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Abstract

Ordered arrays of laser-cooled, trapped ions or “ion crystals” are a novel form of matter

with a rich variety of equilibrium structures and dynamics. In this thesis, we investigate

the hopping mobility of a 172Yb+ impurity ion within a crystal of 171Yb+ ions, confined

in a linear Paul trap. The site-to-site hopping of the impurity ion, distinguished by a lack

of fluorescence, is studied as a function of the 171Yb+ laser-cooling parameters and of the

anisotropy of the trapping potential. The onset of rapid hopping is found to occur when av-

erage thermal energies become comparable to the Coulomb potential energy. Furthermore,

the hopping rate is enhanced at trap anisotropies near the critical value for the structural

phase transition to a two-dimensional zigzag phase. The impurity ion has the highest hop-

ping mobility near the centre of the crystal, which may be intrinsic to the crystal structure

and dynamics near the zigzag transition. Simplified molecular-dynamics simulations re-

produce several features of the experimental results.
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Chapter 1

Introduction

Since the advent of laser cooling, ordered arrays of cold, trapped atomic ions, or “ion crys-

tals”, have been realized in both radio-frequency (rf) Paul traps [1, 2] and Penning traps [3].

Applications include precision spectroscopy [4], quantum information processing [4, 5, 6]

and quantum simulations of spin systems [7, 8]. The equilibrium crystal structure [9] has

been studied both experimentally [2, 10, 11, 12] and theoretically [13, 14] as a function

of ion number and trap parameters, and various crystal configurations have been identi-

fied [10]. For the specific example of a linear Paul trap [11, 15], strong transverse confine-

ment aligns the ions into a linear crystal. Reducing the trap anisotropy induces a structural

phase transition to a two-dimensional zigzag configuration, which grows first at the centre

of the crystal where the ion density and Coulomb pressure are highest. A power-law scal-

ing with the number of ions for the critical anisotropy at which the zigzag transition occurs

has been predicted [13, 14] and measured experimentally [15].

Beginning with the earliest observations of ion crystals, the dynamics of crystallization

and of the reverse transition to a disordered cloud phase have also been studied as a function

of laser cooling and rf trap parameters [1, 16, 17, 18, 19]. The interplay between the

nonlinearity due to Coulomb interactions and ion micro-motion arising from the rf potential

gives rise to rf heating and chaotic motion. These effects have been investigated for two

ions in the approach to the crystalline phase [16, 18], and in melting of two-ion crystals via

an order-chaos transition [17, 19] near the Mathieu stability limit of the rf trap [20]. (For

a summary of these experiments, see Ref. [18].) More recently, the thermally activated

hopping dynamics for two ions in a double well has also been observed [21]. The Coulomb

1



CHAPTER 1. INTRODUCTION 2

barrier to hopping in this case is weak and regulated by a slight asymmetry in the trap,

while the thermal energy is regulated by adjusting laser-cooling and -heating rates.

Building on the studies with two ions in Ref. [21], we investigate site-to-site hopping

in linear crystals of multiple 171Yb+ ions by introducing a single distinguishable impurity

defect [2]. Tracking the trajectory of the impurity, we measure the hopping as a function

of the 171Yb+ laser cooling parameters and as a function of trap anisotropy, which strongly

modifies the crystal dynamics near the zigzag transition [15, 22, 23]. For this first set

of experiments, a 172Yb+ isotope is chosen for the impurity to have a nearly identical

mass [24]. The hopping dynamics, which are a prelude to full melting, are distinguished

from the prior studies of the order-disorder transition in that the ion crystal appears well-

localized during the majority of the hopping evolution.

The experimental results of this thesis have been previously published in Ref. [25]. The

expanded discussion in the following chapters, which provide additional theoretical and

experimental background information as well as some preliminary numerical simulations

related to the hopping experiments, is organized as follows:

Chapter 2 provides theoretical background to the various aspects of the experiment. In

the experiment, control of the trap voltages and the laser parameters enables us to investi-

gate the hopping dynamics of ion crystals with different potential and kinetic energies. With

this in mind, we first present a discussion of the ion trap and then consider the Coulomb

interaction between multiple ions in the trap. This allows us to see that ion crystals with

different structures can occur in a linear rf Paul trap and sets the stage for our studies of

hopping dynamics near the zigzag structural phase transition. A summary of Doppler-

cooling theory motivates our use of the power and detuning of a cooling laser to control the

temperature of the ions in the hopping experiments.

Chapter 3 summarizes the technical implementation of the experiment. In particular, we

emphasize the calibration of the confining potential, the setup of different lasers together

with their sidebands, and the setup of the imaging system used to monitor the hopping

dynamics of the ion crystals. A brief description of the experimental procedure is provided

at the end of the chapter to outline how the hopping data is acquired.

Chapter 4 discusses the results of the experiment. We first develop an automatic way

to extract the hopping trajectory of an impurity ion in the crystal. From the trajectory,

various statistics describing different aspects of the hopping behaviour can be obtained,
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such as hopping rate and destination. We then describe measurements of the hopping rate

of the impurity as a function of laser power, laser detuning and trap anisotropy. Finally, we

discuss several technical issues that can complicate our experiment but argue that some of

the features of the hopping behaviour are likely to be intrinsic to the ion crystal itself and

so of fundamental interest.

Chapter 5 presents the results of a simple version of molecular-dynamics simulation

to aid in the interpretation of our experimental results. The simulations omit all techni-

cal aspects of the experiment and simply consider an ion crystal evolving with constant

energy in a two-dimensional harmonic trap. We show that the results of these simple sim-

ulations reproduce important features of the observed hopping behaviour, consistent with

our argument that they are intrinsic to the crystal structure and dynamics.

Finally, in the conclusions we discuss some possible future experiments motivated by

these first hopping studies. The experience and techniques that we have acquired should

also prove useful in pursuing other types of experiments near the zigzag transition. In

fact, the structural phase transition has attracted a fair amount of theoretical attention in

the past few years with proposals being put forward for the observation of the temperature

dependence of the transition [26], the nucleation of structural “kink” defects in a zigzag

chain [27, 28], and simulations of model quantum systems [29, 27].



Chapter 2

Theory

In this chapter, we review various theoretical concepts needed to understand the equilib-

rium structure of arrays of atomic ions, or “ion crystals”, in a linear ion trap and the con-

cepts needed to understand the dynamics of the crystal, including site-to-site hopping. In

Sec. 2.1, we first describe the trap-ion interaction for a single ion in a linear rf Paul trap, and

describe how the combination of static and oscillating electric fields generates a nominally

harmonic confining potential in all three dimensions. In Sec. 2.2, we discuss how ion-ion

interactions, together with the confining potential, determine the equilibrium structure of

a multi-ion crystal. In particular, we are interested in the structural phase transition from

a linear ion crystal to a two-dimensional zigzag pattern and the onset of the transition at a

critical trap anisotropy. In Sec. 2.2, we summarize the small-oscillation dynamics of the

crystal near equilibrium and review an alternate interpretation of the zigzag phase tran-

sition, which is associated with the frequency of the transverse zigzag vibrational mode

going to zero.

In a hopping event, which far exceeds the limit of small oscillations, ions with enough

energy can overcome the restoring forces of their local equilibrium and swap positions with

each other. For a given equilibrium configuration, the confining potential and the Coulomb

interactions between individual ions together set the potential barrier that the ions need to

overcome in a hopping event. Near the zigzag transition, one might expect the hopping

behaviour to be affected due to the change in crystal structure and dynamics.

The kinetic energy, which represents the energy available for the ions to surmount the

potential barrier, is discussed in the final section, Sec. 2.3. By summarizing the Doppler

4



CHAPTER 2. THEORY 5

laser-cooling technique, we see that the kinetic energy can be controlled by the power and

detuning of an applied cooling laser.

2.1 Ion-trap theory

Successful confinement of charged particles, including atomic ions such as Yb+, needs to

surmount the following basic problem, often referred to as Earnshaw’s Theorem [30]. Ac-

cording to Gauss’s law, there is no local minimum of potential in a three-dimensional (3-D)

static electric field in a region free of charge; therefore, one cannot confine an ion by using

static electric fields only. Two common solutions are proposed for ion trapping [30]. One is

the Penning trap, where a homogeneous static magnetic field and an inhomogeneous static

electric field are used to confine the ion. The other solution, called the Paul trap, uses a

combination of static and oscillating inhomogeneous electric fields to provide confinement

of an ion in three-dimensional space. The experiment we perform is based on a trap of

this kind and, for an atomic ion, the trap operates with oscillating electric fields typically at

radio frequency (rf).

The ion trap used in this experiment [31] is a millimeter-scale linear rf Paul trap [11,

32, 33] composed of four rods in a square configuration and two end-cap electrodes, as

shown in Fig. 2.1. Two opposing rods are rf-grounded and the other two are driven at

voltage V0 cosΩt. These four rods together confine the ion transversely, while the axial

confinement comes from the two end-caps at potential U0. For convenience, we use the trap

centre as the origin, and let the z direction lie along the axial direction of the trap. We also

set the transverse x and y directions to lie along the diagonals of the square configuration

of the rods (see Fig. 2.1). Near the centre of the trap, the electric field can be expressed as

follows [34, 20]:

~E(x,y,z, t) =−V0

(
xx̂− yŷ

R′2

)
cos(Ωt)− κU0

z2
0
(2zẑ− xx̂− yŷ). (2.1)

Here, Ω/2π is the rf frequency (Ω/2π = 30 MHz in our experiment); R′ is an effective

distance that is approximately the nearest distance from the trap axis to the surface of the

rods; z0 is half of the distance between the two endcaps; and κ (≤ 1) is a geometrical factor.

The equation above describes the electric field for a symmetric, square configuration of

the rods, but in practice the coefficients for the x– and y–related terms are slightly different,
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breaking the symmetry of the transverse confinement. Other real-life imperfections include

different rf phases on the rods, imperfect rf-grounding, and an rf component in the axial

direction, which are typically small effects. One can also dc-bias the rods, which adds more

terms to Eqn. (2.1), but in practice these terms are close to zero and we ignore them here in

this simplified discussion.

Figure 2.1: (a) Three-dimensional sketch of a linear rf Paul trap, composed of four rods

and two end-cap needles. (b) A cross section of the four rods with electrical connections.

Two opposing rods are rf-grounded and the other two are driven at voltage V0 cosΩt. Also

shown is the coordinate system used in the trap discussion (see text).

In the presence of the electric field of Eqn. (2.1), an ion in the trap undergoes motion

which can be described by the Mathieu equation as follows,

üi +[ai +2qi cos(Ωt)]
Ω2

4
ui = 0, (2.2)

where ui is one of the three components of the ion’s position, and

ax = ay =−
az

2
=−4κU0q

mz2
0Ω2

, (2.3)

qx =−qy =
2V0q

mR′2Ω2 ,qz = 0, (2.4)

and q and m are the charge and mass of the ion respectively. In the case of |ai| � 1 and

|qi| � 1, the Mathieu equation has a first order solution,

ui(t)≈ u0i cos(ωit +ϕSi)[1+
qi

2
cos(Ωt)], (2.5)
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where

ωi ≈
1
2

Ω

√
ai +

1
2

q2
i . (2.6)

Here, ϕSi is determined by the initial condition. From Eqn. (2.5), we can see that the main

part of the ion’s motion is a three-dimensional oscillation with “secular” frequency ωi in the

ith direction. In practice, the frequencies in the transverse directions (x and y) are primarily

determined by Ω and V0, and ωx,y ≈ |qx,y|Ω/
√

8. In the axial direction, qz ≈ 0 and the

secular frequency is primarily determined by the end-cap voltages for the trap parameters

considered in this thesis. In practice, the symmetry of the transverse confinement is also

broken due to trap asymmetries and dc voltages applied to the rods. On top of the secular

oscillation, there is a fast oscillation at radio frequency with a smaller amplitude u0iqi/2,

which is commonly called “micro-motion”. Although smaller in amplitude, micro-motion

usually has roughly the same contribution as the secular motion to the kinetic energy of

the ion, and is simultaneously reduced along with the secular motion by cooling. However,

excess micro-motion arises if the ion deviates from the rf null along the trap axis, as well as

for other reasons [34]. For a linear crystal of several ions and of moderate size, all the ions

can be made to lie along the rf null of the linear ion trap. This is, in fact, one of the main

reasons for the popularity of the linear Paul trap in quantum computing applications with

trapped ions. For 2-D configurations of the ion crystal such as the zigzag configuration,

excess micro-motion is unavoidable. The effects of micro-motion, for example on heating

in the trap and on laser cooling, have been studied in detail – see the discussion in [6]

and references therein; however, in understanding the properties of (near) 1-D ion crystals

in linear rf Paul traps, it is common to ignore the micro-motion and only consider the

secular motion in the time-averaged pseudo-potential. We do the same in the following

sections, but return to discuss possible effects of micro-motion later in the thesis after the

presentation of the experimental results.

2.2 Ion crystals in a linear trap

2.2.1 Equilibrium crystal structure

If ions in an ion trap are sufficiently laser cooled such that their kinetic energy is reduced

below the typical Coulomb interaction energy, the ions can crystallize into an array [1, 2,
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3]. For the common configuration of a linear Paul trap, the axial confinement is usually

weak, and the stronger transverse confinement aligns the ions into a linear crystal along

the axial direction (see Fig. 2.2) [11, 15]. For harmonic confinement, the array is non-

uniform with the highest linear density at the centre of the crystal. As one strengthens the

axial confinement or equivalently reduces the transverse strength, the anisotropy of the trap

potential is reduced. Lower than a certain threshold of anisotropy, the linear configuration

of the crystal will no longer have the lowest energy, and one expects a structural phase

transition into a two-dimensional zigzag pattern [13], which will lie in a plane defined by

the axial direction and the transverse direction with weakest confinement. (Normally the

term “phase transition” is reserved for a physical system with N → ∞ particles; however,

we follow the literature cited above and describe the transition between configurations of an

ion crystal with low numbers of ions (N . 10) as a phase transition.) As will be discussed in

Chp. 3, the transverse principal axes of the pseudo-potential in our trap happen to coincide

with the x and y directions defined in Sec. 2.1, and we choose the y-direction to correspond

to the weaker transverse direction.

Figure 2.2: Sketch of a 1-D ion crystal in a linear Paul trap and coordinate system. The

blue-colored plane is the y− z plane defined in Fig. 2.1 and makes an angle of 45◦ with the

horizontal plane (red).

We now review the theory of equilibrium structures for N ions in a linear Paul trap [13]

and the onset of the zigzag transition with respect to trap anisotropy. We consider the

pseudo-potential and determine the equilibrium configuration from the potential energy

only. In other words, we ignore the effect of thermal fluctuations, which suppress the onset

of the zigzag transition [26]. (A discussion of the thermal effect is provided in Chp. 4). For

simplicity, we consider the crystal only in the y− z plane. Assuming all N ions have the
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same mass m and charge q, the potential energy Ep of the ion-crystal is described by

Ep(r1,r2, . . . ,rN) =
m
2

N

∑
n=1

(ω2
yy2

n +ω
2
z z2

n)+
1
2

q2

4πε0

N

∑
n,m=1;m6=n

1
|rn− rm|

. (2.7)

Here, ri = (yi,zi) denotes the position vector of the ith ion, and ωy and ωz denote the

secular trap frequencies in the corresponding directions. The first sum in the above equation

gives the energy due to the trap’s potential, while the second sum comes from the ion-ion

interactions. The factor of 1/2 in the latter term accounts for double-counting of the ions.

After re-scaling the ions’ positions with the unit length a0 = (q2/4πε0mω2
y)

1/3, the

potential energy becomes

Ep =
E0

2

[
N

∑
n=1

(y′n
2
+αz′n

2
)+

N

∑
n,m=1m6=n

1
|rn′− rm′|

]
, (2.8)

with E0 = q2/4πε0a0 = (mω2
y)

1
3 (q2/4πε0)

2
3 , while y′,z′ and r′ are the coordinates divided

by a0. The parameter α = (ωz/ωy)
2 is related to the anisotropy of the trap. Note here

that higher anisotropy has lower α, as historically defined [13]. It is clear from the scaled

expression above that the equilibrium structure and the transition between linear and 2-D

zigzag structure only depends on α, which represents the control parameter for the zigzag

transition.

The critical anisotropy parameter, αcrit, at which an ion crystal undergoes the transition

from a 1-D to 2-D structure, depends on the number of ions, N. For N = 2, the crystal is

aligned along the z-direction for ωy > ωz (that is, for α < 1), while for N = 3, the crystal

is linear 1-D for α ≤ 1/3, above which the central ion displaces transversely to form a

zigzag structure. For N ≥ 4, the equilibrium structure of the crystal needs to be calculated

numerically for a given α. Figure 2.3 shows the simulation result from Maple software for a

seven-ion crystal in the y− z plane. The equilibrium structure is calculated by minimizing

the total potential energy. The value of α increases from Fig. 2.3(a) to (c), and we can

see that the corresponding lowest-energy configuration changes from a linear crystal to a

2-D zigzag pattern. As can be seen, the structural transition first happens at the centre of

crystal. This is where the ion density and axial Coulomb pressure are highest and where

the linear configuration is easiest to break. The peak-to-peak magnitude of the transverse

displacement, dypp, as indicated in the figure, corresponds to the order parameter for the

structural phase transition.
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Figure 2.3: Numerical simulation of the equilibrium structure for a seven-ion crystal at

different values of α = (ωz/ωy)
2 as indicated. Lengths are scaled to characteristic length

scale a0 (see text).

A power-law dependence for αcrit on N was first theoretically predicted by Schiffer [13]

and Dubin [14] as follows:

αcrit = cNβ. (2.9)

The power law behaviour has been confirmed experimentally by Enzer et al. [15], whose

measured values of c and β were determined to be 3.23(6) and -1.83(4) in reasonable agree-

ment with theory. The scaling with N can be qualitatively understood as follows: a larger

number of ions gives a higher density and higher axial Coulomb pressure at the centre of

a linear crystal. Because of the higher axial pressure, it is easier for the ions at the centre

of the crystal to displace transversely at lower α (higher anisotropy). Calculated in Maple,

Fig. 2.4 shows the transverse separation, dypp, of the centre two ions in a pure crystal of

5, 6 and 7 ions as a function of anisotropy parameter α. The values of dypp, which are

obtained from the numerically determined equilibrium configurations at each value of α,

show the characteristic rapid onset of the zigzag transition near a critical value of α. The

critical values estimated from the plot are 0.1603, 0.1158, and 0.0883 for N = 5, 6 and 7

respectively, roughly matching the power law prediction of 0.170, 0.122, and 0.092.

In our experiments, we use an impurity defect to be able to observe hopping in a crys-
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Figure 2.4: Theoretically calculated peak-to-peak zigzag displacement as a function of α

for crystals with different numbers of ions and with or without an isotopic impurity (see

legend). The critical values of α for pure crystals with 5, 6, and 7 171Yb+ ions are 0.1603,

0.1158, and 0.0883. Critical values for the 7-ion crystal change to 0.0880, and to 0.0871

when the central ion is replaced by 172Yb+ and 176Yb+, respectively.
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tal of 171Yb+ ions. Since we study how the hopping turns on near the structural phase

transition, it is worth considering the effect of the impurity on the structural phase transi-

tion itself. The impurity that we use in the experiment is a 172Yb+ ion, which experiences

the same dc potential in the axial direction as the 171Yb+ ions. However, the different

mass of the impurity affects the time-averaged pseudo-potential the impurity experiences

in the transverse direction and, for a larger mass, the strength of the pseudo-potential is re-

duced slightly. The long-dash line in Fig. 2.4 shows the zigzag transition when the 172Yb+

impurity is present at the centre of a seven-ion crystal. The larger mass of the impurity

shifts the onset of the transition towards lower α (αcrit = 0.0880), but the shift is extremely

small compared to the case of the pure crystal because of the small difference in mass.

If the impurity is located at an outer site of the crystal, it has even less of an effect. To

show the effect more clearly, we can consider the situation if we choose 176Yb+ as the

defect. The corresponding curve (the short-dashed line) is more clearly shifted downward

(αcrit = 0.0871 with the defect at the centre).

2.2.2 Collective vibrational modes near the zigzag transition

The structural phase transition can be viewed from a different perspective related to the

collective vibrational modes of the crystal. We briefly review this approach from Ref. [15].

A discussion of the collective modes also serves to provide some background concepts that

we will refer to in later chapters.

We study the simple case of pure crystals only and assume each of the N ions is under-

going small oscillations about its equilibrium position so that yi = yi +ηi and zi = zi + ζi

for i = 1,2, . . . ,N. Here, yi and zi denote the equilibrium position for the ith ion, and ηi and

ζi are small displacements compared to the typical ion spacing in the crystal. The potential

energy in Eqn. (2.7) can be expanded at the equilibrium configuration as follows:

Ep = Ep,eq +
1
2

(
N

∑
n=1

ηn
∂

∂yn
+

N

∑
m=1

ζm
∂

∂zm

)2

Ep|eq. (2.10)

The first order terms are omitted since they are zero at equilibrium, and the derivatives

are assumed to be evaluated at the equilibrium position. For the region where α < αcrit,

the crystal adopts a linear configuration, and so yi = 0 for all ions. In this specific case,
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the cross terms proportional to ηnζm are zero, which implies that the transverse and axial

motions are decoupled.

The details of small-oscillation analysis for linear, 1-D crystals have been considered

extensively in the literature [35, 36, 22]. One finds that the axial and transverse modes are

closely related, and the corresponding modes in the two directions have matching eigen-

vectors and mode frequencies that are related by the following:

ω
(p)
y

ωy
=

√√√√√1− α

2

(ω
(p)
z

ωz

)2

−1

, ω
(p)
z ≥ ωz (2.11)

where ωz and ωy are the secular trap frequencies in the axial and transverse directions,

while ω
(p)
z /ωz and ω

(p)
y /ωy are the scaled frequencies for the corresponding pth modes in

the two directions. The scaled values for the axial modes are easily obtained numerically

from the eigenvalue problem, and Ref. [35] includes tables of collective-mode eigenvectors

and their scaled frequencies for N ≤ 10. Since ω
(p)
z ≥ ωz, we can see from Eqn. (2.11) that

the frequency ordering for the transverse modes is opposite to that for the axial modes.

For example, the centre-of-mass (COM) mode (p = 0) is the lowest-frequency mode in the

axial direction (ω(0)
z = ωz) but is the highest-frequency mode in the transverse direction

(ω(0)
y = ωy). The zigzag mode (p = N), however, is the highest-frequency axial mode but

is lowest in frequency (or the “softest”) in the transverse direction.

Since the values of ω
(p)
z /ωz are independent of α for α ≤ αcrit [15], the values of ω

(p)
y

decrease with increasing α (see Eqn. (2.11)). The frequency, ω
(N)
y , of the transverse zigzag

mode will decrease to zero first at a critical α, which marks where the linear crystal struc-

ture becomes unstable against the formation of the zigzag phase. Following the procedure

of Ref. [35], it is straightforward to determine αcrit for crystals with 5, 6 and 7 ions to

be 0.1604, 0.1158 and 0.0883 respectively, matching the values obtained from Fig. 2.4 of

0.1603, 0.1158, and 0.0883 pretty well. In terms of αcrit, the frequency for the transverse

zigzag mode (p = N) can be expressed as,

ω
(N)
y = ωy

√
1− α

αcrit
, αcrit =

2(
ω
(N)
z

ωz

)2

−1

(2.12)

where ω
(N)
y goes to zero as α approaches αcrit.



CHAPTER 2. THEORY 14

To illustrate the basic features of the collective vibrational modes near the zigzag tran-

sition, we have numerically calculated the mode frequencies as a function of α. We use

Maple software, starting from Eqn. (2.10) and assuming small oscillations. The results for

a crystal of seven identical ions are shown in Fig. 2.5 along with the equilibrium zigzag

displacement at the centre of the crystal. In the linear region (α ≤ αcrit), the seven up-

going curves are the axial modes while the down-going ones are the transverse modes. The

frequency of the transverse zigzag mode goes to zero at αcrit, which is where the zigzag

displacement starts to grow at the centre of the crystal (Fig. 2.5(a)). The blue dash curve in

Fig. 2.5(b) is the theoretical prediction for the zigzag mode from Eqn. (2.12) and Ref. [35],

with the critical value chosen to be 0.0883 as determined above. As can be seen, the nu-

merical simulation matches the theory quite nicely below αcrit, where the theory for 1-D

crystals of Ref. [35] applies.

When an impurity ion is present in the crystal, one needs to consider the effect of the

different mass on the collective modes. However, the impurity ion, 172Yb+, that we actually

use in experiment is very close in mass to the other 171Yb+ ions in the crystal. The effect

of the impurity is small, as we have already demonstrated above for αcrit.

2.2.3 Ion-crystal structure and hopping barrier

So far we have discussed the equilibrium crystal structure and the behaviour of the trans-

verse zigzag mode as the zigzag structural phase transition is approached. Our initial moti-

vation for studying hopping near the zigzag transition was the intuitive idea that the interior

ions can more easily move transversely outward as the critical α is approached, and this

should enable the hopping of the interior ions. We in fact will show in Chp. 4 that hopping

happens most readily at the centre of the crystal. Here, we make some brief arguments in

an attempt to quantify the effect of the trap anisotropy on the energy barrier to hopping.

At the centre of an equilibrium 1-D crystal, where the ions are already axially closest

together, the barrier to hopping will be the lowest. To obtain an estimate of the barrier, the

two interior ions in a six-ion crystal are placed at z= 0 and a simple numerical search for the

lowest barrier is performed by minimizing the energy with respect to the pair’s transverse

separation and with respect to the positions of the remaining ions at zero kinetic energy. For

α from 0.1 to 0.116, the barrier is found to range from 0.15E0 to 0.09E0. Thus, the barrier is
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Figure 2.5: Numerical simulation of vibrational-mode frequencies for a seven-ion crystal

near the onset of the zigzag transition. The upper panel shows the zigzag displacement as a

function of α. The vertical dashed line separates the linear (left) and zigzag (right) regions.

In the lower panel, solid (red) lines show the frequencies for different vibrational modes.

The seven up-going curves are the axial modes; the down-going curves are the transverse

modes. All frequencies are scaled to the transverse secular trap frequency ωy. The blue

dashed line shows the theoretical prediction of the transverse zigzag mode in the linear

region (see text).
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reduced (by about a factor two) as the zigzag transition is approached, but not dramatically

in this model. One then expects the hopping rate to increase as the zigzag transition is

approached, and one could perhaps estimate the rate according to an exponential thermal

activation theory as was proposed in previous two-ion hopping experiments [21]. In our

case, with many ions, it is not entirely clear if we can apply such a theory for a pair of

ions undergoing a hopping event. For example, because of the strong, long range Coulomb

coupling, it seems clear that all the ions need to be considered in a hopping event, but it

is not clear if the net effect can be summed up in the size of an activation barrier for a

given pair of ions. Furthermore, near the zigzag transition and at high kinetic energies,

it seems that the dynamics at the centre of the crystal will be highly nonlinear and this

may influence the hopping rate. Therefore, our approach will be to present the results for

the hopping experiments first and then to consider molecular dynamics simulations to gain

some understanding and, in the future, to guide us to some kind of analytical model.

2.3 Laser fluorescence and cooling

2.3.1 Review of basic theory

We conclude this chapter with a discussion of the effects of the 369.5-nm Doppler cooling

laser, which allows us to control the kinetic energy of the ion-crystal and to image it through

fluorescence. Recall that the ion crystals to be used for hopping studies are composed of
171Yb+ ions with a single added 172Yb+ impurity. The Doppler cooling laser is resonant

with the 171Yb+ ions, while the 172Yb+ ion remains dark for distinguishability.

The energy levels of the 171Yb+ ions relevant for laser cooling are shown in Fig. 2.6.

The level structure and fluorescence behaviour is more complicated than for the 172Yb+

isotope, which has no hyperfine structure; however, we have chosen to use the 171Yb+ ions

as the primary component of the ion crystals in our experiment since our group has recently

made a careful study and calibration of the fluorescence response of 171Yb+ for quantum

computing applications [31].

It is the main 2S1/2(F = 1)→ 2P1/2(F = 0) transition in 171Yb+ at 369.5261 nm that

is used for fluorescence imaging and Doppler-cooling. (The 2S1/2 → 2P1/2 transition for
172Yb+ at 369.5244 nm is separated by 3.5 GHz due to the isotope shift.) A 171Yb+
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ion initially in 2S1/2(F = 1) can absorb a photon from a 369.5-nm laser beam and go to

the 2P1/2(F = 0) state. From there, the ion has a very high probability to return to the
2S1/2 ground state by spontaneous emission and, in doing so, must return to the F = 1

hyperfine level by angular momentum selection rules. As long as a trapped ion is kept

in this transition cycle, it will continuously scatter photons, and its fluorescence can be

imaged by a camera. Also, each time the ion absorbs or emits a photon, its momentum is

changed, which for appropriate laser parameters leads to Doppler-cooling. An ion in the

cycle of the 2S1/2(F = 1)→ 2P1/2(F = 0) transition is also continuously cooled.

Figure 2.6: Energy levels of 171Yb+

The cooling and fluorescence transition is not perfectly closed but has several leaks,

which, if not plugged, cause the ion fluorescence and cooling to cease. First, the cooling

laser can off-resonantly excite the ion to the 2P1/2(F = 1) state from which it can decay to

the 2S1/2(F = 0) state and out of the cooling transition. To repump the ion back into the

cooling cycle, an additional laser frequency is needed on the 2S1/2(F = 0)→ 2P1/2(F = 1)

transition. As long as the repump laser intensity is high enough the leakage has a negligible

effect on the fluorescence and Doppler-cooling rate. An additional leak out of the cooling

cycle can occur via spontaneous decay from the 2P1/2 excited state to the low-lying 2D3/2
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state (see Fig. 2.6) with a small branching ratio of 0.005. The natural decay rate of the
2D3/2 state back to the ground state is far too slow to provide repumping. In order to return

the ion to the main S−P transition, repump laser frequencies with wavelength near 935.2

nm are required to clear out the hyperfine states of the 2D3/2 state (see Fig. 2.6). Finally, a

collision of an ion in one of the excited states with a background gas atom can also transfer

the ion into the low-lying 2F7/2 state, and thereby remove it from the fluorescence and

cooling cycle [37, 38, 39]. A 638-nm laser is required to repump the ion back to 2D3/2

state, from where it is further pumped back to the S−P cycle.

With the 935-nm and 638-nm lasers continuously on during the experiment, we are

able to keep the ion in the 2S1/2(F = 1)→ 2P1/2(F = 0) cycle. However, the fluorescence

of the 171Yb+ ion can still be suppressed due to the mechanism of coherent population

trapping (CPT) [32]. In CPT, the ion is optically pumped into a coherent superposition of

Zeeman levels in the ground-state that is decoupled from the laser field. For 171Yb+, the
2D3/2−3 D[3/2]1/2 repump transition is also susceptible to CPT.

Coherent population trapping can be counteracted by introducing a magnetic field of

sufficient strength [32] or by modulation of the laser polarization [34]. The magnetic-

field approach is adopted in our experiment due to its simplicity, and the field also serves

to define a quantization axis. Previous experiments have been performed in our group

to study the resonance fluorescence of a single trapped 171Yb+ ion [31] and to verify its

predicted behaviour as a function of laser parameters and magnetic field [32], including

the effect of the magnetic field at counteracting the coherent population trapping. Further

details can be found in Refs. [32] and [31]. We simply quote here the result for the steady-

state spontaneous scattering rate γsc = γPe, which is determined by the natural linewidth,

γ = 2π · 19.6 MHz, of the 2S1/2 → 2P1/2 transition and the steady-state population Pe of

the excited 2P1/2(F = 0) state. With slight modification from Refs. [31] and [32], the

expression for Pe as a function of magnetic field and as a function of laser power, detuning

and polarization is as follows:

Pe =
3
4

cos2 θBE sin2
θBE

1+3cos2 θBE

Ω2

3

∆2 +
(

Γ171
2

)2 = F(θBE)
Ω2

∆2 +
(

Γ171
2

)2 , (2.13)
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where the effective linewidth Γ171 is given by(
Γ171

2

)2

=
(

γ

2

)2
+

Ω2

3
cos2

θBE
1−3cos2 θBE

1+3cos2 θBE
+

cos2 θBE

1+3cos2 θBE

(
Ω4

36δ2
B
+4δ

2
B

)
. (2.14)

In the equations above, θBE denotes the angle between the magnetic field and the polariza-

tion direction of the 369.5-nm laser, and the definition of F(θBE) is purely for notational

simplicity in subsequent expressions. Further, δB = µBB/h̄ is the frequency splitting be-

tween adjacent Zeeman sublevels of the F = 1 ground state under magnetic field B, and

∆ = ω−ω0 gives the detuning of the laser from the resonance when B = 0. The laser Rabi

frequency, Ω, is defined in terms of the laser intensity, I, and the saturation intensity, I0, or

equivalently the on-resonant saturation parameter, s0 = I/I0, as follows:

Ω =

√
s0

2
γ, s0 =

I
I0
, I0 =

πhc
3λ3 γ, (2.15)

where λ = 369.5 nm is the wavelength of the 2S1/2→ 2P1/2 transition.

The effective linewidth Γ171 includes polarization effects, and Zeeman and power broad-

ening. At low laser powers, the linewidth is roughly constant and the excited-state popula-

tion grows as Pe ∼Ω2 while, at high powers, the effective linewidth broadens as Ω2 due to

coherent population trapping and the population drops off as Pe ∼ 1/Ω2.

At any fixed δB, the excited state’s population has a maximum value when θBE ≈ θo ≡
arccos

(
1√
3

)
= 54.7◦. At this value, one finds that F(θBE) = 1/36 and, on resonance, the

excited population reduces to Ω2/9Γ2
171. In our experiment, we use a 5.9-G magnetic field

transverse to the laser wavevector, and the polarization direction of the laser is set to an

angle θBE = 57.5◦ with respect to the direction of the magnetic field to ensure near-optimal

ion fluorescence. At this field and polarization angle, the fluorescence on resonance is

expected to peak at s0 = 7.6 with an excited-state fraction of 0.14 in steady state.

In the above discussion of resonant fluorescence, the ion has been assumed to be sta-

tionary. We now consider the mechanical effects on the ion due to an incident laser at 369.5

nm. During fluorescence, the momentum and energy of the ion are affected by the recoils

acquired during absorption and emission of photons. Since the absorbed photons are from

a certain direction – the laser wavevector~k – and the spontaneous emission is symmetric,

if not isotropic, in space, the ion will experience on average a force called the radiation

pressure of ~F = h̄~kγsc, where γsc = γPe is the photon scattering rate as before. This average

radiation pressure pushes the fluorescing ion downstream of the laser direction.
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Besides the radiation pressure, photon-scattering also leads to cooling and heating ef-

fects, in particular Doppler cooling [40, 20]. First observed in the 1970s with trapped

ions [41, 42], Doppler laser cooling is now widely used in atomic physics experiments as

a main source of cooling or as a preliminary step before deeper cooling methods such as

the Raman sideband technique [43]. In our experiment, Doppler cooling is used to control

the “temperature” of the ions, which not surprisingly is an important parameter affecting

the hopping behaviour within the ion crystal. The theory of Doppler cooling was devel-

oped in the 70’s and 80’s [41, 44, 45] and a review may be found in Refs. [40] and [20].

Following the semi-classical discussion in Ref. [45], we provide a summary below of the

basic theory. It is noted here in advance that the results presented are the standard ones that

are useful near the Doppler-cooling limit, while the hopping experiments are in a regime of

high temperature well above the Doppler limit. Nevertheless, the derivation helps in under-

standing how Doppler-cooling of trapped ions works, and a discussion of the limitations to

the theory is provided afterwards.

Consider the following scattering event in the laboratory frame, where an ion with

mass M has its velocity changed from~v to~v ′ by first absorbing a photon with wave vector
~k and then emitting a second photon with wave vector ~ks. In the non-relativistic limit,

conservation of momentum and energy leads to

∆vi = v′i− vi =
h̄
M
(ki− ksi), (2.16)

∆Ei =
1
2

M(v′i)
2− 1

2
M(vi)

2 =
h̄2

2M
(ki− ksi)

2 + h̄(ki− ksi)vi, (i = x,y,z), (2.17)

where the subscript i for the vectors denotes different components and ∆Ei is the kinetic

energy of the motion in the ith direction.

The equations above describe the motion of a free ion; however, they are also applicable

to the case of a “weak” trap where the secular trap frequency ωi is much smaller than the

natural linewidth γ of the transition. For example, this applies to our experiment with trap

frequencies ωy/2π = 0.4 MHz and ωz/2π = 0.1 MHz, and γ/2π = 19.6 MHz. In this

case, the scattering process happens much faster than the secular motion and the ion can

be viewed as a free particle during the scattering [44]. Javanainen and Stenholm describe

a similar “heavy particle limit” for which the rate of change of the position and velocity of

the oscillating ion are slow compared to the scattering process [46, 47]. Also, note here we
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ignore micro-motion, which we assume is already properly minimized [20, 48]. In near-

resonance scattering, which we consider here, the absorption frequency ω and emission

frequency ω′ both fall close to the resonance frequency ω0, within a combined linewidth

from Doppler and natural broadening. Since v� c and γ� ω0, one has ω ≈ ω′ and thus

k ≈ k′. Introducing unit vector k̂ =~k/k and k̂s = ~ks/ks, Eqn. (2.17) can be rewritten as

∆Ei = R(k̂i
2−2k̂ik̂si + k̂2

si)+ h̄(ki− ksi)vi, (2.18)

where R = (h̄k)2/2M is the recoil kinetic energy due to an absorption or emission.

The probability per unit solid angle, Ps(k̂s), to emit a photon in the direction of k̂s

depends on the ∆MF value of the transition. However, for spontaneous emission from
2P1/2(F = 0) to 2S1/2(F = 1), all of the polarization transitions, ∆MF = 0,±1, are equally

probable, which implies that Ps(k̂s) = 1/4π for any k̂s. Averaging Eqn. (2.18) over all k̂s

gives the expectation for the energy change in one scattering event as follows:

〈∆Ei〉s =
∫

Ps(k̂si)∆EidΩ = R( fi + fsi)+ h̄kivi (2.19)

fi = k̂i
2
, fsi =

∫
Ps(k̂s)k̂si

2
dΩ. (2.20)

As Ps(k̂si) = Ps(−k̂si), we have dropped the linear terms in k̂si from Eqn. (2.18). For our

specific case of 171Yb+, the values of fsi are all 1/3 while the values of fi depend on the

orientation of the laser wavevector with respect to the principal axes of the trap. Summed

over all directions i, the expected total energy change in one scattering is

〈∆E〉s = 2R+ h̄~k ·~v. (2.21)

The rate of energy change is given by the steady-state spontaneous scattering rate γsc

multiplied by the energy change per scattering event. The scattering rate depends on the

population of the P1/2 excited state, which is given in Eqn. (2.13). Considering the ion

motion, we should replace ∆ in Eqn. (2.13) with ∆−~k ·~v−R/h̄ in the non-relativistic limit

due to conservation of energy and momentum. The second term is the usual first order

Doppler shift that accounts for the ion’s velocity and the third term accounts for the recoil

energy. Further averaging over the velocity probability distribution for the trapped ion, and

with F(θBE) as defined in Eqn. (2.13), one gets the following equation for the time rate of
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change of the average kinetic energy of the ion:

dEi

dt
= 〈γPe〈∆Ei〉s〉v = γΩ

2F(θBE)

〈
R( fi + fsi)+ h̄kivi

(∆−~k ·~v−R/h̄)2 +(Γ171
2 )2

〉
v

. (2.22)

One can derive the steady-state Doppler temperature as a function of laser parameters

by the reasoning below. When the ion is already substantially cooled, one can assume the

root-mean-squared velocity to satisfy k(v)rms � Γ171/2 and k(v)rms � ω0−ω+R/h̄ ≈
ω0−ω. Thus,

dEi

dt
= γsc0

R( fi + fsi)+
2∆h̄k2 fi〈v2

i 〉v

∆2 +
(

Γ171
2

)2

 , (2.23)

where

γsc0 =
γΩ2F(θBE)

∆2 +
(

Γ171
2

)2 (2.24)

is the scattering rate at zero velocity. In obtaining Eqn. (2.23), two more assumptions are

made. First, the velocity distribution is unchanged with reflection of~v, which is reasonable

in a harmonic trap. Second, 〈viv j〉v = 0 for i 6= j, which should be valid when the three

secular frequencies are sufficiently different [46]. In the steady state (dEi/dt = 0), we have

EKi =
1
2

M〈v2
i 〉v =−h̄

(
1+

fsi

fi

)
∆2 +

(
Γ171

2

)2

8∆
, (2.25)

which is the result Eqn. (28) in Ref. [45]. Note that the solution is sensible only for ∆ < 0,

that is, when the laser is red-detuned from resonance. Furthermore, we can see that if the

laser wave-vector is perpendicular to the ith principal axis of the trap ( fi = 0), the energy

along that direction diverges (EKi→∞). In this case, no cooling is present in that direction

to counterbalance the recoil heating from spontaneous emission. In order to have all three

directions efficiently cooled, the laser’s wave-vector should be set in such a direction that

it has components along all the trap axes. In our experiment, the cooling laser’s direction

is chosen with this in mind (see below).

The steady-state kinetic energy depends on detuning ∆ and the effective linewidth Γ171,

which is itself a function of power saturation parameter s0, magnetic field B and polar-

ization angle θBE . The achievable minimum is (1+ fsi/ fi)h̄Γ171 when we set ∆ = −Γ171
2 .
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Further, in the case of isotropic scattering, we have fsi = 1/3 for i = x,y,z. The total energy

is minimized if one sets fx = fy = fz = 1/3. Equation (2.25) then gives EKi = Γ171/4.

At low power (s0 � 1) and small magnetic field (δB � γ), we have Γ171 → γ. Thus, the

steady-state kinetic energy along each direction reduces to EKi = h̄γ/4 and the total energy

is Ei = h̄γ/2, which is often referred to as the Doppler-cooling-limit. In our experiment,

the incident laser lies in the horizontal plane and makes an angle of 45◦ with the z axis so

that~k = k(1
2 x̂+ 1

2 ŷ+ 1√
2
ẑ). Thus we have fx = fy = 1/4 and fz = 1/2, leading to different

kinetic energies along axial and transverse directions.

In Fig. 2.7, we plot the average energy, 〈Ei〉 = 2EKi = kBTi, of a 171Yb+ ion in the

axial and transverse directions as a function of laser detuning and intensity, which we use

as control parameters during the hopping experiment. The energy is scaled to h̄ωy and

the laser intensity is expressed in terms of the on-resonant saturation parameter s0, defined

in Eqn. (2.15). Parameters are chosen to match typical experimental values used during

hopping experiments. For reference, the fluorescence rate based on Eqn. (2.13) is also

shown as a function of s0. Where the power is sufficiently high that the fluorescence begins

to fall due to CPT, the effective linewidth begins to broaden quickly and the average energy

grows quickly. Also, it can be seen that the energy monotonically increases as the power is

increased or as detuning approaches zero from below. Although the range of experimental

parameters far exceeds the validity of the simple result of Eqn. (2.25) – see discussion

below – we expect the general trends to hold.

2.3.2 Deviations from the basic theory

In the above discussion, we have presented the basics of Doppler-cooling theory; however,

the mathematical form of the steady-state energy (Eqn. (2.25)) is not expected to be an

accurate description for the ion crystals in our experiment. First, in deriving Eqn. (2.23),

one assumes k(v)rms � Γ171/2 and k(v)rms � |∆|. Although the first assumption is in

fact not necessarily violated at the higher energies that we consider in the experiment, the

second assumption is clearly problematic when one deliberately drives the ions hot at high

power and close detuning (∆→ 0). In these circumstances, one presumably should resort

to solving numerically for the steady-state distribution with, for example, the theory of

Ref. [49].
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Figure 2.7: Average energy of a single trapped 171Yb+ ion as a function of laser detuning

and laser power. Left panels show the the effect of cooling laser power on (a) the excited

state’s population Pe and on (b) the average energy of the trapped ion in the axial (blue) and

transverse (red) directions. For both (a) and (b), the laser detuning is fixed at ∆/2π =−1.2

MHz. Right panel (c) shows the dependence of the average energy on detuning of the laser

in the axial (blue) and transverse (red) directions, where laser power is fixed at s0 = 30. For

all plots, the magnetic field is 5.9 G; the polarization angle is θBE = 57.5◦; and a typical

transverse secular trap frequency of ωy/2π = 430.0 kHz is assumed.
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Second, care should be taken in the assumption 〈viv j〉v = 0. Correlations in the velocity

distribution are only negligible if the difference in the trap frequencies are sufficiently large

compared to the recoil frequency ωr/2π = 8.5 kHz [46]. In the typical trap that we have

used for data collection with {ωx,ωy,ωz}/2π = {447,431,114} kHz, the two transverse

frequencies are actually quite close, being separated by about twice the recoil frequency.

The net effect is expected to be an increase in the average energy along the transverse

directions and a change in the average-energy dependence on the laser detuning [46].

A further issue with the above Doppler theory is that it is derived for a single ion or

a collection of non-interacting particles, while we are considering crystallized arrays of

6 or 7 ions with strong Coulomb interactions. In fact, it turns out that Doppler cooling

of an ion crystal is more or less the same as for a single ion, at least near the Doppler

limit [50]. In the small oscillation regime, the motion of the ions is described by their

collective vibrational modes (Sec. 2.2), and Doppler cooling can then be viewed in terms

of the cooling of the various independent modes. When the laser is at high power or is

closely detuned, the energy of the ions will lead to large amplitudes for the collective

modes. The resulting coupling between the modes, if nothing else, moves the situation

away from the simple one considered in Ref. [50]. Another complication of laser cooling

of an ion crystal is the need to account for differences between the ions. The most obvious

example is a non-uniform illumination due to the laser beam profile across the ion crystal.

The cooling process needs to account for the laser cooling effect of each ion as well as

the energy transfer between them due to interactions. It would not be surprising in such

a situation for there to exist a non-uniform temperature profile across the ion crystal. The

complication of laser beam profile turned out to be one of the technical limitations to the

interpretation of the experiment and is discussed in detail in the context of results in Chp. 4.

A more extreme example of an inhomogeneous cooling effect in our experiments is

due to the isotopic impurity that we introduce to the crystals to observe hopping. With

the Doppler laser beam tuned close to the resonance of the 171Yb+ ions in the crystal, the
172Yb+ impurity does not fluoresce due to the isotope shift. The lack of fluorescence is,

of course, what allows us to distinguish the isotope, but, at the same time, this means that

the impurity is not directly laser-cooled. Indirectly, however, the Coulomb interactions

with the surrounding 171Yb+ ions enables sympathetic cooling of the impurity [51, 52].

The sympathetic cooling rate almost certainly depends on the position of the dark impurity
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within the crystal. There is also the possibility that the overall mechanical response of the

crystal to the cooling laser may depend on the position of the non-fluorescing impurity, but

one might expect the effect to be less important in larger crystals.

The ultimate goal of modeling the laser cooling for the hopping experiment is to as-

sociate a given hopping rate with an average energy of the ions. Given the various com-

plications discussed above, it does not seem sensible to attempt an analytical model of the

average energy. In the end, it seems better to use numerical simulations to compare to ex-

periments, and we lay the ground work for that in Chp. 5. In closing, we note in advance

that to obtain a qualitative idea of the average energy imparted to the ions, we have studied

the energy of a single 171Yb+ ion as a function of laser power and detuning. From the

Gaussian profile of the ion’s time-integrated position in the harmonic trap, we can estimate

its average energy. To within the limits of the technique, we find that the average axial and

transverse energies match remarkably well (within a factor of 2−4) to the simple theory

of Eqn. (2.25) and the transverse energy is found to be higher than the axial one.

2.4 Summary

We have presented an overview of the structure of ion crystals in a linear rf Paul trap and

the basic dynamics of the crystals. In particular, we have focused on the crystal behaviour

near the structural zigzag transition. We have argued that the structure and mechanical

behaviour of the crystal is likely to lead to easier hopping at the centre of the crystal and

that the trap anisotropy is expected to affect the hopping. We have also reviewed the simple

theory of laser cooling and have shown that it is not trivial to model the average energy of

the crystal for the laser parameters used during the hopping experiments. Notwithstanding

all the complications mentioned, the basic trend of higher energy at higher laser power and

closer detuning is expected. Observations in the experiment should, therefore, show that

the hopping rate increases at higher laser power or/and closer detuning. In the experiment,

our initial aim is to demonstrate that it is in fact possible to tune the energy and hopping

rate in a controlled manner.



Chapter 3

Experiment Setup and Procedure

In this chapter, we look at the experimental setup used to study the hopping dynamics of a
172Yb+ impurity in a crystal of trapped 171Yb+ ions. We first describe the ion trap and how

we calibrate its secular trap frequencies as a function of the end-cap voltages. We also make

a comparison of the frequencies to the ion-trap theory introduced in Chp. 2. Following that

is a discussion of the various lasers and their sidebands used in the experiment, with the

main focus on the 369.5-nm cooling and detection laser since it is used to control the

hopping rate. In Sec. 3.3, the imaging system that is used to monitor the dynamics of

the crystal is summarized. Finally, the chapter concludes with a description of the basic

experimental procedure used to obtain the results presented in Chp. 4.

3.1 Ion trap setup

As mentioned in the previous chapter, the millimeter-scale linear rf Paul trap used in the

experiment is composed of four rods in a square configuration and two end-cap electrodes.

A photograph of the trap installed inside the vacuum chamber is shown in Fig. 3.1(a) and a

sketch with dimensions is shown in Fig. 3.1(b). The nearest distance from the ion to the rods

is about 0.7 mm and the tip-to-tip spacing of the end-cap needles is 2.5 mm. A ∼ 30-MHz

oscillation voltage is applied to a pair of opposing rods indicated in yellow in Fig. 3.1(b)

and the other pair indicated in green in Fig. 3.1(b) is rf-grounded. The resulting pseudo-

potential provides time-averaged confinement in the transverse direction (see Chp. 2). The

end-caps are biased with a dc voltage in the range of 10-30 V to provide confinement in the

27
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axial direction. Each rod or end-cap can be independently dc-biased, allowing the position

of a linear ion crystal to be finely adjusted to place it along the minimum of the rf potential

where the effect of micro-motion is minimized. Typical bias voltages are in the range of

0-200 mV.

Figure 3.1: Setup of linear Paul trap. Part (a) is a top view of the trap along the imaging

axis, showing the relative position of the trap and the Yb oven. Part (b) gives the dimensions

of the linear rf Paul trap including four rods and two end-cap needles. The voltage on a pair

of opposing rods (yellow) is oscillating at Ω/2π∼30 MHz.

The time-averaged confining potential is nominally harmonic, characterized by three

secular trap frequencies. In our experiment, the end-cap voltages, rather than the rf voltage,

are used to vary the trap asymmetry as part of the studies of hopping dynamics. The axial

ion-spacing and the Coulomb interaction energy also vary at the same time, which intro-

duces another variable to the dynamics; however, changing the dc voltage on the end-caps

avoids rf-power dependent trap distortions due to thermalization effects of the trap elec-

trodes. For each set of end-cap voltages used during the hopping experiment, we measure

the secular trap frequencies by direct excitation in order to calibrate the trap asymmetry. In

the calibration procedure, we first change the voltages on the end-caps while making sure

the single trapped ion (or the centre of an ion crystal) remains located at the same axial

position on the imaging camera. Voltages on the four rods are then fine tuned by a few

mill-volts to minimize micro-motion along the direction of the cooling laser. An rf synthe-
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sizer is ac-coupled to one of the end-caps or rods, depending on which trap frequency we

wish to measure, and a manual or automatic scan of the synthesizer frequency is performed.

When the output frequency is resonant with the secular trap frequency (or centre-of-mass

frequency of the crystal) along the direction of interest, we observe a delocalized ion (or

ion crystal) and the fluorescence level drops. We identify such a resonant frequency as the

trap frequency in the corresponding direction.

Figure 3.2 shows the secular trap frequency data from several days of acquisition, mea-

sured by direct excitation. The values vary from {ωx,ωy,ωz}/2π = {447,431,114} kHz

to {433,416,197} kHz over an end-cap U0 range of 10–28 V and clearly show the basic

features of axial tightening and transverse defocusing of the confinement with increasing

end-cap voltage. From Sec. 2.1 in Chp. 2, we expect the secular frequency along the ith

direction to obey the following functional from:

ωi =
1
2

Ω

√
ai +

1
2

q2
i , (3.1)

where Ω is the rf trap frequency, qi in Eqn. (2.4) characterizes the strength of the rf voltage

V0, and ai as in Eqn. (2.3) is associated with the dc voltages applied to the rods and end-

caps.

Since the rf voltage is kept constant during the experiments, we fit the secular frequen-

cies in Fig. 3.2 to the following functions:

fi =
√

AiU0 +Bi, i = x,y,z. (3.2)

Here fi = ωi/2π is the secular frequency in the ith direction, AiU0 is proportional to ai

in Eqn. (2.3), while Bi is proportional to q2
i in Eqn. (2.4). The fitting procedure gives

{−6.22(9)× 102,−6.54(9)× 102,1.374(4)× 103} kHz2/V for the A coefficients in the

three directions, and the B coefficients are {2.049(2)×105,1.914(2)×105,−3.7(5)×102}
kHz2. Here we see that ∑Ai ≈ 0, Ax ≈ Ay, consistent with the expectation from Eqn. (2.3)

for an ideal linear rf Paul trap. The theory for the ideal linear trap also predicts qx = −qy

and qz = 0, matching, in part, the results from the fit where Bx ≈ By and Bz � Bx. We

would normally expect the Bz value to be a small and positive value due to rf fringing fields

“leaking” into the axial direction. The negative value of Bz is inconsistent with a simple

physical model of the trap and may be due to the use of the average value of the end-cap

voltages for the plot or another technical effect. If the value of Bz is fixed to zero, the fit
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systematic is at most 1 kHz across the range (≤ 1% effect). The fit also shows that the

symmetry between the x and y directions is broken, leading to weaker confinement in the y

direction. This is partly due to the asymmetry in static potentials that dc-bias the rods, but

the deviation from the square trap configuration is also an important factor to be considered.

For the purposes of the hopping experiments, we are only concerned with the axial

frequency ωz and the frequency ωy for the weakest transverse direction. From these, we

calculate the trap anisotropy, which is characterized by the parameter α = (ωz/ωy)
2, as his-

torically defined [13]. As already noted in Chp. 2, the anisotropy decreases with increasing

α.

3.2 Laser setup

Figure 3.3 (reproduced from Chp. 2) shows the energy levels and laser transitions for the
171Yb+ isotope, which forms the main component of the ion crystals used in our hopping

studies. A brief summary is provided below to illustrate the setup and usage of the var-

ious lasers in our experiment including the 399-nm laser for photo-ionization loading of

ions into the trap; the 369.5-nm 171Yb+ “cooling and detection” laser that, in fact, serves

multiple purposes of photo-ionization, cooling, optical pumping and detection; and the

lasers at 935 nm and 638 nm for repumping. A frequency-doubled Ti:Sa laser is also used

for facilitating the loading process, for identification of the 172Yb+ isotopic impurity in ion

crystals and, finally, for photo-dissociation to recover trapped Yb+ ions which have formed

molecules via background gas collisions. The main focus is on the 171Yb+ cooling and de-

tection laser for its crucial role in our experiment. Additional details on the setup can be

found in a previous thesis [53] and in Ref. [31].

3.2.1 Photo-ionization laser

A 399-nm laser (see Fig. 3.4) is used for an efficient and isotopically selective ion-loading

technique based on photo-ionization [54]. In the loading process, neutral Yb atoms are

emitted from an oven and travel in a roughly collimated beam through the centre of the

trap, where the 399-nm laser with a waist diameter of 60-100 µm is focused. The laser

beam is arranged to propagate perpendicular to the atomic beam to limit effects of Doppler
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Figure 3.2: Calibration of secular trap frequencies. Measured secular frequencies in the

three directions are plotted as a function of the average of the end-cap voltages. Solid curves

are fits to the function in Eqn. (3.2). The coefficients Ai are {−6.22(9)×102,−6.54(9)×
102,1.374(4)×103} kHz2/V while Bi are {2.049(2)×105,1.914(2)×105,−3.7(5)×102}
kHz2.
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Figure 3.3: Energy levels of 171Yb+ (reproduced from Chapter 2). The levels for 172Yb+

are similar but without hyperfine structure.
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broadening. The 399-nm laser from TOPTICA (model DL100), is a grating-stabilized

external-cavity diode laser system and has a line-width of a few MHz. With its frequency

properly tuned and its power set sufficiently low, the laser can excite one of the neutral Yb

isotopes from the 1S0 to 1P0 state with reasonable selectivity. (The isotope shifts are around

hundreds of MHz). Following the excitation, the atom can further absorb a second 399-nm

photon and go to a high-lying Rydberg level, from which the atom can be ionized by the

electric field of the trap. Alternatively, an outer electron in the atom in the 1P0 state can be

directly excited to the continuum by absorbing a 369.5-nm photon from the 171Yb+ cooling

and detection laser or from the frequency-doubled Ti:Sa laser, both of which are present

during loading (see below). For the sake of isotopic selectivity, the power of the 399-nm

laser is reduced to have about 100 µW in the trap to suppress saturation broadening on the
1S0−1 P0 transition. The higher 369.5-nm power of 2 mW from the cooling laser, and the

∼ 10 mW from the doubled Ti:Sa laser laser are assumed to contribute most in the second

step of ionization [54].

3.2.2 Cooling and detection laser

After photo-ionization and capture into the trap, the ions may be still in a large orbit and

need to be cooled down to the trap centre. For cooling, we use a 369.5-nm laser, red-

detuned to the 2S1/2→ 2P1/2 transition of 171Yb+.

This multi-purpose 369.5-nm laser, used in loading, cooling, optical pumping and de-

tection, is generated by a commercial TA-SHG laser system from TOPTICA and consists

of an amplified 739-nm diode laser feeding a frequency-doubling ring cavity in a bow-tie

configuration. The 5-mW, 369.5-nm laser output from this system is transferred to the

experiment through a single-mode, polarization-maintaining optical fiber with 40% cou-

pling efficiency. The 2-mW beam from the fiber output is then split into two paths (see

Fig. 3.4): The higher-power “loading” path is only used in the loading process, where it

helps to photo-ionize Yb atoms and Doppler-cool the ions to the trap centre. This beam

path is blocked when loading is finished. The lower power “cooling and detection” path

is the primary one that provides Doppler-cooling and fluorescence imaging of the 171Yb+

ions during hopping experiments. Most of the power is delivered to the loading path while

about 10%, or 200 µW, is used for cooling and detection.
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Figure 3.4: Sketch (top view) of the experimental setup, including the main laser-beam

paths. In particular, the acoustic-optic modulator (AOM) used to control the power of the

cooling laser is indicated, as is the offset frequency synthesizer for control of the detuning

of the cooling laser. Inset is a magnified view of the trap electrodes (rotated by 90◦ relative

to the actual setup). The voltages on the end-caps are used to control the trap anisotropy.
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Before entering the trap, the loading laser-path goes through an 80-MHz acousto-optic

modulator (AOM), which allows for power switching of the beam. The cooling and detec-

tion path first goes to an electro-optical modulator (EOM) that generates 7.37-GHz side-

bands, the second of which couples the 2S1/2(F = 0) and 2P1/2(F = 1) states and enables

the hyperfine repump. The beam then goes into a 2.1-GHz EOM, which can be used to

drive the 2S1/2(F = 1)→2 P1/2(F = 1) optical pumping transition in order to initialize the

ion into the 2S1/2(F = 0,mF = 0) state. The optical pumping EOM is not used for the hop-

ping experiments but is mentioned here for completeness since it is required to calibrate the

magnetic field with microwave spectroscopy (see Ref. [31]). The beam out of the second

EOM then goes through an 80-MHz AOM, which is used to control the Doppler-cooling

power in the hopping experiments. The first diffracted order of the AOM is sent to the

experiment while the zeroth order beam out of the AOM is directed to a power monitor to

track for any drifts in the 369.5-nm power over the course of the experiment. Drift cor-

rections are made in subsequent analysis where possible. The power of the cooling and

detection beam can be varied over a range of typically 0-60 µW.

The beam passes through a half-wave plate, which allows the orientation of the linear

polarization to be varied, and is then focused by a 100-mm or 150-mm lens into the trap

through one of the eight viewports on the side of the vacuum chamber. The wavevector

of the cooling and detection beam and the axial direction of the ion trap lie in a nominally

horizontal plane and form an angle of ∼45◦. The cross section of the laser-beam intensity

along the axially aligned ion crystals has a full width at half maximum (FWHM) of about

50 µm, roughly equal to the end-to-end spacing of seven ions in a trap near the onset of

the zigzag transition. A larger, more uniform beam in the axial direction would have been

preferred, for example by using a cylindrical lens, but we have used what we had available.

To get a stable 369.5-nm laser for cooling and detection, the 739-nm laser in the TA-

SHG system is stabilized before frequency doubling. While the doubling resonator cavity

is locked to the 739-nm laser (the fundamental) to maintain the resonant enhancement of

the doubling process, the 739-nm laser is also itself stabilized to the doubling cavity on a

faster timescale to narrow its linewidth. To suppress long term drift in the frequency of the

739-nm laser, it is also locked to a hyperfine absorption line in molecular iodine using a

saturation absorption technique [55, 53]. Since the particular iodine line that we have cho-

sen to use is offset by about 10 GHz from that required for resonance with 171Yb+, a fiber
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EOM driven by an HP8672 synthesizer at about 10 GHz is used to bridge the frequency

gap. The first sideband of the EOM is used to lock to the reference absorption line; adjust-

ing the synthesizer frequency while the laser lock is engaged allows the frequency of the

369.5-nm beam incident on the ions to be tuned. The synthesizer’s frequency is adjustable

with a resolution of 3 kHz and can be controlled manually, or remotely via GPIB.

As mentioned in Sec. 2.3, the primary 369.5-nm 2S1/2(F = 1)→ 2P1/2(F = 0) cooling

and fluorescence transition of 171Yb+ is susceptible to coherent population trapping. To

suppress this effect, a magnetic-field coil of 100 turns next to the vacuum chamber pro-

vides a 5.9-G magnetic field transverse to the 369.5-nm laser wavevector (see Fig. 3.4).

The magnetic field has been calibrated using microwave spectroscopy in previous experi-

ments [31]. The polarization direction of the linearly polarized cooling and detection beam

is also set to an angle θBE = 57.5◦ with respect to the direction of the magnetic field to

ensure near-optimal ion fluorescence [31].

3.2.3 Repump lasers

During the fluorescence and cooling process, an Yb+ ion excited to the 2P1/2 state has

a branching ratio of 0.005 to decay to the low-lying, metastable 2D3/2 state, as shown

in Fig. 3.3. The ion can also end up in the low-lying 2F7/2 state via a collision with a

background gas atom [37, 38, 39]. To depopulate these states and return the ion back to

the main cycle of 2S1/2→ 2P1/2 at 369.5-nm, we use both 935-nm and 638-nm repumping

lasers.

The 935-nm laser (Fig. 3.4), also from TOPTICA (model DL100), acts on the 2D3/2→
3D[3/2]1/2 transition. For 171Yb+, the laser is tuned to 935.1878 nm, as measured with

a wavemeter, to provide the repump from 2D3/2(F = 1) back to 2S1/2 via the 3D[3/2]1/2

state. A 3.07-GHz sideband generated by a fiber EOM is used to depopulate the 2D3/2(F =

2) hyperfine state. Long-term drift of the 935-nm laser is prevented by locking to the

stabilized 739-nm cooling and detection laser via a Fabry-Perot transfer cavity. The short

term stability of the transfer cavity is also used to narrow the linewidth of the 935-nm laser.

The 935-nm laser has a power of 2-3 mW and a waist diameter of 200 µm at the trap and

is continuously on during all stages of the experiment. The frequency of the 935-nm laser,

when set for 171Yb+, is only 140 MHz detuned from the repump transition for 172Yb+ and
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no extra effort is required to obtain fluorescence of the 172Yb+ isotope.

The 638-nm laser (Fig. 3.4) that serves for F-state repumping is also a DL100 model

from TOPTICA. It has a power of 2 mW into the trap and a relatively large focused waist.

The wavelength of the laser is ramped from 638.6105 to 638.6185 nm with a cycle time of

1 s to cover the hyperfine levels of the 2F7/2→ 1D2/5 transition for 171Yb+ as well as the

transition for the 172Yb+ isotope. The 638-nm laser is continuously on during all stages of

the experiment.

3.2.4 Titanium:Sapphire laser system

The last laser involved in the experiment is a frequency-doubled, stabilized Ti:Sa laser sys-

tem (Fig. 3.4). The fundamental wave at ∼ 739 nm is produced by a Spectra-Physics/Sirah

Matisse TX Lite, and is frequency-doubled to 369.5 nm in a Tehknoscan resonant doubler

unit. The first role of this laser system is enhancing the loading efficiency. We tune the

fundamental to a wavelength of 739.0530 nm (369.5265-nm doubled) and focus 12 mW of

the UV doubled light into the trap, primarily to enhance the velocity capture of hot ions.

The 369.5-nm photons can also assist in the second step of photo-ionization as noted above.

After loading, the Ti:Sa laser is blocked during data-taking. Still, it is used occasionally

in the experiment. Once in a while, the 171Yb+ forms a molecule via a background gas

collision, and we turn on the Ti:Sa system with full power to dissociate the molecule. We

usually tune the fundamental wave to 738.964 nm (369.482 nm doubled) to take advantage

of a published photodissociation resonance [56]; however, we have not verified if such a

resonant behaviour exists. Typically, it takes less than 10 min to bring back the 171Yb+.

During the hopping experiment, we also occasionally reduce the power of the Ti:Sa system

and tune its frequency to verify the identity of the 172Yb+ impurity in the ion crystals.

3.3 Detection setup

A custom UV microscope with a vertical imaging axis is used to monitor the ion crystals

in the trap (Fig. 3.5). Scattered 369.5-nm photons from the ions are collected by an anti-

reflection-coated UV objective lens with a 20-mm focal length and a numerical aperture of

0.23. An intermediate image of the ions is formed 20-30 cm behind the objective, and re-
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imaged by a pair of 75-mm lenses onto a Hamamatsu photo-multiplier-tube (PMT), or onto

an intensified charge-coupled device (ICCD) camera (Princeton Instruments PI-MAX2).

The PMT is used for fluorescence counting during experiment calibration steps and for

micromotion nulling using the correlated photon technique [57]; the ICCD camera is used

to monitor the hopping dynamics of the ion crystals. A 600-µm pinhole in the intermediate

image plane (Fig. 3.5) suppresses laser scatter from the trap electrodes, while a dichroic

mirror is used to filter out 638-nm and 935-nm photons from the imaging path.

Figure 3.5: Imaging setup which views the ions from above the trap. (a) Photo of the

vacuum chamber and location of the UV objective lense. (b) Sketch of the optical path of

the imaging system.

Total magnification of the imaging system is about 150. Calibration of the length scale

of the CCD images is made by comparing the axial spacing of trapped ions in the CCD

image to that calculated from the measured secular trap frequencies. Due to the broken



CHAPTER 3. EXPERIMENT SETUP AND PROCEDURE 39

symmetry in the shape of the transverse confining potential, the 2-D zigzag pattern in ion

crystals at high α lies in a plane determined by the axial direction and the weaker transverse

direction (see Fig. 3.6). This plane does not lie transverse to the vertical imaging axis of the

camera and its orientation is not accurately known a priori. The oblique viewing angle is

determined by comparison between the observed zigzag displacement to that predicted by

theory. As will be shown in Chp. 4, this angle is found to be close to 45◦, meaning that the

principal axes of the transverse pseudo-potential match closely to x and y axes as defined

in Fig. 2.1.

Figure 3.6: Sketch of a six-ion crystal in the zigzag phase. The 2-D zigzag pattern lies on

the blue plane, which overlaps with the y-z plane as defined in Fig. 2.1, and makes an angle

of 45◦ with the horizontal plane (red).

The bin size of the CCD images is set to 8× 8 pixels to increase the rate of frame

readout while still maintaining good spatial resolution. To further speed up the rate, the

readout of the CCD images is also limited to a region of interest around the ion crystal

of typically 100×50 binned pixels. A 40-ms exposure time followed by 28.3-ms readout

gives a net frame period of 68.3 ms. Movies containing 3000 to 20000 images, lasting 3

to 23 min, are acquired to measure the hopping dynamics in an ion crystal, and repeated as

necessary for additional statistics.

3.4 Basic experimental procedure

A basic daily procedure is outlined in this section to illustrate how a typical experiment to

study hopping dynamics is done.
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At the start of each day before loading ions, all lasers are turned on and optimized.

Then a single 171Yb+ ion is loaded into a trap with the two end-cap voltages set to 9.193

V and 10.120 V, and several alignment steps and daily calibrations are performed. The

single ion is used to align the 369.5-nm cooling beam and 935-nm repump beam onto the

centre of the trap and to verify proper operation of the lasers and system according to, for

example, typical peak fluorescence counts. Micromotion is monitored regularly using the

photon correlation technique during calibration experiments, and the dc-bias voltage on

one of the trap rods is adjusted as needed to suppress the effect of micromotion on the ion

fluorescence. As mentioned earlier, typical bias voltages are 0-200 mV and daily changes

over the course of data taking were typically 20 mV or less. Infrequently, we have also done

a full micromotion nulling with a combination of techniques [57] to place the centre of the

trap close to the rf minimum in all dimensions. We avoid doing this regularly because it

requires varying the rf power to the trap. In a separate test, we have found that a transverse

voltage bias of up to ∼ 20 mV that introduces micromotion in the direction that has no

effect on the fluorescence does not show an observable effect on the hopping.

A calibration experiment with a single trapped 171Yb+ ion is done to identify the offset

frequency associated with the resonance of the 369.5-nm 2S1/2(F = 1)→2 P1/2(F = 0)

transition. The ion exhibits a characteristic half-lineshape shown in Fig. 3.7 due to Doppler-

cooling and -heating effects [58], and we identify the drop-out in fluorescence as resonance.

We do not scan the whole resonance lineshape each day but simply manually tune the

synthesizer over the 171Yb+ resonance to locate the drop-out point. The location of the

drop-out exhibits a repeatability of better than 100 kHz in the UV over the course of at

least a day. The resonance location is used to infer detuning of the cooling and detection

laser for the remainder of the day’s data.

Once the resonance location for 171Yb+ is determined, fluorescence measurements of

a single trapped 171Yb+ ion are performed as a function of the power of the 369.5-nm

cooling and detection laser. The laser detuning is typically fixed at−8 MHz for these mea-

surements. The power scan is an automated procedure that steps the rf power to the AOM

used for controlling the power of the cooling and detection laser. The fluorescence-verse-

power scans are fit to the theory in Eqn. (2.13) in order to calibrate the central intensity

of the laser at the trap in terms of an equivalent saturation power p0 [31]. That is, for a

given laser power, the ratio p/p0 gives the on-resonant saturation parameter s0 (Sec. 2.3)
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Figure 3.7: Typical half-lineshape for the 369.5 nm 2S1/2− 2P1/2 transition of a single

trapped 171Yb+ ion in our experiment, reproduced from [31].

at the centre of the laser profile. Figure 3.8 shows an example of a power scan and fit. The

fit to theory also relies on a prior calibration of the magnetic field at the ion as well as a

daily calibration of the AOM response using a photodiode power meter from Ophir. The

power monitor for the cooling and detection beam, already mentioned above, continues

throughout the day to monitor power drifts relative to the calibration point.

With the initial calibrations complete, an isotopically selective photo-ionization tech-

nique [54] is then used to load a given number of 171Yb+ ions and to add a single 172Yb+

impurity. During the loading process, the 399-nm beam, the 369.5-nm cooling and de-

tection beam, the 369.5-nm loading beams, the 10 mW 369.5-nm doubled Ti:Sa beam

and the 638-nm and 935-nm repump beams are all introduced into the trap. The 399-nm

laser is first tuned close to the resonance of 1S0 – 1P0 transition of the neutral 171Yb atom

(near 398.9111 nm) to provide the first step of photo-ionization. As mentioned above, the

369.5-nm photons from the high-power loading beam and from the doubled Ti:Sa beam

are presumed to dominate the second step of photo-ionization and 171Yb atoms are ionized

and trapped. The cooling and detection laser is locked ∼ 8 MHz below resonance during

the loading procedure. With the help of the doubled Ti:Sa, which is tuned 1.0 GHz below

resonance to provide a large velocity capture range, the trapped ions are Doppler-cooled
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Figure 3.8: Power scan for calibration of the laser intensity. The laser detuning is fixed

at −8.12 MHz, and magnetic field is fixed at 5.9 G. The fluorescence is predicted to peak

at p/p0 = 9.3 by the theory. Solid curve is the fit to the theory, giving p0 = 1.51 µW.

An overall amplitude parameter is included in the fit to account for the photon-collection

efficiency.

to the centre of trap. Optimizing the various laser parameters, ions will, for the most part,

load and crystallize automatically, allowing us to cut off the loading at a given number of

ions. After loading the requisite number of 171Yb+ ions, the 399-nm laser is then tuned to

the resonance of 172Yb to add a single 172Yb+ impurity isotope to the crystal. This isotope

is sympathetically cooled by the 171Yb+ ions in the trap and becomes integrated into the

crystal array. We verify the 172Yb+ identity of the impurity by tuning the doubled Ti:Sa

laser at low power to the 172Yb+ resonance, where the impurity ion fluoresces. At this

point, the 369.5-nm loading beam and the doubled Ti:Sa beam are turned off and the paths

are physically blocked so that leakage light does not affect the hopping measurements. It

takes typically a total time of 1-2 hours to load the desired crystal and impurity defect, but

they last for the 10-15 hours required for data-taking.

During the hopping experiments, the 369.5-nm detection and cooling beam, as well as

the 935-nm and 638-nm repumping lasers are always active. The cooling and detection

laser remains locked near to the S−P transition of the 171Yb+ ions. The 172Yb+ impurity

in a crystal of 171Yb+ ions does not interact strongly with the cooling and detection laser
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and remains dark, since the laser and its 7.37-GHz modulation sidebands used for hyperfine

repumping are at least 3.5 GHz detuned from the 172Yb+ resonance. The 172Yb+ ion is,

however, sympathetically cooled through its Coulomb interaction with the 171Yb+ ions [51,

52].

Figure 3.4 summarizes the main parameters that we adjust during the experiments to

control and assess hopping. To reiterate, a synthesizer driving the AOM in the cooling and

detection path controls the optical power for Doppler cooling of the 171Yb+ ions in the

crystal. A synthesizer in the lock setup of the cooling and detection laser provides the abil-

ity to adjust the detuning for the Doppler cooling. By controlling the power and detuning

of the Doppler-cooling, one can affect the kinetic energy of the ion crystal. The end-cap

voltages of the trap are used to adjust the axial secular trap frequency, thus changing the

asymmetry parameter of the trap potential and the Coulomb interactions between the ions.

These control parameters set the “environment” for the ions, and the resulting hopping be-

haviour is recorded in a sequence of images taken with an ICCD camera. As part of the

data collection, the effect of micro-motion on the fluorescence is suppressed by fine tuning

of the dc-bias voltages on the rods of the trap. The doubled Ti:Sa laser is used occasion-

ally to confirm the isotopic identity of the impurity ion. Finally, once to a few times per

hour, a background-gas collision forms a molecular ion with one of the 171Yb+ ions. The

molecular ion is localized in the ion crystal and does not fluoresce, but, through its larger

mass, can reveal itself by inducing a structural zigzag deformation in a linear crystal. The

doubled Ti:Sa laser system is then used to photo-dissociate the molecules [56] and recover

the Ytterbium ions. This allows the same ion crystal to be used for multiple hours. The

hopping behaviour as a function of the control parameters is presented in the following

chapter.



Chapter 4

Hopping Behaviour

In this chapter we discuss in detail the hopping behaviour of a single 172Yb+ impurity ion

within a crystal of 171Yb+ ions and, in particular, how the hopping responds to several

aspects of the experimental environment of the ion crystal. As noted in the introduction,

these studies are built on earlier hopping experiments with two ions in Ref. [21] and fit into

a range of previous experiments studying crystallization and melting dynamics in ion traps.

At the end of the previous chapter, we have detailed our basic experimental procedure re-

quired to study hopping. This chapter begins with a description of how the site-to-site

hopping is observed using camera images of the ion crystal. The next two sections concen-

trate on developing an automatic way to extract the hopping trajectory of the impurity ion

from those images. Following is a discussion on various descriptive statistics that are de-

rived directly from the trajectory of the impurity, including the distribution of dwell times

at a given site, the hopping destination and the spatial dependence of on-site probability

and hopping rate. Finally, we demonstrate how the hopping rate of the impurity depends

on the power and detuning of the Doppler-cooling laser applied to the crystal and how the

hopping rate depends on the anisotropy of the trap confining the ion crystal. Although there

are some technical complications to this first edition of these kinds of experiments, we con-

clude by discussing how several features of the observed hopping dynamics are likely to be

intrinsic to the structure of the ion crystal.

44
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4.1 Acquiring hopping data

As has been discussed in Sec. 3.4 of the previous chapter, calibrations of the detuning ∆ of

the Doppler-cooling laser and of its power p in terms of saturation power p0 are performed

with a single trapped 171Yb+ ion at the start of each day. (For convenience, “Doppler-

cooling laser” or “369.5-nm laser” will be used to refer to the “cooling and detection laser”

of Chp. 3.) A crystal of 171Yb+ ions is then loaded into the trap. Because of the indistin-

guishability of the same ion species, many behaviours of the ion crystal such as site-to-site

hopping are actually unobservable. In order to see these behaviours, we introduce a single,

non-fluorescing “tag” ion into the crystal of fluorescing 171Yb+ ions [2]. In our case, a

single 172Yb+ impurity is chosen as the tag ion to have nearly identical mass [59]. We can

relatively easily add such an isotopic impurity to the ion crystal and verify its identity with

the methods described in the previous chapter.

The ion crystal in the trap displays various dynamical behaviours, among which site-

to-site hopping is our primary interest here. By hopping, we specifically point to the event

where the impurity ion swaps positions with another ion in the crystal in a short amount

of time, without the observable loss of the localization of the ion crystal. The one caveat

to this statement is the hopping process occurs much faster than the 68-ms time between

camera frames in our setup (Sec. 3.3), and so we do not have access to the full trajectory of

the ions during the hopping event.

Under good cooling conditions where the power of the Doppler-cooling laser is suffi-

ciently low and the detuning is near half of a linewidth below resonance, the ion crystal

is quite stable against hopping. To induce hopping, we first adjust the end-cap voltages to

obtain a trap with anisotropy parameter α near but below the onset of the zigzag transition.

The 369.5-nm laser is tuned close to the 171Yb+ resonance, and the laser power is raised

to a large saturation value, both of which compromise the Doppler cooling in a controlled

fashion and elevate the kinetic energy of the ions [20]. Under these conditions of a “warm”

ion crystal, hopping dynamics are initiated. Using an intensified CCD camera, we record

image sequences of the ion crystal at different experimental parameters and investigate how

the hopping dynamics are influenced by the laser- and trap-induced “environment”. Image

sequences of between 3,000 and 20,000 images, lasting between 3 and 23 minutes respec-

tively, are acquired in a continuous data set and are repeated as necessary for additional
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statistics.

Figure 4.1(a) shows a sequence of images for a six-ion crystal in a trap with frequen-

cies {442.8, 426.4, 141.2} kHz, and at a laser detuning of ∆/2π =−1.2 MHz and a scaled

laser power of p/p0 = 28. The crystal is generally stable and the ions’ positions well

defined (Fig. 4.1(b)), although the ions are clearly more delocalized than in a reasonably

well-cooled state (Fig. 4.1(c)). The impurity ion, which is identified by a lack of fluo-

rescence at a given site, is observed to hop within the crystal from image to image, for

example Fig. 4.1(a) frames 7-8, and during the exposure of a single image such as frame

4. The majority of events involve a relocation of the impurity without observable loss of

crystal localization. Intermittently, the crystal delocalizes partially and loses contrast or, in

more extreme cases, makes a transition to a disordered cloud state followed by re-ordering

(Fig. 4.1(a) frames 17-20). For the parameters of Fig. 4.1(a), these events typically occur

about every 20 s and form the bulk of the non-hopping events. Other low-level back-

ground events include a 171Yb+ ion going dark through collisional population of the 2F7/2

state [39], cleared out by the 638.6-nm laser, and the rarer molecule-forming collisions

already mentioned in Sec. 3.2 in Chp. 3.

4.2 Image analysis

To identify the state of the crystal including the location of the dark impurity, we first

analyze the images by integrating the fluorescence in a rectangular region around each

crystal site. Figure 4.2(a) shows the integrated fluorescence for different sites in a six-ion

crystal with integration regions as indicated in Fig. 4.2(b). At time t1=135.0 s, only site

2 has low fluorescence counts. Since the impurity is dark, it can be expected that at this

moment the impurity is located at site 2, which is justified by looking at the corresponding

image of the crystal in Fig. 4.2(b). However, some added effort is required to ensure that

situations where the ion crystal is non-ideal or absent are not misinterpreted. For example

near time t2=85.5 s, all the sites have low fluorescence counts. In this case, there has been

a loss of crystallization and the ions are in a disordered cloud state (Fig. 4.2(c) and (d)).

In general, images with more than one dark site correspond to situations where there has

been a loss of crystallization, one of the 171Yb+ ions has been pumped into the metastable

F-state, or one of the 171Yb+ ions has formed a molecule with a background-gas atom.
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Figure 4.1: Activated hopping in a six-ion crystal of five 171Yb+ ions and a single 172Yb+

impurity defect. (a) Example sequence of CCD image frames (40 ms exposure, 28.3 ms

readout, pixels hardware-binned 8× 8) showing typical behaviour. Trap frequencies are

{442.8, 426.4, 141.2} kHz, and laser parameters are detuning ∆/2π = −1.2 MHz and

power p/p0 = 28 where p0≈1.6 µW. (b) Enlarged version of frame 1 from part (a). Crystal

sites are labeled as indicated. (c) The same crystal as in (a) and (b) but within an expected

factor of 2 of the Doppler-cooling limit (∆/2π =−8.2 MHz, p/p0 = 9.0). Gray scales for

(b) and (c) approximately span the dynamic range of their respective images. Fits to ion

images in the centre of the crystal give a transverse FWHM of 5.0 µm in (b) and 4.2 µm in

(c); the latter is close to the minimum observable.
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Figure 4.2: (a) Integrated fluorescence as a function of time at each crystal site in a six-

ion crystal with one defect. Experimental parameters are the same as in Fig. 4.1(a). (b)

Image of the crystal at time t1 = 135.0 s. The six rectangular outlines show integration

regions used to calculate integrated fluorescence for different sites in (a). The gray scale

approximately spans the dynamic range of the image. (c) Image of delocalized ion cloud

near time t2 = 85.5 s, with gray scale same as (b). (d) The same image as (c) but shown

with an enhanced gray scale in order to see the ion cloud.

A proper design of the analysis should be able to exclude images corresponding to these

situations where the crystal is absent or not ideal.

To help with filtering out these cases, we also consider the contrast in fluorescence

between the centre and corners of the rectangular region defining each crystal site. A

higher contrast implies a more localized ion at the site. Rather than assessing each site

individually, it is sufficient to consider the total fluorescence and total contrast summed

over all sites. These two values, in fact, provide an efficient two-dimensional discriminator

for good crystals. Figure 4.3 illustrates how to make use of this 2-D discriminator to filter

out images with a non-ideal crystal. For each frame in a given image sequence, the total

fluorescence and total contrast are calculated, and this pair of values corresponds to a single

point in the fluorescence-contrast plane. The distribution of the points typically forms a

pattern with a high density of points on the upper right of the plot with high fluorescence

and good contrast, and with a “tail” extending to the lower left corner. Similar patterns are

consistently observed for all data sets.
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Figure 4.3: Illustration of the two-dimensional fluorescence-contrast discriminator. (a)

Typical distribution of fluorescence counts and contrast in a sequence of 10,000 images

of a six-ion crystal with one impurity defect. Experimental parameters are the same as

in Fig. 4.1(a). Example images are included to show the typical behaviours for different

regions in the count-contrast plane. An arrow shows the path of re-crystallization. (b)

Example of a distribution of images that includes a cluster of images lying in the upper

left-hand corner of the count-contrast plane. The distribution consists of a sequence of

10,000 images. Experimental parameters are the same as in (a).
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From experience, we find that a choice of fluorescence-count and contrast values just

to the inside edge of the high density region can serve as a very good discriminator of a

well-localized crystal with all 171Yb+ ions bright (see Fig. 4.3). The two values divide

the counts-contrast plane into four regions and example images are provided in Fig. 4.3 to

show the typical state of the crystal associated with each region. The upper right region,

where the total counts and contrast are both high, corresponds to the case of “good” crystals

where the ions are reasonably localized and the 171Yb+ ions are bright. The lower right

region with high total counts but low contrast is typically associated with partially localized

yet disordered clouds. The points with low fluorescence and low contrast in the lower left

region correspond to a fully delocalized cloud-state with the ions in relatively large orbits.

One of the interesting side notes to plots such as Fig. 4.3 is that they provide a nice illustra-

tion of the melting and crystallization behaviour of ion crystals [18]. Typically, during loss

of crystallization, a point on the count-contrast plane representing the state of the crystal

moves suddenly from the upper right region to the lower left region. The re-crystallization,

however, is a relatively slow process that follows the path in the fluorescence-contrast plane

indicated in Fig. 4.3(a). Along the path, the disordered ion-cloud is first re-cooled and con-

tracts in size, bringing up the level of fluorescence within the integration region. Finally,

the ion cloud makes a transition to an ordered crystal with high contrast to complete the re-

covery process. Usually in the upper left region there are only a few scattered points, often

associated with a transition within one frame from a good crystal to a disordered cloud. In

this case, the fluorescence level is low for part of the exposure time, leading to a dimmer

image of the crystal as in Fig. 4.3(a). However, if one sees a significant number of points

in this region, as in Fig. 4.3(b), it often implies that there is a sub-sequence of images in

which one of the 171Yb+ ions has gone dark, either by going to the metastable F-state or

by molecule formation.

In summary, total fluorescence counts and contrast provide a very useful two-dimensional

discriminator of a well-localized crystal with all 171Yb+ ions being bright. Typically, we

can acquire 10,000 images, covering 11 min, in which more than 95% of the frames show

an acceptable crystal. For images where there is a well-defined crystal, the location of the

impurity ion is identified by the darkest location. An additional layer of analysis is per-

formed to extract a small number of missed events occurring during exposure times. The

number of these events is low as long as the hopping rate is not too fast compared to the
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camera frame-rate. In practice, we include in our results data sets with hopping rates up to

about 10 Hz. As the hopping rate approaches a significant fraction of the camera frame rate

(∼ 15 Hz), the effect of the finite camera exposure and readout times becomes significant

and, as will be discussed in the next section, leads to a downward bias in the measured

hopping rates among other effects. In any case, the end result of the image analysis, shown

in Figure 4.4, is a hopping trajectory for the impurity in the crystal as a function of time

with occasional gaps due to loss of crystallization or otherwise.
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Figure 4.4: Trajectory of the impurity in a six-ion crystal extracted from image analysis.

Note that we use “site 0” to indicate situations in which the crystal is ill-defined. Experi-

mental parameters are the same as in Fig. 4.1(a).

4.3 Hopping characteristics

4.3.1 Distribution of impurity dwell-times at a site

From the trajectory of the impurity ion, the distribution of time intervals for which it dwells

at a given crystal site can be extracted. Figure 4.5 shows an example of the typical dwell-
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time distributions for different sites in a six-ion crystal. The termination of the dwell in-

terval has not been filtered in favour of hopping events since they already dominate the

statistics. One can see that the dwell-time distribution is broader as one moves from the

centre to the outer regions of the crystal and these behaviours are roughly symmetric about

the centre. This indicates a longer average dwell time for the outer sites. Although the

outer sites have low statistics, a decaying distribution is still roughly observable for all

sites. An exponential distribution would be expected in the case of a time-independent

hopping rate away from a site, as might occur for a thermally activated process, and ex-

ponential behaviour has been observed previously for hopping in two-ion crystals [21]. In

Fig. 4.6, we show fits to an exponential for the dwell-time distributions at site 4 and site 5

from Fig. 4.5. The fits match the data qualitatively well but typically show an excess tail

of dwell-time events at longer times. As a result, the decay time constants obtained from

the fits are 1.2–2 times lower than the average dwell times, as calculated directly from the

distributions. For example, for the distributions at sites 4 and 5 in Fig. 4.6, we obtain fit

time constants of 0.151(2) s and 0.53(3) s but average dwell times of 0.23 s and 1.07 s

respectively. Therefore, to avoid systematic errors associated with fitting, we simply calcu-

late the average dwell time 〈τi〉 from the distribution of dwell times for the ith site and use

its inverse, 〈τi〉−1, to characterize the hopping rate [60].

4.3.2 Effect of the finite camera frame rate

One might imagine that the finite frame rate of the CCD camera could be responsible for

the systematic deviations of the dwell-time distributions from exponential behaviour. We

divert here from the main discussion to assess how the finite camera rate affects the hopping

statistics acquired. To do so, we simulate the simplest case of hopping, namely in a two-ion

crystal, with Monte-Carlo method, where at each simulation step (corresponding to 1 ms

in real time) the ions can swap positions with a small, fixed input probability proportional

to the hopping rate. The repetitive imaging sequence of the camera is included in the

model with an exposure time of 40 ms, followed by a readout time of 28 ms, matching

what we use in the experiment. Of the two ions in the simulation, one is assumed to be

“dark”. It is deemed to be in a certain site in a camera frame if it shows up in that site for

more than half of the exposure time, in close analogy with the analysis procedure used in
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Figure 4.5: Distribution of dwell-times at different sites in a six-ion crystal. The central four

sites share the same time scale so the distributions for these sites can be directly compared

with each other. The two outer sites of the crystal use a larger time scale to match the

dwell-time behaviours there. Bin sizes are adjusted according to the available statistics at

each site. Experimental parameters are the same as in Fig. 4.1(a).
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Figure 4.6: Dwell-time distributions for the two central sites (site 4 and 5) in a six-ion

crystal. Histograms are obtained from 20,000 images. Experimental parameters are the

same as in Fig. 4.1(a). The plot for site 4 contains 1,235 instances, including 17 transitions

to a decrystallized state; for site 5, the plot contains 176 instances, including 9 transitions

to a decrystallized state. Solid lines are exponential fits with time constants of 0.151(2) s

and 0.53(3) s for site 4 and site 5 respectively. Fit residuals are included above each plot.
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the actual experiment. The simulation automatically includes the dead-time effect of the

camera since, during the readout time, the ions’ hopping is ignored by the camera.

We vary the input hopping rate in the simulation and investigate the reliability of the

camera in reproducing the expected behaviour. In Fig. 4.7, we compare the distribution

of actual hopping events generated by the simulation to that obtained after applying the

camera “filter”. For Figs. 4.7(a)–(c), the input hopping rate in the simulation is set to 0.83

Hz, 1.7 Hz and 8.3 Hz, corresponding to a typical range in the experiment. As would be

expected, exponential fits to the actual distributions work well and correctly reproduce the

input hopping rates. Compared to the actual distributions, the camera-derived distributions

consistently show fewer counts at shorter dwell times while extra (false) counts are regis-

tered at longer dwell times. However, since these extra counts only correspond to about 5%

of the number missing at shorter dwell times, the dominant effect is missing counts at short

dwell times. (Note that the effect of false counts will be addressed later). In Fig. 4.7(a)–

(c), the missing counts correspond to {7, 12, 46}% of the total number of actual events at

shorter dwell times and {7, 11, 43}% of the total number of actual events generated in the

simulation. The discrepancy between the actual hopping behaviour and the camera-derived

behaviour gets larger at higher hopping rates, as expected; however, in this Monte-Carlo

simulation, we find that the dwell-time distributions acquired with the camera follow an

exponential distribution very well even for the highest hopping rate shown in Fig. 4.7(c).

This is in contrast to the case in the experiment, where there is usually an excess tail of

dwell-time events at longer dwell times. The inclusion of the camera mechanism thus does

not seem to explain the typical deviations apparent in the residuals in the experimental data

(see Fig. 4.6).

Moreover, in the experiment, the average dwell time is typically ∼2 times larger than

the fit constants in the 1-to-2 Hz range of hopping rates. To see if this is also true in the

simulation, we compare in Fig. 4.8 the camera-derived hopping rate calculated directly

from the inverse of the average dwell time and that obtained from the inverse of the fit

dwell time. Both the hopping rates calculated from these two methods match the actual

rate very well for low hopping rates (see Fig. 4.8), and the discrepancy grows at higher

hopping rates, consistent with the discussion above. Figure 4.8 also shows that the hopping

rate obtained from the fits to the camera-derived distributions is generally higher than the

inverse of the average dwell time, which is the same trend observed in the experimental
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Figure 4.7: Simulation of the camera’s effect on dwell-time distributions for two-site hop-

ping. From (a) to (c), the input hopping rate for the simulation is set to 0.833 Hz, 1.667

Hz and 8.33 Hz. Open circles show the statistics of the actual events generated by the

simulation. Bars are the statistics derived from simulated camera frames (exposure time

40 ms, readout time 28 ms). Fits to the exponential function for the statistics from ac-

tual events and camera-observed events are shown in red lines and green lines respectively.

Also included are the residuals from the fits. Hopping rate for (a)–(c) obtained from fit time

constants are {0.822, 1.678, 8.375} Hz and {0.806, 1.603, 5.848} Hz for actual events and

camera-observed events, respectively.
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results. However, for hopping rates of 1–2 Hz in the simulation, the calculated rates from

the two methods differ by less than 2%, which is much less than what is observed in the

experiment. Considering this difference between the simple Monte-Carlo simulation and

the experimental results, there are likely some other factors in the experiment that result in

the deviation from a simple exponential model.
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Figure 4.8: Simulation of camera response at different hopping rates. Red open circles are

the inverse of the average dwell time obtained from the simulation including the “filter”

effect due to the finite frame rate of the camera. Green triangles are obtained from the fit

of the camera-obtained dwell-time statistics. Blue line shows the expected response of an

ideal camera (infinite camera rate).

Eventhough the simulation does not explain the shape of the dwell-time distributions

in the experimental data, it is still worthwhile to point out the other effects to be expected

due to the finite camera frame rate. The general trend in Fig. 4.8 shows that the camera

frame rate is expected to suppress the observed hopping rate from the actual value by

a factor of 1.25 up to 4-Hz hopping rate and by a factor of ∼ 2 at an 8-Hz hopping rate.
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Therefore, we expect the effect of the camera “filter” is to smooth out the dependence of the

hopping rate on experimental parameters. Finally, we have extended the two-ion Monte-

Carlo simulation to the case with 3 ions with nearest-neighbour hopping and see that, in

addition to the suppression in observed event count, the camera also produces events that

are mislabeled. For example, non-nearest-neighbour hopping events are “observed” by the

camera even though they are absent in the unfiltered data. The effect does not seem very

strong for our experiment parameters (see below).

4.3.3 Spatial dependence of the hopping behaviour

We now return to a discussion of the experimental results. From the trajectory of the

impurity defect, the hopping outcome as a function of initial position can also be obtained

and is shown for seven and six ions in Fig. 4.9. Only those events corresponding to well-

defined initial and final crystals are included, which comprise the large majority of events.

The interior crystal sites are clearly seen to be the most active and dominate the behaviour.

For the case of seven ions where the interior three sites exhibit most of the hopping, an

impurity on either side of the central site tends to hop towards it. An impurity in the centre,

which can hop readily to two nearby sites, is found qualitatively to have a shorter average

dwell time (0.45 s in the centre compared to 0.70 s and 0.62 s on either side).

Non-nearest-neighbour hopping events are observed in the hopping outcome. For ex-

ample, in Fig. 4.9(a), there are 140 instances where the impurity is deemed to hop from

site 3 to site 5; this corresponds to about 20 % of the total number of hopping events from

site 3. For comparison, we have studied a Monte-Carlo simulation with 3 ions, where only

nearest-neighbour hopping is allowed. We set the hopping probability in the simulation so

that the camera-derived central hopping rate matches the central rate in a seven-ion crystal

in the experiment. The main effect of the camera in the simulation is to smooth out the

distribution of hopping outcome. However, as long as the hopping rate is not very high,

the camera-derived hopping outcome is close in shape to the unfiltered one. (This is the

reason why we only use a moderate hopping rate in the experiment for these plots). The

camera mechanism produces non-nearest-neighbour hopping events at a site (for example,

site 1), which corresponds to only 5 % of the total events at that site, substantially less than

in the experiment. This suggests that either non-nearest-neighbour hopping exists in the
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Figure 4.9: Distribution of hopping outcome as function of initial impurity position in a

crystal of (a) seven ions and (b) six ions. Diagonal values are unobservable and set to zero.

Trap frequencies for (a) are {443.5, 428.9, 126.6} kHz and laser parameters are a detuning

of ∆/2π = −1.2 MHz and scaled power of p/p0 = 27. Figure (a) is based on a total of

40,000 images (4% indeterminate) and includes 2,166 relocation events. Omitted are 184

non-hopping events. Parameters for (b) are the same as those in Figs. 4.1(a). Figure (b) is

based on a total of 30,000 images (2% indeterminate) and includes 3,797 relocation events.

Omitted are 107 non-hopping events.
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experiment, or a more sophisticated model of the camera’s effect should be considered.

Focusing again on the experimental results, there is also a slight asymmetry for the

case of seven ions in Fig. 4.9(a), indicating an increased tendency for the impurity to hop

in the direction of site 1. In particular, there are 30% more hopping events from the central

site 4 to site 3 than to site 5. Some care, however, is required in interpreting the raw

event counts in Fig. 4.9. In general, they do not directly reflect the site-to-site hopping

rates since the distribution is weighted by the probability for the impurity to be found

at each site. For example, this can play a role in the asymmetry in Fig. 4.9(a) between

events 3→ 4 and 5→ 4, where the initial position is different. A simple argument, as

follows, relates the number of events to the hopping rate. The number of hopping events

Ni from the ith site – only the net rate summed over all outcomes is considered here for

simplicity – is related to the average dwell time through the expression, 〈τi〉= 1
Ni

∑
Ni
j=1 τi j,

where {τi j} is the sequence of dwell times at the ith site acquired over the duration of a

data set. From a purely experimental perspective, the expression can be rearranged to the

form, 〈τi〉−1 = Ni/Ti; that is, the hopping rate, characterized by the inverse average dwell

time, is given by the measured number of hopping events divided by the measured total

time, Ti = ∑
Ni
j=1 τi j, that the impurity dwells at the ith site. The total dwell time, when

appropriately normalized, gives the on-site probability, the probability for the impurity to

be found at a given site.

From an interpretative perspective, it is more convenient to consider the expression

Ni = 〈τi〉−1 · Ti; that is, the number of hopping events is the product of the hopping rate

and, within a scale factor, the on-site probability. As will be shown, the strongest factor in

determining the shape of the distributions of events in Fig. 4.9 turns out to be the spatial

dependence of the hopping rate, rather than that of the on-site probability. Nevertheless,

the on-site probability is discussed here in detail since it provides insight into the physical

processes associated with the hopping dynamics. The data sets associated with Fig. 4.9

have been used to calculate the on-site probability, which is shown in Figs. 4.10(a) and

(c). The on-site probability of the impurity ion is determined from the total time it resides

at a site, normalized to the total time that a well-defined crystal is present during a data

set. The plots in Fig. 4.10 are based on three or more successive data sets of either 11.4

or 22.8 min duration. Calculations based on the independent data sets are also included to

show temporal fluctuations, which are most apparent at the edges of the crystal where the
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Figure 4.10: Left panels show the on-site probability for a 172Yb+ impurity in a crystal

of 171Yb+ ions. Right panels show the inverse average dwell time of the impurity at each

site. The on-site probability is the total time spent at a site, normalized to the total time

that a well-defined crystal is present during a data set. The inverse average dwell time

characterizes the hopping rate. Different open symbols represent successive data sets to

show temporal variations. Solid bars are obtained from the combined data sets shown.

Experimental parameters for the various panels are as follows. Figs. (a) and (b): The same

data and parameters for a seven-ion crystal as in Fig. 4.9(a). Individual data sets shown are

obtained from four consecutive sets of 10,000 images, covering 11.4 min each. Figs. (c)

and (d): The same data and parameters for a six-ion crystal as in Fig. 4.9(b). Individual data

sets shown are obtained from three consecutive sets of 10,000 images, covering 11.4 min

each. Figs. (e) and (f): A six-ion crystal with a Doppler cooling beam 1.5(2) times larger

in the axial direction than for (c) and (d), but with trap frequencies and central hopping rate

closely matched. Trap frequencies are {442.0, 425.6, 141.1} kHz, and laser parameters are

∆/2π = −0.9 MHz and p/p0 = 18. Individual data sets shown are obtained from three

consecutive sets of 20,000 images, covering 22.8 min each. The combined data set of

60,000 images (4% indeterminate) includes 6,590 relocation events. Omitted from (f) are

222 non-hopping events.
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hopping rate is low.

A trend of increased probability for the impurity ion to reside towards site 1 is clear for

both seven and six ions (Figs. 4.10(a) and (c), respectively). This behaviour is consistent

with the direction of the radiation-pressure force due to the Doppler-cooling laser (see

Sec. 2.3 in Chp. 2). Since the laser beam is incident at 45◦ to the axial trap direction, there

is a component of the force acting on the 171Yb+ ions in the axial direction and pushing

them in the direction of site 6. In turn, this will tend to cause the non-fluorescing 172Yb+

impurity to diffuse via hopping in the upstream direction of the laser beam [61].

In Fig. 4.10, the on-site probability also appears to have a slight maximum, preferen-

tially locating the impurity ion towards the centre of the crystal. Dipole forces are expected

to be negligible and other spontaneous-scattering effects due to divergence of the cooling

beam are unlikely to have a strong effect. One possible cause may be a differential cooling

effect associated with the location of the non-fluorescing impurity and the non-negligible

intensity profile of the cooling laser across the crystal. Specifically, an impurity defect near

the centre of the crystal would reduce the average laser intensity impinging on the 171Yb+

ions, and thereby reduce the average energy of the crystal and impurity. This lower average

energy would, in turn, tend to reduce the hopping of the impurity away from the centre,

and thus enhance the on-site probability there.

Even in the absence of an inhomogeneous intensity profile, the location of the non-

fluorescing impurity may influence the mechanical response of the ion crystal to the cooling

laser through the structure of the collective vibrational modes of the crystal [22, 62]. In ad-

dition, since the impurity ion relies on sympathetic cooling by the surrounding laser-cooled
171Yb+ ions, the structure of the collective modes may also lead to a position dependence

for the sympathetic cooling efficiency and average energy of the impurity. Overall, it is not

immediately clear what the net trend on the on-site probability (and hopping rate) would

be. Further possible effects on the average energy of the impurity ion will be discussed

below.

Although the radiation pressure from the Doppler-cooling laser does appear to create

an observable bias in the on-site probability of the impurity, the effect is perhaps not as

strong as might be expected, for several reasons. First, due to coherent population trap-

ping, the fluorescence scattering of the 171Yb+ ions for the laser parameters of Figs. 4.9

and 4.10 is already substantially lower than for a saturated two-level atom. According
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to Eqn. (2.13) in Chp. 2, the theoretical excited-state population for the central laser in-

tensity in Figs. 4.10(a)–(d) is ∼ 0.074 versus a value of 0.5 for a two-level atom in the

high-saturation limit. Furthermore, the relatively high average energy of the crystal as a

result of the compromised Doppler cooling will tend to soften the asymmetry in the on-site

probability. Finally, the occasional loss of crystallization and re-crystallization can have an

impact on the distribution of the impurity by “resetting" its position in the crystal. We find,

albeit from low statistics, that the probability for loss of crystallization follows the on-site

probability fairly well, which implies that the rate for the process is uncorrelated with the

position of the impurity. Furthermore, the re-crystallization is not necessarily a fully ran-

domizing process for the position of the impurity but at least does not appear to introduce

a stronger bias in the position of the impurity than was already present before the loss of

crystallization.

To assess further how the non-hopping events affect the on-site probability, we have

considered a rate model including only the hopping processes. The matrix of rate coeffi-

cients, including inter-site asymmetries, is determined empirically from the distributions as

in Fig. 4.9, corrected for the on-site probability. The solutions reproduce an asymmetric

maximum in the on-site probability that roughly matches the data of Fig. 4.10. However,

they consistently underestimate the probability at the edges of the crystal, with site 1 show-

ing the largest discrepancies (by a factor of 1.6 and 2.7 for Figs. 4.10(a) and (c) respec-

tively). Therefore, the non-hopping events do appear to flatten out the on-site probability

distribution of the impurity ion to some extent.

Notwithstanding the spatial non-uniformity of the on-site probability, there is still a

substantial probability for the impurity to be found at all sites within the crystal. Therefore,

the narrow spatial distributions of hopping events shown in Fig. 4.9, are not dominated

by the processes leading to the on-site probability of the impurity. In fact, correcting the

plots in Fig. 4.9 for the on-site probability leads to distinct, but not drastic, changes in the

distributions.

In Figs. 4.10(b) and (d), we also show the inverse average dwell time of the impurity

ion as a function of crystal site, again calculated for the same data sets from Fig. 4.9. In

general, the hopping rate decreases further away from the crystal centre – see also Fig. 4.5

– and has a relatively narrow maximum compared to that of the on-site probability. The

hopping rate is nearly symmetric about the centre of the crystal except for a consistently
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higher hopping rate on the right side (higher site number) in the plots. Although the effect

is comparable to the overall fluctuations between successive data sets shown, each data

set for six ions consistently shows the same bias (Fig. 4.10(d)). This is not the case for

seven ions; however, the combined data still shows the same effect (Fig. 4.10(b)). The

asymmetry in the hopping rate (for example, site 4 vs. site 3 in Fig. 4.10(d)), together with

the general tendency for hopping towards the centre of the crystal as observed in Fig. 4.9,

is qualitatively consistent with the spontaneous-scattering force driving the impurity defect

during hopping towards site 1 (plot’s left). In any case, the asymmetry is not a strong effect.

The primary feature of the site-dependent hopping rate is the sharp peak at the centre of the

crystal, which, along with its physical origin, is the most significant factor in determining

the distribution of hopping events in Fig. 4.9. It is worth noting that a peak in the hopping

rate at the centre of the crystal is not inconsistent with a preference for the impurity ion to be

located there since the maximum in the on-site probability is determined by an asymmetry,

or irreversibility, in the hopping rate of the impurity towards and away from the centre of

the crystal.

As noted in Sec. 3.2 in Chp. 3, the size of the Doppler cooling beam is comparable to the

axial extent of a six- or seven-ion crystal (for technical reasons). We have already noted a

possible effect of the intensity profile on the on-site probability, and this raises the question

of an effect on the spatial profile of the hopping rate. For example, it is conceivable that the

higher laser intensity at the centre of the crystal could result in a higher average energy for

the central sites. This would enhance the hopping rate compared to the edges of the crystal.

As a follow-up experiment, we have tested the effect of the beam size by increasing it by

a factor of 1.5(2) to an intensity FWHM of ∼70 µm along the axial extent of the crystal.

The laser power was increased within technical limits to reach an intensity at the centre of

the beam of I/I0 = 18, or equivalently a power of p/p0 = 18, which is somewhat lower

than the value of 28 used for the data with the smaller beam in Figs. 4.9 and 4.10. To

compensate for this difference, we tuned the laser closer to resonance (∆/2π =−0.9 MHz)

in order to obtain approximately the same hopping rate at the centre of a six-ion crystal as

in Fig. 4.10(d). The on-site probability for the larger beam size, shown in Fig. 4.10(e), is

slightly more uniform than the distribution for the smaller beam size in Fig. 4.10(c). There

is more of a difference between the two cases if the rate model for only hopping processes

is considered to eliminate the effect of the non-hopping events. For the larger beam, the
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on-site probability from the steady-state solution has a more obviously flatter distribution;

however, this is primarily due to a difference in behaviour at a single location, site 1.

More importantly, a comparison of Fig. 4.10(f) to Fig. 4.10(d) shows that the spatial

profile of the hopping rate is only slightly broader for the case of the larger beam size.

The hopping rates for sites 2 and 5, after normalization to the value in the centre of the

crystal, show a factor of 1.5–2 increase; however, this represents only a ∼12% increase

compared to the peak value of the hopping rate at the centre of the crystal. Although not

shown here, the spatial distribution of hopping outcome for the larger beam is qualitatively

the same as already shown in Fig. 4.9(b), with a small enhancement in the low lying counts

surrounding the dominant central two sites. Therefore, within the limitations of our test,

the spatial dependence of the hopping behaviour does not appear to be a strong function of

the profile of the laser beam for the size used here. The remainder of the data shown in the

following sections continues to use the original beam size with a 50-µm FWHM.

4.4 Hopping rate as a function of laser parameters

We now study the onset of hopping with laser and trapping parameters and demonstrate

that it can be controlled. The onset is first studied as a function of laser detuning and

power for six ions in a trap with frequencies {443.1, 426.9, 138.8} kHz, corresponding to

an α parameter just below the onset of the zigzag transition. The inverse average dwell

time, obtained from 3,000 images, is plotted as a function of laser detuning and power in

Fig. 4.11(a) and (b) respectively. Only half the crystal sites are shown since the behaviour

is approximately symmetric. The laser power values plotted in Fig. 4.11(b) have been

corrected for drifts occurring during the data collection.

As before, the hopping rate decreases away from the centre of the crystal. The onset of

hopping requires high laser power and a detuning close to resonance. For the case of the

power dependence, the onset of hopping occurs at p/p0 ∼ 25. This is well into the regime

of coherent population trapping for 171Yb+ and corresponds to a central intensity of the

cooling laser a factor of ∼3 above the value required for maximum fluorescence. At this

intensity, the effective linewidth is strongly broadened by a theoretically expected factor

& 3.5 from its low intensity value. Due to the broad linewidth and close detuning, this is

a regime of laser cooling with energies well above the optimal Doppler limit and, as such,
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is indicative of the height of the transverse Coulomb barrier that inhibits the swapping of

ions during a hopping event. Modeling the laser cooling for this range of laser parameters

requires care [20, 63] and should also include the effect of the laser beam profile across

the ion crystal [64] and modifications to the collective behaviour of the ion crystal near

the zigzag transition [15]. In addition, the average energy of the non-fluorescing impurity

requires a consideration of the sympathetic cooling process, which may result in a different

(and location-dependent) average energy for the 172Yb+ impurity than for the laser-cooled
171Yb+ ions.

8

6

4

2

0

-1.8 -1.6 -1.4 -1.2 -1.0

 site 4

 site 5

 site 6

8

6

4

2

0

35302520

 site 4

 site 5

 site 6
 〈

τ
〉
−

1
 (

s-1
)
 

 〈
τ
〉
−

1
 (

s-1
)
 

detuning, ∆/2π (MHz) laser power, p/p
0

(a) (b)

Figure 4.11: Impurity hopping rate in a six-ion crystal as a function of (a) laser detuning

and (b) laser power. The rate, characterized by the inverse average dwell time, is obtained

from 3000 images and plotted for sites 4, 5 and 6 (see legend); behaviour at other sites is

nearly symmetric about the centre of the crystal. Statistics are marginal for the low hopping

rates. Trap frequencies for both (a) and (b) are {443.1, 426.9, 138.8} kHz. For (a), the laser

power is fixed at p/p0 = 30 in terms of saturation value p0 (see text). For (b), the laser

detuning is fixed at ∆/2π =−1.2 MHz.

To obtain a qualitative idea of the average energy imparted to the ions, we have studied

a single 171Yb+ ion for the same laser parameters. From the gaussian profile of the ion’s

time-integrated position in the harmonic trap, we can estimate its average energy. To within

the limits of the technique, we find that the average scaled axial energy is 〈Ez〉/h̄ωz & 104,
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well above the Doppler cooling limit of γ/2ωz ∼ 102. Furthermore, the transverse en-

ergy 〈Er〉 is a factor of ∼4 larger than the axial energy, which can be expected qualita-

tively from the details of the laser cooling [45, 20, 46]. For comparison, an upper limit on

the transverse energy barrier to hopping at the centre of the ion crystal, assuming ωx,y is

somewhat larger than ωz, is provided by the Coulomb interaction energy Ec ≈ q2/4πε0a0.

Here, a0 sets the scale for ion-ion separation in the transverse y−direction according to

a3
0 = q2/(4πε0mω2

y) [13]. For ωy/2π∼ 430 kHz, one obtains a0 ∼ 5 µm and Ec/h̄ωy ∼ 105

yielding Ec/〈Er〉 ∼ 10. This model of the energy barrier for hopping can be further im-

proved, for example through the inclusion of the initial axial ion spacing, which is smallest

at the centre of the crystal and therefore is expected to give the lowest barrier there. As a

final note, assuming that the measurements of average energies for single ions can be taken

to apply to multi-ion crystals, the associated large amplitudes of motion of the ion crystal

imply that the system will be outside the linear regime of small collective oscillations, and

nonlinear behaviour such as coupling between collective modes can be expected.

4.5 Hopping rate as a function of trap anisotropy

In our final experiment, the effect of the confining potential on hopping behaviour is con-

sidered. In particular, an enhancement of the hopping is observed to occur near the onset

of the structural phase transition to the zigzag configuration. Therefore, we have first char-

acterized the onset of the zigzag transition for pure 171Yb+ crystals as a function of the

end-cap voltage, which affects the anisotropy of the confining potential.

To characterize the zigzag transition, we set the laser parameters to achieve good Doppler

cooling. For each value of the end-cap voltages, a short sequence of images is taken and the

peak-to-peak transverse displacement of the zigzag configuration is obtained by averaging

fits of 30-100 images. The largest amplitude displacement is found to occur at the centre

of the crystal as expected. In Fig. 4.12(a), the transition behaviour for crystals of six and

seven ions is plotted with respect to the α parameter, the values of which are calculated

from measurements of the secular trap frequencies. The spatial scale of the images used

to infer the zigzag displacements is calibrated by making a comparison of the axial ion

spacing to numerical theory across a range of end-cap voltages.

For the measurements of the zigzag transition, the laser cooling needs to be optimized
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Figure 4.12: Laser-induced impurity hopping rate as a function of trap anisotropy near the

structural zigzag transition. (a) Location of the zigzag transition for six- and seven-ion

crystals. Open symbols show the peak-to-peak displacement of the zigzag configuration,

transverse to the imaging axis, in a pure 171Yb+ crystal as a function of anisotropy-related

parameter α = (ωz/ωy)
2. The anisotropy, which decreases from left to right, is modified

using the trap end-cap voltages. Solid symbols show similar for an ion crystal with a single

impurity ion, offset from the centre of the crystal by 1.5 sites for 6 ions and 1 site for 7 ions.

Lines are obtained from numerical minimization of energy for a pure crystal and include

a scale factor to account for an oblique viewing axis. The binned pixel size in images

corresponds to 0.69 µm. Laser parameters for the data sets are as follows. Open squares

and open triangles: ∆/2π = −8.1 MHz, p/p0 = 3.5 near zigzag transition, p/p0 = 8.2

otherwise; solid circles: ∆/2π =−8.2 MHz, p/p0 = 3.8 near zigzag transition, p/p0 = 9.0

otherwise; solid bow-ties: ∆/2π =−8.2 MHz, p/p0 = 3.2. (b) Inverse average dwell time

versus α for an impurity at central site 4 in a six-ion crystal and at middle site 4 in a seven-

ion crystal. Data (solid) and control (open) points correspond to laser parameters leading to

high and low kinetic energies respectively. Laser parameters are as follows. Solid circles:

∆/2π =−1.2 MHz, p/p0 = 27; open circles: ∆/2π =−8.2 MHz, p/p0 = 9.0; solid bow-

ties: ∆/2π = −1.2 MHz, p/p0 = 27; open bow-ties: ∆/2π = −8.2 MHz, p/p0 = 3.2.

(c1)–(c5) Examples of crystal structure at different α as indicated in (a).
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to limit thermally induced switching between opposing zigzag configurations, particularly

near the critical anisotropy. Near this anisotropy where the frequency of the lowest trans-

verse collective mode goes to zero [15], the local transverse potential at the centre of the

crystal is very soft and the barrier to zigzag switching is low. Notwithstanding reason-

ably optimized Doppler cooling, significant switching is still observed in image sequences

close to the onset of the transition, as evidenced by excess image-to-image fluctuations in

the transverse zigzag displacement. Although this affects the calculation of the average

displacement, we ignore the effect since the location of the transition’s onset is already

sufficiently well defined for our hopping studies.

The theoretical prediction for the transverse zigzag displacement, obtained from nu-

merical energy minimization described in Sec. 2.2, matches the data well (Fig. 4.12(a))

except for a consistent discrepancy near the onset of the transition. This bias may be due to

the effect of thermal switching on the measurement, as mentioned above. An overall scale

factor is included in the theory to account for an oblique viewing angle, and corresponds to

a 45◦ tilt of the trap’s weaker transverse axis (y-axis) with respect to the horizontal plane.

Good agreement between theory and experiment for six and seven ions continues over a

larger range of α than shown in Fig. 4.12(a). We have also verified the behaviour of the

zigzag transition against theory for crystals with five ions with similar success.

Following the calibration of the zigzag transition in pure crystals, a study of hopping

as a function of trap anisotropy has been performed on six- and seven-ion crystals con-

taining a single impurity defect. Suitable values of the laser power (p/p0 = 27) and de-

tuning (∆/2π = −1.2 MHz) are chosen to activate the hopping, according to studies as in

Fig. 4.11. The primary aim is to ensure that the hopping rate near the zigzag transition is

rapid but does not overwhelm the CCD frame rate. The hopping is then measured over

a range of end-cap voltages. For each end-cap value, small adjustments are first made to

the dc voltages applied to the trap rods to minimize the effect of micro-motion on the laser

cooling [65]. In Fig. 4.12(b), the inverse average dwell time for a single site (site 4) in the

centre of the crystal is plotted with respect to the trap α parameter. Control data taken at a

detuning of ∆/2π = −8.2 MHz and a moderate laser power of p/p0 = 9.0 for six ions or

p/p0 = 3.2 for seven ions is also included. This control data, in conjunction with some ad-

ditional points, is simultaneously used to determine the peak-to-peak zigzag displacement

with the location of the impurity selected to be near the centre of the crystal (Fig. 4.12(a)).
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Simulations show the effect of the 172Yb+ impurity on the critical anisotropy is minor, as

observed.

In Fig. 4.12(b), the onset of hopping for seven ions occurs before that for six, which

is natural to attribute to the relative location of the two zigzag transitions. As the zigzag

transition is approached and the frequency of the lowest transverse collective mode drops

to zero, thermal fluctuations of the crystal will allow for substantial transverse excursions

at its central sites, in particular when large average energies are induced by compromised

laser cooling. As mentioned above, the associated large transverse amplitudes of motion

at the centre of the crystal will give rise to nonlinear behaviour, including strong coupling

between the axial and transverse collective motions as the zigzag transition is approached.

This mechanism together with the lower barrier at the centre of the ion crystal presumably

enables, or at least is a significant factor in enabling, the rapid hopping at the central sites

as seen in Fig. 4.9. Also, since we are modifying α by changing the end-cap voltages, it

should be mentioned that there is also an accompanying effect on the energy barrier, which

decreases with increasing α due to the reduction in the axial ion-spacing.

The situation is further complicated because the critical anisotropy for the structural

phase transition is also predicted to depend on temperature [26]. According to the calcu-

lations in Ref. [26], the transition to the zigzag phase for a 10-ion crystal shifts from α =

0.0475 to 0.0486 (a 2% change) when the temperature is raised from 0 to 10 mK. In other

words, the transition is suppressed at finite temperature. The shift in the critical value of

α−1/2 = ωy/ωz is roughly linear in temperature up to 10 mK (see Fig. 2 in Ref. [26]). For

the sake of argument, if we extrapolate this linear dependence to a temperature typical in

our hopping experiments (∼ 40 mK), the critical value of α would shift by about ∼ 10%

from the zero-temperature value. The actual change may be even larger due to deviation

from linearity in α−1/2. . If roughly the same 10% fractional change applies to our cases

of seven- and six-ion crystals, we can say that the observed onset of hopping in a sense oc-

curs even earlier relative to the onset of the zigzag transition than one might assume from

Fig. 4.12. (The ordering of the transitions for seven and six ions would still remain the

same.)

Even though not our main purpose, it is interesting to consider briefly if our datasets of

ion crystals show any evidence for the suppression of the zigzag transition at higher average

kinetic energies (higher temperature). In Fig. 4.13, we compare the images of a seven-ion
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crystal under different laser cooling conditions for the same anisotropy parameter, α =

0.0982. This value of α is higher than the critical value of 0.0883 calculated in Chp. 2 in

the absence of thermal fluctuations. We show in Fig. 4.13(a1) a typical image of the ion

crystal at a high average energy where the hopping is already turned on. From the image, it

seems that the crystal is in a linear configuration. At low average energy, that is, for good

Doppler cooling, the crystal is clearly observed to be in one of the two zigzag configurations

(Fig. 4.13(a2) and (a3)). In transitioning between these two cases by adjusting the laser

cooling, we observe as we increase the laser power that the transverse switching between

the two symmetric zigzag configurations is the first dynamics to be activated. Then, at yet

higher powers, the hopping between sites is activated. Perhaps the most critical question is:

can a time-averaged image (sequence) of a crystal that is rapidly switching between ‘zig’

and ‘zag’ configurations (and undergoing hopping) be reliably distinguished from an actual

linear configuration?

To avoid effects due to fluctuations in a single image, we show the overlap of a series

of images of the crystal at high average kinetic energy (a4) and at low average kinetic

energy (a5), respectively. The two cases do not show a dramatic difference. In Fig. 4.13(b),

a normalized horizontal cross section of the fluorescence level for the central ion in (a4)

and (a5) is shown. The profile at low kinetic energy (blue), which is simply the sum of

the two zigzag configurations at low kinetic energy (the green-dotted line and the green-

dashed line), has two slightly resolved peaks. The higher kinetic energy case (red) shows

a fluorescence profile with a single peak at the centre, but the overall width of the profile

is comparable to that at low kinetic energy. Given the many systematics involved in the

comparison, there is no obvious and immediate evidence of a suppressed transition from

these images.

4.6 Discussion

It has been shown that site-to-site hopping can be induced in a linear ion crystal by con-

trolling the parameters of Doppler laser-cooling, which affects the average energy of the

crystal. The spatial distribution and event-by-event outcome of the hopping of a single,

distinguishable impurity ion have been determined, and the hopping is observed to be con-

centrated towards the centre of the crystal for six and seven ions. The hopping rate is also
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Figure 4.13: Zigzag configuration at different average kinetic energies. (a1) Typical image

of the crystal at high kinetic energy corresponding to laser cooling parameters ∆/2π =

−1.2 MHz, p/p0 = 27. (a2)&(a3) The two zigzag configurations at low kinetic energy

corresponding to laser cooling parameters ∆/2π = −8.2 MHz, p/p0 = 3.2. (a4) Overlap

of 50 images of the crystal with the same cooling parameters as in (a1). (a5) Overlap of

50 images of the crystal with the same cooling parameters as in (a2)&(a3), in which half

of the images shows the zig phase and half shows the zag phase. (b) Cross section of the

fluorescence profile as indicated in (a4)&(a5). The fluorescence levels are normalized to

the peak value for the central ion. The green-dashed line and green-dotted line are obtained

from the two sets of 25-images corresponding to the two zigzag configurations. For all the

data shown, anisotropy parameter are set to α = 0.0982.
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found to be enhanced as the ion crystal is brought close to the zigzag transition, which

depends on the number of ions in the crystal. That the hopping tends to be concentrated

near the centre of the crystal and is enhanced near the zigzag transition are consistent with

an intrinsic cause for the behaviour related to the structure and dynamics of the crystal

near the zigzag transition. The softening of the zigzag collective mode as the transition

is approached can lead to large thermally activated transverse amplitudes and non-linear

dynamics at the centre of the crystal. As well, the higher linear density of ions at the centre

of the crystal makes the barrier to hopping lowest there.

There are, however, several complications in the experiment that may influence this

conclusion. The laser beam used in this experiment has a non-negligible intensity profile

across the crystal and could lead to a position-dependent average energy. The highest laser

intensity is at the centre of the crystal and could contribute to a higher hopping rate there.

A test with a larger beam size in Sec. 4.3, however, appears to indicate that the spatial

dependence of the hopping rate is not strongly sensitive to the size of the beam for the

value used in these experiments. It is also noted here that the hopping behaviour for six

ions as a function of trap asymmetry was similarly found to be insensitive to the change in

beam size.

As alluded to in Secs. 4.3 and 4.4, the impurity may also play an active role in influ-

encing the rate of hopping and its spatial dependence. First, the non-fluorescing impurity

ion may modify the effect of the cooling laser on the crystal depending on the position of

the impurity, for example in conjunction with the profile of the laser intensity. We have ob-

served behaviour, albeit at a mild level, in the on-site probability that may be related to such

an effect (Sec. 4.3). As long as the laser beam is not too small, one might not expect the

hopping rate to be most strongly affected in this way for six and seven ions, where a single

impurity with nearly identical mass should have a small fractional effect on the response of

the crystal to the cooling laser. Second, the impurity ion may also have a different average

energy than the rest of the crystal because it depends on the indirect sympathetic cooling

from the surrounding 171Yb+ ions. The efficiency of the sympathetic cooling can have a

position dependence, due to structure of the collective modes of the crystal, and may con-

tribute to the spatial dependence of the hopping rate. It is not clear how significant such an

effect would be, summed over all the thermally excited modes of motion of the crystal. In

any case, the hopping events observed are ultimately at least a two-body process involving
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not only the impurity but at least one of the 171Yb+ ions.

Molecular dynamics simulations are probably the easiest way to model the hopping,

including the laser- and trap-induced onset and the apparent differences in behaviour be-

tween six and seven ions. Such simulations are also convenient to test for the effect of

the camera frame rate, the influence of the non-fluorescing impurity on the spatial depen-

dence of hopping, effects due to the laser beam size, and the possibility of laser-cooling

effects and micro-motion heating [6] that may have a dependence on the end-cap voltage.

As a preliminary step in this direction, we have performed molecular dynamics simulations

of ion strings confined in an ideal harmonic confining potential and at constant energy,

that is, without direct inclusion of the rf potential or of laser cooling per se. The details

will be discussed in the next chapter, however, we note here, that simulations in which

the ions are initially perturbed significantly from equilibrium in fact already show hopping

behaviour that qualitatively matches our experimental observations, including a hopping

intensity concentrated at the centre of the crystal. This is suggestive that the cause for the

spatial distribution of hopping is intrinsic to the crystal structure and dynamics near the

zigzag transition.



Chapter 5

Numerical Simulation of Hopping

In this chapter, we describe molecular-dynamics simulations of hopping behaviour in ion

crystals. The simulations are a simple and preliminary version in which we ignore many of

the technical complications in the experiment and let the crystal of ions evolve according

to Newtonian dynamics with constant energy. The result reproduces several of the impor-

tant features of the hopping behaviour observed in the experiment (Chp. 4), including the

concentration of hopping at the centre of the crystal.

5.1 Molecular dynamics simulation

In the previous chapter, we did not include a quantitative theoretical model for the hopping

behaviour of the impurity ion. In particular, we did not attempt with theory to reproduce the

strong dependence of the hopping rate on the power and detuning of the Doppler-cooling

laser, or on the anisotropy of the trap potential. It would have been intuitive, and our

preference, to convert the laser-parameter plots to plots in terms of average kinetic energy

of the crystal; however, as discussed in Chp. 4, the laser-cooling model becomes non-trivial

for the range of laser parameters considered in the experiment. There are also technical

factors in our experiment that could influence the final behaviour of the ion crystal. First,

the impurity has a different mass from the rest of the ions. Second, residual micro-motion

arising from the rf potential is a source of heating and could enhance hopping. Third, the

non-fluorescing impurity complicates the situation in several ways. The cooling laser exerts

light pressure on the 171Yb+ ions in the downstream direction and, in effect, pushes the

75
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impurity upstream. The cooling rate for the crystal may depend on the location of the dark

impurity, and the energy of the impurity ion itself depends on the details of sympathetic

cooling.

All put together, it seems simplest to resort to numerical simulation to compare the

experiment to theory. Molecular dynamics (MD) simulation, in which the dynamics of

the individual ions are integrated in time is a well-established and ongoing research area

in the ion-trap literature. Molecular dynamics simulations have been used to study equi-

librium structures [9], the order-disorder transition [16, 18], the closely related issue of

micromotion heating [18, 66] and laser cooling [67, 68]. The listed references are only

a small sample of the literature using MD simulations for studying trapped ions and are

usually applied to systems with a large number of ions. Even six ions, though, are already

complicated enough!

The effect of the various complications in the experiment can be conveniently assessed

with MD simulation, in which different ingredients of the complex situation can be con-

trolled independently. For example, one can assign the same mass to all the ions including

the impurity while keeping the impurity non-fluorescing, or making them all fluorescing

while keeping the difference in mass. This allows us to investigate different attributes one

by one, while in reality they are not separable.

Having said all this, we present in this chapter the simplest possible MD simulation as

a first step towards these more complicated investigations. We in fact find that a simple

solution that ignores most complications of the experiment already shows qualitatively

most of the behaviour we observe in the experiment.

5.2 Implementation of the simulation

Before presenting the details of the MD simulation and its implementation, we first discuss

three simplifications made to the model of N ions confined in a linear rf Paul trap, as

follows:

As discussed in Chp. 2, the nominally harmonic potential in the transverse direction is

generated by an oscillating rf electric field. In this initial version of MD simulations, we do

not simulate the rf potential directly but consider only the effective time-averaged pseudo-

potential. As a result, there is no micro-motion involved. The ion motion is also limited to
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two-dimensions, where we assume ideal harmonic potentials in both axial (z) and transverse

(y) directions to confine the ions. As in the experimental setup, the axial confinement is

weaker than the transverse one. Ignoring one transverse axis is a reasonable simplification

in first order since the zigzag transition is determined by the weakest transverse direction

only.

The mechanism of laser cooling and heating is also not included in these initial simu-

lations. In the presence of the Doppler-cooling laser, the fluorescing ions constantly scat-

ter photons, leading to laser cooling and recoil heating. The balance between these and

other heating processes on average sets the kinetic energy of the ions. The inclusion of the

Doppler-cooling laser in the model is a significant complication because one has to account

for the stochastic behaviour of the photon scattering. Instead, a constant-energy approach is

adopted in our MD simulations, where we give some initial displacement to the ions to raise

their energy above equilibrium and let them evolve according to Newtonian dynamics. We

find that constant energy dynamics is actually a reasonable, preliminary approach since at

high excitation energies, the highly nonlinear behaviour of several trapped ions randomizes

their motion and destroys, for example, the memory of initial conditions. Finally, it should

be noted that, in the absence of a laser interaction in the model, the radiation pressure on

the ions is automatically neglected, the distinction between the non-fluorescing impurity

and the rest of the ions is neglected, and effects due to the laser profile are also eliminated.

As our last simplification to the simulation model, we assume that all the ions have the

same mass. This of course ignores the small but non-zero mass difference between the
172Yb+ impurity and the 171Yb+ ions in the crystal.

In a simulation with the above simplifications, the evolution solely depends on the

number of ions in the crystal, the shape (asymmetry) of the confining potential, and the

size of the excitation energy. In some ways this simple situation is very convenient: Any

hopping behaviors we observe in the simulation must be intrinsic to the system, and not

due to technical experimental details.

The model: The model we implement is a set of coupled Newton’s-Law equations for N

ions confined in a two-dimensional harmonic trap and interacting via pair-wise Coulomb

forces. The dimensionless differential equations of motion for the rescaled positions {r′i}
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of the ions are as follows:

d2ri
′

dt ′2
+ y′iŷ+αz′iẑ =

N

∑
j=1, j 6=i

ri
′− r j

′

|ri′− r j′|3
. (5.1)

Here, we have used the characteristic length a0 = (q2/4πε0mω2
y)

1/3 from Sec. 2.2 in Chp. 2

to rescale the positions so that r′i = ri/a0 = (y,z)/a0. Time is rescaled by ω−1
y to the

dimensionless parameter t ′=ωyt. In this system of length and time scales, the energy of the

system is expressed in units of E0 = q2/(4πε0a0)= (mω2
y)

1
3 (q2/4πε0)

2
3 (see Sec. 2.2). If we

use the mass of the 171Yb+ ion, then the energy scale is E0 ≈ 1.69×105h̄ωy. Finally, note

that the only free parameter in the rescaled Eqn. (5.1) is the trap anisotropy α = (ωz/ωy)
2.

Implementation: We use MATLAB software to perform the molecular dynamics simula-

tion. The code is based on software for modeling a gas of particles with pair-wise inter-

actions, originally written by Bill Magro in FORTRAN90 and rewritten in MATLAB by

John Burkardt [69]. Modifications (including corrections) were made to adapt the code to

our case of N ions interacting through Coulomb repulsion. The program is very simple and

integrates the coupled Newton’s equations for N ions using the velocity-Verlet algorithm.

Variable input parameters for the program include the number of ions N, the trap

anisotropy parameter α, and the initial conditions that we use to introduce a displace-

ment from equilibrium in either position or velocity. The displacements do not include

a centre-of-mass (COM) component since the COM motion of the ion crystal is completely

separable from the other internal dynamics in an ideal harmonic trap and so has no effect

on the hopping for any amplitude. The initial displacement corresponds to excitation en-

ergy ∆E measured relative to equilibrium value. As will be shown, the details of the initial

conditions do not matter except for the excitation energy. Nevertheless, we prefer to excite

the ion crystal with the transverse zigzag mode because it matches most closely the steady-

state probability distribution for the positions of the ions in the simulation. This is not

surprising since the soft transverse zigzag mode has the lowest frequency by far near the

onset of the zigzag phase transition and, all things being equal, will have a large amplitude

of excitation.

Although performing MD simulations for different numbers of ions and under differ-

ent conditions is straightforward in principle, the length of computation time required is

somewhat prohibitive. We therefore limit the discussion here to the case of a crystal with
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six ions. We also focus on a single trap with anisotropy parameter α = 0.1152, which is

just below the critical value αcrit = 0.1157 predicted by theory. For convenience of all dis-

cussions below, we consider the simulation results in terms of an actual trap with secular

frequencies ωy/2π = 426.26 kHz and ωz/2π =
√

0.1152×426.26 kHz = 144.7 kHz in the

transverse and axial direction respectively. These frequencies are close to typical values

that we use in the experiment.

For our simulation model, the size of the time step is roughly determined by the highest-

frequency collective mode of the ion crystal being considered. As already pointed out

in Chp. 2, the mode with the highest frequency in the transverse direction is the COM

mode with a value of ω
(N)
y = ωy. At or near the critical asymmetry αcrit, however, the

axial zigzag mode is the mode with overall highest frequency and has a value of roughly√
2ωy for six ions. We choose a simulation step-size that divides the transverse trap period,

Ty = 2π/ωy, into 1000 steps. For ωy/2π = 426.26 kHz, the actual time for one step is

(1000×ωy/2π)−1 = 2.346 ns. We have checked that a decrease in time step by a factor

of 2 does not significantly affect the hopping statistics, although the trajectories diverge

after a relative short simulation time for the excitation energies studied. This appears to

be a standard circumstance that arises in molecular dynamics simulations due to system

nonlinearity [70, 71]; more details will be provided at the end of this chapter.

The non-parallelized MD simulation is performed on a desktop computer with a 2.50-

GHz processor. For the time step noted above, a computation time of about 40 hrs is

required to simulate 1 sec of dynamics. Lengthy computation times are a standard issue

with MD simulations where there is a wide range of time scales. While the collective

modes compel us to integrate the equations with a time step on the order of nanoseconds,

a study of the dynamics of interest, namely hopping, requires simulations on the order of

seconds or more.

A simulated time of 1 sec is still well short of the typical data collection time of 10 min

that was used in the experiment to acquire sufficient hopping statistics. To obtain reasonable

hopping statistics from the MD simulations, we have raised the excitation energy to drive

faster hopping rates, which are well outside the range of those measured in the experiment

(see below). In the future, we will consider the use of parallel computing facilities such as

WestGrid to implement simulations that should more closely approximate the conditions

of the experiments.
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After every 1800 time steps in a 1-second simulation, the MD simulation saves the

two-dimensional positions for all six ions. This allows tracking of the ion trajectories, from

which the statistics of hopping can be extracted. In contrast to the experiment, the ions in

the simulation are distinguishable so we can monitor the behaviour for each by following

its trajectory. The simulation also occasionally outputs the kinetic and potential energy

of the system. The constancy of the total energy provides a direct test of the integration

accuracy. Although the total energy shows a small fluctuation about its initial value due

to the finite step size, the fractional error is always at the same level of ∼ 10−7 and is not

accumulated through the simulation.

5.3 Simulation results

5.3.1 Simulation tests and basic hopping behaviour

As noted above, our simulations focus on a six-ion crystal in a trap potential with an

anisotropy parameter α of 0.1152, just below the critical value of 0.1157. The hopping

can be activated easily in the experiment with such a potential, and we seek to see if this is

the case for the simulations.

Before attempting to simulate hopping, we have first performed several simple tests to

validate our simulation software. In particular, we have given (somewhat) small displace-

ments to the ions (∆E = 0.0177E0, or about 20% of the hopping barrier (3 % per ion)

mentioned in Sec. 2.2.3) to activate various collective modes of vibration of the crystal and

compared the frequencies of oscillation to theoretical expectations. Selecting excitation of

a given mode of course requires the correct symmetry for the initial displacements and we

make use of the table of eigenmodes published in Ref. [35]. For example, in Fig. 5.1, the

transverse positions of the ions are shown as a function of time after an initial excitation of

the transverse “bow-tie” mode (see also the “streak-camera” image in Fig. 5.1(b)). As ex-

pected, each of the ions undergoes simple harmonic motion in the transverse direction with

the same oscillation frequency and with a fixed relative amplitude whose value depends on

the eigenmode. The mode frequency obtained from a fit to the oscillations is 0.9406ωy,

consistent with the value of 0.9406ωy obtained from the theory of small oscillations in

Sec. 2.2. We also show in Fig. 5.2 an excitation of the axial bow-tie mode for six ions.



CHAPTER 5. NUMERICAL SIMULATION OF HOPPING 81

The mode frequency obtained from a fit to the oscillations is 0.5881ωy, again matching the

theoretical prediction of 0.5880ωy pretty well.

After the tests in the small oscillation limit, we move on to give the crystal a larger ini-

tial displacement from equilibrium to see if hopping can be induced in the MD simulations.

As we increase the initial displacement, the resulting amplitudes of oscillatory motion in-

crease and eventually the oscillations become highly nonlinear and complex. However,

each ion still moves around its equilibrium position most of the time and hopping is absent

or very rare. At still larger displacements, site-to-site hopping is observed in the simula-

tions. In Fig. 5.3, we show the axial motion of the six-ion crystal when the simulation is

started with a large transverse zigzag displacement, corresponding to an excitation energy

of ∆E = 0.2870E0 above the equilibrium value of 7.9956E0. The trajectories of the ions

are color coded according to the initial site to allow each ion to be followed in time. Sub-

stantial site-to-site hopping occurs in the four interior crystal sites, among which the centre

two sites are most active. Moreover, if we focus on any one ion in this interior region, for

example the one indicated by the red line, we see that it visits all the interior sites over the

course of the simulation. This behaviour can be compared with that of the outer two ions,

which oscillate but never leave their original site through a hopping event.

The general trend of faster hopping near the centre of the crystal is the same as what we

see in the experiment in Chp. 4, even though the hopping rates are much higher overall in

the simulation. For the simulation in Fig. 5.3, each ion has, on average, an excitation energy

of ∼ 104h̄ωy, which is roughly comparable to the values in the experiment (see Sec. 4.4);

however, in the simulation we are adjusting the excitation energy to get significant hopping

within an easily simulated time rather than attempting to make a direct match to the hopping

rates in the experiment. If we reduce the excitation energy, we could presumably obtain a

hopping rate on par with that in the experiment (1-10 s−1 at the centre of the crystal). We

will address the dependence on excitation energy in a later section.

Figure 5.3 shows only the axial motion of the ions during the simulation. In place

of a separate plot of the transverse motion, Fig. 5.4 shows a stroboscopic plot of the 2-D

locations of the ions for different ranges of time in the simulation. Figure 5.4(a) shows

the initial behaviour of the ions during the time range of t = 0−10 µs. The motion of the

ions still bears a strong resemblance to the initial transverse zigzag excitation, but some

of the motion is already being transferred into the axial direction. As mentioned above,
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Figure 5.1: Molecular-dynamics simulation of the transverse bow-tie mode in a six-ion

crystal. A small-amplitude initial displacement with excitation energy ∆E = 0.0177E0 is

used to excited the mode. (a) Transverse positions of the ions as a function of time, showing

the simple harmonic oscillator behaviour. Colors correspond to different ions. Positions

are scaled to length a0 (see text), and time is scaled to the transverse secular trap period

Ty = 2π/ωy. The mode frequency determined from the simulation is 0.9406ωy, consistent

with the value of 0.9406ωy obtained from small-oscillation analysis. (b) Time sampling of

the two-dimensional positions of the ions, showing their trajectories. Lengths are scaled to

a0.
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Figure 5.2: Molecular-dynamics simulation of a small-amplitude excitation of the axial

bow-tie mode in a six-ion crystal. A small initial velocity kick with excitation energy

∆E = 0.0177E0 is used to excite the mode. Colors correspond to different ions. Positions

are scaled to a0 (see text) and time is scaled to the transverse secular trap period Ty = 2π/ωy.

The mode frequency determined from the simulation is 0.5881ωy, consistent with the value

of 0.5880ωy obtained from small-oscillation analysis.
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Figure 5.3: Simulated axial positions of the ions in a strongly excited six-ion crystal un-

dergoing hopping between sites. An initial transverse zigzag displacement with excitation

energy ∆E = 0.2870E0 is used to excite the ion-crystal. The trap asymmetry is α = 0.1152

and the simulation step size is ∆t = Ty/1000. For concreteness, the scaled simulation time

has been converted into real units (∆t = 2.346 ns) by assuming a potential with secular trap

frequencies of ωy/2π = 426.26 kHz and ωz/2π = 144.7 kHz for the transverse and axial

direction, respectively. The trajectories of the ions are color-coded to allow the site-to-site

hopping to be seen.
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the nonlinearity at large amplitudes of oscillation leads to complex behaviour including

coupling between the two axes of motion. In the subsequent Figs. 5.4(b)-(e), we show

stroboscopic plots spanning times ranging from 0–50 µs to 0–1.1 s to illustrate the evolution

of the spatial probability distribution of ions in the trap. After 2 ms (Fig. 5.4(d)), the initial

coherent oscillation has been lost to “random” motion and the distribution is largely stable

(compare to (e), where the sampling range is 0–1.1s).

In regard to the apparent randomness of the motion, we note in passing that Blumel et

al. [18] have considered the motion for two ions in a 3-D harmonic potential and studied

the onset of chaos using Poincare surfaces of section. We have not considered any such

analysis. Our primary concern is that the hopping dynamics of the ion crystal at constant

energy should not be artificially constrained by initial conditions. We use the zigzag trans-

verse displacement as the initial excitation since it is closest to the final distribution in

Fig. 5.4(e) (and to the shape of a thermal distribution), but we have verified that various

initial conditions with the same energy lead to the same final distribution (see below).

The shape of the steady-state distribution in Fig. 5.4(e) is suggestive of the local po-

tential experienced by the ions. The distribution is significantly wider in the transverse

direction at the centre of the crystal, which is what one expects near αcrit. The regions

of highest point-density correspond to the locations of lowest potential energy – the equi-

librium positions for the ions. The empty regions between the clouds of points indicate

the potential barriers that separate the sites. Each of the outer two clouds consists of only

one color, pointing to the fact that no hopping happens there. The interior four sites how-

ever, are mixtures of points with different colors, meaning that as time goes by, one site

is occupied by different ions. Here we also see some “tails” connecting the four inner

clouds. These identify the passages for ions to hop from one site to another. The lower

point-density in the tails indicates the higher potential energy there compared to the cloud

centers, but, when hopping takes place, it is still easier for the ions to use these saddle

potentials than to surmount the very high barriers (blank regions) between the clouds.

To illustrate the details of individual hopping events, Fig. 5.5(a) shows a magnified

view of a small time interval from Fig. 5.3. As can be seen, the hopping events occur over

a very short time scale, and it is clear that the hopping events are pairwise events involving

only two ions (at this energy anyways). To look into how exactly the hopping takes place

in two-dimensional space, one can trace the trajectories of the ions over a very short time
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Figure 5.4: Time-sample of the ion positions in a strongly excited six-ion crystal undergo-

ing hopping. Each of the plots consists of 400 sets of the six ions’ positions evenly sampled

through the time ranges as indicated. Simulation parameters are same as in Fig. 5.3. The

distribution has already reached a steady state at 2 ms (d), as can be seen by comparison to

(e).
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near one of the hopping events. For a hopping event involving the centre two sites, as

indicated in Fig. 5.5(a), the ions’ trajectories are shown in Fig. 5.5(b). Consistent with the

discussion before, the central two ions adopt a circle-like path which helps to keep their

distance from each other and thus is energetically favorable. This is a general feature of the

way hopping happens, and trajectories of the same kind are observed for hopping events at

different times and between different sites.

Figure 5.5: A hopping event in detail. (a) Magnified view of a small time interval in Fig. 5.3

to resolve a single hopping event, indicated by the boxed region. (b) Two-dimensional

trajectory during the hopping event at around 6.803 ms indicated in (a) and involving two

central ions. The trajectory points have a time interval of 7 µs. The direction of the central

ions’ paths is counter-clockwise.
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5.3.2 Hopping characteristics from simulation

Like in the experiment, we are also interested in the statistics of where an ion will go in

a hopping event. Extracting such data from the simulation requires a way to determine

the site at which an ion is located at any time through the simulation. In Fig. 5.5(a), we

see that, for most of the time, the ions are oscillating around the equilibrium positions

that define each site, and the motion of the ions is well enough localized that their axial

positions maintain the same order. Only when hopping happens do the ions change their

positional order. Therefore, an easy way to define which sites the ions are at is simply to

sort their positions: whichever ion has the smallest axial position is defined to be at site 1,

and so on. Using such an algorithm, we extract the statistics of relocation for all hopping

events in a 1-s simulation with the same parameters as in Fig. 5.3, and plot the results in

Fig. 5.6(a). The hopping is observed to be concentrated at the centre of the crystal. Overall

the distribution of hopping outcome is quite similar to the one we get from experiment

– compare Fig. 4.9(b) – even though the hopping rate in the simulation has been chosen

to be much higher. This seems to suggest that the simple simulation already captures the

essence of the hopping behaviour in the experiment. It should be noted that to obtain

higher statistics for Fig. 5.6(a), we are showing a combination of data from all four inner

ions. Since these ions all move substantially between the inner four sites in the simulation

(Fig. 5.3), we assume that the four ions are equivalent; that is, that the simulation time is

long enough that the initial condition of an ion is a negligible effect. In fact, we have looked

at the statistics for individual ions, and they all have distributions of the same characteristic

shape.

Also, we notice in Fig. 5.6(a) that all the hopping events are between nearest neigh-

bours, while, in the experiment, we observe hopping events that involve non-neighbouring

sites. In fact, the finite camera frame rate in our experiment necessarily implies that a

certain fraction of sequential nearest-neighbour hopping events in rapid succession will

be regarded as one single non-nearest-neighbour hopping event. In Fig. 5.6(b), we show

the same data in (a) but filtered with the camera exposure and readout mechanism, where

roughly the same ratio of camera frame-rate to hopping rate as in the experiment is intro-

duced. In this case, the outcome does show some non-nearest-neighbour hopping events.

For example, 50 events are registered in the 3→ 5 hopping channel. However, this only
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Figure 5.6: (a) Distribution of hopping outcome as a function of initial ion position in a

crystal of six ions from MD simulation. The simulation parameters are the same as in

Fig. 5.3. The total duration of the simulation is 1.09 s. (b) The same data in (a) but filtered

with the camera mechanism, where the exposure time is set to 4.22× 10−5 s and readout

time set to 2.96×10−5 s.
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corresponds to 1.3% of the total number of hopping events starting from site 3. On com-

paring with the experimental data of Fig. 4.9(b), it is apparent that the mechanism of the

camera does not fully explain the behaviour observed in the experiment.

For the same 1-s simulation with parameters as in Fig. 5.3, we also assess the statistics

of the dwell time at each site (that is, how long an ion stays in a certain site before hopping

to a different one) in order to compare with the experiment data in Chp. 4. In Fig. 5.7, we

plot the distributions of the dwell time for each of the inner four sites in the six-ion crys-

tal. As before, we use the combined statistics from the trajectories of the four inner ions.

The outer two sites are not shown due to lack of hopping there. A decreasing probability

distribution towards longer dwell times is observed for each site. The distributions for the

sites are also symmetric about the centre of the crystal, with the central two sites limited

to much shorter dwell times. Exponential fits match the distributions reasonably well and

give a decay constant of {1.94(6), 0.145(3), 0.144(3), 1.99(8)} ms for site 2 through site 5

respectively. For an exponential distribution, the decay constant corresponds to the average

dwell time. The average dwell times for each site, as calculated directly from the raw data,

are {1.937, 0.1741, 0.1734, 1.848} ms, matching the decay constants from the fits to 20%

or better. It is interesting that the largest discrepancy occurs for the two interior sites with

the largest hopping statistics and that the direction of the discrepancy is the same as that

observed in the experiment, where the average dwell time typically exceeded the fit decay

constant by a factor of 1.2–2 (see Sec. 4.3). Furthermore, the trend in the residuals for the

interior two sites in Fig. 5.7 look remarkably similar to those observed for exponential fits

to the experimental data (Fig. 4.6). How meaningful this is or not is not clear at this time.

Overall, we can still say that the dwell-time distributions in both the simulation and the

experiment are qualitatively consistent with exponential distributions with shorter average

dwell times at the central sites.

Following Sec. 4.3, we continue to use the inverse of the average dwell time on a certain

site to characterize the hopping rate there. In Fig. 5.8, we plot hopping rate as a function

of crystal site for the six-ion simulation of Fig. 5.3. As already noted above, the hopping

rate is sharply peaked at the centre of the crystal, consistent with what we have observed

in the experiment. One difference in the simulation compared to the experiment is that the

simulation shows a sharper peak – compare the right-hand column of Fig. 4.10 – and the

peak gets even sharper for simulations where the hopping rate at the centre of the crystal
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Figure 5.7: Distributions of dwell times for an ion at the central four sites of a six-ion

crystal, as obtained from molecular dynamics simulation. The simulation parameters are

the same as in Fig. 5.3 and the duration of the simulation is 1.09 s. Distributions for the

outer two sites are not shown due to lack of statistics. Bin sizes are adjusted according to

the amount of statistics to properly show the distributions. Exponential fits (shown in red)

give time constants of {1.94(6), 0.145(3), 0.144(3), 1.99(8)} ms for site 2 through site 5.
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approaches that in the experiment. A second difference is that the distribution of hopping

rate in the simulation is symmetric about the centre of the crystal, which is expected since

radiation pressure effects are not included. Again, it is worth noting that the hopping rate in

the simulation has been chosen, for computational convenience, to be much faster than the

experiment (by a factor of ∼ 103), but our sole purpose here is to demonstrate qualitative

features.

Figure 5.8: (a) Site-dependent hopping rate in a six-ion crystal, as obtained from molecular-

dynamics simulation. Lines join the data-points to accentuate the spatial dependence. The

four datasets shown in (a) correspond to different initial conditions used for excitation to

demonstrate insensitivity of the simulation to initial conditions. The initial conditions are

indicated in the legend and shown in (b)–(e) in the same vertical order as the legend. All

excitations have the same excitation energy ∆E = 0.2870E0. Other simulation parameters

for the four datasets are the same as in Fig. 5.3. Total simulation time for all datasets is

1.09 s. The zigzag displacement in (b) is the same initial condition as used in Fig. 5.3.

As we have alluded to above, we expect the hopping characteristics presented so far

to depend only on the excitation energy, and not the details of the initial condition for the

MD simulation, for sufficiently long simulation times. The distribution of hopping rate

in Fig. 5.8 provides a convenient quantitative test for sensitivity to initial conditions. Fig-
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ure 5.8(b) shows the initial condition for the simulation of Fig. 5.3 and all the hopping

results that we have presented so far. The displacement is applied to each ion to give a

large excitation of the transverse zigzag mode. Separate simulations have been performed

with different initial excitations as shown in Figs. 5.8(c) to (e) and the corresponding dis-

tributions of hopping rate are compared in Fig. 5.8(a). Figure 5.8(c) shows an excitation of

the transverse zigzag mode but using an initial velocity kick, which is equivalent to excit-

ing the mode at a different phase. Figure 5.8(d) and (e) show excitations of the transverse

bowtie mode, and the axial zigzag mode, also using velocity kicks. Of course, the excita-

tion energy for all these different initial conditions is chosen to be the same and in all cases

no COM mode is excited. As can be seen in Fig. 5.8(a), the different initial conditions

lead to nearly identical spatial distributions of hopping rate (with at most an 8% difference

for sites 2 and 5, and a 0.5% difference for site 3 and 4). This makes sense because, at

large amplitude of excitation, the different modes are coupled and energy is able to transfer

between them. Based on the time evolution of the spatial distribution shown in Fig. 5.4, we

expect any transient effects to be gone fairly quickly (in ∼ 2 ms) compared to the typical

1-s duration of the simulations considered here.

5.3.3 Hopping as a function of control parameters

In the chapter so far, we have looked at the various characteristics of hopping in the simu-

lation in analogy with what we have considered in the experiment. We have also seen that

simulations with different initial conditions lead to the same site-dependent hopping rate as

long as the same initial energy is used (and for the relatively high excitation energy used).

Here, we move on to investigate how the hopping rate differs when the excitation energy

is changed. The analogy in the experiment would be a study of hopping rate as a function

of the laser-cooling parameters. The computation time required to repeat the simulation

over a range of excitation energies would be substantial with our current simulation setup

on a desktop computer. We leave a complete quantitative study for the future; however, we

qualitatively compare a single simulation at a higher excitation energy of ∆E = 0.3796E0

to the ones that we have already shown at ∆E = 0.2870E0. This corresponds to an increase

in the excitation energy by a factor of 1.32. The spatial distributions of hopping rate for

the two excitation energies are compared in Fig. 5.9. Figure 5.9(a) is a direct comparison
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of the rates at each site. We see that the higher excitation energy leads to a higher hopping

rate for all sites, as expected. Quantitatively, the rate at the centre sites is 2.7 times higher,

somewhat but not substantially higher than the factor of 1.32 increase in the excitation en-

ergy. The sensitivity of the hopping rate to the excitation energy is perhaps not as strong as

we might have expected. To explore this further, we have also performed a simulation at an

excitation energy, ∆E = 0.1435E0, which is a factor of two lower than the one that we have

discussed in detail. We do not show the results here because of the low statistics in a 1-s

simulation, but the hopping is indeed dramatically reduced to a rate of only ∼ 1− 10 s−1

for the central two ions. Ultimately, we need to consider more values of the excitation en-

ergy to see if the nonlinear response to the excitation energy can correctly account for the

hopping rates observed in the experiment. Having said all this, what we see is consistent

with the trend in the experiment of increasing hopping rate at higher excitation energy.

In Fig. 5.9(b), we normalize the spatial distributions of hopping rate for the two exci-

tation energies to their respective peak values. This permits the widths of the distributions

to be compared directly by eye, and it can be seen that the higher-energy case has a wider

peak. Although not shown here, at even higher energies, the two ions on the outer edges of

the crystal (sites 1 and 6) become involved in the hopping over the same simulation time,

and simulations with quite low energy lead to hopping only between the centre two sites

for the same simulation time. Therefore, the width of the peak does increase with higher

energies, which is consistent with our expectation that there is a higher energy barrier to

hopping at the outer sites of the crystal due to the larger ion spacing there. It is worth

noting, however, that when the hopping rate in the simulation is tuned down to match that

in the experiment, the simulation gives a narrower distribution of hopping rate compared

to that in the experiment.

To conclude this section, we mention briefly the effect of the confining potential on

the hopping. We have performed an MD simulation for six ions at α = 0.0695 and with

the same excitation energy as in Fig. 5.3. This value of α is far from αcrit for the zigzag

transition and close to the lowest value used in the experiment data of Fig. 4.12. The

simulation shows no hopping over the course of 1 s, consistent with the expectation that

the hopping is enhanced as α approaches αcrit.
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Figure 5.9: (a) Spatial distribution of hopping rate from simulations of a six-ion crystal

with different initial excitation energies ∆E, as indicated in the legend. Other simulation

parameters are the same as in Fig. 5.3. Total simulation time for all datasets is 1.09 s.

(b) Spatial distribution of hopping rate, normalized to the peak value, for the two datasets

shown in (a).

5.4 Simulation accuracy

We briefly discuss here the effect of time step on the simulations and accuracy of the solu-

tions. A step size, dt0, of 10−3Ty or 2.346 ns has been used for all of the simulation results

presented above. When the step size is decreased by a factor of 2 in the primary simulations

used to study hopping (with ∆E = 0.2870E0), the solution does not reproduce the trajec-

tories of the ions beyond a fairly short length of time (∼ 100 µs, or 40Ty), much less than

the total simulation time of 1 s. A comparison between the two simulations with different

step sizes shows that the difference in trajectories after the first time step (corresponding to

the local error) is small (10−10 in scaled units) but diverges exponentially and results in a

complete loss of global accuracy after a time, which we refer to as the ’divergence time’, of

about 100 µs. One can push the local error to lower values and the divergence time in the

trajectories to somewhat later times by using a smaller dt; however, since the discrepancy

in the trajectories grows exponentially, one cannot hope in practical terms to achieve an

accurate trajectory for the long times necessary to assess hopping [70, 71].
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In fact, for the initial condition shown in Fig. 5.8(c), a change of the step size from

10−1Ty to 10−3Ty suppresses the local error in the ion trajectories from 10−3 to 10−10, and

pushes the divergence time from 20 µs to 62 µs, corresponding to a factor of 3 improve-

ment. Decreasing the step size by two decades further to dt = 10−5Ty yields a local error

of 9×10−16, already approaching the machine precision of 2.2×10−16; however, this only

improves the divergence time of the trajectories to 97 µs, about a factor of 1.6 larger than for

dt = 10−3Ty. Furthermore, two simulations differing in their initial conditions by the ma-

chine precision but with the same step size around the value 10−3Ty are observed to diverge

in their trajectories with unity global error reached at 140 µs. Therefore, we are unable in

practical terms to achieve a divergence time much longer than 100 µs for simulations at the

excitation energy ∆E = 0.2870E0.

The exponential instability in particle trajectories is a well known problem in molecular

dynamics simulations [70, 71]. The non-linearity of the system itself prevents one from

being able to follow a trajectory accurately over long times. This is a fundamental problem

to any algorithm used to integrate the trajectory. However, many evidences suggest that one

may still trust the statistical properties (such as the hopping rate in our case) even though

the particle trajectories themselves are not reliable over long times [70, 71]. A comparison

between simulations with step size of 10−3Ty and half that value, again with the initial

conditions in Fig. 5.8(c), already show hopping rates that match sufficiently closely for our

purposes. The fractional discrepancies for the rates in the four interior sites are {0.70%,

0.42% -0.02%, -4.1%}, within the 1-σ uncertainty of {7.9%, 2.3%, 2.3%, 7.9%} expected

from the amount of statistics available and assuming no correlations. It is worth noting as

well that the total energy of the system, which affects the hopping rate, remains stable for

the duration of the simulations, as noted in Sec. 5.2.

Since the divergence time and the average dwell time at the centre of the crystal are

comparable in size for the simulations shown above at ∆E = 0.2870E0, we have performed

one additional test at a lower excitation energy to check for any correlation between the

divergence time and hopping rates. At an excitation energy of ∆E = 0.2296E0 where the

central hopping rate is about 1800 Hz, roughly a factor of 3 lower than the central hopping

rate at ∆E = 0.2870E0, the divergence time is only 1.6 times longer, suggesting that the

divergence time and hopping rate are not correlated. In other words, the fact that the average

dwell time at the centre of the crystal and the divergence time are of the same order for the
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primary simulations presented in this chapter seems to be only a coincidence.

In conclusion, we have argued that long term accuracy of the ion trajectories is unattain-

able for practical purposes in the hopping simulations, and that the step size, dt0, of 10−3Ty

is already sufficient to extract physically sensible results.

5.5 Discussion

From our simple, constant-energy simulations of a six-ion crystal, we find that hopping is

activated with a large enough initial excitation and is enhanced near the critical α. We have

assessed the characteristics of the hopping in the simulation and find several qualitative

similarities to the experimental data of Chp. 4: the distribution of dwell times at each site

follows a roughly exponential shape; the spatial distribution of hopping outcome shows

a similar shape as in the experiment; and, finally, the spatial distribution of hopping rate

shows a peak at the centre of the crystal. These similarities between the simple simulation

and experiment suggest that technical issues including micro-motion, laser cooling and

heating, and laser profile are not the primary determining factors in the hopping behaviour

in the experiment, although such issues might contribute to the quantitative dependence of

hopping on the laser and trap parameters.

For future work, with the current version of the simulation, tests with a range of initial

excitation energy and trap anisotropies would be helpful. Beyond that, the rf trap could

be included in the simulation to see how micro-motion affects the hopping. One should

also bring in the laser cooling and heating mechanisms, including effects of the laser direc-

tion, laser profile and non-fluorescing impurity, in order to make a final comparison to the

experiment.



Chapter 6

Conclusion

In this thesis, we have studied the hopping mobility in ion crystals in linear rf Paul traps.

Our studies extend earlier ones with two ions to look at crystals of up to seven ions, the

structure of which adds new features to the behaviour.

Our experimental technique involves tracking a distinguishable 172Yb+ impurity in a

crystal of 171Yb+ ions. We have been able to resolve the hopping behaviour of the impurity

into individual events, which allows us to extract a range of characteristics including the

hopping rate at each crystal site, and the hopping destination. Using these techniques to

assess the hopping, we have demonstrated that the hopping rate can be controlled by tun-

ing the power and detuning of the Doppler-cooling laser applied to the 171Yb+ ions. The

laser parameters affect the average kinetic energy of the 171Yb+ ions and in turn that of the
172Yb+ impurity through sympathetic cooling. At kinetic energies approaching a signifi-

cant fraction of the Coulomb interaction energy, the hopping is observed to be activated.

Analysis of the hopping statistics shows that the hopping rate is highest at the centre of

the crystal. Hopping is also found to be enhanced when the anisotropy of the trap is tuned

closed to the critical value for the zigzag structural phase transition. These two observations

are consistent with an intrinsic cause related to the crystal structure and dynamics. When

the transition is approached, the transverse zigzag mode tends to zero frequency and can

have a large, thermally activated amplitude, leading to large transverse excursions and non-

linear dynamics at the centre of the ion crystal. Furthermore, the barrier to hopping is

lowest at the centre of crystal due to the higher linear density of ions there.

Several technical complications, however, including micro-motion arising from the rf

98
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potential, the non-uniform profile of the laser beam, and sympathetic cooling of the non-

fluorescing impurity, may influence the outcome of the experiment. Although these factors

may modify the quantitative dependence of the hopping on the laser and trap parameters,

we argue that they are not the primary cause for the spatial distribution of hopping or the

enhancement of the hopping near the zigzag transition. We lend evidence to this argument

by performing a preliminary series of molecular dynamics simulations, in which we give an

initial energy to an ion crystal in a harmonic potential and let the system evolve according

to Newtonian dynamics. These simple simulations at constant energy remove many of the

technical complications that are not easy to avoid in the experiment, but reproduce impor-

tant qualitative features of the observed hopping behaviour: the shape of the distributions

of dwell time at each site; the concentration of hopping at the centre of the crystal; and the

enhancement of hopping near the zigzag transition.

In future experiments, it would be interesting to extend our studies to crystals with

more ions, in particular to study how the on-site hopping rate depends on the size of the

crystal, and to assess if the hopping persists as a phenomenon primarily between nearby

sites. It would also be interesting to study the effect of a larger-mass impurity that can

induce a substantial distortion in the centre of the crystal or to investigate the case with

more than one impurity, where the average energy relies more on the sympathetic cooling.

Using the current setup, it seems natural to proceed to study the thermal activation of the

zigzag switching, which would be helpful in advance of related proposed experiments in

the quantum regime [29, 27]. The thermal activation of the zigzag switching may also

provide a means to investigate recent predictions for the temperature dependence of the

structural phase transition [26].

Our molecular dynamics simulations can be improved by introducing the rf potentials

to study the effect of the micro-motion of the trapped ions, and by introducing the inter-

action with the Doppler-cooling laser to investigate the role of the laser profile in hopping

behaviour and the effect of sympathetic cooling on the impurity. To simulate hopping be-

haviour at a range of laser parameters and trap anisotropies, we envision the use of the

parallel computer resources of WestGrid. The ultimate goal of these simulations is to make

a direct comparison to our experiment and to provide insight for future related studies.
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