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Abstract

Let vi be a reflex vertex (internal angle greater than π) of a polygon P with n vertices.

Extend the clockwise edge of vi as a ray until it hits P , and then walk clockwise from vi

to the hitpoint. The chain we walked defines the clockwise component of vi (it also has a

counterclockwise component).

In O(n) time we find some component of P that does not entirely contain another

component, without using a general O(n) time triangulation algorithm. This time bound

has already been achieved using such a triangulation algorithm, but we show it is possible

without it.

Our central algorithm simultaneously walks a component in the clockwise and coun-

terclockwise directions. In these walks, it shoots rays and finds acceptable hitpoints that

are not necessarily correct. For a particular hitpoint, the algorithm either validates it,

disqualifies it and finds another, or shoots a new ray and finds a finds a new hitpoint.

Keywords: Polygon, Visibility, Computational Geometry, Linear-time.
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Chapter 1

Introduction

In this thesis, we present an algorithm that finds any nonredundant component of a polygon

with n vertices in O(n) time. Let vi be a reflex vertex (internal angle greater than π) of a

polygon P with n vertices. Extend the edge immediately clockwise of vi as a ray until it

hits P , and then walk clockwise from vi to the hitpoint. The chain we walked defines the

clockwise component of vi (it also has a counterclockwise component).

A component is nonredundant if it does not entirely contain another component. A

chord is a segment that connects two boundary points of a polygon and lies entirely inside

of the polygon.

This problem is already solved in the paper LR-visibility in Polygons [11] by Das, Hef-

fernan, and Narasimhan. However, their algorithm uses Chazelle’s complex linear-time

triangulation algorithm [7] from 1991. These authors use [7] to build shortest path trees

with the algorithm of Guibas, Hershberger, Leven, Sharir, and Tarjan [17].

Shortest path trees facilitate a powerful tool known as an order query which makes

finding a single nonredundant component straight-forward. These authors use order queries

for the problem of LR-visibility and finding weakly visible chords.

Their algorithm finds all of the nonredundant components of a polygon in O(kn) time,

where k is the number of disjoint nonredundant components. Since polygons with weakly

visible chords, or that are LR-visible, have at most two disjoint nonredundant components,

their algorithm runs in linear-time.

In addition to Chazelle’s deterministic algorithm, there are also other very fast random-

ized triangulation algorithms. Also in 1991, Seidel published an algorithm with an expected

running time of O(nlog∗n). The function log∗n is so slow growing that this algorithm is

1



CHAPTER 1. INTRODUCTION 2

essentially linear. Then in 2000, Amato, Goodrich, and Ramos introduced a O(n) expected

running time algorithm for general polygons [1].

Despite these very fast generalb triangulation algorithms, complex and not complex, the

goal of this thesis is to find any nonredundant component without the help of a general

triangulation algorithm. To do so, we employ a novel technique.

1.1 Algorithm overview

We start with any component, and push the chord that connects both ends of the component

further and further into this component. As we push this chord, what was a chord becomes

a ”pseudochord”, and what was a component becomes a ”candidate component”. That is,

this pseudochord may cross the polygon.

However, the crossings maintain an invariant. Particularly this invariant controls the

crossings of the part of the polygon that is behind us as we walk into the original component,

not in front of us. If the crossings of the chain behind us, with respect to the pseudochord,

satisfy two natural conditions, a balance and an ordering, then this chain is said to be

”non-interfering”.

To handle the winding of P around and through this pseudochord, inspiration was

gathered from the paper A linear-time algorithm to remove winding of a simple polygon by

Bhattacharya, Ghosh, and Shermer [4].

We use the term pseudochord because the interior of P is locally in the neighborhood

of the pseudochord’s two endpoints. However, P might cross the pseudochord, so it is not

necessarily a chord. Eventually, we will not be able to push it forward any more, and the

chain in front of it will again become a component, and the pseudochord will again become

a chord.

This algorithm consists of a simultaneous clockwise and counterclockwise walk from both

ends of the pseudochord into the current candidate component.

Both walks are looking for either a special reflex vertex or a crossing between the pseu-

dochord and the polygon. If a crossing is found, a function is called that advances one

end of the pseudochord to a closer crossing, though not necessarily the closest. If a special

reflex vertex is found, other functions are called that will either advance one or both ends

of the pseudochord in a similar fashion. Note that the pseudochord does not sweep, over

the polygon. More accurately, it jumps.
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The component that is finally produced is not necessarily nonredundant, but it is ”reflex-

minima-free”. This class of components is significant only because it is very easily trian-

gulated in linear-time (algorithm detailed in Chapter 3). Chapter 2, simply details and

proves an algorithm that takes as input any component and produces a reflex-minima-free

subcomponent, if one exists.

Once we have a triangulated component, we have successfully avoided using a general

triangulation algorithm. Then, we are free to employ techniques similar to [11] to reduce

the component further. We run a simplified version of their algorithm, which is detailed in

Chapter 3.

The result of applying this algorithm is a component that does not contain another

clockwise component. We call this a ”cw-nonredundant” component. Note that a cw-

nonredundant component can be clockwise or counterclockwise.

Because the component is cw-nonredundant, does not mean it is reflex-minima-free.

Thus, we again call our main algorithm on it to again produce a reflex-minima-free subcom-

ponent, if one exists. Then again, we triangulate it as before.

Finally, we call the symmetric version of the same simplified version of [11] to produce

a subcomponent, if one exists, that contains no counterclockwise components. Hence a

”ccw-nonredundant” component.

Alas, the component is both cw-nonredundant and ccw-nonredundant and thus cannot

contain any clockwise or counterclockwise components. Therefore it is nonredundant.

In Chapter 2, our most difficult task, by far, is to prove that the non-interfering invariant

is maintained each time the pseudochord moves forward. We also must show that eventually

the pseudochord becomes a chord that connects the endpoints of a reflex-minima-free com-

ponent. Then we show that this all runs in linear-time. In Chapter 3 we show the running

time and correctness of the triangulation algorithm, and the simplified version of [11].

1.2 General definitions

(See Figure 1.1) Given an ordered sequence of points v0, v1, . . . , vn−1, where vi ∈ R2, the

open chain on these points is the piecewise linear curve consisting of the ordered sequence

of line segments v0v1, v1v2, . . . , vn−2vn−1. The points vi are called vertices and the line

segments vivi+1 are called edges. We consider edges and line segments to be closed, so the

edge or line segment pq contains p and q.
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Figure 1.1: The simple polygon P is in general position and has 12 vertices, labeled
v0, v1, . . . , v11. The point p is a point, and v0 is a point and a vertex. The polygon P
is a Jordan Curve, and its interior is shaded and the exterior is not. Note that v3 is not in
the interior of P . The segment v3v4 is an edge, and the closed chain P [v3, v8] includes v3
and v4, but not v2. The vertex v3 is convex and v8 is a reflex vertex.

(See Figure 1.1) A closed chain v0, v1, . . . , vn−1 forms a circular ordering and is composed

of the open chain v0, v1, . . . , vn−1 and the edge vn−1v0. This edge is adjacent to both

vn−2vn−1 and v0v1. For a closed chain, we will refer to vertices modulo n, so vn ≡ v0; this

enables us to refer to any edge in a closed chain with vivi+1. All chains will be assumed to

be closed unless otherwise stated.

(See Figure 1.1) An open or closed chain is considered simple if non-adjacent edges have

an empty intersection and no three consecutive vertices are collinear. A closed simple chain

is a Jordan Curve and therefore divides the plane into three regions: the curve itself, an

unbounded region called the exterior, and a bounded region called the interior.

(See Figure 1.1) A polygon is a closed simple chain with n vertices. The vertices of P will

be numbered in increasing order in the counterclockwise direction, so the counterclockwise

neighbor of vi is vi+1. Given an open chain or a polygon, if no three vertices are collinear

and no four vertices can define two parallel lines, then it is said to be in general position.

We will assume that polygons are in general position unless otherwise noted.

(See Figure 1.1) Given two points or vertices, p, q ∈ P , the notation P [p, q] will re-

fer to the open chain p, vi, vi+1, . . . , vk, q, where the vertex vi is the vertex immediately

counterclockwise of p and vk is the vertex immediately clockwise of q.

(See Figure 1.1) Each vertex vi ∈ P has an interior angle and an exterior angle, both

defined by the two edges that vi is an endpoint of. If the interior angle of vi is less than π,

then it is a convex vertex, and if the interior angle is greater than π, it is a reflex vertex.

Interior angles of π are not present in simple polygons.

(See Figure 1.2) A crossing of a line l (or ray, or segment) is a point p ∈ P where in any
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Figure 1.2: The segment vpp has two crossings with P , the points a and b. The points vp
and p are not crossings because their neighborhoods only contain part of vpp that is in the
interior of P , not the exterior as well. The segments pa and bvp are chords, and ab is not.

Figure 1.3: The ray from vp through v′p is the clockwise ray of vp, denoted −→cw(vp). The
point v′p is the hit point of this ray. Similarly, the counterclockwise hitpoint of −−→ccw(vj) is
v′′j . The clockwise component of vp, denoted cw(vp), is dotted and is the chain P [v′p, vp].
The counterclockwise component, ccw(vp), is the chain P [vp, v

′′
p ]. The component ccw(vq) is

nonredundant, while cw(vp) and ccw(vp) are redundant because they both contain ccw(vq).

neighborhood of p, there is part of l that is in the interior of P and another part of l that

in the exterior of P . If P does not cross pq, then this segment is a chord. The points p and

q are also said to be visible or covisible.

(See Figure 1.3) The ray from p to q, denoted −→pq, includes the segment pq and all points

r where q is in the segment pr. Each reflex vertex vi ∈ P defines two rays: the clockwise

ray −−−→vi−1vi, denoted −→cw(vi), and the counterclockwise ray −−−→vi+1vi, denoted −−→ccw(vi). Of the

crossings between −→cw(vi) and P , the closest to vi will be denoted as v′i. Similarly, the point

v′′i is the crossing between −−→ccw(vi) and P that is closest to vi.

(See Figure 1.3) Each reflex vertex vi ∈ P defines two components. The cw-component

of vi, denoted cw(vi), is the chain P [v′i, vi] and the ccw-component of vi, denoted ccw(vi),

is the chain P [vi, v
′′
i ]. The connector of cw(vi) is the segment v′ivi, and cw(vi) together with

its connector, forms a polygon. The symmetric holds for ccw(vi) and its connector, viv
′′
i .
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Note that because v′i and v′′i become vertices in cw(vi) and ccw(vi) respectively, these chains

contain three collinear vertices, and are therefore not in general position. We will simply

excuse this.

(See Figure 1.3) A component that does not entirely contain another component is

considered to be nonredundant. A component that entirely contains another component is

redundant. Nonredundant components are the central focus of this thesis.

All components will be considered to be in standard position. The connector will be

horizontal. If the component is clockwise, for instance cw(vi), then vi will be to the right

of v′i, and the counterclockwise neighbor of v′i will be below the connector. Similarly, if

the component is counterclockwise, ccw(vj), then vj will be left of v′j and the clockwise

neighbor of v′j will be below the connector. Standard position enables us to use terms like

above, below, left and right.

Consider a polygon in standard position about some component. A vertex vi ∈ P is a

reflex minima vertex if it is reflex and both of its neighbors are above it, or it is a convex

maxima vertex if it is convex and both of its neighbors are below it. A component is

reflex-minima-free if it contains no reflex minima vertices.

1.3 Literature review

Components have been well studied in the literature. They form the foundation of many

intuitive problems involving both motion planning inside of a polygonal environment, like

the problem of finding watchman routes, and motion planning along the boundary of a

polygon, like LR-visibility and the two-guard problem. In the following subsections we will

attempt to demonstrate the usefulness and practicality of components and nonredundant

components.

Let us first define weak visibility. Two sets are weakly covisible if each element of each

set can see some element of the other.

1.3.1 Art gallery problem

Famously proposed by Klee in 1973, it asks how many stationary guards are necessary, so

that together they can see every point in an art gallery. This problem is extremely natural

and practical, particularly if guards are seen as sensors, or cell phone towers where there

are mountains outside of the polygon to block the signal, or even Exxon gas stations.
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Zhong Zhang, in his PhD thesis [34], points out that this problem has been studied so

extensively that O’Rourke wrote a book about it [23]. Shermer also wrote a survey on the

subject [27].

Besides being one of the seminal problems of polygonal visibility, of note is that there

must be a guard stationed in each non-redundant component. Note that nonredundant

components can overlap, so one guard may guard multiple nonredundant components.

As a sidebar, when formulated as a decision problem, Lee and Lin in [21] show that it

is NP-hard. Chvátal in [9] and Fisk in [14] show that the upper bound of guards is bn/3c.
(In his elegant proof, Fisk triangulated P , three-colored the triangulation tree, picked one

of the three colors arbitrarily, and then placed one guard in each triangle of that color.)

1.3.2 Watchman routes

A Watchman Route is the analog of the Art Gallery Problem, but as opposed to many

stationary watchmen, there is one mobile watchman. He starts at a fixed point, and ends

at this same point. A Watchman Route in a polygon P is a closed chain in P such that

every point of P is visible from some point in the chain. In other words, the chain and P

are weakly covisible. Note that this approach does not protect against a mobile intruder.

Of note is that for the same reason that a guard must be stationed in each nonredun-

dant component of an art gallery, a mobile watchman must peek into each nonredundant

component of the gallery he is patrolling as well.

This problem was introduced by Chin and Ntafos in [24] in 1986. Since then, there have

been many papers on this subject such as [12, 22], and many broken papers as well. For

instance, [18] pointed out flaws in [25] and [30] but then [18] was later also broken.

Although optimal Watchman Routes can be found in polynomial time, some variations

deal with NP-completeness and optimization, unlike this thesis. We raise this problem,

along with the art gallery problem, only because of their intuitive nature, and to show how

naturally they are expressed in terms of nonredundant components.

1.3.3 LR-visibility

In an appendix to this thesis, we will provide a slightly simplified rewrite of LR-visibility in

Polygons by Das, Heffernan, and Narasimhan [11]. Note that this paper is also detailed in

Ghosh’s book Visibility Algorithms in the Plane [16].
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Two points s, t ∈ P , partition P into two subchains. Let these chains be called L and

R. The polygon P is LR-visible about s and t if L and R are weakliy covisible.

In linear-time, the algorithm returns all pairs s and t, that P is LR-Visible with respect

to. Note that it uses Chazelle’s triangulation algorithm [7] as a preprocessing step.

In this paper the authors show that a polygon is LR-visible with respect to s and t if

and only if each nonredundant component contains both s and t. Thus, if there are three

disjoint nonredundant components, the polygon cannot be LR-visible.

The authors give an algoirthm that uses a kind of order query based on a shortest path

tree generated by [17] and [7]. It finds all of the nonredundant components in P in O(kn)

time, where k is the number of disjoint nonredundant components. Since they are dealing

with LR-visibility, they stop if k reaches 3, thus their algorithm runs in linear-time.

Therefore, their algorithm either finds all of the components of a polygon that has at

least an LR-visible pair, or some of the components of a polygon that is not LR-visible.

Note that this problem was solved essentially by finding nonredundant components. (See

future work chapter.)

1.3.4 Weakly visibile edges and chords

In 1981, Avis and Toussaint gave a linear-time algorithm to determine if a polygon is

weakly visible from an edge [2]. Note that a component is nonredudnant if and only if it is

weakly visible from its connector. Sack and Suri later gave an algorithm that in linear-time

computes all weakly visible edges of a polygon [26].

A natural extension of this problem is to study weakly visible chords. A chord is weakly

visible, if it and P are weakly covisible.

Das, Heffernan, and Narasimhan in [10], find all weakly visible chords in linear-time, by

calling their LR-visibility algorithm [11] as a subroutine. Thus, they are also using Chazelle’s

triangulation algortihm [7] to enable [17] to obtain the shortest path tree in linear-time. This

paper leans heavily on their LR-visibility algorithm that finds nonredundant components.

Bhattacharya and Mukhopadhyay [5] find a single weakly visible chord, and all of the

nonredundant components it intersects without using [7] or [17]. They also point out that

polygons that have a weakly visible chord, are triangulatable in linear-time without a general

triangulation algorithm.

Note that the problems of LR-visibility and finding weakly visible chords are related.

To quote [10], ”two points x and y of P are the endpoints of a weakly-visible chord of P if
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and only if xy is a chord of P and P is LR-visible with respect to x and y.” However, that

is not to say that if P is LR-visible with respect to x and y, that xy is a chord.

1.3.5 Two-guard walks and room searches

In the Two-Guard problem, two guards start at the point s ∈ P and walk in oppite directions

along P while remaining covisible, until they both reach t ∈ P . The solution to this problem

is a schedule for both guards.

Some variations have one guard starting at t and walking to s, while the other starts at

s and walks to t. Others allow one guard to backtrack while the other works through an

obstacle. Some focus on optimization.

In this context, components are obstacles that the guards, if possible, must navigate.

Also note that If P is not LR-visibile with respect to s and t, then no schedule, regardless

of the variation, can succeed. This problem is active, with Tan, Jiang, Zhang, Zhou, Ntafos

publishing papers from 2006 to 2010: [32, 33, 31, 28, 35].

The Two-Guard Room Search problem is similar. Both guards start walking in different

directions from one origin point on the polygon, called the door. Again they walk in opposite

directions, but this time their objective is to let the chord between them sweep the entire

polygon in an effort to catch an intruder hiding in the interior.

Again, components in this context are obstacles for the two searchers and hiding places

for the intruder. This problem is also active with Kameda, Zhang, Tan, Bahun, Lubiw,

Bhattacharya and Shi publishing papers from 2006 to 2010: [20, 29, 3, 6].

1.4 Abstract data type for algorithms

We create an Abstract Data Type (ADT) to store a chain or a polygon. This ADT is

essentially an ”object” in the parlance of modern programming languages. We will use this

ADT in all of our algorithms.

We will store P permanently in the instance V and we will also make a copy, W, of V that

we can edit without harming the original. This ADT supports the following operations,

which we define for some instance Z:

• Z.cwNeigh(x): returns the clockwise neighbor of x;

• Z.ccwNeigh(x): returns the counterclockwise neighbor of x;
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• Z.cwEdge(x): returns the clockwise edge of x, which is the edge x,Z.cwNeigh(x);

• Z.ccwEdge(x): returns the counterclockwise edge of x, which is the edge between x and

Z.ccwNeigh(x);

• Z.delete(x,y): deletes the chain P [x, y] from Z and possibly updates Z.ccwEnd and/or

Z.cwEnd; and

• Z.ccwEnd: not defined if Z stores a polygon, otherwise return the clockwise endpoint of

Z;

• Z.cwEnd: not defined if Z stores a polygon, otherwise return the counterclockwise end-

point of Z;

• Z.connector: not defined if Z stores a polygon, otherwise return the segment

Z.ccwEnd,Z.cwEnd;

• Z.setInitialCwComponent(ccwEnd, cwEnd): defined only if Z stores a polygon, it initializes

and then returns a copy of the subset of Z that is a cw-component of a polygon.

This ADT will be named Chain and be implemented as a list. Thus, Z is an instance of

the ADT Chain.



Chapter 2

Algorithm to find

reflex-minima-free component

We will divide the problem of finding a single nonredundant component into subproblems.

Let the given polygon P have n vertices. The first subproblem, and the subject of this

chapter, is to find a reflex-minima-free component of P in O(n) time.

The function getReflexMinFreeComp, which is Algorithm 1, takes V as input where V stores

P , and finds a clockwise component cw(vx) ⊂ P , and then initializes W so that it stores

cw(vx).

This function walks clockwise from W[0] until it reaches some reflex vertex, vi. If it does

not find one, we know P has no components and we exit. Next it finds v′i by checking each

edge of W for an intersection with −→cw(vi) and retaining the closest such intersection. Then

it initializes W so that it stores exactly cw(vi). The vertex vi becomes W.ccwEnd, the point v′i

becomes W.cwEnd, and then getReflexMinFreeComp calls scanner(W).

The function scanner in Algorithm 2 recursively prunes W until it represents a reflex-

minima-free component. We will denote the initial component found by getReflexMinFreeComp

as P0. The function scanner takes some Ph as input and then its helper functions delete part

of Ph to form Ph+1, and then it recurses on Ph+1. If it cannot delete part of Ph, then Ph is

reflex-minima-free. We will refer to the chain, P \Ph, which the algorithm has deleted thus

far, as Dh.

In order to stay within a linear time bound, we cannot insist that each Ph be a compo-

nent. If W stores a chain that is not a component, then P crosses W.connector.

11
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Figure 2.1: Each of the three chains P [α1, wh], P [α2, wh], and P [α3, wh] are candidate cw-
components. Arbitrarily let α3 = w∗h. Thus, the chain Dh = P [wh, w

∗
h], and Ph = P [w∗h, wh].

The candidate cw-component Ph in standard position. Since w∗h 6= w′h, we know that Ph is
not a component. The segment con(Ph) = w∗hwh and this segment is a pseudochord.

(See Figure 2.1) Let vi be a reflex vertex, and α be some crossing between P and
−→cw(wh). The chain P [α,wh] will be called a candidate cw-component. Similarly, let β

be some crossing between P and −−→ccw(vi). The chain P [vi, β] will be called a candidate

ccw-component. Note that a component is also a candidate component, but a candidate

component is not necessarily a component. Thus, the component P0 and the final reflex-

minima-free component are candidate components as well.

(See Figure 2.1) Let Ph be a candidate cw-component. The point w∗h will denote the

endpoint of Ph that is not vi, and wh will denote vi itself. Similarly, if Ph is a candidate

ccw-component, then w∗∗h denotes the endpoint that is not vi, and again wh denotes vi.

Candidate components also have a connector, which we will again denote as con(Ph), that

connects the two endpoints of Ph. If Ph is a candidate cw-component, con(Ph) = whw
∗
h, and

if it is a candidate ccw-component, con(Ph) = whw
∗∗
h . Just like a component, a candidate

component will be assumed to be in standard position about its connector.

Immediately after scanner recurses, W will store some candidate component Ph. If Ph is a

candidate cw-component, then W.ccwEnd is wh, W.cwEnd is w∗h and W.connector is the segment

whw
∗
h. Similarly, if Ph is a candidate ccw-component, then W.cwEnd is wh, W.ccwEnd is w∗∗h

and W.connector is the segment whw
∗∗
h .

Let Ph be a candidate cw-component. The reflex vertex vj ∈ Ph will be called a cw-miss

in Ph if v′j ∈ P [w∗h, vj ] or a ccw-miss in Ph if v′j ∈ P [vj , wh]. Otherwise, if Ph is a candidate

ccw-component, then vj ∈ Ph is a cw-miss in Ph if v′j ∈ P [wh, vj ] and a ccw-miss in Ph if

v′j ∈ P [vj , w
∗∗
h ].

Let P be in standard position about −→cw(vi) and let x ∈ P be a crossing with −→cw(vi).

If the exterior of P is locally to the right of x, then we will call this an ext-right crossing,

otherwise it will be called an ext-left crossing.

(See Figure 2.1) A pseudochord is a segment xy, where x, y ∈ P (note that x and y may
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be points or vertices), and in the neighborhood of both x and y, the segment xy is in the

interior of P .

(See Figures 2.2 and 2.3) A chain P [a, b] will be called ext-right heavy with respect to a

segment, ray or line if for some c ∈ P [a, b], the chain P [c, b] contains more ext-right crossings

than ext-left crossings. A chain is balanced with respect to a segment, ray, or line if it has

as many ext-left crossings as ext-right crossings.

(See Figures 2.2 and 2.3) The chain Dh is said to be non-interfering if con(Ph) is a

pseudochord, and if Dh is balanced and not ext-right heavy with respect to con(Ph), and

interfering otherwise. This is one of the central concepts of this chapter. Our main task

will be to show that for each Ph, its corresponding Dh is non-interfering.

Figure 2.2: The candidate cw-component Ph is soild and Dh is dashed. The chain Dh is
balanced, is not ext-right-heavy, and con(Ph) is a pseudochord. Thus Dh is non-interfering.
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Figure 2.3: The candidate cw-component Ph is soild and Dh is dashed. The chain Dh is
balanced, is ext-right-heavy, and con(Ph) is a pseudochord. Thus Dh is interfering.

2.1 Algorithm overview

Before we proceed, note that we will frequently assume that Ph is a candidate cw-component,

as opposed to a candidate ccw-component. We do this to avoid repeating an argument that

is symmetrical, with the exception of different naming. For instance, wh refers to W.ccwEnd

if Ph is a candidate cw-component and W.cwEnd otherwise. We will generally not repeat an

argument unless there is a material difference between the clockwise and counterclockwise

cases.

The function scanner takes as input a component Ph and behaves equivalently if Ph is

a clockwise or candidate ccw-component. It first checks the clockwise edge of W.ccwEnd and

then the counterclockwise edge of W.cwEnd and then the clockwise edge of W.cwNeigh(W.ccwEnd),

and then the counterclockwise edge of W.ccwNeigh(W.cwEnd) and so on. We refer to these alter-

nating walks as the clockwise and counterclockwise walks of scanner. It continues alternating

like this until one of these three events occurs:

1. The function scanner terminates.

2. The clockwise or counterclockwise walk of scanner crosses W.connector (we treat both

cases equivalently), or

3. The variables cwExtremums or ccwExtremums reach −1.

4. The function scanner crosses the line containing con(Ph), but not con(Ph) itself.



CHAPTER 2. ALGORITHM TO FIND REFLEX-MINIMA-FREE COMPONENT 15

We will now explain how the algorithm handles these four events:

Case 1: scanner terminates

We know that W stores a reflex-minima-free component and we terminate.

Case 2: a walk of scanner crosses the connector

(See Figure 2.19) If Ph is a candidate cw-component, we call cwConnectorCut

(see Algorithm 5), otherwise we call ccwConnectorCut. Without loss of generality,

let Ph be a candidate cw-component. Now that scanner has discovered a crossing

with con(Ph), the point w∗∗h = W.cwEnd is no longer the closest known crossing to

wh = W.ccwEnd.

The function cwConnectorCut walks counterclockwise from W.cwEnd looking for

a crossing x with con(Ph) such that: (A) x is the closest crossing to wh that

the walk has visited, (B) x is an ext-left-crossing, and (C) including x, the walk

has visited as many ext-left-crossings as ext-right-crossings. It then deletes the

chain that it walked. Lemma 7a shows that it will indeed find such a crossing.

The crossing x still may not be the closest crossing with Ph and con(Ph).

Case 3: cwExtremums or ccwExtremums reaches −1

If cwExtremums in scanner reaches −1 for vj ∈ Ph, then Lemma 9a shows that

vj is a cw-miss in Ph. Similarly, if ccwExtremums reaches −1, then we have found

a ccw-miss by Lemma 9b. If scanner finds a cw-miss it calls cwMissChoose (see

Algorithm 4), and if it finds a ccw-miss, it calls ccwMissChoose.

Without loss of generality, let Ph be a candidate cw-component, and let vj

be the cw-miss found by scanner. The function scanner will then call cwMissChoose

which simply determines if −→cw(vj) intersects P [vj , wh] or not. Note that since

vj is a cw-miss, v′j 6∈ P [vj , wh], but −→cw(vj) can still intersect P [vj , wh]. If so,

it finds q, the closest intersection to vj , and calls cwSegCut (see Algorithm 6).

Otherwise it calls cwRayCut. If scanner found a ccw-miss instead, ccwMissChoose

searches P [wh, vj ] and calls either ccwSegCut or ccwRayCut.

The function cwSegCut walks counterclockwise from W.cwEnd until it crosses the

segment qvj . It then deletes everything it walked.
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The function ccwRayCut also walks counterclockwise from W.cwEnd, but instead

looks for a crossing x with −→cw(vj) such that: (A) x is the closest crossing to

vj that the walk has visited, (B) x is an ext-left-crossing, and (C) including x,

the walk has visited one more ext-left-crossing than ext-right-crossing. Then the

chains P [vj , wh] and P [w∗h, x] will be deleted from W. If vj was a ccw-miss then

P [wh, vj ] and P [x,w∗h] will be deleted form W.

(See Figure 2.25) If either cwSegCut or cwRayCut cross con(Ph) before reaching

a satisfying crossing, these functions will ignore the cw-miss vj in Ph that they

were called to handle. These functions will not delete anything from Ph and will

instead call either cwConnectorCut or ccwConnectorCut which will delete part of Ph.

It is essentially as if event (2) was triggered from the start, and event (3) was

not.

If a crossing with con(Ph) is not found, then Lemma 10a shows that cwRayCut

will indeed find a satisfying crossing and Lemma 11a shows that cwSegCut will

indeed cross qvj .

Case 4: scanner crosses the line containing con(Ph), but not con(Ph) itself

If the clockwise walk of scanner walks above con(Ph) without crossing con(Ph),

then cwWalkActive is set to false and the clockwise walk halts while the coun-

terclockwise walk continues. Lemma 6a shows that the counterclockwise walk

cannot also halt, and that instead it will find a ccw-miss, if it does not cross

con(Ph) first. The symmetric applies if the counterclockwise walk halts, then

the clockwise walk will continue and find something to cut.

We will refer to cwConnectorCut, cwRayCut, cwSegCut and their counterclockwise counterparts

as cutters because these functions alone remove parts of Ph.

2.2 An example

In the next five pages, we will show an example of the central algorithm of this chapter,

getReflexMinFreeComp that takes as input a component, and outputs a reflex-minima-free

component.
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Figure 2.4: The function getReflexMinFreeComp chooses any reflex vertex vi, and then finds the
hitpoint of its clockwise ray v′i by brute force. The chain P [v′i, vi] is cw(vi). This component
is also known as P0: the vertex vi becomes w0, and v′i becomes w∗0. The component P0 is
stored in W and then passed to scanner. The component P0 is soild and D0 is dashed.
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Figure 2.5: The clockwise and counterclockwise walks of scanner start from w0 and w∗0,
respectively.
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Figure 2.6: The clockwise and counterclockwise walks of scanner halt when the clockwise
walk finds a cw-miss vj . The vertex vj is a cw-miss since it is the first time the clockwise
walk from w0 has encountered more reflex-minima vertices than convex maximas. Next
scanner calls cwMissChoose which will either call cwSegCut or cwRayCut. In the next figure vj
becomes w1 and we search for and then find w∗1.
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closest crossing in clockwise walk

Figure 2.7: The function cwMissChoose walks P [w1, w0] and finds the closest crossing between
−→cw(w1) and this chain, if it exists. Since there is such a crossing p, the function cwMissChoose

calls cwSegCut. The function cwSegCut walks counterclockwise from w∗0 until it crosses the
segment pw1. This first crossing becomes w∗1. We delete the chains P [w1, w0] and P [w∗0, w

∗
1].



CHAPTER 2. ALGORITHM TO FIND REFLEX-MINIMA-FREE COMPONENT 21

Figure 2.8: We now recurse on P1. Again P1 is solid and D1 = P [w1, w
∗
1] is dashed. The

function scanner again begins its clockwise and counterclockwise walks from w1 and w∗1,
respectively. The counterclockwise walk of scanner finds a crossing with con(P1) and calls
cwConnectorCut since P1 is a candidate cw-component. This function walks counterclockwise
from w∗1 until finding a crossing that will become w∗2. We delete the chain P [w∗1, w

∗
2].
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Figure 2.9: We now recurse on P2. Again P2 is solid and D2 = P [w2, w
∗
2] is dashed.

The function scanner again begins its clockwise and counterclockwise walks from w2 and w∗2,
respectively. This time both walks of scanner terminiate without event, thus P2 has no reflex
minima vertices and no crossings with con(P2), so it is a reflex-minima-free component. The
algorithm outputs P2.
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2.3 The algorithm

We do not suggest a thorough reading of the algorithms at this point. It is best to read it

in conjunction with the proofs.

Figure 2.10: The vertex vj is a cw-miss, but scanner will not select it since it is not technically
a reflex minima.

(See Figure 2.10) Note that if Ph is a candidate cw-component, and the second clockwise

neighbor of wh is above con(Ph), then the clockwise neighbor of wh is a cw-miss even though

it is not technically a minima vertex. We will consider this vertex to be a reflex minima

and we will do the same for the symmetric counterclockwise case.

Algorithm 1 getReflexMinFreeComp( Chain V )

{find reflex vertex, if there is one}
Vertex x = V[0]
while x is not reflex do

x = V.cwNeigh(x)
if x == V[0] then

return ”polygon is convex, contains no components”
end if

end while

{find hitpoint of −→cw(x) by brute force}
Point closest = null
for each edge e in V do

if e crosses −→cw(x) closer than closest then
closest = crossing point with e

end if
end for

{creates W, which stores cw(x)}
Chain W = V.setInitialCwComponent(x, closest)

scanner(W)
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Algorithm 2 scanner( Chain W )

Integer cwExtremums = 0
Integer ccwExtremums = 0
Boolean cwWalkActive = true
Boolean ccwWalkActive = true
Vertex x = W.ccwEnd
Vertex y = W.cwEnd

while x 6= W.cwEnd do

{this is a clockwise step which examines only one vertex}
if cwWalkActive then

if W.cwEdge(x) crosses W.connector then
if W stores a candidate cw-component then

cwConnectorCut( W )
else {W stores a candidate ccw-component}

ccwConnectorCut( W )
end if
scanner( W )
return

else if x is above W.connector then
cwWalkActive = false

else if x is a convex maxima then
cwExtremums++

else if x is a reflex minima then
cwExtremums−−

end if
if cwExtremums == −1 then

cwMissChoose( W, x )
scanner( W )
return

end if
x = W.cwNeigh(x)

end if

{counterclockwise step is symmetric and is omitted}

end while
return W
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Algorithm 3 cwConnectorCut ( Chain W )

Integer crossingCounter = 0
Point closestCrossing = (∞,∞)

{This walk checks each edge in W.}
for w ∈ W in ccw order from W.cwEnd do

if W.ccwEdge(w) crosses W.connector then
if crossing point is closer to W.ccwEnd than closestCrossing then

closestCrossing = crossing point
end if

if crossing point is ext-left with respect to W.connector then
crossingCounter++

else
crossingCounter−−

end if

if crossingCounter == 0 and
crossing point == closestCrossing and
crossing point is ext-left with respect to W.connector then

W.delete(W.cwEnd, closestCrossing)
return

end if
end if

end for

Algorithm 4 cwMissChoose ( Chain W, Vertex cwMiss )

Point closestCrossing = (∞,∞)
for each Vertex w in ccw order from cwMiss to W.cwNeigh(W.ccwEnd) do

if W.cwEdge(w) crosses −→cw(cwMiss) and w is closer to cwMiss than closestCross-
ing then

closestCrossing = crossing point
end if

end for
if closestCrossing == (∞,∞) then

cwRayCut( W, cwMiss )
else

cwSegCut( W, cwMiss, closestCrossing )
end if
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Algorithm 5 cwRayCut ( Chain W, Vertex cwMiss )

Integer crossingCounter = 0
Point closestCrossing = (∞,∞)

{This walk checks each edge in W.}
for w ∈ W in ccw order from W.cwEnd do

if W.ccwEdge(w) crosses W.connector then
if W stores a candidate cw-component then

cwConnectorCut( W )
else {W stores a candidate ccw-component}

ccwConnectorCut( W )
end if
return

else if W.ccwEdge(w) crosses −→cw(cwMiss) then
if crossing point is closer to cwMiss than closestCrossing then

closestCrossing = crossing point
end if

if crossing point is ext-left with respect to −→cw(cwMiss) then
crossingCounter++

else
crossingCounter−−

end if

if crossingCounter == 1 and
crossing point == closestCrossing and
crossing point is ext-left with respect to −→cw(cwMiss) then

W.delete(W.cwEnd, closestCrossing)
W.delete(cwMiss, W.ccwEnd)
return

end if
end if

end for
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Algorithm 6 cwSegCut ( Chain W, Vertex cwMiss, Point closestHit )

for w ∈ W in ccw order from W.cwEnd do
if W.cwEdge(w) crosses W.connector then

if W stores a candidate cw-component then
cwConnectorCut( W )

else {W stores a candidate ccw-component}
ccwConnectorCut( W )

end if
return

else if W.cwEdge(w) crosses segment cwMiss,closestHit then
Point q = crossing point
W.delete(W.cwEnd, q)
W.delete(cwMiss, W.ccwEnd)
return

end if
end for
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2.4 Preliminary lemmas

Figure 2.11: In both figures the chain P [va, vb] contains no reflex minima vertices, and only
contains the convex maxima vertices va and vb. However in the left figure, va is lower than
vb.

Lemma 1. Let Z be a polygon with no edge parallel to the horizontal axis. Then, Z contains

exactly one more convex maxima vertex than reflex minima vertex.

Proof. We will use strong induction on the number of reflex minima vertices in Z.

Base Case:

Let the polygon Q has no reflex minima vertices. We will show that Q has

exactly one convex maxima vertex. We know that the highest vertex of Q is

a convex maxima. Thus, we need to show that Q cannot have more than one

convex maxima vertex without having a reflex minima. Assume this for the

purposes of contradiction.

(See Figure 2.11) Choose two convex maxima vertices va, vb ∈ Q, such that

Q[va, vb] does not contain another convex maxima vertex. There are two possibil-

ities. Either va is below vb (See the left hand side of Figure 2.11), or vb is below

va (See the right hand side of Figure 2.11). Since both cases are symmetric,

without loss of generality, we will consider the case where va is lower.

We will shoot a horizontal ray from va to the right. Let p be the hitpoint of

this ray with Q[va, vb]. The chain Q[va, p] and vap forms a polygon R.

Since va is a local maxima, it’s clockwise neighbor is in the interior of R.

Let vc ∈ P [vb, va] be in the interior of R and be lower than any other such
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vertex. Clearly, vc is a reflex minima vertex. Thus Q contains a reflex minima, a

contradiction. Therefore, a polygon cannot have more than one convex maxima

vertex without containing a reflex minima.

Inductive hypothesis:

There exists a constant k such that every polygon with j ≤ k reflex minima

vertices contains exactly j + 1 convex maxima vertices.

Inductive step:

(See Figure 2.12) Let the polygon P have k + 1 reflex minima vertices. We

will show that P has exactly k + 2 convex maxima vertices.

Choose a reflex minima vertex vq ∈ P and shoot a ray straight down. Let

the hitpoint be q. Note that two vertices may be directly above each other, but

q cannot be a reflex minima or convex maxima vertex. The chord qvq partitions

P into two sub-polygons: P 1, which is P [vq, q] and vqq, and P 2 which is P [q, vq]

and vqq. The polygons P , P 1, and P 2 respectively contain r = k+ 1, r1, and r2

reflex minima vertices and c, c1, and c2 convex maxima vertices.

By the inductive hypothesis, we know that c1 = r1 + 1 and c2 = r2 + 1. The

vertex vq is a reflex minima vertex in P , but not in P 1 or P 2. Thus r = r1+r2+1.

Also note that vq is not a convex maxima in P , P 1, or P 2. Thus, c = c1 + c2.

Therefore, c = c1 + c2 = r1 + r2 + 2 = r+ 1, so c = r+ 1. Thus, Q has one more

convex maxima than reflex minima vertex.

We will show that each Dh is non-interfering by induction on h. This property serves

as the central invariant for this chapter. Lemma 2, which follows, is the base case for

Lemma 13, the induction proof that shows that this invariant holds for each each time Ph

is cut to yield Ph+1. If Ph is not cut to yield Ph+1, then Lemma 15 shows that Ph is a

reflex-minima-free component.

Lemma 2. If Ph is a component, then Dh is non-interfering.
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Figure 2.12: We partition P into P 1 and P 2 by shooting a ray straight down from vq.

Proof. The chain Dh has no crossings with con(Ph), so it is trivially balanced and not ext-

right heavy with respect to con(Ph). Also, since con(Ph) is a chord in P , we know that in

the neighborhoods of both wh and w∗h, the segment con(Ph) is in the interior of P . Thus

con(Ph) is a pseudochord. Therefore, Dh is non-interfering.

Figure 2.13: The segment xy is a pseudochord in P , not a chord, because in the neighbor-
hoods of both x and y, the segment is in the interior of P .

Lemma 3. Let xy be a pseudochord in P . The chain P [x, y] is balanced with respect to xy

if and only if P [y, x] is as well.

Proof. (See Figure 2.13) We will consider P to be in standard position about xy so that x

is to the left of y and xy is horizontal. Let p, q be in the line that contains xy, where p is

ε distance to the left of x and q is ε distance to the right of y. If ε is small enough, then



CHAPTER 2. ALGORITHM TO FIND REFLEX-MINIMA-FREE COMPONENT 31

P cannot cross px and yq. Note that x and y are crossings with respect to pq. Since xy

is a pseudochord, we know that with respect to pq, the crossings x and y cannot both be

ext-right or ext-left, they must be different.

First we will show that if P [x, y] is balanced with respect to xy, then P [y, x] is as well.

Since x and y are not both ext-left or both ext-right with respect to pq, we know that P [x, y]

is also balanced with respect to pq.

If we walk along pq from p to q, by the Jordan Curve theorem the crossings we visit will

alternate between ext-left and ext-right crossings. Therefore, since x and y are not both

ext-left or ext-right crossings, we know that P is balanced with respect to pq.

Since P and P [x, y] are balanced with respect to pq, by the Pigeon Hole principle P [y, x]

is balanced with respect to pq as well. Note that if we analyze the crossings between P [y, x]

and xy instead of pq, the points x and y are no longer crossings. However, since x and y

are not both ext-left or ext-right crossings, we know that if P [y, x] is balanced with respect

to pq, then it is also balanced with respect to xy.

The proof in the other direction is an identical argument. We will show that if P [y, x] is

balanced with respect to xy, then P [x, y] is as well. Since x and y are not both ext-left or

ext-right crossings, we know that P [y, x] is balanced with respect to pq. Since x and y are

not both ext-left or ext-right crossings, and since by the Jordan Curve theorem, crossings

alternate as we walk from p to q, we know P is balanced with respect to pq. Since P and

P [y, x] are balanced with respect to pq, by the Pigeon Hole principle, P [x, y] is balanced

with respect to pq. Finally since x and y are not both ext-left or ext-right crossings, we

know that P [x, y] is balanced with respect to xy as well. Thus, P [x, y] is balanced with

respect to xy if and only if P [y, x] is.

Lemma 4, which follows, proves a fundamental property of our non-interfering invariant

that will be used by several other lemmas.

Lemma 4. If Dh is non-interfering, then w′h ∈ Ph.

Proof. (See Figure 2.14) Assume for the purposes of contradiction that w′h ∈ Dh. Let the

vertex that is immediately clockwise of w′h be vp. We know vp is above w′h. Let vq be the

counterclockwise neighbor of wh, which is also above wh. Let p ∈ w′hvp be ε distance from

w′h and let q ∈ whvq be ε distance from wh. If ε is small enough, we know that pq must be

a chord in P because w′hwh is a chord in P .
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Figure 2.14: The shaded region is R. This is an example of when w′h ∈ Dh. Observe that
Dh is ext-right heavy with respect to con(Ph) and thus it is interfering.

Let R be the polygon bound by P [p, q] and qp. Since Dh is non-interfering, it is balanced

with respect to con(Ph), which is the segment whw
∗
h. Since Dh is non-interfering, con(Ph)

is a pseudochord. Thus, by Lemma 3, Ph is also balanced with respect to con(Ph). Since

R[w∗h, wh] is the same as Ph, we know that R[w∗h, wh] is also balanced with respect to con(Ph).

Thus, by Lemma 3, since con(Ph) is a pseudochord, R[wh, w
∗
h] is also balanced with respect

to con(Ph).

Note that since pq is a chord, the only crossing with con(Ph) in R[wh, w
′
h] is w′h. There-

fore, the chains R[wh, w
∗
h], R[w′h, w

∗
h], and P [w′h, w

∗
h] have the same crossings with con(Ph).

Since the former is balanced with respect to con(Ph), then so is the latter.

Consider traversing P [w′h, w
∗
h] clockwise from w∗h, the crossing w′h is the last we encounter.

Since w′h is a ext-left-crossing and since P [w′h, w
∗
h] is balanced with respect to con(Ph), we

know that the previous crossing that we encountered must be ext-right heavy with respect

to con(Ph). Thus, Dh is ext-right heavy and therefore interfering, a contradiction. Thus,

w′h ∈ Ph.

The following two lemmas, 2.16 and 2.17, show that both the clockwise and counter-

clockwise walks of scanner cannot both stop at the same time. Lemma 2.16 is a helper for

Lemma 2.17. Together, these lemmas show that if the counterclockwise walk halts and sets

ccwWalkActive to false, that the clockwise walk will find a cw-miss, and therefore will not

halt. The symmetric also holds, that if the clockwise walk halts, the counterclockwise walk

of scanner will find a ccw-miss and not halt.

Lemma 5a. If Dh is non-interfering, and the clockwise walk of scanner reaches the vertex
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Figure 2.15: This is the polygon P , that R in Figure 2.16 is based on. The function scanner

will find the cw-miss vj , where vj is the lowest vertex in R[vj , wh].

Figure 2.16: The chain R[vj , wh] comes from an underlying polygon P , depicted in the above
Figure 2.15. The polygon R is constructed around P [vj , wh]. Observe that the vertex vj is
a reflex minima vertex in P , but not in R.

vj, where vj is reflex, and is the lowest vertex in the walk, then scanner will call cwMissChoose

upon reaching vj, if not before.

Proof. The if-statement that encloses the call of cwMissChoose requires that vj be a reflex

minima vertex and that cwExtremums == -1 when scanner reaches vj . We already know that

the former holds, so we will prove the latter.

We will show that P [vj , wh] has exactly one more reflex minima than convex maxima

vertex. From this it follows that cwExtremums == -1 upon reaching vj . Towards this goal, we

will construct a polygon R that includes P [vj , wh] and then apply Lemma 1.

(See Figure 2.16) Since scanner reached vj , we know that no point of P [vj , wh] is above

con(Ph). Using this fact, we will construct R in three steps:

1. Let q be a point in the half-plane above the connector. Since P [vj , wh] is entirely

below con(Ph), we know that this chain will not cross w∗hq or whq.

2. Let p be below con(Ph), above vj , and far enough to the left of any vertex in P [vj , wh]

that pvj and pw∗h do not cross P [vj , wh].
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3. Let vr be the clockwise neighbor of wh, and let r ∈ vrvr−1 be ε distance from vr. To

enable us to apply Lemma 1, we replace vr with r.

In counterclockwise order, the polygon R will be composed of whq, qw
∗
h, w∗hp, pvj ,

P [vj , r], and then rwh. Note that in R[wh, vj ], the only vertex that is a convex maxima

or reflex minima vertex in R is the convex maxima q. Note that the vertex vj is a reflex

minima in P but not in R.

Since R has no horizontal edges, we know by Lemma 1 that R has one more convex

maxima than reflex minima vertex. Let the polygon Q ⊂ P be the part of R that is not

above con(Ph). Since q was a convex maxima in R, we know that Q has exactly as many

reflex minima vertices as convex maxima vertices.

Since the only vertices in Q that are reflex minimas or convex maximas are in P [vj , wh],

we know that this chain has exactly as many reflex minimas as convex maximas. Thus,

immediately before reaching vj , we know that cwExtremums == 0. Therefore, since vj is

a reflex minima in P , we know that when scanner reaches vj , that cwExtremums == -1.

Thus, scanner will call cwMissChoose upon reaching the reflex minima vertex vj , if it did not

already call it for another vertex in P [wh, vj ].

Lemma 5b. If Dh is non-interfering, and the counterclockwise walk of scanner reaches the

vertex vj, where vj is reflex, and is the lowest vertex in the walk, then scanner will call

ccwMissChoose upon reaching vj, if not before.

Figure 2.17: The counterclockwise walk of scanner walks above the connector at the point p.
We will show a contradiction, since the counterclockwise walk of scanner would have found
the ccw-miss vj before reaching p.
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Figure 2.18: The counterclockwise walk of scanner walks above the connector at the point
p. Then scanner sets ccwWalkActive to false. We will show that the clockwise walk of scanner

will always find a cw-miss before crossing whp, in this case vj .

Recall that if the clockwise walk of scanner walks above the line containing the connector,

without crossing the connector, then cwWalkActive will be set to false. The next lemma shows

that if one walk is halted in this way, the other walk will cut Ph.

Lemma 6a. If Dh is non-interfering, and in scanner the variable ccwWalkActive is false, then

the clockwise walk of scanner will find a cw-miss or cross con(Ph).

Proof. (See Figures 2.17, and 2.18) Without loss of generality, let Ph be a candidate cw-

component. Since ccwWalkActive is false, we know that the counterclockwise walk of scanner

crosses the line containing con(Ph) at the point p, where p 6∈ con(Ph). There are two cases,

either p is to the left of w∗h or it is to the right of wh.

p is to the left of w∗h:

(See Figure 2.17) There exists a lowest vertex, vj ∈ P [w∗h, p], which is a reflex

minima. Thus, by Lemma 5b, scanner would have recognized vj as a ccw-miss

and called ccwMissChoose. Thus, we know p is to the right of wh.

p is to the right of wh:

(See Figure 2.18) We know that P [w∗h, p] and pw∗h form a polygon Q. Thus,

if we walk clockwise from wh, we must either cross con(Ph), in which case we

call cwConnectorCut, or cross whp at the point q. Assume the latter. The chain

P [q, wh] has a minimum vertex vj which is a reflex minima. Thus, by Lemma

5a, scanner would have recognized vj as a cw-miss and called cwMissChoose.



CHAPTER 2. ALGORITHM TO FIND REFLEX-MINIMA-FREE COMPONENT 36

Therefore, if ccwWalkActive == false, the clockwise walk of scanner will eventually find a

cw-miss or cross con(Ph).

Lemma 6b. If Dh is non-interfering, and in scanner, the variable cwWalkActive is false, then

the counterclockwise walk of scanner will find a ccw-miss or cross con(Ph).

2.5 If Dh is non-interfering, then Dh+1 is also non-interfering

Lemma 2 will serve as the basis for the induction proof that will show that each Dh is non-

interfering. This section presents several lemmas which together form the inductive step for

the proof showing that this invariant is maintained.

In the first subsection we will show that if Dh is non-interfering, then when called,

cwConnectorCut and ccwConnectorCut terminate and cut Ph in such a way that Ph+1 is also

non-interfering. In the second subsection, we will show the same for cwSegCut, ccwSegCut,

cwRayCut, and ccwRayCut.

2.5.1 Cutting crossings with con(Ph) maintains non-interfering invariant

(See Figure 2.19) If scanner, or one of the other cutters, discovers a crossing with con(Ph), it

calls cwConnectorCut if Ph is a candidate cw-component and ccwConnectorCut if it is a candidate

ccw-component. We give details on cwConnectorCut but not the symmetric ccwConnectorCut.

The function cwConnectorCut walks counterclockwise from w∗h until it finds a crossing x

with con(Ph). Lemma 7a shows that it will indeed find a crossing and that x has the

following properties:

• x is the closest crossing to wh in the chain the walk visited, P [w∗h, x],

• x is an ext-left-crossing, and

• including x, the walk has visited as many ext-left-crossings as ext-right-crossings.

Upon finding x, cwConnectorCut deletes the chain it walked, P [w∗h, x]. What remains of

Ph will become Ph+1, the crossing x will become w∗h+1, and wh will also be wh+1. Finally,

Lemma 8a shows that the candidate cw-component, Ph+1, produced by cwConnectorCut, is

non-interfering.
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Figure 2.19: The clockwise step of scanner will find the crossing p with con(Ph). Since Ph is
a candidate cw-component, it calls cwConnectorCut, which finds x and deletes P [w∗h, x]. The
vertex x becomes w∗h+1 and wh+1 will be wh.

Figure 2.20: The interior of R is shaded. Note that cwConnectorCut would select x and not
w′h. However, w′h is a satisfying crossing.

Lemma 7a. Let Dh be non-interfering, and let Ph be a candidate cw-component. If

cwConnectorCut is called on Ph, then it will find a crossing x ∈ Ph with con(Ph), such that:

(1) x is an ext-left-crossing, (2) P [w∗h, x] is balanced with respect to con(Ph), and (3) x is

the closest crossing to wh in P [w∗h, x].

Proof. (See Figure 2.19 in which p = w′h) If cwConnectorCut cuts Ph at a crossing y, we know

by the conditions of the if-statement that encloses W.delete, that the following holds for y:

1) crossingCounter == 0, 2) closestCrossing == y, and 3) y is an ext-left-crossing with respect

to W.connector. These three conditions are equivalent to the three conditions for x.
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Now we only need to show that cwConnectorCut will always find a crossing at which to

cut. We will show that w′h is such a crossing. By Lemma 4, we know that w′h ∈ Ph. Thus,

since cwConnectorCut traverses Ph, it will reach w′h, unless it finds another satisfying crossing

first. Thus, we only need to show that w′h satisfies the three conditions for x.

Note that by definition w′h is the closest crossing to wh and by the Jordan Curve Theorem,

it must be an ext-left-crossing. Thus, we only need to show that when w′h is reached that

crossingCounter == 0, or in other words: P [w∗h, w
′
h] is balanced with respect to con(Ph). This

argument will be very similar to the argument in Lemma 4, however in that lemma, w′h was

assumed to be in Dh instead of Ph.

(See Figure 2.20) Let the vertex that is immediately counterclockwise of w′h be vp. We

know vp is below w′h. Similarly, let vq be the vertex that is clockwise of wh. We know vq

is horizontal and right of wh. Let p ∈ w′hvp be ε distance from w′h and let q ∈ whvq be ε

distance from wh. If ε is small enough, we know that pq must be a chord in P because w′hwh

is a chord in P .

Let R be the polygon bound by P [q, p] and pq. Since Dh is non-interfering, it is balanced

with respect to con(Ph). Since R[wh, w
∗
h] = Dh, it is also balanced with respect to con(Ph).

Since Dh is non-interfering, con(Ph) is a pseudochord. Thus, by Lemma 3, we know that

R[w∗h, wh] is also balanced with respect to con(Ph). Since R[w∗h, wh] and P [w∗h, w
′
h] have the

same crossings with con(Ph), we know that the latter chain is also balanced with respect to

con(Ph). Thus, if the walk reaches w′h, we know that crossingCounter = targetCrossingVal = 0.

We have shown that the walk will reach w′h if it does not find another satisfying crossing

first, and that the three properties in the proof statement will be satisfied.

Lemma 7b. Let Dh be non-interfering, and let Ph be a candidate ccw-component. If

ccwConnectorCut is called on Ph, then it will find a crossing x ∈ Ph with con(Ph), such

that: (1) x is an ext-right-crossing, (2) P [x,w∗∗h ] is balanced with respect to con(Ph), and

(3) x is the closest crossing to wh in P [x,w∗∗h ].

Now we will show that if Dh is non-interfering, then after cwConnectorCut cuts Ph, the

chain Dh+1 will also be non-interfering. Recall that ccwConnectorCut keeps track of the

balance of ext-left and ext-right crossings it has encountered in its walk with the variable

crossingCounter.
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Figure 2.21: Observe that Dh is ext-right heavy with respect to con(Ph) and thus interfering.
Also observe that P [z, w∗h] is balanced, so it does not contain more ext-left crossings than
ext-rights with respect to w∗hw

∗
h+1.

Figure 2.22: This figure shows that if y is an ext-right-crossing, then Dh is ext-right heavy
with respect to con(Ph), and thus Dh is interfering.

Figure 2.23: We will analyze the crossings of P [y, w∗h] = R′[w∗h, y] with respect to both
w∗hw

∗
h+1 and pq.
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Figure 2.24: The polygons F and G are shaded. The chain P [y, w∗h+1] ⊂ R is drawn solid,
the chain P [z, y] is dashed, and the rest of P is dotted. The ext-left-crossing y is the first
crossing with con(Ph+1) found in a clockwise walk of Dh from w∗h, and z is the first crossing
where Dh is ext-right heavy with respect to con(Ph+1). Note that a, b, c, d ∈ R, and that
ab and cd do not cross R, however cd is a chord in R and ab is not. Finally, observe that
P [z, y] is balanced with respect to ab and cd, as well as w∗hw

∗
h+1.

Lemma 8a. Let Dh be non-interfering. If cwConnectorCut is called on Ph, then when it

terminates, Dh+1 will be non-interfering as well.

Proof. (See Figure 2.19) Without loss of generality, let Ph be a candidate cw-component.

Recall that Dh+1 is composed of the chains Dh and P [w∗h, w
∗
h+1]. Also recall that Dh+1

is non-interfering if con(Ph+1) = w∗h+1wh is a pseudochord, and Dh+1 is balanced and not

ext-right heavy with respect to con(Ph+1).

By Lemma 7a, we know that w∗h+1 is an ext-left crossing with con(Ph), that P [w∗h, w
∗
h+1]

does not cross con(Ph+1), that this chain is balanced with respect to con(Ph), and that

cwConnectorCut will always find a crossing in Ph. This implies that P [w∗h, w
∗
h+1] has one more

ext-right-crossing than ext-left with respect to w∗hw
∗
h+1.

con(Ph+1) is a pseudochord:

Since Dh is non-interfering, we know that in the neighborhood of wh, the

segment con(Ph) is in the interior of P . Since wh = wh+1, we know that in

the neighborhood of wh+1, the segment con(Ph+1) will also be in the interior

of P . Also, since w∗h+1 is an ext-left crossing with con(Ph), we know that in
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the neighborhood of w∗h+1, the segment con(Ph+1) is in the interior of P . Thus,

con(Ph+1) is a pseudochord.

Dh+1 is balanced with respect to con(Ph+1):

Because of these three facts: 1) Ph is balanced with respect to con(Ph), 2)

P [w∗h, w
∗
h+1] has one more ext-right-crossing than ext-left-crossings with respect

to w∗hw
∗
h+1, and 3) w∗h+1 is an ext-left crossing, we know that Ph+1 = P [w∗h+1, wh]

is balanced with respect to con(Ph+1).

Since con(Ph+1) is a pseudochord, by Lemma 3, we know that because Ph+1

is balanced with respect to con(Ph+1), and con(Ph+1) is a pseudochord, we know

that Dh+1 is also balanced with respect to con(Ph+1).

Now we only need to show that Dh+1 is not ext-right heavy with respect to con(Ph+1).

We know that Dh and Dh+1 have the same crossings with con(Ph+1) and in the same order.

Therefore, showing that Dh+1 is non-interfering with respect to con(Ph+1) is the same as

showing that Dh is. Since we know that Dh is non-interfering with respect to con(Ph), it

will be easier to use Dh, instead of Dh+1.

(See Figure 2.21) For the purposes of contradiction, let Dh be ext-right heavy with

respect to con(Ph+1). In a clockwise walk of Dh from w∗h, let y be the first crossing with

con(Ph+1), and let z be the first time in the walk that P [z, w∗h] is ext-right heavy with

respect to con(Ph+1). Since Dh is non-interfering, we know P [z, w∗h] is not ext-right heavy

with respect to con(Ph). Thus, P [z, w∗h] must contain more ext-left crossings than ext-rights

with respect to w∗hw
∗
h+1.

We will use y and z to partition Dh into three subchains. We will first show that y is

an ext-left crossing with respect to con(Ph+1). Then we will show that P [y, w∗h] and P [z, y]

are both balanced with respect to w∗hw
∗
h+1. This will be a contradiction since the combined

chain, P [z, w∗h], is balanced and does not contain more ext-left crossings than ext-rights,

with respect to w∗hw
∗
h+1.

y is an ext-left-crossing with respect to con(Ph+1):

(See Figure 2.22) For the purposes of contradiction, assume that y is an ext-

right-crossing with con(Ph+1). We know that P [w∗h, w
∗
h+1] ⊂ Ph does not cross

con(Ph+1) and that P [y, w∗h] ⊂ Dh does not cross w∗h+1y. Thus, the union of
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these chains, P [y, w∗h+1], does not cross w∗h+1y. Therefore this chain and segment

together form a polygon R.

Let the vertex vp be the counterclockwise neighbor of w∗h+1, and let vq be the

clockwise neighbor of y. We know vp and vq are below con(Ph). Let p ∈ w∗h+1vp

be ε distance from w∗h+1, and let q ∈ yvq be ε distance from y. If ε is small

enough, we know that P [q, p] will not cross pq because P [y, w∗h+1] does not cross

w∗h+1y. Let P [q, p] and pq form the polygon R′.

Since P [w∗h, w
∗
h+1] has one more ext-right-crossing than ext-left with respect

to w∗hw
∗
h+1, and since w∗h+1 is an ext-left-crossing, we know that R′[w∗h, y] is

balanced with respect to w∗hy.

We want to use Lemma 3 with respect to w∗hy, so we must first show that it

is a pseudochord. Since con(Ph) is a pseudochord, and y is an ext-right-crossing,

we know that in the neighborhood of w∗h and y, the segment w∗hy is in the interior

of P . Thus, w∗hy is a pseudochord.

Therefore, by Lemma 3, the chain R′[y, w∗h] is balanced with respect to this

segment as well. Since R′[y, w∗h] = P [y, w∗h] is balanced with respect to w∗hy in

R′, we know P [y, w∗h] is also balanced with respect to this segment in P .

If we analyze the crossings with P [y, w∗h] and con(Ph), rather than w∗hy, then

we now include the ext-right-crossing y. Thus P [y, w∗h] is ext-right heavy with

respect to con(Ph). Therefore Dh is ext-right heavy with respect to con(Ph).

This means that Dh is interfering with con(Ph), a contradiction. We conclude

that y is an ext-left-crossing.

P [y, w∗h] ⊂ Dh is balanced with respect to w∗hw
∗
h+1:

(See Figure 2.23) Let w∗h+1 be in the edge vjvj+1 of P . We know that vj+1

is below con(Ph). Let r ∈ w∗h+1vj+1 be ε distance from w∗h+1. We know that

P [y, w∗h+1] does not cross yw∗h+1, so if ε is small enough, P [y, r] will not cross yr

either. Let P [y, r] and yr form the polygon R′.

Note that what was an ext-left-crossing in P is an ext-right-crossing in R′,

and vice versa. Therefore, since P [w∗h, w
∗
h+1] has one more ext-right than ext-left

crossing with respect to w∗hw
∗
h+1 in P , we know that R′[w∗h+1, w

∗
h] = P [w∗h, w

∗
h+1]

has one more ext-left than ext-right crossing with respect to w∗hw
∗
h+1.
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Let p and q be in the line through con(Ph), where p is ε distance to the left of

w∗h, and q is ε to the right of w∗h+1. If ε is small enough, P will not cross pw∗h or

w∗h+1q. Note that w∗h and w∗h+1 are both ext-right-crossings with respect to pq.

Thus, R′[w∗h+1, w
∗
h] has one more ext-right than ext-left crossing with respect to

pq.

By the Jordan Curve theorem, because R′ is a polygon, crossings along pq

must alternate as we walk along pq from p to q. Thus, since the leftmost and

rightmost crossings are ext-right, we know that R′ also has one more ext-right

than ext-left crossing with respect to pq.

Since R′ and R′[w∗h+1, w
∗
h] both have one more ext-right than ext-left crossing

with respect to pq, and since the crossings along pq alternate, we know that the

chain R′ \R′[w∗h+1, w
∗
h] (which does not include the points w∗h+1 or w∗h) must be

balanced with respect to pq.

Note that since the chain R′ \ R′[w∗h+1, w
∗
h] does not include the crossings

w∗h+1 and w∗h, we know that this chain has the same crossings with pq as it does

with w∗hw
∗
h+1. Thus, this chain is also balanced with respect to w∗hw

∗
h+1.

The chains R′ \ R′[w∗h+1, w
∗
h] and R′[w∗h, y] = P [y, w∗h] also share the same

crossings with w∗hw
∗
h+1. Thus, P [y, w∗h] is balanced with respect to w∗hw

∗
h+1.

P [z, y] is balanced with respect to w∗hw
∗
h+1

(See Figure 2.24) Let R (not R′) partition w∗hw
∗
h+1 into sub-segments. Some

of these sub-segments are chords in R and the rest are entirely not in R.

First, let ab be a sub-segment of w∗hw
∗
h+1 that is entirely outside of R. Com-

bining R[a, b] with ab and R[b, a] with ab, yields one finite polygon R and one

infinite region. Let F be polygon that defines the finite region.

Second, let cd be a sub-segment of w∗hw
∗
h+1 that is a chord in R. Combining

R[c, d] with cd and R[d, c] with cd, yields one finite sub-polygon that contains

the segment w∗h+1y (this is analogous to the above infinite case) and another

finite sub-polygon that does not (this is analogous to the above finite case). Let

G be the sub-polygon that does not contain w∗h+1y.

Since F,G ∩ P [z, y] = ∅, and since y and z are not in the interiors of any F

or G, we know that P [z, y] must be balanced with respect to w∗hw
∗
h+1.
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(See Figure 2.21) Since P [y, w∗h] and P [z, y] are both balanced with respect to w∗hw
∗
h+1,

the combined chain, P [z, w∗h], is as well. Thus, P [z, w∗h] is balanced, and deos not contain

more ext-left crossings than ext-rights with respect to w∗hw
∗
h+1, a contradiction. Therefore,

Dh is not ext-right heavy with respect to con(Ph+1).

Thus, Dh is balanced and not ext-right heavy with respect to con(Ph+1). Since we

know that Dh and Dh+1 share the same crossings with con(Ph+1), we know that Dh+1 is

non-interfering.

Lemma 8b. Let Dh be non-interfering. If ccwConnectorCut is called on Ph, then when it

terminates, Dh+1 will be non-interfering as well.

2.5.2 Cutting off a miss maintains non-interfering invariant

First we will show that scanner will correctly identify a cw-miss or a ccw-miss. Then we

will show that if Dh is non-interfering, then cwSegCut, ccwSegCut, cwRayCut, and ccwRayCut

terminate, and that if they cut Ph, then Dh+1 is also non-interfering.

(See Figure 2.25) Note that if these four cutters discover a crossing with con(Ph),

they will not cut Ph, otherwise they will. Should such a crossing be discovered, they call

cwConnectorCut or ccwConnectorCut, and then return. By Lemmas 7a and 7b, we know that

these two cutters terminate, and by 8a and 8b, they maintain the non-interfering invariant.

Lemma 9a. Let Dh be non-interfering. If the variable cwExtremums in scanner reaches −1

for the first time at some vertex vj ∈ Ph, then vj is a cw-miss in Ph.

Proof. First we will show that vj is a reflex minima vertex. We know that cwExtremums

reached −1 for the first time at vj . Thus in the step before cwExtremums was altered, its

value was either 0 or −2. If its value was −2, then since this variable was initialized to 0,

it must have already reached −1. Therefore, this variable was at 0 and was decremented

when scanner reached the reflex minima vertex vj .

Without loss of generality, let Ph be a candidate cw-component. This proof will be an

analysis of three cases. Either v′j is in: (1) P [vj , wh], (2) Dh, or (3) P [w∗h, vj ]. We show that

the third case always happens, by showing that the first two cannot.

Case 1: v′j ∈ P [vj , wh]

(See Figure 2.26) We know that P [vj , v
′
j ] and v′jvj forms a polygon Q . We

will apply Lemma 1 to Q, but first we must ensure that Q has no horizontal
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Figure 2.25: The first event to occur is for the clockwise step of scanner to find the cw-
miss vj . It then calls cwMissChoose which finds p, the closest crossing with −→cw(vj) to vj in
P [vj , wh]. It then calls cwSegCut(W,vj,p) which traverses counterclockwise from w∗h until it
crosses the segment vjp. However, before it does, it crosses con(Ph) at y and ignores vj and
calls cwConnectorCut because Ph is a candidate cw-component.

Figure 2.26: This figure is used in a contradiction proof. We assume that scanner found the
cw-miss vj , even though it would have chosen the counterclockwise neighbor of v′j instead.
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Figure 2.27: This figure is used in a contradiction proof. The function scanner found the
cw-miss vj . Assume that v′j ∈ Dh.

edges. There is only one horizontal edge in P , which is the clockwise edge of wh,

but this edge is not in Q. Thus we can safely apply Lemma 1. It shows that Q

has one more convex maxima than reflex minima vertex.

Note that vj is a reflex minima in P , but not in Q. Thus, including vj we

know that P [vj , v
′
j ] has an equal number of reflex minima and convex maxima

vertices. Thus, cwExtremums must have first reached −1 in P [v′j , wh], a contradic-

tion. Therefore, v′j 6∈ P [vj , wh].

Case 2: v′j ∈ Dh

(See Figure 2.27) Again P [vj , v
′
j ] and vjv

′
j form Q. We know that wh ∈ Q.

Since scanner reached vj without halting, we know that no point in P [vj , wh] is

above con(Ph). Thus, we know w′h 6∈ P [vj , wh]. For the same reason we know

that w′hwh ∩ v′jvj = ∅. Thus, w′h ∈ Q. By process of elimination, we know that

w′h ∈ Q[wh, v
′
j ]. Since Q[wh, v

′
j ] ⊂ Dh, we know that w′h ∈ Dh, a contradiction

by Lemma 4. Thus, v′j 6∈ Dh.

Thus, by process of elimination we know that case (3): v′j ∈ P [w∗h, vj ], must happen.

Therefore, vj is a cw-miss in Ph.

Lemma 9b. Let Dh be non-interfering. If the variable ccwExtremums in scanner, reaches −1

for the first time at some vertex vj ∈ Ph, then vj is a ccw-miss in Ph.

In Lemma 10a, which follows, we show that cwRayCut either finds a satisfying crossing or
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instead discovers a crossing with con(Ph), calls cwConnectorCut or ccwConnectorCut, and aban-

dons its efforts. We have already shown that cwConnectorCut and ccwConnectorCut terminate

and maintain the invariant.

Figure 2.28: The clockwise step of scanner finds the cw-miss vj . It calls cwMissChoose which
calls cwRayCut which traverses counterclockwise from w∗h until reaching y. Note that z was the
first time that crossingCounter == 1, but at the time, it was not the closest known crossing to
vj . Thus, the walk continued until reaching y. Note that v′j also satisfies the four conditions.

Lemma 10a. Let Dh be non-interfering and let scanner find the cw-miss vj ∈ Ph. If cwRayCut

is called, and it does not call cwConnectorCut or ccwConnectorCut, then the counterclockwise

walk of Ph from W.cwEnd finds a crossing x ∈ Ph with −→cw(vj) such that: (1) x is an ext-left-

crossing, (2) the walk visits one more ext-left than ext-right crossing, (3) x is the closest

crossing to vj on the walk, and (4) the walk finds x before reaching vj.

Proof. (See Figure 2.28) Without loss of generality, let Ph be a candidate cw-component.

If cwRayCut cuts Ph at a crossing y ∈ P [w∗h, vj ], we know by the conditions of the if-

statement that encloses W.delete, that the following holds for y: A) crossingCounter == 1,

B) closestCrossing == y, and C) y is an ext-left-crossing with respect to −→cw(vj). Respec-

tively, these three conditions are equivalent to the first three conditions for x. Condition
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Figure 2.29: The function cwRayCut walks counterclockwise from w∗h and chooses v′j .

Figure 2.30: The subpolygon Q is shaded. We will consider v′j to be an ext-left crossing in
Q as it is in P . Note that the crossings with −→cw(vj) that are closest (v′j) and furthest from
vj (z) are ext-left crossings, and that there is one more ext-left crossing.
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(4) is satisfied by our assumption that y ∈ P [w∗h, vj ].

(See Figure 2.29) Now we only need to show that there must be a crossing in P [w∗h, vj ]

that satisfies these four conditions. We will show that v′j is such a crossing. Assume that

cwRayCut chooses v′j . By definition, v′j is the closest crossing to vj . This satisfies condition

(3). Since it is the closest crossing, by the Jordan Curve theorem, v′j is an ext-left crossing.

This satisfies condition (1). By Lemma 9a, v′j ∈ P [w∗h, vj ]. Thus, the walk reaches w′h before

reaching vj , unless it finds another satisfying crossing first. This satisfies condition (4).

We will now show that v′j satisfies condition (2) for x. Assume that the algorithm reaches

v′j , without finding another satisfying crossing first. Thus, P [w∗h, v
′
j ] does not cross con(Ph),

since if it did, cwRayCut would have called cwConnectorCut. Similarly, P [vj , wh] cannot cross

con(Ph) either, since scanner did not call cwConnectorCut. Thus, the chains P [w∗h, v
′
j ], and

P [vj , wh] do not cross con(Ph).

(See Figure 2.30) Further, P [vj , wh] cannot cross the line containing con(Ph), since

cw.WalkActive was not set to false. Thus vj is below con(Ph). Since vj is a reflex minima

vertex, v′j must also be below con(Ph). Thus, vjv
′
j cannot cross con(Ph), and since it is

a chord, it cannot cross P either. Therefore, the chains P [w∗h, v
′
j ] and P [vj , wh], and the

segments con(Ph) and vjv
′
j form the polygon Q.

Since cwMissChoose called cwRayCut, we know P [vj , wh] does not cross −→cw(vj). Thus, the

crossings between −→cw(vj) and Q are with Q[w∗h, v
′
j ] = P [w∗h, v

′
j ]. Note that we will consider

v′j to be an ext-left crossing in Q as it is in P .

By the Jordan Curve theorem, if we walk along −→cw(vj) from vj , the crossings we en-

counter will alternate between ext-left and ext-right crossings. By the Jordan Curve the-

orem, the furthest crossing from vj in Q is an ext-left-crossing. Thus, since the cross-

ings alternate and the closest and furthest crossings to vj are ext-left-crossings, we know

that there is one more ext-left-crossing than ext-right-crossing in Q[w∗h, v
′
j ] = P [w∗h, v

′
j ].

Thus, v′j satisfies condition (2). This condition implies that when the walk reaches v′j , that

crossingCounter == 1. Thus, v′j satisfies the four conditions for x.

Lemma 10b. Let Dh be non-interfering and let scanner find the ccw-miss vj ∈ Ph. If

ccwRayCut is called, and it does not call cwConnectorCut or ccwConnectorCut, then the clockwise

walk of Ph from W.ccwEnd finds a crossing x ∈ Ph with −−→ccw(vj) such that: (1) x is an ext-

right-crossing, (2) the walk visits one more ext-right than ext-left crossing, (3) x is the

closest crossing to vj on the walk, and (4) the walk finds x before reaching vj.
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Figure 2.31: The first event to occur is for the clockwise step of scanner to find the cw-miss
vj . It then calls cwMissChoose which calls cwSegCut(W,vj,p), which traverses counterclockwise
from w∗h until crossing pvj at y. Note that if the walk continued to v′j , this would also satisfy
the two conditions.

Lemma 11a. Let Dh be non-interfering, let scanner find the cw-miss vj ∈ Ph, and let q be

the crossing with P [vj , wh] and −→cw(vj) that is closest to vj. If cwSegCut is called, and it does

not call cwConnectorCut or ccwConnectorCut, then it finds a crossing x ∈ Ph with −→cw(vj) such

that (1) x ∈ qvj, (2) the walk finds x before reaching vj, and (3) x is an ext-left-crossing

with respect to −→cw(vj).

Proof. (See Figure 2.31) Without loss of generality, let Ph be a candidate cw-component.

First, we will assume condition (2), that cwSegCut finds a crossing w∗h+1 and cuts Ph before

reaching vj . Later we will show that condition (2) must happen. We know by the condition

of the if-statement that encloses W.delete, that w∗h+1 ∈ qvj , so if Ph is cut, then condition

(1) is satisfied.

To show condition (3), observe that P [vj , q] and vjq forms a polygon Q, since q is the

closest crossing with −→cw(vj) in P [vj , wh]. Since the clockwise walk did not stop, we also
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know that no point in P [vj , wh] is above con(Ph), so w∗h 6∈ Q. Thus, by the Jordan Curve

theorem, the first crossing cwSegCut finds in its counterclockwise walk of Ph from w∗h with

qvj must be an ext-left-crossing with respect to −→cw(vj), which satisfies condition (3).

Now we only need to show that cwSegCut always finds a crossing with qvj in P [w∗h, vj ] at

which to cut. We will show that v′j is such a crossing. By Lemma 9a, we know that vj is

a cw-miss in Ph and that v′j ∈ P [w∗h, vj ]. Thus, we know that the algorithm which walks

counterclockwise from w∗h reaches v′j before reaching vj . This satisfies condition (2).

Because q ∈ P [vj , wh] and v′j ∈ P [w∗h, vj ], we know that q 6= v′j . Since v′j is the closest

crossing in P to vj , we know that v′j ∈ qvj . This satisfies condition (1). Thus we know that

the counterclockwise walk from w∗h crosses qvj before reaching vj .

Lemma 11b. Let Dh be non-interfering, let scanner find the ccw-miss vj ∈ Ph, and let q be

the crossing with P [wh, vj ] and −−→ccw(vj) that is closest to vj. If ccwSegCut is called, and it does

not call cwConnectorCut or ccwConnectorCut, then it finds a crossing x ∈ Ph with −−→ccw(vj) such

that (1) x ∈ qvj, (2) the walk finds x before reaching vj, and (3) x is an ext-right-crossing

with respect to −→cw(vj)

Lemma 12a. Let Dh be non-interfering, and let scanner find the cw-miss vj ∈ Ph. When

cwRayCut or cwSegCut terminate, Dh+1 will be non-interfering as well.

Proof. Without loss of generality, let Ph be a candidate cw-component. By Lemma 9a,

we know that vj is a cw-miss in Ph, and that v′j ∈ P [w∗h, vj ]. The function scanner called

cwMissChoose which called either cutter cwRayCut or cwSegCut. We know that cwRayCut and

cwSegCut terminate by Lemmas 10a and 11a, respectively. The cutters may terminate either

upon finding the crossing w∗h+1 or upon crossing con(Ph). Note that we will handle both

cutters in this proof.

If either cutter, cwRayCut or cwSegCut, cross con(Ph) in their walk, then it calls the cutter

cwConnectorCut. By Lemma 7a, we know that cwConnectorCut halts and by Lemma 8a that

the resulting Dh+1 is non-interfering. Thus, we need to show that if cwRayCut or cwSegCut do

not cross con(Ph), then the resulting Dh+1 is non-interfering.

P [w∗h, w
∗
h+1] does not cross con(Ph):

Since cwConnectorCut maintains the non-interfering invariant, for the duration

of this proof we will assume that P [w∗h, w
∗
h+1] does not cross con(Ph).
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Figure 2.32: The polygon Q is shaded, and Dh is dashed. The point p ∈ Dh is the first
ext-right heavy crossing with respect to con(Ph+1) that we find in a clockwise walk from
w∗h, and q is the previous ext-right-crossing.

P [vj , wh] does not cross con(Ph):

We know this because scanner did not call cwConnectorCut.

P [vj , wh] does not cross con(Ph+1):

(See Figure 2.28) If cwRayCut was called, then cwMissChoose determined that

P [vj , wh] does not cross con(Ph+1). (See Figure 2.31) Otherwise, if cwSegCut

was called, then by Lemma 11a, we know that the crossing it finds, w∗h+1, with
−→cw(vj) is strictly closer to vj than any crossing scanner and cwMissChoose visited

in P [vj , wh].

P [w∗h, w
∗
h+1] does not cross con(Ph+1):

By Lemma 10a, cwRayCut, w∗h+1 is the crossing between P [w∗h, w
∗
h+1] and

−→cw(vj) that is closest to vj . The same holds for cwSegCut.

(See Figure 2.30) Since P [w∗h, w
∗
h+1] and P [vj , wh] do not cross con(Ph) and con(Ph+1),

these two chains and two segments form the polygon Q.



CHAPTER 2. ALGORITHM TO FIND REFLEX-MINIMA-FREE COMPONENT 53

We will walk Dh clockwise from w∗h and as we walk, we may cross in and out of Q by

crossing con(Ph) or con(Ph+1). Note that this walk is not done by an algorithm, it is simply

part of the proof. If we cross into Q by crossing con(Ph), we will consider this crossing to be

a inh crossing. In a similar way, we also define outh, inh+1 and outh+1 crossings. Also, at

any given point, we will consider the number of inh crossings to be |inh|. Let |outh|, |inh+1|
and |outh+1| be similarly defined.

We know that Dh is non-interfering with respect to con(Ph), but assume that Dh+1 is

interfering with respect to con(Ph+1). Thus, either Dh+1 is ext-right heavy or not balanced

with respect to con(Ph+1). Note that by the construction of Q, the chains Dh+1 and Dh

both have the exact same crossings with con(Ph) and con(Ph+1). Therefore, we will prove

this property for Dh instead.

Dh is not ext-right heavy with respect to con(Ph+1)

(See Figure 2.32) Assume for the purposes of contradiction that Dh is ext-

right heavy with respect to con(Ph+1). We will show that then it is ext-right

heavy with respect to con(Ph) as well, a contradiction.

Let p ∈ Dh be an outh+1 crossing that is the first ext-right heavy crossing

with respect to con(Ph+1) found in a clockwise walk from w∗h. Let q ∈ Dh be

the previous outh+1 crossing. Since p is the first ext-right heavy crossing, q must

also be ext-right, because if it were ext-left, then p would not be the first that

is ext-right heavy.

Thus, P [q, w∗h] is balanced with respect to con(Ph+1) and thus at this time,

|outh+1| = |inh+1|. By the Jordan Curve theorem, we know that each inh

crossing is followed by either an outh or outh+1 crossing. Thus, immediately

after reaching q, we know that |inh| ≤ |outh| + |outh+1|. Similarly, |outh| ≤
|inh|+ |inh+1|. By this equality and these two inequalities, we know that at this

time, |inh| = |outh|. Also, at this time we are outside of Q.

Since p is the first ext-right heavy crossing, and since we are currently outside

of Q, if we continue our clockwise walk of Dh from q, there can be no other outh+1

or inh+1 crossings until we reach p. Since p is an outh+1 crossing, we must have

crossed into Q with an inh crossing first. Thus when we reach p, we know that

|inh| > |outh|, which implies that Dh is ext-right heavy with respect to con(Ph).

Therefore, Dh is interfering, a contradiction. Thus Dh is not ext-right heavy
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with respect to con(Ph+1).

Dh is balanced with respect to con(Ph+1)

Assume for the purposes of contradiction thatDh is not balanced with respect

to con(Ph+1). We know that |inh+1| 6= |outh+1| for Dh. Also, since Dh is non-

interfering, we know that |inh| = |outh|. Since both endpoints of Dh are not

in the interior of Q, the number of times the clockwise walk of Dh from w∗h

to wh enters Q must be the same as the number of times it leaves Q. Thus,

|inh+1| + |inh| = |outh+1| + |outh|, a contradiction. Thus, Dh is balanced with

respect to con(Ph+1).

con(Ph+1) is a pseudochord

Since vj is a cw-miss, we know that in the neighborhood of vj , the segment

con(Ph+1) is in the interior of P . If cwRayCut found w∗h+1, then by Lemma 10a,

w∗h+1 is an ext-left-crossing with respect to −→cw(vj). Otherwise if cwSegCut found

w∗h+1, then by Lemma 11a, we know that w∗h+1 is an ext-left-crossing with respect

to −→cw(vj). Thus, either way, w∗h+1 is an ext-left-crossing with respect to −→cw(vj).

Therefore, in the neighborhood of w∗h+1, the segment con(Ph+1) is in the interior

of P . Thus, con(Ph+1) is a pseudochord.

Thus con(Ph+1) is a pseudochord, and Dh is balanced and not ext-right heavy with

respect to con(Ph+1). Since Dh and Dh+1 have the exact same crossings with con(Ph+1),

we know that Dh+1 is non-interfering.

Lemma 12b. Let Dh be non-interfering, and let scanner find the ccw-miss vj ∈ Ph. When

ccwRayCut or ccwSegCut terminate, Dh+1 will be non-interfering as well.

2.5.3 The algorithm maintains our non-interfering invariant

We have shown that each time scanner finds a cw-miss, ccw-miss, or a crossing with con(Ph),

we will eventually cut Ph to yield Ph+1. The following lemma finally shows that each Ph

the algorithm generates will maintain the non-interfering invariant.

Lemma 13. The algorithm maintains the non-interfering invariant.
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Proof. We will use weak induction on the number of times the algorithm cuts some Pi to

Pi+1. Basis: Since P0 is a component, by Lemma 2, D0 is non-interfering.

Inductive step: Assume that Dh is non-interfering. We will show that Dh+1 is as

well. There are six function calls that may cut Ph into Ph+1, namely cwConnectorCut,

ccwConnectorCut, cwRayCut, ccwRayCut, cwSegCut and ccwSegCut. Respectively, Lemmas 7a, 7b,

10a, 10b, 11a and 11b show that these functions halt.

Lemmas 8a and 8b show that if cwConnectorCut or ccwConnectorCut cut Ph into Ph+1, that

Dh+1 is non-interfering. Lemmas 12a and 12b show the same for the cutters: cwRayCut,

ccwRayCut, cwSegCut and ccwSegCut. Thus, we have shown that all six cutters terminate and

maintain the invariant. Therefore, Dh+1 will be non-interfering and the invariant will be

satisfied.

2.6 Correctness and running time analysis

In this section we will show that getReflexMinFreeComp finds a reflex-minima-free component

in O(n) time. First we will show that it terminates in O(n) time. Then Lemma 15 shows

that it returns a reflex-minima-free component.

Lemma 14. Given P as input, where P has n vertices, getReflexMinFreeComp runs in O(n)

time.

Proof. First, getReflexMinFreeComp finds P0 in P in O(n) time. Then it passes P0 to scanner.

We use an amortized analysis to show that each time the algorithm removes z vertices from

a candidate component Ph, to obtain Ph+1, that it visited O(z) vertices. Without loss of

generality, let Ph be a candidate cw-component.

Only cwConnectorCut, cwRayCut, ccwRayCut, cwSegCut and ccwSegCut may cut Ph into Ph+1.

Respectively Lemmas 7a, 10a, 10b, 11a, and 11b show that these functions halt.

Let the clockwise walk of scanner visit j vertices before finding a crossing p ∈ con(Ph).

Because scanner alternates between the clockwise and counterclockwise walks, we know that

the counterclockwise walk of scanner also visited j ± 1 (we will ignore the ±1) vertices, the

last one being vg. Thus, scanner visit 2j vertices.

Next, scanner calls cwConnectorCut which walks counterclockwise from w∗h past vg until it

finds w∗h+1. It visits k vertices. We know that k > j because otherwise the counterclockwise

walk of scanner would have found a crossing before the clockwise walk found p. Altogether,
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scanner and cwConnectorCut visits 2j + k vertices and removes k vertices. Note that 2j + k <

3k ∈ O(k).

Let the counterclockwise walk of scanner visit f vertices before finding a crossing z ∈
con(Ph). This case is nearly identical to the above case. The clockwise walk of scanner also

visited f vertices and then cwConnectorCut walks counterclockwise from w∗h past z, visiting e

vertices, where e > f . We remove e vertices and 2f + e < 3e ∈ O(e).

Let the clockwise walk of scanner find the cw-miss vj and let P [vj , wh] have a vertices.

The counterclockwise walk of scanner halted after also visiting a vertices. The clockwise

walk of scanner calls cwMissChoose which walks P [vj , wh] again, visiting another a vertices.

Thus far scanner and cwMissChoose have visited 3a vertices. Then this function calls either

cwRayCut or cwSegCut. We will handle these two cutters together.

First assume that whichever cutter is chosen finds w∗h+1 without calling cwConnectorCut,

after visiting b vertices. Note that we do not know if a > b or b > a. We will remove the

chains P [vj , wh] and P [w∗h, w
∗
h+1]. Thus, we remove a+b vertices and visit 3a+b ∈ O(a+b).

Now assume that cwMissChoose called a cutter which crossed con(Ph) after visiting c

vertices. So far, scanner visited 2a vertices, cwMissChoose visited another a vertices, then

which ever cutter was called visited c vertices. This is 3a+c vertices in total. We know that

c > a because otherwise the counterclockwise walk of scanner would have crossed con(Ph)

before the clockwise walk found vj .

Upon finding crossing con(Ph), the cutter calls cwConnectorCut which again walks coun-

terclockwise from w∗h past this crossing to find w∗h+1 ∈ con(Ph). It will visit d vertices and

since the walk passes this crossing, we know that d > c. We remove d vertices and visit

3a+ c+ d < 5d ∈ O(d) vertices.

Note that if the counterclockwise walk found a ccw-miss and then the clockwise search

for w∗∗h+1 found a crossing with con(Ph) instead, the argument would be symmetric.

We have shown that if the algorithm cuts Ph to get Ph+1, it visits a number of ver-

tices that is on the order of the number of vertices it removes. Thus, getReflexMinFreeComp

takes O(n) time, and if P0 has m vertices, then the algorithm visits O(m) vertices before

terminating. Thus, altogether the algorithm takes O(n) time.

In this final lemma, we will show that eventually, for some candidate component Ph,

scanner will not find a crossing with con(Ph), a cw-miss, or ccw-miss. Thus, no cutter will

cut Ph. We will show that Ph is a reflex-minima-free component.



CHAPTER 2. ALGORITHM TO FIND REFLEX-MINIMA-FREE COMPONENT 57

Figure 2.33: The chains Ph and Dh do not cross con(Ph). The polygon A is shaded lighter
than B. The chain Dh contains one more convex maxima than reflex minima, and Ph

contains exactly as many reflex minimas as convex maximas. In this figure, Ph is not
reflex-minima-free. The vertex vk is a reflex minima and it’s counterclockwise neighbor is
a convex maxima. Note that the clockwise walk of scanner will not call a cutter, but the
counterclockwise walk will upon reaching the ccw-miss vk.

Lemma 15. Given P , the function getReflexMinFreeComp outputs a reflex-minima-free com-

ponent.

Proof. Lemma 14 shows that getReflexMinFreeComp halts. Let Ph be the final candidate

component that scanner processed. Without loss of generality, let Ph be a candidate cw-

component. By Lemma 13, we know that Dh is non-interfering. We also know that Ph

does not cross con(Ph), since if it did, scanner would have called cwConnectorCut instead and

produced Ph+1.

For the purposes of contradiction, assume that Dh crosses con(Ph). Since Ph does not

cross con(Ph), we know that Ph and con(Ph) forms a polygon A. Thus, if we walk clockwise

from w∗h, the first crossing with con(Ph) must be an ext-right-crossing. Thus, Dh is ext-right

heavy, a contradiction. Thus the pseudochord con(Ph) is a chord, and Ph is a component.

Now, we will show that Ph is reflex-minima-free.

(See Figure 2.33) Let the polygon bound by Dh and con(Ph) be B. Let vr be the

clockwise neighbor of w∗h, and let r ∈ w∗hvr be ε distance from w∗h. If ε is small enough,

P [wh, r] will not cross rwh since Dh did not cross con(Ph). To enable us to apply Lemma 1

to B, we replace con(Ph) with whr. By the lemma, we know that Dh has one more convex

maxima than reflex minima.

Applying Lemma 1 to P also shows that P has one more convex maxima than reflex

minima. Thus by the Pigeon Hole principle, A, and thereby Ph has exactly as many reflex

minimas as convex maximas.
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For the purposes of contradiction, assume that Ph is not reflex-minima-free. Thus it

contains at least one reflex minima vertex. Then, since Ph contains as many reflex minimas

as convex maximas, we know Ph also contains exactly as many convex maximas.

Without loss of generality, assume that in the clockwise walk of scanner, the variable

cwExtremums never goes below 0. This variable is incremented each time the clockwise walk

of scanner encounteres a convex maxima, and decremented each time it reaches a reflex

minima. Since Ph contains as many convex maximas as reflex minimas, we know that at

the end of this walk, cwExtremums == 0.

Therefore, we know that the last time cwExtremums was changed in this walk, it must have

been must decremented upon reaching some reflex minima vertex vk. If it was incremented

instead, then it would have originally been below 0. Thus, vk is a reflex minima vertex, and

there are no reflex minima or convex maxima vertices in P [w∗h, vk] \ vk.

Therefore, in the counterclockwise walk of scanner, vk is the first time ccwExtremums is

changed. Since vk is a reflex minima, ccwExtremums becomes−1 and scanner calls ccwMissChoose,

which will in turn call a cutter that cuts Ph to Ph+1, a contradiction. Thus, since Ph is the fi-

nal candidate component processed by scanner, we know that it must be a reflex-minima-free

component.

We have already proven the following theorem. Note that we will spend O(n) time to

find P0.

Theorem 1. Given P , which contains n vertices, the algorithm returns a reflex-minima-free

component in O(n) time.



Chapter 3

Algorithm to find nonredundant

component

In this chapter, we present Algorithm 9, which refers to the function getNonRedundantComp.

This function takes as input a general polygon P and returns a nonredundant component.

This function first calls getReflexMinFreeComp which takes a general polygon P as input and

returns a reflex-minima-free component with the help of scanner. Then if this component

is clockwise, it triangulates it with Algorithm 7, which is the function cwTrapezoidation.

Otherwise, it is counterclockwise and it uses ccwTrapezoidation (which is symmetric to the

clockwise case and thus omitted).

Note that cwTrapezoidation and ccwTrapezoidation do not actually compute the triangu-

lation of the component, but instead the trapezoidation, also known as horizontal visibility

map. However, Fournier and Montuno in [15] as well as Chazelle and Incerpi in [8], show

that you can convert a trapezoidation to a triangulation in linear-time. Furthermore, in

[1], the authors state that ”every published triangulation algorithm has concentrated on

improving the running time of producing a trapezoidation of a simple polygon.”

This algorithm obtains the trapezoidation of a reflex-minima-free component in linear-

time. It is a very simple algorithm and uses only a single clockwise walk and a single

stack.

A component is said to be cw-nonredundant if it is a cw-component and does not entirely

contain another cw-component. A ccw-nonredundant is similarly defined.

59
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The reflex-minima-free component and it’s triangulation then becomes input for Algo-

rithm 8, which is the function getCwNonRedundantComp. This algorithm is the central algorithm

of this chapter. The function getCwNonRedundantComp returns a cw-nonredundant component.

This cw-nonredundant component may not be reflex-minima-free. Thus, we call scanner

on it which will return a reflex-minima-free subcomponent if it exists. The resulting com-

ponent, if it exists, must be counterclockwise, since a cw-nonredundant component cannot

contain another clockwise component. However, if the original polygon was already reflex-

minima-free, then W will still store a clockwise component.

We again obtain the trapezoidation of the component stored in W with either the functions

cwTrapezoidation or ccwTrapezoidation. The triangulation based on this trapezoidation is used

as input to getCcwNonRedundantComp which returns a ccw-nonredundant subcomponent.

We will show that each step of getNonRedundantComp takes an amount of time proportional

to the given chain. Thus, it takes O(n) time to complete.

The function getCwNonRedundantComp is based on the main algorithm from the paper LR-

Visibility in Polygons by Das, Heffernan and Narasimhan [11]. This paper uses some very

heavy machinery including Chazelle’s very complex linear-time triangulation algorithm [7],

and Guibas, et al. [17] which computes a shortest path tree.

In Das, et al. [11], Chazelle’s algorithm is used only because Guibas, et al. [17] requires

a triangulation in order to obtain a shortest path tree in linear-time. However, since we

can reduce a polygon, or a component to a reflex-minima-free component, we are able to

triangulate it easily with cwTrapezoidation or ccwTrapezoidation and avoid triangulating a

general polygon.

3.1 Obtain trapezoidation of reflex-minima-free polygon

The triangulations of many classes of polygons can be computed by simple algorithms in

linear-time. For instance monotonic polygons, palm polygons [13], and star-shaped polygons

[15]. Below is another very simple algorithm that triangulates the class of reflex-minima-free

components, where the component has m vertices, in O(m) time.

In this chapter, without loss of generality, we will assume that we are given the reflex-

minima-free clockwise component Ph. We will draw trapezoidation edges that will be parallel

to con(Ph), that is, they will be horizontal.

First, consider the vertex vk ∈ Ph. Either both vk−1 and vk+1 are above it, both are below
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it, vk−1 is below and vk+1 is above, or vk+1 is below and vk−1 is above. Respectively, these

four classes partition the set of vertices into: minima vertices, maxima vertices, ext-right

vertices, and ext-left vertices. Each of these four classes can be broken into two sub-classes

depending on if it is convex or reflex. For instance, if a minima vertex is convex, then it is

a convex minima vertex.

This algorithm does a single clockwise walk and uses a single stack. As the walk goes

downwards, it pushes vertices onto the stack. Eventually, since Ph is reflex-minima-free, it

will make a right turn and walk upwards. If it made a left turn, Ph would contain a reflex

minima vertex. As it walks upwards it shoots rays to the left from the vertices on the stack

that are below the current vertex, if any, and then shoots one to the right from the current

vertex.

Note that we obtain these trapezoid edges in traversal order, so there is no need to

sort them at completion. Also note that because of our general position assumption, a

trapezoidation ray shot horizontally from one vertex cannot hit another vertex.

Algorithm 7 cwTrapezoidation ( Chain W )

Stack s = ∅
for each vertex x ∈W in cw order from W.cwNeigh(W.ccwEnd) to W.cwEnd do

if x is an ext-left or reflex maxima vertex then
while x is above s.peek() do

shoot trap. edge to left from s.peek() onto W.ccwEdge(x)
s.pop()

end while
shoot trap. edge to right from x onto the edge composed of s.peek() and the
vertex below it on the stack s

end if
if x is an ext-right or reflex maxima vertex then

s.push(x)
end if

end for

Lemma 16. The trapezoidation edges drawn by cwTrapezoidation form a proper trapezoida-

tion.

Proof. First, we know that only ext-right vertices and reflex maxima vertices are pushed onto

the stack. When these vertices are popped, the algorithm shoots a trapezoidation ray from

each vertex to the left. Also, all ext-left and reflex maxima vertices shoot trapezoidation
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rays to the right.

As the clockwise traversal walks downwards, we add push the ext-right vertices we

encounter to the stack. Note that the vertices on the stack are ordered by their height.

Eventually we will walk upwards. Since we are walking upwards, and the stack is also

in height order, we can accurately connect the vertices visited in this upwards walk with

the corresponding vertices stored on the stack. Consider a trapezoidation edge that the

algorithm generates, yvy, where without loss of generality, vy is an ext-left vertex. We know

that P [vy, y] and the segment yvy form a polygon Q. Therefore, if Ph crossed yvy, then

the lowest vertex vl ∈ Ph that is in the interior of Q would be a reflex minima vertex, a

contradiction.

Note that every vertex of Ph must be below con(Ph), otherwise the component would

contain a reflex minima vertex. Since our walk starts and ends at the same height as con(Ph)

and never goes above it, we know that we must have encountered an edge containing the

hit-point of each vertex on the stack. Thus at completion, the stack must be empty.

Lemma 17. Given a component Ph with m vertices, the function cwTrapezoidation runs in

O(m) time.

Proof. We do one single walk, which takes linear-time. During this walk, we push some

vertices onto the stack and then pop them off, and we never look beneath the top two

elements of the stack. Therefore, maintaining the stack takes amortized linear-time.

We have proved the following:

Theorem 2. The function cwTrapezoidation gives a proper trapezoidation of a reflex-minima-

free component in linear-time.

3.2 Shortest paths, shortest path trees, and order queries

In this section we define shortest paths and then shortest path trees. Shortest path trees are

the basis for order queries, the powerful tool that enable the functions getCwNonRedundantComp

and getCcwNonRedundantComp as well as the main algortihm of [11].

(See Figure 3.1) Let the point p ∈ P be on the edge vivi+1 ⊂ P , let the ray −→r be shot

from p, and let the ray contain a point a where a 6= p. The ray −→r is shot into the interior

of P if the sequence vi, p, a is a left turn. Similarly, let the ray −→s be shot from vs ∈ P and
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Figure 3.1: The rays
−→r1 ,
−→r2 , and

−→s4 are shot into the interior and
−→r3 and

−→s5 are not.

let a ∈ −→s and a 6= vs. The ray −→s is shot into the interior of P if the sequence vs−1, vs, a is

a left turn and if vs+1, vs, a is a right turn.

Figure 3.2: The thick black path is SP (q, vt)

(See Figure 3.2) For the points p, q ∈ P , the shortest path from p to q, denoted SP (p, q),

is an open chain with endpoints p and q with the following properties: (1) each of the

segments of this chain is a chord in P , (2) each segment in this chain, except for the first

and last, connects two vertices of P , and (3) the length of the path is less than any other

such path. Note that shortest paths are unique. Since the endpoints of a shortest path may

be vertices or points, we will refer to the points and/or vertices that define the points in a

shortest path as nodes.

(See Figure 3.3) Let the shortest path tree of P rooted at the point q, denoted SPTP (q),

contain the shortest path from q to every vertex of P . Note that each p ∈ P has a parent

in SPTP (q). The parent of p is the node of the tree SPTP (q) that can see p and that the

shortest path from this node to q is shorter than any other such node. Recall that Guibas,

et al. [17] computes a shortest path tree in O(n) time.

Heffernan in [19] and Heffernan et al. in Lemma 2 of [11], shows that we can use SPTP (q)
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Figure 3.3: The thick black tree shows SPTP (q). That is, the shortest path tree of P rooted
at q. Note that vp is the parent of p and q is the parent of vp in SPTP (q).

to run an order query in O(1) time that tells us whether a bullet shot into the interior of P

from p, lies in P [q, p] or P [p, q]. We will refer to this as an order query.

Let −→r be a ray shot from p into the interior of P and let a be a point on this ray where

a 6= p. Lemma 2 of [11] shows that if vp, p, a is a left turn, then the hitpoint of this ray is

in P [p, q] and if it is a right turn then the hit point is in P [q, p]. We will never run an order

query in which a ray is shot at a vertex.

If p is a vertex, then this is based on the parent of v in SPTP (q), which can be obtained

in O(1) time upon accessing a vertex of SPTP (q). Otherwise, this is based on the parent of

the segment that p lies in. Note that there are O(n) of these segments. In this chapter we

will only run order queries from vertices.

3.3 Find cw-nonredundant subcomponent in a reflex-minima-

free component

The function getCwNonRedundantComp detailed below in Algorithm 8 will take a component Ph

with m vertices as input and output a cw-nonredundant subcomponent in O(m) time. The

counterclockwise case is symmetric and is ommitted.

Now we will prove the correctness of the algorithm in two cases, one if Ph is clockwise

and the other if it is counterclockwise. Note that a counterclockwise component can be

cw-nonredundant. Then we will show the O(m) running time of this algorithm.

Lemma 18a. Let Ph be a clockwise component, and let vd be first reflex vertex found in a

counterclockwise walk of Ph from w′h where v′d ∈ P [w′h, vd], if such a vertex exists. If there

is such a vertex, vd, then cw(vd) is cw-nonredundant, otherwise Ph is cw-nonredundant.
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Algorithm 8 getCwNonRedundantComp (Chain W, Triangulation of W)

compute SPTPh
(W.cwEnd) and store parent of each vertex in W

for each reflex vertex x ∈W in ccw order starting at W.cwEnd do
if order query shows that x′ ∈W [W.cwEnd, x] then

search all of W [W.cwEnd, x] to find x′

W.delete(W.cwEnd, x′)
W.delete(x, W.ccwEnd)
return W

end if
end for

return W {W already stored a cw-nonredundant component}

Proof. Assume that there exists a component cw(vy), such that cw(vy) ⊂ cw(vd). We know

that vy ∈ cw(vd) and that v′y ∈ P [v′d, vy]. Therefore, v′y ∈ P [w′h, vy], so vd was not the first

vertex found with this property, a contradiction. Now assume that the walk found no such

vertex. Then there is no clockwise component inside of Ph, so it is already cw-nonredundant.

Lemma 18b. Let Ph be a counterclockwise component, and let vd be first reflex vertex found

in a counterclockwise walk of Ph from wh where v′d ∈ P [wh, vd], if such a vertex exists. If

there is such a vertex, vd, then cw(vd) is cw-nonredundant, otherwise Ph is cw-nonredundant.

Lemma 19. Given component Ph with m vertices, and a triangulation of Ph, the functions

getCwNonRedundantComp and getCwNonRedundantComp run in O(m) time.

Proof. Computing SPTPh
(W.cwEnd) by [17] takes O(m) time. Assume that the function

finds vx and returns cw(vx). To find vx, the function did no more than walk each vertex

of Ph, which is O(m) vertices. Thus it performed no more than O(m) order queries, which

each take O(1) time. Finally upon finding vx, if vx, it traverses the polygon at most one

more time to find v′x, which again takes O(m) time.

If the function did not find such a vertex, and simply returned Ph, then it visited each

of the O(m) vertices in Ph and ran at most O(m) order queries. Also for a total of O(m)

time.
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Note that traversing SPTPh
(W.cwEnd) in polygon order might take more than O(1)

time in between two adjacent vertices of Ph. Thus, we will assume that the data structure

Chain also stores a pointer for each vertex to it’s parent in SPTPh
(W.cwEnd).

3.4 Algorithm to obtain nonredundant component from a

polygon in O(n) time

Finally, we show the algorithm that uses all the prior algorithms to find a nonredundant

component of P .

Algorithm 9 getNonRedundantComp ( Chain V )

Chain W = getReflexMinFreeComp(V)
{W stores a reflex-minima-free component}

if W stores a cw-component then
Triangulation of W = cwTrapezoidation(W)

else
Triangulation of W = ccwTrapezoidation(W)

end if
W = getCwNonRedundantComp(W, Triangulation of W)
{now W stores a cw-nonredundant component}

W = scanner(W)
{now W stores a reflex-minima-free cw-nonredundant component, which may be clockwise
or counterclockwise}

if W stores a cw-component then
Triangulation of W = cwTrapezoidation(W)

else
Triangulation of W = ccwTrapezoidation(W)

end if
W = getCcwNonRedundantComp(W, Triangulation of W)
{now W stores a nonredundant component}

return W

We have already proven the following theorem:

Theorem 3. Given a polygon P with n vertices, getNonRedundantComp returns a nonredundant

component in O(n) time.



Chapter 4

Future work

Our algorithm finds any single nonredundant component in linear-time without a general

linear-time triangulation algorithm. The algorithm of [11] finds all of the components in

O(kn) time, where k is the number of disjoint nonredundant components, but with the use

of a general linear-time triangulation algorithm.

The k factor in their algorithm exists because each time they find a disjoint nonredundant

component, they compute a new shortest path tree. Perhaps it is possible to drop or lower

the k factor by recycling the original shortest path tree, and/or building many small ones.

Also, in general, our technique of pushing a pseudochord governed by the non-interfering

invariant, might be useful in solving other problems. It is a way to navigate through a polyg-

onal environment to a dead-end (nonredundant component). Perhaps it can be modified to

navigate more intelligently, so that it can explore a general polygon, or find something more

specific than just any nonredundant component.
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