
COMPUTATIONAL STUDY FOR DOMINATION

PROBLEMS IN PLANAR GRAPHS

by

Marjan Marzban

B.Sc., Teacher Training University, 1999

M.Sc., Tarbiat Moddaress University, 2004

a thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Sciences

c© Marjan Marzban 2012

SIMON FRASER UNIVERSITY

Spring 2012

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.



APPROVAL

Name: Marjan Marzban

Degree: Doctor of Philosophy

Title of thesis: Computational Study for Domination Problems in Planar

Graphs

Examining Committee: Dr. Wo-Shun Luk

Chair

Dr. Qianping Gu, Senior Supervisor

Professor

Dr. Mohammed Hefeeda, Supervisor

Associate Professor

Dr. Jiangchuan Liu, SFU Examiner

Associate Professor

Dr. Caoan Wang, External Examiner

Professor, Computer Science, Memorial University of

Newfoundland

Date Approved:

ii

lib m-scan8
Typewritten Text
March 5th, 2012



Last revision: Spring 09 

 

Declaration of 
Partial Copyright Licence 
The author, whose copyright is declared on the title page of this work, has granted 
to Simon Fraser University the right to lend this thesis, project or extended essay 
to users of the Simon Fraser University Library, and to make partial or single 
copies only for such users or in response to a request from the library of any other 
university, or other educational institution, on its own behalf or for one of its users.  

The author has further granted permission to Simon Fraser University to keep or 
make a digital copy for use in its circulating collection (currently available to the 
public at the “Institutional Repository” link of the SFU Library website 
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing 
the content, to translate the thesis/project or extended essays, if technically 
possible, to any medium or format for the purpose of preservation of the digital 
work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies.  

It is understood that copying or publication of this work for financial gain shall not 
be allowed without the author’s written permission. 

Permission for public performance, or limited permission for private scholarly use, 
of any multimedia materials forming part of this work, may have been granted by 
the author.  This information may be found on the separately catalogued 
multimedia material and in the signed Partial Copyright Licence. 

While licensing SFU to permit the above uses, the author retains copyright in the 
thesis, project or extended essays, including the right to change the work for 
subsequent purposes, including editing and publishing the work in whole or in 
part, and licensing other parties, as the author may desire.  

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the 
Simon Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 



Abstract

The DOMINATING SET problem is one of the most widely studied problems in graph

theory and networking. For a graph G(V,E), D ⊆ V (G) is a dominating set of G if each

vertex v of G is either in D or has a neighbour in D. Finding a minimum dominating

set for arbitrary graphs is NP-hard and remains NP-hard for planar graphs. Recently,

based on the notion of branch-decompositions, there has been significant theoretical progress

towards fixed-parameter algorithms and polynomial time approximation schemes (PTAS)

for the problem in planar graphs. However, little is known on the practical performances

of those algorithms and a major hurdle for such evaluations is lack of efficient tools for

computing branch-decompositions of input graphs. We develop efficient implementations of

algorithms for computing optimal branch-decompositions of planar graphs. Based on these

tools, we perform computational studies on a fixed-parameter exact algorithm and a PTAS

for the DOMINATING SET problem in planar graphs. Our studies show that the fixed

parameter exact algorithm is practical for graphs with small branchwidth and the PTAS is

an efficient alternative for graphs with large branchwidth. We also perform analytical and

computational studies for a branch-decomposition based fixed parameter exact algorithm

for the CONNECTED DOMINATING SET (CDS) problem in planar graphs. We prove a

better upper bound for the branchwidth in terms of the minimum size of CDS. Using this

improved upper bound, we achieve an improved time complexity for the exact algorithm for

the CDS problem. Finally, we show that the density of the CDS problem in planar graphs

is 1√
5
in bidimensionality theorem.
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Chapter 1

Introduction

An important research area in graph theory and networks is domination which has been

energetically investigated for many years due to its large number of real-world applications.

Haynes et al. in their book on domination [67] listed more than 1200 papers in this area.

Let G(V,E) be an undirected graph with the set of vertices V and the set of edges E. The

classical k-dominating set D of graph G(V,E) is a subset of V containing k vertices, such

that for every vertex v in V , either v ∈ D or v has a neighbour in D. The minimum integer

k for which G has a k-dominating set is called the dominating number of G and is denoted

by γ(G).

The DOMINATING SET problem is to decide that given a graph G(V,E) and an integer

k, whether γ(G) ≤ k. The optimization version of this problem is to find the minimum

dominating set. This problem has a wide rang of real-world applications. One of the most

widely noted applications of this problem is the resource allocation problem. The first

instance of the resource allocation problem was introduced by Berge in [13] as the problem

of locating minimum number of radars to cover an area. Liu in [83] introduced a similar

problem for distributing minimum number of transmitting stations to connect a set of cities.

Here the communication links are set up between cities and transmission stations must be

located in some of these cities so that every city can receive messages from at least one of

these stations through the links. The problem of finding minimum number of cities to set

up stations is exactly that of finding the minimum dominating set of the graph having the

cities as vertices and the communication links as edges. He also showed that if the induced

graph has no isolated vertex, it is possible to set up two groups of transmission stations

such that no city has two transmission stations.

1
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Another application of DOMINATING SET problem arises in voting [91]. Assume that

a committee needs to be chosen from the staff of a research organization. It is hoped that the

committee would best represent the needs and viewpoints of the entire staff but still not too

large. To choose the committee every staff member indicates on his ballot his best candidate.

Instead of choosing the members with the largest numbers of votes, a structural analysis is

made of the votes. A graph of election is constructed, such that vertex u is connected to

v if person u voted for person v. Minimum dominating set of this graph is the best group

of members that represents the needs and the viewpoints of all the members. The power

domination in electronic power networks [66] is a recent application of DOMINATING SET

problem. The electric power companies need to continually monitor the state of variables

such as voltage and load for their electronic systems. One method of monitoring these

variables is to place phase measurement units (PMUs) at selected locations in the system.

Since PMUs are expensive devices, it is desirable to minimize their number while the entire

system is monitored. Let G = (V,E) be a graph representing an electric power system,

where a vertex represents an electrical node and an edge represents a transmission line

joining two electrical nodes. PMUs are placed in the vertices of the graph in a way that the

PMU at vertex v can monitor incident edges to v and their end vertices. The problem is

placing minimum number of PMUs in a subset of vertices such that all edges and vertices of

the graph are monitored. This is a graph theory problem closely related to the well-known

vertex covering and domination problems. Hence, this problem is not only of interest in the

power system industry but also as a new problem in graph theory.

The origin of the dominating set concept traces back to the 1850’s, when the following

problem was noticed among chess players in Europe: Determine the minimum number of

queens that can be placed on a chessboard so that all squares are either attacked by a queen

or are occupied by a queen. A large number of domination problem variations have been

introduced over the years. More than 75 variations of domination have been addressed in

[67]. Below is a list of some of the fundamental types of the domination problem:

1. VERTEX COVER: A vertex v is said to cover every edge incident to v. A vertex

cover is a set S of vertices which covers every edge in E.

2. EDGE DOMINATION: A set S of edges is an edge dominating set, if for every edge

e ∈ E \ S there exists an edge f ∈ S, such that e and f have a vertex in common.

3. INDEPENDENT DOMINATION: A dominating set D is an independent dominating
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set if no two vertices in D are adjacent.

4. CONNECTED DOMINATION: A dominating set D is a connected dominating set if

the subgraph induced by D is a connected subgraph of G.

The DOMINATING SET problem is proved NP-complete [59]. However, due to its prac-

tical importance this problem has been the subject of many researches. In this thesis we

deeply study two problems: DOMINATING SET problem and CONNECTED DOMINAT-

ING SET problem. We begin by introducing these problems in details and then review the

existing approaches to solve these problems. Since the most efficient algorithms for these

problems are based on the notion of branch-decomposition we also introduce this notion.

The formal definitions of these problems are given in Chapter 2.

1.1 DOMINATING SET problem

As for most of the NP-hard problems the approximation algorithms and (exact) fixed-

parameter algorithms are two well-studied coping strategies for the DOMINATING SET

problem.

In general, a minimization problem P of size n is α−approximable (α ≥ 1) if there is a

polynomial time algorithm which gives a solution for any instance of P with solution value

at most α.OPT , where OPT is the value of the optimal solution for that instance of P . If

P is (1+ ǫ)−approximable for any fixed ǫ > 0 then P has a polynomial time approximation

scheme (i.e., has a PTAS). The DOMINATING SET problem for general graphs is (1 +

logn)−approximable [74], however is not approximable within a factor (1 − ǫ) lnn for any

ǫ > 0 unless NP ⊆ DTIME(nlog logn) [51]. The DOMINATING SET problem has been

widely studied on an important class of graphs, the planar graphs. A graph is planar if it

can be drawn in the sphere with no crossing edges. The DOMINATING SET problem on

planer graphs, known as PLANAR DOMINATING SET problem, is known to be NP-hard

[59], however, a (1 + ǫ)−approximation algorithms with running time of 2O(1/ǫ)nO(1) has

been introduced by Baker in [12] for this problem.

An optimization problem is fixed-parameter tractable, if the value of an optimal solution

of the problem, denoted by a parameter k, can be found by an algorithm in polynomial

time in the input instance size and in f(k) time where f(k) is a computable function

[45]. Such an algorithm for a fixed-parameter tractable problem is called fixed -parameter
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tractable (FPT) algorithm. Readers may refer to [55] for a survey on new techniques for

developing exact exponential time algorithms. It is shown in [45] that for general graphs the

DOMINATING SET problem is not fixed-parameter tractable unless some collapses occur

between parametrized complexity classes. However PLANAR DOMINATING SET problem

is fixed-parameter tractable [45].

A main idea behind many FPT algorithms for the hard problems in graphs is to parti-

tion the input graph into subgraphs, find solutions for each subgraph and combine them to

get the final solution for the original graph. One of the well known methods for develop-

ing FPT algorithms on planar graphs is based on branch-decompositions of planar graphs.

Informally, a branch-decomposition of a graph G is a collection of vertex-cut sets repre-

sented as links of a tree whose leaves are edges of G. The width of a branch-decomposition

is the maximum size of a cut set in the collection and the branchwidth of G, denoted by

bw(G), is the minimum width of all possible branch-decompositions of G. Another tool to

decompose the graph into subgraphs is tree-decomposition that generates subgraphs which

are induced by the set of vertices although in branch-decomposition the subgraphs are

induced by the sets of edges. A tree/branch-decomposition based algorithm utilizes decom-

positions to partition the input graph into subgraphs and applies dynamic programming

on the subgraphs resulted by this decomposing to solve many combinatorial problems on

graphs. The running time of a tree/branch-decomposition based algorithm is usually expo-

nential in the width of the decomposition used and polynomial in the size of input instance.

Therefore treewidth/branchwidth are considered bounded parameters. The tree/branch-

decomposition based approach gives fixed parameter algorithms. The first fixed-parameter

algorithms for the PLANAR DOMINATING SET problem on planar graphs with γ(G) = k

have running time O(11kn) [45] and O(8kn) [48], these algorithms are tree-decomposition

based algorithms. Most tree-decomposition based algorithms suffer from the large constants

which make them impractical. One efficient way to deal with this problem is to use branch-

decomposition instead of tree-decomposition. Fomin and Thilikos gave such an algorithm

of running time O(2(3log4
3)bw(G)k + n3), where bw(G) is the branchwidth of G [56]. They

proved bw(G) ≤ 3
√

4.5γ(G) resulting in an O(215.13
√
k+n3) time algorithm for the PLANAR

DOMINATING SET problem. Recently, several exponential speedups in fixed-parameter

algorithms for various problems on several classes of graphs have been achieved. These tech-

niques reduce the running time of a class of FPT algorithms from 2O(k)nO(1) to 2O(
√
k)nO(1),

where k is the parameter, usually the value of the optimal solution of the problem. This
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framework builds on the bidimensionality theory and can be applied to extend the subex-

ponential time fixed-parameter algorithms for the class of problems including VERTEX

COVER and DOMINATING SET problems in planar graphs to a broader class of graphs

excluding a fixed graph as a minor. The work of [52] further makes such extensions possible

for the non-local problems represented by the longest path and CONNECTED DOMINAT-

ING SET problems. The survey papers of [37, 53] give a summary on the progress of the

subexponential fixed-parameter algorithms, the bidimensionality theory and its algorithmic

applications. Examples of such subexponential time algorithms include those that solve

the PLANAR k-VERTEX COVER problem, the PLANAR k-DOMINATING SET prob-

lem, and PLANAR k-LONGEST PATH problem in O(23.57
√
kk+ n), O(211.98

√
kk+ n3) and

O(210.52
√
kn+ n3) time, respectively [40].

1.2 CONNECTED DOMINATING SET problem

A dominating set, D, of a graph G is a connected dominating set of G if the graph induced

by the vertices of D is a connected subgraph of G and the minimum size of a connected

dominating set of G is called connected dominating number of G and denoted by γc(G).

The CONNECTED DOMINATING SET (CDS) problem is NP-complete [59]. The best

existing approximation ratios for this problem are 2(1+ln∆) and (ln∆+3), where ∆ is the

maximum vertex degree of the input graph [63]. It is proved that the CDS problem is not ap-

proximable within a factor of (1− ǫ) ln∆ for any ǫ > 0 unless NP ⊆ DTIME(nlog logn)[63].

Furthermore, it is fixed-parameter intractable unless the parametrized complexity classes

collapse [45, 44].

The PLANAR CDS problem is also NP-complete [59]. However, the PLANAR CDS

problem admits a PTAS [36], and is fixed parameter tractable [42, 43]. In many applications

in wireless networks, the network nodes have limited power supply [85]. Thus, it requires

that the operations at the network nodes to be energy efficient. Planar graphs play a key

role in the energy efficient routing and broadcasting. For example, in many wireless network

models the Gabriel graph, which is planar, provides a most energy efficient topology for the

networks [79]. Practically efficient exact algorithms for the PLANAR CDS problem are of

great interests for those applications. Although, the CDS problem and the DOMINATING

SET problem looks similar, the existing approaches for the DOMINATING SET problem can

not be applied for the CDS problem. The reason is that the connectivity in the CDS problem
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is a non-local property (more details in Chapter 5). Informally, in dynamic programming

step of the DOMINATING SET algorithm, each partial solution of a subgraph can be

identified based on local properties of the subgraph, however in the CDS problem this is

not possible which makes the merging partial solutions more difficult. Dorn et al. [42]

introduced a new algorithm design technique based on a branch-decomposition of planar

graphs with certain geometric properties (known as sphere-cut decomposition) and showed

that a number of non-local hard problems, including the CDS problem, in a planar graph

G can be solved in O(2O(bw(G))nO(1)) time, where bw(G) is the branchwidth of G. These

results imply an 2O(
√
k) time fixed-parameter algorithm for the planar CDS problem, where

k = γc(G).

1.3 Basic techniques

As we mentioned in the previous sections the PLANAR DOMINATING SET problem and

the PLANAR CDS problem are NP-complete and only approaches to solve these problems

are approximation and exact algorithms. The notion branch-decomposition is a powerful

tool to develop fixed parameter algorithms for these problem. However the running time

of the branch-decomposition based algorithms are exponential in the width of the branch-

decomposition used. For graphs with large branchwidth, the branch-decomposition based al-

gorithms are not practical. To approach this issue Baker introduced a new technique, called

outer planar-decomposition, to decompose the graph into subgraphs with small branchwidth.

For every subgraph the problem in practical time and memory can be solved and she showed

that combining the solutions of the subgraphs results an approximated solution. Another

approach to reduce the running time of a branch-decomposition based algorithm is kernel-

ization. In this method for a given graph G, by applying some reduction rules some nodes

and edges of G are removed such that the size of optimal solution is not changed. Decreas-

ing the size of the input graph using reduction rules can improve the branch-decomposition

based algorithms. In what follows we introduce branch-decomposition based algorithms,

outer planar-decompositions and kernelization.
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1.3.1 Branch-decomposition of planar graphs

The notation of branch-decomposition is introduced by Seymour and Robertson [98] in

proof of the Graph Minors theorem which is known as Wagner’s conjecture. Branch-

decompositions of graphs and tree-decompositions are closely related. Courcelle [32] and

Arnborg et al. [10] showed that many NP-hard problems on graphs can be solved in poly-

nomial time if the tree/branchwidth of the input graph is bounded by a constant. Using

tree/branch-decompositions results in some algorithms that have exponential time in the

width of tree/branch-decomposition used and polynomial in the size of the input graph.

These algorithms are called tree/branch-decomposition based algorithms and have two main

steps:

1. decomposing the input graph into subgraphs using a tree or branch-decomposition.

2. applying dynamic programming to compute partial solutions for the subgraphs and

combining these solutions to find an optimal solution for the original graph.

There is a no big difference between tree-decomposition based algorithms and branch-

decomposition based algorithms in theory. But branch-decomposition based algorithms

are easier to implement and more practical [56]. In this thesis we concentrate on branch-

decomposition based algorithms and for more information on tree-decomposition based al-

gorithms you may refer to [70, 103]. Since every branch-decomposition based algorithm has

exponential running time in the width of the branch-decomposition used , finding a branch-

decomposition of small width in Step (1) is very important. However it is NP-complete to

decide the minimum branchwidth of a general graph [102]. If the problem is restricted to

planar graphs, Seymour and Thomas give a decision algorithm (called ST Procedure for

short in what follows) which decides if a given planar graph G has a branchwidth at least k

in O(n2) time [102]. Using ST Procedure as a subroutine, they also give an algorithm which

constructs an optimal branch-decomposition of G in O(n4) time [102]. Gu and Tamaki [61]

give an improved algorithm which calls ST Procedure O(n) times and runs in O(n3) time

to construct the branch-decomposition.

1.3.2 Outer planar-decomposition

The existing theoretical proof and also our computational results for the DOMINATING

SET problem show that the branch-decomposition based algorithms on planar graphs with
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large branchwidth are not practical. To approach this issue Baker introduced outer planar-

decomposition method to find an approximated solution for solving problems on planar

graphs with large branchwidth [12]. In this approach the input graph is embedded on a

sphere such that the vertices of the graph are placed on k nested circles which are called

layers. It is shown [12] that every subgraph induced by m layers has branchwidth at most

2m. In outer planar-decomposition method the input graph is divided into subgraphs of

constant layers, and for every subgraph a branch-decomposition based algorithm can be

applied to generate an optimal solution for the subgraph. Combining these optimal solutions

for subgraphs gives an approximated solution for the original graph.

1.3.3 Kernelization

Two encouraging facts about the branch-decomposition based algorithms for PLANAR

DOMINATING SET problem are the existence of polynomial time algorithms for com-

puting an optimal branch-decomposition of planar graphs [61, 102] and a linear size kernel

for the problem [7]. In particular, Alber et al. [7] gave an O(n3) time algorithm that for

a given planar graph G with γ(G) = k, produces a reduced graph H (kernel) such that H

has O(k) vertices and γ(H) = k′ ≤ k. They showed that a minimum dominating set of

G can be constructed from a minimum dominating set of H in linear time. These results

motivate us to perform a collection of computational studies on PLANAR DOMINATING

SET problem [87]. It is also known that the PLANAR CDS problem admits a linear size

kernel [72, 86] and such a kernel can be computed in O(n3) time [72].

1.4 Motivation and contribution

Although, significant theoretical progress has been made towards the fixed-parameter algo-

rithms for the DOMINATING SET problem, limited work has been done on the practical

performances of these algorithms and their variations. Alber and et. al. [5, 4] presented the

experimental evaluations for the tree-decomposition based algorithms for several problems

including the VERTEX COVER and DOMINATING SET problems in planar graphs. A

recent experimental study on the heuristic algorithms for the DOMINATING SET problem

also been reported in [99]. Major barriers include computing a branch-decomposition in

practice and implement the FPT algorithms. Our contribution in this dissertation are four

folds:
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1. Develop efficient and practical algorithms to compute an optimal branch-decomposition

of planar graphs. This provides tools for the evaluation of practical performance of

branch-decomposition based algorithms for NP-hard problems in planar graphs (Joint

work with Zhengbing Bian).

2. Computational study of an FPT algorithm for the PLANAR DOMINATING SET

problem.

3. Computational study of an FPT algorithm for the PLANAR CDS problem that briefly

introduced in [42] ( we call it DPBF algorithm). In this study we also prove a better

upper bound on the running time of DPBF Algorithm, and give an efficient imple-

mentation.

4. Develop and implement of a PTAS based on outer planar-decomposition method for

the PLANAR DOMINATING SET problem. We show that the mentioned approxima-

tion ratio for this problem in [12] is not correct and we prove the correct approximation

ratio.

In contribution (1), we develop efficient and practical algorithms to compute the opti-

mal branch-decomposition of a planar graph. The results from previous studies show that

the memory usage is a bottleneck for ST Procedure [68]. We introduce several improve-

ments to reduce the memory usage and make it practical. This makes the evaluation of

practical performance of FPT algorithms possible. We also study the performance of O(n3)

time algorithm by Gu and Tamaki for computing the optimal branch-decompositions. This

contribution is a joint work with Zhengbing Bian, Qianping Gu, Hisaco Tamaki and Yumi

Yoshitake that appeared in Proc. of the 10th SIAM Workshop on Algorithm Engineering

and Experiments (ALENEX’08)[18] and a part of work is also appeared in Bian’s PhD thesis

[16].

In contribution (2), we give an efficient implementation for Fomin and Thilikos algo-

rithm [56] for solving the PLANAR DOMINATING SET problem that uses the branch-

decomposition based approach. The computational results show that the algorithm can

solve the DOMINATING SET problem of large planar graphs in a practical time and mem-

ory space for the class of graphs with small branchwidth. For the class of graphs with large

branchwidth, the size of instances that can be solved by the algorithm in practice is limited

to about one thousand edges due to memory space bottleneck. The practical performances
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of the algorithm coincide with the theoretical analysis of the algorithm. Our results suggest

that the branch-decomposition based algorithms can become practical for some applications

on planar graphs. We also slightly improve the size of kernel for this problem and we im-

plement some heuristic algorithms for the DOMINATING SET problem. We compare their

performance with Fomin and Thilikos algorithm.

In contribution (3), we perform computational studies for a non-local problem, the

PLANAR CONNECTED DOMINATING SET problem. The work of Dorn et al. [42, 43]

suggests a theoretically efficient exact algorithm (called DPBF Algorithm) for the CDS

problem in planar graphs of small branchwidth. However, the practical performance of the

algorithm is yet to be evaluated. Due to the non-local property of the CDS problem, it is

more difficult to implement the tree/branch-decomposition based algorithm for the problem.

This may be a hurdle for the computational study of DPBF Algorithm.

Since the DPBF Algorithm is only briefly introduced and the analysis is not explicitly

given in the literature [42, 43, 40], we give a detailed description of the algorithm and analyze

its running time. By a better analysis, we prove that DPBF Algorithm has running time

in O(24.62bw(G)γc(G) + n3), which improves the running time of O(24.67bw(G)γc(G) + n3),

implicitly mentioned in [42, 43, 40]. We also introduce a new upper-bound for bw(G) based

on γc(G). It is known that bw(G) ≤ 3
√

4.5γ(G) [57, 56]. Since γ(G) ≤ γc(G), DPBF

Algorithm solves the PLANAR CDS problem in O(223.7
√

γc(G)γc(G) + n3) time. We prove

that bw(G) ≤ 2
√

10γc(G) + 32 for a planar graph G and improve the previous upper

bound of bw(G) ≤ 3
√

4.5γ(G). From this result, the PLANAR CDS problem admits an

O(223.54
√

γc(G)γc(G)+n3) time fixed-parameter algorithm. We also perform a computational

study to evaluate DPBF Algorithm on several classes of planar graphs. These classes cover a

wide range of planar graphs that have been used in previous computational studies [3, 6, 87].

In contribution (4), we implement a PTAS algorithm based on outer planar-decomposition

method for PLANAR DOMINATING SET problem. We use Fomin and Thilikos algorithm

to compute the partial solutions for the subgraphs. Baker mentioned that the approxima-

tion ratio for the PLANAR DOMINATING SET problem is (k+1)
k . However, we give a

counter example to show this proof is not correct for the PLANAR DOMINATING SET

problem. We show that the approximation ratio for the outer planar-decomposition method

is actually (k+2)
k . Our introduced PTAS algorithm can be used to compute a dominating

set of planar graphs of large branchwidth.
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To complete our computational study, we implement some heuristic algorithms for the

DOMINATING SET problem and compare their performance with the fixed-parameter

algorithm and PTAS algorithms. Heuristic algorithms are faster than the fixed-parameter

algorithms but the difference between the results are sometimes considerable.

Our computational study gives a concrete example on using the branch-decomposition

based algorithms for solving important local and non-local problems in planar graphs and

shows that the PLANAR DOMINATING SET and CDS problems can be solved in practice

for a wide range of graphs. This work provides a tool for computing the optimal con-

nected dominating set of planar graphs and may bring the sphere-cut decomposition and

noncrossing partitions based approach closer to practice.

1.5 Organization

This thesis is organized as follows: In Chapter 2 we introduce preliminaries and pre-

vious works on DOMINATING SET, CONNECTED DOMINATING SET and branch-

decompositions. Chapter 3 introduces algorithms for computing branch-decomposition and

our algorithms for branch-decomposition of planar graphs. In Chapter 4 we discuss the

computational study of Fomin and Thilikos Algorithm for PLANAR DOMINATING SET

problem. In Chapter 5 we introduce the details of a sphere-cut decomposition based algo-

rithm (DPBF Algorithm) for solving the PLANAR CDS problem and show the running time

of the algorithm and the results of the computational studies of this algorithm. In Chapter 6

we introduce a PTAS algorithm for the PLANAR DOMINATING SET problem and study

its performance. In Chapter 7 we study the performance of proposed heuristic algorithms

and compare them with the fixed-parameter algorithm for the PLANAR DOMINATING

SET problem. Finally, we conclude the thesis in Chapter 8.



Chapter 2

Preliminaries and related works

2.1 Preliminaries

In this chapter, we introduce preliminaries and previous works on branch-decomposition,

DOMINATING SET and CONNECTED DOMINATING SET problems on planar graphs.

2.1.1 Basic definition

We use the standard notation of graphs which is used in many graph theory books, such

as [109]. Graphs discussed in this thesis are undirected unless otherwise stated. A graph

G consists of a set V (G) of vertices and a set E(G) of edges, where each edge e of E(G) is

a subset of V (G) with two elements. In this definition, we do not allow self-loop edge but

allow parallel edges in G.

For a set A ⊆ E(G) of edges let V (A) = ∪e∈Ae be the set of vertices in edges of A.

We say a vertex v and an edge e are incident to each other if v ∈ e. We say that two

edges e1 and e2 are incident to each other if e1 ∩ e2 6= ∅. A graph H is a subgraph of G if

V (H) ⊆ V (G) and E(H) ⊆ E(G). For a subset A ⊆ E(G) (U ⊆ V (G)), we denote by G[A]

(G[U ]) the subgraph of G induced by A (U). For each X ⊆ V (G), we denote by δG(X) the

set of edges incident with a vertex in X and a vertex in V (G) \X.

Let Σ be a fixed sphere. A set P of points in Σ is a topological segment of Σ if it is

homeomorphic to an open segment {(x, 0)|0 < x < 1} in Σ. For a topological segment P ,

we denote by P the closure of P and bd(P ) = P \ P the two end points of P . A planar

embedding of a graph G is a mapping ρ : V (G) ∪ E(G) → Σ ∪ 2Σ satisfying the following

12
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properties.

• For u ∈ V (G), ρ(u) is a point of Σ, and for distinct u, v ∈ V (G), ρ(u) 6= ρ(v).

• For each edge e = {u, v} of E(G), ρ(e) is a topological segment with two end points

ρ(u) and ρ(v).

• For distinct e1, e2 ∈ E(G), ρ(e1) ∩ ρ(e2) = {ρ(u)|u ∈ e1 ∩ e2}.

A graph is planar if it has a planar embedding. A plane graph is a pair (G, ρ), where

ρ is a planar embedding of G. We may simply use G to denote the plane graph (G, ρ),

leaving the embedding ρ implicit. We do not distinguish a vertex v (resp. an edge e) from

its embedding ρ(v) (resp. ρ(e)) when there is no confusion. For a plane graph G, each

connected component of Σ \ (∪e∈E(G)ρ(e)) is a face of G. We denote by R(G) the set of

faces of G. A face r ∈ R(G) and an edge e ∈ E(G) are incident to each other if e is a

boundary of r in the embedding. Notice that an edge e is incident to exactly two faces.

For a face r ∈ R(G), a vertex v is incident to r if v is an end vertex of an edge incident to

r. For a face r ∈ R(G), let V (r) and E(r) be the sets of vertices and edges incident to r,

respectively. For a vertex v ∈ V (G), let E(v) be the set of edges incident to v.

For a planar graph G, the planar dual G∗ of G is defined as that for each face r ∈ R(G),

there is a unique vertex v∗r ∈ V (G∗), and for every vertex v ∈ V (G), there is a unique face

r∗v ∈ R(G∗) . For every edge e ∈ E(G) incident to faces r and r′, there is a unique edge

e∗ = {v∗r , v∗r′} ∈ E(G∗) which crosses e. Figure 2.1 gives a plane graph G and its planar

dual G∗.

A walk in a graph G is a sequence of edges e1, e2, ..., ek of G, where ei = {vi−1, vi} for

1 ≤ i ≤ k. A walk is closed if v0 = vk. The length of a walk is the number of edges in the

walk. For two vertices u and v in a graph G, the distance d(u, v) is the minimum length of

all walks between u and v. The walk with distance d(u, v) is a shortest path between u and

v.

For a graph G and a subset A ⊆ E(G) of edges, we denote E(G) \ A by A when G is

clear from the context. A separation of graph G is a pair (A,A) of subsets of E(G). For

each A ⊆ E(G), we denote by ∂(A) the vertex set V (A) ∩ V (A). The order of separation

(A,A) is |∂(A)| = |∂(A)|.
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Figure 2.1: Plane graph G is given in dashed lines and the planar dual graph G∗ is in solid
lines

2.1.2 Branch-decompositions and grid-minors

The notions of branchwidth and branch-decomposition are introduced by Robertson and

Seymour [98]. A branch-decomposition of graph G is a pair (φ, T ) where T is a tree, each

internal node of which has degree 3 and φ is a bijection from the set of leaves of T to E(G).

Consider a link e of T and let L1 and L2 denote the sets of leaves of T in the two respective

subtrees of T obtained by removing e. We say that the separation (φ(L1), φ(L2)) is induced

by link e of T . We define the width of the branch-decomposition (φ, T ) to be the largest

order of the separations induced by links of T . The branchwidth of G, denoted by bw(G),

is the minimum width of all branch-decompositions of G. In the rest of this thesis, we

identify a branch-decomposition (φ, T ) with the tree T , leaving the bijection implicit and

regarding each leaf of T as an edge of G. Figure 2.2 shows a planar graph with 7 vertices,

and a branch-decomposition of G with width 4. In this example, the width of the branch-

decomposition is corresponding to the order of the separation induced by edge e which is

denoted by dash lines in Figure 2.2.

Seymour and Thomas [102] give an algorithm which, given a planar graph G and integer
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(a) A planar graph G (b) A branch-decomposition of G

Figure 2.2: A planar graph G with 7 vertices and a branch-decomposition of G with width
4

k decides if bw(G) ≤ k in O(n2). The algorithm is known as the rat-catching, also called

ST Procedure in this thesis. ST procedure actually works on another decomposition called

carving-decomposition.

A carving decomposition of G is a tree TC such that the set of leaves of TC is V (G) and

each internal node of TC has node degree 3. For each link e of TC , removing e separates TC

into two subtrees and the two sets of the leaves of the subtrees are denoted by V ′ and V ′′.

The width of e is the number of edges of G incident to both a vertex in V ′ and a vertex in

V ′′. The width of TC is the maximum width of all links of TC . The carvingwidth of G is

the minimum width of all carving decompositions of G.

A more general definition of carving decomposition can be found in [102]. The definition

allows positive integer lengths on edges of the graphs. The width of e in TC for the weighted

graph is defined as the sum of weights of edges with an end vertex in V ′ and an end vertex

in V ′′.

Let G be a plane graph and R(G) be the set of faces of G. The medial graph [102], M(G)

of G is a planar graph with an embedding such that V (M(G)) = {ue|e ∈ E(G)}, R(M(G)) =

{rs|s ∈ R(G)} ∪ {rv|v ∈ V (G)}, and there is an edge {ue, ue′} in E(M(G)) if the edges e

and e′ of G are incident to a same vertex v of G and they are consecutive in the clockwise

(or counter clockwise) order around v. M(G) in general is a multigraph but has O(|V (G)|)
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Figure 2.3: A planar graph G with 7 vertices and its corresponding medial graph

edges. Figure 2.3 shows a plane graph and its medial graph.

Seymour and Thomas [102] show that the carvingwidth of M(G) is exactly twice the

branchwidth of G and an optimal carving-decomposition of M(G) can be translated into

an optimal branch-decomposition of G in linear time. To decide whether a planar graph G

has the branchwidth at least an integer β, ST Procedure actually decides whether M(G)

has the carvingwidth at least 2β.

Let G be a plane graph. We say that a curve µ on the sphere Σ is G-normal if µ does

not intersect with itself or any edge of G. A noose of G is a closed G-normal curve on Σ.

Let ν be a noose of G and let R1 and R2 be the two open regions of the sphere separated

by ν. Then, ν induces a separation (A,A) of G, with A = {e ∈ E(G) | ρ(e) ⊆ R1} and

A = {e ∈ E(G) | ρ(e) ⊆ R2}. We also say that noose ν induces edge-subset A of G if ν

induces a separation (A,A) having A on one side. We call a separation or an edge-subset

noose-induced if it is induced by some noose. A branch-decomposition T of G is a sphere-

cut decomposition if every separation induced by a link of T is noose-induced [42, 43]. It

is known that every plane graph G has an optimal branch-decomposition (of width bw(G))

that is a sphere-cut decomposition and such a decomposition can be found in O(n3) time

[102, 61].
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2.1.3 Domination problems

A dominating set D of G is a subset of V (G) such that for every vertex u ∈ V (G), u ∈ D

or u is incident to a vertex v ∈ D. The dominating number of G, denoted by γ(G), is the

minimum size of a dominating set of G. The DOMINATING SET problem is to decide

if γ(G) ≤ k for a given graph G and integer k. The optimization version of the problem

is to find a dominating set D with |D| = γ(G). The DOMINATING SET problem is a

core NP-complete problem in combinatorial optimization and graph theory [59]. The rich

literature of algorithms and complexity of DOMINATING SET problem can be found in

[67].

A subset D of V (G) is a CONNECTED DOMINATING SET (CDS) of G if D is a

dominating set of G and the subgraph G[D] induced by D is connected. The connected

dominating number of G, denoted by γc(G), is the minimum size of a CDS of G. The CDS

problem is to decide if γc(G) ≤ k for a given graph G and integer k. The optimization version

of the CDS problem is to find a minimum CDS of an input graph. The CDS problem is an

important variant of the DOMINATING SET problem and has wide practical applications

in wireless ad hoc or sensor networks such as virtual backbone construction [29], energy

efficient routing and broadcasting [19]. Notice that γ(G) ≤ γc(G) ≤ 3γ(G)− 2.

2.2 Previous works

Decompositions play an important role in graph theory. Various decompositions of the

graphs such as decomposition by clique separators, tree-decomposition and branch-decomposition

are often used to design efficient graph algorithms. There are even interesting general results

stating that a variety of NP-complete graph problems can be solved in linear time for graphs

of bounded treewidth and bounded cliquewidth [10, 32]. The common approach to design

efficient algorithms using decompositions works as follows: smaller graphs are generated re-

cursively until the obtained graph can not be decomposed further. The algorithm solves the

problem on these subgraphs and combine the solutions recursively to achieve the solution for

the original graph. To achieve an efficient algorithm, the input graph must be restricted to

graph classes that are nicely decomposable with the respect to the decomposition method.

Several decompositions have been studied in this direction. Modular decomposition is one

of the earliest methods to decompose a graph [58] (more information can be found in the

thorough survey [89]). The recent researches on modular decompositions show that using
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this method results efficient algorithms for solving some NP-complete problems [25, 23, 26].

Tarjan also showed that some NP-complete problems which are solvable using decomposi-

tion by clique-separators [105]. Many NP-complete problems can be solved by polynomial

time (or even linear time) algorithms using tree-decomposition or clique decompositions if

the treewidth or cliquewidth of the graph is bounded [10, 32, 46, 77]. However, the huge

constant behind the Big-Oh makes the linear time algorithms impractical.

2.2.1 Branch-decomposition

The notions of branchwidth and branch-decompositions are introduced by Robertson and Sey-

mour [98] in relation to the more celebrated notions of treewidth and tree-decompositions [96,

97]. For an arbitrary graph G, there is a linear relation between the treewidth tw(G) and the

branchwidth bw(G) of G, bw(G) ≤ tw(G)+ 1 ≤ ⌊3bw(G)
2 ⌋ which is proven by simple transla-

tion between branch-decomposition and tree-decomposition in [98]. A graph of small branch-

width (or treewidth) admits efficient dynamic programming algorithms for a vast class of

problems on the graphs [10, 20]. There are two major steps in a branch/tree-decomposition

based algorithm for solving a problem: (1) computing a branch/tree-decomposition with a

small width and (2) applying a dynamic programming algorithm based on the decomposi-

tion to solve the problem. Step (2) usually runs in exponential time in the width of the

branch/tree-decomposition computed in Step (1). So it is extremely important to decide the

branchwidth/treewidth and compute the optimal decompositions. It is NP-complete to de-

cide whether the width of a given general graph is at least an integer β if β is part of the input,

both for branchwidth [102] and treewidth [9]. When the branchwidth (treewidth) is bounded

by a constant, both the branchwidth and the optimal branch-decomposition (treewidth and

optimal tree-decomposition) can be computed in linear time [21, 27]. However, the huge

constants behind the Big-Oh make the linear time algorithms only theoretically interesting.

It is proved that the optimal branchwidth of a planar graph can be computed in polyno-

mial time [102]. This is the reason that the branch-decomposition based algorithms for

problems on planar graphs have recently received more attention [42, 56]. Seymour and

Thomas in [102] introduce a decision algorithm (called ST Procedure) to decide the optimal

branchwidth of a planar graph in O(n2) time. Using this decision algorithm they showed

that the optimal branch-decomposition can be computed in O(n4) [102]. Gu and Tamaki

further optimized this result and showed that using the same decision algorithm the optimal

branch-decomposition of a planar graph can be computed in O(n3) [61]. The computational
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study of ST Procedure shows that its straightforward implementation is not practical where

the memory usage is the bottleneck [68].

Approximation algorithms for computing the width and minimum-width decompositions

of general graphs have been extensively studied as well (see [8, 24] for literature). Be-

cause of the relationship between treewidth/tree-decomposition and branchwidth/branch-

decomposition stated above, the approximation problems for these two types of decom-

positions are almost equivalent. For general graphs, the best known approximation ratio

computable in polynomial time for the minimum treewidth is O(
√
log k), where k is the

optimal width [47], and constant-factor approximation algorithms take time exponential in

the optimal width [8, 102]. For planar graphs, the best-known approximation result for

treewidth is the obvious O(n2 log n) time 1.5-approximation algorithm, which uses the rat-

catching algorithm of Seymour and Thomas [104] and a binary search. Tree-decompositions

take O(n3) time for 1.5-approximation. Bodlaender, Grigoriev and Koster give another

constant-factor approximation algorithm for the treewidth of planar graphs that runs in

O(n2logn) time but uses less memory [24].

One hurdle for applying branch/tree-decomposition based algorithms in practice is the

difficulty of computing a good branch/tree-decomposition because of the NP-hardness and

huge hidden constants problems. Recently, the branch-decomposition based algorithms with

practical importance for problems in planar graphs have been receiving increasing attention

[42, 56]. This is motivated by the fact that an optimal branch-decomposition of a planar

graph can be computed in polynomial time by Seymour and Thomas algorithm [102] and the

algorithm is reported efficient in practice [68, 69]. Notice that it is open whether computing

the treewidth of a planar graph is NP-hard or not. The result of the branchwidth implies a

1.5-approximation algorithm for the treewidth of planar graphs. Readers may refer to the

recent papers by Bodlaender [22] and Hicks et al. [70] for extensive literature in the theory

and application of branch/tree-decompositions.

Hicks proposes a divide and conquer heuristic algorithm to reduce the number of calls for

ST Procedure [69]. All known algorithms for computing the optimal branch-decomposition

of a planar graph rely on ST Procedure and thus an efficient implementation of the procedure

plays a key role in computing the branch-decompositions. A straightforward implementation

of ST Procedure requires O(n2) bytes of memory. Because the constant behind the Big-Oh

is non-trivial, the memory required by the straightforward implementation is reported in

[68] a bottleneck for solving large instances with more than 5,000 edges. Hicks proposes
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memory friendly implementations in the cost of performing re-calculations and increasing

the running time of ST Procedure to O(n3) [68].

2.2.2 DOMINATING SET problem

The DOMINATING SET problem is NP-complete [59]. For an arbitrary undirected graph G

of n vertices, the DOMINATING SET problem is known (1+logn)−approximable [74], but

not approximable within a factor of (1−ǫ) lnn for any ǫ > 0 unless NP ⊆ DTIME(nlog logn)

[51]. Two 2-approximation algorithms have been proposed for other variations of DOMI-

NATING SET problem, the VERTEX COVER [100] and the EDGE DOMINATION [110]

problems. Karakostas in [76] proposed a (2 − θ(1/
√
log n))−approximation algorithm for

the VERTEX COVER problem and Chlebk and Chlebkov [30] proved that it is NP-hard

to approximate EDGE DOMINATION problem within any factor better than 7/6. Fur-

thermore, it has been proved that the INDEPENDENT DOMINATING SET problem can

not be approximated within n1−ǫ unless P = NP [65]. The outer planar-decomposition

method for solving the PLANAR DOMINATING SET problem [12] can be used to drive

PTAS for other variations of dominating set on the planar graphs such as PLANAR VER-

TEX COVER, PLANAR INDEPENDENT DOMINATION. For the DOMINATING SET

problem the only remaining hope is to design exact algorithms with good exponential run-

ning times. The best known exponential time algorithm for DOMINATING SET problem

is introduced in [106] with time O(1.5063n). Two exponential time algorithms have also

been introduced for INDEPENDENT DOMINATION SET problem with time complexity

O((
√
3)n) [84] and EDGE DOMINATING SET problem with time complexity O(1.3226n)

[107].

The DOMINATING SET problem is also known fixed-parameter intractable unless the

parametrized complexity classes collapse [45, 44]. If the problem is restricted to planar

graphs, it is known as the PLANAR DOMINATING SET problem which is still NP-hard

[59]. But the PLANAR DOMINATING SET problem is known admitting a PTAS [12] and

fixed-parameter tractable [45].

The PLANAR DOMINATING SET problem has been extensively studied. The first

fixed-parameter algorithm for PLANAR DOMINATING SET problem with running time

O(11kn) where k = γ(G) was proposed in [45]. This running time was improved to O(8kn) in

[48]. The exponential speedups give algorithms for the problem with running time O(2c
√
kn),
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where c is some constant [50, 56, 75]. Most of the subexponential algorithms use a tree-

decomposition based algorithm: For a planar graph G with γ(G) = k, a tree-decomposition

of width b
√
k, b is a constant, is computed and the dynamic programming part runs in

O(22b
√
kn) time [50]. One problem with those algorithms is that the constant c = 2b is too

large for solving the PLANAR DOMINATING SET problem in practice. Instead of a tree-

decomposition, a branch-decomposition can be used in the above dynamic programming

algorithms for the PLANAR DOMINATING SET problem. Fomin and Thilikos give such

an algorithm (called FT Algorithm in what follows) of running time O(2(3 log
3
4)bw(G)k+n3),

where bw(G) is the branchwidth of G [56]. Fomin and Thilikos prove that bw(G) ≤ 3
√
4.5k

and O(2(3 log
3
4)bw(G)) = O(215.13

√
k), reducing the constant c to 15.13 [56, 57]. Dorn proposes

an approach of applying the distance product of matrices to the dynamic programming

step in branch/tree-decomposition based algorithms for the problem [40]. If a conventional

O(n3) time algorithm is used for the distance product of matrices, this approach has the same

constant c = 15.13 as that of FT Algorithm. It is known that the distance product of integer

matrices can be realized by the fast matrix multiplication [111]. If the distance product of

matrices is realized by the O(nω)(ω < 2.376) time fast matrix multiplication method [31],

the constant c is improved to 11.98. However, the constant hidden in the Big-Oh may

be huge when the fast matrix multiplication is used. Dorn also proves that the PLANAR

DOMINATING SET problem can be solved in O(3tw(G)nO(1)) time, where tw(G) is the

treewidth of G [41]. The tree-decomposition used in Dorn’s proof is closely related to the

branch-decomposition and the algorithm of [41] has the same sublinear exponent in the time

complexity as that of the algorithm in [40]. An encouraging fact on branch-decomposition

is that an optimal branch-decomposition of a planar graph can be computed in polynomial

time [61, 102]. This makes the branch-decomposition based algorithms receiving increasing

attention for the problems on planar graphs.

Another important progress on the algorithmic tractability of the PLANAR DOMINAT-

ING SET problem is that the problem is shown having a linear size kernel [49]. Kernelization

is an effective approach to speed up fixed-parameter tractable algorithms. Let P be a fixed-

parameter tractable problem characterized by a parameter k, the approach is before starting

a cost-intensive exact algorithm doing a polynomial time pre-processing phase to shrink the

input data of size n to a smaller instance. The solution for the original input then can be

reconstructed in polynomial time in n using a solution for the shrunk instance. It is then
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hoped that the size of the problem kernel is upper-bounded by a polynomial in k, indepen-

dent of n. More specifically, for the PLANAR DOMINATING SET problem, Alber et al.

give an O(n3) time algorithm which, given a planar graph G with γ(G) = k, produces a

reduced graph H (kernel) such that H has O(k) vertices, γ(H) = k′ ≤ k, and a minimum

dominating set of G can be constructed from a minimum dominating set of H in linear time

[49]. In general, H and k′ are smaller than G and k, respectively, since in the reduction

process, a number of vertices in a minimum dominating set of H have been decided. This

reduction process reduces the sub-linear exponent from c
√
k to c

√
k′ and thus improves

the running time of the fixed-parameter algorithms for the PLANAR DOMINATING SET

problem.

2.2.3 CONNECTED DOMINATING SET (CDS) problem

The CDS problem is known to be NP-complete [59]. Guha and Khuller in [63] proposed two

approximation algorithms for the CDS problem on an arbitrary graph with approximation

ratio 2(1 + ln(∆)) and (ln(∆) + 3) respectively, where ∆ is the maximum node degree

of the input graph. The first algorithm employs a greedy approach for solving the CDS

problem as follows. It starts by an empty set D and iteratively adds vertices to the D. In

each iteration the algorithm includes a vertex or a pair of vertices with maximum number

of neighbours which are not dominated yet to the D. The second algorithm computes a

connected dominating set in two steps. In the first step it finds a dominating set of the input

graph, in the second step it includes some vertices to make the dominating set connected.

They also proved that getting an approximation ratio better than (1 − ǫ) ln(∆) for

any fixed ǫ > 0 is not possible unless NP ⊆ DTIME[nO(loglogn)] [63]. The first exact

(exponential) algorithm for the CDS problem with running time O(1.9407n) was proposed

by Fomin et al. in [54]. This algorithm is based on “stay connected” strategy which means

that all partial solutions generated recursively must be connected.

The CDS problem remains NP-hard even when restricted to the class of planar graphs

[59]. The CDS problem on general graphs is not fixed parameter tractable unless fixed

parameter complexity hierarchy collapses and admits a sub-exponential time parametrized

algorithm for planar graphs [36].

Although the CDS problem and DOMINATING SET problem are closely related, they

are rather different from the point of view of exact algorithms. In particular, the techniques

used to solve the DOMINATING SET problem do not seem to work for the CDS problem.
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One of the main reasons of discrepancy is that connectivity is a non-local property: very

often exact algorithms for DOMINATING SET, INDEPENDENT SET problems are based

on the local structure of the problem, theses algorithms seem not able to capture non-local

properties such as connectivity. The CDS problem is an example of non-local problems.

The explicit definitions of local and non-local properties are given in Chapter 5.

Dorn et al. in [42] proposed a new frame work ( called DPBF ALgorithm in what follows)

to design sub-exponential and parametrized algorithms for problems that need non-local

information in planar graphs. This framework is based on a combination of the geometric

properties of branch-decomposition of planar graphs and applying dynamic programming

on planar graphs based on properties of non-crossing partitions (more details can be found

in Chapter5).

Based on this framework, sub-exponential algorithms have been proposed for weighted

Hamiltonian Cycle and Graph Travelling Saleman problems with time complexityO(26.903
√
n)

and O(29.8594
√
n) respectively in [42]. It has been mentioned that this approach can be used

to design parametrized algorithms as well [42]. For example Dorn et al. introduce the first

O(2O(
√
k)nO(1)) time algorithm for parametrized Planar k cycle by showing that for a given

k we can decide if a planar graph on n vertices has a cycle of length at least k in time

O(213.6
√
kn + n3) [42]. They also suggest that the PLANAR CDS problem can be solved

in O(2O(bw(G))n + n3) and O(29.822
√
nn + n3) time [43]1. It is mentioned in [40] that the

running time can be further improved to O(28.11
√
nn+n3) if the fast distance matrix multi-

plication is applied to the second step. The time bound O(2O(bw(G))n+n3) implies that the

PLANAR CDS problem admits an O(2O(
√

γc(G))n+n3) time fixed-parameter algorithm. It

is known that the PLANAR CDS problem admits a linear size kernel [72, 86] and such a

kernel can be computed in O(n3) time [72]. Applying the algorithm of [72] to shrink the

input graph G into a linear size kernel, the DPBF Algorithm solves the PLANAR CDS

problem in O(2O(
√

γc(G))γc(G) + n3) time.

2.2.4 PTAS and heuristics for DOMINATING SET problem

For an NP-hard problem, there is no polynomial time exact algorithm unless P = NP .

If an “almost” optimal solution is enough, applying approximation techniques or heuristic

algorithms can be used. Readers may refer to [108] and [94, 92] for a survey on approximation

1The constant in O(bw(G)) is not explicitly given in [42, 43]
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algorithms and heuristic methods respectively.

PTAS

There are many researches to improve approximation ratio of algorithms for NP-hard prob-

lems, but in many cases improving the approximation ratio is not possible unless some

collapses occur between complexity classes. For example Arora et al. in [11] prove that a

class of NP-hard problems including vertex cover, maximum satisfiability, maximum cut,

metric TSP, Steiner trees and shortest superstring does not have a PTAS, unless P = NP .

Studies on NP-complete problems show that there are many problems which are easier

to approximate on planar graphs. For example maximum independent set is inapproximable

within a factor of n1/2−ǫ for any ǫ > 0 unless P = NP , while for planar graphs there is a

4-approximation algorithm. Another example is the DOMINATING SET problem defined

on a general graph with n nodes, this problem is not approximable within (1− ǫ) lnn unless

P = NP , but the PLANAR DOMINATING SET problem has a PTAS.

There are two main general methods to find PTASs for NP-hard problems on planar

graphs: separator method and outer-planar decomposition method.

Separator Method: This method is based on a famous theorem called Planar Sepa-

rator Theorem [81]. Based on this theorem for every planar graph G with n vertices there

is a separator of size O(
√
n), whose removal splits the graph into subgraphs of size at most

2
3n. Finding this separator can be done in polynomial time.

In the separator method the input graph is recursively split to subgraphs util the size

of resulting subgraphs is a constant. Since the size of the subgraphs is small the problem

on these subgraphs can be solved by a brute-force approach. Then these partial solutions

are combined to generate an approximated solution for the original graph. This approach

can generate a PTAS only for the problem if the optimal solution is at least some constant

factor times n. Some researches such as [90] show that this method is not practical.

Outer-planar decomposition method: In [12] Baker introduces a general method

to obtain approximation schemes for various NP-complete problems on planar graphs. This

method is based on decomposing a general planar graph into k-outer planar subgraphs. A

k-outer planar graph has an embedding with at most k nested disjoint cycles. She shows

that the structure of k-outer planar graphs is adaptable with dynamic programming.

Baker shows that for general planar graphs if the problem P is a maximization problem,

such as maximum independent set, this technique gives for each k a linear time algorithm
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that produces a solution whose size is at least k/(k + 1) optimal. If the problem is a

minimization problem, such as minimum vertex cover, it gives for each k a linear-time

algorithm that produces a solution whose size is at most (k + 1)/k optimal. The details of

the solution of the maximum independent set problem can be found in [12]. This method

resolves two disadvantages of the Separator method. In addition, in [12] some NP-complete

problems are listed which are solvable in polynomial time on k-outer planar graphs for

constant k.

Heuristic methods

As we mentioned before for many problems on planar graphs using decompositions and

applying dynamic programming is effective but its time-complexity often is too high and

unacceptable if the branchwidth of the input graph is large. For example the branch-

decomposition based algorithm introduced by Fomin and Thilikos is not practical for graphs

of large branchwidth. Practically, for many realistic optimization problems heuristics may

be attractive in terms of efficiency and solution quality for graphs of large branchwidth.

A heuristic method or heuristic for short is a procedure that determines good or near-

optimal solutions for an optimization problem. As opposed to exact methods such as FPT

algorithms, heuristics carry no guarantee that an optimal solution will be found. Some

heuristics do not guarantee that the found solutions are within a certain ratio of the optimal

solution. Many classical heuristics are based on local search procedures, which iteratively

move to a better solution (if such solution exists) in a neighbourhood of the current solution.

A procedure of this type usually terminates when the first local optimum is obtained. One

of the most famous heuristics is greedy. The straightforward greedy strategy for finding a

small dominating set in a graph consists of choosing vertices which cover the largest possible

number of previously uncovered vertices. Parekh has done some theoretical analysis of

this algorithm [93]. Several variations of the greedy heuristic for the DOMINATING SET

problem are described and their practical performances are reported in [99]. The detailed

descriptions of these variations can be found in Chapter 7.



Chapter 3

Branch-decomposition of planar

graphs

3.1 Optimal branchwidth of planar graphs

Recently, there have been increased interests in exact algorithms for optimization problems.

Many of the exact algorithms use dynamic programing based on tree/branch-decompositions.

An optimization problem on a graph with small branchwidth admits efficient dynamic pro-

gramming algorithm. Therefore, finding a tree/branch-decomposition of small width is a key

step in these algorithms. It is NP-complete to decide whether the branchwidth/treewidth of

a given general graph is at least an integer β, given that β is part of the input[102, 1]. When

the branchwidth or treewidth is bounded by a constant, both branchwidth and treewidth

can be computed in linear time [21, 27]. However, the huge constants behind the Big-Oh

make the linear time algorithm only theoretically interesting.

Seymour and Thomas showed that an optimal branch-decomposition of a planar graph

can be computed in polynomial time [102]. Their algorithm is reported efficient in practice

[42, 43].

For a given planar graph G with n vertices and constant β, ST Procedure decides if G has

a branchwidth at least β in O(n2) time [102]. They also propose an algorithm to compute

an optimal branch-decomposition of G, that calls ST Procedure O(n2) times, and runs in

O(n4). Gu and Tamaki improved this result in [61] by proposing an algorithm that calls ST

Procedure O(n) times, resulting in an O(n3) algorithm. In a study by Hicks [68] it is reported

26
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that the straightforward implementation of ST Procedure needs O(n2) memory which limits

the application of ST Procedure. He proposed two memory friendly implementations of ST

Procedure with the cost of increasing the running time toO(n3) [68]. It is not known whether

computing an optimal tree-decomposition of a planar graph is NP-hard or not. From the

linear relation between treewidth and branchwidth, bw(G) ≤ tw(G) + 1 ≤ 1.5bw(G), the

algorithm of Seymour and Thomas gives a 1.5-approximation algorithm for treewidth of the

planar graph.

In this chapter we propose several efficient implementations of ST Procedure and efficient

implementations of algorithms for computing the optimal branch-decomposition introduced

in [102]. This chapter includes two main parts: in the first part two groups of improvements

are introduced for efficient implementation of ST Procedure. Group (1) does not perform

re-calculation and runs in O(n2) time. Using these improvements the optimal branchwidth

of a set of instances of size up to one hundred thousand edges can be computed within 500

mega bytes (MB) of memory and a few hours. The improvements in Group(2) are based on

the recalculations. The implementations of ST Procedure using this group of improvements

can compute an optimal branchwidth of another set of instances with one hundred thousand

of edges within 200 MB memory.

The computational results reported in this chapter and in [68] show that the straight-

forward implementations need at least 1 giga bytes (GB) of memory for instances of size

up to 5000 edges. Our most time efficient implementation is faster than the straightforward

one by a factor of 3 ∼ 15. We compared the performance of our implementations with those

reported in [68] on the same set of instances. However, due to the lack of their software

availability we were not able to compare the two methods on similar computational plat-

forms. Thus, our comparison is across two different platforms. However, this difference is

largely irrelevant when comparing the memory usage which is the main focus of our imple-

mentations. Our most memory efficient implementations of Group (1) and Group (2) use

at most 1/4 memory and 1/8 memory, respectively, compared with the previous memory

friendly implementations in [68].

In addition, our running time on a machine with 3.06GHz CPU was faster compared

with the implementations in [68] by a factor of 100 ∼ 400 and a factor of 100 ∼ 200 for

Group (1) and Group (2) most memory efficient implementations, respectively. Notice that

the computational platforms used in [68] had 194MHz CPU’s.

In the second part of this chapter, we propose several efficient implementations of the
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algorithms introduce by Seymour and Thomas (called Edge Contraction (EC) method) and

also those introduced by Gu and Tamaki [61] (called GT Algorithm) for computing an

optimal branch-decomposition. The EC algorithm is based on contracting the graph edges

following a call of ST Procedure for every contraction. In the EC algorithm no method

for choosing the contracting edges has been specified. Thus, we examine several different

methods including Greedy, Round Robin and Random methods for choosing the contracting

edges. Our computational results show that the Round Robin gives the best performance.

Another improvement is achieved by simplifying the input graph by replacing the simple

paths in the graph with an edge. The results show that depending on the structure of the

input graphs, this modification can improve the running time by a factor of 2.92 ∼ 16.16

percent for a class of the instances. The implementation of GT Algorithm suggests that

although this algorithm is theoretically faster than the EC algorithm, its performance is

almost the same due to the processing of more complex data structures.

The content of this chapter is a joint work with Zhengbing Bian, Qianping Gu, Hisaco

Tamaki and Yumi Yoshitake and appeared in Proc. of the 10th SIAM Workshop on Algo-

rithm Engineering and Experiments (ALENEX’08)[18] and some parts of this chapter are

also appeared in Bian’s PhD thesis [16].

3.1.1 Rat-catching game

In this section we review ST Procedure. Readers may refer to [102] for more details. ST

Procedure is often called rat-catching algorithm as it can be described by a rat-catching

game introduced in [102].

This game is a two-players game, a rat and a rat-catcher. The game is on a plane graph

G representing a floor plan of a house. Every face and edge of G is interpreted as a room

and a wall of a room, respectively. A vertex is a corner of a room. The rules for the game

are as follows.

(R1) The rat-catcher selects a room.

(R2) The rat selects a corner of a room (a vertex of G).

(R3) The rat-catcher selects a room adjacent to the current room and moves to the

wall between the two rooms (the edge of G incident to the current face and the selected

face). The rat-catcher generates a noise of a fixed level that may make walls noisy.

The condition of making a wall noisy will be given later.
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(R4) The rat moves to a different corner via walls or stays at the current corner. The

rat can not use a noisy wall but can use as many quiet walls as possible in one move.

(R5) The rat-catcher moves to the room it selected and can not change its mind to

move back to the previous room. The rat-catcher keeps making noise.

(R6) If the rat is at a corner, all walls incident to the corner are noisy, and the rat-

catcher is in a room with this corner then the rat-catcher catches the rat and wins the

game. Otherwise go to (R3).

For the planar dual G∗ of G, let v∗r and e∗ be the corresponding vertex and edge of G∗ to

the face r and edge e of G, respectively. Let k be the noise level produced by the rat-catcher.

When the rat-catcher is on edge e, edge f is noisy if and only if there is a closed walk of

length smaller than k containing edges e∗ and f∗ in G∗. Similarly, when the rat-catcher

is in face r, edge f is noisy if and only if there is a closed walk of length smaller than k

containing vertex v∗r and f∗ in G∗. The rat-catcher wins the game if the rat is at a vertex v

with node degree smaller than k and the rat-catcher is in a face incident to v. The rat wins

the game if there is a scheme by which the rat can escape from the rat-catcher for ever.

We use RC(G, k) to denote the rat-catching game on G and k. Seymour and Thomas show

that the rat wins the game RC(G, k) if and only if G has carvingwidth at least k and give

ST Procedure which, given G and k, computes the outcome of the game RC(G, k) [102].

3.1.2 Seymour and Thomas algorithm

In this section we describe ST Procedure in details. The following presentation is different

from the original one which is based on a notation called antipodality [102].

To describe ST Procedure we need to define some notations which are used in ST Pro-

cedure. Given G and k, Ge is defined to be the subgraph of G obtained by deleting noisy

edges from G when the rat-catcher is on edge e. For every face r ∈ R(G), let

Sr = {(r, v)|v ∈ V (G)}

and S =
⋃

r∈R(G) Sr. For each e ∈ E(G), let

Te = {(e, C)|C is a connected component of Ge}

and T =
⋃

e∈E(G) Te.
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The game RC(G, k) can be described by a bipartite graph H(G, k), where the vertex

set of H(G, k) is S ∪ T and there is an edge between (r, v) ∈ S and (e, C) ∈ T if face r is

incident to edge e and v is a vertex of C. The vertices of H(G, k) can be interpreted as the

states of the game and the edges between vertices indicated the possible state transmission

of the game. A game state of RC(G, k) is called a losing state if the rat will lose the game

at that state. ST Procedure deletes the losing states from H(G, k) gradually. The deletion

process is reported until no further deletion is possible. If after finishing the deletion process

there is an escaping scheme for every face r and every edge e (indicated by non-empty Xr

and Xe) the rat wins.

ST Procedure

Input: A non-null connected plane graph G, a planar dual G∗ of G, an integer k ≥ 0.

Output: Decides if G has carvingwidth at least k.

1. If the maximum node degree of G is at least k then output G has carvingwidth at

least k and terminate.

2. For each face r ∈ R(G), let Xr = Sr. For each edge e ∈ E(G), compute Ge and let

Xe = Te. For each (e, C) ∈ Xe and the faces r and r′ incident to e, let c(r, e, C) =

|V (C)| and c(r′, e, C) = |V (C)|, where V (C) is the set of vertices of C.

3. For each face r and each state (r, v) ∈ Xr with v ∈ V (r), put (r, v) to a stack L and

delete (r, v) from Xr.

4. If L is empty then go to the next step. Otherwise, remove a state x from L. Assume

that x = (r, v) is a state for a face (x ∈ S). For each edge e incident to r, find the

state (e, C) ∈ Xe such that C contains v. Decrease c(r, e, C) by one. If c(r, e, C)

becomes 0 and (e, C) ∈ Xe then put (e, C) to L and delete (e, C) from Xe. Assume

that x = (e, C) is a state for an edge (x ∈ T ). If there is a face r incident to e such

that c(r, e, C) > 0 then for each vertex v of C and (r, v) ∈ Xr put (r, v) to L and

delete (r, v) from Xr. Repeat this step.

5. If Xr is non-empty for every r ∈ R(G) and Xe is non-empty for every e ∈ E(G) then

output G has carvingwidth at least k, otherwise output G has carvingwidth smaller

than k.

To compute Ge for each e, ST Procedure needs to find the quiet edges when the rat-

catcher is on edge e. An edge f is quiet and will be included in Ge if every closed walk in
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G∗ that contains e∗ and f∗ has length at least k. More specifically, let e∗ = {u∗, v∗} and

f∗ = {x∗, y∗}. Edge f is included in Ge if and only if d(u∗, x∗) + d(v∗, y∗) + 2 ≥ k and

d(u∗, y∗) + d(v∗, x∗) + 2 ≥ k. A solution for the all-pairs shortest path problem of G∗ will

suffice for the distances required in computing Ge for all e ∈ E(G).

Theorem 3.1.1 [102] Given a planar graph G of n vertices and integer k ≥ 0, ST Procedure

decides if G has carvingwidth at least k or not using graph H(G, k) in O(n2) time and O(n2)

bytes of memory.

3.2 Observations for improvements

We take the advantage of a set of observations on the game RC(G, k) in [102] for an efficient

implementation of ST Procedure. These improvements are based on deleting more losing

states in the bipartite graph H(G, k) representing the game RC(G, k). A state is called

losing state if rat will lose the game at that state. ST Procedure defines a state (r, v) a

losing state if v ∈ V (r), and deletes them in the initial state. The first improvement is to

use the following lemma proved in [18] we are able to delete more losing states in the initial

state of ST Procedure.

Lemma 3.2.1 [18] For a face r and a vertex v in graph G with maximum node degree

smaller than k, (r, v) is a losing state if there exist two faces s and t incident to v such that

there are:

1. a closed walk W1 in G∗ with length smaller than k that consists of the shortest path

from v∗r to v∗s , the clockwise walk from v∗s to v∗t around r∗v, and the shortest path from

v∗t to v∗r ; and

2. a closed walk W2 in G∗ with length smaller than k that consists of the shortest path

from v∗r to v∗s , the counter-clockwise walk from v∗s to v∗t around r∗v, and the shortest

path from v∗t to v∗r .

Once the shortest paths from v∗r to all other vertices of G∗ have been computed, checking

if (r, v) is a losing state by the conditions of Lemma 3.2.1 is proportional to the node degree

of v. Therefore, it takes O(n) time to verify (r, v) for a face r and all v ∈ V (G). For each face

r, let U(r) be the set of vertices that for every v ∈ U(r), (r, v) is a losing state computed by

the sufficient condition of Lemma 3.2.1. From Theorem 3.1.1, we have the following result.
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Theorem 3.2.1 [18] Given a planar graph G of n vertices and k ≥ 0, ST Procedure decides

if G has carvingwidth at least k in O(n2) time and O(n2) bytes of memory when the losing

states (r, v), v ∈ U(r), are deleted at the initial step of the deletion process for each face r.

The next improvement is achieved by decreasing the size of H(G, k) through the addition

of new states that each replaces a set of states in H(G, k). For each face r ∈ R(G), we

define Gr to be the subgraph of G obtained by deleting the noisy edges from G when the

rat-catcher is in face r. Recall that Ge is the quiet subgraph of G when the rat-catcher is on

edge e. One observation is that every quiet edge in Gr will stay quite in Ge and therefore,

E(Gr) ⊆ E(Ge). Based on this, a component vertex vr of Gr is in a subgraph of a component

of Ge. Hence, when the rat-catcher moves from face r to edge e and the rat is at any vertex

of a component D of Gr, the component of Ge on which the rat can move is the same one

that contains D as a subgraph. Thus, instead of using (r, v) in H(G, k), we can work on

the connected components of Gr. Therefore, the set of states (r, v1), (r, v2), ..., (r, vm) that

are in the same component D of Gr can be replaced by (r,D). The game RC(G, k) can be

described by a bipartite graph H ′(G, k), where the vertex set of H ′(G, k) is S′ ∪ T and S′

is defined as

S′
r = {(r,D)|D is a connected component of Gr}. (3.1)

There is an edge between (r,D) ∈ S′ and (e, C) ∈ T if face r is incident to edge e and

D is a subgraph of C. In the new bipartite graph H ′(G, k), a state (r,D) is a losing state if

for every vertex v ∈ D, (r, v) is a losing state. Similarly, if (e, C) is a losing state then for

every face r incident to e and every component D of Gr that is a subgraph of C, (r,D) is

a losing state. Summarizing the above observations and from Lemma 3.2.1, the following

theorem holds.

Theorem 3.2.2 [18] Given a planar graph G of n vertices and k ≥ 0, ST Procedure decides

if G has carvingwidth at least k using graph H ′(G, k) in O(n2) time and O(n2) bytes of

memory.

The third improvement can be achieved by reducing calculations in ST Procedure whose

results may not be used in the following steps. In ST Procedure for every edge e, Xe is

computed in the beginning of the procedure. However, the elements of Xe for an edge e

incident to faces r and r′ at a step of ST Procedure can be computed in O(n) time from the
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elements of Xr and Xr′ at that step. This gives an option for implementing ST Procedure

that does not store Xe but dynamically computes it from Xr and Xr′ during the deletion

process. The down side of computing Xe dynamically is that if for some face r, Xr is

updated then for every incident edge e to r, Te must be computed. This observation can be

expressed as the following theorem proved in [18].

Theorem 3.2.3 [18] Given a planar graph G of n vertices and k ≥ 0, ST Procedure can

decide if G has carvingwidth at least k or not in O(n3) time and O(n2) bytes of memory if

for each edge e, Xe is not kept but dynamically computed during the deletion process.

Finally, it is easy to see that if all states of Sr (or S′
r ) for some face r are losing states

then the rat-catcher wins the game.

Observation 3.2.1 [18] If Xr becomes empty for some face r during the deletion process

then graph G has carvingwidth smaller than k.

By this observation we can terminate ST Procedure when some Xr becomes empty. This

may save the computation time when the rat-catcher wins the game.

3.3 Efficient implementations

Let G be a connected planar graph with a given embedding and V (G) = {v1, ..., vn}. We

first describe a straightforward implementation (called Naive) of ST Procedure and then

propose several improvements on the Naive implementation. Those improvements try to

reduce both the memory space and the running time of ST Procedure.

3.3.1 Naive implementation

A straightforward implementation of ST Procedure would use graph H(G, k) for deciding

the outcome of the game RC(G, k). We use the following data structure for graph H(G, k)

in Naive.

• For each face r ∈ R(G), A Boolean array Br (of n elements), and is assigned such that

Br[i] is used to indicate if (r, vi) ∈ Xr or not. A list of |E(r)| elements is used to keep

the edges incident to r.
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• For each edge e ∈ E(G), the two faces r and r′ incident to e are kept. All components

of Ge are kept in a list. Each component of Ge is given an index and component Cj is

kept in the jth element of the list. The element of the list for Cj contains the set of

vertices of Cj , c(r, e, Cj), c(r
′, e, Cj), and a Boolean variable indicating if (e, Cj) has

been deleted from Xe or not. An integer array Ie (of n elements) is used to indicate

which component a vertex is in. If vi is a vertex of Cj then Ie[i] is set to j.

• In addition to the face and edge data, a stack L is used and a distance matrix is kept

for the all pairs shortest distances in the dual graph G∗ of G.

Based on the above data structures, it is easy to verify that the Naive implementation

runs in O(n2) time [18]. A simple calculation shows that Naive implementation requires

about 40n2 bytes of memory when G is a medial graph. Since there are many single vertex

components in Ge for an operating system with a minimum memory allocation of size 16

bytes, the memory usage in practice is close to 50n2 bytes. For the instances tested, Naive

implementation requires a slightly smaller memory size than that of the straightforward

implementation in [68]. It can solve instances with size up to 5,000 edges using about 1

GB of memory. The memory space required by the straightforward implementations could

become a bottleneck for solving large instances.

3.3.2 Common improvements

In this section we describe two common improvements that are used in all of our efficient

implementations of ST Procedure.

The first improvement is based on restricting the rat-catcher to move within the faces of

a subset Q ⊂ R(G). We start with a small Q (including one face) and perform the deletion

process for the bipartite graph corresponding to the subgraph induced by Q until no deletion

is possible. Then we enlarge Q by adding a new face to Q and repeat the deletion process.

To add a new face to Q, a face whose losing states has been updated is given a higher

priority to put to the stack. Q is enlarged until Q = R(G). According to Observation 3.2.1,

ST Procedure may stops at a small Q when the rat-catcher wins the game. Also, for a given

subset Q, the losing states are deleted from Xr and Xe(r ∈ Q, e ∈ E(r)), then the data for

Xr and Xe can be compressed before Q is enlarged. This helps in reducing the time and

memory of ST Procedure.
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In the second common improvement we reduce the memory usage through parsimonious

data structure for edge data. We try to keep the minimum data for each edge. More

precisely, instead of keeping a list of all components, we keep only a list of components with

at least one edge. Ie[i] is used to indicate if the component containing single node i has been

deleted from Xe or not. This helps in reducing time and memory of ST Procedure. We also

observe that if there are constant number (c) of small components (with constant fraction

of n vertices (σn)), we do not need to keep the sets of vertices of the components in the

list. We can use Ie to find the vertices of the component. Since c and σ are constants, this

improvement does not increase the time complexity. Clearly a smaller σ saves more memory

but may results in a larger running time. Similarly, a larger c saves more memory but may

increase the running time. We have chosen σ = 1/100 and c = 100 in this study. A distance

matrix is used to store the all-pairs shortest distances. We decide the integer type for the

distance matrix based on the input integer k to ST Procedure. When G is a medial graph,

we can reduce the required memory size to about 4n2 bytes if one-byte integer arrays are

used for each Ie and the distance matrix. The required memory is 7n2 bytes when two-bytes

integer arrays are used.

3.3.3 More improvements

Improvement A1

This improvement is based on Theorem 3.2.1. In Improvement A1, the elements (r, v), v ∈
U(r), are deleted from Xr and put to the stack at the initial step of the deletion process for

face r. Since |U(r)| is usually much larger than |V (r)|, A1 gives a room for improving both

the running time and memory space.

Improvement D1

The features of D1 can be expressed by dynamic data creation and data compression. In

D1 the data for a face (edge) are created only when ST Procedure starts to process the

face (edge). When some losing states are deleted, the face/edge data are compressed. In

the naive implementation of ST Procedure, the distance matrix of the graph is computed

in the first step, and to compute the distance matrix for every vertex v∗r we need to solve

|R(G)| single source shortest path problems. In D1 the distance matrix is discarded. When

we process a face r, we create the data for r and the data for Ie for all e incident to r.

Since each edge is incident to two faces r and r′, the total number of single source shortest

path calculations is bounded by 2|E(G)|. When G has n vertices and is a medial graph,
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|R(G)| = n+2 and |E(G)| = 2n. From this, if the distance matrix is used, we need to solve

n+ 2 single source shortest path problems while we need to solve at most 4n single source

path problems if D1 is applied.

Combining D1 with A1, the required memory size is now about 5n× q bytes if one-byte

integer arrays are used for Ie and about 9n × q if two-byte integer arrays are used, where

q is the average of |V (G) \ U(r)|. For the Delaunay triangulation instances tested in this

study, q is less than 0.3n (instances dependent). A1 and D1 are basic improvements. Our

implementations based on the following improvements always use A1 and D1 as well.

Improvement A2

Improvement A2 is based on Theorem 3.2.2. For each face r, instead of Sr, A2 initializes Xr

to include all states of S′
r. For each face r, we need a Boolean array Br of size |S′

r| which is

usually smaller than n. Similarly, for each edge e incident to faces r nad r′, the sizes of the

integer arrays Ie and I ′e are reduced accordingly. Combined with the basic improvements,

A2 can reduce the memory size significantly. A2 can save memory space but may increase

the running time a little since we need to compute the connected components for each face.

Improvement A3

A3 is based on Theorem 3.2.3 and performs re-calculation for edge data. A3 keeps the face

data once they are created but keeps the edge data for only a pre-defined maximum number

of edges. Once this number is reached A3 starts to delete the entire Xe for some edge e. If

a deleted Xe is needed again, Xe is re-computed from Xr, where r is incident to e.

Improvement D2

In D2, we use a bit vector Br for the data of face r, with one bit for one element of Xr. The

memory size for face data is 1/8 of that when a one-byte Boolean array is used. But more

complex bit operations have to be used. The extra running time due to the bit operations

is negligible. Combined with A3, this improvement is especially effective on memory saving

because when A3 is applied the memory used by the face data may become dominating. It

is easy to check that all improvements except A3 do not change the order of running time

of ST Procedure. However, applying A3, the running time of ST Procedure may become

O(n3).
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3.4 Computational study

All of our efficient implementations use common improvements. These implementations

always use A1 and D1 improvements with any of A2, A3 and D2 improvements. We do not

mention A1 and D1 explicitly in those implementations. We test our implementations on

the following three classes of instances.

• Class (1) of instances includes Delaunay triangulations of point sets taken from TSPLIB

[95]. The instances are provided by Hicks and are used as test instances in the previous

studies [68, 69].

• The instances in Class (2) are generated by the LEDA library [1, 88]. LEDA generates

two types of planar graphs. One type of the graphs are the randomly generated maxi-

mal planar graphs and their subgraphs obtained from deleting a set of edges. Since the

maximal planar graphs generated by LEDA always have branchwidth four (see Ap-

pendix A), the subgraphs obtained by deleting edges from the maximal graphs have

branchwidth at most four. The graphs of this type are not interesting for the study of

branchwidth and branch-decompositions. The other type of planar graphs are those

generated based on a set of geometric properties, including Delaunay triangulations

and triangulations of points uniformly distributed in a two-dimensional plane, and the

intersection graphs of segments uniformly distributed in a two-dimensional plane. We

will report the results on the intersection graphs.

• The instances in Class (3) are generated by the PIGALE library [2]. PIGALE ran-

domly generates one of all possible planar graphs with a given number of edges based

on the algorithms in [101].

TSPLIB is a library of sample instances for the Travel Salesman Problem (TSP) and

related problems from various sources and of various types. This library provides a collection

of benchmark instances of varying difficulties, which has been used by many research groups

for comparing computational results. Random planar grphas generated by LEDA includes

some geometric properties that are interested in many Geometric problems. This class

of instances is used in many computational studies such as [4, 6, 15, 39]. LEDA does

not generate random planar graphs based on the uniform distribution however, PIGALE

generates random planar graphs with uniform distribution which is particularly intended

for graph theoretical research problems.
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We use our implementations to compute the carvingwidth of the medial graphs of the

input instances (i.e., the input graph to ST Procedure is not an instance itself but the

medial graph of the instance). Our implementations are tested on a computer with Intel(R)

Xeon(TM) 3.06GHz CPU, 2 GB physical memory and 8 GB swap memory. The operating

system is SUSE LINUX 10.0, and the programming language used is C++.

To compute the branchwidth of G an initial guess is needed for k. It is known that the

branchwidth of a planar graph of n vertices is at most
√
4.5n [56]. From this, 2

√
4.5n is an

upper bound on the carvingwidth of the medial graph of an instance of n vertices. Following

a similar approach in [68], another upperbound l is defined as the twice as the minimum

eccentricity among all vertices in the dual of medial graph. Finally, we take min{2
√
4.5n, l}

as the initial value for k.

Either the linear search or the binary search can be used to find the carvingwidth starting

from the initial guessed k. In the linear search, when the rat-catcher wins, k is decreased by

two and ST Procedure is re-called until the rat wins the game. In the binary search, the ST

Procedure is called to search for the carvingwidth between k (upper bound) and the node

degree of M(G) (which is four and a lower bound). For the instances in classes (1) and

(2), the eccentricity-based guess is very close to the carvingwidth and k always takes the

value of l. The linear search uses a smaller number of iterations to find the carvingwidth

than the binary search. For instances in Class (3), the eccentricity-based guess could be

very large and k may take 2
√
4.5n for large instances. Since 2

√
4.5n is still far away from

the carvingwidth, the binary search does a better job in this case. One may run the linear

search and binary search in parallel and take the results from the one which finishes earlier.

In the following sections, we report the computational results in a number of tables. In the

tables, for each instance, the number of edges is the number of vertices of the medial graph

of the instance (the input graph to ST Procedure), bw is the branchwidth of the instance

that is the half of the carvingwidth of the medial graph of the instance, and Itr is the

number of iterations (calls of ST Procedure) to find the carvingwidth. An X in the tables

indicates that the implementation runs out of physical memory (requires more than 2 GB

of memory) for solving that instance.

3.4.1 Results for instances in Class(1)

Table 3.1 and Table 3.2 show the computation time and memory usage of Naive and efficient

implementations for the carvingwidth of medial graphs of instances in Class(1). One-byte
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integer arrays are used for each edge and the distance matrix. The most time efficient

implementation is A1 which is faster than Naive by a factor of at least 10 and uses at most

1/10 memory of Naive. Data compression of D1 can reduce the memory usage of A1 by

factor of 1/3 ∼ 1/4. Recall that A2 and D2 are effective in reducing the memory size and the

results show that A2D2 is the most memory efficient implementation with time complexity

O(n2). Improvement A3 has time complexity O(n3) and its performance depends on the

maximum number of edges that are kept. In our implementation we keep at most 500 edges

in A3. Among all implementation A2A3D2 is the most memory efficient one, and it is faster

than Naive by factor of 6 ∼ 7. Although implementation A2A3D2 has time complexity

O(n3), its running time is at most as twice as the implementation A2D2 for this class of

instances.

3.4.2 Comparison with previous works

As mentioned earlier, previous studies show that memory usage of ST Procedure is a major

limiting factor. In [68] Hicks proposes two memory friendly implementations of ST Proce-

dure which are named comprat and memrat in Table 3.3. The results shown in Table 3.3 are

the results of these implementations using instances of Class(1) on a SGI Power Challenge

with 6×194 MHz processors, 1 GB of physical memory and 1Gbyte of swap memory. Table

3.3 includes Hick’s results and ours. The straightforward implementation of ST Procedure

is called rat in this table. As discussed earlier Hick’s experimental results and ours are per-

formed on separate computational platforms due to the lack of Hick’s implemented software.

The platforms used to produce Hick’s results has 194MHz CPU’s [68] while the platforms

used to compute our results has 3.06GHz CPUS. However, this difference is largely irrelevant

when comparing the memory usage between the two methods. The results show that for

large instances our implementations are faster by factor of at least 100 than memtrat and

comprat. The memory usage of the largest instance reported in [68] (brd14051) is 600 MB.

For the same instance A2D2 uses about 1/4 and A2A3D2 uses about 1/8 of the memory

than the memrat memory usage.

3.4.3 Results for instances in Classes (2) and (3)

Similar to the results for Class (1) instances, implementation A1 is the most time efficient one

among all implementations. In addition, A2D2 is the most memory efficient implementation
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graph |E(G)| bw Itr computation time (in seconds)
G Naive A1 A1D1 A2 A2D2 A3 A3D2 A2A3 A2A3D2

pr1002 2972 21 2 51.2 4.23 5.38 6.07 6.35 5.58 5.83 6.52 6.98
rl1323 3950 22 2 95.7 6.47 8.0 9.19 9.56 8.65 9.05 12.3 13.1
d1655 4890 29 2 158 11.3 15.0 17.3 17.6 15.7 16.7 21.6 22.3
rl1889 5631 22 2 195 13.8 16.6 20.1 20.8 19.2 20.4 29.5 30.5
u2152 6312 31 3 X 24.5 25.8 32.1 32.8 31.8 31.3 49.1 50.4
pr2392 7125 29 2 X 21.1 25.8 32.1 32.8 31.8 31.3 49.1 50.4
pcb3038 9101 40 2 X 31.6 41.3 50.8 51.9 44.6 49.7 83.2 74.2
fl3795 11326 25 2 X 63.7 80.2 99 104 86.3 98 155 163
fnl4461 13359 48 2 X 67.4 92.4 116 119 97.1 110 185 185
rl5934 17770 41 2 X 151 197 245 249 213 241 385 391
pla7397 21865 33 2 X 246 296 376 385 393 453 606 629
usa13509 40503 63 4 X X 1061 1359 1371 1241 1386 2154 2165
brd14051 42128 68 2 X X 1061 1418 1417 1226 1361 2274 2282
d15112 45310 78 3 X X 2070 2810 2852 2379 2598 4549 4603
d18512 55510 88 2 X X X 2315 2321 2100 2241 3752 3756
pla33810 101362 100 5 X X X 12379 12614 X 14747 20482 21734

Table 3.1: Computation time (in seconds) of Naive and efficient implementations for Class (1) instances.
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graph |E(G)| Maximum Memory usage (Mbyte)
G Naive A1 A1D1 A2 A2D2 A3 A3D2 A2A3 A2A3D2

pr1002 2972 413 39 16 8 8 10 9 8 7
rl1323 3950 734 66 23 11 10 15 13 11 9
d1655 4890 1188 99 30 14 11 17 14 13 10
rl1889 5631 1424 130 46 18 14 28 21 16 12
u2152 6312 X 161 41 17 14 26 20 16 13
pr2392 7125 X 204 66 21 17 35 26 19 15
pcb3038 9101 X 328 76 25 21 36 27 22 19
fl3795 11326 X 504 132 58 42 66 63 40 23
fnl4461 13359 X 698 158 39 32 66 43 33 26
rl5934 17770 X 1226 358 67 51 155 86 50 35
pla7397 21865 X 1850 436 123 85 238 144 83 44
usa13509 40503 X X 1534 220 153 498 271 149 79
brd14051 42128 X X 1600 215 149 580 283 149 82
d15112 45310 X X 1795 227 156 508 256 156 86
d18512 55510 X X X 284 198 706 328 194 106
pla33810 101362 X X X 814 508 X 876 507 198

Table 3.2: Memory usage (in megabytes) of Naive and efficient implementations for Class (1) instances.
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graph |E(G)| bw Itr computation time (in seconds)
G rat comprat memrat

pr1002 2972 21 2 338 448 562
rl1323 3950 22 3 876 1519 1590
d1655 4890 29 3 1318 1608 2206
rl1889 5631 22 3 M 3931 4012
u2152 6312 31 4 M 3207 4704
pr2392 7125 29 3 M 3813 5167
pcb3038 9101 40 4 M 13817 15865
fl3795 11326 25 3 M 18469 17142
fnl4461 13359 48 4 M 35933 51305
rl5934 17770 41 3 M 73468 66461
pla7397 21865 33 2 M 65197 53564
usa13509 40503 63 1/2 M M 413861
brd14051 42128 68 3 M M 594684

Table 3.3: Computation time (in seconds) of rat, comprat, and memrat quoted from Table
1 of [68]

with time complexity O(n2) while, A2A3D2 is the most memory efficient one among all

implementation for the instances in these two classes. Table 3.4 shows the computation

time and memory of Naive and Implementations A1, A2D2, and A2A3D3 for instances of

intersection graphs of segments generated by LEDA.

We choose a function from PIGALE library, for generating 2-connected planar instances

of Class(3). Given the number m edges the function randomly generates one of all possible

2-connected planar graphs of m edges. Since the generated graphs have parallel edges and

they are not interesting in ST Procedure, we remove the resulted graph has m′ edges. For

this class of instances, the eccentaricity-based initial guess is usually bad and 2
√
4.5n is used.

Since the initial guess is the upper bound and much larger than the actual carvingwidth,

binary search always finishes earlier than linear search. Although, we used two-byte integer

arrays for edge data for this class, the memory usage for the PIGALE instances is very small

comparing to the instances of Class(1) and Class(2). Table 3.5 gives the computation time

and memory of Naive and Implementations A1 , A2 D2 , and A2 A3 D2 .
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graph |E(G)| bw Itr Time (in seconds) Memory(MByte)
G Naive A1 A2D2 A2A3D2 Naive A1 A2D2 A2A3D2

rand1300 2030 7 6 51.1 10.4 13.1 16.3 181 32 8 8
rand1900 3029 8 5 102 15.7 18.7 25.8 389 68 13 12
rand3050 5032 9 4 283 32.5 34.2 61.5 1179 180 32 22
rand6000 10261 12 2 X 95.5 101 147 X 724 92 41
rand8700 15090 14 3 X 292 370 849 X 1559 160 71
rand1500 20279 13 2 X X 557 2002 X X 269 120
rand1700 30433 14 2 X X 1334 3190 X X 529 216
rand22500 40622 18 2 X X 2156 2760 X X 758 326
rand28000 50901 18 3 X X 4002 6993 X X 1112 494
rand33000 60398 20 2 X X 5633 8540 X X 1472 624
rand54000 100037 22 2 X X X 21417 X X X 1382

Table 3.4: Computation time and memory of intersection graphs of segments generated by LEDA.
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m graph |E(G)| bw Itr Time (in seconds) Memory(MByte)
G Naive A1 A2D2 A2A3D2 Naive A1 A2D2 A2A3D2

2400 PI1180 2022 7 5 23 6.73 9.08 10.4 196 32 8 7
PI1182 2016 7 5 22.6 7.44 10.4 12.1 190 32 8 7
PI1186 2029 6 5 23.5 6.56 9.24 10 205 32 7 7
PI1193 2019 6 5 19.1 7.39 10.5 11.1 156 32 7 7
PI1207 2029 9 5 30.6 5.41 6.64 7.04 167 32 7 7

6000 PI2995 5043 7 6 156 58.7 93.3 96.5 1034 178 14 13
PI2996 5015 8 7 210 72.1 115 117 1119 176 16 14
PI2998 5049 7 6 163 58.3 92.4 102 1090 178 17 15
PI3017 5063 8 7 197 70.9 111 117 1112 179 15 14
PI3018 5074 7 6 158 57.4 88.2 95.5 986 180 15 14

12000 PI5940 10016 7 8 X 289 522 563 X 683 28 26
PI5992 10101 7 8 X 286 558 580 X 695 27 25
PI5998 10144 7 8 X 304 555 583 X 701 26 24
PI6043 10146 8 8 X 299 550 576 X 701 30 27
PI6067 10173 7 8 X 312 555 584 X 705 26 25

18000 PI8950 15097 10 9 X 907 1771 2089 X 1541 48 39
PI8977 15065 9 9 X 913 1791 1971 X 1535 43 38
PI8986 15058 8 8 X 765 1559 1643 X 1533 42 39
PI8995 15080 9 9 X 885 1787 1911 X 1538 41 38
PI9020 15053 8 8 X 807 1582 1688 X 1532 41 37

24000 PI11974 20071 9 9 X X 3646 3702 X X 46 44

35000 PI17495 30003 7 9 X X 8597 8610 X X 70 67

46000 PI22640 40074 5 9 X X 14163 14210 X X 94 89

56000 PI27671 50095 8 10 X X 24684 24702 X X 118 114

66000 PI32943 60634 8 10 X X 36909 37076 X X 156 138

76000 PI37730 70022 6 10 X X 49136 49180 X X 188 160

Table 3.5: Computation time and memory of random instances generated by PIGALE.
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graph |E(G)| Computation time (seconds) for k
k = 2(bw + 1) k = 2bw

G Naive A1 A2D2 A2A3D2 Naive A1 A2D2 A2A3D2

rl1889 5631 87.6 0.196 0.526 0.545 79.2 8.55 17.5 27.2

usa13509 40503 X X 41.9 61.2 X X 1118 1888

d15112 45310 X X 687 1153 X X 1578 2632

rand3050 5032 59.4 4.33 5.43 10.7 48.4 20.7 22.7 42.7

rand22500 40622 X X 9.2 14.4 X X 1714 2368

rand33000 60398 X X 1203 1789 X X 3825 6300

PI2995 5043 12.1 10.2 17.4 18 10.3 9.91 17.5 18.3

PI22640 40074 X X 1670 1680 X X 1673 1676

PI32943 60634 X X 3725 3727 X X 3471 3471

Table 3.6: Computation time (in seconds) of several implementations for k close to the carvingwidth 2bw.
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3.4.4 Computation time of one iteration

ST Procedure is usually called multiple times to find the carvingwidth of a planar graph. The

number of calls (iterations) is instance dependent. In computing the branch-decompositions,

the computation time of one iteration is an important measure for the time efficiency.

Table 3.6 shows the computation time of Naive and Implementations A1, A2D2, and A2A3D2

in the iteration when the rat wins the game and the iteration when the rat-catcher wins the

game with the noisy level k closest to the carvingwidth for some instances in Classes (1),

(2), and (3). From Observation 3.2.1, the deletion process of ST Procedure may terminate

earlier when the rat-catcher wins the game. It can be seen from the table that ST Procedure

generally uses much less time when the rat-catcher wins for instances of Classes (1) and (2).

For instances in Class (3), the computation time is not much different between the cases

where the rat wins from those where the rat-catcher wins. The reason is that the time of

the deletion process is not a dominating part of the total running time.

3.5 Computing an optimal branch-decomposition

ST Procedure decides if the branchwidth of a planar graph is at most k, but this algorithm

does not find the corresponding branch-decomposition if it exists. Using ST Procedure

as a subroutine, Seymour and Thomas in [102] proposed an algorithm for constructing a

minimum-width branch-decomposition of a planar graph. This algorithm calls ST Procedure

O(n2) times, that give rise to an O(n4) algorithm. Gu and Tamaki reduce the number of

times that ST Procedure is called to O(n) and therefore, resulting in an O(n3) algorithm.

3.5.1 Seymour and Thomas algorithm: Edge Contraction

Seymour and Thomas proposed an algorithm, known as Edge Contraction (EC) method,

for computing an optimal branch-decomposition of a planar graph [102]. The contraction

of an edge e in a graph G is to remove e from G, identify the two end vertices of e by a

new vertex, and make all edges incident to e incident to the new vertex. Figure 3.1 gives

an example of edge contraction.

We denote by G/e the graph obtained by contracting e in G. Given a 2-connected planar

graph G, an edge e is contractible if G/e is 2-connected and the carvingwidth of G/e is at

most the carvingwidth of G. The EC algorithm computes an optimal branch-decomposition
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Figure 3.1: A planar graph with 12 nodes and resulting graph after contracting edge between
vertices 3 and 4.

of G by a sequence of edge contractions of the medial graph M(G) of G as follows:

1. The carvingwidth cw of M(G) is computed by ST Procedure.

2. A contractible edge e of M(G) is found by ST Procedure and M(G) is contracted to

graph M(G)/e.

3. Steps 2 and 3 are repeated on M(G)/e until the graph has three vertices.

4. A carving decomposition of M(G) with width at most cw is constructed based on the

sequence of edge contractions.

5. The branch-decomposition of G is obtained from the carving-decomposition of M(G).

It is proved in [102] that for any 2-connected planar graph there is a contractible edge.

Since for a 2-connected planar graph G, M(G) is 2-connected, the above algorithm computes

the minimum branch-decomposition of every 2-connected planar graph. To verify whether

an edge is contractible or not, ST Procedure is used to test if M(G)/e has carvingwidth at

most cw. In the worst case, all edges may be checked to find a contractible one. Thus, for a



CHAPTER 3. BRANCH-DECOMPOSITION OF PLANAR GRAPHS 48

graph of n vertices, the EC algorithm may call ST Procedure O(n) times for one contraction

and O(n2) times in total. So the time complexity of the algorithm is O(n4). In contracting

edges, if an edge is identified as a contractible edge, the contractability test is called positive

call, otherwise it is called a negative one.

3.5.2 Gu and Tamaki algorithm

Gu and Tamaki proposed an algorithm, called GT Algorithm, that uses a better strategy to

find contractible edges in Step (2) of EC algorithm [61]. Once ST Procedure shows that an

edge is not contractible then the edge will not be chosen to contract again unless a necessary

condition for that edge to become contractible is satisfied.

Let M(G) be an input planar graph. We define M0 be the set of all singleton of

V (M(G)). Each singleton subset X = {x} represents vertex x of M(G). When an edge

e = {x, y} is contracted in M(G), a new subset X ∪ Y is added into M0 to get M1. The

new subset X ∪ Y in M1 represents the new vertex in M(G) \ e identifying the two end

vertices x and y of the contracted edge e. In general, for i > 0, let e = {x, y} be an edge in

the graph obtained from i− 1 edge contractions in M(G). When we contract e we compute

Mi = Mi−1 ∪ {X ∪ Y }. Note that X and Y are maximal subsets in Mi−1. We call each

Mi a binary merging.

Let M be a binary merging. A sequence X0 ⊃ X1 ⊃ ... ⊃ Xm of elements of M is called

a chain if each Xi for 1 ≤ i ≤ m is maximal proper subset of Xi−1. If we denote the above

chain by C, then X0 is called the top of C, denoted by ⊤C , and Xm is called the bottom

of C, denoted by ⊥C . Chain C is called a barrier if |δM(G)(X0 \Xm)| > k. The necessary

condition to check the contractability of an edge is based on the following lemma:

Lemma 3.5.1 (barrier lemma)[61] Let M be a binary merging in V with width k or smaller

and X,Y two maximal elements of M. Suppose there is a binary merging M′ ⊆ M and

maximal elements X ′ and Y ′ of M′ with X ′ ⊆ X and Y ′ ⊆ Y such that the following

conditions hold:

1. X and Y are contractible in M;

2. |δ(X ′ ∪ Y ′)| ≤ k;

3. EG(X \X ′, Y \ Y ′) = ∅;
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4. there is no barrier B in M with ⊤B = X and ⊥B⊇ X ′;

5. there is no barrier B in M with ⊤B = Y and ⊥B⊇ Y ′;

then, X ′ and Y ′ are contactable in M′.

Using the above lemma, GT Algorithm avoids the repeated negative tests on a same

edge, and thus calls the ST Procedure only O(n) times reducing the time complexity to

O(n3) for computing an optimal branch-decomposition of a planar graph. Gu and Tamaki

suggest to use a new parsimonious contractability test to verify if two maximal elements

are contractible in EC algorithm. In more details, we assume that all unordered pairs of

elements on which ST Procedure is performed and the result was negative are stored in

a list Q. To decide an edge e = {x, y} corresponding to two elements X and Y in M is

contractible, GT Algorithm works as follows:

• If |δ(X ∪ Y )| > k then report “The edge is not contractible”.

• Otherwise, if there is not any X ′ and Y ′ of M with X ′ ⊆ X and Y ′ ⊆ Y such that Q

contains one of pairs: {X ′, Y }, {X ′, Y ′}, {X,Y ′}, then call ST Procedure.

• Otherwise, if conditions 2 to 5 of the above lemma hold then report “The edge is not

contractible”, otherwise call ST Procedure

It is proved that the last step based on the above lemma, saves O(n) times of calling ST

Procedure [61].

3.6 Computing optimal branch-decomposition: Efficient Im-

plementation

In this section we describe our improvements for efficient implementation of algorithms to

compute an optimal branch-decomposition. These improvements can be applied in both EC

Algorithm and GT Algorithm. The first improvement is achieved by finding a better method

for choosing an edge to contract. The second improvement is achieved by simplifying the

input graph and reduce the running time.

Choosing an edge to contract Recall from the beginning of this chapter that no

specific method has been identified to choose an edge to contract in EC or GT algorithms.
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We study the performance of Round robin, Random and Greedy methods to choose a

contracting edge:

• Round robin: We choose an edge to contract in a cyclic order in the list of edges.

• Random: We choose a random edge to contract.

• Greedy: We choose an edge e = {u, v} with minimum |δ(u, v)| to contract.

Simplifying the graph We can reduce the size of the graph G without changing the

optimal branch-decomposition. We define simple path P as a sequence of vertices v1, v2, ..., vl

such that there is an edge between every vi and vi+1 for 1 ≤ i < l and the degree of every

node vi, 2 ≤ i < l, is two. Let e1, e2, ..., el−1 be the set of edges in P . We define S(P ) as

the set of vertices common between P and G \ P . It is clear that |S(P )| = 2. Replacing a

simple path by an edge in computing branch-decomposition does not affect the branchwidth

and the optimal branch-decomposition.

Therefore, we search the medial graph and replace every simple path with an edge.

3.7 Computational study

We compared the EC Algorithm and GT Algorithm for instances from the same classes

which are tested for ST Procedure. The testing platform has an AMD Athlon(tm) 64 X2

Dual Core Processor 4600+ (2.4 GHz) and 3 GB memory. The operating system is SUSE

Linux 10.2 and the programming language used is C++.

3.7.1 Computational study: Edge contraction

We study the performance of EC algorithm on TSBLIB, Random and PIGALE graphs. Let

M(G) be the medial graph of the input graph G. M(G) is represented by a list of edges

l. The vertices of M(G) need to be re-indexed after each contract operation. We used the

methods described in the previous section for choosing an edge to contract. The following

tables show the performances of these methods. In these tables, PosCall and NegCall are

the number of positive calls and negative calls, respectively. Tables 3.7, 3.8 and 3.9 show

the performance of Round Robin, Random and Greedy algorithms. The results show that

Round Robin has the best performance among all methods. An X in the Tables 3.8 and

3.9 indicates that the program did not finish after 48 hours.
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Graph |E(G)| bw Round robin
G Neg-Calls Pos-Calls Total Calls time

(1) pr1002 2972 21 105 2968 3073 3528.74
rl1323 3950 22 118 3946 4064 8670.41
d1655 4890 29 148 4886 5034 14577.2
rl1889 5631 22 162 5627 5789 25450
u2152 6312 31 339 6308 6647 29416.6
pr2392 7125 29 260 7121 7381 52303.4

(2) rand1408 1808 7 100 1804 1904 125.75
rand1500 1994 6 96 1990 2086 617.83
rand1300 1668 9 72 1664 1736 96.85
rand1900 2580 8 60 2576 2636 1736.24
rand3050 4456 10 66 4452 4518 18404.7
rand6000 9332 12 477 9328 9805 177247
rand8700 13924 13 748 13920 14668 195476

(3) PI855 1434 6 75 1430 1505 694.23
PI1277 2128 9 66 2124 2190 2154.21
PI1467 2511 6 94 2507 2601 4118.44
PI2009 3369 7 109 3365 3474 10143.2
PI2518 4266 8 74 4262 4336 21818.5
PI2968 5031 6 186 5027 5213 40524.7

Table 3.7: Number of calls for ST Procedure and computation time (in seconds) for Round-
Robin method.

Graph |E(G)| bw Random
G Neg-Calls Pos-Calls Total Calls time

(1) pr1002 2972 21 817 2968 3785 21522.8
rl1323 3950 22 6597 3946 10543 49442
d1655 4890 29 1142 4886 6028 58717.9
rl1889 5631 22 2276 5627 7903 80690.9
u2152 6312 31 1642 6308 7950 84118.8
pr2392 7125 29 3012 7121 10133 89485

(2) rand1408 1808 7 16625 1804 18429 125.75
rand1500 1994 6 23112 1990 25102 617.83
rand1300 1668 9 21446 1664 23110 96.85
rand1900 2580 8 11030 2576 13606 1691.16
rand3050 4456 10 973 4452 5425 18404.7
rand6000 9332 12 X X X more than 42 hours
rand8700 13924 13 X X X more than 42 hours

(3) PI855 1434 6 2304 1430 3734 11547.3
PI1277 2128 9 5058 2124 7182 24230.7
PI1467 2511 6 922 2507 3429 43256
PI2009 3369 7 713 3365 4078 45815
PI2518 4266 8 909 4262 5171 85363
PI2968 5031 6 473 5027 5500 96671

Table 3.8: Number of calls for ST Procedure and computation time (in seconds) for Random
method .
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Graph |E(G)| bw Greedy
G Neg-Calls Pos-Calls Total Calls time

(1) pr1002 2972 21 5673 2968 8641 7635.48
rl1323 3950 22 3061 3946 7007 9409.15
d1655 4890 29 3272 4886 8158 127926
rl1889 5631 22 7347 5627 12974 33936.8
u2152 6312 31 9434 6308 15742 50068.9
pr2392 7125 29 3870 7121 10991 78206

(2) rand1408 1808 7 697 1804 2501 131.15
rand1500 1994 6 1930 1990 3920 749.2
rand1300 1668 9 921 1664 2585 117.44
rand1900 2580 8 894 2576 3470 1736.24
rand3050 4456 10 4203 4452 8655 28981.5
rand6000 9332 12 X X X more than 42 hours
rand8700 13924 13 X X X more than 42 hours

(3) PI855 1434 6 141 1430 1571 824.1
PI1277 2128 9 928 2124 3052 2410.91
PI1467 2511 6 110 2507 2617 4690.46
PI2009 3369 7 118 3365 3483 11829.5
PI2518 4266 8 201 4262 4463 24192
PI2968 5031 6 258 5027 5285 41725.74

Table 3.9: Number of calls for ST Procedure and computation time (in seconds) for Greedy
method.

As mentioned in the previous section, removing simple paths in G does not change the

branch-decomposition. We also study the performance of this graph simplification. Clearly,

the performance is variable depending on the structure of the graph and the number of

simple paths. We apply this simplification on the instances of all three classes. Table 3.10

shows the results for the instances of Class(3).

This simplification does not reduce the size of the graphs in Class(1) and Class(2) (results

not shown). The computational results show that this graph modification can improve the

running time by a factor of 2.92 ∼ 16.16 percent.

Computational study: Gu and Tamaki Algorithm

Gu and Tamaki proposed a set of data structures for their algorithm to achieve O(n3) time

complexity. We use the same data structures in our implementation. In their algorithm

a carving decomposition is defined as a binary merging and is generated gradually. The

suggested data structures are two main data structures for representing the binary merging

and the resulting graphs after contracting edges.

Let Mi and M i(G) be the binary merging and the resulting graph after contracting i



C
H
A
P
T
E
R

3
.

B
R
A
N
C
H
-D

E
C
O
M
P
O
S
IT

IO
N

O
F
P
L
A
N
A
R

G
R
A
P
H
S

53

Graph Round-Robin without simplification Round-Robin with the path simplification
G Node Edge bw Neg-Calls Pos-Calls Total Calls time Node Edge bw Neg-Calls Pos-Calls Total Calls time

PI855 855 1434 6 75 1430 1505 694.23 834 1422 6 68 1418 1486 649.16
PI1277 1277 2128 9 66 2124 2190 2154.21 1250 2101 9 80 2097 2177 1806.64
PI1467 1467 2511 6 94 2507 2601 4118.44 1455 2499 6 69 2495 2564 3897.68
PI2009 2009 3369 7 109 3365 3474 10143.2 1973 3333 7 119 3329 3448 9375.95
PI2518 2518 4266 8 74 4262 4336 21818.5 2482 4230 8 102 4226 4328 21181.95
PI2968 2968 5031 6 186 5027 5213 40524.7 2939 5002 6 189 4998 5187 37214.02

Table 3.10: Number of calls for ST Procedure when the path simplification is applied for the instances of Class (3).
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edges, respectively. We maintain Mi and M i(G) for each 0 ≤ i ≤ n − 1. Every binary

merging Mi constructed by the algorithm is represented by a binary forest. Every node of

this forest is associated to a member X of Mi, in the form of a sorted list, and the edge

set δM(G)(X) also in the form of sorted list. Using this representation, contracting of two

members of Mi can be done in O(n) time.

M i(G) is defined as a graph whose nodes are the maximal elements of Mi. There

is an edge between nodes X,Y ∈ V (M i(G)) if and only if EM(G)(X,Y ) 6= ∅. M i(G)

is maintained in standard edge list representation. Every edge e = {X,Y } of M i(G),

0 ≤ i ≤ n−1 is associated with its corresponding edges in M i−1(G): if X,Y ∈ V (M i−1(G))

this association is to the edges between X and Y in M i−1(G), otherwise if X = X1 ∪X2,

with X1, X2 ∈ V (M i−1(G)), say then this association is to the edges between X1 and Y , if

present, and to the edges between X2 and Y , if present. The same condition is hold when

Y = Y1 ∪ Y2.

The graph instances and the computer that are used for this study are the same instances

and the computer in the Edge contraction method.

Table 3.11 compares the EC method with GT algorithm. We compare the best results of

EC, round robin method, with the results of GT Algorithm. The data in the table show that

optimal branch-decompositions of planar graphs of a few thousands edges can be computed

in a practical time. For most instances tested, repeated negative tests are not observed on

any edge in the algorithm of edge contraction. So the advantage of GT Algorithm is not

shown by those instances when the round robin edge selection is used. For some of the

other edge selection heuristic, more repeated negative tests are observed in the algorithm of

Seymour and Thomas. In such cases, GT Algorithm has much less negative calls and thus,

runs faster than EC Algorithm.
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Graph |E(G)| bw Edge-Contraction Alg. Gu-Tamaki Alg
G Neg-Calls Pos-Calls Total Calls time Neg-Calls Pos-Calls Total Calls time

(1) pr1002 2972 21 105 2968 3073 3528.74 105 2968 3073 3621.7
rl1323 3950 22 118 3946 4064 8670.41 118 3946 4064 8689.3
d1655 4890 29 148 4886 5034 14577.2 146 4886 5032 14586.32
rl1889 5631 22 162 5627 5789 25450 162 5627 5789 26147.4
u2152 6312 31 339 6308 6647 29416.6 338 6308 6646 29384.1
pr2392 7125 29 260 7121 7381 52303.4 260 7121 7381 53047.21

(2) rand1408 1808 7 100 1804 1904 125.75 97 1804 1901 131.4
rand1500 1994 6 96 1990 2086 617.83 96 1990 2086 646.1
rand1300 1668 9 72 1664 1736 96.85 72 1664 1736 102
rand1900 2580 8 60 2576 2636 1736.24 57 2576 2633 1694.8
rand3050 4456 10 66 4452 4518 18404.7 64 4452 4516 18067.6
rand6000 9332 12 477 9328 9805 177247 477 9328 9805 177412
rand8700 13924 13 748 13920 14668 195476 747 13920 14667 196103

(3) PI855 1434 6 75 1430 1505 694.23 75 1430 1505 704.5
PI1277 2128 9 66 2124 2190 2154.21 57 2124 2181 1963.7
PI1467 2511 6 94 2507 2601 4118.44 92 2507 2599 4026.9
PI2009 3369 7 109 3365 3474 10143.2 102 3365 3467 10315
PI2518 4266 8 74 4262 4336 21818.5 71 4262 4333 21809.3
PI2968 5031 6 186 5027 5213 40524.7 186 5027 5213 40875.9

Table 3.11: Number of calls for ST Procedure and computation time (in seconds) for branch-decompositions.



Chapter 4

DOMINATING SET Problem in

planar graphs

Recently, there has been significant theoretical progress towards fixed-parameter algorithms

for the DOMINATING SET problem of planar graphs. It is known that the problem on a

planar graph with n vertices and dominating number k can be solved in O(2
√

O(k)n) time

using tree/branch-decomposition based algorithms. In this chapter, we report computa-

tional results of Fomin and Thilikos algorithm which uses the branch-decomposition based

approach. The computational results show that the algorithm can solve the DOMINAT-

ING SET problem of large planar graphs in a practical time and memory space for the

class of graphs with small branchwidth. For the class of graphs with large branchwidth,

the size of instances that can be solved by the algorithm in practice is limited to about

one thousand edges due to a memory space bottleneck. The practical performances of the

algorithm coincide with the theoretical analysis of the algorithm. The results suggest that

the branch-decomposition based algorithms can be practical for some applications on planar

graphs.

4.1 Fomin and Thilikos algorithm

In this section we briefly review Fomin and Tilikos (FT) Algorithm. Readers may refer to

[56] for more details. FT Algorithm solves the PLANAR DOMINATING SET problem of

G in three steps. Step I computes a kernel H of G by the data reduction process such that

56
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size(H) ≤ size(G), γ(H) ≤ γ(G), and a minimum dominating set D of G can be computed

from a minimum dominating set D′ of H in linear time. Step II finds an optimal branch-

decomposition TB of H. Step III computes a minimum dominating set D′ of H using the

dynamic programming method based on TB and constructs a minimum dominating set D

of G from D′. In Step I, the data reduction rules introduced in [7] are used to decide if some

vertices of G can be included in D or excluded for computing D. If a vertex v has been

decided to be included in D, v is colored black. If v has been decided to be excluded for

computing D in the future, v is removed from G. Every other vertex is colored grey. After

the reduction process, we get a kernel H(B ∪ C,E), where B and C are the sets of black

and grey vertices, respectively. The specific reduction rules will be introduced in the next

section. To compute an optimal branch-decomposition TB of H, either the edge-contraction

algorithms [61, 102] or the divide-and-conquer algorithms [18] can be used. The divide-

and-conquer algorithms are faster for large graphs in practice. In Step III, given a kernel

H(B ∪ C,E), we find a minimum D′ ⊆ (B ∪ C) such that B ⊆ D′ and D′ dominates all

vertices of C. As shown later, a minimum dominating set D of G can be constructed from

D′ in linear time. To compute D′, first the branch-decomposition TB of H is converted

into a rooted binary tree by replacing a link {x, y} of TB by three links {x, z}, {z, y}, and
{z, r}, where z and r are new nodes to TB, r is the root, and {z, r} is an internal link. For

every internal link e of TB, e has two child links incident to e. For every link e of TB, let Te

be the subtree of TB consisting of all descendant links of e. Let He be the subgraph of H

induced by the edges at leaf nodes of Te. To compute a minimum dominating set D′ of H,

we find all dominating sets (solutions) of He from which D′ may be constructed for every

link e of TB by a dynamic programming method: the solutions of He for each leaf link e is

computed by enumeration and the solutions for an internal link e is computed by merging

the solutions for the child links of e. For a link of T , and separation (Ae, Ae) induced by e,

let Se = ∂(Ae). To find a solution of He, each vertex of Se is colored by one of the following

colors.

• Black denoted by 1, meaning that the vertex is included in the dominating set.

• White denoted by 0, meaning that the vertex is dominated at the current step of

the algorithm and is not in the dominating set.

• Grey denoted by 0̂, meaning that we have not decided to color the vertex into black

or white yet at the current step.
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A solution of He subject to a coloring λ ∈ {0, 1, 0̂}|Se| is a minimum set De(λ) satisfying

• for u ∈ B ∩ Se, λ(u) is black.

• every vertex of V (He) \ Se is dominated by a vertex of λ(De); and

• for every vertex u ∈ Se if λ(u) is black then u ∈ De(λ), if λ(u) is white then u /∈ De(λ)

and u is dominated by a vertex of De(λ).

Intuitively, De(λ) is a minimum set to dominate the vertices of He with grey vertices

removed, subject to the condition that the vertices of Se are colored by λ. For every coloring

λ ∈ {0, 0̂, 1}|Se|, ae(λ) is defined as |De(λ)| if there is a solution of He subject to λ, otherwise

as +∞. For a leaf link e, colorings λ and sets De(λ) are computed by enumeration. Assume

that an internal link e has child links e1 and e2 in TB. The colorings λ of Se and sets

De(λ) are computed from the colorings λ1 of Se1 , sets De1(λ1), colorings λ2 of Se2 , and sets

De2(λ2). Let X1 = Se \ Se2 , X2 = Se \ Se1 , X3 = Se ∩ Se1 ∩ Se3 , and X4 = (Se1 ∪ Se2) \ Se.

A coloring λ of Se is formed from λ1 and λ2 if:

1. For u ∈ X1, λ(u) = λ1(u).

2. For u ∈ X2, λ(u) = λ2(u).

3. For u ∈ X3, if λ1(u) = λ2(u) = 1 then λ(u) = 1; if λ1(u) = λ2(u) = 0̂ then λ(u) = 0̂;

and if λ1(u) = 0 and λ2(u) = 0̂, or λ1(u) = 0̂ and λ2(u) = 0 then λ(u) = 0.

4. For u ∈ X4, λ1(u) = λ2(u) = 1, or λ1(u) = 0 and λ2(u) = 0̂, or λ1(u) = 0̂ and

λ2(u) = 0.

For a coloring λ of Se formed from λ1 and λ2, the minimum dominating set De(λ) is

the minimum set among the sets of De1(λ1) ∪ De2(λ2). For e = {z, r}, a minimum set

De(λ) among all colorings λ of Se is a minimum dominating set of H. Notice that the

original description of FT Algorithm for Step III in [56] does not have the part for handling

the vertices colored black in data reduction process. We have added this part and our

description is slightly different from the original one.

In the implementation of FT Algorithm, we put ae1(λ1) and a pointer to De1(λ1) in a

table T1. Similarly, we put ae2(λ2) in a table T2. Table T1 has at most 3|Se1 | = 3|X1|+|X3|+|X4|

entries and Table T2 has at most 3|Se2 | = 3|X2|+|X3|+|X4| entries. We use the following index

for the entries of T1 and T2: The entries of T1 are first partitioned into 3|X1| groups by the
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colors of the vertices in X1. Similarly the entries of T2 are partitioned into 3|X2| groups.

The entries of each table within each group is further identified by the colors of the vertices

in X3 ∪X4. To find a minimum De(λ) from De1(λ1) and De2(λ2), we first compute

ae(λ) = min
λ1,λ2formλ

{ae1(λ1) + ae2(λ2)−#1(X3 ∪X4, λ1)}

where #1(X3∪X4, λ1) is the number of vertices in X3∪X4 taking color 1 in λ1 . The colors

of λ1 ‘s and λ2 ‘s which form λ are the entries in the group of T1 and the entries in the

group of T2 identified by the colors of λ for vertices of X1 and X2, respectively. Then, a

corresponding minimum De(λ) is computed. The results of ae(λ) are kept in a table T of at

most 3|Se| = 3|X1|+|X2|+|X3| entries. The memory space required for computing table T and

De(λ) is O((3|Se| + 3|Se1 | + 3|Se2 |)k) = O(3bw(H)k) because max{|Se|, |Se1 |, |Se2 |} ≤ bw(H)

and max |De(λ)|, |De1(λ1)|, |De2(λ2)| ≤ |V (H)| = O(k). If we only compute γ(H) then we

only need to compute table T and the required memory space is O(3bw(H)). Since there are

O(k) links in the branch-decomposition TB, the total memory space required in Step III is

O(3bw(H)k2) for computing a minimum dominating set and O(3bw(H)k) for computing the

dominating number of H. We call the above index method.

Dorn proposes using distance product of matrices to compute the minimum De(λ) for

all colorings λ [40]. We also implemented this approach (distance product method): The

entries of Table T1 are arranged into r = 3|X3| matrices A1, ..., Ar of 3|X1| rows and 3|X4|

columns (|X3| ≤ 2 for a planar graph with a fixed embedding and a branch-decomposition

found by the algorithms used in this paper [40]). The entries of Table T2 are arranged into

r matrices B1, ..., Br of 3
|X4| rows and 3|X2| columns. Each row of Al(1 ≤ l ≤ r) is identified

by a sequence of |X1| colors and each column of Bl is identified by a sequence of |X2| colors,
with each color from {0, 0̂, 1}. Each column of Al (each row of Bl ) is identified by a sequence

of |X4| colors. We arrange the columns of Al in the increasing alphabetic order, defined by

0̂ < 0 < 1, of the color sequences. We arrange the rows of Bl in the increasing alphabetic

order, defined by 0̂ < 0 < 1, of the color sequences. We define a one-to-one mapping between

the colorings of {0̂, 0, 1}|X3| and 1, 2, ..., r based on the alphabetic order defined by 0̂ < 0 < 1.

The value ae1(λ1) in each element of Al(1 ≤ l ≤ r) is changed to ae1(λ1)−#1(X3 ∪X4, λ1).

For every l with 1 ≤ l ≤ r, the distance product Cl = Al × Bl is computed, where Cl is a

matrix of |X1| rows and |X2| columns, and Cl[i, j] = min{Al[i, k] + Bl[k, j], 1 ≤ k ≤ 3|X4|}.
We say a coloring l of {0, 0̂, 1}|X3| is formed by colorings l1 and l2 of {0, 0̂, 1}|X3| if

• For u ∈ X3, if l1(u) = l2(u) = 1 then l(u) = 1; if l1(u) = l2(u) = 0̂ then l(u) = 0̂; and
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if l1(u) = 0 and l2(u) = 0̂, or l1(u) = 0̂ and l2(u) = 0 then l(u) = 0.

Every element Cl[i, j] is further updated by min{Cl1 [i, j], ..., Clp [i, j]}, where l1, ..., lp are the

colorings of {0, 0̂, 1}|X3| which form coloring l. If a conventional O(n3) time algorithm is

used for the distance product of the matrices, Step III takes (2(3 log
3
4)bw(H)k) = O(215.13

√
k′k)

time, and requires O(3bw(H)k2) and O(3bw(H)k) memory spaces for computing a minimum

dominating set and γ(H), respectively, the same as those of the index method. If the

distance product of matrices is realized by the O(nω) (ω < 2.376) time fast matrix multipli-

cation method, Step III has time complexity O(211.98
√
k′nO(1)). In practice, the fast matrix

multiplication method is slower due to the big hidden constant behind the Big-Oh than the

conventional distance product method. The fast matrix multiplication method also requires

more memory space due to the recursive computation.
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Figure 4.1: An example of N1, N2, N3 of node v in the left side graph

4.2 Data reduction

In this section, we introduce the data reduction rules used in our implementation of FT

Algorithm for Step I. All reduction rules of [7, 3] are used. To enhance the data reduction

effect, we also propose some new reduction rules. Following the convention of FT Algorithm,

we color each vertex of G by black or grey, and may remove some vertices from G by

those reduction rules. After the data reduction step, we get a kernel H(B ∪ C,E), recall

that B and C are the sets of black and grey vertices, respectively. For a vertex v, let
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N(v) = {u|u, v ∈ E(G)}, N [v] = N(v)∪{v}, B(v) = B∩N(v), and C(v) = C ∩N(v). For a

set U of vertices, let N(U) =
⋃

v∈U N(v). For a vertex u, if there is a black vertex v ∈ N [u],

we mark u dominated. Initially, every vertex of G is unmarked. In the data reduction step,

some vertices are marked. Let X be the set of marked vertices and Y be the set of unmarked

vertices. For v ∈ V (G), the following is introduced in [7] (Figure 4.1 shows and example):

N1(v) = B(v) ∪ {u|u ∈ C(v), N(u) \N [v] 6= ∅},

N2(v) = {u|u ∈ N(v) \N1(v), N(u) ∩N1(v) 6= ∅}, and

N3(v) = N(v) \ (N1(v) ∪N2(v)).

Rule 1 [7]. For v ∈ V (G), if N3(v)∩Y 6= ∅ then remove N2(v) and N3(v) from G, color

v black, and mark N [v] dominated.

For a pair of vertices v, w ∈ V (G), let N(v, w) = N(v) ∪ N(w) \ {v, w}, B(v, w) =

B∩N(v, w), C(v, w) = C∩N(v, w), and N [v, w] = N [v]∪N [w]. The following is introduced

in [7]( Figure 4.2 shows an example):

N1(v, w) = B(v, w) ∪ {u|u ∈ C(v, w), N(u) \N [v, w] 6= ∅},

N2(v, w) = {u|u ∈ N(v, w) \N1(v, w), N(u) ∩N1(v, w) 6= ∅},

N3(v, w) = N(v, w) \ (N1(v, w) ∪N2(v, w)).

Rule 2 [7]. For v, w ∈ V (G) with both v and w grey, assume that |N3(v, w) ∩ Y | ≥ 2

and N3(v, w) ∩ Y can not be dominated by a single vertex of N2(v, w) ∪N3(v, w).

Case 1: N3(v, w) ∩ Y can be dominated by a single vertex of {v, w}.

– (1.1) If N3(v, w) ∩ Y ⊆ N(v) and N3(v, w) ∩ Y ⊆ N(w) then remove N3(v, w)

and N2(v, w) ∩N(v) ∩N(w) from G and add new gadget vertices z and z′ with

edges {v, z}, {w, z}, {v, z′}, and {w, z′} to G.

– (1.2) If N3(v, w) ∩ Y ⊆ N(v) but N3(v, w) ∩ Y 6⊆ N(w) then remove N3(v, w)

and N2(v, w) ∩N(v) from G, color v black, and mark N [v] dominated.

– (1.3) If N3(v, w) ∩ Y ⊆ N(w) but N3(v, w) ∩ Y 6⊆ N(v) then remove N3(v, w)

and N2(v, w) ∩N(w) from G, color w black, and mark N [w] dominated.

Case 2: If N3(v, w)∩Y can not be dominated by a single vertex of {v, w} then remove

N2(v, w) and N3(v, w) from G, mark v and w black, and mark N [v, w] dominated.
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Figure 4.2: An example of N1, N2, N3 of nodes v, w in the left side graph

In Rule 1 and Rule 2 (Cases 1.2, 1.3, and 2) of [7], gadget vertices are used to guarantee

some vertices to be included in the solution set. In [3] the rules are implemented in a way

that the vertices to be included in the solution set are removed. Our descriptions are slightly

different from the previous ones: we do not use gadget vertices nor remove the vertices to

be included to the solution set but color them black. Our descriptions allow us to have new

reduction rules given below that may further reduce the size of the kernel.

Rule 3.

3.1: For v, w ∈ V (G) with v black and w grey, if (N3(v, w) ∩ Y ) \ N(v) 6= ∅ then

remove N2(v, w) ∪ N3(v, w), color w black, and mark N [w] dominated; otherwise

remove (N2(v, w) ∪N3(v, w)) ∩N(v).

3.2: For v, w ∈ V (G) with v grey and w black, if (N3(v, w) ∩ Y ) \ N(w) 6= ∅ then

remove N2(v, w)∪N3(v, w), color v black, and mark N [v] dominated; otherwise remove

(N2(v, w) ∪N3(v, w)) ∩N(w).

3.3: For v, w ∈ V (G) with both v and w black, remove N2(v, w) ∪N3(v, w).
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Lemma 4.2.1 Given a graph G, let G′ be the graph obtained by applying Rule 3 for v, w ∈
V (G). Then size(G′) ≤ size(G), γ(G′) ≤ γ(G), and a minimum dominating set D′ of G′

that contains all black vertices of G′ is a minimum dominating set of G that contains all

black vertices of G.

Proof: For v, w ∈ V (G) with v black and w grey, assume that (N3(v, w) ∩ Y ) \N(v) 6= ∅.
For u ∈ (N3(v, w) ∩ Y ) \ N(v) and x which dominates u, x ∈ {w} ∪ N2(v, w) ∪ N3(v, w).

Since N(N2(v, w) ∪ N3(v, w)) ⊆ N [v] ∪ N [w], we should include w into D to dominate

(N3(v, w)∩ Y ) \N(v). Therefore, we can remove N2(v, w)∪N3(v, w) from G. Assume that

(N3(v, w) ∩ Y ) \N(v) = ∅. For u ∈ (N2(v, w) ∪N3(v, w)) ∩N(v), u is dominated by v and

N(v) ∪N(u) ⊆ N(v) ∪N(w). This implies that we can at least include w rather than u to

get D. At this point, we can not decide if we should include w into D or not because there

might be a vertex x with N(w) ⊆ N(x) that should be included in D. But we can exclude

(N2(v, w) ∪N3(v, w)) ∩N(v) from D. Since (N2(v, w) ∪N3(v, w)) ∩N(v) is dominated by

v, we can remove (N2(v, w)∪N3(v, w))∩N(v) from G. This completes the proof for (3.1).

The proof for (3.2) is a symmetric argument of that for (3.1). For v, w ∈ V (G) with both v

and w black, since N(N2(v, w)∪N3(v, w)) ⊆ N [v]∪N [w], we can remove N2(v, w)∪N3(v, w)

from G. []

Rule 4 [7]

4.1: Delete edges between vertices of X (vertices marked dominated).

4.2: If u ∈ X has |C(u)| ≤ 1 then remove u.

4.3: For u ∈ X with C(u) ∩ Y = {u1, u2}, if u1 and u2 are connected by a path of

length at most 2 then remove u.

4.4: For u ∈ X with C(u)∩Y = {u1, u2, u3}, if {u1, u2}, {u2, u3} ∈ E(G) then remove

u.

To perform the data reduction, we first apply Rule 1 for every vertex of G. Next for

every pair of vertices v and w of G, we apply either Rule 2 or Rule 3 depending on the

colors of v and w. Then we apply Rule 4. We repeat the above until Rules 1 to 4 do not

change the graph. From the results of [7, 3] on Rules 1, 2, and 4, and Lemma 4.2.1, we have

the following result.
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Theorem 4.2.1 Given a planar graph G, let H(B∪C,E) be the kernel obtained by applying

the reduction rules described above and D′ be a minimum vertex set of H(B∪C,E) such that

D′ ⊇ B and D′ dominates C. Then a minimum dominating set D of G can be constructed

from D′ in linear time.

In our implementation of FT Algorithm, D′ = D. Since the vertices of B are included to

D′ in Step I, the number of vertices to be included in D′ in Step III is |D| − |B|. Therefore,
the size of the dominating set for the kernel decided in Step III is actually k′ = γ(G)− |B|.
If Step I gives an non-empty set B of black vertices, k′ is smaller than k = γ(G). Given

a planar graph G, let H(B ∪ C,E) be the kernel obtained from Step I, TB be an optimal

branch-decomposition of H, and l(H) = max{|C ∩ Se|, e ∈ E(TB)}. It is shown in [7]

that H(B ∪ C,E) can be computed in O(n3) time. TB can be computed by either the

edge-contraction algorithm [61] or a divide-and-conquer algorithm [18] in O(|E(H)|3) time.

It is shown in [56] that Step III has time complexity O(2(3 log
3
4)l(H)|E(H)|). Therefore, FT

Algorithm takes O(2(3 log
3
4)l(H)|E(H)|+n3) time to solve the PLANAR DOMINATING SET

problem. Notice that l(H) ≤ bw(H) and in what follows, we use l(H) for the branchwidth

of kernel H.

4.3 Computational results

We implemented FT Algorithm and tested our implementations on six classes of planar

graphs from some libraries including LEDA [1, 88] and PIGALE [2]. LEDA generates two

types of planar graphs. One type of graphs are the random maximal planar graphs and

their subgraphs and the other type of graphs are the planar graphs based on some geomet-

ric properties, including the Delaunay triangulations and triangulations of points, and the

intersection graphs of segments, uniformly distributed in a two-dimensional plane. Instances

of Class (1) are the random maximal graphs and their subgraphs generated by LEDA. This

class of instances has been used by Alber et al. in their studies on the data reduction

rules used in Step I [3, 7] and the tree-decomposition based subexponential algorithms for

the vertex cover and dominating set problems [4, 6]. Instances of Class (2) are Delaunay

triangulations of point sets taken from TSPLIB [95]. Instances of Classes (3) and (4) are

the triangulations and intersection graphs generated by LEDA, respectively. Instances of

Class (5) are Gabriel graphs of the points uniformly distributed in a two-dimensional plane.
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Instances of Classes (2)-(5) are graphs based on some geometric properties. The DOM-

INATING SET problem on those graphs has important applications such as the virtual

backbone design of wireless networks [79]. Instances of Class (6) are random planar graphs

generated by the PIGALE library [2]. PIGALE provides a number of planar graph genera-

tors. We used a function in the PIGALE library that randomly generates one of all possible

2-connected planar graphs with a given number of edges based on the algorithms of [101]

In addition to the tested classes of planar graphs in Chapter 3, we study the perfor-

mance of FT Algorithm on three additional classes of planar graphs including maximal

planar graphs, Delauny triangulation graphs generated by LEDA, and Gabriel graphs. The

branchwidth of maximal planar graphs is at most 4 (see Appendix A) which makes them an

interesting class of graphs in our study. This type of planar graphs is also studied for many

NP-hard problems in planar graphs, such as PLANAR DOMINATING SET probelm [3],

face labelling [28] and integer-magic spectra [78]. Alber et al. [3] proposed reduction rules

for linear size kernel of planar dominating set problem. They also have a computational

study paper on their reduction rules. Maximal planar graphs are used in the paper. The

notion of triangulated graphs applies to problem solving within as widely different areas as

solution of sparse symmetric systems of linear equations, pedigree analysis, and evidence

propagation in belief graphs. The Gabriel graph is one of widely used geometric structures

for topology control in wireless ad hoc networks. Many problems in wireless ad hoc networks

are solved based on modelling the network using this class of graphs [73, 80, 14].

Step I of FT Algorithm is implemented as described in the previous section. To compute

an optimal branch-decomposition TB, we use the divide-and-conquer algorithm [18]. For

Step III, both the index and distance product methods are used. To save memory, we

compute the colorings λ and sets De(λ) for each link e of TB in the postorder. Once the

colorings λ and sets De(λ) are computed for a link e, the solutions for the child links of e

are discarded. The computer used for testing has an AMD Athlon(tm) 64 X2 Dual Core

Processor 4600+ (2.4 GHz) and 3 Gbyte memory. The operating system is SUSE Linux

10.2 and the programming language used is C++.

We report the computational results for finding both γ(G) and a minimum dominating

set of G by FT Algorithm with the index method in Step III in Table 4.1. For Step I, we

give the number |B| of vertices of an optimal dominating set decided in the data reduction

and the running time of the step. For Step II, we give the size |E(H)| and branchwidth

l(H) = max{|C ∩ Se|, e ∈ E(TB)} of kernel H, and the running time of the step. For Step
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III, we give the dominating number γ(G) obtained by FT Algorithm and the running time

of the step. The running time is in seconds, and Steps I, II, and III have time complexities

O(|E(G)|3), O(|E(H)|3), and O(2(3log
3
4)l(H)|E(H)|), respectively. We use the number of

edges to express the size of an instance or a kernel.

For each instance size, we have tested three graphs of similar size for Classes (1) and

(3)-(6), and Table 4.1 contains the graph with the worst case running time. Notice that

multiple graphs of similar size in Class (2) are not available. The average performance of

FT Algorithm over three graphs for some large instances is given in Table 4.3. We also

report the running time of FT Algorithm for computing γ(G) only for some large instances

in Table 4.1. For those instances (marked with an ∗ ) FT Algorithm can not compute a

minimum dominating set by the computer used in this study because it requires more than

3 GByte memory space but can compute the γ(G).

As shown in the Appendix A, the instances of Class (1) have branchwidth at most four.

These instances have small kernels and Step I is very effective. For the instances included in

the table, |B| is very close to γ(G) (i.e., Step I finds most vertices in an optimal dominating

set) and the kernels are much smaller than the original instances. For some smaller instances

not reported in the table, Step I already finds optimal dominating sets. Because the kernels

have small size and branchwidth, FT Algorithm is efficient for the instances in this class.

For example, an optimal dominating set can be computed for large instances of size up to

about 40,000 edges in about 20 min. It is reported in [4] that instances of size about 6000

edges can be solved in about 30 min by a tree-decomposition based algorithm on a computer

with a CPU of 750 MHz and 720 MBytes memory space. These results suggest that FT

Algorithm is more efficient than the algorithm used in [4] for the graphs in this class.

For Classes (2) and (5), the branchwidth of instances increases fast in instance size (e.g.,

Class (2) instances rd400 of 1183 edges and u2152 of 6312 edges have branchwidth 17 and

31, respectively, Class (5) instances Gab800 of 1533 edges and Gab2000 of 3911 edges have

branchwidth 16 and 26, respectively). For the instances tested, the kernel H of an instance

G has the same branchwidth and same size as or only slightly smaller than those of G. The

computation time increases significantly when the branchwidth of the kernels increases. This

coincides with the theoretical time complexity of FT Algorithm which runs exponentially

in l(H). For Classes (3) and (4), the branchwidth of instances increases slowly in instance

size. The data reduction is effective for instances in these classes. For most instances, the

kernel size is at most half of the instance size and the branchwidth of the kernel is usually
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smaller than that of the instance as well. Our data show that the minimum dominating

set can be found for instances of size up to about thirty thousand edges in a practical time

and memory space. For large instances, the size |E(H)| of kernel H is also important to

the running time of Step III. For example, FT Algorithm takes more time to solve Instance

rand15000 than that for rand10000. The time difference comes from the differences of both

l(H) and |E(H)|. For Class (6), the branchwidth of instances does not grow in the instance

size. FT Algorithm is efficient for the instances in this class. For instances of large size and

small branchwidth, Step III may not dominant the running time. Our results show that

the O(n3) time data reduction and branch-decomposition finding take more time than the

dynamic programming part for those instances.

Table 4.1 only contains the instances well scaled within some size ranges. We have tested

FT Algorithm on graphs with size different from those in 4.1. The results are similar to

those in the table, the running time mainly depends on l(H) and then |E(H)|.
FT Algorithm requires in Step III O(210.1l(H)k2) and O(210.1l(H)k) memory spaces for

computing a minimum dominating set and γ(H) of kernel H, respectively. The memory

requirement seems a bottleneck for solving instances with large branchwidth. We report

the memory space (in MBytes) used by FT Algorithm in Table 4.2 for large instances in

Classes (1)-(6). Our data show that FT Algorithm can compute a minimum dominating

set and the dominating number for instances with the branchwidth of kernels at most 13

(l(H) ≤ 13) and at most 14 (l(H) ≤ 14), respectively, by 3 GBytes memory space. The

average memory space over three graphs used by FT Algorithm for some large instances is

given in Table4.3.

Our computational results confirm the theoretical analysis of FT Algorithm: It is efficient

for graphs with small branchwidth but time and memory consuming for graphs with large

branchwidth. This suggests that the branchwidth of a planar graph is a key parameter

to decide if a problem on the graph can be solved efficiently or not. For example, Class

(1) graphs have branchwidth at most four and thus admit efficient algorithms for many

hard problems. On the other hand, the problems on graphs in Classes (2) and (5) are less

tractable because these graphs have large branchwidth.

Both the theoretical analysis and computational study suggest that computing a kernel

H with smaller l(H) and |E(H)| is a most effective way to improve the efficiency of FT

Algorithm. For this purpose, we proposed new reduction rules (Rule 3). Recall that H

is the kernel obtained by new reduction rules (Rules 1, 2, 3, and 4) and let H ′ be the
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Class Graph |E(G)| bw(G) Step I Step II Step III total
G |B| time |E(H)| bw(H) time γc(G) time time

(1) max1500 3860 4 228 12 78 3 < 1 236 < 1 12
max6000 7480 4 2214 55 32 2 < 1 2219 < 1 55
max8000 13395 4 2186 336 194 3 < 1 2211 < 1 337
max11000 28537 4 1679 799 208 4 1 1695 < 1 800
max13500 38067 4 1758 1203 302 3 1 1779 < 1 1204

(2) kroB150 436 10 0 < 1 436 10 < 1 23 10 10
pr226 586 7 12 1 126 6 < 1 21 < 1 1
pr299 864 11 1 < 1 824 11 1 47 35 37
tsp225 622 12 0 < 1 622 12 1 37 109 110
a280 788 13 1 < 1 730 13 1 43 336 337

(3) tri2000 5977 8 136 57 3192 7 140 321 1 198
tri4000 11969 9 252 256 6888 7 1641 653 6 1903
tri6000 17979 9 312 566 11691 8 2991 975 19 3576
tri8000 23975 9 497 830 13524 7 6900 1283 20 7750
tri10000 29976 9 605 1434 17298 7 15028 1606 33 16495

(4) rand3000 4928 9 554 21 1918 6 8 823 1 30
rand6000 10293 11 836 95 5598 9 25 1563 30 150
rand10000 17578 13 1192 376 10706 10 381 2535 112 869
rand15000 26717 14 1570 875 17810 12 354 3758 1540 2769
rand16000* 28624 13 1612 826 19700 13 2063 4002* 3028 5917
rand20000* 35975 14 1993 1904 24786 14 3632 4963* 8457 13993

(5) Gab100 182 7 3 < 1 162 7 < 1 24 1 1
Gab300 552 10 5 < 1 516 10 1 70 23 25
Gab500 949 13 4 1 919 12 56 115 181 238
Gab600* 1174 14 11 2 1097 14 5 135* 3067 3074
Gab700* 1302 14 8 1 1255 14 9 162* 5700 5710

(6) P1277 2128 9 116 9 1353 9 13 323 2 24
P2518 4266 9 329 32 1876 5 27 621 1 60
P4206 7124 8 513 92 3543 6 16 1057 2 110
P5995 10082 8 738 188 4920 5 20 1495 1 209
P7595 12788 7 965 336 5908 6 18 1903 < 1 354

Table 4.1: Computational results (time in seconds) of FT Algorithm with the index method
in Step III for instances of Classes (1)(6). For the instances marked with *, the time is for
computing the dominating number only because the 3 GByte memory is not enough for
computing a minimum dominating set.
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Class Instance |E(G)| bw(G) l(H) Memory(MByte)
(1) max11000 28537 4 4 480

max13500 38067 4 3 720

(2) a280 788 13 13 510
rd400 1183 17 17 > 300

(3) tri8000 23975 9 7 710
tri10000 29976 9 7 1210(StepIII,1030)

(4) rand10000 17578 13 10 470
rand15000 26717 14 12 1800
rand16000* 28624 13 13 660
rand20000* 35975 14 14 1200
rand25000* 45278 15 15 > 3000

(5) Gab300 552 10 10 40
Gab500 949 13 12 660
Gab700* 1302 14 14 1200
Gab800* 1533 16 16 > 3000

(6) P5995 10082 8 5 150
P7595 12788 7 6 240

Table 4.2: Memory space (in MBytes) of FT Algorithm with the index method in Step III
for instances of Classes (1)(6). For the instances marked with *, the memory space is for
computing the dominating number only. X indicates that the problem can not be solved for
the instance because it requires more than 3 Gbytes memory space.

Class Graph Average Average Average Average Average Worst Average Worst
|E(G)| bw(G) l(H) γ(G) time time memory memory

(1) max13500 38322 4 3 1763 1011 1204 720 720
(3) tri10000 29973 9 7 1609 13342 16495 1200 1360
(4) rand15000 26706 15 11 3764 2040 2769 1190 1800
(5) Gab500 945 13 12 117 200 238 670 710
(6) P7595 12760 7 6 1894 316 353 240 240

Table 4.3: Average performance of FT Algorithm over three graphs for each instance size.
The time is in seconds and memory is in Mbytes.
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Class Graph |E(G)| bw(G) Results without new rules Results with new rules
G |B′| |E(H′)| l(H′) Time |B| |E(H)| l(H) Time

(1) max1500 3860 4 225 118 3 12 228 78 3 12
max6000 7480 4 2212 41 2 58 2214 32 2 55
max8000 13395 4 2183 218 3 353 2186 194 3 337
max11000 28537 4 1671 287 4 892 1679 208 4 800
max13500 38067 4 1752 362 4 1291 1758 302 3 1204

(3) tri2000 5977 8 102 3787 7 353 136 3192 7 198
tri4000 11969 9 214 7541 7 1941 252 6888 7 1903
tri6000 17979 9 277 12370 8 3895 312 11691 8 3576
tri8000 23975 9 421 14953 8 10192 497 13524 7 7750
tri10000 29976 9 551 18273 8 18945 605 17298 7 16495

(4) rand3000 4928 9 545 1987 6 30 554 1918 6 30
rand6000 10293 11 832 5675 9 154 836 5598 9 150
rand10000 17578 13 1176 10861 11 892 1192 10706 10 869
rand13000 22953 13 1454 14856 10 1662 1589 14646 10 1169
rand15000 26717 14 1553 17984 12 2834 1570 17810 12 2769

(6) P1277 2128 9 112 1371 9 41 116 1353 9 24
P2518 4266 9 291 2139 6 69 329 1876 5 60
P4206 7124 8 478 3780 6 116 513 3543 6 110
P5995 10082 8 671 5372 5 224 738 4920 5 209
P7595 12788 7 917 6231 6 363 965 5908 6 354

Table 4.4: The results (time in seconds) of using new data reduction rules and without using
the new rules in Step I.

kernel obtained by applying only the previous known reduction rules (Rules 1, 2, and 4).

Since all nodes colored black (resp. nodes deleted) by previous rules are also colored balck

(resp. deleted) by new rules, l(H) ≤ l(H ′) and |E(H)| ≤ |E(H ′)|. For Classes (2) and (5),

l(H) = l(H ′) = bw(G) and |E(H)| = |E(H ′)| = |E(G)| for most instances, that is, the effect

of data reduction is very limited. However, for instances in other classes, data reduction is

effective and our new rules improve the efficiency of FT Algorithm. For instances of Classes

(1), (3), (4), and (6), Table 4.4 shows the computational results of FT Algorithm when

previous rules and new rules are used. In the table, told and tnew (resp. |B′| and |B|) are

the total running times (resp. the numbers of vertices in an optimal dominating set decided

in Step I) when previous rules and new rules are used, respectively. The data show that

l(H) = l(H ′) and |E(H)| < |E(H ′)| for most instances. The total running time is improved

when new rules are used: tnew < told for most instances in the table. The improvement is

instance dependent and tnew/told varies from 56% to 100%. The average of tnew/told over

the five instances of Class (1) is about 95%. Similarly, the averages of tnew/told for Classes

(3), (4), and (6) are about 80%, 90%, and 85%, respectively. The improvement of the total

running time is obtained mainly from Step III. The running time of Step I when new rules



CHAPTER 4. DOMINATING SET PROBLEM IN PLANAR GRAPHS 71

are used is about the same as that when previous rules are used (instance dependent).

Step III of FT Algorithm can also be realized by the distance product method proposed

by Dorn [40]. When a conventional O(n3) time method is used to realize the distance

product of matrices, the distance product method has the same time complexity as that

of the index method. Theoretically, using the fast matrix multiplication for the distance

product of integer matrices [111] can reduce the order of time complexity. In practice, using

the fast matrix multiplication (e.g., the Strassens method) for distance product of matrices

is slower than the conventional method. We report in Table 4.5 the running times of Step III

by the index method and the distance product method (with conventional distance product).

Our data show that the running times of the two methods are similar. Both methods require

a similar size of memory space as well.

Class Graph |E(G)| Distance product time Index method time
(1) max8000 13395 < 1 < 1

max11000 28537 2 < 1
max13500 38067 < 1 < 1

(2) pr299 864 25 35
tsp225 622 104 109
a280 778 310 336

(3) tri5000 14969 56 7
tri6000 17979 62 11
tri7000 20980 163 14

(4) rand5000 8451 12 2
rand6000 10293 21 30
rand8000 13816 83 38

(5) Gab00 182 1 1
Gab200 366 1 2
Gab300 552 18 23

(6) P1277 2128 3 2
P5995 10092 46 3
P7595 12691 5 1

Table 4.5: The results (time in seconds) of using distance product method and index method
in Step III.



Chapter 5

CONNECTED DOMINATING

SET problem in planar graphs

5.1 Algorithm for planar CDS problem

Recently, significant progress has been made on the fixed-parameter algorithms for the

PLANAR DOMINATING SET problem [57, 40] and practical performance of those algo-

rithms have been reported in [87]. The notions of tree/branch-decompositions introduced

by Robertson and Seymour [96, 97, 98] play a central role in those algorithms. Although the

DOMINATING SET problem and the CDS problem are closely related, they have different

properties from the tree/branch-decomposition based algorithm point of view. In partic-

ular, the techniques used to solve the DOMINATING SET problem do not seem to work

for the CDS problem. One of the main reasons of such discrepancy is that connectivity is

a non-local property. In the tree/branch-decomposition based approach, the input graph

is partitioned into subgraphs by a tree/branch-decomposition of the graph; then partial

solutions are worked out by enumeration for each minimal subgraph and the partial solu-

tions of subgraphs are merged into partial solutions of a larger subgraph until the solution

of the entire graph is found. Notice that each subgraph is separated from the rest of the

input graph by a vertex-cut set. We call this vertex-cut set the boundary of the subgraph.

Informally, the structure of a partial solution at the boundary of a subgraph and that in the

entire subgraph are called the local structure and non-local structure of the partial solution,

respectively. A problem is called local if the merge steps can be done by only looking at

72
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the local structure of the partial solutions. A problem is called non-local if the non-local

structures need to be checked in the merge step. The DOMINATING SET problem is local

while the CDS problem is non-local. It is more difficult to perform the merge steps for

non-local problems.

Along the lines to clear the hurdles caused by the non-local property, Dorn et al. [42, 43]

propose a new technique to design sub-exponential time exact algorithms for the non-local

problems in planar graphs. This new technique is based on the geometric properties of

branch-decomposition of graphs with a planar embedding in a sphere and the properties

of non-crossing partitions in the embedding. This new technique consists of two main

steps. In the first step an optimal sphere-cut decomposition (a branch-decomposition with

a desired geometric property, see Chapter 2 for definition) for an input planar graph G is

constructed. This can be computed in O(n3) time [102, 61]. In the second step, the dynamic

programming method based on the sphere-cut decomposition is applied to compute the

partial solutions and merge these solutions to form the solution for the input graph. Based

on this new technique, they show that many non-local problems in planar graphs can be

solved in 2O(
√
n) time [42, 43]. Especially, it is shown that the PLANAR CDS problem can

be solved in O(2O(bw(G))n+n3) and O(29.822
√
nn+n3) time [43]1. It is mentioned in [40] that

the running time can be further improved to O(28.11
√
nn + n3) if the fast distance matrix

multiplication is applied to the second step. The time bound O(2O(bw(G))n+n3) implies that

the PLANAR CDS problem admits an O(2O(
√

γc(G))n+n3) time fixed-parameter algorithm.

It is known that the PLANAR CDS problem admits a linear size kernel [72, 86] and such

a kernel can be computed in O(n3) time [72]. Applying the algorithm of [72] to shrink the

input graph G into a linear size kernel, the DPBF Algorithm solves the PLANAR CDS

problem in O(2O(
√

γc(G))γc(G) + n3) time.

Because DPBF Algorithm is briefly introduced and the analysis is not explicitly given

in [42, 43, 40], we give a detailed description of the algorithm and analyze its running

time. By a more careful analysis, we show that a conventional version of DPBF Algo-

rithm solves the PLANAR CDS problem in O(24.62bw(G)γc(G) + n3) time. If the fast dis-

tance matrix multiplication is applied, the algorithm solves the PLANAR CDS problem

in O(23.722bw(G)γc(G) + n3) time. From bw(G) ≤
√
4.5n [56], we get O(29.8

√
nn + n3) and

O(27.9
√
nn+ n3) for the running time of DPBF Algorithm, respectively.

1The constant in O(bw(G)) is not explicitly given in [42, 43]
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It is known bw(G) ≤ 3
√

4.5γ(G) [57, 56]. Since γ(G) ≤ γc(G), DPBF Algorithm

solves the planar CDS problem in O(223.7
√

γc(G)γc(G) + n3) time. We prove that bw(G) ≤
2
√

10γc(G) + 32 for a planar graph G. This improves the previous bound of bw(G) ≤
3
√

4.5γc(G). From this result, the PLANAR CDS problem admits an O(223.54
√

γc(G)γc(G)+

n3) time fixed-parameter algorithm.

5.1.1 Sphere-cut branch-decomposition based approach

The new technique by Dorn el al. for non-local planar problems is within the framework of

the branch-decomposition based approach which has two major steps as shown below.

1. Compute a branch-decomposition T of the input graph.

2. Apply the dynamic programming method based on T to solve the problem:

A link e of T is called a leaf link if e contains a leaf node of T , otherwise called an

internal link. T is converted to a rooted binary tree by replacing a link {x, y} of T

with three links {x, z}, {y, z}, {z, r}, where z and r are new nodes to T , r is the root,

and {z, r} is an internal link. A link e′ (resp. a node x) is called a descendant link

(resp. descendant node) of link e if e is in the path from e′ (resp. x) to the root r of

T . For a link e of T , let (Ae, Ae) be the separation induced by e with Ae the set of

leaf nodes of T (set of edges of G) that are descendant nodes of e. For an optimization

problem P , all possible partial solutions of P in the subgraph G[Ae] are computed

first, say by enumeration, for each leaf link e of T . For an internal link e of T , e has

two descendant links e1 and e2 incident to e (e1 and e2 are called child links of e).

Notice that Ae = Ae1 ∪ Ae2 . Assume that all partial solutions of P in the subgraph

G[Ae1 ] and those in G[Ae2 ] have been computed. Then all possible partial solutions

in the subgraph G[Ae] are computed by merging the partial solutions in G[Ae1 ] and

those in G[Ae2 ]. The merging process is performed in a bottom-up way, from leaf links

to the link {z, r}, to find the solution of P in G. The merge process can be realized

by the dynamic programming method with the partial solutions in G[Ae] for each link

e of T kept in a table.

For some problems such as the INDEPENDENT SET problem and DOMINATING SET

problem, a partial solution in G[Ae] can be identified by a fixed number of states of each

vertex in ∂(Ae). For example, a partial solution D of the DOMINATING SET problem
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in G[Ae] can be identified by three states of each vertex u ∈ ∂(Ae): u ∈ D, u 6∈ D but

dominated by a vertex of D, and u 6∈ D but u not dominated by any vertex of D. For such

problems we can assign a fixed number of colors to each vertex of ∂(Ae) such that every

partial solution in G[Ae] can be uniquely identified by a coloring of ∂(Ae) and all partial

solutions in G[Ae] can be computed from the colorings of the vertices in ∂(Ae1) and those

of the vertices in ∂(Ae2). In other words, to compute the partial solutions of G[Ae], we can

look at only the local structures of the partial solutions at ∂(Ae1) and ∂(Ae2). Because of

these properties, the INDEPENDENT SET problem and the DOMINATING SET problem

are known having a local structure.

For the CDS problem, however, the connectivity information in a partial solution in

G[Ae] may not be expressed by a fixed number of colors of each vertex of ∂(Ae). In the

merge step, the structures of the partial solutions in the entire subgraphs G[Ae1 ] and G[Ae2 ]

may have to be checked. Because of this, the CDS problem is known having a non-local

structure.

Dorn et al. give a new technique which makes the branch-decomposition based approach

applicable to many problems with the non-local structure in planar graphs [42, 43]. This

new technique is based on two observations. One is the geometric property of the sphere-

cut decomposition T of plane graph G: For any link e of T and the separation (Ae, Ae)

induced by e, there is a noose νe such that νe induces (Ae, Ae), νe partitions the sphere

Σ into two regions, all edges of Ae are in one region, and all edges of Ae are in the other

region. Notice that νe intersects all vertices of ∂(Ae). The other observation is known as

the non-crossing partitions: Let P1, ..., Pr be the subsets of Ae such that G[Pi] is connected

for each 1 ≤ i ≤ r and G[Pi ∪ Pj ] is not connected for every pair of 1 ≤ i 6= j ≤ r. We call

P1, ..., Pr disjoint components. Two components Pi and Pj are called crossing if there are

u, u′ ∈ V (Pi) ∩ ∂(Ae) and v, v′ ∈ V (Pj) ∩ ∂(Ae) such that the four vertices appear on νe

in the orders u, v, u′, v′, otherwise non-crossing. Notice that if Pi and Pj are crossing then

G[Pi ∪Pj ] is connected because G[Ae] is a plane graph. So, any pair of disjoint components

are non-crossing. The sphere-cut decomposition and the non-crossing partitions make it

possible to compute the partial solutions in G[Ae] by only looking at the local structures of

partial solutions in G[Ae1 ] at ∂(Ae1) and those in G[Ae2 ] at ∂(Ae2).

For a minimum connected dominating set, D of G, the subgraph G[D∩V (Ae)] of G[Ae]

induced by D consists of disjoint components P1, ..., Pr with |V (Pi) ∩ ∂(Ae)| ≥ 1 for every

1 ≤ i ≤ r. We assume the vertices of ∂(Ae) are indexed as u1, u2, ..., uk in the clockwise order
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as they appear in the noose νe. If |V (Pi) ∩ ∂(Ae)| ≥ 2, we call the vertex of V (Pi) ∩ ∂(Ae)

with the smallest index the small end, the vertex of V (Pi) ∩ ∂(Ae) with the largest index

the large end and other vertices of V (Pi) ∩ ∂(Ae) the middle vertices of Pi. From the

geometric property of sphere-cut decomposition and the non-crossing partitions, P1, ..., Pr

can be identified by six states of each vertex u ∈ ∂(Ae) [43]:

1. u does not appear in any Pi and is dominated by some vertex of D ∩ V (Ae).

2. u does not appear in any Pi and is not dominated by any vertex of D ∩ V (Ae).

3. u is the small end of some Pi.

4. u is the large end of some Pi.

5. u is a middle vertex of some Pi.

6. u is the only vertex of some V (Pi) ∩ ∂(Ae).

5.1.2 Algorithm description

There are three major steps in the algorithm. Let G be a plane graph of n vertices.

Step I: Compute a kernel H of G with |V (H)| = O(γc(G)). This can be done in O(n3)

time [72]. A plane graph H can be naturally obtained from the plane graph G by

removing the vertices/edges deleted in the kernelization.

Step II: Compute a sphere-cut decomposition T of H with width bw(H). This can be

done in O((γc(H))3) time [102, 61].

Step III: Compute a minimum connected dominating set D of H using the dynamic pro-

gramming method based on T and compute a minimum connected dominating set of

G from D.

The key issues in the dynamic programming of Step III are a coloring scheme for the

vertices of ∂(Ae) for each link e of T with two children e1 and e2 and the computation of

the partial solutions in H[Ae] from the colorings of ∂(Ae1) and those of ∂(Ae2).

Let D be a connected dominating set of H. Then D∩V (Ae) has the following properties:

1. For each vertex u ∈ V (Ae) \ ∂(Ae) either u ∈ D ∩ V (Ae) or there is a vertex v ∈
D ∩ V (Ae) such that {u, v} ∈ Ae.
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2. Each of the disjoint components of H[D ∩ V (Ae)] has at least one vertex in ∂(Ae).

So, a partial solution of H[Ae] is a subset of V (Ae) having properties (1) and (2) with

D ∩ V (Ae) replaced by the subset. To give a coloring scheme for the vertices of ∂(Ae)

for identifying a partial solution, we use three basic colors in planar DOMINATING SET

problem introduced in Chapter 4.

• Black: denoted by 1, for a vertex which is included in the partial solution.

• White: denoted by 0, for a vertex which is dominated and not included in the partial

solution.

• Grey: denoted by 0̂, for a vertex which has not been decided to have the color black

or white at the current step.

Let b = |∂(Ae)|, b1 = |∂(Ae1)| and b2 = |∂(Ae2)|. A coloring λ ∈ {0, 0̂, 1}b is called a

basic-coloring of ∂(Ae). Let U be a partial solution of H[Ae]. Then each vertex of U ∩∂(Ae)

is given a black color in a basic-coloring of ∂(Ae) for identifying U . Each vertex of ∂(Ae)

with the black color appears in one of the disjoint components P1, ..., Pr of H[U ∩ V (Ae)].

The basic color black is converted to four different colors as follows.

• 1[ : for a vertex which is the small end of some Pi.

• 1] : for a vertex which is the large end of some Pi.

• 1∗ : for a vertex which is a middle vertex of some Pi.

• 1̂ : for a vertex which is the only vertex of some V (Pi) ∩ ∂(Ae).

Figure 5.1 gives an example on how we assign these colors to the vertices of ∂(Ae). In

this figure the vertices of ∂(Ae) with basic color 1 are indicated by bold lines. The dash line

in the figure shows the noose corresponding to ∂(Ae). The vertices with basic color 1 are

included in five disjoint component P1, P2, P3, P4 and P5. Let we start assigning the black

colors in clockwise order to these vertices starting from the vertex which is denoted by an

arrow and is called starting vertex. For every component with more than one vertex in ∂(Ae),

the closest vertex (in clockwise order) to the starting vertex is assigned 1[ and the furthest

vertex of component to the starting node is assigned 1]. The vertices of the component

located between the vertices with colors 1[ and 1] are assigned 1∗. For example Component
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Figure 5.1: Assigning the proper black colors to ∂(Ae)

P2 has five vertices in ∂(Ae) with basic color 1, v1, v2, ..., v5. Color 1[ is assigned to v1 which

is the closest vertex of P2 to the starting vertex. Similarly 1] is assigned to the vertex v5.

The middle vertices of P2, which are located between v1 and v5, are colored by 1∗. If a

connected component has only one vertex in ∂(Ae) with basic color 1, the vertex is colored

by 1̂. Component P5 in Figure 5.1 is an example of a component with one black vertex in

∂(Ae). Because H is a plane graph, P1, ..., Pr have the property of non-crossing partitions.

From this, every partial solution of H[Ae] is identified by a coloring of {0, 0̂, 1[, 1], 1∗, 1̂}
b
.

For a coloring η ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b, we denote by De(η) the partial solution identified

by η with the minimum number of black vertices. In the merge step for the link e =

{z, r} incident to the root node r, we check the connectivity of H[De(η)]. A De(η) with

the minimum cardinality and H[De(η)] connected is a minimum connected dominating

set of H. For η ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b, we define ae(η) = |De(η)| if η identifies a partial

solution, otherwise ae(η) = +∞. For a leaf link e of T , De(η) is computed for every

η ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b by enumeration. For an internal link e of T , e has two child links e1 and

e2. The sets De(η) are computed by combining the sets of De1(η1) and the sets of De2(η2),

where η1 is a coloring of {0, 0̂, 1[, 1], 1∗, 1̂}b1 and η2 is a coloring of {0, 0̂, 1[, 1], 1∗, 1̂}b2 .
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Let X1 = ∂(Ae) \ ∂(Ae2), X2 = ∂(Ae) \ ∂(Ae1), X3 = ∂(Ae) ∩ ∂(Ae1) ∩ ∂(Ae3), and

X4 = (∂(Ae1) ∪ ∂(Ae2)) \ ∂(Ae). Then ∂(Ae) = X1 ∪X2 ∪X3, ∂(Ae1) = X1 ∪X3 ∪X4, and

∂(Ae2) = X2 ∪ X3 ∪ X4. A basic-coloring λ of ∂(Ae) is formed from basic-colorings λ1 of

∂(Ae1) and basic colorings λ2 of ∂(Ae1) if:

1. For u ∈ X1, λ(u) = λ1(u).

2. For u ∈ X2, λ(u) = λ2(u).

3. For u ∈ X3, if λ1(u) = λ2(u) = 1 then λ(u) = 1; if λ1(u) = λ2(u) = 0̂ then λ(u) = 0̂;

and if λ1(u) = 0 and λ2(u) = 0̂, or λ1(u) = 0̂ and λ2(u) = 0 then λ(u) = 0.

4. For u ∈ X4, λ1(u) = λ2(u) = 1, or λ1(u) = 0 and λ2(u) = 0̂, or λ1(u) = 0̂ and

λ2(u) = 0.

For a basic-coloring λ which is formed by two basic-colorings λ1 and λ2, we compute the

disjoint components P1, ..., Pr of H[De1(η1) ∪ De1(η2)], where for i = 1, 2 ηi(u) = λi(u) if

λi(u) ∈ {0, 0̂} and ηi(u) ∈ {1[, 1], 1∗, 1̂} if λi(u) = 1. De1(η1) ∪De1(η2) is called a candidate

for De(η) if each Pi has at least one vertex in ∂(Ae). If De1(η1)∪De1(η2) is a candidate, we

convert the color of u with λ(u) = 1 into one color of {1[, 1], 1∗, 1̂} according to if u is the

small end, the large end, a middle vertex, or the only vertex of V (Pi)∩ ∂(Ae), respectively,

to get a coloring η ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b. Finally, De(η) is a candidate De1(η1)∪De1(η2) with

the minimum cardinality.

5.1.3 Index method

Now we describe an implementation of Step III (called the index method). Assume that the

partial solutions in H[Ae1 ] and those in H[Ae2 ] have been found. We use a table B1 with

6b1 entries to keep the colorings of {0, 0̂, 1[, 1], 1∗, 1̂}b1 . The entries of B1 are indexed by

1, 2, ..., 6b1 . We define a bijection from {0, 0̂, 1[, 1], 1∗, 1̂}b1 to {1, 2, ..., 6b1} such that given a

coloring η1 ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b1 , the entry of B1 for η1 can be found in O(1) time when 6b1

can be expressed within O(1) words of a computer. For a coloring η1 ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b1 ,
we keep ae1(η1) and De1(η1) in the entry for η1. Similarly, we use a table B2 with 6b2 entries

to keep the colorings η2 ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b2 .
From tables B1 and B2, we compute the partial solutions in H[Ae]. We create a table

B with 6b entries and set ae(η) to +∞ for every entry. We first form the basic-colorings



CHAPTER 5. CDS PROBLEM IN PLANAR GRAPHS 80

of {0, 0̂, 1}b by checking B1 and B2. Recall that a vertex u ∈ ∂(Ae1) has basic color 1 if

η1(u) ∈ {1[, 1], 1∗, 1̂}. We partition the entries of B1 into 3b1 groups, each group is identified

by a basic-coloring of {0, 0̂, 1}b1 for the vertices in ∂(Ae1). Similarly, we partition the entries

of B2 into 3b2 groups. We say a group S1 of B1 and a group S2 of B2 matching if the basic-

coloring of S1 and the basic-coloring of S2 form a basic-coloring λ ∈ {0, 0̂, 1}b. Notice that

∂(Ae1) = X1 ∪X3 ∪X4 and ∂(Ae2) = X2 ∪X3 ∪X4. From this, given a group S1 of B1, the

matching groups S2’s of B2 can be decided by the basic colorings for S1 on the vertices of

X3 ∪X4.

For each coloring η1 ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b1 in a group S1 of B1, we choose every coloring

η2 ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b2 in every matching group S2, compute the disjoint components of

H[De1(η1) ∪De1(η2)], find the coloring η ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b from η1 and η2, and calculate

ae(η) as ae(η) = ae1(η1) + ae2(η2) − (X3 ∪ X4)#1, where (X3 ∪ X4)#1 is the number of

vertices in X3 ∪X4 which are colored by 1. For every η computed from η1 and η2 we keep

the minimum ae(η) and the corresponding De(η) which is computed from De1(η1)∪De2(η2).

In what follows we analyze the running time of the DPBF Algorithm. In [43] these theorems

are not proved and the explicit value of exponents are not defined.

Lemma 5.1.1 [43] DPBF Algorithm solves the CDS problem for a plane graph G of n

vertices in O(24.67bw(G)γc(G) + n3) time and O(6bw(G)γc(G)) memory space.

Proof: It takes O(n3) time in Step I to find a kernel H of G [72]. Because H is a subgraph

of G, bw(H) ≤ bw(G). Step II takes O((γc(G))3) time to find a sphere-cut decomposition

of H with width bw(H) since |V (H)| = O(γc(G)).

Notice that for plane graph H, |X3| ≤ 2. In the following analysis for the running time of

Step III, we assume that X3 = ∅. This assumption does not change the order of the running

time. Let l1 = |X1|, l2 = |X2|, and l4 = |X4|. Let θ be a fixed coloring scheme which

assigns a specific subset of m vertices of X4 the basic-color 1. We say a coloring scheme

η1 for X1 ∪ X4 is subject to θ if for each vertex u ∈ X4, η1(u) = θ(u) for θ(u) ∈ {0, 0̂},
and η1(u) ∈ {1[, 1], 1∗, 1̂} for θ(u) = 1. Let Q(l1,m) to be the number of coloring schemes

for X1 ∪X4 subject to θ. Then Q(l1,m) = 6l14m. Similarly, let Q(l2,m) be the number of

coloring schemes for X2 ∪ X4 subject to θ. Then Q(l2,m) = 6l24m. A coloring scheme η1

for X1 ∪X4 subject to θ and a coloring scheme η2 for X2 ∪X4 subject to θ form a coloring

scheme η for X1 ∪ X2. Therefore, for a given basic color assignment θ for X4 we need to

check Q(l1,m)Q(l2,m) pairs of the coloring schemes η1 and η2 for the merge step. From
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this, the total number of coloring scheme pairs to be checked is

N =

l4
∑

m=0

(

l4

m

)

2l4−mQ(l1,m)Q(l2,m) =

l4
∑

m=0

(

l4

m

)

2l4−m6l14m6l24m

= 6l1+l22l4
l4
∑

m=0

(

l4

m

)

23m = 6l1+l22l4(1 + 8)l4 = 2l1+l2+l43l1+l2+2l4 .

From l1 + l2 ≤ bw(H), l1 + l4 ≤ bw(H), l2 + l4 ≤ bw(H), we have l1 + l2 + l4 ≤ 1.5bw(H)

and l1 + l2 + 2l4 ≤ 2bw(H). Therefore,

N ≤ 21.5bw(H)32bw(H) ≤ 24.67bw(H).

Since there are O(|V (H)|) merge steps, |V (H)| = O(γc(G)) and bw(H) ≤ bw(G), Step III

takes O(24.67bw(H)|V (H)|) = O(24.67bw(G)γc(G)) time.

Each of tables B1, B2, and B has size O(6bw(H)|V (H)|) and the memory space required

for Algorithm is O(6bw(G)γc(G)). []

The running time of DPBF Algorithm can be improved by a more complex analysis for

Step III. For a given basic coloring θ with m specific vertices of X4 assigned color 1, we say

in the proof of Lemma 5.1.1 that

Q(l1,m)Q(l2,m) = 6l14m6l24m = 6l1+l216m (5.1)

pairs of colorings η1 and η2 need to be checked. However, not every pair of colorings η1 and

η2 subject to θ can produce a partial solution ofH[Ae]. For example, assume thatm = 1 and

u ∈ X4 is the vertex with the basic color 1. If η1(u) = η2(u) = 1̂ then De1(η1)∪De1(η2) is not

a candidate of De(η) because the disjoint component of H[De1(η1)∪De1(η2)] that contains

u does not have any vertex in ∂(Ae). The components identified by η1(u) = η2(u) = 1̂ in the

above example are called forbidding components [42, 43]. Excluding forbidding components

can reduce the running time of Step III [42, 43]. It is difficult to identify all forbidding

components. We work out some rules for identifying major forbidding components and show

that the value of 16m in Equation 5.1 can be improved to 14.8m. By this improvement, we

have the following result.

Theorem 5.1.1 [43] DPBF Algorithm solves the CDS problem for a plane G of n vertices

in O(24.62bw(G)γc(G) + n3) time.
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Proof: Let θ be a basic color scheme that assigns color 1 to m specific vertices of X4.

In what follows, using induction on m, we show that at most 14.8m pairs of coloring (η1,

η2) subject to θ can produce partial solutions. Some of the combinations of η1 and η2

create components that contain no vertex in X1 and X2. These components generate a

partial dominating set that is not connected. Since the forbidding components consist of

black vertices only, we use induction on m. Let the colorings η1 and η2 be ordered in

clockwise and counter-clockwise order from the first vertex of X4, respectively. For example

in figure 5.2, c is the first vertex of X4, the clockwise order of η1 is {c, d, e, f, g, a, b} and the

counter-clockwise order of η2 is {c, d, w, x, y, z}.

Figure 5.2: An example of clockwise and counter-clockwise order of vertices.

Assume that X4 includes m vertices, {u1, u2, . . . , um} with basic color 1 in θ. For every

vertex ui ∈ X4 the pair (η1(ui), η2(ui)) shows the color of ui in the corresponding colorings

η1 and η2 subject to θ. We define B(i) as the set of black colorings for i vertices in X4 that

do not form a forbidding component. Every coloring in B(i) is an i-tuple

((η1(u1), η2(u1)), (η1(u2), η2(u2), ..., (η1(ui), η2(ui)))

containing i pairs of colorings corresponding to i black vertices. Notice that η1(u1), η2(u1) ∈
{1[, 1̂} and η1(ui), η2(ui) ∈ {1[, 1], 1∗, 1̂} for 2 ≤ i ≤ m. Since (η1(ui), η2(ui)) = (1̂, 1̂) creates

a forbidding component, B(1) = {(1[, 1[), (1[, 1̂), (1̂, 1[)} and for every vertex ui, 2 ≤ i ≤ m
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there are 15 possible pairs:

{ (1[, 1[), (1[, 1
∗), (1[, 1]), (1[, 1̂), (1], 1[), (1], 1

∗)(1], 1]), (1], 1̂),

(1∗, 1[), (1
∗, 1∗), (1∗, 1]), (1

∗, 1̂), (1̂, 1[), (1̂, 1
∗), (1̂, 1])}.

Including these pairs to the existing colorings in B(i) generates the colorings of B(i + 1).

However, some of these pairs and some i-tuples of B(i) may make an (i+ 1)-tuples results

in a forbidding component. For instance, adding (1], 1̂) to (1[, 1̂) from B(1) generates a

forbidding component. For every coloring of B(1), Table 5.1 shows the list of pairs of

coloring that generate forbidding components.

Coloring in B(1) Pairs resulting forbidding components

(1[, 1[) (1], 1])

(1[, 1̂) (1], 1̂)

(1̂, 1[) (1̂, 1])

Table 5.1: The list of pairs that adding them to some colorings in B(1) generates forbidding
components

To generalize our method, we divide B(i) into the following four classes:

1. C1(i) contains all the i-tuples, such that (η1(ui), η2(ui)) = (1[, 1[).

2. C2(i) contains all the i-tuples, such that (η1(ui), η2(ui)) = (1[, 1̂).

3. C3(i) contains all the i-tuples, such that (η1(ui), η2(ui)) = (1̂, 1[).

4. C4(i) contains all other i-tuples.

We calculate B(i + 1) form B(i) by adding all possible pairs of coloring for (i + 1)th black

vertex to Cj(i) and generating Cj(i+ 1), for 1 ≤ j ≤ 4.

We generate Cj(i+ 1) from Cj(i) for 1 ≤ j ≤ 4, as follows:

1. C1(i+ 1) is generated by adding (1[, 1[) to Cj(i), for 1 ≤ j ≤ 4.

2. C2(i+ 1) is generated by adding (1[, 1̂) to Cj(i), for 1 ≤ j ≤ 4.

3. C3(i+ 1) is generated by adding (1̂, 1[) to Cj(i), for 1 ≤ j ≤ 4.

4. C4(i+ 1) is generated by adding :
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(a) all remaining possible pairs except (1], 1]) to C1(i). (11 possible pairs)

(b) all remaining possible pairs except (1], 1̂) to C2(i). (11 possible pairs)

(c) all remaining possible pairs except (1̂, 1]) to C3(i). (11 possible pairs)

(d) all remaining possible pairs to C4(i). (12 possible pairs)

Let |Cj(i)| be the number of i-tuples in Cj(i). Then we have

(|C1(i+ 1)|, |C2(i+ 1)|, |C3(i+ 1)|, |C4(i+ 1)|)T ≤ A(|C1(i)|, |C2(i)|, |C3(i)|, |C4(i)|)T ,

where

A =















1 1 1 1

1 1 1 1

1 1 1 1

11 11 11 12















Let z be the largest real eigenvalue of A. Then

|B(i+ 1)| =
4
∑

j=1

|Cj(i+ 1)| ≤ z
4
∑

j=1

|Cj(i)| = z|B(i)|.

From this, z ≤ 14.8 and |B(1)| = 3, |B(i+ 1)| ≤ zi|B(1)| = 3× (14.8)i ≤ (14.8)i+1.

When there are m vertices of X4 are given the basic color 1, there are 16m of pairs of

colorings (η1, η2) for the m vertices but we need to check only the pairs in B(m). So we can

replace 16m in Equation 5.1 by (14.8)m. Therefore, the new value for N can be recalculated

as follows.

N ≤
l4
∑

m=0

(

l4
m

)

2l4−m6l1+l2(14.8)m = 6l1+l2(16.8)l4 .

It is easy to see that N has the maximum value when |∂(Ae)| = |∂(Ae1)| = |∂(Ae2)|. This

can happen only when l1 = l2 = l4 = bw(H)/2. Therefore, N ≤ 24.620bw(H) that gives

N ≤ 29.8
√
n.

[]

5.1.4 Fast matrix multiplication and distance product

In the index method, the partial solution ae(η) for each coloring η is calculated by checking

every pairs of colorings η1 and η2 which form η and taking the minimum of ae1(η1) +
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ae2(η2) − (X3 ∪ X4)#1. The partial solutions can also be calculated by distance matrix

multiplication [40]. To do so, we need to put each partial solution identified by a coloring

η1 ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b1 to an element of a p×q matrix A and each partial solution identified

by a coloring η2 ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b2 to an element of a q×r matrix B such that each element

C[i, j] = minqk=1{A[i, k] +B[k, j]} of C = A×B contains a partial solutions identified by a

coloring η ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b.
In contrast to the local problems like the DOMINATING SET problem, it is not straight-

forward to get the matrices A and B for the non-local problems like the CDS problem. One

difficulty is as follows. For colorings η1 and η2 which form a coloring η, the colors of vertices

in X1 ∪X2 ∪X3 from η can not be decided only by the colors of vertices in X1 ∪X3 from

η1 and the colors of vertices in X2 ∪X3 from η2. The information on the disjoint connected

components in the partial solution of H[De1(η1) ∪De2(η2)] is further required to decide η.

The computation of the disjoint connected components is known as the post-processing for

the non-local problems in [40].

One approach to overcome this difficulty is to get the information of disjoint connected

components by a pre-processing: for each coloring η, we identify all pairs of η1 and η2 which

form η and put the partial solutions of η1 to a specific row of A and the partial solutions

of η2 to a specific cloumn of B. More specifically (for simplicity we assume that X3 = ∅),
let A be the matrix of p = 6|X1| rows for the partial solutions by η1 and B be the matrix

of r = 6|X2| columns for the partial solutions by η2. Each row of A is indexed by a color

of {0, 0̂, 1[, 1], 1∗, 1̂}|X1| and each column of B is indexed by a color of {0, 0̂, 1[, 1], 1∗, 1̂}|X2|.

For a coloring η, assume that the ith row of A corresponds to the colors of vertices in X1

from η and the jth column corresponds to the colors of vertices in X2 from η. Assume that

there are q pairs of η1 and η2 which form η. For each pair of η1 and η2, we put the partial

solution by η1 (ae1(η1)− (X4)#1) to an element in the ith row of A and the partial solution

by η2 (ae2) to an element in the jth column of B such that (A[i, k], B[k, j]), 1 ≤ k ≤ q,

correspond to the q pairs of η1 and η2. Then C[i, j] = minqk=1{A[i, k] + B[k, j]} gives the

partial solution by η. It can be shown that q ≤ (14.8)|X4| and the running time for the

pre-processing is O((14.8)|X4|). The details of the pre-processing is given in Appendix B.

For X3 6= ∅, we compute C = A × B for each coloring of {0, 0̂, 1[, 1], 1∗, 1̂}|X3|. Since

|X3| ≤ 2, there are at most 62 such computations.

If the conventional distance matrix multiplication is used, it takes O(p× q × r) time to

compute the distance product C = A×B. Since A and B have integer values, the distance
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product can be calculated by integer matrix multiplication. Let O(nω) be the time for

calculating the integer product of two n× n matrices. It is known that distance product of

C = A×B can be calculated in O(s(pr)(ω−1)/2q) time if the values of A and B are between

−s and s [111]. The best known upper bound on ω is 2.376. From this, the running time of

DPBF Algorithm is improved to O(23.722bw(G)γc(G) + n3) and O(28.08
√
nγc(G) + n3). This

result is summarized in the following theorem.

Theorem 5.1.2 DPBF Algorithm solves the CDS problem for a plane graph G of n vertices

in O(23.722bw(G)γc(G) + n3) and O(28.08
√
nγc(G) + n3) time.

Notice that the improvement by fast matrix multiplication is only of theoretical interests.

The method is not practical [87].

5.2 Fixed parameter time complexity and bidimensionality

As we mentioned in previous section the running time of DPBF algorithm grows expo-

nentially in bw(G). A straightforward upperbound bw(G) ≤ c
√

γ(G) ≤ c
√

γc(G), gives

running time O(223.7
√

γc(G)γc(G)+n3). We prove a better upperbound on bw(G), bw(G) ≤
2
√

10γc(G) + 32.

From this and Theorem 5.1.1, the CDS problem admits an O(223.54
√

γc(G)γc(G) + n3) time

fixed-parameter algorithm. We also introduce a new value for the density of the PLANAR

CDS problem in bidimensionality theorem.

5.2.1 Fixed parameter time complexity

A k×h cylinder Ck,h is a Cartesian product of a cycle of k vertices and a path of h vertices.

Its vertex set is V (Ck,h) = {(i, j)|0 ≤ i < h, 0 ≤ j < k} and there is an edge between vertices

(i, j) and (i′, j′) if and only if i = i′ and |j − j′| ≡ 1(modk) or j = j′ and (i − i′) = ±1.

We denote by Ci the cycle induced by the vertex set {(i, j)|0 ≤ j < k}. Figure 5.3 shows a

18× 10 cylinder.

Based on the following lemma which is proved in [62], we prove a better upperbound on

bw(G).

Lemma 5.2.1 [62] Let G be a planar graph and k, h be integers with k ≥ 3 and h ≥ 1.

Then G has either a minor isomorphic to a k × h cylinder or bw(G) ≤ k + 2h− 3.
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Figure 5.3: 18× 10 cylinder C18,10 Figure 5.4: Supplement graph of C18,10

We define the supplement graph of Ck,h to be the graph Gk,h with V (Gk,h) = V (Ck,h)

and

E(Gk,h) = E(Ck,h)) ∪
{{(i, j), (i+ 1, j + 1(modk))}, {(i+ 1, j), (i, j + 1(modk)}|0 ≤ i < h− 1, 0 ≤ j < k}.

Figure 5.4 shows the supplement graph of C18,10.

Lemma 5.2.2 For a plane graph G which has a minor isomorphic to Ck,h (k ≥ 2, h ≥ 10),

let H be the subgraph of the supplement graph Gk,h induced by the vertex set {(i, j)|4 ≤ i ≤
h− 5}. Then γc(H) ≤ γc(G) (See Figure 5.5).

Proof: To show the lemma, we prove that given a minimum CDS D of G, we can construct

a CDS D′ of H with |D′| ≤ |D|.
We do not distinguish Ck,h from the minor of G isomorphic to Ck,h. We also view Ck,h

a plane graph with an embedding obtained naturally from the embedding of G. Let ft be

the top face of Ck,h (the face incident only to the vertices of C0) and fb the bottom face of

Ck,h (the face incident only to the vertices of Ch−1). In Figure 5.5 top and bottom faces are

indicated by grey color.

Let W (ft) = {u|u ∈ V (G) and u is in ft} and let W (fb) = {u|u ∈ V (G) and u is in fb}.
Let D1 = D \ (W (ft) ∪W (fb)). We define φ : D1 → V (Gk,h) as follows.

• If u ∈ D1 ∩ V (Gk,h) then φ(u) = u.

• If u ∈ D1 \ V (Gk,h) and u is in a face f ∈ F (Ck,h) \ {ft, fb} then φ(u) is a vertex v of

V (f).
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H

Figure 5.5: Graph H is a subgraph of G20,18 and corresponding top and bottom faces are
colored by grey.

• If u ∈ D1 \ V (Gk,h) and u is incident to f1, f2 ∈ F (Gk,h) then φ(u) is a vertex v of

V (f1) ∩ V (f2).

Let D2 = {φ(u)|u ∈ D1}. Then the followings hold.

1. |D2| ≤ |D1|.

2. V (Gk,h) ∩N [D1] ⊆ V (Gk,h) ∩N [D2].

3. For any D′
1 ⊆ D1 and D′

2 = {φ(u)|u ∈ D′
1}, if G[D′

1] is connected then Gk,h[D
′
2] is

connected.

The rest of the proof is partitioned into two cases.

Case 1: D ⊆ V (Gk,h). From (2) and (3), D2 is a CDS of Gk,h. For each vertex (i, j)

(i = 0, 1, 2 or 3) of D2 on cycle Ci, we replace (i, j) with vertex (4, j). For each vertex (i, j)

(i = h− 1, h− 2, h− 3 or h− 4) of D2 on cycle Ci, we replace (i, j) with vertex (h− 5, j).

Then we get a CDS D′ of H such that D′ ⊆ V (H) and |D′| = |D2| ≤ |D1| ≤ |D|.
Case 2: D 6⊆ V (Gk,h). Since no vertex (i, j) where 1 ≤ i ≤ h−2 cannot be dominated by

any vertex of W (ft)∪W (fb), D1 dominates all vertices (i, j), 1 ≤ i ≤ h−2, 0 ≤ j < k. Based

on this and (2), D2 dominates all vertices (i, j), 1 ≤ i ≤ h−2, 0 ≤ j < k. On the other hand,

the subgraph of Gk,h induced by D2 may not be connected. Each component of Gk,h[D2]

may be further partitioned into multiple sub-components in graph H. We show that we can

construct a CDS D′ of H by adding some vertices to connect all the sub-components and

also the number of added vertices is at most |D2 \ V (H)|.
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For a connected component X of Gk,h[D2], since G[D] is connected and given (3), we

have |V (X)∩{(0, j)|0 ≤ j < k}|+|V (X)∩{(h−1, j)|0 ≤ j < k}| ≥ 1. A component is a top-

component if |V (X)∩{(0, j)|0 ≤ j < k}| ≥ 1, otherwise it is a bottom-component. For every

top-component X define ux ∈ V (X) ∩ {(0, j)|0 ≤ j < k} and for every bottom-component

X, ux is defined as ux ∈ V (X) ∩ {(h− 1, j)|0 ≤ j < k}.
For every top-component X we define

WX = {(i, j)|(i, j) ∈ V (X) ∩ V (H)} ∪ {(4, j)|(i, j) ∈ V (X), i = 3} ∪
{(h− 5, j)|(i, j) ∈ V (X), i = h− 4, h− 3, h− 2, h− 1}.

TX = {(i, j)|(i, j) ∈ V (X)0 ≤ i ≤ 2}

and similarly for every bottom-component X, WX and BX are defined as

WX = {(i, j)|(i, j) ∈ V (X) ∩ V (H)} ∪ {(h− 5, j)|(i, j) ∈ V (X), i = h− 4} ∪
{(4, j)|(i, j) ∈ V (X)i = 1, 2, 3}.

BX = {(i, j)|(i, j) ∈ V (X)h− 3 ≤ i ≤ h− 1}

Let W =
⋃

WX for all components X of Gk,h[D2]. We define GT =
⋃

TX for all

top-components of Gk,h[D2], and similarly GB is defined as GB =
⋃

BX for all bottom-

components of Gk,h[D2]. Then W ⊆ V (H) is a dominating set of H and |W | ≤ |(D2 ∩
V (Gk,h)) \ (V (GT ) ∪ V (GB))|. If H[W ] is connected then the lemma holds. Otherwise,

we show that a CDS D′ of H can be constructed by adding at most |(V (GT ) ∪ V (GB))|
vertices to connect the components of H[W ]. Since GT and GB are two disjoint graphs,

|(V (GT ) ∪ V (GB))| = |V (GT )| + |V (GB)|. We show that the minimum sizes of |V (GT )|
and |V (GB)| provide enough vertices to connect components of H[W ]. In what follows we

compute a lower bound for |V (GT )| using the top-components. A lower bound for |V (GB)|
can be found similarly using the bottom-components.

Let X be a connected top-component of Gk,h[D2] with r sub-components Y1, ..., Yr in

H[W ]. For each sub-component Ya there is a vertex ya = (4, j) of Ya such that xa = (3, j)

is a vertex of X and each vertex xa(1 ≤ a ≤ r) is incident to a vertex of tree TX of X in

GT . TX is a tree that connects Y1, ..., Yr together and connect them to ux.

We define the debit of a sub-component Ya(2 ≤ a ≤ r), indicated by debit(Ya), as the

number of columns between xa and xa−1. Based on the debit of each sub-component we

define the following two types of sub-components:
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• close sub-component: A sub-component Yα whose debit(Yα) = 1 for 2 ≤ α ≤ r.

• far sub-component: A sub-component Yα whose debit(Yα) > 1 for 2 ≤ α ≤ r.

To connect Y1, ..., Yr, we need at least debit(Y2) + ... + debit(Yr) vertices in TX . The

following lower bound can be defined for |V (TX)| which is known as the credit that TX

provides for X to connect its sub-components and indicated by credit(TX).

credit(TX) = |V (TX)| ≥ debit(Y2) + ...+ debit(Yr).

If a sub-component Ya is a close sub-component, it means that there is only one column,

called middle column between ya and ya−1. TX clearly has a vertex on the middle column.

Using this vertex and adding a new vertex in W between Ya and Ya−1, we connect every

close sub-component Ya to sub-component Ya−1. In formal, for every component X and for

every close sub-component Ya ∈ X with middle column lm we define D′ as follows:

D′ = W ∪ {(4, lm)|(i, lm) ∈ V (TX)} (5.2)

Once connecting the close sub-components, for every component X containing at least

one close sub-component, we get a new component X ′ such that X ′ has only r′ far sub-

components in H. In what follows we show that credit(TX′) is at least 2r′ and enough to

make D′ connected.

Let X ′ be the result of connecting c close sub-components in X. Let X ′ has r′ new

sub-components Y ′
1 , ..., Y

′
r′ which are all far sub-components. credit(TX′) is defined as

credit(TX′) = (credit(TX)− c) = (|V (TX)| − c) ≥ debit(Y ′
2) + ...+ debit(Y ′

r′) ≥ 2(r′ − 1).(5.3)

In the remaining of this proof we improve the lower bound to credit(TX′) ≥ 2r′. We

consider three different cases for X ′.

1. X ′ contains at least one sub-component Y ′
a with debit(Y ′

a) ≥ 4. In this case it is

obvious from 5.3 that credit(TX′) ≥ 2r′.

2. X ′ contains at least one sub-component Y ′
a with debit(Y ′

a) = 3. Since in this case we

assumed that there are at most three columns between every two sub-components in

X ′ there must be at least one column with more than one vertex (including u′x) in

TX′ . Otherwise the sub-components can not be connected to ux′ . Based on this and

5.3, credit(TX′) ≥ 2r′.
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3. X ′ contains only sub-components Y ′
a with debit(Y ′

a) = 2. Similar to the second case, if

TX′ has only one vertex on each column, only the connection between sub-components

is possible and to connect them to ux′ , two more vertices are needed. Based on this

and 5.3, credit(TX′) ≥ 2r′.

This lower bound also holds for a component X ′ with only one sub-component (r′ = 1),

since x′1 is connected to ux′ by a path in TX′ with three vertices, credit(TX′) ≥ 2.

Therefor, for each component X ′ with r′ far sub-components, we have

credit(TX′) ≥ 2r′. (5.4)

Let Gk,h[D2] contains m connected components X1, ..., Xm, and assume after connecting

close sub-components to their neighbours, each resulting X ′
i 1 ≤ i ≤ m has li far sub-

components. Since H[W ] is a dominating set of H, there are at most two columns distance

between sub-components. Therefore, the number of far sub-components in H[W ] is n =

l1 + . . .+ lm. Thus, we need at most 2n− 2 vertices to connect these sub-components and

make H[W ] a connected dominating set of H. Based on lower bound in 5.4 we have

credit(TX′

1
) + . . .+ credit(TX′

m
) ≥ 2l1 + . . .+ 2lm ≥ 2n

Therefore, the total credits of components is at least 2n.

Summarizing the above, each component X in Gk,h[D2] containing b sub-components in

H[W ], contributes 2b credits. Therefore, a CDS D′ of H can be constructed by adding at

most |(V (GT ) ∪ V (GB))| vertices to connect the components of H[W ]. This completes the

proof of the lemma.

[]

Lemma 5.2.3 γc(Gk,h) ≥ (k × h− 4)/5.

Proof: Let D be a CDS of Gk,h. Then Gk,h[D] contains a tree T which connects all vertices

of D. We choose a non-leaf vertex of T as the root. Then the root can dominate at most 9

vertices including itself. We scan T in the level-order. Every vertex u during the scan can

dominate at most five vertices which have not been dominated by the scanned vertices. So

|D| ≥ 1 + (k × h− 9)/5 = (k × h− 4)/5. []
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Theorem 5.2.1 For a plane graph G, bw(G) ≤ 2
√

10γc(G) + 32.

Proof: Assume for contradiction that bw(G) > 2
√

10γc(G) + 32. By Lemma 5.2.1, G has

a cyliner minor Ck,k/2 with k >
√

10γc(G) + 17. By Lemmas 5.2.2 and 5.2.3,

γc(G) ≥ γc(Gk, k
2
−8) ≥

k(k2 − 8)− 4

5
.

Base on this, k <
√

10γc(G) + 17, a contradiction. []

5.2.2 Bidimensionality

The main tool used in the design of most subexponential fixed-parameter algorithms for

minor-closed graph classes such as planar graphs is based on the following fact. For every

graph G in minor-closed graph class if the size of the optimal solution is at most k, then

tree/branchwidth is bounded by some function of k called f(k). In many cases f(k) is

sublinear in k, often O(
√
k). For example in the previous section we use the same tool to

prove the time complexity of DPBF algorithm for PLANAR CDS problem.

Bidimensionality, introduced in series of papers [38, 34, 33, 35], provides a tool for

developing subexponential fixed-parameter algorithms for optimization problems on graph

families that exclude a minor. A minor of a graph G is any graph H that is isomorphic

to a graph that can be obtained from a subgraph of G by contracting some edges. If G

does not have a graph H as a minor, then G is called H-minor free. There are two types of

bidimensionality: minor-bidimensionality, contraction-bidimensionality. For any problem

in one of these two bidimensionalities, their corresponding algorithms on planar graphs can

be extended to some larger families of graphs. In what follows we give a formal definition

of bidimensionality, and we show that our results in previous section can improve some

parameters in bidimensionality theorem for the CDS problem.

A graph parameter P is a function mapping graphs to non-negative integers, such as size

of dominating set. The parametrized problem associated with P , for a fixed k asks whether

P (G) ≤ k for a given graph G. A partially triangulated (r × r)-grid is any planar graph

obtained by adding edges between pairs of nonconsecutive vertices on a common face of a

planar embedding of an (r × r)-grid.

Definition: [35] A parameter P is minor-bidimensional with density δ if

1. contracting or deleting an edge in a graph G cannot increase P (G), and
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2. for the (r × r)-grid R, P (R) = (δr)2 + o((δr)2).

In [35], it is proved that if an optimization problem is minor- bidimensional, there is a

subexponential fixed-parameter algorithm for the problem on H-minor-free graphs for any

fixed graph H.

Definition: [35]A parameter P is contraction-bidimensional with density δ if

1. contracting an edge in a graph G cannot increase P (G), and

2. for any partially triangulated (r × r)-grid R, P (R) ≥ (δr)2 + o((δr)2), and

3. δ is the smallest real number for which inequality holds.

If an optimization problem is contraction-bidimensional, there is a subexponential fixed

parameter algorithm for the problem on graphs from apex-minor-free family. Apex-minor-

free means H-minor-free where H is a graph in which the removal of one vertex makes the

graph planar.

The CDS problem is contraction-bidimensional [35]. A known density of this problem is
1
3 which is same as the density of DOMINATING SET problem. This density provides an

lower bound for the density of CDS problem:

Theorem 5.2.2 The CDS problem is contraction-bidimensional problem with density δ at

least 1√
5
.

Proof:

Clearly, edge contraction cannot increase the size of CDS. Let R be a partially triangu-

lated (r × r)-grid. The proof for the second condition, P (R) ≥ r2

5 + o( r
2

5 ), is similar to the

proof of Lemma 5.2.3. []

In addition, 1√
5
is the smallest value for δ since for any partially triangulated (r×r)-grid

R, there is a dominating set of size r2

5 + O(r). Appendix C describes how this dominating

set can be constructed. Combine this and Theorem 5.2.2 we have following theorem:

Theorem 5.2.3 The CDS problem is contraction-bidimensional problem with density δ =
1√
5
.
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5.3 Computational results

We tested the performance of DPBF Algorithm on six classes of planar graphs. These graphs

have been used in the previous computational studies for the PLANAR DOMINATING

SET problem [3, 4, 87]. Class (1) is a set of random maximal planar graphs and their

subgraphs generated by LEDA [1]. Class (2) includes the Delaunay triangulations of point

sets taken from TSPLIB [95]. The instances of Classes (3) and (4) are the triangulations

and intersection graphs generated by LEDA, respectively. The instances of Class (5) are

Gabriel graphs generated using the points uniformly distributed in a two-dimensional plane.

The instances of Class (6) are random planar graphs generated by the PIGALE library [2].

We use the reduction rules of [72] to compute the kernels of input instances in Step

I and the O(n3) time algorithm of [17] to compute optimal sphere-cut decompositions of

kernels in Step II. For Step III, we use an indexing method to access the tables. To save

memory, we compute the colorings η and sets De(η) for each link e of T in the post-order

manner. Once the colorings η and sets De(η) are computed for a link e, the solutions

for the child links of e are discarded. We have tested the implementations without and

with excluding forbidding components. The results show that the simple version (without

considering forbidding components) has a better performance. Because the fast distance

matrix multiplication is not practical [87], applying this technique does not improve the

practical performance of the algorithm.

The computer used for testing has an AMD Athlon(tm) 64 X2 Dual Core Processor

4600+ (2.4GHz) and 3GByte of internal memory. The operating system is SUSE Linux

10.2 and the programming language used is C++.

Table 5.2 shows the computational results of the simple version of DPBF Algorithm. H is

the kernel of an instance computed in Step I. In Step II, an optimal sphere cut decomposition

of H is computed and we report |E(H)|, the size of H, the branchwidth bw(H) of H, and

the running time of this step. For Step III, we give γc(G) obtained, the running time of the

step and the required memory in mega bytes (MB). All times in the table are in seconds.

Now we go over the details of our results. It is shown in Appendix A that the branchwidth

of the instances of class (1) is at most four. Our results show that reduction rules are very

effective on these graphs and that the size of the kernels is much smaller than the size of the

original graphs. Thus, step III is fast and the minimum CDS of some instances with 16000

edges can be computed in about one hour on our platform.
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However, the branchwidth increases very fast in the size of the graph for the instances

of Classes (2) and (5). In addition, the reduction rules do not reduce the size of the original

graphs very much, and the size and branchwidth of generated kernels are the same as

those of the original graphs. The running time of Step III increases significantly with the

branchwidth of instances (e.g., see the running time of instances pr144 and kroB150). For

instances with the same branchwidth the running time of this step depends on the size of the

kernel (see instances eil51 and lin105). For these classes of planar graphs DPBF Algorithm

is time consuming and can solve the CDS problem on instances of size up to a few hundreds

edges in a practical time.

The branchwidth of instances of Classes (3) and (4) grows relatively slow in the instance

sizes. Furthermore, data reduction rules are effective on the instances of Class (4). The

branchwidth of graph instances in Class (6) does not grow in the instance size thus, DPBF

Algorithm is efficient for this class.

The memory space required by DPBF Algorithm in step III is a bottleneck for solving

instances with large branchwidth. Experimental results show that DPBF Algorithm can

compute a minimum CDS for instances with the branchwidth of kernels at most 10 (bw(H) ≤
10) using 3GBytes of memory space.

Our computational results confirm the theoretical analysis of DPBF Algorithm. It is

efficient for graphs with small branchwidth but time and memory consuming for graphs with

large branchwidth. This suggests that the branchwidth of a planar graph is a key parameter

to decide if a problem on the graph can be solved efficiently or not. For example, Class

(1) graphs have branchwidth at most four and thus admit efficient algorithms for many

hard problems. On the other hand, the problems on graphs in Classes (2) and (5) are less

tractable due to the large branchwidth of the instances.
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Class Graph |E(G)| bw(G) Step I Step II Step III total maximum
G time |E(H)| bw(H) time γc(G) time time memory

(1) max1000 2912 4 19.4 704 4 2.3 131 4 25.7
max2000 5978 4 63 1133 4 6.0 252 9.9 78.9
max3000 8510 4 359 2531 4 37.6 417 94 491
max4000 10759 4 836 3965 4 145 614 458 1439
max5000 14311 4 848 3873 4 160 650 383 1392
max5000 16206 4 1702 5989 4 325 907 1769 3796

(2) eil51 140 8 0.1 140 8 0.2 14 253 254 0.03
lin105 292 8 0.3 275 8 3 27 810 813 0.03
pr144 393 9 1 347 7 0.5 25 18.1 19.7 0.06

kroB150 436 10 1 436 10 0.8 36 133856 133858 1.05
pr226 586 7 1.3 399 6 1.7 24 5.1 8.1 0.04
ch130 377 10 0.3 377 10 0.6 34 38562 38563 0.74

(3) tri100 288 7 0.7 258 6 0.6 20 7.1 8.4 0.05
tri500 1470 7 10.1 1438 6 37.2 91 62.6 110 0.07
tri800 2374 8 18 2279 7 86.4 149 289 393 0.13
tri2000 5977 8 109 5751 8 603 369 5643 6355 0.48
tri4000 11969 9 547 11236 9 3690 753 42323 46560 0.57

(4) rand100 121 5 0.1 73 3 0.1 40 0.1 0.3 0.03
rand500 709 7 1.7 545 6 0.4 216 10.8 12.9 0.05
rand700 1037 7 2.9 836 6 1 301 17.8 21.8 0.07
rand1000 1512 8 4.5 1242 7 2.5 421 422.8 429.8 0.25
rand2000 3247 8 17.5 2852 8 17.8 839 10179 10214 0.38
rand3000* 4943 10 - - 10 - - - -

(5) Gab50 88 4 0.1 88 4 0.1 22 0.2 0.4 0.03
Gab100 182 7 0.1 179 7 0.3 41 66.7 67.1 0.11
Gab200 366 8 0.7 362 8 1.5 81 2290 2293 0.13
Gab300 552 10 1.4 545 10 1.6 121 12 days 12 days 2.53

(6) P206 269 4 0.6 163 4 0.3 78 0.3 1.2 0.02
P495 852 5 3.2 765 5 8.4 167 11.9 23.5 0.02
P855 1434 6 7.9 1280 6 15.1 289 77.9 101 0.06
P1000 1325 5 4.4 777 5 2.5 378 7.3 14.2 0.07
P2000 2619 6 24.5 1527 6 12.3 738 58.0 94.8 0.11
P4206 7101 6 256 6377 6 1816 1423 2411 4482 0.43

Table 5.2: Computational results (time in seconds) of DPBF Algorithm. For the instances
marked with ”*”, the 3GByte memory is not enough for computing a minimum connected
dominating set.



Chapter 6

Polynomial Time Approximation

Schemes(PTAS) for planar graphs

problems

6.1 Related methods

Based on the assumption P 6= NP there is no efficient (polynomial time) algorithm for a

NP-hard problem. If an almost optimal solution is good enough, approximation techniques

are of the fastest methods. Readers may refer to [108] for a survey on approximation algo-

rithms. Approximation ratio of an algorithm is the best measure to evaluate the algorithm.

An extensive amount of studies have been devoted to improve the approximation ratio of

algorithms for NP-hard problems, however in many cases, improving approximation ratio

is not possible unless some collapses occur between complexity classes. For example Arora

et al. in [11] prove that a class of NP-hard problems including vertex cover, maximum

satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring does not

have a PTAS, unless P = NP . Studies on NP-complete problems show that there are many

problems which are easier to approximate on planar graphs. As an example maximum inde-

pendent set is inapproximable within a factor of n1/2ǫ for any ǫ > 0 unless P = NP , while

for planar graphs there is a 4-approximation algorithm. Another example is the DOM-

INATING SET problem defined on a general graph with n nodes. The DOMINATING

SET problem is known to be (1 + log n)-approximable [74], but not approximable within

97
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a factor of (1 − ǫ) lnn for any ǫ > 0 unless NP ⊆ DTIME(nlog logn) [56]. The problem

is also known to be fixed-parameter intractable unless the parametrized complexity classes

collapse [44, 45], however the PLANAR DOMINATING SET problem has a PTAS.

There are two main methods for finding PTASs for NP-hard problems on planar graphs:

separator method and outer-planar decomposition method. In the following sections we in-

troduce these two methods and show how the maximum independent set problem in planar

graphs can be solved using these methods. We also explain how branch-decomposition

based algorithms for the PLANAR DOMINATING SET problem can be applied in the

outer-planar decomposition method to generate a PTAS for the PLANAR DOMINATING

SET problem.

6.1.1 Planar separator method

This method is based on the following theorem introduced by Lipton and Tarjan [81].

Planar separator theorem [81]: For any planar graph with n nodes there is a separator

of size O(
√
n), whose removal splits the graph into subgraphs of size at most 2/3n. Finding

this separator can be done in polynomial time. Figure 6.2 shows an example of a planar

separator of size 5 for a planar graph with 20 nodes.

The separator method recursively applies this theorem until the the size of resulting

subgraphs is a constant such as 1/ǫ . The problem on these subgraphs is solved by brute

force , then these partial solutions are combined through the recursion tree of separators.

Planar maximum independent set problem: Based on this method, Lipton and

Tarjan in [82] gave an 1−O(1/
√
log n) approximation algorithm for the planar independent

set problem with running time O(n logn). The algorithm works as follows. Let G be a

planar graph with n vertices and ǫ = (log logn)/n. For every vertex we define a cost as 1/n.

The algorithm has two steps:

1. Recursively applies the planar separator theorem, until the graph G′ resulted from

removing separators has no connected component with more than log logn vertices.

It is proved that the total size of separators in this step is O(n/
√
log logn).

2. In each connected component of G′, finds a maximum independent set by checking

every subset of vertices for independence. It then forms I as a union of maximum

independent sets.
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Figure 6.1: A separator of size of 5 for a planar graph with 20 nodes

Using the 4-colour theorem, Lipton and Tarjan show that the relative error of this

algorithm is O(1/
√
log log n). The running time of the first step is O(n logn). Step 2

requires O(ni2
ni) time on a connected component of ni vertices. The total time required by

Step 2 is thus nmax{logn, 2log logn} = O(n logn).

The error induced by this method is bounded by the total size of all separators, which is

bounded by n. This approach can generate a PTAS for the problem if the optimal solution

is at least some constant factor times n.

This method has two disadvantages :

1. This method gives a PTAS only if the optimal solution is a constant factor times

n. However, this property does not hold for all NP-hard problems on planar graphs.

For example, Grohe [60] states that the PLANAR DOMINATING SET problem is a

problem to which the technique based on the separator theorem does not apply. In

addition, for some problems such as independent set and vertex cover this upper bound

for the optimal solution can only be achieved through the application of reduction rules

or pruning methods.
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2. This method is not practical. For example Lipton and Tarjan applied this method to

obtain an approximation algorithm for maximum independent set problem.

The approximation algorithm that Lipton and Tarjan developed for solving the max-

imum independent set problem, requires O(nmax{log n, 2f(n)}) time to find an inde-

pendent set of size at least (1−O(1/f(n)). However, Chiba et al. [90] showed that to

obtain approximation ratio 2, the input graph must have at least 22
400

vertices.

6.1.2 Outer-planar decomposition method

In [12] Baker introduces a general method to obtain approximation schemes for various

NP-complete problems on planar graphs. This method is based on decomposing a general

planar graph into k-outer planar subgraphs.
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Figure 6.2: A 3-layer outer planar graph

A graph G is called outer planar or 1-outer planar if it has a planar embedding such

that all vertices of G are incident to a same face (called outer face). For k > 1, G is a

k-outer planar graph, if it has a planar embedding such that removing the vertices of G on

the outer face will result in a (k − 1)-outer planar graph. Figure 6.2 shows an example of

3-outer planar graph.
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Baker shows that the structure of k-outer planar graphs is adaptable with dynamic

programming and the optimal solution for the NP-complete problem on k-outer planar

graphs can be computed in linear time when k is a constant. For an NP-complete problem

P on a general planar graph G, we can generate an approximated solution by decomposing

the graph into k-outer or (k+1)-outer planar subgraphs and taking the union of the optimal

solutions of each subgraph. The outer-planar decomposition method works as follows:

1. Generate a planar embedding of G using the linear-time algorithm of Hopcroft and

Tarjan [71]. Let the embedding has m levels.

2. for i = 0, 1, ...k − 1

(a) Decompose G into subgraphs G1, G2, ...Gr as follows:

• If P is a maximization problem: Remove the vertices of G on levels congruent

to i( mod k + 1). The subgraphs induced by remaining vertices generate

disjoint k−outer planar subgraphs G1, G2, ...Gr.

• If P is a minimization problem: every subgraph Gj , 0 ≤ j ≤ (m− i− k)/k,

is defined as a subgraph induced by vertices on levels jk + i to (j + 1)k + i.

Every subgraph Gh is a k+1−outer planar graph that has common vertices

with Gh+1 on level (h+ 1)k + i.

(b) Apply a linear-time dynamic programming algorithm to find an optimal solution

for P on each subgraph Gh, 1 ≤ h ≤ r .

(c) Generate an approximated solution for problem P on the general graph G by

taking the union of the solutions. Let Ai be the approximated solution.

3. If P is a minimization problem the algorithm returns mini=0,1,...,k−1{Ai} and if P is a

minimization problem the result will be maxi=0,1,...,k−1{Ai}.

Baker shows that for general planar graphs if the problem P is a maximization problem,

such as maximum independent set, for each fixed k this technique gives a linear-time algo-

rithm that produces a solution whose size is at least k/(k+1) times the optimal solution. If

the problem is a minimization problem, such as minimum vertex cover, for each k, it gives

a linear-time algorithm that produces a solution whose size is at most (k + 1)/k times the

optimal solution. This method resolves the two disadvantages of the separator method. In
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[12] some NP-complete problems are listed which are solvable in polynomial time on k-outer

planar graphs for constant k.

Planar maximum independent set:

In [12], the outer-planar decomposition method is applied to generate an approximated

solution for the planar maximum independent set. It is shown that for every k−outer

planar subgraph, Gi, an optimal solution, Ii can be computed in linear time by dynamic

programming. Taking union of these optimal solution, I = I1 ∪ I2 ∪ ... ∪ Ih, generate an

approximated independent set of size at least k/(k + 1) times optimal.

6.2 PTAS for the PLANAR DOMINATING SET problem

Our computational results in Chapter 4 show that branch-decomposition based algorithms

may not be practical for solving the DOMINATING SET problem on planar graphs with

large branchwidth. Thus, we need to restore the approximation algorithms for solving the

DOMINATING SET problem on planar graphs with large branchwidth. In what follows we

introduce a PTAS for the PLANAR DOMINATING SET problem based on the outer-planar

decomposition method.

6.2.1 Algorithm

It is reported in [12] that a number of NP-hard problems in k−outer planar graphs can

be solved in polynomial time for constant k and these problems admit a PTAS for general

planar graphs. One of such problems is the PLANAR DOMINATING SET problem. It is

briefly mentioned in [12] that a PTAS can be obtained by the outer-planar decomposition

approach for the PLANAR DOMINATING SET problem. The suggested approximation

ratio for minimization problems is (k+1)
k . However, as shown below, this approximation

ratio is not correct for PLANAR DOMINATING SET and a modification of outer-planar

decomposition method is require to get the PTAS for the PLANAR DOMINATING SET

problem with approximation ratio (k+2)
k .

For minimization problems, outer-planar decomposition method decomposes the planar

graph G, into (k + 1)−outer planar subgraphs. For every i, 0 ≤ i < k, the optimal solution

is computed for (k + 1)−outer planar subgraph induced by levels jk + i to (j + 1)k + i,

j ≥ 0 and the union of these solutions generates an approximated solution. The outer-

planar decomposition method returns the smallest approximated solution. For example, it
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is proved that the approximated solution is at most (k+1)
k times the optimal for the minimum

vertex cover problem. The proof is as follows. For a given graph G and an integer k, let C

be an optimal solution and Ca be the approximated solution computed by the outer-planar

decomposition method. Clearly, for some 0 ≤ t < k, there are at most |C|/k vertices on

levels congruent to t( mod k). For every j ≥ 0, G(t,j) is defined as a subgraph induced by

levels jk + t to (j + 1)k + t. Let C(t,j) be the set of vertices of C in G(t,j), and C ′
(t,j) be

a minimum vertex cover of G(t,j) computed by the algorithm. Clearly, for every j ≥ 0 we

have |C ′
(t,j)| ≤ |C(t,j)|. Therefore,

|Ca| ≤
∑

j≥0

|C ′
(t,j)| ≤

∑

j≥0

|C(t,j)|

Each subgraph G(t,j) overlaps with G(t,(j+1)) on level (j+1)k+ t. Thus, the vertices of C on

levels congruent to t( mod k) are counted twice in
∑

j≥0 |C(t,j)|, therefore
∑

j≥0 |C(t,j)| ≤
(k+1)

k |C|.
In [12], using the same proof, it is suggested that for the PLANAR DOMINATING

SET problem the approximation ratio is (k+1)
k . However, in what follows we give a counter

example that this proof is not correct for the PLANAR DOMINATING SET problem.

Let G be a plane graph shown in Figure 6.3a with 46 vertices and k = 2. A minimum

dominating set D of G, containing 9 vertices is shown by black vertices. G has 6 levels

and the outer level is numbered one. For t = 0 there are only three vertices of D on levels

congruent to 0, levels 2,4,6. For every subgraph G(0,j), let D(0,j) be a subset of D in G(0,j),

such that the vertices on levels 2j and 2j +1 are dominated by D(0,j). Let D
′
(0,j), j ≥ 0, be

a minimum general dominating set of G(0,j), that dominates the vertices on levels 2j and

2j + 1. For j = 2, G(0,2) and D(0,2) are shown in Figure 6.3b and the vertices of D′
(0,2) are

shown with bold lines in Figure 6.3c. For this subgraph, D′
(0,2) ≤ D(0,2) does not hold, and

thus the above proof is not valid for the PLANAR DOMINATING SET problem.

Decomposing the input graph G, into (k + 1)−outer planar subgraphs G(t,j), is due the

fact that the vertices of level (j + 1)k + t − 1 can be dominated by the vertices on level

(j + 1)k + t. However, this assumption is not enough since the vertices on level jk + t,

can also be dominated by the vertices on level jk + t − 1. Therefore, in the outer-planar

decomposition method we include the vertices on level jk + t− 1 in the subgraph G(t,j).

Therefore, we modify the outer-planar decomposition method to decompose the planar

graph into k + 2−outer planar subgraphs. For every t, 0 ≤ t < k, the minimum general
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dominating set is computed for k + 2−outer planar subgraph induced by levels jk + t − 1

to (j + 1)k + t, j ≥ 0.

For a (k+2)− outer planar subgraph, induced by levels m−1 to m+k, let U be the set

of vertices on levels m− 1 and m+ k, and V be the set of vertices of the remaining levels.

A minimum general dominating set Dg is a minimum set of vertices in level m− 1 to m+k,

such that every vertex in levels m to m + k − 1 is dominated by Dg. Figure 6.4 shows a

general dominating set computed for a k + 2−outer planar subgraph G(0,2).

Let G be a planar graph with m levels, 1, ...,m, and G be decomposed into (k+2)−outer

planar subgraphs, G1, G2, ..., Gr. For every subgraph Gi, 2 ≤ i ≤ r − 1, we calculate a

minimum Dg(Gi). For G1 we need to calculate a minimum Dg(G1) such that the vertices in

levels 1 to k are dominated. For Gr we calculate a minimum Dg(Gr) such that the vertices

in levels m− k to m are dominated. Therefore, the dominating sets for G1 and Gr includes

the vertices that ensures the vertices in levels 1 and m are also dominated.

In order to calculate the optimal dominating set of every subgraph we use the FT al-

gorithm introduced in Chapter 4. Clearly, the branchwidth of every k-outer planar graph

is at most 2k, therefore by choosing a small k we can generate the subgraphs with small

branchwidth and find their optimal solutions in practical time and memory space. Through

applying the FT algorithm we calculate an optimal general dominating set for every sub-

graph. The union of these optimal dominating sets generates an approximated solution for

G.

6.2.2 Approximation ratio

For a given planar graph G(V,E) and a positive integer k, the algorithm described in the

previous section works as follows: For each i, 0 ≤ i < k, it uses the FT algorithm to find

the optimal solutions for the (k + 2)−outer planar subgraphs induced by levels jk + i − 1

to (j + 1)k + i, j ≥ 0. For each i, the union of the solutions gives a dominating set of G.

The algorithm picks the minimum one from these solutions, called D′.

In what follows, we show that D′ is a dominating set of G and |D′| ≤ (k+2)
k .opt. Let

D be the minimum dominating set of G. Let Dij be the set of vertices of D in levels

jk+ i− 1 through (j +1)k+ i, and D′
ij the optimal dominating set computed by PTAS for

the subgraph induced by these levels. Since PTAS computes an optimal dominating set for

every subgraph |D′
ij | ≤ |Dij |. Clearly, for some t, 0 ≤ t < k, at most 2|D|/k vertices in D

are in levels congruent to t mod k or (t+ 1) mod k. Thus, we have
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(a) A plane graph G and its minimum dominating set
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(c)
G(0,2)

and
D

′

(0,2)

Figure 6.3: A counter example such that |D(0,2)| ≤ |D′
(0,2)|.
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Figure 6.4: a minimum general dominating set for (k+2)-outer planar subgraph G(0,2)

|D′| = |D′
t0|+ |D′

t1|+ |D′
t2|+ ...+ |D′

tr| ≤ |Dt0|+ |Dt1|+ ...+ |Dtr|
Since the subgraphs have overlaps, the vertices of D in the levels congruent to t mod k and

the levels congruent to (t+ 1) mod k are counted twice. Therefore, |D′| ≤ ((k + 2)/k)|D|.

6.3 Computational study of PTAS for the PLANAR DOM-

INATING SET problem

Our computational results in Chapter 4 show that the FT algorithm is not practical on our

test platform for graphs with branchwidth greater than 12. For these graphs, we study the

performance of the PTAS introduced in the previous section. The PTAS solution is imple-

mented in C++ and its performance is tested on 4 different classes of graphs including the

Delaunay triangulations of point sets taken from TSPLIB [95], triangulations and intersec-

tion graphs generated by LEDA and Gabriel graphs generated using the points uniformly

distributed in a two-dimensional plane. These classes are the classes (2),(3),(4) and (5),

respectively, in the computational study of the FT algorithm in Chapter 4. The same com-

puting platform is used for the study of these classes. Table 6.1 shows the computational

results of the PTAS for the PLANAR DOMINATING SET problem. For every instance

we calculate the approximated solutions for three different values of k, 2,3 and 4, and for

every value of k we calculate all possible decomposing the graph into (k + 2)-outer planar

components. We choose the best value for an approximated solution. For some instances
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with small branchwidth, we also include the results of the FT algorithm. The minimum

dominating set of graph G, computed by the exact algorithm is indicated by γ(G) in Ta-

ble 6.1, and for every value of k, DPTAS(G) is the size of dominating set computed by the

approximation algorithm. The running time is in seconds.

In order to compare the approximated dominating sets obtained from the PTAS with

the optimal solutions, we include some instances with small branchwidth for every class of

graphs, such that a minimum dominating set can be computed using the FT algorithm.

The Exact Alg. column shows the results of the FT algorithm. We use three values for k

to decompose the instances into k + 2−outer planar component. Clearly, the branchwidth

of every (k + 2)−outer planar graph is at most 2k + 4. Hence, by increasing k the size of

subgraphs and their branchwidth will increase. Theoretical results suggest that increasing k

gives smaller approximated solutions for the maximization problems. Our computing results

confirms the theoretical analysis of the outer-planar decomposition method. For example for

k = 4 every instance can be decomposed into subgraphs with branchwidth at most 12. This

is the largest value of branchwidth that can be processed on our computational platform.
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Graph |E(G)| bw Exact Alg. k=2 k=3 k=4
G γ(G) l time DPTAS l time DPTAS l time DPTAS l time

(2) kroB150 436 10 23 10 10 33 8 1.94 28 8 2.07 - - -
pr299 864 11 47 11 37 66 8 3.15 56 10 11.42 - - -
tsp225 622 12 37 12 110 50 8 3.55 46 9 5.21 - - -
a280 788 13 43 13 337 60 8 2.85 53 10 8.40 51 12 12.09
rd400 1183 17 - - - 83 8 8.25 75 10 35.30 74 12 351.93
pcb442 1286 17 - - - 82 8 5.62 79 10 10.46 78 10 10.86
d657 1958 22 - - - 132 8 12.83 123 10 64.89 120 12 604.10
pr1002 2972 21 - - - 210 8 45.31 190 10 115.65 182 12 1253.9

(3) tri2000 5977 8 321 7 198 379 7 109.87 361 7 175.59 - - -
tri4000 11969 9 653 7 1903 763 7 505.34 724 7 733.06 - - -
tri6000 17979 9 975 8 3576 1187 8 826.56 1136 8 1994.53 - - -
tri8000 23975 9 1283 7 7750 1526 7 1465.7 1430 7 2858.63 - - -
tri10000 29976 9 1606 7 16495 1901 7 4063.06 1804 7 4977.06 - - -
tri11000 32972 14 - - - 2116 7 4251.29 1987 8 5910.8 1958 8 12341.1
tri12000 35974 14 - - - 2279 7 3950.5 2164 7 5370.18 2132 7 6865.08
tri14000 41974 15 - - - 2678 7 8405.4 2514 7 8220.49 2434 7 9208.72
tri16000 47969 16 - - - 3064 7 9413.42 2920 7 10060.1 2885 7 12794.4

(4) rand6000 10293 11 1563 9 150 1715 8 113.84 1658 8 104.85 - - -
rand10000 17578 13 2535 10 869 2850 8 515.75 2721 8 535.87 2692 9 432.23
rand15000 26717 14 3758 12 2769 4288 8 2002.03 4144 10 1313.14 - - -
rand16000 28624 13 4002 13 5917 4584 8 2247.65 4379 10 2443.27 4295 11 2027.7
rand20000 35975 14 4963 14 13993 5688 8 4483.16 5465 10 4241.65 5368 12 5017.02
rand25000 40378 16 - - - 7101 8 11693.4 6731 10 6407.91 6632 12 9470

(5) Gab500 949 13 115 12 238 149 8 7.45 136 10 18.02 129 10 18.95
Gab600 1174 14 135 14 3074 172 8 11.57 164 10 26.05 156 10 22.10
Gab700 1302 14 162 14 5710 199 8 11.72 187 10 22.81 183 10 24.30
Gab800 1533 17 - - - 235 8 16.90 225 10 51.82 205 12 24.30
Gab900 1758 17 - - - 256 8 22.52 243 10 48.39 231 12 344.50
Gab1000 1901 18 - - - 292 8 25.88 260 10 49.69 259 12 781.89
Gab1500 2870 21 - - - 436 8 48.98 402 10 116.37 385 12 960.71

Table 6.1: Computational results (time in seconds) of PTAS for the PLANAR DOMINATING SET problem.



Chapter 7

Practical performances of the

PLANAR DOMINATING SET

algorithms

Since the theory of NP-completeness has reduced hopes that NP-hard problems can be

solved in polynomial time, heuristic and approximation algorithms have attracted more

attentions. These algorithms compute near optimal solutions within a reasonable time for

problems of realistic size and complexity. In this chapter we compare the performance of

PTAS with the performance of four different heuristic algorithms introduced in [99] for

PLANAR DOMINATING SET problem. In what follows we briefly explain these heuristic

algorithms (for more details refer to [99]).

7.1 Heuristic methods

In [99], six heuristic algorithms for the DOMINATING SET problem are introduced. We

studied the performance of these six methods, but because two of them were very poor in

performance we report only four algorithms in [99].

Let D be the dominating set computed using these algorithms, initially D is empty

unless it is assigned.

Greedy: In each iteration of this algorithm the vertex with maximum number of uncov-

ered neighbours is added to D. If there are more than one vertex with the same uncovered

109
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neighbours, one of vertices is chosen at random.

Greedy-Rev: Unlike the Greedy algorithm, set D initially contains all the vertices of the

input graph. In each iteration, a vertex is removed from D, such that the resulting set

remains a dominating set of G. A vertex is chosen to be removed, by ordering the vertices

of D in increasing degree, and removing the first vertex that does not dominate any vertex

uniquely.

Greedy-Ran: This algorithm differs with the Greedy algorithm only in the method for

choosing a vertex to include in D. It randomly includes a vertex at each step based on an

assigned probability value. The probability value of a vertex depends on the number of its

uncovered neighbours.

Greedy-Vote: This algorithm does not include a vertex u in D only based on the number

of vertices which are covered by u. It rather pays attention to the vertices which are covered

by u and check whether they can be covered in some alternate way.

7.2 Computational study of PTAS and heuristic methods

We study the performances of the above algorithms for the four classes of planar graphs

that are used in the study of the PTAS in the previous chapter. These algorithms are im-

plemented in C++. Table 7.1 shows the computational results of these heuristic algorithms

and PTAS.

In Table 7.1, DGr, DRev, DRan and DV ot are the sizes of dominating sets computed by

the heuristic method Greedy, Greedy-Rev, Greedy-Ran and Greedy-Vote respectively. For

every graph instance . If the size of the instance allows the application of FT algorithm, we

include the size of the minimum dominating set of the instance as well. For the PTAS we

include the best result, DPTAS for every instance from Table 6.1. As the results in Table 7.1

show the heuristic methods are always faster than PTAS, however the size of dominating

sets computed by these methods are significantly larger than the size of the dominating sets

computed by PTAS for most of instances.

Based on our computational results, Greedy algorithm resulted the smallest dominating

sets compare to other heuristic algorithms. Table 7.2 shows the results of our computa-

tional study for the exact algorithm, Greedy (the best Heuristic method) and PTAS for

graph instances whose branchwidths are small enough to run the FT algorithm. Since the

branchwidth of graphs in Class(2) grows fast in size of the graph, we have only included
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Graph |E(G)| γ(G) Greedy Alg. Greedy-Rev Alg Greedy-Ran Alg Greedy-Vote Alg PTAS
G DGr time DRev time DRan time DV ot time DPTAS time

(2) kroB150 436 23 27 0.002 31 0.01 40 0.006 31 0.002 28 2.08
pr299 864 47 54 0.003 63 0.032 76 0.019 62 0.005 56 11.42
tsp225 622 37 49 0.153 54 0.02 58 0.011 50 0.003 46 5.21
a280 788 43 51 0.004 62 0.025 71 0.019 62 0.006 51 12.09
rd400 1183 - 78 0.007 92 0.032 102 0.032 90 0.009 74 351.93
pcb442 1286 - 76 0.908 90 0.063 122 0.038 87 0.01 78 10.86
d657 1958 - 126 0.016 146 0.128 175 0.084 143 0.021 120 604.10
pr1002 2972 - 190 0.032 236 0.328 263 0.214 194 0.04 182 1253.9

(3) tri2000 5977 321 365 0.116 379 1.119 519 0.877 464 0.168 361 175.59
tri4000 11969 653 729 0.183 765 1.792 1031 1.462 787 0.544 724 733.06
tri6000 17979 975 1118 0.418 1166 4.14 1567 2.721 1306 0.541 1136 1994.53
tri8000 23975 1283 1449 0.715 1522 7.003 2102 5.815 1653 0.918 1430 2858.63
tri10000 29976 1606 1819 1.117 1906 11.524 2597 7.263 2302 1.572 1804 4977.06
tri11000 32972 - 2040 1.375 2116 14.092 2874 10.669 3431 2.561 1958 12341.1
tri12000 35974 - 2186 1.607 2278 16.538 3119 10.836 2741 2.243 2132 6865.08
tri14000 41974 2576 2.462 2664 22.976 3654 17.757 3317 3.163 2434 9208.72
tri16000 47969 - 2917 2.839 3033 30.694 4161 21.197 3684 4.005 2885 12794.4

(4) rand6000 10293 1563 1932 0.748 2166 4.517 2332 3.474 2908 1.206 1658 104.85
rand10000 17578 2535 3197 2.06 3618 13.33 3834 11.168 4164 2.878 2692 432.23
rand15000 26717 3758 4698 4.861 5402 29.487 5687 23.409 7277 7.641 4144 1313.14
rand16000 28624 4002* 5039 5.176 5744 35.589 5985 28.416 7552 10.327 4295 2027.7
rand20000 35975 4963* 6273 8.053 7168 55.948 7513 46.834 8571 11.903 5398 5017.02
rand25000 45327 - 7772 12.467 8942 91.039 9358 72.038 11865 20.615 6632 9470

(5) Gab500 949 115 146 0.006 173 0.039 176 0.022 160 0.007 129 18.95
Gab600 1174 135 168 0.007 199 0.051 210 0.044 171 0.009 156 22.10
Gab700 1302 162 200 0.01 242 0.072 258 0.046 238 0.012 183 24.30
Gab800 1533 - 227 0.012 270 0.097 281 0.062 307 0.019 205 24.30
Gab900 1758 - 254 0.016 303 0.103 327 0.091 323 0.022 231 344.50
Gab1000 1901 - 280 0.019 344 0.146 370 0.106 423 0.03 259 781.89
Gab1500 2870 - 426 0.042 507 0.335 537 0.268 496 0.051 385 960.71

Table 7.1: Computational results for heuristic methods and PTAS for the PDS problem (time in second).
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Graph |E(G)| Exact Alg. Greedy Alg PTAS
G γ(G) time DG time DPTAS time

(2) kroB150 436 23 10 27 0.002 28 2.08
pr299 864 47 37 54 0.032 56 11.42
tsp225 622 37 110 49 0.153 46 5.21
a280 788 43 337 51 0.004 51 12.09

(3) tri2000 5977 321 198 365 0.116 361 175.59
tri4000 11969 653 1903 729 0.183 724 733.06
tri6000 17979 975 3576 1118 0.418 1136 1994.53
tri8000 23975 1283 7750 1449 0.715 1430 2858.63
tri10000 29976 1606 16495 1819 1.117 1804 4977.06

(4) rand6000 10293 1563 150 1932 0.748 1658 104.85
rand10000 17578 2535 869 3197 2.06 2692 432.23
rand15000 26727 3758 2769 4698 4.861 4144 1313.14
rand16000 28624 4002* 5917 5039 5.176 4295 2027.7
rand20000 35975 4963* 13993 6273 8.053 5398 5017.02

(5) Gab500 949 115 238 146 0.006 129 18.95
Gab600 1174 135* 3074 168 0.007 156 22.10
Gab700 1302 162* 5710 200 0.01 183 24.30

Table 7.2: Computational results for Exact, Greedy and PTAS algorithms for small instances
(time in second).

small instance of this class in Table 7.1. The running time of exact algorithm is not very

large, for this class of graphs, if the graph branchwidth is smaller than 14, we suggest the

exact algorithm. For the instances of Class (3), the FT algorithm is extremely slow. If the

running time is the driving factor, we suggest the Greedy algorithm for this class of graphs.

As the results in Table 7.2 suggest the size of dominating sets computed by Greedy is consid-

erably bigger than PTAS results. For instances of Classes (4) and (5) the exact algorithms

is very time consuming. However, the differences between the results of PTAS and Greedy

is significant enough to tolerate the longer running time of the PTAS. For instance, for the

rand20000 with 35975 edges, the FT algorithm take almost four hours to compute the size

of an optimal dominating set (not the vertices of dominating set), however PTAS computes

a dominating set including the vertices in dominating set in less than two hours.

Table7.3 shows the computational results for the instances that FT is not able to find

an optimal solution in practical time and memory. The computational results show that for

all of these instances except one instance, the DPTAS is smaller than DGr. In summary for

applications with running time priority, Greedy is a better choice to compute an approxi-

mated dominating set, and if the running time is not a big concern, PTAS is a better option

for instances whose optimal dominating set cannot be computed using the FT algorithm.
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Graph |E(G)| Greedy Alg. PTAS
G DGr time DPTAS time

(2) rd400 1183 78 0.007 74 351.93
pcb442 1286 76 0.908 78 10.86
d657 1958 126 0.016 120 604.10
pr1002 2972 190 0.032 182 1253.9

(3) tri11000 32972 2040 1.375 1958 12341.1
tri12000 35974 2186 1.607 2132 6865.08
tri14000 41974 2576 2.462 2434 9208.72
tri16000 47969 2917 2.839 2885 12794.4

(4) rand25000 45327 7772 12.467 6632 9470

(5) Gab800 1533 227 0.012 205 24.30
Gab900 1758 254 0.016 231 344.50
Gab1000 1901 280 0.019 259 781.89
Gab1500 2870 426 0.042 385 960.71

Table 7.3: Computational results for Greedy and PTAS for large instances (time in second).



Chapter 8

Conclusion and future works

8.1 Conclusion

In this dissertation we study various exact and approximate algorithms for solving PLANAR

DOMINATING SET problems. The class of exact and approximation algorithms we under-

take in our study are branch-decomposition based (i.e., they use the branch-decomposition

as a method to decompose the graph into smaller subgraphs). While finding the branch-

width and an optimal branch-decomposition of planar graphs is shown to be solvable in

polynomial time, our studies show that previous implementations are impractical when pro-

cessing graphs over a few thousand edges on our test platform (a Linux box with 2 giga

bytes of internal memory). Thus, as a first step we develop an improved implementation of

Seymour and Thomas procedure that, given an integer β, decides whether a planar graph G

has branchwidth at least β or not. Our implementation is able to compute the branchwidth

for graphs of up to one hundred thousand edges in reasonable time using the same test

platform. This suggests that the required memory may not be a bottleneck for computing

branchwidth and optimal branch-decompositions of planar graphs in practice.

We incorporated this efficient implementation of ST Procedure into the edge contraction

method of Seymour and Thomas [102], and Gu and Tamaki’s method [61] to develop a mem-

ory efficient optimal branch-decomposition tool. Additional path simplification procedure

is utilized for a class of graphs called PIGALE graphs to achieve better efficiency. These

improvements lead to a practical tool for evaluating the performance of FPT algorithms on

planar graphs. We use this tool to evaluate Fomin and Thilikos’s PLANAR DOMINATING

SET algorithm [56] on a wide range of planar graphs. The computational results coincide
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with the theoretical analysis of the algorithm, that is, it is efficient for graphs with small

branchwidth but may not be practical for graphs with large branchwidth. More specifically,

using a computational platform with 2.4 GHz CPUs and 3 giga bytes of internal memory,

we are able to find a minimum dominating set (resp. the dominating number) for graphs

with kernel branchwidth at most 13 (resp. 14) in a few hours. Our results confirm that

this method however is indeed not practical for graphs with larger branchwidth. Thus,

we resort to approximation methods for processing graphs with larger branchwidths. We

incorporated our branch-decomposition procedure into Baker’s outer planar decomposition

method and developed a practical PTAS for processing graphs with large branchwidths.

We completed our computational study by comparing the performance of FT algorithms,

PTAS and well-known existing heuristics for PLANAR DOMINATING SET problems. Our

results show that, expectedly, heuristic methods are faster than exact branch-decomposition

based and PTAS methods. However, the heuristic methods generate dominating sets that

are on average 20% and 5% larger than the exact branch-decomposition based and PTAS

methods, respectively. Therefore, if time is not a big concern the methods of choice are

exact branch-decomposition based and PTAS. For instance, while an optimal solution for

graphs with branchwidth less than 14 can be computed in a few hours, it can be up to 32%

smaller than the solution computed by a heuristic. For the graphs that the exact method is

impractical, the choice of PTAS versus heuristic is instance dependant. For example for our

tested Gabriel graphs PTAS generates solutions up to 40% smaller than those generated by

the heuristic.

We also contributed in the analysis of PLANAR CDS problem that is a variation of

the DOMINATING SET problem in which the dominating set has to induce a connected

graph. Although the CDS problem seems very close to the DOMINATING SET problem, the

solutions to the later cannot be applied to the CDS problem in a straightforward manner. A

new branch-decomposition based algorithm for the CDS problem is introduced by Dorn and

et. al. [43] based on a novel frame work on the geometric properties of branch-decomposition

of planar graphs and non-crossing partitions. They suggest that using this framework the

PLANAR CDS problem can be solved in O(2O(bw(G))n+n3). In this dissertation we provide

the the details of the DPBF algorithm based on the framework introduced in [43]. We

also analyze the running time of the DPBF algorithm. With a more careful analysis, we

improve the upper bound of the algorithm. We also prove an improved upper bound for

the branchwidth of the graph in term of the connected dominating number of the graph.
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Using this upper bound we improve the running time of FPT algorithm for PLANAR CDS

problem as well. We evaluate the performance of DPBF Algorithm for the CDS problem

on a wide range of planar graphs. The computational results in this case coincide with the

theoretical analysis of the algorithm as well. Using a computer with a CPU of 2.4GHz and

3G Bytes memory space, it is possible to find a minimum CDS for graphs with the kernel

branchwidths of at most 10 in a few hours. Since the branchwidth of a planar graph can be

computed in O(n2 log n) time by the O(n2) time rat-catching algorithm and a binary search,

one may first find the branchwidth of the input graph and then decide if DPBF algorithm

is applicable based on the results presented in this part of thesis as a guideline.

Our computational study provides a guideline for using the branch-decomposition based

algorithms to solve important local and non-local problems in planar graphs. We show

that the PLANAR DOMINATING SET and CDS problems can be solved in practice for

a wide range of graphs. Our results show that PLANAR DOMINATING SET problem

can be solved using branch-decomposition based algorithms for graphs with branchwidth at

most 14 on our testing platform. Branch-decomposition based algorithms are not practical

for planar graphs with large branchwidth. For instance, we were not able to solve graphs

with bandwidth larger than 14 using our testing platform due to memory constraint. For

these graphs, when the longer running times can be tolerated, PTAS is the method of

choice, otherwise heuristics are the best options. This work, in addition, provides a tool

for computing the optimal connected dominating set of planar graphs and may bring the

sphere-cut decomposition and non-crossing partitions based approach closer to practice. Our

computational results show that the sphere-cut decomposition based algorithm is practical

for solving PLANAR CDS problem for graphs with branchwidth up to 10 using a common

personal computer.

8.2 Future works

Many interesting open questions arise in the realm of branch-decomposition based algo-

rithms on planar graph problems. Here we discuss some of these problems related to our

work. The improvements we introduced for the implementations of ST Procedure in chapter

3, are concentrated on reducing memory usage. An interesting followup to this aspect is to

work on running time improvements for this procedure. One possible way is to find an effi-

cient starting phase that leads to a conclusion in a lesser time. Note that this improvement
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is only effective when the ST Procedure returns false (i.e. rat-catcher wins).

The time and memory requirement for the FT and DPBF algorithms exponentially

depends on the branchwidth bw(H) of a kernel H of the input graph. Thus, it is worth to

develop more powerful data reduction rules to reduce bw(H). It is also worth to develop

heuristics to reduce l(H), i.e the maximum number of grey vertices in ∂(Ae) for every link

in the used branch-decomposition. Those heuristics should provide solutions close to the

optima in a fraction of cost of FT Algorithm for graphs with large branchwidth.

Another interesting and challenging problem is to develop a practical fast matrix mul-

tiplication method. Fast matrix multiplications and distance products have a huge impact

on the efficiency of the branch-decomposition based algorithms. However, as discussed in

Chapters 4 and 5, the existing fast matrix multiplication methods are impractical. Intro-

ducing a practical fast matrix multiplication can improve the running time of FT and DPBF

algorithms significantly.

It is known that the PLANAR CDS problem admits PTAS. The approach for the PTAS

is to partition an input graph into subgraphs of fixed branchwidth, find a minimum CDS for

each subgraph and combining the solutions of subgraphs into a solution of the input graph.

An interesting approach is to utilize the DPBF Algorithm for finding subgraph solutions

that will result in a more efficient PTAS for the graphs with large branchwidth.
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Appendix A

Branchwidth of random maximal

graphs

We show that the instances of Class (1) (the random maximal graphs and their subgraphs

generated by LEDA) has branchwidth at most four. We prove this statement by constructing

a branch-decomposition of width at most four for any maximal graph in this Class. Let Gn

be a maximal graph of n vertices in Class (1). For n = 3, Gn is the graph with three edges

(see Figure A.1). For n ≥ 4, Gn is created by adding a new vertex in a randomly chosen

face f of Gn−1 and three edges between the new vertex and the three vertices incident to

f [1, 88]. Let E3 = E(G3). For 4 ≤ j ≤ n, let uj and Ej be the new vertex and the set of

edges, respectively, added to create Gj . For each Ei, 3 ≤ i ≤ n, we create a rooted binary

tree Ti with root ri and three leaves (see Figure A.1). We assign the three edges of Ei to

the leaves of Ti, one edge per leaf in an arbitrary way. We say Ei is a parent of Ej if i < j

and the end vertices of the three edges of Ej except uj are also end vertices of edges of Ei.

If Ei is a parent of Ej , Ej is called a child of Ei. Obviously for j ≥ 4, each Ej has a unique

parent and for i ≥ 3, each Ei has at most three children. We merge the rooted binary trees

Ti , 3 ≤ i ≤ n, into a rooted binary tree T by the following recursive procedure.

Merge-Tree(Ei)

1. If Ei has any child Ej then call Merge-Tree(Ej) for every child Ej of Ei; otherwise

output the rooted binary tree Ti and RETURN.

2. Merge the rooted trees obtained from Merge-Tree(Ej) for all Ej by connecting the roots

of the binary trees into one rooted binary tree T ; merge T and Ti by connecting the
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roots of them into a rooted binary tree T (see Figure A.1 for the merge process); output

T and RETURN.

ui

ei1

ei2
ei3

edges of Ei
ei1 ei2

ei3

ri

rooted binary tree T  for Eii

Tj1 Tj2 Tj3
Tj1 Tj2

Ti

Megre trees for E and its children into one treei

Ti

Tj3

G3

Figure A.1: Merge the rooted binary trees Ti into one binary tree.

Calling Mereg-Tree(E3) merges all rooted binary trees Ti, 3 ≤ i ≤ n, into a rooted binary

tree T . For an arbitrary link e of T , let Te be the subtree consisting of all descendant links

of e in T . For a link e of T such that Te has at most two leaves, |Se| ≤ 4. For a link e such

that Te has at least three leaves, Te has at least one rooted binary tree Tj as a subtree. For

such a link e, an Ej is maximal in Te if Te does not have a subtree Ti for Ei such that Ei

is a parent of Ej . If Te has only one maximal Ej then Se ⊆ V (Ej), where V (Ej) is the

set of end vertices of edges in Ej . Assume that Te has more than one maximal Ej . Let Ei

be the parent of those Ejs. Then Se ⊆ V (Ei). In either cases, |Se| ≤ 4. Therefore, T is

a branch-decomposition of Gn (we need to remove the root of T ) with width at most four.

This implies that Gn has branchwidth at most four. It is known that the branchwidth of

a subgraph of Gn is at most the branchwidth of Gn. Thus, the instances of Class (1) have

branchwidth at most four.
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The pre-processing for fast matrix

multiplication

Applying dynamic programming is the most time consuming part of DPBF Algorithm and

improving it is an interesting challenge. In dynamic programming step, we calculate the

partial solutions forH[Ae] for every internal link e with children e1 and e2, from the colorings

of ∂(Ae1) and those of ∂(Ae2). As we described in Chapter 5, in the index method we put

all partial solutions of H[Ae1 ] in a table T1 with 6b1 entries and similarly partial solutions of

H[Ae2 ] in a table T2 with 6b2 entries. The entries of T1 and T2 are indexed by 1, 2, ..., 6b1 and

1, 2, ..., 6b2 , respectively. In order to store the partial solutions of H[Ae], we create a table T

with 6b entries. Using matching groups of partial solutions ofH[Ae1 ] andH[Ae2 ] we calculate

the basic color of partial solutions of H[Ae]. For each coloring η1 ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b1 in

a group S1 of T1, we choose every coloring η2 ∈ {0, 0̂, 1[, 1], 1∗, 1̂}b2 in every matching

group S2, compute the disjoint components of H[De1(η1) ∪De1(η2)], find the coloring η ∈
{0, 0̂, 1[, 1], 1∗, 1̂}b from η1 and η2, and calculate ae(η) as ae(η) = ae1(η1) + ae2(η2)− (X3 ∪
X4)#1, where (X3 ∪X4)#1 is the number of vertices in X3 ∪X4 which are colored by 1. For

every η computed from η1 and η2 we store the minimum ae(η) and the corresponding De(η)

which is computed from De1(η1) ∪De2(η2).

Dorn in [40] gives a new technique for combining dynamic programming and matrix

multiplication to improve the speed of solutions for NP-complete problems such as PLANAR

DOMINATING SET and PLANAR HAMILTONIAN CYCLES. This method is based on

the distance product of matrices. The distance product of two (n × n)-matrices A and B,
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denoted by A ⋆ B, is a (n× n)-matrix C such that

cij = min1≤k≤n{aik + bkj}, 1 ≤ i, j ≤ n (B.1)

If the conventional matrix multiplication is applied the distance product of two (n×n)-

matrices takes O(n3) time. Using the fast matrix multiplication with exponent ω, the

distance product of two (n × n)-matrices whose elements are taken from {−m, ..., 0, ...,m}
can be computed in O(m.nω). In addition, the distance product of two (n×p)- and (p×n)-

matrices with p > n can be computed in O(p.(m.nω−1)) [111].

The main idea of combining dynamic programming and distance product is to arrange

the partial solutions of the children e1 in e2 in matrices A and B such that A ⋆ B contains

the partial solutions for e. Dorn in [40] lists a set of NP-complete problems whose time

complexities can be improved using distance product and fast matrix multiplication. Com-

bining dynamic programming and fast matrix multiplication is straightforward for some of

these problems such as VERTEX COVER, INDEPENDENT SET and DOMINATING SET

problems. He also stated that this method is not “immediately clear” for PLANAR HAMIL-

TONIAN CYCLE and PLANAR LONGEST PATH problems. The common property of

these problems is that in dynamic programming step after combining partial solutions of

the children e1 and e2 of an internal link e, some post-processing must be applied to un-

cover forbidden solutions and calculate the colors of vertices in ∂(Ae) = X1 ∪X2 ∪X3. The

suggested idea to combine dynamic programming and fast matrix multiplication for this

kind of problems is to replace the post-processing step with some pre-processings steps and

change the entries of the child matrices based on the change coloring of the parent. The

PLANAR CDS problem also needs some post-processing to identify forbidding components

and choose the color of black vertices of ∂(Ae) from {1[, 1], 1∗, 1̂} according to the resulting

disjoint components. In what follows, we describe how we can combine distance product

and dynamic programming for the DBPF Algorithm.

B.1 Distance product and DPBF Algorithm

In this section we show that applying distance product in dynamic programming step of

DPBF Algorithm can improve its time complexity. However, this result is not practical

since the existing fast matrix multiplication methods are not efficient practically.

As we mentioned in Chapter 5, the goal of pre-processing step is to decide the colors
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of black vertices in X1 ∪ X2 ∪ X3 form {1[, 1], 1∗, 1̂} only based on the colors X4 vertices

in both children. This pre-processing can also identify the forbidding components. The

running time of this step is O(|X4|) = O(bw), the overall time complexity of the DPBF

Algorithm will not be increased.

The main challenge in applying distance product for the DPBF Algorithm is how to

define the entries of child matrices such that applying distance product generates the partial

solutions for the parent link. We solve this challenge as follows. Let e be an internal link

with two children e1 and e2 and let |Xi| be the size of Xi for 1 ≤ i ≤ 4. For every coloring

{0, 0̂, 1[, 1∗, 1], 1̂}|X3| of X3 we define three tables A,B and C corresponding to e1, e2 and

e. In Chapter 5 we show that there are at most Z ≤ 16|X4| matching for X4. Two colors

η1 and η2 are matched, if for every vertex u ∈ X4 : u has a basic color 1 in η1 and η2, or

η1(u) = 0 and η2 = 0̂, or η1(u) = 0̂ and η2 = 0

For every coloring η3 of X3 vertices we define matrices A,B and C. for simplicity we

assume that X3 = ∅. For every coloring η we identify all matching pairs η1 and η2 which

form η and put the partial solutions of η1 to a specific row of A and the partial solutions

of η2 to a specific column of B. We define A as a matrix with 6|X1| and Z columns for the

partial solutions by η1. Similarly we define B as a matrix with Z rows and 6|X2| columns

for the partial solutions by η2. Each row of A is indexed by a color of {0, 0̂, 1[, 1], 1∗, 1̂}|X1|

and each column of B is indexed by a color of {0, 0̂, 1[, 1], 1∗, 1̂}|X2|. For a coloring η, assume

that the ith row of A corresponds to the colors of vertices in X1 from η and the jth column

corresponds to the colors of vertices in X2 from η. Assume that there are q pairs of η1 and η2

which form η. For each pair of η1 and η2, we put the partial solution by η1 (ae1(η1)−(X4)#1)

to an element in the ith row of A and the partial solution by η2 (ae2) to an element in the

jth column of B such that (A[i, k], B[k, j]), 1 ≤ k ≤ q, correspond to the q pairs of η1 and

η2. Then C[i, j] = minqk=1{A[i, k] +B[k, j]} gives the partial solution by η.

For every matching colors η1 and η2, the goal of pre-processing step is to find the

corresponding row of A and column of B, to put the partial solutions of η1 and η2, only

based on the color of vertices of X4 in η1 and η2. Using pre-processing, the running time of

DPBF algorithm is the same as the running of the distance product. Calculating C takes

time O(6(ω−1)|X1|.6|X3|.Z |X4|) in the worst case (i.e. when |X1| = |X2|). If we maximize this

running time with the following constraints: |X1|+ |X2|+ |X3|+ |X4| ≤ 1.5bw, |X1|+ |X3|+
|X4| ≤ bw, |X1| + |X2| + |X3| ≤ bw and |X2| + |X3| + |X4| ≤ bw, the running time will be

O(6(ω−1)bw/2.Zbw/2). With ω = 2.376, the running time of DBPF Algorithm is improved to
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O(28.08
√
n). The result of this appendix can be summarize in the following theorem.

Theorem B.1.1 DPBF Algorithm solves the CDS problem for a plane graph G of n vertices

in O(28.08
√
nγc(G) + n3) .

B.2 The pre-processing for fast matrix multiplication

Here we describe how the colors of vertices of X1 ∪ X2 in η can be computed based on

the colors of vertices in X4 from η1 and η2. In what follows we define pre-processing. The

pre-processing has three phases.

• Phase1: collecting necessary information on disjoint components in Ae1 and Ae2

with some vertices in X4.

• Phase2: computing all possible matchings for black vertices in X4, and collecting

information about the disjoint components which are connected with that matching.

• Phase3: computing the colors of vertices in X1 ∪ X2 based on the information of

Phase 1 and Phase 2.

The first two phases are applied once at the beginning of the DPBF Algorithm. However

the last phase is applied for every internal link of sphere-cut decomposition. Let T be an

optimal sphere-cut decomposition of the input graph G with branchwidth b. Let e be an

internal link of T with children e1 and e2. Colorings η1 and η2 are defined on Ae1 and Ae2 ,

respectively. We assumed that the colorings η1 and η2 be ordered in clockwise and counter-

clockwise order from the first vertex of X4, respectively. In what follows we describe three

phases of pre-processing in details.

B.2.1 Phase 1

In this phase all possible colorings for vertices in X1 and X2 are computed with this re-

spect that these colorings are part of colorings η1 and η2 we call these colorings partial

colorings. For example, let η1 is {1[, 1∗, 1∗, 1̂, 1[, 1∗, 1], 1]} which is defined on vertices

∂(Ae1) = {u1, u2, ..., u8} and for X1 = u6, u7, u8, the partial coloring η′ = {1∗, 1], 1]}.
For every partial coloring, η′, we also keep some information about the disjoint connected

components η′. In what follows we just describe the phase for X1 and η1, the phase is the

same for X2 and η2.
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There are at most 6bw partial colorings, {0, 0̂, 1[, 1∗, 1], 1̂}bw, for X1. For every possible

partial coloring, η′, by checking the colors of vertices, we can identify the disjoint connected

components. As we described in Chapter 5, there are two types of components: some

components with only one vertex on η1 , or some components with more than one vertices

in η1. For the components with more than one vertex in η1, there is a small end, with

color 1[, large end, with color 1] and middle vertices, with color 1∗. Since every possible

coloring, η′ is a part of complete coloring η1, another disjoint component can be appear in

η′. These disjoint components are some components with small end in X4 and some vertices

in X1, we call these disjoint components open components. For every partial coloring η′ we

keep the ordered list of open components. For example η′ in the above example has two

open components,P ′
1 = {u6, u7}, P ′

2 = {u8}. It is clear that this phase can be completed in

O(6bw.bw).

B.2.2 Phase 2

In this phase we compute all possible matchings for vertices in X4. For every matching M

between η1 and η2 we define c(M) and p(M) as follows:

• c(M) includes the color of vertices of X4 with basic color one in η1 and η2. For example

if X4 has k black vertices, u1, u2, ..., uk,

c(M) = {(η1(u1), η2(u1)), (η1(u2), η2(u2))..., (η1(uk), η2(uk))}.

• p(M) is an ordered list. Every element of p(M) has two integer numbers called c1 and

c2. p(M) is a list of pairs such that the first integer in every pair is c1 and the second

integer is c2. c1 (c2) shows that how many consecutive disjoint open components in

Ae1 (Ae2) are connected together through the matching M . An element with c1 = 0

and c2 = 0 indicates a forbidding component.

Computing all possible matchings is similar to the method to compute forbidding com-

ponents in Chapter 5. We compute all possible matching by induction on the number of

vertices in X4 with basic color 1. Let m be the number of vertices with basic color 1 in X4

in η1 and η2.

For m = 1 there are three possible matchings M1,M2 and M3, as follows :

• M1 with c(M1) = {(1[, 1[)} and p(M1) = {(1, 1)}.

• M2 with c(M2) = {(1[, 1)} and p(M2) = {(1, 0)}.
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(η1(u), η2(u)) p(Mi) modifications
(1[, 1[) add a new element (1, 1) at the end of p(Mi)

(1[, 1
∗) Find last element of p(Mi) with c2 > 0

increase c1 by one in that element
(1[, 1]) Find last element of p(Mi) with c2 > 0

increase c1 by one and decrease c2 by one in that element
(1[, 1) add a new element (1, 0) at the end of p(Mi)

(1∗, 1[) Find last element of p(Mi) with c1 > 0
increase c2 by one in that element

(1∗, 1]) Find last element of p(Mi) with c2 > 0
decrease c2 by one in that element

(1], 1[) Find last element of p(Mi) with c1 > 0
increase c2 by one and decrease c1 by one in that element

(1], 1
∗) Find last element of p(Mi) with c2 > 0

decrease c1 by one in that element
(1], 1]) Find last element of p(Mi) with c1 > 0 or c2 > 0

decrease c2 by one, and decrease c1 by one in that element
(1], 1) Find last element of p(Mi) with c1 > 0

decrease c1 by one in that element
(1, 1[) add a new element (0, 1) at the end of p(Mi)

(1, 1]) Find last element of p(Mi) with c2 > 0
decrease c2 by one in that element

Others Nothing

Table B.1: The rules to compute p(Mi+1) from p(Mi)

• M3 with c(M3) = {(1, 1[)} and p(M3) = {(0, 1)}.

As we mentioned in Chapter 5, to find all possible matchings with i + 1 black vertices

from matching with i black vertices, we add a new black vertex to X4 and we add one of

the following 15 possible pairs of colors to c(Mi) to generate c(Mi+1).

{ (1[, 1[), (1[, 1
∗), (1[, 1]), (1[, 1̂), (1], 1[), (1], 1

∗)(1], 1]), (1], 1̂),

(1∗, 1[), (1
∗, 1∗), (1∗, 1]), (1

∗, 1̂), (1̂, 1[), (1̂, 1
∗), (1̂, 1])}.

Table B.1 shows that how p(Mi) is modified to generate p(Mi+1).

Using Table B.1 we compute all possible matchings for m = 1, 2, ..., bw. During com-

puting a matching M if p(M) contains (0, 0) a forbidding component appears and if p(M)

contains some elements with negative values, the matching is not valid. The running time

of this step is O(16bw).
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B.2.3 Phase 3

Let η1 and η2 are the colorings corresponding to the child links e1 and e2 in T . In O(bw)

time, we can identify partial colorings η′1 and η′2 and the corresponding matching M , for η1

and η2. Using the information of phase one, the list of open components in these partial

colorings are also available. Using p(M) we can identify the open components which are

connected together and we can update the colors of vertices in the open components in

X1 ∪X2. In this step we identify the color of X1 ∪X2 based om the matching ( vertices of

X4) and in distance product we can identify the corresponding row i in A and column j in

B to put the partial solutions of η1 and η2.
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An upperbound for the size of

CDS of a partially triangulated

(r × r) -grid

Recall from Chapter 5, a partially triangulated (r× r)-grid R is a graph obtained by adding

edges between pairs of nonconsecutive vertices on a common face of a planar embedding

of an (r × r)-grid. In this appendix we prove that for a partially triangulated (r × r)-grid

graph R, the size of CDS is at most r2

5 + o(r).

Let the rows and columns of R are numbered from 0 to r − 1. We divide R into

m = ⌈ r5⌉ sunbgraphs, R1, R2, ..., Rm, such that every subgraph Ri, 1 ≤ i ≤ m − 1 is

a subgraph of R induced by five rows (i − 1)5, (i − 1)5 + 1, ..., (i − 1)5 + 4. The last

subgraph Rm may have less than five rows. We redefine the general dominating set of Ri,

introduced in Chapter 6, as a subset Di of vertices of Ri such that it dominates all vertices

in U = {(x, y)|x = (i − 1)5 + 1, (i − 1)5 + 2, (i − 1)5 + 3, 1 ≤ y ≤ r − 2} (there are some

non-dominated vertices on the first and last rows and columns of Ri). We call U the set

of internal nodes of Ri. In what follows we first show that for every subgraph Ri there

is a general dominating set, Di, of size r. Next we show that the union of these general

dominating sets and including 4r vertices of R creates a connected dominating set of R.

Let Ri, 1 ≤ i ≤ m, be a subgraph of R from the definition in the previous paragraph

that includes rows x0, x1, ..., x4. We define a general dominating set of Ri, Di, as follows:
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Di = {(xl, j)|0 ≤ l ≤ 4, j mod 5 = l} (C.1)

|Di| = r since one vertex from every column is included in Di and also Di dominates

all internal nodes of Ri. Figure C.1 shows Di for a sugraph of a partially triangulated

(20× 20)-grid graph R.

x0

x4

x3

x2

x1

Dominated NodeNode in CDS Non−dominated Node

Figure C.1: A general dominating set of Ri (A subgraph of a partially triangulated 20× 20-
grid graph)

Let D′ =
⋃

1≤i≤mDi. It is clear that D′ is a general dominating set of R with U =

{(x, y)|1 ≤ x ≤ r − 2, 1 ≤ y ≤ r − 2} (See Figure C.2). Each connected component of D′

has a vertex on row 0 or r− 1. Including the vertices on these two rows, i.e. 0 and r− 1, we

generate a connected general dominating set of R, D′. If we include the vertices on columns

0 and r − 1 to D′, every vertex in R will be dominated. Thus, in summery:

Dc =
⋃

1≤i≤m

Di∪{(x, y)|x = 0, r−1 and 0 ≤ y ≤ r−1}∪{(x, y)|0 ≤ x ≤ r−1 and y = 0, r−1}

(C.2)

Dc is a connected dominating set of R of size r2

5 + 4r.
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Dominated NodeNode in CDS Non−dominated Node

Figure C.2: D′ is a general dominating set of a partially triangulated 20× 20-grid graph




