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Abstract

Medical imaging continues to permeate the practice of medicine, but automated yet accu-

rate segmentation and labeling of anatomical structures continues to be a major obstacle

to computerized medical image analysis. Though there exists numerous approaches for

medical image segmentation, one in particular has gained increasing popularity: energy

minimization-based techniques, and the large set of methods encompassed therein. With

these techniques an energy function must be chosen, segmentations must be initialized,

weights for competing terms of the energy functional must be tuned, and the resulting func-

tional minimized. There are a lot of choices involved, and their consequences are not always

clear. In this thesis we explore the different consequences of these choices, and provide novel

methods to overcome two of the more significant problems encountered: local minima, and

parameter settings.

Keywords: medical image analysis; segmentation; deformable models; energy mini-

mization

iii



To my family. To my friends.

To the men and women who’ve sacrificed for our freedoms.

iv



“Everybody’s got their problems.
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Chapter 1

Introduction

Medical image segmentation (MIS) has important applications in computer-aided diagnosis,

statistical shape analysis, and medical image visualization. Several classifications of segmen-

tation techniques exist, including edge, pixel, and region-based techniques, in addition to

clustering, and graph-theoretic approaches [171, 128, 143, 121]. However, the unreliability of

traditional, purely pixel-based methods in the face of shape variation and noise has caused

recent trends [121] to focus on incorporating prior knowledge about the location, intensity,

and shape of the target anatomy [57]. One type of approach that has been of particular

interest to meeting these requirements is that of energy minimization methods due to their

inherent ability to allow multiple competing goals to be considered.

However, there are lot of unanswered questions when adapting energy-minimization–

based MIS methods to novel problems. Of utmost importance for a given MIS task are

these key questions:

1. What energy function should be used?

2. How should the energy function be optimized?

The main contribution of this work is both an exploration of, and a proposed solution

to, these questions. The hypothesis is simple, and may seem intuitive, but sometimes

the most obvious and intuitive solutions work. Rather than arbitrarily picking an energy

function, training data should be used to determine the energy function, and to setup the

optimizer. Once the energy function is setup, the optimizer that makes the least comprise

in accuracy should be selected. We propose that learned energy functionals will outperform

1



CHAPTER 1. INTRODUCTION 2

their handpicked counterparts, and that optimizing complex energy functionals directly will

provide superior accuracy to taking convex approximations to them.

This dissertation will be split into four main chapters. Chapter 2 will provide a depth

of background information on MIS using energy minimization, including a review of key

works, and some discussions on example problems. This introductory chapter will also

outline the issues that begin to arise in adapting state-of-the-art energy-minimization–based

MIS methods to real problems, namely the two questions posed above. The second chapter

outlines the energy function weighting problem in greater detail, proposes a solution, and

validates that indeed a significant improvement in performance is gained by learning the

weights for energy functionals. We have previously published the main contributions of

this chapter in the following publications [96, 98, 100]. The third chapter provides a more

in-depth look at the optimization problem itself, and compares the convex approximations

being rapidly adopted in MIS to our alternative solution that uses Genetic Algorithms (GA)

and non-convex shape spaces to remain more faithful to the desired energy function. This

chapter is published as [93, 97, 99]. Each chapter will compare our proposed solutions to

state-of-the-art alternatives, and discuss key advantages and weaknesses. We end with a

chapter of conclusions and future research directions in MIS.

The more detailed contributions of Chapter 3 are as follows. We explore the need for

varying the energy functional across images, demonstrating significant improvements in

accuracy over methods that use a fixed-set of weights for all novel images. We analytically

calculate the optimal energy functional weights of competing energy terms for training

(segmentation, image) pairs, and use that training data to infer weights for novel images

utilizing learned image manifolds. Our formulation is general, and can can be directly

applied to any energy minimizing segmentation technique to improve its segmentation and

increase its ability to generalize to larger datasets (e.g. [17, 18, 76, 126]). Our method is

able to fully automatically initialize and tune parameters optimally, with results presented

on a large (N = 470) data set of images, and as an added bonus it provides the automatic

cropping of images prior to segmentation for a 10 to 20 times speedup.

The more detailed contributions of Chapter 4 are an exploration of the application of GA

to deformable models as well as the development of a novel deformable-model based on lo-

calized shape statistics using hierarchical regional principal component analysis (HRPCA).

We fit complex, medial-based shape models to medical images under arbitrary energy func-

tionals through the use of GA. Essentially, we replace the traditionally used gradient descent



CHAPTER 1. INTRODUCTION 3

with GA, and convex, implicit, global shape statistics with non-convex, explicit, localized

ones. GA address the typical initialization, local minima problems associated with tradi-

tional energy-minimization techniques. Our unique application of a medial-based deformable

model with HRPCA maintains a statistically feasible shape model. HRPCA has the added

benefit that it also reduces the size of the search space by constraining the evolution to

deformations that are intuitive (stretch, bulge, bend) and are driven in terms of localized

principal modes of variation, instead of modes of variation across the entire shape. On a data

set of 50 mid-sagittal brain magnetic resonance images, our method compares favorably to

leading segmentation techniques, including convex / non-convex gradient based optimizers

and globally optimal graph-theoretic combinatorial optimization techniques.

In order to keep this thesis more specific, a number of related contributions and cor-

responding publications made during my PhD have not been included [58, 64, 94, 92, 95,

101, 59, 60, 62, 61, 102, 1]. Roughly speaking these contributions include: two co-authored

papers on interactive MIS [58, 64]; four first-authored papers on artificial-life models for seg-

mentation [92, 95, 101, 102], and a corresponding open-source artificial-life for MIS frame-

work with over 2500 downloads; three co-authored book chapters on deformable models

and artificial-life MIS techniques [59, 60, 62]; a co-authored journal paper on medical image

visualization in IEEE Transactions on Medical Imaging [61]; and a co-authored paper on

convex, multi-region, probabilistic MIS using the isometric log-ratio transform [1].



Chapter 2

Background and Motivations

This chapter surveys the field of energy minimization as it applies to MIS. In energy min-

imization methods of this nature, a function evaluates the goodness of a segmentation for

a particular image, and the minimization of that function yields the segmentation of the

image (Fig. 2.1). Though highly variant in nature, the application of energy minimization

methods to MIS is commonly built on five primary building blocks: (i) the energy function;

(ii) the segmentation representation; (iii) the image representation; (iv) the training data;

(v) and the minimizer. In what follows we provide an overview of each building block, and

the major works therein over the past few decades.

At a high level, energy minimizing deformable models work by deforming a user provided

initial shape to fit to a target structure in a medical image. Shape-changing deformations

result from the minimization, with respect to the shape, of a cost function measuring how

plausible is the shape model and how well it aligns with the boundaries of the target anatomy

in the image. Since the shape model itself is most commonly represented by a function, the

cost function is often termed an energy functional and its gradient is derived using methods

from variational calculus. The shape deformations are therefore typically simulated by

solving an initial value problem using gradient descent optimization algorithms [41].

2.1 Definitions and Foundations

We first give an outline of the energy minimization for MIS process. We define a gray-level

image Ii, and its corresponding segmentation (i.e. pixel lables) Si, each having N pixels.

Then I= {I1, I2, ..., IN} and S= {S1, S2, ..., SN} are sets of images and their corresponding,

4



CHAPTER 2. BACKGROUND AND MOTIVATIONS 5

Figure 2.1: (Color Figure) A corpus callosum (CC). (top) The CC is the band of nerve
fiber tissue connecting the left and right hemispheres of the brain. (bottom) An energy
minimization segmentation process. A shape model with progressively lower energy (left-
to-right), showing a minimum of the energy function in bottom right.

ground-truth segmentations. In a slight abuse of the notation, we occasionally omit the

subscript i from Ii and Si for clarity, and instead use I and S.

The first step in any energy minimization problem is the identification of the form of

the energy function. In the next section we will briefly group some popular energy terms

into three main categories: boundary, region, and shape. Boundary terms are concerned

primarily with the object boundary, region with the region inside or outside the object, and

shape terms with the shape of the object. Here we use these groupings to build a general

energy functional. It may be convex or non-convex, as can the shape space over which it

will be minimized. A general form is E(S, I,w) = w1×boundary(S, I)+w2×region(S, I)+

w3× shapePrior(S), with free parameter w = [w1, w2, w3]. We note that the boundary and
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F(r)

r

F(r)

r

undesired
boundary
with
dark 
intensity

target
boundary
with
darkest 
intensity

(a) (b) (c)

Figure 2.2: (Color Figure) Synthetic example of single parameter deformable model with
local minima. The circular deformable model’s only parameter is its radius r. The energy
function F (r) is minimal for the circle with darkest average intensity. The input image is
shown in (a) with the darkest outmost boundary representing the global minima. In (b)
two deformable models are initialized. In (c) after gradient descent, each model has moved
to the nearest minima.

region terms are often referred to as external terms, since they involve things external to

the shape model, while the shape prior is deemed an internal term. More generally, we can

write: E(S, I,w) = w1J1(S, I) + w2J2(S, I) + ... + wnJn(S, I), where Ji is the ith energy

term, and w = [w1, ..., wn] are the weights. Depending on the value of w, minima of E

tend towards best minimizing the boundary, region, or shape terms. We note here that

depending on the nature of S, E may be called an energy function or an energy functional,

with the latter indicating S itself is a function.

The segmentation problem is to solve:

S∗ = argmin
S

E(S|I,w), (2.1)

which involves choosing a w and, depending on the nature of the energy functional, may also

require training appearance and/or shape priors, and setting an initialization. A gradient

descent-based solver is typically used but combinatorial approaches have also been explored

for discretized versions of the problem [11] (see Section 2.1.5 for details). In either case, non-

convexity, or supermodularity for combinatorial problems, can be quite problematic. There

is no guarantee that another solution does not exist which better minimizes the energy,
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Figure 2.3: (Color Figure) An energy minimization segmentation process. A shape model
with progressively lower energy (left-to-right), showing a minima of the energy function in
bottom right. Notice the leaking into neighboring structures that occurs as a result of weak
edge strength.

and thus is potentially a better segmentation. Ideally both functional and shape spaces are

convex, guaranteeing globally optimal solutions. In Chapter 4 we explore how best to treat

non-convex functions.

We now begin our more in depth discussion of the different components of the energy

minimization for MIS process.

2.1.1 Energy Function

One of the earliest developed, and perhaps most recognized, examples of energy minimiza-

tion methods being applied to image segmentation is that of deformable models. Deformable

models for MIS gained popularity since the 1987 introduction of Snakes by Terzopoulos et

al. [154, 71]. However, with only smoothness and a simple image gradient-based boundary

term, these models were highly susceptible to weak edges, noise, and entrapment in local

minima (Fig. 2.3).

Since Snakes paved the way, there have since been numerous papers attempting to

increase accuracy by contributing novel energy terms, each designed to address a particular

class of images, or alleviate a particular problem with the original terms. As there have been

far too many proposals to survey them all, here we focus on the key terms, many of which

themselves have spawned numerous new approaches to MIS or changed the way we think

about the problem at hand. As much of the initial development focused on external energy
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terms, namely on the boundary and region terms that deal with the image processing itself,

we begin our discussion there.

One of the most fundamental problems noted with snakes relates to their boundary

capture range. If placed near a strong edge in an image, the contour would quickly snap to

the edge, but if initialized only a few pixels away the influence of the edge would not reach the

contour. There are, in fact, numerous causes of this problem relating to not only the external

energy terms[23, 17, 169], but also the way the segmentation was original represented (an

explicit contour - see Section 2.1.2 for details), and the minimization technique being used.

An early attempt to rectify the aforementioned problem was by adding a deflation or

inflation force to the contour that would attempt to shrink/grow it towards edges [23].

Rather than rely on a constant force, gradient vector flows extend the influence of edges off

into homogeneous regions, thus increasing the capture range [169]. Geodesic active contours

(GAC) were similarly developed by both Caselles et al. in [17] and Yezzi et al. in [170].

The approach of Caselles et al. formulated a deformable model optimization problem as

that of finding the optimal path in a Riemannian space. Termed geodesic active contours

(GAC), these popular deformable models work by minimizing curve-length, where length is

measured as the geodesic distance on a Riemannian manifold defined via an edge indicator

function. The shortest curve is then, by definition, the curve along the edges of the image,

and thus GAC automatically shrink the curve to the edges. GAC have become the canonical

example of boundary-based deformable models.

However, what about objects whose boundaries are not so crisp, due to their inherent

nature or noise (Fig. 2.3)? In these cases the intensity statistics of the area both inside and

outside the contour can be used to attempt to divide the image into maximally separated

regions. The approaches of Chan et al. and of Yezzi et al. [18, 157] were similarly developed.

Both are modeled after the Mumford Shah functional wherein images are approximated by

piecewise-smooth functions [108]. The approach of Chan et al. is referred to as active con-

tours without edges (ACWE), and has become a popular example of energy minimization

for image segmentation. However, in their initial formulations both methods approximate

images by piecewise-constant functions, i.e. objects are assumed to have a constant in-

tensity. When objects are noisy, or their intensity changes gradually, a piecewise-smooth

approximation is better suited, and thus an extension to piecewise-smooth functions was

developed [19].

When both boundary- and region-derived statistics are not enough, shape-based terms
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are used. Shape terms provide resilience to false boundaries by heavily penalizing the

implausible shape configurations that the false boundaries imply. The most basic terms

attempt to achieve boundary smoothness by minimizing curve length, segmentation area,

or curvature. More advanced terms compare the shape of the segmentation to some prior

model of the shape in an effort to minimize their dissimilarity [26, 28, 29, 30, 163, 76, 32,

33, 118, 36, 42, 127, 35, 160] (see Section 2.1.4 for discussions).

There has even been work trying to combine edge-terms, piecewise-constant terms, and

shape terms into a single formulation [15]. However, with so many competing assumptions

about the object and the image inherent in each formulation, some level of trade-off must

be established in the resulting functional (i.e. the weights, w, must be set).

If not appropriately set, the weights w can cause significant error. In fact, our results

demonstrate that optimizing the weights has dramatic effects; reducing error in large data

sets by as much as 60% [96]. However, optimizing the weights by hand for even a single

image can be a long and tedious task, with no real guarantee of obtaining the correct

segmentation. As such, there has been a number of works that seek to automatically set

the weights [96, 98, 152, 2, 150, 44, 73]. We defer a more detailed treatment of this topic to

Chapter 3.

2.1.2 Segmentation Representation

As expected, all functions must have domains and so in turn energy functionals must have

domains. That domain is the space of possible segmentations of the image, or shapes. There

are many different ways to represent the underlying segmentation, and that choice in turn

impacts the image and shape terms that can be readily evaluated. For example, a shape

using closed contours pairs most readily with region statistics. Here we summarize some of

the most prevalent shape representations in use.

Naturally, we start with the representation originally detailed by Terzopolous et al.,

namely the explicit contour model [154, 71]. Here the contour is defined as an explicit,

parameterized function of its arc length, thus integrating along the arc-length integrates

along the contour and allows for the evaluation of both internal and external terms (see

Appendix B for details). These methods were extended to represent not only contours, but

surfaces and volumes [104, 37, 146, 22, 24, 165, 89]. Other explicit models were introduced

relating to spring-mass systems, where each boundary point is a mass, connected to other

masses via springs [87, 106]. There can be other types of masses, namely internal nodes
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and medial nodes [125]. However, these aforementioned works are constrained to a fixed

topology, which posed problems in many applications.

There have been two major directions of work to address topological adaptability. The

first direction focused on novel ways to automatically re-parameterize the contour or surface

enabling the evolution into complex geometries [90, 86, 88, 91]. Initially developed in 2D,

T-Snakes, work by subdividing the image domain into a Freudenthal triangulation [90, 86].

At each deformation step the intersections of the contours with the triangular grids are

found, and a set of rules is followed to determine if the contour point should be split or

merged. This work was later extended to 3D, with the introduction of T-Surfaces [88, 91].

Delingette simultaneously developed a somewhat related approach where simplex meshes are

used to model the shape, and topological changes are performed “semi-automatically with

an automatic detection of topological problems, but a manual validation of all operations”

[38]. However, in both cases the explicit re-parameterization of the contour or surface can

be costly and may not generalize well to even higher dimensions.

Figure 2.4: An exemplar signed distance function as a shape representation. (top) A SDF
undergoing a simple deformation from left-to-right. (bottom) The zero level sets of the SDFs,
displaying the segmentation each SDF represents. Notice how the topology automatically
changes without any re-parameterization.
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In contrast, implicit contours were built from the ground-up to handle changes in topol-

ogy [116, 136, 17, 115]. In these representations the boundary is implied by a given function,

instead of explicitly defined. Implicit representations are built around the signed-distance-

function (SDF), where the object boundary is defined as the zero level set of the function.

Integrating over the domain of the SDF implicitly integrates over the contour and thus al-

lows for the evaluation of both internal and external terms, as before. Changes in topology

are handled internally by the shape representation and require no re-parameterization of

the model (Fig. 2.4). Similarly, other functions can be used to implicitly represent shapes

including characteristic functions [156], and probability maps [35].

More recently, graph methods have emerged where the segmentation is represented by

the assignment of labels to a graph [140, 3, 9, 4, 107, 13, 11, 12, 52]. Pixels are represented

as vertices in the graphs, and edges between pixel-vertices represent a connectivity neigh-

borhood. Energy functionals, often called cost functions in graph papers, are expressed as

sums over the vertices and their neighborhoods, that vary as a function of how each vertex

is labeled.

Finally, our discussion thus far has been limited to that of a single object class, but

it is also possible to represent multiple object classes at one time, using so-called multi-

class shape representations that are built on both implicit [174, 133, 119, 120, 159] and

graph-based representations [13, 53]. Implicit shape models are adapted to multiple classes

by defining multiple implicit functions, where the combinations and intersections of the

functions denotes which class is being represented. Graph methods, however, are extended

by increasing the number of possible labels for each vertex.

In the end, the choice of representation is ultimately determined by the desired segmen-

tation task. As such, it is worth noting that specialized models can exist, where a shape

representation is designed specifically for one type of anatomy. A popular example is that

of tubular-branching objects, namely vessels, where cylindrical models can be built and

deformed [114, 92].

2.1.3 Image Representation

As might be expected, how the image is represented, will impact how the terms of the

energy functional can be evaluated on it. In fact, early on there were many contributions

demonstrating how existing techniques could be modified to fit higher dimensional data,

vector-valued data [138, 134, 20, 7], tensor data [161, 131], texture-heavy images [119, 120],
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or even temporal data, as opposed to the static, 2D, greyscale images early algorithms were

presented on. Furthermore, numerous methods have been adapted to handle the intricacies

of specific medical imaging modalities including magnetic resonance images, and ultrasound.

As an example, we talk briefly about some of the issues inherent to angiography in Section

2.2.

2.1.4 Training Data

A substantial amount of knowledge is often available about anatomical structures of interest-

characteristic shape, position, orientation, symmetry, relationship to neighboring structures,

associated landmarks, etc. and about plausible image intensity characteristics, subject to

natural biological variability or the presence of pathology. Once collected, the training data

typically comes into the energy functional in the place of shape priors [28], but appearance

priors [30] have also been developed (See [66] for a complete survey). As shape priors have

been a particular area of interest in the field, here we discuss some of the key works.

In many applications, prior knowledge about object shape variability is available or can

be obtained by studying a training set of shape examples. This knowledge restricts the

space of allowable deformations to a learned shape-space that approximates the space of

anatomically feasible shapes [26, 28, 29, 30, 163, 76, 32, 33, 118, 36, 42, 127, 35, 160]. One

of the most notable works in this area is that of Cootes et al., where they introduced and

refined active shape models (ASM) [26, 27, 28]. In ASM, principal component analysis

(PCA) is calculated over a set of landmark points extracted from training shapes. The

resulting principal components are used to construct a point distribution model (PDM) and

an allowable shape domain (ASD). In a natural extension to their previous work, Cootes et

al. modify their method to include image intensity statistics [30]. Staib and Duncan con-

strained the deformable models in Fourier space by conforming to probability distributions

of the parameters of an elliptic Fourier decomposition of the boundary [147]. Statistical

prior shape knowledge was also incorporated in implicit, level-set–based deformable models.

Leventon et al. introduced statistical shape priors by using PCA to capture the main modes

of variation of the level set representation [76]. However, as Pohl et al. point out, level-sets

do not form a vector space and hence more accurate shape statistics could be captured by

transforming the shapes into a vector space using the logarithm of odds before performing

PCA [127].

Though simpler to optimize than their non-linear counterparts, linear models of shape
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deformation may not always adequately represent the variance observed in real data. Linear

shape models assume the data lies on a linear manifold, but shapes often lie on nonlinear

manifolds where the manifold’s properties are not accurately captured by linear statistics[45].

Picture fitting an ellipse to an ‘S’-like shape space. In order to include the entire letter

extraneous white-space (non-valid shapes) must also be included. Nonlinear shape models

have been introduced to address this problem [145, 29, 32, 33, 45, 36, 42, 31].

However, we argue that the problem with linear statistics, as described above, is not

necessarily due to the application of a linear model to nonlinear data but rather because

of the implicit nature in which the statistics are applied. Chapter 4 will provide greater

discussion and details on this problem, and demonstrate our proposed solution.

2.1.5 Minimizer

Once the image and shape representations have been set, and the problem formulated. All

that is left is to solve the minimization process, and obtain the resulting segmentation.

Though it may sound simple enough, this area has been a major focus of criticism of

energy minimization based methods over the years, and as such has recently become one

of the most focused areas for research. Specifically, in their original inception, many of

the aforementioned methods were plagued by problems of local minima and sensitivity to

initialization. Here we describe the changes and revelations in the field on this topic over

the past decade. For a complete review the interested reader is referred to the following

representative, but far from comprehensive, list [74, 112, 54, 34] for details.

Energy-functional minimization can be carried out in a variety of ways. One solution

is to perform explicit differentiation under the Euler-Lagrange equations, where each new

application with a modified energy functional must be accompanied by one such derivation

[154, 71, 18, 17] (see Appendix A for details). The result is a set of equations, which, if

satisfied, guarantee a stationary point of the energy functional. The solution is then obtained

through a gradient descent process where the change in the shape model (with respect to

an artificial time variable) is equated to the Euler-Lagrange equatuion, i.e. the deformable

models comes to rest when the equations are satisfied [154, 71]. There are, however, two

main drawbacks with this approach. Firstly, performing gradient descent in the presence

of image noise can lead to instability in the deformations over time [148]. Secondly, as the

number of dependent variables (shape, location, scale, orientation, etc.) increases so does

the complexity of the search space, which often increases the number of local minima and



CHAPTER 2. BACKGROUND AND MOTIVATIONS 14

requires the calculation of an increasingly large number of derivatives.

On the issue of stability, there has been work by Sundaramoorthi et al. on reformulat-

ing the gradient flow using Sobolev-type inner products, that induce favorable regularity

prosperities into the flow, thus bringing smoother deformations over time [148]. Recently

Bar and Sapiro introduce a Newton-type method built on more generalized norms than the

L2 norm, obtained by equating the Euler-Lagrange constraint to an artificial time variable

[8]. They include the Sobolev norm, and demonstrate improved results over L2 norms,

with faster convergence and more accuracy in the presence of noise. Unless used on convex

problems, however, these methods are still prone to local minima.

If local minima do not suffice global minima must be sought, and as such there have

been a number of recent approaches to obtaining the global optima of energy functionals

[3, 9, 4, 107, 11, 12, 52, 112, 5, 77, 14, 35]. There are three primary directions towards this

goal: min-paths, min-cuts, and convex approximations.

Min-path techniques are formulated on the basis of Dijkstra’s algorithm for finding

the shortest path in an undirected graph with nonnegative edge weights. They were first

presented for 2D interactive segmentation [3, 9], extended to 3D [3], and later specialized

to 4D for vessel segmentation [168, 77].

Graph cuts were demonstrated as a global minimization technique for a popular energy-

functional [17], as a special case of computing a geodesic on a Riemannian space whose

metric is computed from the image [11]. However, graph cuts have been shown to apply

only to a restricted class of energy functionals that are submodular [74], and their solutions

are discrete approximations to the continuous formulations whose accuracy is dependent on

the resolution of the approximating graph [11]. Naturally, as that resolution increases so

does their running time. Random walkers were developed in a similar nature, solving image

segmentation as a graph problem wherein the global optimum is obtained to a particular

cost function [52]. In fact, graph cuts and random walkers have been shown to be specific

instantiations of a single framework [142].

Another line of work has come from the relaxation of the underlying shape model from

a non-convex space to a convex one; thereby defining convex energy functionals which can

then be minimized instead of their non-convex counterparts. This convex relaxation work,

which began in 2004 with a simple restricted class of functionals [112], was later extended

to a broader class in [14], and then a similar work appeared in 2008 with the addition of

a shape prior [35]. However, restrictions still exist in that the functionals and the shape
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spaces they are optimized over must be convex when defined over the relaxed space, and

that the relaxed shape-space must itself be convex.

Though not guaranteed to find global optima, GA have also been applied to the mini-

mization of energy functionals [6, 7, 82, 155, 43, 110]. At a high-level, GA work by perform-

ing many simultaneous local searches, each individually optimizing the energy functional via

a random walk. At the end of the process, the search that yielded the lowest value for the

energy functional is adopted as the segmentation. However, as this topic is more pertinent

to Chapter 4, we defer our specific review of these methods to that chapter.

A somewhat related direction is that of multiobjective optimization, where each term

is simultaneously optimized rather than optimizing a linear sum of the terms (3.1). Hence,

in multiobjective optimization no weights are provided to combine the competing terms of

the functional, instead a solution is sought for which no term can be improved without

sacrificing another [25]. We defer a more detailed discussion of the works in this area to

Chapter 3, as the concepts relate heavily to the topic of weight optimization.

2.1.6 Related Methods

Though our discussion thus far has been focused on energy minimization methods for image

segmentation that follow the prescribed building blocks, there are a few bodies of related

research that follow a different path. Here we briefly detail two of them.

Relation to Bayesian Methods

Throughout this chapter we have examined numerous methods built on energy functionals

of the form: E(S|I,w) = w1 × internal(S) + w2 × external(S, I). However, an interesting

parallel to probabilistic approaches can be observed with a few simple assumptions and ma-

nipulations of this general form. Here we demonstrate that this model is actually equivalent

to performing image segmentation via Bayesian inference. First, we restate the segmentation

problem as:

S∗ = argmax
S

P (S|I,w) , (2.2)

where

P (S|I,w) =
P (I|S,w)P (S|w)

P (I|w)
. (2.3)
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Maximizing (2.2) is equivalent to minimizing its negative logarithm:

S∗ = argmin
S

(− logP (S|I,w)) , (2.4)

where = − logP (I|S,w)− logP (S|w), and the denominator has been removed as it has no

consequence on the minimization. Now suppose we model our probabilities as:

P (S|w) = e−w1×internal(S)

P (S|I,w) = e−w2×external(S,I)
(2.5)

then substituting back into (2.4) yields:

S∗ = argmin
S

(− logP (S|I,w)) = w1 × internal(S) + w2 × external(S, I), as before.

From here it becomes possible to examine many of the approaches previously cited, and see

what independence assumptions they are making from a Bayesian standpoint.

Relation to Segmentation via Registration

Thus far we have discussed methods where the dependent function of the energy functional

is one describing the shape of the current segmentation. However, a related field exists where

the dependent function is instead a transformation describing how one or more images are

related. This is the field known as image registration, and it involves finding a mapping

from one image to another, identifying which pixels in a source image map to which pixels

in a target image. Image registration can be used for segmentation when the mapping from

a novel image is found to a training image with a known segmentation, since that mapping

effectively labels the novel image. As this field is far to large and diverse to cover here, we

refer the interested reader to [83], and more recently [175], for a complete survey. We do

note, however, that many of the same issues discussed in this dissertation, i.e. global versus

local optima, and setting the weights for the energy functional, are also important problems

in registration.

2.2 MIS via Energy Minimization

As already noted in this chapter, energy minimization methods have been applied to a wide

variety of MIS problems. Two popular application domains are those of cardiac images, and

vascular images. As an example of how energy minimization can be applied to MIS, here
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we briefly discuss some key works relating to vascular segmentation. Though a complete

survey of energy minimization for MIS does not exist, the interested reader is referred to

[87] for a related survey of MIS using deformable models.

One structure of particular interest in the diagnosis and understanding of many diseases

is vasculature [16]. Vessel segmentation remains an interesting application area of energy

minimization methods because of its unique challenges. Firstly, the topology is complex,

and as such many of the already mentioned topology adaptive shape models were first

demonstrated in their application to vessel segmentation [91]. Secondly, the vessels are often

of very low contrast motivating advances in image terms [47, 167, 168, 158]. For example,

Vasilevskiy and Siddiqi built flux maximizing geometric flows based on the observation that

the gradient vector field near a vessel should be orthogonal to the vessel [158]. They define

a flux maximizing geometric flow as one for which the inward normals of the underlying

curve align with the direction of the gradient vector field. Near vessels the gradient vector

field points inward toward the vessel centerline, and thus maximizing the flux will align the

boundary of the segmentation to the boundary of the vessel. The last major challenge in

vessel segmentation is that the vessels can be very thin, pushing the boundaries of numerical

stability in many techniques and motivating new methods with increased stability to thin

structures [80, 148]. For example, Lorigo et al. modify GAC to deform along the medial-

axis of a tubular shape, as opposed to its surface [80]. For a complete survey of vessel

segmentation techniques the reader is referred to [75].

2.3 Discussion

Having briefly touched on each of the five primary building blocks of energy minimization

methods, we conclude with a discussion of the main issues concerning their usage for MIS.

Namely, issues relating to how to build the energy functional, represent the segmentation,

deal with the different imaging modalities themselves, train priors, and finally, how to

minimize the resulting system. We begin by touch briefly on issues relating to validating

the method, as that is a fundamental step in the research process, that we have not yet

discussed.

Every MIS method must be validated. There are two main approaches to validate a MIS

method: expert segmentations, and synthetic data; each of which has its own inherit advan-

tages and drawbacks. Expert segmentations can be time consuming and costly to obtain.
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Furthermore, expert segmentations suffer from both inter- and intra-operator variability

because multiple experts, or even the same expert on different days, can obtain differing

segmentations of the same object. Warfield et al. attempt to address problems with inter-

and intra-operator variability through an expectation-maximization algorithm that weights

different segmentations according to a variety of measurements and rules [164]. The key

advantage to expert segmentations of real medical data is that the data is real and hence it

demonstrates the applicability of the method to the problem at hand. Synthetic data can be

created by either physical or computational phantoms. Physical phantoms are those phys-

ically constructed and then imaged in some manner, whereas computational phantoms are

simulated using mathematical models designed to replicate human anatomy under specific

imaging protocols [21]. The main drawback in both cases is realism: segmenting a phan-

tom well does not necessarily mean real data will also be segmented with high accuracy.

The main advantage of synthetic data is certainty about the ground truth segmentations.

Whether real data or synthetic data, a measure of dissimilarity between the automatic

segmentation and the ground truth must eventually be computed. Standard approaches

for evaluating segmentation results given ground-truth segmentation include the Hausdorff

distance, Dice coefficient [39], the Jaccard index [69], and the Tanimoto coefficient [151].

In this dissertation we make use synthetic data for illustration purposes, and real data for

validation. For consistency, we will present all results using the Jaccard index [69], but defer

presentation of the formula until it is needed.

Choosing the right energy functional for the given task is a crucial first step. Ideally,

one hopes for strictly convex functions with their global minima lying at the correct seg-

mentations for a given set of images, but this ideal scenario is rarely the case. The main

challenges here are determining what energy terms could make a good functional, and how

to weight them in a such way as to best segment the images. We expand on this topic in

Chapter 3.

There are often two main concerns when choosing the segmentation representation.

Firstly, will it allow for the training of appropriate shape priors, and secondly, will it intro-

duce problems in the minimization stage. Some shape representations do not form vector

spaces, and thus performing statistics on them is difficult. Level sets (SDFs) are one such

example, where a specific method for computing statistics over the resulting shape space

was needed [127]. Level set-based representations can also cause problems in the minimiza-

tion stage, as they do not form a convex-space, and thus introduced non-convexity into the



CHAPTER 2. BACKGROUND AND MOTIVATIONS 19

minimization problem [35]. However, they remain a popular technique due to the sub-pixel

accuracy, and automatic handling of topological changes.

Each imaging modality has its own inherent problem associated with it relating to differ-

ent types of noise and spatial or temporal resolution of the structure of interest. As already

exemplified with a brief treatment of blood vessel segmentation methods, each application

can require customized energy functionals, segmentation representations, and optimization

strategies.

When training priors, one is often forced to balance two competing goals: having the

priors accurate versus having the resulting energy functional solvable. Linear statistics do

not often fit the training data well, but lead to easily solved energy functionals, whereas

non-linear statistics fit the data but are difficult to work with. The problem with linear

statistics, however, is often not necessarily due to the application of a linear model to non-

linear data but rather due to the global aspect of the shape statistics themselves, and due

to the shape representation to which they are applied. Global shape statistics are those

that model the shape variation of the entire shape simultaneously, i.e. each shape is a

single point in some high-dimensional space, and the statistics (linear or not) describe some

restricted set of that space. Many deformable model approaches adopt a boundary based

representation. As a consequence the statistics are calculated using boundary models of the

shape instead of models representing the interior and skeletal topology of the structures,

leading to a loss of accuracy (see Chapter 4 for details).

The primary problem in minimization remains how to globally optimize an increasingly

large set of energy functionals, as opposed to the restricted sets seen thus far [74, 14, 35].

Interestingly enough, even with global minima, existing functionals are not proving accurate

enough, motivating the search for new energy terms or ways of building functionals that

can better respect the image variability.

In short, developing MIS methods remains a daunting task from start to finish with

numerous areas for research relating to each of the five building blocks commonly found

in energy minimization techniques. However, with the ever growing popularity of medical

imaging for diagnosis and disease understanding, developing robust, automatic techniques

for MIS remains an important goal. In order to reach that goal we must continue to make

breakthroughs in terms of accuracy and reliability of MIS methods. To do that, we need to

consider where the bulk of the error and performance variability is coming from, so as to

best focus our efforts there.
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This dissertation does just that, and in doing so proposes novel solutions to two general

MIS problems. In Chapter 3 we demonstrate that the weights can be responsible for more

than 60% of the segmentation error, and provide a method to tune the weights automatically.

Then in Chapter 4 we consider the impact of the aforementioned issues in building a shape-

space, and the impact of choosing convex approximations to non-convex functionals and

shape spaces.



Chapter 3

Optimal Weights

Medical imaging continues to permeate the practice of medicine, but automated yet accurate

segmentation and labeling of anatomical structures continues to be a major obstacle to

computerized medical image analysis. Though there exists numerous approaches for MIS,

one in particular has gained increasing popularity: energy minimization-based techniques,

and the large set of methods encompassed therein. With these techniques segmentations

must be initialized, weights for competing terms of an energy functional must be tuned, and

the resulting functional minimized. There is a substantial amount of guesswork involved.

We seek to reduce this guesswork by analytically determining the optimal parameters, and

automatically initializing the optimization procedure.1.

3.1 Introduction

In the previous chapter we described an increasingly large number of energy terms that

are being developed. As a consequence of having so many different energy terms, a growing

problem exists in choosing the right terms for a given application, and in particular choosing

the relative importance, or weight, of each term. In this work we demonstrate the significant

impact choosing the correct weights can have on MIS (Fig. 3.1).

The primary goal of this work is to address two highly coupled problems in energy-

minimization–based MIS:

1. Choosing the energy terms to use: Ideally, the best energy terms are those

1This work builds upon and extends that presented in [96, 98].

21
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Figure 3.1: (Color Figure) An energy minimization segmentation process (red) with two
different sets of weights yielding very different accuracy. Each row employs a single set of
weights, with energy minimized from left-to-right. Initializations are shown in yellow. From
top-to-bottom, excessive boundary term weight, region term weight, and shape prior weight.
Bottom row demonstrates the optimal weights (Section 3.3, (3.4)), yielding the correct
segmentation. In all but the last row, the segmentation progresses erroneously, misleading
the user that different energy terms, or perhaps a different initialization or solver, is needed.
In reality all that was needed was a re-weighting of the energy terms (bottom row).

where the ground truth segmentation of each image is the term’s global optimum.

Traditionally, choosing the correct terms is a laborious task, performed manually, but

one that greatly impacts the methods accuracy. For example, a term may be found

to perform well for one image, and then poorly for a second image. A second term

may work poorly for the first image, but well for the second. In other words, one term

may not suffice for all images. Furthermore, though a term may individually perform

poorly, it may work well in combination with other terms, necessitating a setting of

relative importance between terms.

2. Choosing the relative importance of the energy terms: Two seemingly erro-

neous terms may be combined to provide a vastly better energy functional than either

term by itself, but there is a seemingly infinite set of possible weights to evaluate.

As before, the discovered weights may work well for one image, but poor for another.
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Leading to the question, is a single energy-functional sufficient for an entire set of

medical images? Or, is it better to automatically adapt the energy-functional to each

image, by modifying the weights on a per-image basis.

We propose that both problems can be addressed by automatically tuning the weights

using ground truth segmentations as training data. Rather than having a user painstakingly

try and select energy terms, and subsequently tune their weights, we outline a method to

automate the process on either an image-set, or a per-image basis (i.e. one set of weights

for a set of images, or a set of optimal weights for each novel image individually). In what

follows we elaborate on the finer points of the weight tuning problem.
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Figure 3.2: Segmenting ellipses with varying lengths of major and minor axes in noisy
images, using a simplified energy: energy(shape, image) = w × region(shape, image) +
(1 − w) × shapePrior(shape). (a) optimal values of w for each noisy ellipse image, given
its known segmentation, as calculated by our algorithm (Section 3.3). Circles are along
the diagonal. Brighter pixels imply higher values of w. (b) optimal values of w for each
image, without knowing its segmentation, as calculated by our algorithm (Section 3.4). Note
the similarity of the brightness pattern (weights) in (b) to that in (a). (a) and (b) span
the intrinsic 2D space (corresponding to change in major and minor axes) of the image
manifold learned from 225 ellipses. The locations of the example images in (c) and (d) are
indicated with small arrows in (a). (c) Segmentation of a noisy circle image with w = 0.347
(optimal parameter from (d)) (top) and with its optimal parameter w = 0.826 (bottom).
(d) segmentation of a noisy ellipse image with its optimal parameter w = 0.347 (top) and
with w = 0.826 (optimal parameter from (c)) (bottom). Note the need for different weights
to properly segment the different images.

3.1.1 The Building Blocks of an Energy Functional

Selecting from different combinations of boundary, region, and shape terms, we can construct

an energy functional for MIS. For example, in building a strong objective function for
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MIS it might be advantageous to combine boundary-terms, region terms, and shape terms

into a single formulation [15]. However, combining them requires determining the relative

importance (weights) of each term. At a high level the resulting functional would resemble:

energy(shape, image) = w1 × boundary(shape, image)

+w2 × region(shape, image)

+w3 × shapePrior(shape),

(3.1)

where w = [w1, w2, w3] are scalar weights. Classically, the weights, w, are manually set by

the user (empirically or by trial and error) or via an offline brute force (within reasonable

ranges) in an effort to balance the trade-off between the terms. For even the familiar user,

the weight setting process can be laborious with little intuitive understanding of how much

to change a specific weight, or exactly how the resulting segmentation will be impacted.

Instead, we seek to analytically determine the weights for an image, thus removing the need

for user involvement and adding greater automation and accuracy to the MIS process.

Using one or more training examples we build a method to automatically determine

the weights that best optimize a set criterion that analytically describes the best energy

functional. At a high level, we solve for the weights that encourage the ground truth

segmentation to be a minimum of the energy functional, while discouraging other incorrect

segmentations from being minima themselves. Furthermore, where sufficient training data is

available we present a technique that can infer the optimal weights, along with specialized

shape and intensity priors, for a novel image on a per-image basis. In what follows we

elaborate more on what it means to have different weights for different images.

3.1.2 Is a Single Energy Functional Sufficient?

Classically, the underlying assumption has been that once the function, parameters2, initial-

ization, and solver are in place, they can be fixed across all images. For example, consider

the weights w ∈ [0, 1]3 in the simplified formulation (3.1). Segmentation is performed by

finding the shape that minimizes the energy for a given image. As w3 approaches zero

the model will be attracted solely to image features. As w1, w2 approach zero the objective

2We identify two types of common parameters found in energy functionals: the weights w which balance
competing terms of the functional; and the parameters that describe the prior shape and appearance models
extracted from training data.
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function will favor smooth shapes with no regard to the image data. However, what if the

characteristics of the images vary across the data set?

For noisy images smoothness must be emphasized, while for highly curved structures

smoothness must be relaxed. Different patients have different anatomy, and they may be

imaged at different times with different noise. Therefore, is it realistic for a fixed set of

weights to address the variability present in meaningful medical image data sets? We argue

that it is not. Fig. 3.2 shows how even for a simple data set different images can have

different optimal weights, and weights that work for one image may not work for another.

The training data set used to provide the shape and appearance priors is also typically fixed

over the data set. A better approach is to adjust the training data, and hence the priors,

to reflect the desired segmentation. Suppose, for example, the shape prior is a Gaussian

distribution modeling a set of training shapes, but the shape distribution is a non-linear

space with locally linear segments, like for example, ‘S’-shaped. Modifying the training

set to include only a few likely shapes is advantageous as it accurately models the local

shape variation. This is akin to fitting 5 different Gaussians to an ‘S’-like shape space,

each modeling a locally straight part of the curve, instead of trying to fit a single Gaussian

that would include a lot of erroneous shapes (white space). Similarly, the initialization

should also be image-specific since the correct segmentation of that image is likely the best

initialization. Though different images need different parameters, we purport that similar

images will require similar parameters (See Section 3.4 for details).

Recent research has begun to address the idea that groups of similar images embedded

in R
N , where N is the number of image pixels, lie on manifolds [137]. However, there has

been little work on performing segmentation in a way that respects the image manifold,

i.e. method parameters reflect the data’s possibly non-linear variability and the energy

functional is custom tailored such that its minima lie on the corresponding points of the

segmentation manifold to the input images (Fig. 3.3).

The aforementioned problem of selecting parameters and initializing models is a serious

one that remains unsolved. This work addresses the problem. The goal is to produce energy

functionals with global, or at least local, minima for every (ground truth segmentation,image)

pair; since anything less yields a suboptimal solution for some of these pairs (Fig. 3.3). Our

approach is to expressly modify the energy functional with every new image to be segmented

by varying its parameters.
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Figure 3.3: Ideal energy functionals E(shape, image). Let graylevel image I and segmen-
tation S be represented as images with N pixels (P1 to PN ). Then {I1, I2, ..., IN} ∈ I, and
{S1, S2, ..., SN} ∈ S, are sets of images and corresponding segmentations where each element
is a point in R

N . Samples from I and S lie on manifolds MI and MS, respectively. Three
(S,I) pairs (left panel) positioned on their respective manifolds (right panel). Segmenting
an image is represented by a smooth mapping G : RN → R

N , since for each Ii there ex-
ists a corresponding segmentation Si. Similar images, I0 and I1, are nearby on MI and
require similar segmentations, S0 and S1. The ideal energy functional E(S, I0), is a convex
functional minimized at the segmentation S0 on MS.

3.1.3 Contributions and Related Work

Based on the previous discussions our hypotheses are three fold. First, we believe that

changing the weights will have a dramatic effect on the accuracy of a given method. Perhaps

not a bold hypothesis, but an analysis of the effect of weights is often not presented in MIS

papers. Second, we believe that learned parameters will outperform manual parameters.

Again, a reasonable assertion, but various works continue to set parameters by hand, by

trial and error, or by brute force. Third, where sufficient training data is available, inferring

the weights on a per-image–basis is superior to asserting that a single set of weights will

work for all novel image data of the same class of imaged objects. Our contribution is thus

an exploration of these three hypotheses, and a novel method that answers these questions.

To the best of our knowledge there are only a few papers on a related topic. In [48],

Gennert and Yuille find weights that cause the segmentation (i.e. the minimum of the en-

ergy functional) to have maximal energy, which does not address the need for ground truth

segmentations to be minima of the resulting functional. Though we are focusing on contin-

uous functionals, a related field of approaches has come up in the study of combinatorial

problems. The first set is based on recent advances in maximum margin estimation, wherein
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the parameters of the objective function are sought such that the ground truth structures

(in our case segmentations) have the least possible amount of energy in comparison to er-

roneous structures (segmentations) [152, 2, 150, 44]. As a natural contrast to max-margin

estimation, maximum-likelihood estimators have also been explored for weight optimization

[113]. However, in addition to being limited to combinatorial objective functions rather

than continuous ones, these methods [152, 2, 150, 44, 113] propose a fixed set of parame-

ters for novel samples (in our case images), whereas we provide a method using geodesic

interpolation to infer the optimal parameters on a per-image basis. In other words, these

works assume that a single set of parameters works for an entire test set. As demonstrated

in Fig. 3.2 this is often not the case in image segmentation. Greatly improved results can

be obtained by adapting the parameters to the individual images, as we propose.

Other methods seek to learn objective function weights, but instead of graph-theoretic

models, focus on active shape models (ASM) [173, 172, 166]. Zhang et al. develop a method

for learning a conditional density function over model parameters, which can then be locally

optimized to yield the desired segmentation [173, 172]. They propose different approaches

in [173] and [172], based on regression and ranking methods of learning, respectively. Wim-

mer et al. also learn functions over the model parameters using regression methods [166].

However, similar to the graph-theoretic models above, these approaches propose a single

set of weights for all novel images, as opposed to learning parameters on a per-image basis.

Furthermore, they are designed specifically for ASM, and may not be generally applicable

to implicit deformable models like level sets [136, 17, 18, 157] as the dimensionality of the

energy-functional is dramatically higher in the later.

Another related direction was introduced recently in [73]. Even though this method is

developed to find suitable weights on a per-image basis, it is restricted to combinatorial

objective functions and is also quite different than ours in design. Given a range of weights,

Kolmogorov et al.’s method simultaneously solves the objective function for a set of weights

that bound how the weights influence the solution. Each solution is then treated as a

potential segmentation. They propose a number of heuristics, including user intervention,

to select the best segmentation from a set of potential ones. In contrast our method seeks to

analytically determine the optimal weights for training data, and then automatically infers

those weights for novel images, thus automating the process. Lastly, Koikkalainen et al. [72]

use a nearest neighbors approach to initialize the segmentation procedure but do not define

optimal parameters for the model, nor do they make use of manifold learning to calculate
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distances, perform interpolation, or obtain optimal parameters for the model.

As noted in Chapter 2, a somewhat related direction is that of multiobjective optimiza-

tion, where each term is simultaneously optimized rather than optimizing a linear sum of

the terms (3.1). Hence, in multiobjective optimization no weights are provided to combine

the competing terms of the functional, instead a solution is sought for which no term can

be improved without sacrificing another. That solution is known as a Pareto optimal solu-

tion [25]. The set of Pareto optimal solutions for a given problem is known as the Pareto

front, and there is no preference amongst them unless a ranking is provided between the

objectives. Nakib et al. recently used multiobjective optimization to determine the param-

eters for a thresholding algorithm for image segmentation [109]. Hanning et al. present

an approach using a piecewise approximation of the image similar to the Mumford Shah

model [108] using multiobjective optimization to decide the trade off between the number

of segments and the image approximation error [65]. However, as none of these works has

weights to modify, there is no inherent way to encourage the ground truth to be a minima

of the resulting functional. It is also interesting to note that, for convex functions, if the

ground truth lies on the Pareto front, then by definition a set of weights must exist that

causes the optima to be the ground truth for the linear sum of terms formulation (3.1) [49].

Though multiobjective optimization removes the problem of setting the weights, in doing

so it also removes the ability to tune the energy functional for a given image.

Common to all of the aforementioned works is the acknowledgment that ad-hoc parame-

ter tuning is a serious problem in image segmentation, and that learning weights is superior

to hand-tuning. However, a study and corresponding method, on varying the weights on a

per-image basis has not been presented. In this work, we present such a study and propose

a method that allows weight learning on a per-image basis.

The main contributions of this work are, thus, as follows. To the best of our knowledge

ours is the first work to: (1) analytically derive the optimal energy functional weights of

competing energy terms for training (segmentation, image) pairs; (2) explore the need for

varying the energy functional in energy-minimizing segmentation techniques; (3) calculate

optimal parameters of novel images utilizing learned image manifolds; (4) provide a general

formulation that can be directly applied to any energy minimizing segmentation technique

(e.g. [17, 18, 76, 126]) to improve its segmentation and increase its ability to generalize

to larger datasets; (5) to fully automatically initialize and tune parameters optimally, with

results presented on a large (N = 470) data set of images; (6) to provide the automatic



CHAPTER 3. OPTIMAL WEIGHTS 29

cropping of images prior to segmentation for a 10 to 20 times speedup (more details on this

contribution will be presented in section Section 3.4).

In what follows we describe the theory behind our method (Section 3.2), and how to

analytically describe the optimal weights of a functional (Section 3.3). We then detail how

to apply our method to novel images (Section 3.4). Finally, we provide results in Section

3.5, and discuss our results and future work (Section 3.6).

3.2 MIS: Background and Foundations

As previously noted in Section 2.1.5, the Euler Lagrange provides the necessary condition,

under an L2 norm assumption, for the first variation of E to equal 0, i.e. a stationary

point. However, different methods use different norm assumptions, or even first derivatives

in place of first variations when E is simply a function. To remain abstract of which

method for differentiation is chosen, we’re going to write the functional derivative, which

is a generalization of the gradient, of E with respect to S as ES(S, I,w) = w1T1(S, I) +

w2T2(S, I)+ ...+wnTn(S, I), where Ti is the functional derivative of term Ji (think gradient,

but for functionals). This could be calculated, for example, by computing the Euler Lagrange

equations for E, provided one assumes the space of functions, S, to be locally Euclidean

(i.e. for small changes in S, an L2 norm is an accurate distance metric).

If not appropriately set, the weights, w, can cause significant error. In fact, our results

show that optimizing the weights can have dramatic effects, reducing error in large data

sets by as much as 60% (Section 3.5.2). However, optimizing the weights by hand for even a

single image can be a long and tedious task, with no real guarantee of obtaining the correct

segmentation.

Instead of guessing the optimal weights, suppose we write a function γ(w|Ij , Sj) eval-

uating how well weight w works for a given image-segmentation pair (Ij , Sj) such that a

parameter is deemed better when it causes S∗ in (2.1) to approach Sj , i.e. causes the min-

imum of E to be the correct segmentation. Given Sj , we could then calculate the ideal

weights for a particular image Ij by solving w∗ = argmin
w

γ(w|Ij , Sj). It is important that γ

itself be convex or globally solvable in w. If γ was not globally solvable, uncertainty would

remain in that some other w∗ may better minimize γ, and thus better segment the image.

Of course, the above definition of w∗ only works for a single image-segmentation pair

(Ij , Sj), where the ground-truth segmentation is already known. What we propose is to learn
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a function, w(I) : RN → R
n, i.e. a mapping from images to weights, which will enable us to

estimate the optimal weights w∗ for a novel image. For notational convenience, we define

the optimal weights for Ij as w∗(Ij), and the estimated weights from our learned function

as w(Ij). Where w appears without an argument, I, it is simply a vector of weights. We

will also write w1(Ij) when referring to only the 1st weight, and so on. Defining w as a

function of I enable us to write a new form of energy functional:

E(S, I) = w1(I)J1(S, I) + w2(I)J2(S, I) + ...

+wn(I)Jn(S, I).
(3.2)

3.3 Optimal Energy Functional Weights

For each (Ij , Sj), where Ij ∈ I and Sj ∈ S, the task is to find the optimal values for the

free weights w∗(Ij), so that we can later learn the mapping w(I). This section explores the

notion of ‘optimal’.

One computationally intractable approach for finding w∗(Ij) is to try all possible weight

combinations, run the segmentation method, and then select the weights with the least

segmentation error.

A better approach is to find the weights w∗ that minimize the magnitude of the deriva-

tive, in our case ES , of the energy functional at the correct segmentation Sj . Doing so

encourages Sj to be a minimum of E (i.e. ES(Sj |Ij ,w∗) = 0). We measure the magnitude

as ‖ES(Sj |Ij ,w)‖2, and seek the weights w that cause ‖ES(Sj |Ij ,w)‖2 → 0.

In addition to encouraging Sj to be a minimum of E, we must also discourage in-

correct segmentations from being minima as well. Therefore we minimize the magnitude

|ES(Sj |Ij ,w)|2 for Sj while maximizing it for all other possible shapes (in a direction toward

the optimal solution). For a given shape Si a vector (Si − Sj) in R
N represents the direction

towards Sj . Since ES(Si|Ij ,w) is a vector in R
N dictating in what direction, and by what

amount, the solution will change at the point Si, a normalized dot-product (projection-like

approach) will measure how much in the right direction ES(Si|Ij ,w) points.

Combining these two goals (minimize derivative for the ground truth, maximizing it for

erroneous segmentations), for an energy functional with a form like that in (3.2), we can



CHAPTER 3. OPTIMAL WEIGHTS 31

−10 −5 0 5 10
0

500

1000

S

E
(S
|I

,
w

)

−2 −1 0 1 2
0

0.5

1

S

E
(S
|I

,
w

)

Figure 3.4: Varying the shape of energy functionals. Left: Various functionals that show
an increasing extent to which the gradient at neighboring shapes points towards the correct
segmentation, represented by S = 0. Right: Various functionals that show how a set of
neighboring shapes can also become minima, a degenerate case.

define w∗(Ij) as:

w∗(Ij) = argmin
w

‖ES(Sj |Ij ,w)‖2

−λ
∑

i∈NS

FNS
(Sj , Si)ES(Si|Ij ,w) ·

(Si−Sj)
|Si−Sj |

s.t. w ≥ 0

w′1 = 1,

(3.3)

where NS denotes a set of nearby (or similar) shapes in the domain of E, and FNS
is used

to weight closer segmentations according to their proximity. The neighborhood NS is used

instead of the entire shape space to reduce computational complexity, and can be estimate

by manifold learning (see Section 3.4). The second term, dubbed the neighborhood term, is

negative and has ‖ES(Si|Ij ,w)‖ omitted from the normalized dot-product to reward large

steps in the correct direction. Solving (3.3), yields the optimal weights for image Ij . As

(3.3) can be written as a convex, quadratic, solving for w∗ is a fast, convex optimization

problem (See Appendix C for details).

However, notice that there is a weighting, λ, between competing terms of (3.3). A

balance must be struck between: (i) the degree by which Sj is a minimum of E; and (ii)

the degree by which the derivative at neighboring points in the shape space points towards

Sj (Fig. 3.4-left). Make λ too small and Sj might be a minimum, but so might the entire

neighborhood (Fig. 3.4-right). Make λ too large and the neighborhood will point in the

right direction, but Sj might no longer be a minimum.

One way to avoid λ is to shift the second term into a constraint rather than a weighted

term. In order to do so, we make use of recent research into convex functionals for image
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segmentation, where a convex energy functional, E, is minimized over a convex shape space

represented as probability maps, i.e. S(x) ∈ [0, 1] for all points x in the image domain Ω, to

yield a convex segmentation problem [35]. When E is convex our only concern appears to be

making Sj as much a minimum as possible, since there are no local minima. As a result we

can replace the neighborhood term by a constraint rather than a cost term since the degree

to which the neighbors point towards Sj does not change whether or not ES(w|Sj , Ij) = 0

(i.e. we must avoid forcing the gradient in the neighborhood to point at Sj at the cost of

making ES(w|Sj , Ij) 6= 0). Thus instead of (3.3) we re-define w∗(Ij) as

w∗(Ij) = argmin
w

‖ES(Sj |Ij ,w)‖2

s.t.
∑

i∈NS

FNS
(Sj , Si)ES(Si|Ij ,w) ·

(Si−Sj)
|Si−Sj |

≥ 1

w ≥ 0

w′1 = 1.

(3.4)

The result is a convex function in w under a linear constraint. A convex function under

a linear constraint can be solved via convex optimization, and thus the optimal w(Ij) is

guaranteed. It is entirely possible for an energy functional to be unable to satisfy the

constraint regardless of w, although we did not encounter this situation for even a single

result. In cases where the constraint cannot be satisfied a slack variable can be readily

introduced while maintaining convexity. In non-convex methods (3.3) would be used instead,

as the magnitude of the neighborhood term is important, as opposed to simply ensuring

it remains greater-than-or-equal-to one. Note that written in these forms, (3.4) is not

equivalent to (3.3) with λ = inf, because the later would completely ignore minimizing

‖ES(Sj |Ij ,w)‖2 in favor of minor improvements in the neighborhood term. Slack variables

could be used to write a single equation for both formulations, but the formulation would

be less direct for point of presentation.

Though not obvious at first glance, the segmentation, S∗, from energy functionals like

(3.1) is a maximum a posteriori (MAP) solution [149, 87], which is a regularized form of

maximum-likelihood estimation. The proposed methods of weight inference are designed to

minimize the derivative of the energy functional at the ground truth and thus make it the

MAP estimate. It is, therefore, natural to compare our model to a max-margin model [150].

We now briefly outline the max-margin approach outlined in [150], as we will provide

experimental comparisons in Section 3.5. Intuitively, the method seeks to find the weights
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that cause the correct segmentation to have lower energy than any other segmentation, thus

forcing it to be a minima of E. Mathematically, this means to cause Sj to be a minimum

of E(Sj |Ij ,w) by constraining E(Si|Ij ,w)−E(Sj |Ij ,w) ≥ ǫ for all possible shapes Si 6= Sj ,

while making ǫ as large as possible. The quantity E(Si|Ij ,w)−E(Sj |Ij ,w) ≥ ǫ, is known as

the margin. The maximization problem can instead be written as a minimization problem

as follows:

w∗(Ij) = argmin
w

1

2
‖w‖2 + C

(

1

|Ψ|

) |Ψ|
∑

i

ξi

s.t. Eiw
′ > ∆(Sj , Si)− ξi ∀Si ∈ Ψ

ξ,w ≥ 0

(3.5)

where

Ei = E(Si, Ij)− E(Sj , Ij) = {Jp(Si, Ij)− Jp(Sj , Ij)}
N
p=1 , (3.6)

Ψ is the set of all possible segmentations, |Ψ| is the cardinality of the set, ξ = {ξi}
|Ψ|
i=1 is

a set of slack variables that allow some segmentations to have negative margin, ∆ (Sj , Si)

is a distance metric measuring the difference between two segmentations, and C is a free

parameter controlling the trade off between maximizing the margin and penalizing the

slack. However, it is not feasible to compute the set of all possible shapes, and thus an

approximation algorithm for the constraints must be used (see [150] for details). It is

important to note that in order to compute the approximate constraint set, an iterative

procedure is used, whereunder the image must be segmented using the current guess at w∗,

yielding either S∗ = Sj or S
∗ 6= Sj . If S

∗ 6= Sj , then S∗ becomes a member of Ψ, if S∗ = Sj

the iterative procedure terminates. The constraints, if satisfied, avoid the degenerate case

(Fig. 3.4-right), but the method does not directly seek to make Sj a minimum of E. The

problem with (3.5) is subtle, but simple. By introducing slack variables, ξ, a balancing act

is introduced like in (3.3).

3.4 Segmenting Novel Images

Thus far we have considered calculating the optimal weights for images and energy func-

tionals with known segmentations (using (3.3) or (3.4)). Here we turn our attention to
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Figure 3.5: Overview of our proposed weight optimization method.

optimizing the weights for novel images.

The first approach is simple. Given our set of training image-segmentation pairs we will

have N samples of w∗(I), we can average the resulting weights and use the obtained average

for any novel image. If we artificially generate the neighborhood, NS, using [56], and assume

a uniform distance function, FNS
, then this approach requires no manifold learning of any

kind, but it does not address the problem of different images being better segmented under

different weights.

Our second approach is to interpolate over a learned manifold to find values at novel

images. In order to interpolate, we need a metric for measuring distances between images,

see below. The set of images with the shortest distances constitutes the neighboring images,

NI. The corresponding ground truth segmentations are denoted NS.

We assume I is smooth over its domain, the space of a particular class of images (e.g.

MRI brain scans of normal adults), and that the mapping from images to segmentations

is smooth. In other words, we assume that similar images have similar parameters, and

similar segmentations. As such, we use a normalized Gaussian kernel, defined over the

image distances, to interpolate both the parameters and initializations. For shape and

appearance priors, we limit the training data to NI and NS, since we are more confident

that the correct shape and appearance information is similar to the training data lying in

those neighborhoods. The process is summarized in Fig. 3.5.

Manifold learning methods are a special class of nonlinear dimensionality reduction

techniques that enable the calculation of geodesic distances between data points [153]. We

make use of these techniques to calculate distances between both images and segmentations.
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Distances between neighboring segmentations allow us to define

FNS
(Sj , Si) = 1−

g (Si, Sj)
∑

t∈NS

g (St, Sj)
(3.7)

where g(Si, Sj) is the learned geodesic distance between shape Si and shape Sj . The function

FNS
(Sj , Si) then acts as a weighting for the given neighborhood NS, normalized to sum to

one (i.e. the weight decreases as a function of distance from the center of the neighborhood).

An added benefit of finding the location of the novel image on the image manifold is

that an approximate segmentation can be obtained by interpolating over NS. Doing so

yields a good initialization for the energy-minimization process, and also allows a region of

interest to be automatically cropped out of the image, thereby reducing the image size and

increasing run speed. There is, however, a caveat to this discussion. Either the images need

to be affine registered, or the manifold needs to be trained sufficiently enough to include

degrees of freedom corresponding to variations in pose. For our results in this chapter we

chose to affine register the images because the off-the-shelf energy functionals we adopt,

specifically the shape priors, do not adequately reflect pose variations [35, 36]. Another

option would be to forgo auto-cropping, use a pose-invariant manifold learning method, say

one built on scale and rotation invariant Gabor filters [144], and then use a pose-invariant

segmentation method, like the one we develop in Chapter 4.

Though numerous points of uncertainty have been addressed by our method, there are a

few remaining free parameters: (i) the dimensionality of the segmentation manifold; (ii) the

dimensionality of the image manifold; (iii) the input image-distance metric used as input to

the manifold learning algorithm; (iv) the manifold learning algorithm to be used; and finally

(v) the interpolation function used to determine parameters for novel images, as a function

of their distance to similar images. As these choices are somewhat application dependent,

we include a specification of their values in the results section.

3.5 Results

We ran two primary sets of experiments. The first set, deemed the Training experiments,

explores which γ(w), as defined in section 3.3, is the best approach for obtaining the weights.

The second set, the Testing experiments, is designed to demonstrate the impact that infer-

ring the optimal weight on a per-image-basis has on segmenting highly variable data sets, in
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comparison to state-of-the-art approaches of using a fixed set of weights for an entire data

set.

All error results in each set are computed using the Jaccard distance (4.7) [69]. Where

run-times are presented, they are on a 2 GHz AMD Opteron, with method implementations

in MATLAB R© (2010a, The MathWorks, Natick, MA).

Unless otherwise noted, all results, including those for competing methods, use: the same

gradient descent optimizer for minimizing E(S|I,w); the same training data; as well as our

automatic cropping and initialization features. These steps ensure that our advantages over

competing methods are due to our weight optimization, as opposed to differences in opti-

mization, training data, or other features of our manifold-learning. As noted, the proposed

(3.3), includes a free parameter λ as does the max-margin approach, (3.5), [150]. In order to

ensure proper comparison between training and testing experiments, these parameters were

also fixed for all experiments. Both parameters were tuned by inspection over the range

(0,∞), starting at approximately 0 and increasing until a decline in training performance

was obtained. For (3.3), λ = 0.0333, and for (3.5), C = 1. The max-margin method, (3.5),

also requires a distance metric, ∆ (Sj , Si), which we set to the Hamming loss function as

suggested in [150].

3.5.1 Training Experiments

In order to explore which γ(w) is the best approach for obtaining the weights, we perform

our experiments on two medical data sets. After we conclude which γ(w) is optimal, we

demonstrate the impact weight optimization can have on MIS. Note that for all experiments

in this section the ground truth segmentation is assumed known, hence why we call these

training experiments, they measure each weight optimization technique’s ability to find the

best weights possible for the training data. In the next section complete leave-one-out

validation will be performed. Note, however, that for each image, both the original image

Ij , the ground truth, Sj are excluded from the shape and intensity training, respectively.

The first set is comprised of 470 256 × 256 affine registered mid-sagittal MRI, with

corresponding expert-segmented corpora callosa (CC) (Fig. 3.3). The CC is a bundle of

white matter fibre whose cross sectional area and shape correlate with neurological diseases

such as multiple sclerosis and schizophrenia [84]. The vast amount of data acquired in clinical

studies of these diseases motivates the necessity of a reliable CC segmentation algorithm.
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The second is a set of 14 256× 199 affine registered, axial MRI with corresponding expert-

segmented left- and right- lateral ventricles. Like the CC, the lateral ventricles play an

important role in brain function, and are a desirable structure for analysis in many disease

studies. Note, for space and ease of presentation, and unless otherwise noted, all results will

be presented as ε = x, y where x are results for the CC data, and y the lateral ventricle data,

since the same experiments are being run on both data sets. For clarity, tabular results are

presented separately.

In order to simplify the comparisons between different γ(w) functions, we focus our

experiments in this section on convex functions. By focusing on convex functions we elimi-

nate any issues relating to initializations, and instead focus on which method best fits the

training data. In particular, we adopt the approach of [35], where the shape S is described

using a PCA shape space with parameters, α weighting the main-modes of variation. See

[35] for implementation details. In order to learn a PCA shape space for the ventricle data,

we use the method of [56] which synthesizes additional training shapes based on exemplar

segmentations. Synthetic shapes created from Sj are removed from the training set for all

experiments on image Ij .

Our energy functional takes form as a boundary term, a regional term, and a shape

regularization term:

E(α) =
∫

Ω

(w1(I)h(x) |∇S(x)|+

w2(I)(f(x)S(x) + g(x)(1− S(x)))) dx+ w3(I)α
TΣ−1α

(3.8)

where α are the PCA shape parameters describing S, f = −log(Pobj(I)), g = −log(Pbk(I)),

for object and background intensity prior distributions Pobj , Pbk, h = 1
1+|∇I| , and Σ−1

characterizes the allowable shape distribution (see [35] for details). Notice that the en-

ergy takes the general form energy(shape, image) = w1 × boundary(shape, image) + w2 ×

region(shape, image) +w3 × shapePrior(shape), as before. The boundary term is perhaps

one of the most canonical boundary terms, taken from geodesic active counters (GAC) [17].

The region term is also a popular term based on the Mumford-Shah function [108], adapted

from [18]. In-order to compute the image neighborhood we use k-ISOMAP with k = 10, and

reduce the image space to a 5-manifold for each data set, chosen for being the elbow both

scree plots. For PCA on the shape spaces we retain K = 15 modes of variation for the CC

data and K = 140 for the ventricle data, chosen for being the elbows of the corresponding

scree plots. Note that the two data sets are processed completely independently with their
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own manifolds, shape spaces, intensity priors, etc.

Table 3.1: Error comparison between tested methods for CC images.

Method mean min max std. dev.

ε ε ε ε

Training
Szummer et al. (3.5) [150] 0.143 0.049 0.590 0.080
Proposed (3.3) 0.119 0.047 0.429 0.050
Proposed (3.4) 0.116 0.047 0.429 0.049

Testing
Szummer et al. [150], fixed weights 0.421 0.185 0.980 0.158
Proposed (3.4), inferred weights 0.121 0.049 0.465 0.056

Table 3.2: Error comparison between tested methods for ventricle images.

Method mean min max std. dev.

ε ε ε ε

Training
Szummer et al. (3.5) [150] 0.424 0.244 0.796 0.150
Proposed (3.3) 0.276 0.184 0.514 0.084
Proposed (3.4) 0.277 0.190 0.516 0.082

Testing
Szummer et al. [150], fixed weights 0.370 0.207 0.774 0.210
Proposed (3.4), inferred weights 0.278 0.195 0.529 0.084

Before running any experiments, we account for error relating to the decomposition of

the shape spaces into a linear combination of eigenvectors by computing the error for the

reconstructed ground truth segmentations. Using the Jaccard distance metric, ε, for K = 15

and K = 140, we found that ε = 0.1136, 0.0329 respectively, averaged independently across

the data sets (i.e. ε = 0.1136 for the CC data, and ε = 0.0329 for the ventricle-data). This

is effectively a lower-bound on how accurate our results with this segmentation method can

be.

Our experiments in this section are two-fold: we first measure how well the proposed,

(3.4), and the max-margin, (3.5), [150] perform for an idealized energy functional; second,

we measure performance for a realistic energy functional. Note that all experiments in

this section include the image to be segmented in the training data, and segment each

test image using the weights learned exactly for that particular test image. Though this

may seem peculiar, the point of this section is to measure how well eqs. (3.3), (3.4), and
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Figure 3.6: (Color Figure) Histograms of learned weights for the CC-images, using (3.4)
(left), and the max-margin approach, (3.5) [150] (right). Note in both methods there is a
great deal of variability, suggesting that a single set of weights will not perform well for a
large data set. Note that in general our method weights the region information (w2) higher,
whereas the max-margin approach weights the boundary term (w1) higher.

(3.5) perform, not how well a given energy functional, or method of inferring weights for

novel images performs. In other words, these experiments directly compare each equation’s

ability to cause S∗ to approach Sj for each (Ij , Sj), where Ij ∈ I and Sj ∈ S. We call these

experiments ‘residual error’ experiments, because they represent the error left over after

everything has been optimally setup for the energy functional.

To measure how well eqs. (3.3), (3.4), and (3.5) can balance an ideal energy functional

(one for which the minimum can be positioned exactly at the correct segmentation using the

optimal weights) we calculate the error of energy functional (3.8) plus a fourth term whose

unique global minimum is always the correct segmentation for the given image (i.e. we gave

the functional weights w the power to achieve 100% accuracy by adding a rigged, strictly

convex term with an optimum at exactly the ground truth for each image). Using this rigged

term, and eqs. (3.3) and (3.4) we obtained an average error of ε = 0.1136, 0.0329; exactly

the lower bound noted earlier, validating that our method can achieve the full potential

of a given functional. Using (3.5), we again obtain an average error of ε = 0.1136, 0.0329.

Examining the resulting weights vectors, we note that from both (3.3) and (3.4), we obtain

w∗ = [0 0 0 1], whereas (3.5) yields w∗ = [0.0161 0.0067 0.0050 0.9723 ]. The minor difference

in weight vectors can be attributed to (3.5) opting to further increase the margin by including

portions (non-zero weights) of other terms. However, examining the run-times, we see that

our proposed method, eqs. (3.3) and (3.4), are much faster to optimize than the max-margin

technique, (3.5), as the latter is an iterative procedure requiring the engery functional to

be optimized at each step, while our method requires only the solution to a single convex-

quadratic. Specifically, (3.5) took on average, 5.85, 3.21 iterations-per-image to converge,

resulting in an average runtime 92.8, 65.7 seconds, versus one iteration and 0.512, 0.284
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seconds for both eqs. (3.3) and (3.4). Of course, a faster segmetnation method would speed

up (3.5), but at 18.4, 20.47 seconds-per-image the method is reasonably fast, and even at

1-second-per-image (3.5) would still take 5.85, 3.21 seconds, much slower than 0.512, 0.284

seconds-per-image, especially when training large data sets.

Finally, to measure how well eqs. (3.3), (3.4), and (3.5), can balance a real energy

functional we calculate the error of energy functional (3.8) using each equation. Using

energy functional (3.8) with (3.3) we obtained an error of 0.119, 0.276, whereas with (3.4)

we obtained ε = 0.116, 0.277. Using (3.5) ε = 0.143, 0.424; an increase in error of about 23%

and 53%, respectively. Results are summarized in tables 3.1 and 3.2, for the CC data and

the ventricle data, respectively. Though the difference between eqs. (3.3) and (3.4) is minor,

(3.3) could suffer from poor choices of λ, and so where applicable, i.e. when using convex

energy functionals, we focus on (3.4). As there is only a negligible change in run-times from

the previous experiment, we do not re-include those results here.

To further examine the results, we present the histograms of the learned weights for the

CC data using eqs. (3.3) and (3.5) (Fig. 3.6). There are two interesting results to note. Keep

in mind, all weights are kept positive, to ensure convexity of (3.8), and normalized to sum

to one, since all scalar multiplies of w imply the same segmentation. Firstly, both methods

kept the weight on the shape prior relatively low, but they disagreed on the weights for the

region and boundary terms (w1, w2, respectively). Our proposed method, (3.4), prefered

to give the bulk of the weight to the region term, while the max-margin approach [150],

(3.5), weighted them more equally. Secondly, both methods resulted in a high degree of

variability in the weights, implying that a single w will not perform well for an entire data

set, but rather should be varied across the data set. We further explore this in the next set

of experiments.

Returning to the topic of picking the best equation to optimize the weights, from these

results we concluded that (3.4) is the faster, more accurate choice for weight optimization.

Finally note that, eqs. (3.3) and (3.4) can be used to choose both the terms and the

weights of a given energy functional, since setting a term’s weight to zero is equivalent to

not choosing it.

3.5.2 Testing Experiments

In the last section we validated our proposed weight optimization equations in comparison

to the max-margin equation proposed in [150], regardless of the inference method used to



CHAPTER 3. OPTIMAL WEIGHTS 41

obtain weights for novel images. In this section we validate the amount of influence optimal

weights can have on the accuracy of an energy functional when optimized for each image,

and validate our proposed method of weight inference on a per-image-basis. We conduct

four main experiments.

Before detailing our experiments we note that as this chapter is about the application

of manifolds to segmentation, issues related to learning the manifold will not be addressed

in this work. Our results demonstrate that these manifolds can indeed be learned, even for

small data sets. We will also show that the manifold learning itself contributed only a small

fraction of the error, and thus focus for improving results should be on the energy functions

themselves not the manifold learning process.

Our first experiment tests our hypothesis that similar images will have similar weights,

and that those weights can indeed be learned. We tested our method on a synthetic data

set of 225 noisy ellipse images, where only the major and minor axes lengths of the ellipses

are varied, i.e. a 2-manifold. Keeping the variability low allows direct visualization of

the resulting manifolds. To learn the manifolds we used a MATLAB implementation of

k-ISOMAP [153] from http://isomap.stanford.edu/. Sample images are shown in Fig. 3.2

(c) and (d), while (a) shows how the smoothness weight w varies gradually as a function of

the manifold, with more eccentric ellipses having the least smoothness requirement. For this

example we set k = 7 in k-ISOMAP, and reduce the image space to a 2-manifold. Adopting

the Chan-Vesse energy functional of [18] and using leave-one-out validation, we compare

between two scenarios: (i) fixed initialization with the average ellipse and fixed parameters

obtained by averaging the set of optimal parameters; and (ii) adaptively chosen optimal

parameters and initializations as functions of the coordinates of the novel image on MI.

We found a 47.1% reduction in average error using optimal parameters over fixed (0.190 vs

0.358). This means that almost 50% of the error was due to erroneous parameters and/or

initializations.

In what follows we demonstrate our method on real data, using the previously outlined

CC and ventricle data sets. In our first experiment we use energy functional (3.8), but

apply leave-one-out validation. We test two techniques, weight inference for novel images

using the proposed method (3.4), and weight inference using the max-margin technique

proposed in [150]. We have already demonstrated that on a per-image basis the proposed

method outperforms max-margin during training, but here we test the differences between

our proposed approach of making w a function of I, and the standard approach of fixing
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Figure 3.7: (Color Figure) Ventricle segmentation results for 6 of the images. (red) Auto-
matic, optimal parameter segmentations for proposed method, (3.4), demonstrating the full
range of error, measured in ε.

w constant for all I (as is used in [150]). When weights are fixed for all images, i.e. do not

vary as a function of the images, we term them fixed weights.

We summarize the different results between our proposed method and [150] in tables

3.1 and 3.2, for the CC data and the ventricle data, respectively. The main note of interest

is that the accuracy of our proposed method in testing outperforms max-margin in both

training and testing for both data sets. As expected, given the weight histograms, our

proposed method of adapting the weights on a per-image basis significantly outperforms

the fixed weight technique reducing average error by more than 70% for the CC images,

and 24% the ventricle images; a similar performance increase to what was obtained with

the synthetic ellipse examples. We suspect the smaller performance difference was obtained

with the ventricle data due to the smaller nature of that data set, making it easier to fit a

single set of weights to the entire data set. A set of ventricle segmentations for our proposed

method are shown in Fig. 3.7, notice that even in the worst case the segmentation is not
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Figure 3.8: Visualization of the learned weighting function w1(I). (Top) w1(I) as a function
of the image, sorted by training values of w1(I) in blue. Values of w1(I) obtained during
testing are shown in red. (Bottom) Three equally spaced samples at w1(0), w1(235), w1(470).
Notice the increasingly fuzzy boundary as the images progress from left-to-right, where the
leftmost image has mostly a boundary-based energy-functional, and the rightmost image
has been assigned a predominantly region-based energy-functional.

widely erratic. We also provide a visualization of the learned function w(I) for the CC

images in Fig. 3.8. We have sorted the images by their w1 values obtained during the

training experiments in order to make a 1-D image manifold that we can then plot the

w1(I) testing-function over. The weights learned during testing, plotted as red-dots, are

very similar to the training function, demonstrating that our manifold learning was indeed

able to adequately locate neighborhoods of similar images for each of the novel images.

Furthermore, examining the set of images in the bottom panel of the figure, which are

evenly sampled from along w1(I), we notice an intuitive result. As the boundary of the CC

becomes increasingly blurred, the boundary weight, w1, decreases.

In order to analyze how well our method performs on generalizing to novel data we also

test leave-235-out (i.e. training on the remaining 235), leave-370-out (i.e. training on the
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Table 3.3: Error comparison between training sizes for CC data.

Method training mean min max std. dev.

size ε ε ε ε

Testing
Proposed (3.4) 50 0.231 0.225 0.235 0.005
Proposed (3.4) 100 0.186 0.179 0.189 0.004
Proposed (3.4) 235 0.129 0.124 0.135 0.005

remaining 100), and leave-420-out cross-validation(i.e. training on the remaining 50) for

the CC data. For each training/testing size, 5 different training/testing permutations of

the data set are tested, and the results are averaged across the 5 permutations. Results

are included in table 3.3, and statistics are calculated across the mean error in each of the

5 permutations. Interestingly, there is only a minor change in accuracy for leave-235-out

testing when compared to the leave-one-out testing experiments in table 3.1 (ε = 0.129 with

leave-235-out versus ε = 0.121 with leave-one-out). Naturally, more complicated weight

distributions would require more training data to accurately model. Furthermore, though

the error with leave-420-out validation is higher, it still outperforms the fixed weight max-

margin approach [150], despite the later being trained on 469 images (leave-one-out). In

other words, even in the presence of lower training set sizes, inferring the weights for each

novel images out performs using a fixed w for all images.

Before moving onto a new energy-functional, we also make a note about the localized

shape spaces resulting from our manifold-learning process. As mentioned earlier, once a

novel image is located on the image manifold, the shape prior can be constructed using the

segmentations of nearby images, as opposed to the entire training set. Doing so effectively

creates a localized shape space, that in the case of energy-functional (3.8), is convex. When

sufficient training data is available, this is actually a very powerful added benefit of our

technique, reducing shape space error from ε = 0.187 to 0.114, averaged across all 470 CC

images (i.e. a reduction of 39%).

Lastly, we perform experiments with non-convex methods. We define the energy func-

tional as a weighted combination of terms from [17, 18, 36] with its functional derivative as

in the form of:
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EΦ = w1(I)g(c+ κ) |∇Φ|+ w2(I)∇Φ · ∇g

+w3(I)
(

H(Φ) |I − c1|
2 +(1−H(Φ)) |I − c2|

2
)

+w4(I)∇ΦE
nonlinear
shape .

(3.9)

where Φ is the level set representation of S, H(Φ) is the Heaviside function, and c1, c2

are average intensities as defined in [18]. We set c = −2.0, since w1 will scale accordingly

regardless of its value, and use g as defined in [17]. To demonstrate our method’s per-

formance with different energy functionals, two leave-one-out validation experiments were

performed: (i) optimal parameters vs hand-tuned parameters, no outside intensity term (

H(Φ) |I − c1|
2), and no auto-cropping (Fig. 3.9 left); (ii) optimal parameters vs averaged

optimal parameters, the complete function and auto-cropping enabled (Fig. 3.9 right). As

this functional is a level-set formulation [136], it is significantly higher dimension than that

of [35], so we also use this example to test the impact of our auto-cropping on both accuracy

and speed. With auto-cropping enabled segmentation took approximately 25 seconds per

image, as opposed to 3 minutes. As with our previous experiments, significant reductions

in average error are obtained via per-image weight learning: 0.20 vs 0.54 in experiment (i),

and 0.14 vs 0.17 in (ii); yielding improvements of 63% and 18%, respectively.

3.6 Discussion

Choosing the right energy functional is a crucial first step in building a MIS technique.

Ideally, one hopes for strictly convex functions with their global minimum lying at the

correct segmentations for a given set of images, but this ideal scenario is rarely the case.

The main challenges here are determining what energy terms could make a good functional,

and how to weight them in such a way as to best segment the images. In some sense the

decision comes down boundary versus region versus shape prior, as those are the broadest

classification of different terms.

In a typical energy minimization approach the parameter setting, initialization, and

minimization phases are well known to be problematic. When a method fails, there are often

unanswered questions: what if a different initialization was used, what about a different

minimizer, what if different weights were used between competing terms of the energy

functional? Hence, the source of erroneous segmentations cannot be easily pinpointed to

the energy functional as opposed to one of the many unknowns of the segmentation process.
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Figure 3.9: (Color Figure) CC segmentation results. (Top) Error plots where Mx1 and Mx2
are the maximum values of the optimal parameter error result for experiment (i) and (ii),
respectively. (Bottom) Automatic, optimal parameter segmentations demonstrating the full
range of error.

The goal is to reduce and ultimately eliminate these points of uncertainty.

On the practical side, we motivated and outlined a new fully-automatic technique for

MIA, which addresses the parameter-setting, and initialization problems. Our approach

requires training, mimicking the reliance of humans on example images to learn, and incor-

porating into the learning new images as they are segmented. Our results in the testing

experiments clearly demonstrate our method’s ability to segment a large number of unseen

images, which we foresee carrying over to other datasets and objective functions. On the the-

oretical side, we explored the consequences of using fixed parameters for energy-minimizing

MIA techniques, defined the notion of optimal weights that favor convex energy functionals,

and demonstrated a relation between image manifolds and energy-based segmentation.

There are two additional interesting observations to make from our results. Firstly, for

the CC images in both training and testing our proposed method’s accuracy approaches the

lower bound imposed by PCA of 0.1136, whereas for the ventricle data, it does not. An

improved shape prior must be obtained for the CC data in order to improve accuracy. This

is because the segmentation method being tested was an energy functional defined explicitly

over the weights of the modes of variation of the shape prior, i.e. it could not segment objects
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outside of the PCA shape space. A shape space with greater respect for the anatomy would

have lower error since it could more accurately address novel CC images. As previously

noted the PCA shape space error for the ventricle data was smaller, at 0.0329. The low value

implies that the shape space was better than that used for the CC data, but this does not

consider the amount of erroneous segmentations each space can represent. Still, the results

for the ventricle data could also be improved by a better shape prior. However, instead of a

shape prior that allows for greater anatomical variability, the ventricle data requires a shape

space that greater restricts the erroneous segmentations. Secondly, based on this discussion

one would have expected the non-convex, non-linear shape-based energy functional, (3.9),

to outperform its convex counterpart as the convex space is likely to include many erroneous

segmentations due the non-linear variability of anatomy. While our implementation of [35]

is convex on a per-image-basis, the training data, and hence the shape space, is customized

to each image, what we referred to as a localized shape space, and is therefore non-convex

in context of the set of all images. Had we used a fixed shape-space for all images the

error would have been at least 0.187, which is higher than the results obtained with (3.9).

In Chapter 4 we define terminology to better discuss these issues, and propose a shape

representation that allows for better shape statistics. Our results in Chapter 4 compare

favorably to [35], the PCA-based shape representation used for the convex results in this

chapter with energy functional (3.8).

In summary, we have demonstrated the merits of using optimal parameters for MIS, but

raised new questions as to how exactly to find those parameters. Our proposed method

outperformed the ad-hoc hand-tunning that is currently used in most research settings.

However, it is worth noting that in some cases different images will not require different

weights. In the end it comes down to the stability of the features in the image set. If the

strength, and therefore relative importance, of a feature decreases across the set of images,

then naturally the weight of the corresponding energy term needs to vary as well.

Our future work focuses on extending and testing these methods in 3D MIS, as well as

multi-region segmentation approaches where each region can have different weights [1].



Chapter 4

GA-HRPCA

We explore the application of GA to deformable models through the proposition of a novel

method for MIS that combines GA with non-convex, localized, medial-based shape statistics.

We replace the more typical gradient descent optimizer used in deformable models with GA,

and the convex, implicit, global shape statistics with non-convex, explicit, localized ones.

Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to

model initialization, pose estimation and local minima, through the simultaneous evolution

of a large number of models. Furthermore, we constrain the evolution, and thus reduce the

size of the search-space, by using statistically-based deformable models whose deformations

are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of

variation, instead of modes of variation across the entire shape that often fail to capture

localized shape changes. Although GA are not guaranteed to achieve the global optima, our

method compares favorably to the prevalent optimization techniques, convex / non-convex

gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimiza-

tion techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal

brain magnetic resonance images1.

4.1 Introduction

The primary goal of this work is to address two open and related problems in deformable-

model–based MIS:

1 c©2011 IEEE. Reprinted, with permission, from [99]. This work builds on that presented in [55] and
extends [93, 97].

48
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1. Shape model fidelity: The ideal shape model must capture the anatomical variabil-

ity of the target anatomy without representing invalid shapes. However, the better

the shape model the harder it becomes to formalize and optimize in a segmentation

framework. For example, a convex shape-model is readily formulated and optimized,

but inaccurately fits a non-convex shape-space; non-convex shape-spaces are more

accurate, but are harder to formalize and optimize. By the same token, localized,

medial-axis–based shape statistics better respect anatomical variability than global

statistics[124], but their inherent non-convexity makes them challenging to optimize.

There is a trade-off: gain optimizablity, lose fidelity.

2. Optimizability: As the objective function of a deformable model more faithfully en-

codes the desired properties of the target anatomy, the energy landscape becomes more

complicated and problems with initializations and local minima arise. For example,

adding pose to even convex shape-model–based deformable models is well known to

cause non-convexity [35]. At the expense of the desired faithfulness, recent trends have

focused on ensuring global optima by simplifying the objective function through the

use of convex, or submodular, approximations and shape spaces [11, 12, 52, 112, 14, 35].

Thus trading fidelity for optimizability. Where this sacrifice is not practical, a different

solution is required. Genetic algorithms (GA) are a powerful alternative optimization-

technique that place very little requirement on the objective function, but to the best

of our knowledge they remain entirely unexplored in their application to localized

shape-based image segmentation. There are, however, some existing applications of

GA to deformable models (See Section 4.1.3 for details).

In what follows, we elaborate on these open problems, and propose our solution that com-

bines GA with localized shape training. There is a trade-off in 1) and 2) above. Shape

model fidelity is desirable, but lowers optimizability. Optimizability is desirable, but lowers

fidelity. We will use GA to mitigate the trade-off that is usually required between between

1) and 2) above, allowing complex shape models while reducing problems with initializations

and still being able to attain solutions close to the global optimum.

4.1.1 Shape Model Fidelity

As briefly discussed in Section 2.1.4, linear models of shape deformation may not always

adequately represent the variance observed in real data. Linear shape models assume the
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data lies on a linear manifold, but picture fitting an ellipse to an ‘S’-like shape space.

Nonlinear statistics are often used [145, 29, 32, 33, 45, 36, 42, 31] in order to improve shape

model fidelity (i.e. reduce the number of erroneously represented shapes), but we propose

a different solution.

We argue that the shape model fidelity problem is not necessarily due to the application

of a linear model to nonlinear data but rather because of the implicit nature in which the

statistics are applied. By implicit we mean the statistics attempt to model variation in the

shape, rather than variation in the parameters governing the deformations themselves. Note

that we are not referring to the shape representation being implicit or explicit, but instead

whether the deformations are implicitly or explicitly studied. Implicit shape statistics result

from the majority of previous deformable model approaches adopting a boundary-based

shape representation, aside from a few exceptions [124]. As a consequence, the statistics are

calculated using boundary models of the shape instead of models representing the interior

and skeletal topology of the structures. Studying the underlying structural changes of a

shape allows deformations that were previously non-convex to be decomposed into linear

models. We refer to these as explicit shape statistics since they are calculated over the very

parameters responsible for varying the object’s shape. Consider an object represented by

a single pixel. Different images of the object show the pixel moving around in a circle. A

non-linear function is required to describe the pixels motion and hence no linear statistics

can capture the motion adequately as long as it is the object’s x, y position being studied.

However, once decomposed into a function of sin and cos, the underlying parameter that

controls the objects variability is linear in its variation, and hence linear statistics will have

greatly improved shape model fidelity. The same argument carries forward, albeit more

complexly, to a more complex object. A simple bending of a shape’s medial-axis is a linear

deformation under the appropriate representation, as it’s simply a rotation of some of the

medial-nodes (Fig. 4.1). However, the bending is a highly non-convex deformation once

embedded in the image domain, as either an implicit shape [127] or an explicit-boundary

based model [28].

In addition to being implicit in nature, the statistics are often global in nature, whereby

global we mean the statistics attempt to model variation in the entire shape. In other

words, each shape is a single point in some high-dimensional space, and the statistics, linear

or not, describe some restricted set of that space. Global shape statistics are unable to

restrict deformations to particular locations of the shape model or anatomy. Furthermore,
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as most dimensionality reduction techniques are designed to preserve variance, small changes

in shape are discarded to preserve larger ones. Though small in scale, those changes can

represent true signal changes (i.e. not due to noise) in a localized region of a shape [162, 111].

Global deformations can not adapt to localized variations in shape, which are often of high

interest, e.g. regions of pathology.

Decomposing implicitly complex deformations, like bending an object, into simpler linear

parameters is made possible through localized shape statistics defined over a medial-based

shape representation, which allows deformations to be further quantified into specific types

(bending, bulging, stretching) that can be linearly measured. Specifically, medial-axis–

based 2D shape representations enable such deformations by describing the object’s shapes

in terms of an axis positioned in the middle of the object, along with thickness values

assigned to each point on the axis that imply the object’s boundary. Rotating part of the

medial axis produces bending deformations, increasing the thickness along part of the axis

creates bulging, and lengthening the medial-axis produces a stretching of the object.

Medial-based shape representations have been emerging as a powerful alternative to

boundary-based techniques [10, 40, 55, 58, 123, 141, 135]. In addition to decomposing

seemingly complex deformations into their linear variables, medial-axis representations also

avoid having to define absolute positions of boundary points. With medial-axis representa-

tions, deformations like bending the object are performed directly on the medial-axis, which

implicitly moves the boundary and ensures the affected boundary points move together. By

comparison, with a boundary representation, one has to carefully move all the connected

points to ensure boundary continuity. Statistics on the nonlinear manifolds of medial rep-

resentations have also been proposed [45]. However, there has been little exploration of

building deformable models using these shape representations and their corresponding shape

statistics [124, 93]. In this work, we explore this very notion by building a medial-based

deformable model with deformations governed by explicit, localized shape statistics.

4.1.2 Optimizability

As reviewed in Chapter 2, energy-functional minimization can be carried out in a variety of

ways through various forms of optimization. One solution is to perform explicit differenti-

ation under the Euler-Lagrange equations, where each new image segmentation application

that requires a modified energy functional must be accompanied by one such derivation.
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(a) (b)

Figure 4.1: (Color Figure) Shape deformations of the boundary of the corpus callosum (CC)
under its global modes of variation using a boundary-based model (a) and a medial-axis–
based model (b). In (a) the mean shape is shown in blue. The red and green contours
indicate a positive and negative deformation of the CC along the first principal component.
Notice the global and linear statistics in (a) enforce a very un-natural deformation of the
shape compared to the deformations in (b).

The result is a set of conditions, which guarantee a stationary point of the energy func-

tional. The solution is then obtained through a gradient descent process where the change

of the shape model (with respect to an artificial time variable) is equated to the Euler-

Lagrange equations. When applied to typical deformable models, which are represented by

non-convex energy functionals, the optimization process still requires initialization at some

optimal target location of an image, with some shape, orientation, and scale. Together, the

location, orientation, and perhaps the scale of the shape model are referred to as the pose.

Depending on the initialization, a different segmentation is typically obtained, and different

initializations can therefore produce different amounts of segmentation error (Fig. 4.2). It

is, as such, common for deformable models to be described as having problems with local

minima. One proposed solution is to use convex energy functionals, which by definition

have no local minima.

Simply put, though they can be globally optimized, convex energies and shape spaces

may not be expressive enough to capture the characteristics of the segmentation problem

at hand as accurately as their non-convex counterparts. In other words, they may not

faithfully encode the desired properties of the target anatomy. This is especially true for

the shape spaces, as our results demonstrate later in the chapter (Section 4.3). Similarly, not

all energy functionals and shape spaces can be represented convexly. There is thus a trade-

off: gain global optimality but likely lose accuracy. As a consequence, these works do not

provide a definitive solution to the problem. Another solution present in the optimization
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Figure 4.2: (Color Figure) Building on the synthetic example of a single parameter de-
formable model with local minima in Fig. 2.2. The circular deformable model’s only pa-
rameter is its radius r. The energy function F (r) is minimal for the circle with darkest
average intensity. The input image is shown in (a) with the darkest outmost boundary
representing the global minima. (b) A traditional deformable model is initialized at a single
point (red) while GA-based statistical deformable models are initialized at multiple loca-
tions (green) and perform mutations on r. (c) The GA converges to the global minimum
(darkest), while the gradient descent based deformable model gets stuck in a lighter local
minimum.

literature when initialization and local minima are problematic is GA, a method which is

largely unexplored in relation to shape-model–based deformable models.

To re-emphasize the argument of the previous paragraph we pose the following question:

Is it worth sacrificing the complexity of the energy functional, and thereby reducing its ability

to address image variability, in exchange for global optimality, or can more complex functions

and shape spaces be utilized with an approximate optimization method and achieve superior

accuracy? Our hypothesis is that while convex approximations to non-convex functions and

shape spaces can be globally optimized they sacrifice fidelity to the data and, in doing so,

are less accurate than non-convex spaces and functions optimized using GA. We propose

a novel method that uses GA to overcome the initialization and local-minima entrapment

typically encountered in non-convex problems. While we are not guaranteed global optima,
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our results show that using non-convex shape spaces our method can outperform convex

shape spaces under the same energy function (Section 4.3), i.e. the energy function remains

fixed, while only the shape constraints and solvers are varied.

4.1.3 Contributions and Related Work

To summarize the previous sections, in order to be applicable to MIS, deformable models

require learned, intuitive shape models, and a level of robustness to initialization. It is well

known that implicit shape statistics, though easily represented and applied to deformable

models, provide unintuitive deformations of shape and often fail to adequately represent

non-convex, localized deformations [124]. Localized shape statistics are more intuitive to

clinicians, and better represent local variations in shape, but the proposed methods remain

largely unapplied to deformable models. Robustness to initialization can be handled through

convex optimization methods, but there are drawbacks in that not all energy functions are

convex, convex functionals may not faithfully represent the segmentation problem, and

convex shape-spaces may not accurately summarize the variability of the target anatomical

structure. Therefore, what is desirable is a method that generalizes to a larger class of

functionals (convex or not) while allowing the exploration of the search space in a manner

that still converges towards an optimal solution. The method must allow the exploration

to be carried out from a variety of initial locations, and enable it to be done in a way that

reflects the non-convex, localized variations of shape in terms of bends, bulges and stretches.

We propose one such method.

In this chapter, we explore the application of GA to deformable models as well as pro-

pose a novel deformable-model based on localized shape statistics using HRPCA (as defined

in Chapter 1). Our main contribution in this chapter is a novel method for fitting com-

plex, medial-based shape models to medical images under arbitrary energy functionals. In

a narrower sense, our new segmentation method replaces gradient descent with GA, and

convex, implicit, global shape statistics with non-convex, explicit, localized ones. GA ad-

dress the typical initialization, local minima problems associated with traditional energy-

minimization techniques. Our unique application of a medial-based deformable model with

HRPCA maintains a statistically feasible shape model. It also reduces the size of the search

space by constraining the evolution to deformations that are intuitive (stretch, bulge, bend)

and are driven in terms of localized principal modes of variation, instead of modes of varia-

tion across the entire shape. Though not expressly guaranteed to find the global optimum,
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our method compares favorably to leading segmentation techniques, including convex /

non-convex gradient based optimizers and globally optimal graph-theoretic combinatorial

optimization techniques, on a data set of 50 mid-sagittal brain magnetic resonance images.

Though prior works have used GA for MIS, here we limit our discussion to those pertain-

ing to deformable models. For a comprehensive survey of the use of GA for MIS, the reader

is referred to [85]. A few methods have used GA to minimize traditional deformable models

[6, 7, 82, 155, 43, 110]. Ballerini extends the classical active contour models [154] by using

GA to directly minimize the standard energy functional [6]. Members of the GA population

are hypothetical shape configurations, represented by their explicit contour locations. The

method was later extended to color images by using one image term per color channel [7].

MacEachern and Manku presented a similar method using a binary representation of the

contour [82]. Similarly, Tohka presented simplex meshes paired with image-based energies,

minimized via a hybrid GA-greedy approach, and applied the technique to the segmenta-

tion of 3D medical images [155]. Fan et al. also develop a GA method for an explicit active

contour, but describe their method using Fourier descriptors and employ parallel GAs to

speed up minimization [43]. A different shape representation, known as topological active

nets, is used by Ibáñez et al. to enable the segmentation of objects with unknown topolo-

gies, or even multiple objects in the same scene[110]. However, aside from simple boundary

smoothness constraints all of these methods are based on classical active contour models or

their variants without incorporating prior shape knowledge, making them prone to latching

to erroneous edges and ill-equipped to handle gaps in object boundaries. In [67], GA were

used with statistically-based ASMs, where the parameter space consists of possible ranges

of values for the pose and shape parameters of the model. The objective function to be

maximized reflects the similarity between the gray levels related to the object in the search

stage and those found from training. Additional works use convex, implicit, global shape

statistics assuming a Gaussian distribution around a mean shape [50, 132, 103]. Mignotte

and Meunier [103] incorporate prior shape information by defining the mean as a circular

deformable template, while [132] uses a PDM for occluded shape reconstruction, and [50]

uses a level set shape representation and a learned mean from training data. Although

these techniques apply GA to produce generations of plausible populations of shapes, the

statistically-based deformations are global (over the whole shape) and their convexity may

not offer the required flexibility to accommodate for shape variations that are restricted to

particular locations, nor are they intuitively defined (bulge, bend, stretch) deformations.
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In summary, though GA have been used to optimize both classical, and shape-prior–based

deformable models, they have not been applied to deformable model methods incorporat-

ing localized, medial-based shape statistics. In Section 4.3, we show superior accuracy to

a globally optimized method that makes use of convex, implicit, global PCA-based shape

statistics [35].

Other works have set out to automatically fit medial-based shape models to image data

[81, 79]. These approaches build on the m-reps shape representation of Pizer et al. [122],

in which shapes are represented using a global-to-local scale approach as objects, “figures”

(anatomical subregions or parts), and “atoms” (individual medial nodes). Once initialized

by registration to manually specified points, models are fit to the data using a hierarchical

local-search method, i.e. starting first with each object, then each figure, and finally each

atom. At each scale, models are fit to the image data using an iterative conditional modes

(ICM) strategy across the scale’s entities (objects, figures, or atoms), with the conjugate

gradient method being used to optimize each entry (object, figure, or atom) individually [70].

Our HRPCA-based approach complements the aforementioned works [81, 79] by computing

statistics across a spectrum of shape scales and locations; ranging from an individual medial

node (or atom), and adding increasingly more atoms until covering a whole anatomical

part (or figure). This is achieved through our HRPCA in which multi-location, multi-

scale HRPCA statistics are gathered for different deformation profiles. This offers greater

deformation flexibility (i.e. at multiple locations, sizes, and deformation types) during the

model-to-image fitting and, at the same time, remains faithful to the underlying variability

in the training data. Inspired by the approach in [81, 79], we also seek to fit our shape

model to the image in a global to local manner. However, in our case we employ genetic

algorithms in order to alleviate the initialization requirement of the gradient descent-like

ICM method, which is known to be heavily sensitive to its initial configuration [78] (Section

9.3.1, page 247). Furthermore, we present comparison to numerous convex and non-convex

methods for MIS, exploring the aforementioned questions relating to energy function and

shape space fidelity versus optimizability (Section 4.3).

To the best of our knowledge, none of the existing image segmentation techniques evolve

a population of shapes using intuitive, spatially constrained, and plausible deformations, nor

have they enabled such deformations under general energy functionals that are customizable

for the problem domain.
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4.2 Methods

In this work, we build a deformable model that uses a medial shape representation to provide

a way to synthesize intuitive deformations and localized shape statistics (HRPCA). Our use

of HRPCA captures regional medial-based shape information, thereby providing controlled

localized fitting of specific anatomical regions of a shape (Fig. 4.1-b). We solve our resulting

optimization problem using GA, demonstrating a generic way to fit complex shape models

to medical images.

In order for the descriptions that follow to lend more readily to standard descriptions

of GA, from here on in the chapter we consider the problem of fitting an HRPCA-based

deformable model to an image as a fitness maximization problem, rather than an energy

functional minimization problem. This is done without loss of generality.

We begin with an overview of how we use HRPCA to build localized shape statistics,

where some of the key differences between what we have referred to as global and local

statistics should become clearer. We also provide a short introduction to GA for the un-

familiar reader. We then use a motivating example to describe how GA can be used for

deformable models, before describing our use of GA in detail.

4.2.1 Statistically-Constrained Localized and Intuitive Deformations us-

ing HRPCA

We use the multi-scale (hierarchical) and multi-location (regional) PCA method introduced

in [55] on a training set of medial shape profiles. We will first give an overview of medial

shape profiles and then proceed to describe how HRPCA is applied in this work.

Medial-axis–based 2D shape representations describe the object’s shapes in terms of an

axis positioned in the middle of the object along with thickness values assigned to each

point on the axis that imply the shape of the boundary. We therefore describe the shape as

a mapping from R to R
4, the domain of which is a parameter m that traverses the medial

axis. We use a single primary medial axis, though secondary medial axes or subfigures

would be needed to represent more complex structures. The range of the mapping consists

of 4 scalar values for each m, forming medial profiles. These are a length profile L(m), an

orientation profile R(m), a left (with respect to the medial axis) thickness profile T l(m),

and a right thickness profile T r(m), where m is now discretized, m = 1, 2, ..., N , N is the

number of medial nodes, and nodes 1 and N are the terminal nodes. For all examples
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here and all results presented later, N = 100. The length profile represents the distances

between consecutive pairs of medial nodes. The orientation profile represents the angles

between segments connecting consecutive pairs of medial nodes. Finally, the thickness

profiles represent the distances between medial nodes and their corresponding boundary

points on both sides of the medial axis (Fig. 4.3), and will be different only when the shape

is asymmetric. In other words, corresponding boundary points xlm and xrm lie at distances

T l(m) and T r(m), respectively, along a direction normal to the medial axis at xm (Fig. 4.4).

As the medial-axis is discretized into N nodes, implying N−1 segments, the normal to node

xm is measured from the medial-segment connecting xm and xm−1 (see right-angles in Fig.

4.4-right). Clearly, x1 is an exception and in that case the medial-segment connecting x1

and x2 is used. Other more elaborate medial representation may be adopted as well (e.g.

m-reps [122]).

In order to build energy functions using HRPCA-based shape models, the boundary

of the CC shape must be reconstructed from the four medial profiles and a set of affine

parameters that describe the objects pose and scale. The affine parameters are: the posi-

tion, (tx, ty), describing the (x, y)-coordinate of a known reference node; the scale, (sx, sy),

describing the scale of the object; the base angle, θ, describing the angular offset of the

model from the x-axis. To reconstruct the object’s shape given its set of medial profiles,

we calculate the positions of the medial and boundary nodes from a known reference node

at location x1 = (tx, ty). The next node at position x2 = x1 + v1 is determined using an

offset vector v whose angle is specified by the orientation profile plus the base angle θ, and

whose length is specified by the stretch profile scaled by (sx, sy). The corresponding bound-

ary nodes xl2 and xr2 (Fig. 4.4-right) are then orthogonal to the medial axis, at a distance

specified by the thickness profile scaled by (sx, sy). This process is repeated recursively,

generating x3 = x2 + v2, and so on. For complete details see [55]. Finally, with the medial

profiles like those shown in Fig. 4.3 as an input, we can reconstruct the CC structure in Fig.

4.4. Using polygon rasterization the reconstructed set of nodes can then be used to create

a binary image, of the same size as an input image, I, with ones representing pixels on or

within the shapes border, and zeros representing pixels not belonging to the shape [46].

The profiles are thus rotation- and translation-invariant, and capture intuitive measures

of shape: length, orientation, and thickness. Altering the different profiles produces intu-

itive, controlled deformations: stretching, bending, and bulging, respectively. For example,

setting θ = 0 and {R (m) = 0}Nm=1 would produce a straight-line medial axis, parallel to the
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length profile L(m) orientation profile R(m)

left thickness profile T l(m) right thickness profile T r(m)

Figure 4.3: Example medial shape profiles used to reconstruct a CC shape model. The
values of the medial profiles are plotted along the y-axis with pixels for length and thickness
profiles, and radians for the orientation profile. All plots are a function of the medial node
number m = 1, 2, ..., 100, indicated along the x-axis. Adapted from [55].

x-axis of the image. Setting {R (m) = π/2}Nm=N/2 would create a right-angle bend at the

mid-point of the medial-axis. Increasing θ would simply rotate the object around the refer-

ence point. Of course, setting R(m) randomly may be undesirable and produce unwanted

shapes. Next we describe how to use training data to calculate statistics for each profile in

order to restrict the deformations to plausible shapes.

In HRPCA the principal component analysis is a function of the location, l, scale, s,

and type of shape profile, d (i.e. length L(m); orientation R(m); left thickness T l(m); or

right thickness T r(m) profiles) (Fig. 4.5). For clarity of presentation, we define pd(m) as

the dth shape profile (e.g. p1(m) = L(m)). Hence for each location, scale, and shape profile

type, we obtain an average medial sub-profile, p̄dls, the main modes of variation, Mdls,

and the amount of variation each mode explains. The subscript “dls” indicates that the
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Figure 4.4: Representing the CC using medial profiles. (Top) Anatomically labeled CC
shape reconstruction resulting from the medial profiles in figure 4.3. (Bottom) The details
of the medial profile representation for the splenium region (dashed). Medial nodes are
shown in white, whereas the left and right boundary nodes are shown in dark and light
gray, respectively. xm, xlm and xrm are the mth medial, left boundary and right boundary
nodes, respectively. L(m), R(m), T l(m) and T r(m) are the length, orientation, left and
right thickness profile values, respectively. Adapted from [55].

statistics are made specific to a location l (e.g. to the left of the shape), scale or extent s

(e.g. affecting one tenth of the shape, half of it, or all of it), and the deformation profile

type d (e.g. bending or bulging). Note, of course, that at each location, l, a maximum scale,

s, of N − l+ 1 can be selected. For example, pL,1,5 = p̄1,1,5 +M1,1,5α1,1,5 would calculate a

new L(m) = p1,1,5, for m = 1...5, since only those 5 positions are affected. Example modes

of variation for a global bending deformations are shown in Fig. 4.1-b, i.e. d = 2, l = 1 and

s = 100. For each location, l, with scale s, there are s values, say thickness values, for the T r

profile and, as such, for each profile, location, and scale, Mdls is an s× s covariance matrix

for the s modes of variation of length s. Consequently, we can now generate a statistically
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feasible stretch, bend, or bulge deformation at a specific location and scale in terms of the

corresponding main modes of variation [55].
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Figure 4.5: HRPCA is a function of the deformation (d), location (l), and scale (s). Since
all scales are not valid for all locations, only a subset of the full space (the right angle prism
drawn with solid black) is valid (see Section 4.2.4). Adapted from [55].

More specifically, a new statistically feasible profile, made specific to a particular defor-

mation type, location and scale, is calculated by perturbing the mean training profiles by

a weighted sum of the covariance of the corresponding training profiles using the following

model of medial profile variations,

pdls = p̄dls +Mdlsαdls (4.1)

where pdls is the resulting shape profile, d is the deformation profile type (L(m), R(m),

T l(m), or T r(m)), l and s are the specified location and scale values, p̄dls is the average

medial profile for the specified type (L(m), R(m), T l(m), or T r(m)), the columns of Mdls

encode the main variation modes for the specified profile type, and αdls are weights of the
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Figure 4.6: Overlay plot of (a) thickness profiles, measured in pixels, and (b) orientation
profiles, measured in radians. Results are from a training set of 50 CC shapes, with both
profiles plotted as a function of the medial-node number, m = 1...100. Mean profiles appear
in bold. Adapted from [55].

variation modes and are typically limited to ±3 standard deviations.

Note that for any shape profile type multiple variation modes can be activated by setting

the corresponding weighting factors to non-zero values. Since each variation mode acts at

a certain location and scale, we obtain for each profile

pd = p̄d +
N
∑

l=1

N−l+1
∑

s=1

Mdlsαdls. (4.2)

The upper limit of the inner summation of (4.2) indicates that all locations have PCA

performed at them for all scales as long as the combination of locations and scales is valid.

In summary, varying the weights of one or more of the variation modes alters the length,

orientation, or thickness profiles and generates, upon shape reconstruction, statistically

feasible stretch, bend, or bulge deformations at specific locations and scales.

Each scale and location provides a unique measurement for the analysis of a shape.

Examples of the global (maximal scale) thickness and orientation samples with their cor-

responding averages are show in Fig. 4.6. These examples also serve to illustrate how

visualization of these profiles can provide better understanding of the variations present in

the data by identifying contributions of different types of deformations along the anatomical
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shape. Notice, for example, that towards the center of the CC (value range 30-50 on the

horizontal axis of the plots) the bulk of the variation lies in the thickness profile, something

not readily interpreted from results with classical PCA approaches (i.e. global PCA on

boundary, or implicit, shape models, as opposed to localized PCA on a medial-axis based

shape model). With classical PCA approaches one would capture the variation in the CC’s

shape, but could not readily interpret it as being mostly a change in thickness instead of a

bending or stretching of the object, nor could one readily identify exactly where the variance

occurs on the model.

We note, however, that although each scale and location provides a unique measurement

for analysis, there is a degree of redundancy in the representation when building a statistical

model of deformations. Each profile is a real-valued vector of length N , and thus lies in

R
N . Any orthogonal set of N vectors is a basis for R

N , and by defintion any set larger

than N must have vectors that are linear combinations of other members of the set. As

such: (1) Any large-scale deformation can be represented as the union of multiple smaller-

scale deformations and (2) the entire N × 4 = 400 dimensional space of deformations can

be captured via a global, explicit PCA (over the whole shape, i.e. by setting l = 1 and

s = N), assuming all the PCA modes are retained in the model and no limits are placed on

the amount of variation (typically measured as multiples of standard deviations) along each

mode. In other words, with enough modes of variation, any single scale of deformations can

capture the entire shape space.

By design, global PCA seeks a subset of vectors that maximally represents the variability

in the data, assuming the data follows a Gaussian distribution. A significant drawback of

this global approach is that varying the weight of a single variation mode generally causes

all the landmark positions to change (Fig. 4.1). In other words, although the global model

produces feasible shape deformations only, a desirable trait, it generally produces global

deformations over the entire object, making it difficult to guarantee fitting one part of the

shape without unfitting another part. In contrast, setting s = 37, for example, produces 64

possible locations (from location l = 1 to l = N − s+ 1 = 64). Each location has 37 modes

of variation for a total of 64× 37 = 2, 368 variables. Clearly only N = 100 of these vectors

can be orthogonal, but no two vectors need point in the same direction. Hence each vector

can represent a unique and statistically valid localized deformation of the shape model for

a particular anatomical region.

These statistically valid and localized deformations can be used effectively during the
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segmentation process, as will be better detailed in the next section. For example, suppose

our shape model fits perfectly over all the corpus callosum (CC) except for a misalignment

around the splenium region of the CC (Fig. 4.4). In this scenario, the shape of the model

must be adjusted only around the splenium without affecting any of the correctly aligned

parts. This is simply accomplished by setting l = 1 and s = 37 to localize the deformations

around the splenium part only and ensure plausible deformations respecting the variations

observed in the training set in that region only. A compact yet global PCA (s = 100) is

unlikely to include a mode of variation that directly accomplishes this task. Instead some

complex combinations of several global modes must be used to ensure the desired localized

effect.

The trade off is clear, finer scale deformations mean more variables that will need to be

optimized, but the statistics will better represent localized changes in shape. Larger scale

deformations have fewer variables but sacrifice localized changes to preserve global ones,

and thus it is difficult to fit one part of the model without unfitting another part. We can

exploit the advantages of both options during our segmentation procedure by starting with

larger scale deformations, and then moving to increasingly finer scale deformations (Section

4.2.4 for details). By starting with large scale deformations we can find the best global fit

of the model to the image data without wasting time on localized changes that represent a

small portion of the overall error. Once the global model is fit, localized deformations can

refine anatomical subregions and thus give a better fit to localized variability in the data

(results of this can be seen in Fig. 4.10).

The preceding discussion outlined how to learn our shape model through examples.

Additional details on HRPCA are available in [55] for the interested reader. Next we describe

how to build a fitness function that can be used to characterize how well the shape model

has been fit to the image. The fitting procedure itself, performed using GA, is described

in Section 4.2.4. Essentially we need to discover how to deform the shape (what pose

parameters and modes of variation, αdls to activate) in order to fit the shape to the image.

The GA optimization explores the space of these deformations and finds the ones that best

fit the model to the data (those that score highly according to the objective function).

4.2.2 Building a Fitness Function

The fitness function is used for ranking the population in order to determine which members

should reproduce and which should survive. It is akin to the energy functional in typical
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deformable models, in that it is the objective function being optimized. As noted in Section

4.1, the use of GA allows us to easily adapt the function to any given task including both

convex and non-convex prior shape and image-based knowledge; something globally-optimal

energy-minimizing models do not generally allow for [74]. Rather than focusing on easily

described and optimized terms, fitness functions can be constructed that directly reflect the

characteristics thought to be exhibited by the target structure. The general form of our

energy function is then a weighted combination of the desired terms. For example, we can

adopt the fitness function Fit1(i), where i is a potential segmentation, to consider the mean

and standard deviation of the image intensity enclosed by the shape’s boundary, the average

edge strength along said boundary, and the learned size of the CC:

Fit1(i) = w1 exp
(

−F1(i)
2σ2

1

)

+ w2

(

1− exp
(

−F2(i)
2σ2

))

+

w3

(

1− exp
(

−F3(i)
2σ3

))

+ w4 exp
(

−F4(i)
2σ4

) (4.3)

where

F1(i) =

(

µ−
N
∑

x=1
q(x)

)2

F2(i) =

N∑

x=1

‖∇I(x)‖‖∇q(x)‖

N∑

x=1

‖∇q(x)‖

F3(i) =

N∑

x=1

I(x)q(x)

N∑

x=1

q(x)

F4(i) =

√

√

√

√

√

N∑

x=1

(I(x)−F3(i))

N∑

x=1

q(x)

(4.4)

xi...xN are the indices of the N pixels, q(x) is a binary image of the reconstructed shape

(Section 4.2.1), and µ and σ1 are the average and standard deviation, respectively, of the

sizes of the CCs learned from the training set. I is the image, and σ2, σ3, σ4 are the learned

averages in edge strength, mean image intensity, and image intensity standard deviation.

Hence, F1(i) represents the conformance to the learned area of shape i, F2(i) the average

gradient magnitude along the shape’s boundary, F3(i) the mean image intensity enclosed

by the shape’s boundary, and F4(i) the standard deviation of the intensity enclosed by the

shape’s boundary. Finally, w1, w2, w3 and w4 are scalar weights controlling the importance

of each term in the segmentation process.

Alternatively, we can adopt a more traditional energy functional commonly used in the
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deformable model community:

Fit2(i) = −
N
∑

x=1
(w1 (f(x)q(x) + g(x)(1− q(x)))+

w2h(x) |∇q(x)|) + w3F1(i)
(4.5)

where f = −log(Pobj(I)), g = −log(Pbk(I)), for object and background likelihoods Pobj and

Pbk, h = 1
1+|∇I|p , and F1 is the shape term as defined in (4.4) (see [35] for details). This

functional has recently been shown to be convex when defined over convex shape-spaces [35],

and can therefore be globally optimized in that scenario. Using this functional is therefore a

good way to investigate the fidelity trade-off between convex and non-convex shape-spaces,

since we can compare the accuracy of the guaranteed global optima under convex shape-

spaces to the potentially global optima found using the proposed non-convex shape-space.

Since with GA we seek to define a maximization problem, the function of [35] has been

negated, thus making it a concave optimization problem over a non-convex shape-space.

Depending on the image segmentation task at hand, one functional will likely perform

better than the other. We simply illustrate here that novel, as well as traditional, functionals

can be optimized with GA.

4.2.3 Genetic Algorithms

GA are an optimization technique that models our understanding of evolution. In essence,

a number of simultaneous potential solutions (the population) each having an encoded state

(the chromosome) perform a random walk (mutations) around the search space, while form-

ing new solutions from combinations of existing solutions (crossover) and, thus, adjusting

and refocusing the efforts of the search on regions of the search space with exceptionally

“fit” members (good solutions). A few important choices are made during any application of

GA: how to encode the population (binary, integer, decimal, etc.), how to mutate the popu-

lation (mutate all genes, some genes, etc.), how to select the parents for crossovers (roulette

wheel, tournament selection, etc.), how to perform those crossovers (uniform, single-point,

multi-point, etc.), and finally what fitness function to use for evaluation. Though these

choices seem complex, we found through experimentation that different genetic operators

yielded negligible impact on our results. The interested reader is referred to [105] for an

in-depth review of GA.
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Algorithm 1 GA for HRPCA

Require: A set of images, I, an HRPCA matrix, M, a fitness function Fit, and GA variables:
1: Population size, PopSize = 32.
2: Number of crossovers-per–evolution, CrossNum = 9.
3: Maximum number of standard deviations to deform, MxStdDev = 2.
4: Lower- and Upper-bounds on the position of the reference node, x1, (Minx,Miny) and (Maxx,Maxy).

Always set such that the extent of the mean shape model lies within the image bounds.
5: Number of modes of variation to consider (for each d, l, s), k = 5.
6: Population, P, with members denoted P(i) and base-node position for P(i): (Minx,Miny) ≤

(P(i).tx,P(i).ty) ≤ (Maxx,Maxy); model orientation angle 0 ≤ P(i).θ ≤ π; scale (0.6, 0.6) ≤

(P(i).sx,P(i).sy) ≤ (1.4, 1.4); and HRPCA weights P(i).α.
7: Number of iterations allowed without improvement, ChangeIter = 40.
8: Maximum number of iterations allowed, MaxIter = 500.
9: The best population member seen so far, best, with fitness best.fit.

10: procedure GA-HRPCA

11: Randomly initialize P, from a uniform distribution with P.α = 0.
12: P,best = UpdateBest(P,best,0)
13: cnt = 1
14: P,best,cnt = Evolve(P(i).α=0,cnt) ⊲ Search only for top candidates in position, orientation, and

scale.
15: P,best,cnt = Evolve(s = N ,cnt) ⊲ Perform global deformations. There are

4× k × (N − s+ 1) + 5 = 25 free variables at this stage.
16: P,best,cnt = Evolve(s = 37,cnt) ⊲ Perform medium scale deformations. There are

4× k × (N − s+ 1) + 5 = 1285 free variables at this stage.
17: P,best,cnt = Evolve(s = 18,cnt) ⊲ Perform fine scale deformations. There are now

4× k × (N − s+ 1) + 5 = 1665 free variables at this stage.
18: P,best,cnt = Evolve(s = 11,cnt) ⊲ Perform finer scale deformations. There are now

4× k × (N − s+ 1) + 5 = 1805 free variables at this stage.
19: return best

20: end procedure

21: Continued in Algorithm 2.
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Algorithm 2 GA for HRPCA continued.

1: procedure UpdateBest(P,best,changed)
2: Sort P(i) in ascending order according to Fit(i).
3: if Fit(PopSize) ≥ best.fit then
4: best = P(PopSize) and best.fit = Fit(PopSize)
5: changed = 0
6: else

7: P(1) = best ⊲ Replace the worst member of the population with the best.
8: changed = changed+ 1 ⊲ Keep track of how many iterations since fitness last

improved.
9: end if

10: return P,best,changed
11: end procedure

12: procedure Evolve(Constraints,cnt) ⊲ While best.fit is improving and
cnt ≤ MaxIter, perform crossovers and mutations.

13: changed = 0
14: while (changed ≤ ChangeIter) AND (cnt ≤ MaxIter) do

15: for i = 1 to CrossNum do

16: Select parents (a, b) with probability of selection Pselection(a) and Pselection(b)
17: Replace P(i) with crossover on P(a),P(b). ⊲ Replaces the least-fit

individuals.
18: end for

19: P,best,changed = UpdateBest(P,best,changed)
20: for i = 1 to PopSize do

21: Mutate P(i), only modifying P(i).α with scale, s, described by Constraints.
22: end for

23: P,best,changed = UpdateBest(P,best,changed)
24: cnt = cnt+ 1
25: end while

26: return P,best,cnt
27: end procedure
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4.2.4 Genetic Algorithms for HRPCA

An overview of our GA is given in Alg. 1 including a summary of all the free parameters and

the associated settings that were used for all results presented in Section 4.3. Fixed values

were set by observing results on the training data. For example, the maximum number

of iterations, MaxIter, was set by noting that the algorithm always converged within 500

iterations.

In the subsequent sections, we describe the representation of individuals, the encoding of

the model into chromosomes (deformation weights) to be optimized, the method of mutating

(deforming) the model, our selection and crossover methods, and our fitness function (energy

function to minimize).

Population Representation

In MIS using GA, the individuals forming the population represent potential shapes of

the target structure, each having some level of accuracy measured by the fitness function

(Section 4.2.2). We require a shape representation that allows us to describe and control the

shape deformations intuitively and in terms of our calculated shape statistics. Consequently,

we represent each individual by its associated stretching, bending and thickness profiles along

with its global orientation, base-node position, and scale (Section 4.2.1).

Encoding the Shape Parameters of the Population for GA

We use chromosomes to represent the set of all the weights of the principal components as

obtained from the HRPCA, where each gene represents a weight (as a floating point number)

for a particular deformation, location, scale and mode of variation (Fig. 4.7-top). In total,

there are at most
∑d

1

∑N
l=1

∑N−1+1
s=1 s = d ∗ (1/6)(2N + 3N2 + N3) weights available for

mutation since, for each of the four deformations, d = 4, we haveN = 100 different locations,

but for each location, l, we can only have up to N − l + 1 scales, s, each of which has at

most s weights for the s principal components (Fig. 4.5). In our application, this would

add up to 686, 800 dependent variables for our model, which motivates the need for GA

with a coarse-to-fine approach to search the highly multivariate space. The large number of

variables is based on the assumption that for each deformation type, location, and scale all

modes of variation are used. However, in practice we found that only a maximum of 5 modes

of variation for each deformation type at each location and scale are needed to account for
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at least 90% of the variance, with at most s modes for s ≤ 5. As previously discussed,

there is a level of redundancy in the HRPCA space whereby any large scale deformation

can be achieved by a combination of smaller scale deformations. Although smaller scale

deformations have more valid locations and therefore more variables to optimize, they are

desirable in that they better represent smaller, localized changes in the model. To avoid

optimizing a needlessly high number of variables early on, we slowly decrease the scale of

the deformation in a coarse-to-fine manner, and never optimize over more than one scale at

a time (see Mutations and Crossovers section for details).

wd,1,2 wd,1,3 wd,1,27… wd,27,1…

Location 1, all scales Location 100, only scale 1
…

tytx sy
sx

Affine transformation parameters Statistical shape deformation parameters

wd,1,1wd,1,2 wd,1,3 …

Mutation

wd,1,1 wd,1,2 wd,1,3 wd,1,100… wd, 100,1…

…

Cross over

wd,1,1θ

wd, 100,1wd,2,99 wd,3,1…wd,1, 100wd,2,1
…

Figure 4.7: Segmenting an anatomical structure amounts to finding the optimal set of shape
parameters. (Top) In our GA implementation (Section 4.2.4), we represent each shape as
a chromosome with genes encoding affine and statistical shape deformation parameters.
Affine transformation parameters are those encoding the global rotation, scale, and position
of the shape. Statistical shape deformation parameters are those representing weights for a
particular deformation d, location l, and scale s. As noted in Fig. 4.5, Section 4.2.4, endmost
locations have only a restricted scale. (Middle) Mutation (Section 4.2.4) is performed by
altering some weights of the HRPCA. (Bottom) Crossover amounts to swapping a set of
weights between two individuals.
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Mutations and Crossovers

As previously discussed, GA use mutations to walk randomly around the search space and

crossovers to initialize the search in new locations that result from combinations of pairs of

current solutions.

With regards to mutations, in order to steer the evolution in a coarse to fine approach

and, thereby, facilitate faster initial convergence, we employ a coarse-to-fine approach. Ini-

tially we constrain the mutations to the affine transformation parameters: base-node posi-

tion (translation values) (tx, ty), model orientation angle θ, and scale values (sx, sy) (Fig.

4.7-top). Since our initial shape is the mean CC (obtained by setting all weights, αdls in

(4.2), to zero), it can be expected to provide a reasonably strong fitness value when an

acceptable position, orientation, and scale are set. In essence, we eliminate the possibility

of getting a low score for a good location, scale and orientation, simply because of a bad

random shape mutation.

With an adequate location, scale, and orientation obtained, we allow the mutations

to begin including shape deformations (Fig. 4.7-middle). Dynamic mutation of a single

gene amounts to altering the corresponding weight by sampling it from a uniform random

distribution under the constraint that the total weight lies within ±3 standard deviations

of the corresponding mode of variation (square root of the explained variance obtained in

HRPCA). Modifying a weight will change the medial profiles and hence the reconstructed

shape boundary (Section 4.2.1).

During the initial phases of the evolution, every member of the population undergoes a

random deformation with a global scale, and at random amplitudes set in multiples of the

corresponding standard deviations, thus resulting in a new shape. The initial constraint to

global deformations is well-suited for our statistical deformations as localized deformations

(say bulging the splenium in Fig. 4.4) will not help until an acceptable global fit is obtained.

Consequently, after no noticeable change in population fitness occurs, we allow the defor-

mations to begin varying in both position and scale to include at first larger deformations

(those corresponding to an entire anatomical region and, hence, a primary area of variation),

and then smaller deformations which amount to small variations in local regions (Fig. 4.8).

This process is outlined in algorithm Alg. 1, where the Evolve function is sequentially called

with decreasing scale.

In essence, GA use crossover to combine the information from two existing “parents”
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Figure 4.8: (Color Figure) Examples of three sequentially performed mutations on four
different members of the population. The scale of the mutation is decreased, progressing
from left-to-right top-to-bottom, from affine, to global scale, to medium scale, and finally
small scale. Note that the magnitude of each deformation is entirely random, and only the
range over which the deformation operates is decreasing. In all images, the red shape was
mutated into the green, and then green was mutated into blue.

into a single “offspring” that contains genes from each parent. We used uniform crossover,

which makes an independent random decision for each gene whereunder both parents have

an equal probability of making the contribution (Fig. 4.7-bottom and Fig. 4.9).

Selection

Genetic algorithms require a method of determining which members of a generation will

reproduce, and which will survive. We use roulette wheel selection to randomly select

members for reproduction. Our goal is to ensure that the fittest members of the population

have the highest probability of selection in proportion to how much their fitness dominates

the rest of populous. Each member i of a population P has a probability of selection equal
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Figure 4.9: (Color Figure) Example crossover operations. Each image shows an overlay plot
of the two parents and the resulting offspring. The figure shows parents in red and blue,
with offspring in green. Note how the offspring carries shape properties from both parents
and thus appears somewhat ‘in between’ the two parents.

to

Pselection (i) =

(

Fit (i)−min
k∈P

Fit (k)

)

∑

j∈P

(

Fit (j)−min
k∈P

Fit (k)

) (4.6)

where Fit(i) is the fitness function of the member i (Section 4.2.2), and min
k∈P

Fit (k) is the

minimum fitness value of the population. The normalization (subtracting of the minimum

fitness value and dividing by the summation) in (4.6) is performed to ensure valid probabil-

ities for even negative valued fitness functions. We experimented with different methods for

determining probabilities from negative fitness functions, and noted only negligible impact

on our results. We also employ an “elitist” strategy under-which the best member of the

population is always maintained, and the weakest of the set are replaced by the new indi-

viduals resulting from the crossover operation. A set number of crossover operations are

performed during each iteration of the genetic algorithm. We empirically set the number

of crossover operations per iteration to 9 for all results, with different experimental values

yielding negligible impact.
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4.3 Results and Discussions

We demonstrate our work through its application to CC segmentation in mid-sagittal brain

magnetic resonance images (MRI). The CC is a bundle of white matter fibre connecting the

left and right brain hemispheres, and whose cross sectional area and shape correlate with

neurological diseases such as multiple sclerosis and schizophrenia [84, 117, 129]. The vast

amount of data acquired in clinical studies of these diseases motivates the necessity of a

reliable CC segmentation algorithm.

We conduct all of our experiments on a set of 50 mid-sagittal magnetic resonance images

[139], presenting both qualitative and quantitative results of the fully-automatic segmen-

tation of the CC using our GA driven, statistically-constrained deformable models. All

experiments are performed using leave-one-out validation for training the shape and in-

tensity priors. In order to discount pose problems for some of the methods tested, all of

the data has been affinely registered. We do, however, still search over pose in our GA-

HRPCA method. As our tested energy functions are all affine invariant, it should be clear

that including or not including the affine registration step for novel images does not change

the results for GA-HRPCA. The affine registration step does, however, allow us to obtain

globally optimal solutions to the method in [35], which we will use for comparison.

For clarity, we divide our experiments into two sets: those dealing with the strict valida-

tion of GA-HRPCA in its ability to segment the CC; and those exploring the aforementioned

trade-off between energy function and shape space fidelity, and convexity. All error results

in each set are computed using the Jaccard distance:

ε = 1− (|Auto∩Manual|)/|Auto∪manual|, (4.7)

where ε = 0 represents the ideal segmentation, |z| denotes the area of z, and Auto and

Manual denote the automatic segmentation and the manual expert delineation, respectively

[69].

4.3.1 Experiment Set A: Validating GA-HRPCA

We run a total of 500 evolution iterations per image, which takes about 8.5 minutes per

image on a 2 GHz AMD Opteron, implemented in MATLAB c© (2010a, The MathWorks,

Natick, MA). The most expensive operation is the crossover operation since, as previously

mentioned, there are a larger number of dependent variables that must be copied between
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0.233 0.127 0.093 0.092 0.083

0.264 0.168 0.128 0.109 0.095

0.258 0.137 0.089 0.090 0.081

Figure 4.10: (Color Figure) Example segmentations using GA-HRPCA. (left) Finding the
pose for one example image, showing ten evenly sampled members from the population, in
terms of fitness. Red indicates the fittest model moving linearly to green as the worst of the
ten. (right) Three example segmentation (six rows) results progressing left to right, showing
fittest individual after population initialization (left), global deformations (next two), and
local deformations (last two). Odd image rows show a cropped plot overlaid on the MRI,
with the medial axis highlighted in red. Cropping is only for visualization purposes, and
all results are produced on full images. Even image rows show color images with the red
channel set equal to the ground truth segmentation, the green channel the GA-HRPCA
segmentation, and all zeros for the blue channel, i.e. green for true-negatives, yellow for
true-positives, red for false-negatives, and green for false-positives. Below each example
segmentation, error ε is shown.

the models. As already noted, in order to speed up convergence, we employ a coarse-to-fine

approach where deformations progress from larger to increasingly smaller scales. Again, the

basic idea is that initially there is little need for fine, small scale model adjustments since

the model may not be in the right position at all. This process is depicted in Figs. 4.10

and 4.11. Notice that although the finer scale deformations represent a small amount of the

global shape variance, they allow a significant reduction in error by reducing the localized

errors in the fitting that remained after the global fit (second image in each row in Fig.

4.10).

We conducted three main experiments with GA-HRPCA. Since GA are randomized

algorithms and may not always produce the same result, we run the algorithm 24 times
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Figure 4.11: Plot of fitness of the best individual versus generation number for the three
sample MRI images from Fig. 4.10, for 24 different runs per image. The slope of the
curve demonstrates a rapid increase in fitness as the CC is located and the shape model
heavily deformed (first 100 generations) and a more gradual increase as the shape model is
manipulated to an increasingly fine degree.

per image. Our first experiment was performed using Fit1, (4.3). We learn the optimal

w for Fit1 and Fit2 using the max-margin technique [150]. We employed the max-margin

technique in these experiments as we intentionally wanted to use a fixed set of weights for

all images to better facilite the cross-comparisons of all the tested methods. The optimal

weights for Fit1 where w1 = 0.0090, w2 = 0.1101, w3 = 0.8809, w4 = 0. Note that F1, ..., F4

are strictly positive for positive valued images, and therefore each term in Fit1 is normalized

between 0 and 1. Setting w4 = 0 means that through training we learned F4 was misleading

the fitness function, and was unable to accurately predict the standard deviation of the CC.

Our second experiment was performed using Fit2 in (4.5), where the optimal weights for

Fit2 were: w1 = 0.0145, w2 = 0.9707, w3 = 0.0148. We note that for Fit2, w2 ≫ w1 does

not imply that one term has vastly more influence than the other because their scales are

not normalized. From here on we refer to this experiment with Fit2 as Fit2−A. Our third

experiment was also performed using Fit2, but we used the fittest result from all 24 runs

for each image. In essence, we increase the population size of the GA by a factor of 24.

We refer to this experiment with Fit2 as Fit2 − B. The same experiment was conducted

using Fit1 without any noticeable improvement, and we defer discussion until the end of

this section. To give a visual impression of the segmentation error we present some results

of Fit2 − B in Fig. 4.12, evenly sampled from least to most error. We note that even the

worst result, far-right, is still a very plausible CC segmentation.

For point of interest we also conducted a fourth experiment to validate that our GA-

HRPCA shape model can fit each ground truth segmentation without error. Simply put,
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we segmented the ground truth segmentations directly, using Fit = −ε. The average error

was indeed ε ≈ 0, validating that the GA-HRPCA model can accurately segment CC data,

given an ideal energy function.

0.071 0.123 0.149 0.176 0.221 0.273

(a) (b) (c) (d) (e) (f)

Figure 4.12: (Color Figure) Example segmentations performed using GA-HRPCA Fit2−B.
Six different images are shown, progressing from least-to-most segmentation error under
evenly spaced samples. Note how even the worst segmentation is still a plausible CC seg-
mentation. Top row shows segmentations overlaid on cropped MRI, with ε underneath.
Bottom row shows color images with the red channel set equal to the ground truth segmen-
tation, the green channel the GA-HRPCA segmentation, and all zeros for the blue channel,
i.e. green for true-negatives, yellow for true-positives, red for false-negatives, and green for
false-positives.

Results for our three main experiments are shown in table 4.1. Since GA are randomized,

and we segment each image 24 times, we first compute expected error values for each image

by averaging the error results from all 24 runs. The 50 resulting expected error values can

then be used to compute statistics in expected error across images, as is done in table 4.1.

In table 4.2, the standard deviation (std. dev.) is calculated across all 24 runs, and then

statistics (mean, max and std. dev.) are calculated over the 50 images to demonstrate that

even though GA are a randomized method, the average std. dev. is still low (i.e. for a given

image, there is little change in its error between runs). These numbers cannot be computed

for Fit2 − B because there is effectively only one run of that method. Notice that the std.

dev. is about twice as large across images than within each image, for example 0.060 vs

0.022 for Fit1. This indicates that the variation in error as a result of GA-HPRCA being

a randomized algorithm is small in comparison to the variation caused by how accurately

the energy function itself reflects the desired image properties. From that we conclude

that in order to improve segmentation results a new energy function should be sought as

opposed to attempting to improve the optimizer or, in our case, tweak the GA. Note that
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we specifically say energy function here, not shape space, because we have already shown

the HRPCA shape model can fit any of the ground truth CCs (Fit = −ε).

There is, however, an outlying case where the std. dev. across numerous runs of the

GA for a specific image is larger than normal for Fit2 − A (at 0.118 it lies at over 4 std.

dev. from the mean of 0.023). This explains the significant reduction in maximal error

obtained when moving from Fit2 −A to Fit2 −B. The increase in accuracy indicates that

some local optima were obtained in Fit2 −A, but can be surpassed with a more exhaustive

search. This raises the question of whether we are better off with guaranteed global optima

from convex functions, or possibly local optima from our GA-HRPCA method. In the next

section we conduct a few experiments with global and non-global methods to explore this

question.

It is interesting to note that the minimal error increases from Fit2−A to Fit2−B. This

is because in one case improving fitness leads to increased segmentation error, ε , implying

the fitness does not directly correlate with accuracy. Though it may seem an odd result, this

is not uncommon for both convex or non-convex functions used in practice for segmentation.

Comparing our two potential fitness functions, Fit1 and Fit2, in tables 4.1 and 4.2 shows

that Fit1 obtained superior results to Fit2 − A and Fit2 − B. Interestingly, Fit1 did not

noticeably benefit from a more exhaustive search. We believe Fit1’s better performance

stems from its simpler assumption of an exponential relationship for intensity having fewer

parameters to estimate and, therefore, being more resilient to noise than the potentially

over-fit learned likelihoods in Fit2. The maximal std. dev. and std. dev. of std. dev.

are also much lower for Fit1, and this explains why a similar reduction in error was not

observed for Fit1 when conducting a more exhaustive search.

Table 4.1: Error results for our proposed GA-HRPCA. Results are first averaged across all
runs of each image, and then statistics are computed across those values for 50 images.

Method mean median min max std. dev.

ε ε ε ε ε

GA-HRPCA Fit1 0.176 0.161 0.081 0.360 0.060
GA-HRPCA Fit2 −A 0.211 0.197 0.093 0.495 0.071
GA-HRPCA Fit2 −B 0.202 0.192 0.116 0.347 0.055
GA-HRPCA Fit = −ε 0.031 0.029 0.018 0.052 0.008
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Table 4.2: Error results for our proposed GA-HRPCA with std. dev. calculated across runs
for each image, and then statistics computed across images.

Method mean std. dev. max std. dev. std. dev. of std. dev.

ε ε ε

GA-HRPCA Fit1 0.022 0.073 0.012
GA-HRPCA Fit2 −A 0.023 0.118 0.023
GA-HRPCA Fit = −ε 0.006 0.010 0.002

4.3.2 Experiment Set B: Fidelity versus Convexity

We segment the same set of 50 CC images under a few popular frameworks:

1. Geodesic Active Contours (GAC) [17]: Gradient descent performed on a non-convex

level-set–based deformable model with no shape prior. The energy functional itself is

convex, and is modeled by the second term in (4.5), h(x) |∇q(x)|. Non-convexity is

induced by the level-set shape representation (i.e. non-convex domain).

2. Geocuts [11]: A globally optimal solution to the GAC energy using graph cuts.

3. Random Walker (RW) [52]: A submodular (convex) graph-based formulation with a

globally optimal solution and no shape information.

4. Cremers 2008 [35]: A globally optimal segmentation method using Fit2, (4.5), with

a global shape prior2 implemented via PCA (i.e. convex, implicit, global statistics

instead of non-convex, explicit, localized ones).

We note that although Geocuts and RW do not have explicit shape priors they still

impose a specific form of shape constraints; the seed points function as hard constraints

in both methods that shrink the set of possible segmentations and thus form an allowable

shape space, albeit a user created one. It is important to note that as Geocuts and RW are

interactive methods, and our method is fully-automatic, we are not validating against them,

but rather using them to explore the results of minimizing convex functions with varying

degrees of shape constraints. For exploration, we choose to use random seeds drawn from

2This changes the third term slightly, but both will end up being Gaussian priors centered on the mean
shape, with learned variation from PCA.
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the ground truth foreground and background, and we report the percentage (%) of pixels

used as seeds in each of our experiments (Fig. 4.13). For example, a 1% seeding means

that, on average, one seed is placed in every 10 × 10 pixel region of the image. The user

could draw better seeds, i.e. fewer seeds that would also produce less segmentation error.

However, this is essentially providing a greater constraint (fewer seeds in number, higher

in tightness, i.e. more restricted shape space). We also note that although Geocuts and

RW do not have weights between competing terms, they each have an inherit parameter.

The Geocuts method has the free parameter p in h = 1
1+|∇I|p , and RW has the β parameter

which controls the mapping from intensity differences to edge weights (see [52] for details).

We ran each method over a large set of parameter values. Thus for each method, we have

optimized its free parameters to minimize differences in accuracy stemming from a lack of

parameter tuning, and instead highlight the best results that each method can obtain. To

that same end, we initialize GAC with the ground truth segmentation, thereby placing it

under optimal conditions. For comparison purposes that will become clear shortly, we also

minimize the GAC energy function using GA-HRPCA, i.e. Fit2 with w1 = 0, w2 = 1,

w3 = 0, we denote this method as GAC–GA-HRPCA.

Our reasons for choosing the above methods are to compare and contrast the conse-

quences of each competing method’s trade-offs with the trade-offs present in GA-HRPCA.

These trade-offs are highlighted in table 4.3, where the optimizability, shape flexibility, and

shape fidelity are measured. Note that for Geocuts and RW we report multiple entries

(rows) each using a different seeding percentage. This enables us to explore how the energy

functions behave under increasing amounts of constraint.

Shape flexibility measures the method’s ability to fit any valid CC. To measure flexibility,

we run each method on the ground truth segmentations directly, and measure the average

error using ε. Low values indicate low error, and therefore high flexibility in that the method

had no problem segmenting all 50 valid CCs. High values here are due to the shape space

being too restrictive to accommodate the shape variability in the target CC. As one expects,

methods without shape restrictions (GAC, Geocuts and RW) have perfect flexibility, since

they can segment any shape.

Shape fidelity, measures the methods ability to constrain the shape to only valid members

of the anatomy, and is estimated as error, under measurement ε, in segmenting novel images.

We say estimated because, as reported, shape fidelity implicitly includes energy function

error, and is thus an approximation. However, when comparing fidelity between equal
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energy functions under different constraints, it is clear that changes in accuracy must be

entirely a result of the solver or the constraints, as the energy function itself remains fixed.

A perfect score is ε = 0 in both shape columns.

To balance the comparison, we also include the level of manual constraints required, as

otherwise fully-manual segmentation would be the best possible method according to the

table. Manual constraints are rated on a scale from 0 to 10, 0 being no manual intervention,

and 10 being the most of any method surveyed here. These ratings correspond directly to

the percentage of the image that needed to be seeded for each image, as seeding required

direct knowledge of the ground truth segmentation. Notice that for manual methods, in-

creasing fidelity requires increasing manual intervention. In automatic methods, increasing

flexibility and fidelity comes at a loss of optimality, as non-convex shape-spaces are required.

We provide a more detailed review of these results below.

Table 4.3: Fidelity vs Optimizability. See text for details.

Method optimizability shape shape manual automatic

flexibility fidelity constraints constraints

ε ε

RW [52] 10%
seeding

Global 0 0.132 10 N

Geocuts [11]
10% seeding

Global 0 0.160 10 N

RW [52] 5%
seeding

Global 0 0.165 5 N

Geocuts [11]
5% seeding

Global 0 0.182 5 N

RW [52] 0%
seeding

Global 0 0.844 0 N

Geocuts [11]
0% seeding

Global 0 0.375 0 N

GAC [17] Local 0 0.478 0 N
GAC–GA-
HRPCA

Local 0.03 0.270 0 Y

Cremers 2008
[35]

Global 0.14 0.376 0 Y

GA-HRPCA
Fit1

Local 0.03 0.176 0 Y
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Table 4.4: Error comparison between tested methods for 50 images.

Method mean median min max std. dev.

ε ε ε ε ε

GAC [17] 0.478 0.433 0.094 1.000 0.297
Geocuts [11] 0% seeding 0.375 0.370 0.094 0.981 0.232
Geocuts [11] 5% seeding 0.182 0.171 0.089 0.346 0.061
Geocuts [11] 10% seeding 0.160 0.149 0.086 0.309 0.057
RW [52] 0% seeding 0.844 0.933 0.288 0.970 0.170
RW [52] 5% seeding 0.165 0.152 0.106 0.407 0.055
RW [52] 10% seeding 0.132 0.117 0.070 0.343 0.057
Cremers 2008 [35] 0.376 0.319 0.158 0.895 0.186
GA-HRPCA Fit1 0.176 0.161 0.081 0.360 0.060
GA-HRPCA Fit2 −A 0.211 0.197 0.093 0.495 0.071
GA-HRPCA Fit2 −B 0.202 0.192 0.116 0.347 0.055

Examining the fidelity column of table 4.3 in particular, we notice that the convex

methods score poorly unless they are heavily constrained with manual intervention (i.e.

high seeding percentage for Geocuts and RW). The high error of GAC, in combination with

the fact that we use the ground truth as the initialization, implies directly that a simple

convex functional, under few optimization constraints, yields a very high segmentation error.

Simply put, there are too many erroneous segmentations with lower energy than the ground

truth. This is, of course, expected. Notice, however, that with minimal constraints Geocuts

yields almost as high a segmentation error as GAC. Again, this is not surprising; the global

optima includes many non-CC edges, while the local optima can get stuck before reaching

increasingly erroneous segmentations. Had we initialized GAC randomly instead of using the

ground truth segmentation, its error would have been far higher. Adding more constraints

to Geocuts demonstrates that under appropriate constraints a global optima to a convex

function can yield good results. However, as presented in Fig. 4.13, the constraints need to

get rather tight before erroneous segmentations are eliminated. Naturally, a region-based

energy function, as is used in RW, suffers the same fate. We have thus far reached a rather

expected result, global optima to simple energy functionals can yield good segmentations,

but they require significant constraints (the seeding percentage has to be high). As manual

constraints are undesirable, automatic constraints are preferable.
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Tight shape constraints can be automated through the use of shape prior information,

and statistically shape-constrained energy functionals can be solved, as with Cremers 2008.

However, in order to introduce a shape constraint that is convex, i.e. can be globally

optimized, the constraint is made simple (global-in-scale PCA). It is especially interesting

to compare the results from Cremers 2008 with GA-HRPCA. The Cremers 2008 row of

results in table 4.3 compares the same energy function, with the same weights, w, to our

GA-HRPCA method in Fit2 −A and Fit2 −B. We believe the Cremers 2008 error is high

because not only is the shape space unable to address the variability present in the data

(i.e. low shape flexibility), but numerous non-CC shapes are still allowable and have lower

energy than other, better segmentations (i.e. low shape fidelity). Similar discussions apply

when comparing Geocuts to GAC and GAC–GA-HRPCA, since all of the methods use the

same energy functional. Under appropriate constraints GAC has low error, and therefore

high fidelity, and our method is able to automatically enforce those constraints. We also

note that re-running Cremers 2008 with an increasing number of PCA variation modes had

negligible impact on the results, because while more modes increases shape space flexibility,

it also reduces fidelity. More specifically, with more modes of variation the convex, implicit,

global shape space can include the ground truth segmentation but can also include other

more erroneous segmentations, stemming from the fact that the true underlying shape-space

is not Gaussian (imagine fitting an ellipse to the letter ‘S’, to include the entire letter much

of the space outside the letter must also be included).

There is, thus, a trade-off present in all choices. Neither locally optimal nor globally op-

timal methods without shape information seem well-suited to fully-automatic segmentation

of the CC. Shape information can be added, and the solution kept global, but the shape

information must be kept convex, which may not accurately fit the desired shape space,

without simultaneously allowing erroneous shapes. Alternatively, with HRPCA a more ex-

pressive shape constraint can be automatically built, but it cannot be solved optimally and

thus necessitates GA in order to minimize sensitivity to initialization. A comprehensive set

of results is presented in table 4.4.

Notice that the standard deviation between images for each tested method, last column

of table 4.4, is in general much greater than the standard deviation across different runs of

the same image for our GA-HRPCA method (table 4.1, column 7, mean std. dev. ε).

This implies that one can expect a greater variation in accuracy by applying a given method

to a new image, than from re-running our GA on a specific image.
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4.4 Conclusions

We have developed a novel segmentation technique by exploring the main concerns asso-

ciated with both traditional and statistically-based deformable models. By using GA to

address the initialization and local minima problems associated with traditional energy-

minimization techniques, we propose an alternative to convex optimization methods [52, 35,

11, 112, 14]. In doing so, we trade guaranteed global optimality for a shape space that more

accurately fits the true allowable shape domain (localized, medial-based shape statistics),

i.e. higher flexibility and fidelity. Using the same energy functional, we showed a signif-

icant improvement in accuracy over the globally optimized, convex, global, implicit PCA

shape space, Cremers 2008 method. Consequently, in answer to our question posed in the

introduction: Is it worth sacrificing the complexity of the energy functional, and thereby

reducing its ability to address image variability, in exchange for global optimality, or can

more complex functions and shape spaces be utilized with an approximate optimization

method and achieve superior accuracy? In our application the sacrifice is not worth it. It is

better to trade convexity with guaranteed global optimality for a more expressive functional

and shape-space with GA-based optimization that achieves close to optimal solutions. We

therefore believe research into finding energy functions and shape spaces with high fidelity,

with a de-emphasis on convexity, is a very important area of future research. While it is true

that global solutions to any such functions would be desired, our results demonstrate that

convexly approximating the non-convex shape-space in the application of CC segmentation

causes a higher error than does approximating the global optima of the non-convex space

via GA. We imagine the difference will only increase for structures with more complex shape

deformations between members of the population, as these structures will form increasingly

non-convex shape spaces.

Furthermore, as it’s well known that pose introduces an inherent non-convexity in shape-

model–based deformable models, for example [35], we provide a method that directly handles

the pose problem. In essence, the basic idea with GA is to avoid choosing one pose over

another until there is enough evidence suggesting one pose is vastly superior. For example,

suppose the energy function had two local optima with different pose but similar shape;

a binary image containing a target shape, and a second similar structure with a different

pose. Eq. (4.6) ensures that our method would keep approximately half of its population at

each pose initially, since population members under each pose would have equal probability
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of replacement. Our GA would then start shifting the bulk of the population towards

whichever object better satisfies the fitness function once shape deformations were allowed.

This is exemplified by Fig. 4.10, as numerous false pose configurations have similar response

to the fitness function. However, the pose that corresponds with the CC has a much higher

degree of fitness and so it quickly overtakes the focus of the search.

We have demonstrated how GA can be combined with constrained shape deformations

to effectively explore the search space of a complex energy functional, thereby incorporat-

ing prior-knowledge into the solution while retaining multiple simultaneous searches of the

space. In essence, we have constrained the members of the GA population to lie within the

allowable shape domain thus greatly reducing the search space traditionally associated with

deformable models, but without sacrificing fidelity to the target anatomical shape space

through global PCA and the inherent convex approximations.

Though other works have used GA to drive deformable models [6, 7, 67, 82, 103, 43, 50],

to the best of our knowledge, no works have combined GA with statistical-based deforma-

tions in a way that yields intuitively constrained deformations (bends, bulges and stretches)

that render the results more interpretable by clinicians and enable regional statistical anal-

ysis [55].

Our method can handle a variety of classical energy terms [35, 18, 17]. Other terms

can be easily added related to texture, color or other image features. There is no requisite

that the terms be convex or even differentiable, they simply need to properly reflect the

characteristics of the appearance of the target object in the image data. Not requiring

terms to be differentiable is an interesting side benefit of using GA.

Our method is also extendable to other segmentation problems. Specifically, given a

training set of shapes for a different anatomical structure, one can perform skeletonisation

[51] followed by medial profile extraction and, subsequently, HRPCA. More complex topolo-

gies than the single medial-axis structure used in our experiments would be an interesting

and natural extension to our method. The largest challenge would be learning the under-

lying medial-structure, but once learned we believe there would be very little modification

required to the GA-HRPCA algorithm. One potential modification would be to fit the

primary medial-axis first, then extend down to the branches in a coarse-to-fine approach

similar that used to explore different scales in algorithm 1.

We are working on extending these ideas to 3D where the genes of the population

become the 3D shape representation’s parameters [63]. However, it remains to be explored
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how much added complexity must be introduced to address complicated 3D objects with

possibly varying topology using a medial representation, and whether a medial based shape

representation will remain the ideal choice for an evolutionary computing strategy with

localized deformations in 3D. Another interesting avenue is the extension to multilabel

segmentation, where GA could be used to model numerous, interacting, simultaneously

evolving populations, each representing a different anatomical structure.
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Figure 4.13: (Color Figure) Visualization of Geocuts and RW seeding percentages. Images
demonstrate the increasing degree of constraint, in the form of additional seed points, re-
quired to prevent these simple functionals from producing highly erroneous segmentations.
Top row, seeds with seeding percentage listed (See text for details). Middle row (a-d),
Geocuts segmentations for corresponding seed percentages. Bottom row (e-h), RW segmen-
tations. Notice leakage into fornix dip (below the CC) in both methods, due to lack of
shape information. As the constraints get tighter, the possible set of segmentations shrinks
to exclude the fornix.



Chapter 5

Conclusions and Future Work

MIS remains a challenging problem, but one that if solved will bring a number of improved

treatment options for patients, and better analysis tools to study diseases. With the end goal

being clinically usable segmentation tools, it is important to target the research problems

that are responsible for the largest portions of segmentation inaccuracy and unreliability.

This dissertation demonstrated that the weights in energy-minimization–based MIS

methods play a large role in accuracy, as does taking convex approximations to non-convex

shape spaces. Our results motivated the use of non-convex energy functionals solved via

manifold-based initializations, or more generally GA, and customized to the data via weight

optimization. Specifically, we have demonstrated the need for varying the energy functional

in energy-minimizing segmentation techniques, showing that the large degree in image vari-

ability is better addressed by varying the energy functional weights and parameters, than by

leaving them fixed. To that end, we detailed a technique to analytically derive the optimal

energy functional weights of competing energy terms for training (segmentation, image)

pairs, and then infer optimal parameters of novel images utilizing learned image manifolds.

The presented methods provide a general formulation that can be directly applied to any

energy minimizing segmentation technique (e.g. [17, 18, 76, 126]) to improve its segmen-

tation and increase its ability to generalize to larger datasets. An added benefit was to be

able to fully automatically initialize the segmentation process.

We have also demonstrated the application of GA to deformable models, building a novel

deformable-model based on localized shape statistics using HRPCA. Our method enables

the fitting of complex, medial-based shape models to medical images under arbitrary energy

functionals. Our results demonstrate that approximately solving a non-convex functional

88
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yields better results than solving a convex approximation.

We believe future work should turn towards better energy functionals. Specifically,

energy functionals incorporating increasing degrees of learned, contextual knowledge [130,

68]. Learning and testing these functionals will require large data sets, and we believe that

the MIS community needs to work towards the creation of sets containing thousands of

images. These sets need to be anonymized and made publicly available to enable better

validation of competing MIS methods.



Appendix A

Euler Lagrange

Starting with a function Φ(x), we build an energy functional:

E (Φ) =

∫

L (x,Φ (x) ,Φx (x) ,Φxx (x))dx (A.1)

where Φx is the first derivative of Φ with respect to x, and Φxx the second. The functional

E describes a desirable feature of Φ, in that it takes a high value when Φ is doing poorly,

and a low value when Φ is doing well. We know from Fermat’s theorem that E obtains its

extremum at a stationary point, i.e. where the derivative is zero. To describe a stationary

point one typically writes:

lim
τ→0

E(Φ + τω)− E(Φ)

τ
= 0 (A.2)

where ω is a scalar, but here ω is a function, and so this equation is known as the first

variation, as opposed to fist derivative, of the functional. Developed in the 1750s, the Euler-

Lagrange equation plays a fundamental role in variational calculus, defining a necessary

condition under which the first variation tends to zero, and therefore the functional reaches

a stationary point [41]. For a functional E as above, the general form of the Euler-Lagrange

differential equation is:

∂L

∂Φ
−

∂

∂x

(

∂L

∂Φx

)

+
∂

∂x2

(

∂L

∂Φxx

)

= 0 (A.3)

See appendix B for an example of its application to energy minimization methods for

MIS.
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Appendix B

Snakes: Details and Derivations

s=0
y s=1

x

s=0.2

s=0
y s=1

x

s=0.2After some time

Figure B.1: A parameterized contour undergoing a simple deformation (left-to-right).

Classical deformable shape models [154], are represented as a 2D parametric contour

v (s) = (x (s) , y (s)), where s ∈ [0, 1] traverses the contour (Figure B.1), and v is deformed

to fit to image data by minimizing an energy term ξ,

ξ (v (s)) = α (v (s)) + β (v (s)) . (B.1)

that depends on both the shape of the contour and the image data I(x, y) reflected via the

internal and external energy terms, α (v (s)) and β (v (s)), respectively.

The internal energy term is given as

α (v (s)) =

1
∫

0

1

2

(

w1 ‖vs‖
2 + w2 ‖vss‖

2
)

ds. (B.2)
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Whereas the external energy term is given as

β (v (s)) =

1
∫

0

w3 (s)P (v (s)) ds. (B.3)

The weighting functions w1 and w2 control the tension and flexibility of the contour, respec-

tively, and w3 controls the influence of image data. wi’s can depend on s but are typically

set to different constants. For the contour to be attracted to image features, the function

P (v (s)) is designed such that it has minima where the features have maxima. For example,

for the contour to be attracted to high intensity changes (high gradients) we can choose

P (v (s)) = P (x (s) , y (s)) = −‖∇ [Gσ ∗ I (x (s) , y (s))]‖ (B.4)

where Gσ ∗ I denotes the image convolved with a smoothing (e.g. Gaussian) filter with a

parameter σ controlling the extent of the smoothing (e.g. variance of Gaussian).

The contour v that minimizes the energy ξ must, according to the calculus of variations

[41], satisfy the vector-valued partial differential (Euler-Lagrange) equation:

∂f

∂v
−

∂

∂s

(

∂f

∂vs

)

+
∂2

∂s2

(

∂f

∂vss

)

= 0 (B.5)

where f = 1
2

(

w1 ‖vs‖
2 + w2 ‖vss‖

2
)

− w3 ‖∇(Gσ ∗ I(v))‖. The first step in applying the

Euler Lagrange is to determine the partial derivatives as follows:

∂f

∂v
= −w3∇‖∇(Gσ ∗ I(v))‖

∂

∂s

(

∂f

∂vs

)

= w1vss

∂2

∂s2

(

∂f

∂vss

)

= w2vssss

(B.6)

then substituting back into eq. (B.5) we get the final set of equations:

−w1vss + w2vssss − w3∇‖∇(Gσ ∗ I)‖ = 0 (B.7)

where we make note that v (s) = (x (s) , y (s)), and so the above can be expanded to:

−w1xss + w2xssss − w3
∂ ‖∇(Gσ ∗ I)‖

∂x
= 0

−w1yss + w2yssss − w3
∂ ‖∇(Gσ ∗ I)‖

∂y
= 0

(B.8)
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In order to solve the system of equations we introduce an artificial time step, by equating

the above equations to −∂v
∂t . This yields a first-order iterative optimization method, though

as outlined in this report other choices for optimization methods exist.



Appendix C

Weight Optimization Convexity

We now show the convexity of (3.3) in w as follows. Letting Ci = FNS
(Sj , Si)(Si −

Sj) |Si − Sj |
−1, and expanding the norm and the dot-product in (3.3) to expressly sum

over the image domain, Ω, gives:

argmin
∑

x∈Ω

[

(

∑n
p=1wpTp(Sj)

)2
−
∑

i∈NS

(

Ci
∑n

p=1wpTp(Si)
)]

. (C.1)

Factoring like terms over pixels yields:

argmin

[

(

∑n
p=1

(

wp
∑

x∈Ω Tp(Sj)
)

)2
−
∑

i∈NS

(

Ci
∑n

p=1

(

wp
∑

x∈Ω Tp(Si)
)

)]

. (C.2)

Now define two 1 × n vectors: T with entries Tp =
∑

x∈Ω Tp(Sj); and V with entires

Vp =
∑

x∈Ω

∑

i∈NS
(CiTp(Si)). By collecting like terms and writing (3.3) in vectorized

form, we can formulate a quadratic programming problem:

argmin
(

wTTTTw −Vw
)

, (C.3)

where TTT is by definition positive semi-definite; ensuring the optimization problem is

convex.
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