

into the participants’ understanding of the concepts. Mason’s theory of shifts of attention 

enabled me to analyze the participants’ structures of attention and the ways of attending 

as they used the dragging tool to interact with the eigen sketch. I found that a 

participant’s use of different dragging modalities can provide easily-visible evidence of 

shifts in the structure of her attention and consequently can reveal her understanding of 

the concepts. 

8.4. Research limitations 

While my research enabled me to answer my research questions effectively, I 

identified a few limitations of my study in terms of the participants’ first introduction to the 

concepts and their use of gestures during or after their interaction with the eigen sketch. 
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The design of the eigen sketch itself has a few limitations in terms of representing 

collinearity of two vectors and non-exact numerical values for components of 

eigenvectors.  

8.4.1. The participants and their use of gestures 

The participants of my study were all introduced to the concepts of eigenvector 

and eigenvalue through a static algebraic approach in their linear algebra course. This 

approach frames the concept of eigenvector in terms of matrix-vector multiplication, 

emphasizing the equality xAx λ= . As I discussed in Chapter 2, it leads to a procedural 

algebraic method for finding eigenvalues and then the associated eigenvectors of a 

square matrix. None of the participants mentioned seeing a geometric representation of 

the concepts in their linear algebra course. The result of my study could have been 

different if the participants have seen a geometric representation of the concepts of 

eigenvectors and eigenvalue before. 

The dynamic geometric approach affected their emerging ways of 

communicating the concepts of eigenvector and eigenvalue through gestures. As I 

described in Chapter 7, three participants used their hands or fingers as vectors to 

gesture a geometric representation of eigenvectors and one participant used her hand to 

gesture the span of a set of eigenvectors. These gestures that arose from their 

interaction with the eigen sketch offer evidence of a time- and motion-based 

conceptualization of the concept of eigenvector. But they are not perfect models 

depicting eigenvectors because eigenvalue either is equal to one or is not in gestures 

since gestures are limited by what hands, arms and fingers can do.    

8.4.2. The eigen sketch: approximation versus exactness 

The use of the eigen sketch in finding eigenvectors and eigenvalues of square 

matrices has limitations because the geometric representation of collinearity of the two 

vectors is not error-free and the arithmetic representation of eigenvectors is not exact.   

The geometric representation of collinearity of the two vectors on the eigen 

sketch created some difficulties for the participants in identifying eigenvectors and their 

associated eigenvalues of matrix (b) from the interview task. First, the two vectors, on 
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the sketch, almost overlapped for a scalar ranging from 2.7 to 3.2 (on a square grid 

scaled 2 centimetres per unit). This caused one participant to have difficulty in finding 

the exact value of the eigenvalue even though he activated the Measure command and 

the Calculator tool. Second, another participant found the eigenvector 







=

32.2
18.3

x  and 

then she generalized it into 







=








=

a
a

x
5.1

32.2
18.3

.  As she dragged x  along the line 

(where x  and Ax overlapped) far away from the origin, her approximated ratio between 

the coordinates of the vector x  (i.e. 5.1/ 21 =xx ) did not hold. In this case, the two 

vectors are collinear when the ratio of the coordinates of vectors is equal to one (i.e. 

1/ 21 =xx ). But, the eigen sketch, for the transformation matrix (b), suggests that the two 

vectors are collinear when 21 / xx  ranges from 0.7 to 1.3 (on a square grid scaled 2 

centimetres per unit).  

The arithmetic representation of eigenvectors on the eigen sketch is not exact. 

The sketch enables one to read components of specific examples of eigenvectors to a 

certain precision that can be set up in advance. Through the use of line dragging, one 

could explore the existence of infinitely many eigenvectors associated with a fixed 

eigenvalue and then could generalize the findings by approximating the ratio of 1x - and 

2
x -coordinates of an explored eigenvector (i.e. 








=








=

a
a

x
5.1

32.2
18.3

). This would yield 

an approximation for a basis of an eigenspace, whereas the procedural algebraic 

method allows one to find exact basis of an eigenspace.  

Approximation is a feature of a dynamic geometry environment as I identified 

evidence of its use in the participants’ interaction with the eigen sketch. It is decidedly 

not a feature of the concepts themselves.  

8.5. Pedagogical implications and suggestions   

Drawing on my findings, I recommend the integration of dynamic geometric 

representations of concepts in teaching elementary linear algebra. These 
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representations would enable students to build their own, more geometric, 

understanding of the concepts. Through interaction with dynamic representations, 

students could produce a greater coordination between symbolic and static 

representations that are mostly found in textbooks and dynamic ones. This would help 

students to develop cognitive flexibility among modes of description and representations, 

as well as among the different modes of thinking. As my study findings suggest, 

interaction with dynamic geometric representations of concepts could enable students to 

develop dynamic-synthetic-geometric mode of thinking.  

The integration of dynamic geometric diagram of concepts could change 

teaching and learning approaches in a way to enable students to explore concepts and 

to build their own knowledge and to facilitate reasoning on the basis of properties, as 

well as perceiving properties as being instantiated in some situation. The participants of 

my study who were introduced into the concepts through a static algebraic approach but 

they did not recall the concepts. It seems to me that a balance between the two 

approaches —dynamic geometric and static algebraic— would enable students to 

overcome their learning difficulties. The question is which of the approaches could or 

should be used first to introduce students to linear algebra ideas and concepts. In this 

study, as I mentioned above, my participants were introduced to linear algebra concepts 

first through a static algebraic approach in a course and then they interacted with the 

eigen sketch. In finding eigenvectors and eigenvalues of matrix (a), they first attended to 

finding the value of an eigenvalue and then read off the components of an associated 

eigenvector from the eigen sketch. But, the eigen sketch suggests first finding 

eigenvectors and then one could approximate an associated eigenvalue with a set of 

eigenvectors. In other words, eigenvectors are visible but associated eigenvalues need 

to be approximated which might encourage using an algebraic method. The participants’ 

strategy of finding eigenvalues before eigenvectors could be related to their introduction 

to the concepts through static algebraic approach in the sense that it mostly requires 

them to calculate or approximate numerical values.         

I suggest the use of the eigen sketch (or similar) to introduce students first into 

the geometric representation of the concepts. This would require the design of suitable 

assessment items to draw students’ attention to the properties of the concepts rather 

than asking them to find exact numerical values of eigenvectors and associated 
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eigenavlues. Referring to my discussion of a linear algebra textbook’s representations of 

concepts in Chapter 2, and to the participants’ difficulties in recalling the concepts even 

though they learned them before, I affirm that linear algebra textbooks were partly to 

blame for students’ lack of geometric intuition and their reliance on procedural 

knowledge. The integration of dynamic geometric representations of concepts could 

potentially fulfill Harel’s (2000) concreteness principle, in the sense that these 

representations could provide concrete contexts for abstract notions. These 

representations could also fulfill Harel’s (2000) generalizability principle, in that through 

the interaction with them, a student could identify the invariants in reference to arithmetic 

and geometric representations of a concept and may come to generalize the concept in 

higher dimensions. 

The dynamic and interactive features of DGEs, enhanced by the dragging tool, 

enable a student to explore the relationships among objects presented in a sketch. The 

sketch represents the relationships and behaviour over time. In fact, the dragging tool 

and the dynamism of the representation offer a diagrammatic experiment (as it was the 

case in the eigen sketch) where time and motion are inherited characteristics of such 

diagrams. Recent versions of CAS software, such as Maple and Mathematica, are also 

enhanced by dynamic and interactive features, and may be able to provide students with 

opportunities to coordinate the geometric and symbolic aspects of eigenvalues and 

eigenvectors as they did in this study. However, the different modes of interaction 

afforded in these CAS programs may affect the instrumentation process and resulting 

shifts of attention that students experienced in my study.  
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Appendix A. The interview task 
Let A be an nn × matrix. A nonzero vector x is called an eigenvector of A if and only if there 
exist a number λ  such that xAx λ= . If such a number λ exists, it is called an eigenvalue of A .  

Given a sketch that represents matrix A  and an arbitrary vector x . Double click on entries of 
A to change their values to givens below, then drag x  to find eigenvector(s) and associated 

eigenvalues(s), if exist.   
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Appendix B. Transcripts of the interviews  
In this section, I included transcripts of the interviews and describe the 
participants’ interaction with the sketches. I used the four main 
segments in describing each participant’s interactions: (1) introduction 
to eigenvectors and eigenvalues, (2) recognition of the relationship 
among eigenvectors associated with an eigenvalue, (3) geometric 
representation of the negative eigenvalue of matrix (c), and (4) post-
description of eigenvectors.  

Mike  
Mike was a second-year university student pursuing a Master of 
Science degree in secondary mathematics education. He had 
completed a linear algebra course during his bachelor’s degree, but 
said that he could not recall the concepts of eigenvector and 
eigenvalue at the beginning of the interview. Mike was relatively 
familiar with The Geometer’s Sketchpad. Mike interacted with the first 
design of the eigen sketch.   

M.1 First Segment:  introduction to eigenvectors and eigenvalues   
Mike was not asked to describe the concept of vector or eigenvector at 
the beginning of the interview. Instead, he was given the worksheet 
and the eigen sketch. Mike gazed at the formal definition of 
eigenvector on the sheet, and he then started dragging the vector x  
slowly around its given position (fourth quadrant of the coordinate 
system). He noticed that dragging the vector x also changed the 
position of vector Ax on the screen. As he continued dragging, 
x overlapped with the x -axis and Ax  overlapped with the vector u, 
as shown in Figure B1.  

 
Figure B1. A snapshot of the first eigen sketch shows vectors u and 

Ax  are co-linear as x is collinear with x -axis 
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Mike then used the line dragging strategy and dragged x toward the 
origin along the line segment where x and the x-axis overlapped, until 
Ax became the same length as u. He then said:     

[1] Mike:  Um, ok, I am lining these two [Ax and u] up and I am not 
totally convinced that is what I am supposed to be doing. 
So, I am gonna re-read the instruction to see if I have 
done the right things.   

[2] Int:  What made you think that was something that you wanted 
to do?  

[3] Mike:  Because from when I first read this, um, I remembered 
that I need to get Ax to equal to xλ  [writes down the 
equality on the worksheet using his right index finger as 
shown in Figure B2 ] and yeah [immediately points with 
the mouse] here is Ax. Yeah I knew the two things need 
to be the same [drags x along the line where Ax and u 
overlapped]. Just when I started moving this so I saw I 
could do that, but I do not like have the confidence that 
was right thing to do. 

 
Figure B2. Mike’s use of index finger to trace the equality xAx λ=    

 

[4] Int:  So you have right there, Ax overlapping u? 

[5] Mike:  Yeah, that is what I did.  

[6] Mike:  [reads the definition aloud] So let A be a n by n matrix, 
there is A and non-zero vector x [points to the geometric 
representation of x using the mouse] this is my x right 
here, and it is an eigenvector of A if and only if there 
exists a number lambda such that Ax equals xλ . If such a 
number lambda exists it is called an eigenvalue of A. Ok, 
given a sketch here it is [points to the sketch using the 
mouse] that represents matrix A and an arbitrary vector 
x, right here [points to the arithmetic representations of A 
and x using the mouse], double click on the entries of A to 
change values [points to the vectors using the mouse] I 
do not need to switch it because the first one is exactly 
this one, then drag x [points to x using the mouse] which 
I did, to find eigenvectors and associated eigenvalues 



 

151 

which appear up there [points to the arithmetic 
representation].  

[7] Int:  Yeah 

[8] Mike:  So what I am having trouble figuring out um [drags x 
slowly] is, it says that I want Ax equal to xλ  and that 
[points to the vector Ax using his right index finger] is 
obviously right there. So what I am having trouble 
figuring out now is what would lambda times x be? Um 
[drags x slowly] 

[9] Mike:  I am confused. I see the (3, 1) [points to the column 
vectors of A using his right index finger] matches up with 
the u here [moves his right index finger along vector u] 
and (-2, 0) [points to the column vectors of A using his 
right index finger] matches up with v here [moves his 
right index finger along vector v].What I am having 
trouble to see is how those two [points to Ax and u using 
his right index and middle fingers] go together with the x 
[points to x using his right index finger]. Um, I guess I am 
struggling to see [looks at the definition] what lambda is 
in all this [points to the sketch using his right hand]. 

[10] Int:  Yeah, lambda is not there, right?  

[11] Mike:  Aha. 

[12] Int:  So you have described what the u corresponds to and 
what the v corresponds to. What is the Ax?   

[13] Mike:  Ax is this [points to the arithmetic representation of A] 
times this [points to the arithmetic representation of x]. If 
I multiply this [points to the matrix A] is a 2 by 2 and this 
[ points to the arithmetic representation of x] is 2 by 1, so 
I could multiply though. I assume if I multiply those I 
would get this [points to the vector Ax]. Okay, um [drags 
x  slowly into the fourth quadrant and then into the first 
quadrant until Ax overlaps u].  

[14] Int:  We want Ax to be equal to xλ . What do we know? We 
have x . 

[15] Mike:  I know this is x .  

[16] Int:  What do you think xλ  looks like? 

[17] Mike:  λ is what I am multiplying x  by [points to the vector x  on 
the sketch using his right index finger], so that it ends up 
being [drags x  slowly into the first quadrant]  the same 
as the Ax .    

[18] Int:  Right, and what does multiplying x  by λ  mean? 

[19] Mike:  [drags vector x  into the first quadrant] That would mean 
something like that [ x  overlaps Ax ]. I think yeah [stops 
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dragging and gazes at the sketch] that would be it 
because now I have Ax here and a scalar multiplication of 
x  by an amount which is λ , to make it equal to the same 
thing so yeah that is right.   

 

Upon noticing that x  and Ax overlapped in the first quadrant, Mike 
stopped dragging. He pointed to the geometric representations of x  
and Ax using the mouse at the same time as he said “that [vector Ax] 
would be my eigenvector”. He then pointed to the arithmetic 
representation of x using the mouse at the same time as he said 
“these [components of vector x] would be my eigenvalues, I believe 
yeah”. The interviewer prompted him to re-read the definition to see 
what the eigenvalue was. He re-read the definition aloud and then 
gazed back at the sketch. He then said that both the geometric and 
arithmetic representations of x represent eigenvectors, and “the 
eigenvalue is the scalar multiple applier that made these two things [ x  
and Ax ] line up”. Next, he used line dragging to explore further the 
relationship between x and Ax. As he dragged x along the line where x 
and Ax overlapped, far away from the origin, he realized that x and Ax 
stay overlapped and have the same lengths. Thus, he concluded that 
lambda was one.   

M.2 Second Segment: recognition of the relationship among 
eigenvectors associated with an eigenvalue       

After Mike found the eigenvalue of 1 and perceived the invariant 
property of eigenvalue, the interviewer asked:  

[24] Int:  Do you think there is another eigenvector? 

[25] Mike:  [drags x in an anti-clockwise direction into the third 
quadrant] I do not think so [notices that x and Ax 
overlapped for 1=λ ], but oh down here minus one. Is 
that negative one? [drags x along the line away from the 
origin in the third quadrant] oh no that is still one.  

[26] Int:  Can you drag a little bit more?  

[27] Mike:  [drags x into the first quadrant, finds a position where x 
and Ax overlapped for lambda equal to 2, and uses line 
dragging] Um I am confused. It looks like an eigenvector, 
a lambda two.  

[28] Int:  Is this the same eigenvector you had before? 

Mike then dragged x back and forth between the two positions where x 
and Ax overlapped in the first quadrant and said, “it seems it is the 
same direction”. The interviewer drew his attention to the arithmetic 
representation of eigenvectors, so that he noticed that 1=λ  
associated with eigenvector (2.7, 2.74) and 2=λ  associated with 
eigenvector (5, 2.3). He then said “this is an eigenvector with lambda 
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one this is an eigenvector with lambda two”. He then dragged x into 
the third quadrant to explore the relationship between the two vectors, 
x and Ax,  further.   

Mike then changed the values of A to correspond to (b). He 
immediately found a position where x  and Ax  overlapped in the first 
quadrant and used line dragging. He said: 

[31] Mike:  So looks like 3, um, I imagine it is 3 because we probably 
set up for whole numbers, but is there somewhere that I 
can tell it is 3 here not 2.7 or something else. 

 At that point, the interviewer directed him to use the length measure 
command to measure vectors x and Ax, and the calculator tool to find 
the ratio of two lengths. Despite doing so, he found it difficult to 
identify the exact value of the eigenvalue, since the two vectors, on 
the sketch, almost overlapped for an eigenvalue ranging from 2.7 to 
3.2 for matrix (b). Mike continued dragging x in a circular clockwise 
direction to find another set of eigenvectors and another eigenvalue. 
He stopped in the third quadrant when he noticed that the two vectors 
overlapped. He used line dragging to drag x along the overlapped line 
away from the origin as he attended to the ratio of the lengths. He 
then dragged x into the first quadrant and said “I can convince myself 
anywhere between 3 to 3.4 [...] that is the same thing. That is the 
only one there”.   

M.3 Third Segment: geometric representation of the negative 
eigenvalue of matrix (c)  

Mike changed the values of A to correspond to matrix (c). He immediately 
found a position where they overlapped and approximated λ  to be 7. He 
then used line dragging and said “it is interesting because this one it does 
not seem to be as much doubt about it. I could not. It definitely looks like 
7”. He then dragged x in a clockwise direction and noticed that x and Ax  
overlapped in the third quadrant for 7=λ . He was about to move to the 
next matrix when the following interaction took place:  

[35] Int:  Tell me how you are looking for the other one.  

[36] Mike:  Since I want the x to line up with the Ax [drags x in the 
first quadrant where the two vectors overlapped] I am 
gonna have to find some spot [drags x in a circular path 
toward second quadrant] that does not matter how long I 
extend x [uses line dragging to darg x along y-axis] there 
are not gonna meet. So the only possibility if I can get to 
the spot that they go to the same direction so if I go 
around 360 degrees I am interested in the spots like there 
[drags x in an anti-clockwise direction into the third 
quadrant where x overlaps with Ax and the uses line 
dragging]. 
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[37] Int:  Ok 

[38] Mike:  Actually very useful to have this [points to the ratio using 
his right index finger] and it’s the same as the other side 
[drags x into the first quadrant and then back into the 
fourth quadrant].Although this is an interesting point [line 
dragging] um, [reads the definition] now we want to Ax 
equal to, um, this would work. Because, in this case 
lambda would be negative 4. We have this going opposite 
direction [points to the Ax] four times perfectly matching 
that, so lambda is -4 for this one. So I am wondering 
about the previous ones, I have to go back to check them.  
Um, I imagine that I have the same thing over here 
[drags x into the second quadrant in a circular clockwise 
direction] yeah having negative four there too okay  so 
there is  two  possibilities where they line up perfectly or 
they are in the opposite direction. 

M.4 Fourth Segment: post-interaction description of eigenvector         
Mike changed the values of A to correspond to matrix (d). He then 
dragged x  slowly in a circular anti-clockwise direction and said “this 
one is not too promising.” He then dragged x in a clockwise direction 
quite speedily using a circular path and said “no”. The interviewer then 
asked him “how did you go to find eigenvectors?” He responded:  

[43] Mike:  At first I was looking for [points to the sketch] where I 
can get x  and Ax to line up in the same direction [puts 
two hands extended fingers in the same direction as 
shown in Figure B3], but then the third one I realized 
could be in the same direction or opposite direction [right 
hand extended fingers points to right direction and left 
hand extended fingers points to left direction as shown in 
Figure B4]. So I would move x  around [rotates his right 
index finger as tracing a circle as shown in Figure B5] 360 
degrees to see if these two cases showed up.  

   

Figure B3. Mike’s 
hands 
point to 
the same 
direction 

Figure B4. Mike’s 
hands 
point to 
the 
opposite 
directions 

Figure B5. Mikes’ 
index 
finger 
rotates 
around a 
circle 
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After completing the activity, the interviewer asked “what is an 
eigenvector?” He described:  

[45] Mike: An eigenvector is a vector that when I multiply it by a matrix it 

has to also equal to the same matrix multiplied by a scalar.  

Jack  
Jack was a third-year university student pursuing his Bachelor’s of 
Science degree. He completed a linear algebra course during his 
second year of study. He was relatively familiar with The Geometer’s 
Sketchpad because of being a part of his course work. He, like Mike, 
interacted with the eigen sketch, a snapshot of which is shown in 
Figure 9.  

J.1 First Segment: introduction to eigenvectors and eigenvalues   
Jack began by reading aloud the formal definition of eigenvector from 
the given worksheet. He immediately pointed to each symbols given in 
the definition (using his right index finger) saying “this is a matrix, this 
is a vector, this is a scalar, and this is a vector and it’s saying if this 
lambda exists it is an eigenvalue. Okay so, now I read this and I 
understood but I am supposed to take that and modify it”. He looked 
at the sketch, then back to the definition and said “this one [points to 
matrix (a) using the mouse pointer] is already there”. He read the 
definition over again to himself, and dragged the vector x by a very 
small amount in the fourth quadrant. He stopped dragging and said “I 
see,” returned to the definition, said “now I’m confused,” and looked 
back to the definition again. I prompted him by asking to drag x. He 
started dragging x into the other quadrants somewhat randomly as he 
attended to the changes in the position of Ax while he dragged x. He 
then asked: 

[55] Jack:  Yes, but to what end? Is it finding eigenvectors? 

[56] I:  Yeah, you’re finding eigenvectors and eigenvalues.   

[57] Jack:  Oh. I see. I see. So by dragging it, it is maintaining the 
eigenvectors or but, um, it doesn’t output lambda. [stopes 
dragging, gazes at the definition] Should it be outputting 
lambda? 

[58] I:  Yes, it doesn’t show the lambda on the sketch, but you 
might be able to see it as you drag.  

[59] Jack:  I see, yeah so I guess I line them up [drags vector x 
directly into the first quadrant until it overlaps with Ax ]. I 
guess I could have lambda there. And then should I 
change this value [points with mouse to the matrix]? 

[60] I:  Could you tell me how you got into that if you line them 
up it’s going to be what you looking for? 
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[61] Jack:  Because I looked at this [puts his right index finger 
on xAx λ= ] and I realized that there was a scalar 
transformation, so the vectors have to be co-linear. 

[62] I:  So, Could you approximate the values? What is lambda 
and what is x?  

[63] Jack:  lambda looks like 2, I don’t know my xs, but I guess it is 
right here [points to the vector x using the mouse, writes 

down 2≈λ , 







=

41.1
79.2

1x , and drag x along the line where 

Ax and x overlapped away from the origin in the first 
quadrant] lambda still looks like two, x has changed. 
Should I write down this as well? [writes 

down 







=

25.4
58.8

2x ]. 

J.2 Second segment: recognition of the relationship among eigenvectors 
associated with an eigenvalue       

After Jack found the position where the two vectors where overlapped 
for 2=λ , I prompted him by asking:  

[64] I:  Okay. But how does this x [point to the sketch] relate to 
this one [point to the definition]? 

[65] Jack:  Um. I guess it’s a linear transformation of this [points to 
his written vectors on worksheet], because of the 
definition. But assuming that I do not know that I guess it 
[points to the sketch using his index right finger] looks 
like it’s a linear transformation of this [points to his 
written vectors on the worksheet]. 

[66] I:  Can you continue dragging x? 

[67] Jack:  You mean to here [drags x in an anti-clockwise direction 
into the third quadrant stopes when he sees that the two 
vectors overlapped]?  

[68] I:  So what’s the lambda here? And what is x? 

[69] Jack:  Um. [drags x along the line where x and Ax overlapped in 
the third quadrant, looks back at the definition, then to 
the sketch]. So […] are you trying to hint that all values of 
x are linear transformations of each other? 

[70] I:  What do you mean by linear transformation? What type of 
linear transformation?   

[71] Jack:  Times by a scalar, so I guess I would at this point I would 
probably realise that they look very [drags x toward origin 
along the line where the two vectors overlap], that they 
are all on the same axis [drags x away from origin into 
the first quadrant] I guess and I would deduce [drags x 
more quickly back and forth along the straight line passing 
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through the origin] that the value of lambda wouldn’t 
change but that there are infinitely many eigenvectors.  

Jack was about to proceed to the next question when I prompted him 
to look for another set of eigenvectors. After dragging in an anti-
clockwise circular fashion, Jack could not identify another eigenvector, 
and said, “it makes sense since there should only be one.” I asked him 
to drag x to (1, 1). At this point, Jack noticed that the two vectors 
overlapped and wrote down xAxx λ==  on the worksheet. He then 
dragged x slowly in the first quadrant to find a position where x and Ax 
overlapped when λ=2, and then dragged x back to a position where x 
and Ax overlapped when λ=1. He then looked at the equality and said 
“does not make sense, oh yeah it does lambda is 1”. I prompted him 
asking about the sketch representation of λ=1. He said “I guess I had 
trouble figuring out that the lambda was one, but yeah that is pretty 
apparent [gazes at the sketch]. It is just confused me, I am not very 
used to the sketchpad and they kind of lined up [holds his hands 
extended fingers and brings them together placing his right hand on 
the tops of his left hand as shown in Figure B6 and B7]”.     

  

Figure B6. Jack’s hands are 
positioned parallel to 
each other 

Figure B7. Jack’s hands are 
exactly placed on 
each other 

 
Having completed matrix (a), Jack turned his attention to each of the 
three others. He changed A to correspond to matrix (b), randomly 
dragged vector x using different radii into all the quadrants, and asked 
“is the eigenvector non-existent?” After some more circular dragging 
further from the origin, he hit upon a vector in the third quadrant, and 
said: 

[78] Jack:  [drags x into the third quadrant] So they’re lined up, um 
so there’s a lambda. I don’t know why I said non-existent. 
Whatever this length is [drags the mouse pointer along 
the vector Ax] divided by that length [drags the mouse 
pointer along x].  

[79] I:  You can approximate the lambda. 
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[80] Jack:  1.5 oh sorry 2.5. I don’t know what that is. Um, write 
down I guess [writes down 5.2≈λ on the worksheet].  

[81] I:   What are the eigenvectors?  

[82] Jack:  [drags x along the line where the two vectors overlapped 
far away from the origin] All the ones on this line and 
[drags x along the line into the first quadrant] all the ones 
on this line. Yeah it seems.  

[83] I:  Do you think that there will be another eigenvector?  

[84] Jack:  Just because it is a linear equation, it should only be one, 
I guess, but assuming that I do not know that if I drag 
that [vector x] around a circle I could find out. 

 J.3 Third Segment: geometric representation of the negative 
eigenvalue of matrix (c)  

 Jack changed the matrix to (c). He dragged x slowly in the third 
quadrant and found a position where the two vectors overlapped. He 
then dragged x along the line away from the origin in the third 
quadrant and then he dragged x into the first quadrant passing 
through the origin. He noticed that x and Ax stay overlapped in the 
first quadrant, approximated lambda to be 8 and read the components 
of the eigenvector (1.28, 1.32) from the arithmetic representation on 
the sketch. In the worksheet, however, he wrote down ]32.1,28.1[ λλ  
to represent the set of eigenvectors associated with 8=λ .  I then 
prompted him to find another set of eigenvectors. He dragged x in an 
anti-clockwise direction, in a speedy fashion, as he focused only on the 
position where vector x overlapped with vector Ax. Finding nothing, I 
invited him to drag vector x slowly into the second quadrant. Doing so, 
Jack found a position where x and Ax were collinear and said “it’s a 
linear transformation um makes it I guess, oh yeah I guess it is still 
like the opposite eigenvector [positions his hand as shown in Figure B8 
and brings his right hand to place it on the top of his left hand as 
shown in Figure B9] because of ninety degrees um I’m trying to recall” 
as he hold his hands in an angular form for a few seconds as shown in 
Figure B10. He then looked back at the definition. He then dragged x 
along its collinear path with Ax and said “oh yeah, yeah. I guess it 
would be -8”. He then wrote down 8,8 −≈λ  , ]81.1,09.2[ 222 λλ−=x  on 
the worksheet.  
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Figure B8. Jack 
positions 
his hands 
in an 
angular 
shape   

Figure B9. Jack brings 
his hands 
together. 

Figure B10. Jack 
holds his 
hands in 
an 
angular 
form for a 
few 
seconds. 

 
J.4 Fourth Segment: post-interaction description of eigenvector                

Jack changed the matrix to (d). He dragged x in an anti-clockwise 
circular path and said “I guess this one has no eigenvalues or 
eigenvectors”. He then continued dragging in a spiral fashion, that 
varied both the angle and the distance from the origin of the vector, as 
he said “I cannot make x  to touch Ax”.  In response to my prompt, 
how he went about trying to find the eigenvectors, Jack said: 

[92] Jack:  I tried to make x  touch Ax [dragging vector x in a spiral 
fashion beginning far from the origin, turning in an anti-
clockwise direction, and ending at the origin] and I guess 
for the third one we tried to make that happen [drawing 
two vectors on the worksheet that are collinear but not 
overlapping as shown if Figure B11].  

After completing the activity, I asked Jack what is an eigenvector? 
Jack described as wrote it down on the worksheet: 

[94] Jack:  a vector local to a specific matrix that whose multiplication 
by the matrix yields the same result as the multiplication 
of a specific scalar, that is the eigenvalue, by the same 
matrix. 
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Figure B11.  Jack’s drawing of eigenvectors 
Kate 

Kate was pursuing a teaching certificate degree. She had completed a 
linear algebra course during her Bachelor of Science degree program 
and had used The Geometer’s Sketchpad before in her spare time to 
expand her knowledge of geometry. She volunteered her time to 
participate in my study. In response to my first prompt, what is a 
vector, she said “a vector is a line with an arrow which includes the 
direction and the magnitude as well. That is a vector, so it is like this 
one [draws it on a paper as shown in Figure B12] the arrow show the 
direction and the length of the segment shows the magnitude. I think 
yeah”.   

 
Figure B12. Kate’s drawing of a vector 
 
K.1 First Segment: introduction to eigenvectors and eigenvalues  

Kate first read the formal definition of eigenvector word by word from 
the given worksheet and stopped for ten seconds and re-read it and 
said “it’s too hard to me to understand the concept right now”. I 
prompted her by asking “what could you say about xλ  and Ax?”. She 
responded that lambda is a real number acting as a scalar multiple and 
Ax is matrix times a vector. She further said “a matrix times a vector 
should be still a matrix, um, I cannot remember that one”.  She then 
immediately used an example of a matrix and an arbitrary vector to 
verify her conjecture that a matrix times a vector is a matrix, as 
shown in Figure B13. But she did not recall how to do matrix-vector 
multiplication, so that she left it incomplete.  
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Figure B13. Kate’s example of a matrix-vector multiplication 

I drew her attention to the sketch asking her to drag x to find the 
eigenvectors and eigenvalues of A. Kate started dragging x slowly at 
the first quadrant around the given position (at about (1.5, 3.5)) and 
said “if you change x you change both, you change the direction as 
well as the magnitude”. As she dragged x in the first quadrant in a 
clockwise direction, she noticed that the position of two vectors was 
changing from being perpendicular to being overlapped. She stopped 
dragging when the two vectors overlapped for 2=λ  and gazed at the 
screen. She then started dragging x in an anti-clockwise direction until 
the two vectors became about perpendicular to each other, and then 
dragged x in a clockwise direction until the vectors overlapped for 

1=λ . She then used line dragging to further explore the relationship 
between the two vectors and said: 

[105] Kate:  This one has the same, right? so if these two [points to 
xAx λ=  ] are the same so Ax is the same as x  [writes 

down xAx = ].  

[106] I:  What is lambda?  

[107] Kate:  The lambda is one.  

[108] I:  For what values of x?  

[109] Kate:  [uses line dragging] They’re the same, the top value is the 
same as the bottom value, right [points to the arithmetic 
representation of vector x on the sketch].  

[110] I:  This is a particular example which is 5.19 and 5.19. 

[111] Kate:  It’s a special case. So x is like a and a [writes down 









=

a
a

x  on a given paper sheet].   

[112] Kate:  At this time Ax equals xλ , the lambda is one. This is case 
one. Case two, I still need Ax [drags x in a clockwise 



 

162 

direction until x and Ax overlap], so for this situation Ax is 
not the same as x so that means lambda, if um lambda is 
not one.  

[113] I:  Can you approximate lambda?  

[114] Kate:  Lambda is about two [writes down xAx 2=  and 









=

a
a

x
2

on the given paper sheet].   

I prompted her to drag x more. She first used line dragging, and then 
dragged x in a clockwise direction in the first quadrant and asked “can 
we get a three?”. She then dragged x in an anti-clockwise direction in 
the first quadrant and said “they’re parallel but how about non-
parallel”. She stopped dragging and said “they’re not the same 
anymore.” At this time, I prompted her to drag x into other quadrants. 
She dragged x in a clockwise direction into the third quadrant where 
she noticed that x and Ax overlapped. She said “that’s still positive 
two. It’s possible to go to the opposite direction”, as she dragged x 
into the first quadrant in a clockwise direction and then back into the 
third quadrant.  

K.2 Second Segment: recognition of the relationship among 
eigenvectors associated with an eigenvalue       

Next, Kate changed the matrix to (b). She dragged x slowly in the 
third quadrant and she found a position where the two vectors 
overlapped. She then dragged x in a speedy fashion to the first 
quadrant, and used line dragging. 

[119] Kate:  Actually the lambda is the ratio of this length [uses her 
index fingers to indicate the length of Ax] to this one 
[uses her index fingers to indicate the length of x] and I 
want to find the ratio. I use my calculator [takes out her 
calculator]. I just want to find out the relationship 
between, so this one is 3.18 and 2.32.  

[120] I:  What did you calculate?  

[121] Kate:  The ratio, if there is a ratio because for this I could not 
see anything. If you change this matrix A, look at this x 
and Ax [uses the mouse pointer to point to x and Ax] 
they’re parallel. right? That is almost 1.5 [divides 3.18 by 
2.32].  

[122] I:  Yeah, you can give approximation. How about lambda?  

[123] Kate:  I think the lambda is 1.5.   

[124]: I:  You think lambda is 1.5?  

[125] Kate:  It’s longer it should be 3.  

[126] I:  We are looking for the lambda and also for x.   
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[127] Kate:  This is where I got confused. I think the lambda should be 
the ratio of the lengths [used her right index finger and 
thumb to indicate the lengths of x and Ax] so it is 3 
[writes down λ=3 on the given paper sheet]. So we 
changed the matrix, this time the x is 3.18 and 2.32 okay. 
So we can see which is 1.5a [writes down 









=








=

a
a

x
5.1

32.2
18.3

].  

[128] I:  Do you want to drag more to find other ones?   

[129] Kate:  [uses line dragging] This one is still 3. 

[130] I:  So how many xs can you find?  

[131] Kate:  Many [uses line dragging], infinitely many [...] so if 
they’re on the same line we find lambda is a fixed number 
is a constant as long as A is determined. [uses clockwise 
circular dragging to drag x into the third quadrant] so for 
this one [drags x back into the first quadrant] it [the ratio] 
is still 3, right? [drags x away from the origin almost along 
the line where x and Ax overlapped] This one [ratio 
between the x- and y-coordinates of vector x] is not 1.5 
anymore. The previous one, I found here so the number 
should be on the same line. This one [ratio between the x- 
and y-coordinates of vector x] is 1.1, it is a bit bigger.  

K.3 Third Segment:  geometric representation of the negative 
eigenvalue of matrix (c)  

Upon changing the matrix to (c), x and Ax both fell into the first 
quadrant. Thus, she started dragging x in the first quadrant and 
immediately noticed a position where the two vectors overlapped. She 
used line dragging for a few seconds to drag x along the line (where x 
and Ax overlapped) away from the origin. She then dragged x into the 
third quadrant in a clockwise circular direction. She identified the 
position where the two vectors overlapped (it was on the same line as 
the first quadrant one) in the third quadrant. She stopped dragging 
and gestured in the sense that she used her index finger and thumb as 
a measurement unit to approximate the length of Ax and said:  

[135] Kate:  It [the ratio of two lengths or lambda] is about 6.  

[136] I:  How about x?  

[137] Kate:  The top and the bottom are the same [writes down 
6=λ ]. if lambda is six, x is a and a.  [drags x along the 

line into the first quadrant passing through the origin] Two 
values are the same.  

[138] I:  Okay. Do you want to drag x more? Drag it into the fourth 
quadrant.  
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[139] Kate:  [drags x in a clockwise direction into the fourth quadrant, 
finds a position where the two vectors are collinear, stops 
dragging] If they’re opposite to each other.    

[140] I:  What is  x ? What is lambda?   

[141] Kate:  [uses the mouse pointer as a marker to find the ratio 
between the two lengths] The lambda is two, three, that is 
five. No, six.  

[142] I:  We can actually measure the ratio.  

[143] Kate:  [uses the Measure command and Calculator tool] So it is 
four, the lambda is four.  

[144] I:  Um... how about x? 

[145] Kate:   x this one is a , -a. Okay. 

[146] I:  I agree with x and the lambda’s magnitude.  

[147] Kate:  You see [points to the sketch representation of the ratio] 
the ratio is always the same. 

[148] I:  Yes, but how this is different from the previous one? 

[149] Kate:  Oh I see the lambda should have be negative four...yeah 
they have opposite directions so the lambda should be 
negative.  

K.4 Fourth Segment: post-description of eigenvector         
Kate changed the matrix to (d) and dragged x in an anti-clockwise 
circular path until x traversed a full circle. She then stopped and 
dragged x in a clockwise direction and then again in an anti-clockwise 
circular path, and said “there’s no lambda”. I prompted her asking why 
there is not, in which she said “because you are not able to put x 
vector on the same line with vector Ax”.  

After completing the task, I asked her “how did you go to find 
eigenvectors?” She responded:  

[152] Kate:  Okay. So when I tried to find eigenvectors I just tried to 
find, because A times x is a vector and lambda times x is 
also a vector. Because they’re equal that means they’re 
parallel to each other or I can say they’re on the same line 
if they have the same starting point so what I need to do 
is to put x vectors and Ax vectors on the same line.   

After completing the activity, I asked her “what is an eigenvector?” 
She described:  

[154] Kate:  An eigenvector is such a vector when you times this 
vector by a matrix which is n times n matrix um you can 
find, if you can find um, a real number lambda and times 
this lambda by the vector as well and the lambda times x 
because lambda times x is a vector, right, and A times x is 
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also a vector if these two vectors can be on the same line 
[uses her left hand and arm to depict a line in space as 
shown in Figure B14] so at this time this x is an 
eigenvector. 

 
Figure B14.  Kate’s gesture that describes eigenvectors 

Tom  
 Tom was a second-year undergraduate student pursuing a bachelor 
degree in science. He successfully completed both calculus I and II 
courses, and was enrolled in a linear algebra course at the time of 
interview. He had not used The Geometer’s Sketchpad before. In 
response to my first prompt, what is a vector, he said “um I guess a 
vector is a line [uses his right index finger to draw it on the desk].” He 
then drew a vector on a sheet of paper as shown in Figure B15 and 
mentioned that vectors are “used more differently in physics”. I also 
asked him about a scalar multiple of a vector. He said “it is just a 
straight line that goes to infinity” and gestured moving his right hands 
extend index finger toward up right corner and his left hands extended 
index finger and arms down toward the left corner of his body as 
shown in Figure B16.   

  
Figure B15. Tom’s representation Figure B16. Tom gestures as 
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of a vector on a sheet 
of paper 

describes a scalar 
multiple of a vector 

 
T.1First Segment:  introduction to eigenvectors and eigenvalues   

 Tom read the definition from the worksheet and then drew his 
attention to the sketch. He dragged x randomly everywhere on the 
sketch. He stopped dragging when the two vectors overlapped (in the 
first quadrant) and re-read the definition. He then looked back to the 
sketch and mentioned that “λ seems to be 2.” I prompted him asking 
to find x. He then used line dragging to drags x along the line where x 

and Ax overlapped, and wrote down 







=

1
2

x , 2=λ  on the worksheet. 

He further dragged x along the line and wrote down a scalar multiple 

of x, 







=

5.4
9

x .  

I asked him to drag x more in the first quadrant to find another set of 
eigenvectors. He immediately noticed a position where the two vectors 
overlapped and also had the same length and direction. He then wrote 

down 1=λ , 







=

1
1

x .  

A.4.2 Second Segment: recognition of the relationship among 
eigenvectors associated with an eigenvalue        

Tom changed A to correspond to matrix (b). He dragged x in a 
clockwise direction in the first quadrant. He then stopped when they 
overlapped: 

[160] Tom:  this one seems to be four times [writes down 4=λ on the 
worksheet].  

[161] Tom:  [looks back to the sketch] um 1.5 [writes down 







=

1
5.1

x , 

drags x along the line where the two vectors overlap] it’s 
the same thing because of being multiple.  

[162] I:  how many eigenvectors did you find for this lambda?  

[163] Tom:  um infinity 

[164] I:  how they’re connected to each other? 

[165] Tom:  um scalar with the same basis.  

I prompted him to drag x more. He then dragged x in a circular anti-
clockwise direction and noticed a position where the two vectors 
overlapped in the third quadrant. He immediately said “that is the 
same thing”, and continued dragging. He then dragged x in a 
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clockwise circular direction and concluded that he could not find any 
more for matrix (b).   

T.3 Third Segment: geometric representation of the negative 
eigenvalue of matrix c  

Tom changed A to correspond to matrix (c). He dragged x in a circular 
clockwise direction. 

[168] Tom:  first, it [Ax] goes to the opposite direction.  

[169] I:  opposite direction? 

[170] Tom:  rotates, like when I go clockwise it [Ax] goes anti-
clockwise [moves his right hand extended index fingers in 
a circular path]  

He then dragged x more and stopped where the two vectors 
overlapped in the first quadrant. He stared at the screen to 
approximate the value of lambda and x. He then wrote down 

8=λ (the actual eigenvalue was 7) and 







=

1
1

x . I prompted him to 

drag x more slowly to find another eigenvector. He dragged x slowly in 
an anti-clockwise circular direction and said “I guess it looks like 
tracing each other”. He then stopped dragging when x and Ax lined up. 
He stared at the screen for a few seconds and said “this one goes to 
the opposite direction”. He then used line dragging and said “six times, 
it’s six times more than x, I mean opposite direction”.  

[173] I:  are you saying that you got an eigenvector there?  

[174] Tom:  that would be eigenvector. Eigenvalue is probably 
negative six. Eigenvector is one and one. 

[175] I:  no it is not. 

[176] Tom:  -1 and 1   

T.4 Fourth Segment:  post-description of eigenvector    
Tom changed A to correspond to matrix (d). He dragged the vector x 
slowly in a circular clockwise direction as he observed the behaviour of 
Ax. He used this strategy to drag x in a circular path with different 
radii, he then dragged x in an anti-clockwise circular direction. He then 
said “this one it seems they don’t. It seems always it is never the x 
value I mean the Ax is never on top of the x”.  

After completing the activity, the following interaction took place: 

[178] I:  what is an eigenvector? 

[179] Tom:  um it seems that eigenvectors, well, it seems that they’re 
linear transformations. Um so the eigenvalue behaves 
according to the changes take around [rotates his right 
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index finger around ], but eigenvector changes as you 
increase if you have a multiple of the same vector [moves 
his right hand extended index finger back and forth along 
a straight path as shown in Figure B17]. That is all I think.  

[180] I:  how did you go about finding eigenvectors?  

[181] Tom:  I guess when the eigenvector is on top of Ax then that’s 
where they exist or the other one going on top of it that 
exists.  

 
Figure B17.  Tom rotates and moves his index finger as describes 

eigenvectors   
Rose  

Rose is a first-year university student who was pursuing her 
undergraduate degree, majoring in science. She had successfully 
completed a calculus course and, at the time of interview, she was 
enrolled in a linear algebra course. She did not recall studying matrices 
and vectors in high school. It was her first time using The Geometer’s 
Sketchpad. Before she interacted with the sketches, we had the 
following exchange: 

[185] I:  What is a vector?  

[186] Rose: A vector I know that it is just like when we are multiplying 
something by that; that would be the vector component 
[...] you know that in the class we learned like 1x  and 1y .   

R.1 First Segment: introduction to eigenvectors and eigenvalues   
Rose read the formal definition of eigenvector from the given 
worksheet and tried to make sense of the definition, saying that "ok, it 
is just A times this [x] is equal this [ λ ] times that [x], if such a 
number exist it is eigenvalue of that [A]. Is that what is trying to say?" 
She used her index finger to point to the symbols on the definition. 
Then, she began to explore the sketch using the default matrix (a). 
She dragged vector x randomly from its given position (at about (4, 
1)). She stopped dragging when she observed that the vector x 
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and Ax  were positioned perpendicular to each other (vector x being in 
a vertical position and vector Ax being in a horizontal position) and 
said "here it is ninety degrees" (see Figure B18).  

 

Figure B18. Snapshot of sketch where x and Ax are 
perpendicular to each other. 

 
I prompted her by asking "is that what you are asked to find?" Then, 
she looked at the definition and then looked back to the sketch. She 
continued dragging the vector x randomly in the first quadrant and 
also tried not to change its length.  As she dragged x, she attended to 
the length of vector Ax and to its position on the sketch, and noticed 
that x and Ax overlapped. She continued dragging x slightly down 
from the overlapped position and then used an anti-clockwise direction 
to drag it back up. This made her notice that the length of vector Ax 
changes, as she dragged vector x in a clockwise direction in the first 
quadrant, from being smaller than to being twice as long as x, and 
then to being more than twice as long as x. Noticing these changes, 
she asked "is x double Ax?" and conjectured that "um it seems no 
matter [what] x is, Ax is twice [its] value". To verify her conjecture, 
she dragged x away from the origin (point O), maintaining the position 
where x and Ax were overlapped in the first quadrant. She then looked 
back to the definition, and said "that means Ax is going to be just two 
times x" and then wrote down xx λ=2  right below xAx λ=  on the 
worksheet.  

R.2 Second Segment: recognition of the relationship among 
eigenvectors associated with an eigenvalue       

After identifying that lambda is 2 for matrix (a), I prompted her to find 
eigenvectors. In response, she said:  

[192] Rose: What do you mean? I do not know. It was two.  
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[193] I:  The sketch can help you to find it.  

[194] Rose:  x is just two times, isn’t it? 

[195] I:  How would you read the vector?   

[196] Rose: x component and y component: 6 and 3 [drags x far away 
from the origin along the line where the two vectors 
overlapped]  

[197] I:  As you move along the line what else would you have?  

[198] Rose: 12 and 6. This is two times that [writes down 







=

40.6
58.12

x , 

)40.6,58.12(=x , x is 2y on the worksheet]. 

[199] I:  How many xs do you have?  

[200] Rose: Would not be infinity!   

 [201] I:  Yeah, drag x more to see if you can find another set of 
eigenvectors.  

 [202] Rose:[stops dragging] Right here. But this time it is equal to it. Isn’t it? 

[203] I:  Yeah, what is the lambda? 

[204] Rose:  Just one.  

[205] I:  Good! What are the eigenvectors? 

[206] Rose: Negative seven and negative seven. Um, there is no 
multiplying because it is the same length.  

Having completed the first matrix, Rose turned her attention to each of 
the three others. She changed A to correspond to matrix (b). She 
randomly dragged x in the first quadrant, and immediately said “it’s 

three times”, and wrote down 







=

34.3
02.4

x and x=(4.02, 3.34) on the 

worksheet. I then told her to use the Measure command to measure 
the lengths of x and Ax, and Calculator tool to find the ratio of two 
lengths. After calculating the ratio, she used line dragging to drag 
vector x along the line (in the first quadrant) where x and Ax 
overlapped.  

[210] Rose: It goes to infinity that way [drags x along the line where x 
and Ax overlapped, away from the origin in the first 
quadrant]. 

[211] I:  How about other way? 

[212] Rose: [drags x into the fourth quadrant and then into the third 
quadrant. She finds a position where x and Ax overlapped 
in the third quadrant and then drags along the overlapped 
line away from the origin] Yeah it goes to negative 
infinity.   

[213] I:  Keep it in line and drag it down.  
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[214] Rose: [drags x along the line (where x and Ax overlapped) from 
the first quadrant into the third quadrant passing through 
the origin] Oh that looks better.  

Next I prompted her to look for another set of eigenvectors. After 
dragging x in a clockwise circular path, she found a position where x 
and Ax overlapped in the third quadrant, but she immediately noticed 
that the position was not a new one, and said "it looks the same to 
me."  

R.3 Third Segment: geometric representation of the negative 
eigenvalue of matrix c  

Next, Rose changed the matrix to (c). She dragged x, immediately 
found an eigenvector and approximated the eigenvalue to be 7. She 
could also read the ratio of the two lengths from the sketch (since she 
had activated the Calculator tool and Measure command in verifying 
her approximation of eigenvalue of the matrix (b)). Next, I prompted 
her to find another set of eigenvectors.     

[219] I:  Do you want to drag more? 

[220] Rose: Around? 

[221] I:  Yeah 

[222] Rose: Oh it changes this time.  

[223] I:  What changes? 

[224] Rose: Usually they [x and Ax] go in the same direction but this 
[points to Ax using her right index finger] goes opposite 
direction. Is it because there is no negative value on this 
one [matrix]?  

[225] I:  No, I do not think it is because of having no negative 
entries.  

[226] R:  Oh. It’s completely straight here. 

I prompted her to find the eigenvalue. She then said "it is 4 but other 
way is 7”.  It seems that she read the value of the eigenvalue by 
attending to the sketch measure of the ratio of two lengths rather than 
approximating it visually. Then I commented that "four is the ratio of 
the two lengths". She stopped and gazed at the screen. Using a 
numerical example of vector x and Ax, she realized that the eigenvalue 
is -4 and said:  

[230] Rose: it’s [x] multiplied by negative four to get it in the negative 
side. The other one [eigenvalue] is positive, this one is 
negative. Those are located in these quadrants [points to 
the second and fourth quadrants]. This one is like this 
[points to the collinearity of two opposite directed 
vectors]. They’re [x and Ax] also in the same quadrant, 
this one is not. So you have to multiply by a negative so 
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the vector would be opposite direction of what it [x] would 
be. Is that right? 

R.4 Fourth Segment: post-description of eigenvector    
Having found eigenvectors and eigenvalues for the matrix (c), she 
turned her attention to the last matrix and changed A to correspond to 
matrix (d). Rose dragged x in a clockwise circular path to establish 
that there were no eigenvectors and said, "these ones [x and Ax] do 
not meet at all."  

When asked (in the following question) how she went about trying to 
find the eigenvectors, Rose said "I tried to make the vectors lie on top 
of each other and then find the scaling value." In her final reflection, 
she commented that the eigenvector is the vector x, whatever it may 
be, that gives the value for Ax.   



 

173 

Appendix C.  List of common questions used in the 
interviews  

What is the lambda? And what is x?  

What is  x ? What is lambda?   

Do you think there will be another eigenvector? 

Can you drag x a little bit more?  

What are the eigenvectors?  

Can you approximate lambda? 

Do you want to drag x more to find other eigenvectors?   

How did you go to find eigenvectors? 

What is an eigenvector? 
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