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ABSTRACT 

The use of multiple antennas on both sides of a multipath channel can 

improve the capacity without additional transmit power. It is possible, in principle, 

for the capacity to increase linearly with the number of antennas even when the 

channel state information (CSI) is unknown at the transmitter. These known 

capacity results require many assumptions, including the need for the CSI to be 

known perfectly. In practice, perfect CSI is never known perfectly a priori, and its 

estimation, without using an ideal blind technique (none are available), requires 

bandwidth resource which reduces the capacity. Moreover, various factors such 

as digital modulation, finite block lengths, and imperfect power allocation degrade 

the capacity from the Shannon limit to the practicable possibilities of a digital link.     

These practical impairments motivate new techniques for increasing the 

capacity in MIMO systems, and in this thesis, two sets of techniques are 

presented. The first set includes two new decision-directed techniques for 

estimating the channel matrix, and they are shown to have higher capacity 

compared to pilot symbol assisted modulation systems since no pilots are 

required. These techniques are applicable for various open-loop SISO/MIMO 

wireless communications systems including systems employing OFDM, 

nonlinear/linear equalization, MRC, Alamouti coding, and spatial multiplexing.  In 

the second set, the eigen-MIMO capacity is maximized in the presence of 

different practical impairments. In particular, the joint influence of training-based 
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channel estimation and imperfect feedback on both the information-theoretic and 

the practicable water-filled eigen-MIMO capacities, are analyzed. Water-filled 

eigenchannels maximize the information theoretic capacity, but for 

implementation, the required adaptive modulation means high complexity. One 

simplification is to have fixed modulation over a fixed number of eigenchannels. 

However, the error rate deteriorates with the weakest eigenchannel and to 

counter this while maintaining high throughput, the information rate is maximized 

with an output SNR constraint. On the other hand, if higher complexity can be 

tolerated, adaptive modulation and coding can be deployed for high throughput. 

In this context, a high capacity eigen-MIMO system using Reed-Solomon coded 

M-QAM is developed. This includes an appropriate QAM, code rate, and power 

allocation for each eigenchannel. 

 
Keywords:  capacity; capacity efficiency; channel estimation; closed-loop 
wireless system; eigen-channel; feedback; multiple input multiple output; 
throughput  
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1: INTRODUCTION 

Communication in many wireless channels is impaired predominantly by 

multipath fading. The random fluctuation in received signal level, known as 

fading, can severely affect the quality and reliability of wireless communications. 

In addition, the constraints posed by limited power and scarce frequency 

bandwidth make the task of designing high data rate, high reliability wireless 

communication extremely challenging. The use of multiple antennas at the 

transmitter and receiver in wireless systems, known as multiple-input multiple-

output (MIMO) technology, has rapidly gained popularity over the past decade 

due to its powerful performance-enhancing capabilities. MIMO technology 

constitutes a breakthrough in system design. The technology offers benefits that 

help meet the challenges imposed by both the impairments in the wireless 

channel as well as the resource constraint. In addition to the time and frequency 

dimensions that are exploited in conventional single antenna wireless systems, 

MIMO uses the spatial dimension provided by the multiple antennas at the 

transmitter and receiver. In a line-of-sight situation, using the spatial dimension is 

the equivalent of adding antenna aperture, i.e., using antennas with high 

directional gain.  

The benefits of MIMO systems can be expressed as array gain, diversity 

gain, spatial multiplexing gain, and interference reduction. Array gain refers to the 

average increase in the receive signal-to-noise ratio (SNR) that results from a 
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coherent combination of the wireless signals at the receiver or transmitter or 

both. Diversity gain mitigates fading and is realized by receiving multiple (ideally 

independent) copies of the transmitted signal in space (i.e., signals from different 

antenna patterns, having amplitude, phase and polarization differences), 

frequency, or time. Spatial multiplexing offers an increase in the capacity with no 

additional power expenditure. It is possible, in principle, for the capacity to 

increase linearly with the number of antennas even when the channel state 

information (CSI) is unknown at the transmitter. Interference in wireless networks 

results from multiple users sharing time and frequency resources. By exploiting 

the spatial dimension to increase the separation between users, interference 

mitigation also becomes possible.  

The communications performance of time-varying wireless systems 

depends on the accuracy of the estimation of parameters such as the fading 

channel coefficients. The channel coefficients must be estimated by either pilot 

symbols (training sequences) or in a decision-directed manner. A note on the 

difference between “blind” and “decision-directed” is in order. In a strict 

interpretation, blind techniques imply that no pilots are used at all, even for 

initialization of channel estimation. Decision-directed means that pilots are 

needed, even if just for initialization. After initialization, decision-directed 

algorithms behave in a blind manner, in the sense that after the initialization, no 

pilots are required.  Several papers in the literature refer to this case as blind, 

(see the references in Chapters 2 and 3). In this thesis, this case is referred to as 



 

 3 

decision-directed, although the term “blind” is used in occasional passages 

where it may be helpful for clarity in relation to citations. 

Even with perfect channel knowledge, it may not be possible to obtain 

simultaneously all the benefits described above due to their competing demands 

on the spatial degrees of freedom (number of antennas). However, using some 

combination of the benefits will result in improved capacity and/or reliability in a 

wireless network. Transceiver algorithms for MIMO systems may be broadly 

classified into two categories: those focussed on increasing the capacity; and 

those focused on increasing the reliability. Intuitively, for a fixed capacity, an 

increase in SNR will reduce the symbol-error-rate (SER) of the system. Similarly, 

at a fixed target SER, an increase in SNR may be leveraged to increase the 

transmission rate. In this way, a fundamental trade-off exists between the 

capacity and reliability. In the context of MIMO systems, this trade-off is often 

referred to as the diversity-multiplexing trade-off, with diversity signifying the 

reliability improvement and multiplexing signifying an increase in capacity.     

In this thesis the increase in the capacity of practical MIMO wireless 

communication systems is a focus. As noted above, the capacity can increase 

with the number of antennas even when the CSI is unknown at the transmitter. A 

further increase in capacity is possible when CSI is known at the transmitter. But 

these capacity results require many assumptions, including the need for the CSI 

to be known perfectly. In practice, perfect CSI is never known perfectly a priori 

and its estimation requires bandwidth resource which in turn reduces the 

capacity. In general, fine differences in theoretical performance from different 
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architectures may be overwhelmed by the engineering compromises inherent in 

a practical design for a given channel type. Such compromises include the 

deployment of practical communications techniques including choices of 

modulation such as QAM signaling (instead of Gaussian signals), coding, pulse 

shaping, filter sizes, and finite block lengths (instead of infinitely long codes), and 

the associated guardbands which contribute to the required bandwidth, etc. 

These practical impairments motivate research for finding new capacity-efficient 

techniques for MIMO wireless systems.  

The research reported in this thesis can be classified into two sets. The 

first set comprises two new techniques for estimating the channel matrix using 

decision-directed methods, aided by a necessary pilot-based initialization. Since 

no pilot or training sequence is used (after the initialization), these decision-

directed systems turn out to be more capacity efficient compared to pilot symbol 

assisted modulation (PSAM) systems and so-called semi-blind techniques. This 

encourages the invention and development of further decision-directed channel 

estimation techniques for various SISO/MIMO wireless communications systems. 

In the first technique, a decision algorithm obtains primary data estimates 

of the transmitted symbols based on the constrained linear minimum mean 

square error (LMMSE) criterion, and then these are applied to subsequent 

optimal minimum mean square error channel estimation. The second technique 

is based on non-stationary independent component analysis (ICA) for separating 

each source signal, and it uses particle filtering to track the time-varying channel. 

The advantages of these decision-directed techniques are:  
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1) With no pilot or training sequence used rather than initialization, the 

decision-directed systems turn out to be more spectrally efficient 

compared to PSAM systems;  

2) They exploit the channel taps variances and only few values from the 

time correlation coefficient function, thus full knowledge of the second-

order statistics is not required;  

3) The algorithms do not require large sample sizes to converge as 

required in many higher-order statistics based approaches;  

4) Unlike many previous decision-directed approaches that are based on 

block processing, the presented techniques are realized in symbol time in 

the sense that channel coefficients are estimated at the symbol rate; and  

5) They have the potential to be formulated for various SISO/MIMO 

wireless communications systems including those employing orthogonal 

frequency-division multiplexing (OFDM)  [1.1], nonlinear/linear equalizers 

 [1.2]- [1.4], maximum-ratio combining (MRC)  [1.5], Alamouti coding  [1.6], 

spatial multiplexing  [1.7], etc.  

Further MIMO systems that may benefit from the proposed decision-

directed techniques are those with nonlinearity in both transmitter and receiver 

amplifiers  [1.8]- [1.9] and the ones with maneuvering terminals where the relative 

speed of the transmit/receive terminals may change in time  [1.10]- [1.11].  

In the second set of techniques, the aim is to maximize the MIMO 

information-theoretic capacity and the practicable capacity. (The practical 
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capacity is also referred to as throughput (and many other terms, see Chapter 6) 

in which this term is specifically interpreted as the throughput of correctly 

detected bits that would arise if an idealized coder was used, in the presence of 

different practical impairments. Throughput is used mainly in Chapter 6, and 

practicable capacity is mainly used in Chapers 5 and 7, following the references’ 

terminology.) In particular, an analysis is developed for the joint influence of 

training-based channel estimation and imperfect feedback (mean feedback) on 

both the information-theoretic and the practicable water-filled eigen-MIMO 

capacity  [1.12]- [1.13]. The channel is estimated via training, then a vector 

quantizer (VQ) codes the CSI which is fed back to the transmitter via a CSI 

feedback link with a throughput constraint. Both of these capacities are 

formulated as a function of various parameters. Then the optimal number of 

training symbols and the optimal power allocation for training and data transfer is 

obtained with the criterion of the associated capacity. It turns out that by jointly 

optimizing over the number of training symbols and the feedback delay time (by 

varying the VQ code size), a further increase in both of the capacities is possible. 

Even with perfect CSI, there are other practical challenges with each type 

of optimized linear precoder-decoder design. For offering insight into MIMO 

configurations that are practical but can still maintain high performance, new 

formulations are required. For the (capacity-maximizing) case of water filling, the 

different eigenchannel gains (and the varying numbers of eigenchannels, in 

general) contribute to the difficulty of allocating different digital modulations to 

different eigenchannels. This adaptive modulation has high complexity and is not 
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easy to implement. Sophisticated hardware is needed (and usually not available 

in legacy systems) at the terminals to support the variable modulation, and a 

sophisticated protocol is required to support the adaptation via data exchange 

and handshakes. Also, adaptive modulation is not effective in fast-changing 

channels. This is because of the prolonged protocol required: the transmitter 

needs to know the SNR on each eigenchannel in order to adapt the modulations 

and inform the receiver of the adaptation. Even if the protocol, including the 

ongoing channel sounding, can keep up with the changing channel, the resulting 

capacity overhead may still be significant. One simplification is to have fixed 

common modulation with a common signaling rate, for a fixed number of 

eigenchannels, also referred to as non-adaptive modulation. With this fixed 

modulation scheme, the reduced complexity extends to the protocol and to the 

hardware of all the terminals in a multi-user system.  

A feature of water-filling with fixed (or adaptive) modulation, is that the 

uncoded SNR/SER performance of the overall system deteriorates with the 

weakest eigenchannel. For such a system, the uncoded SNR/SER performance 

trades off with the throughput which depends on the receiver SNR and the power 

allocation on the eigenchannels. Since there is no exact analytical formulation for 

throughput, the trade-off is quantified based on maximizing the theoretic capacity 

under the constraint of a maximum allowable SNR loss, relative to the receiver 

SNR, on the weakest eigenchannel. The SNR constraint guarantees a desired 

error performance.  [1.14]. It is shown via simulation that the throughput (recall 

this is the same as practicable capacity) using the new power allocation 
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algorithm shows similar behavior to the information-theoretic capacity. In this 

sense, the information theoretic capacity for uncoded and fixed modulation is 

being maximized in order to establish limits of practical, reduced complexity 

systems. 

On the other hand, if high complexity can be tolerated, then adaptive 

modulation together with forward-error correction coding will produce a better 

throughput as long as the channel is slowly fading. In this context, a capacity 

efficient technique and its analysis is presented where adaptive QAM and Reed-

Solomon (RS) coding are combined for capacity realization in eigen-MIMO 

 [1.15]- [1.16]. RS coding has the advantages of algorithmic simplicity, low 

memory requirements, and decoder complexity. Its closed-form error probability 

is useful for obtaining an optimal power allocation, signal constellation size(s), 

and code rate(s) on the eigenchannels, for maximum throughput. The adaptation 

is applied to two different architectures of the encoders/decoders (CODECs) for 

eigen-MIMO, and their performances are compared with the uncoded case. The 

outer coding architecture refers to a single CODEC working on the overall serial 

data, and inner coding refers to separate CODECs for different eigenchannels. 

The adaptive system with optimum power allocation reveals new capacity 

behavior which is different to that of water-filling; and similar behaviour holds for 

practicable capacity maximization with uncoded non-adaptive modulation  [1.17]. 

Finally, a selection procedure is presented between different system 

configurations, including the adaptive RS coded modulation applied to dominant 
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eigenmode transmission, in order to obtain the highest practicable capacity 

subject to either average or instantaneous output BER. 

A note on complexity is in order since the thesis is in a theoretical 

approach to increasing capacity rather than a treatment of complexity. It is 

conceded that theory is not readily separated from complexity since feasible 

systems are the focus of engineering research, but in order to make progress 

here, the focus is taken off complexity considerations. In some chapters, a 

reduced complexity system is proposed, and in others, the increased complexity 

(generally required for improved capacity) is set aside, although calculations are 

offered for estimating aspects of the algorithmic complexity.   

The rest of the thesis is organized as follows: Chapter 2 describes the first 

proposed decision-directed channel estimation technique with the application to 

uncoded OFDM system. In Chapter 3, the first new decision-directed technique is 

applied to MIMO systems with nonlinear amplifiers. Here, signal processing is 

used also to compensate for the non-linearity. The ICA-based decision-directed 

channel estimation is presented in Chapter 4. Its advantages are demonstrated 

for MIMO systems with maneuvering terminals where the algorithm makes it 

possible to track the relative speed of the terminals. In Chapter 5, an analysis is 

presented for the influence of training-based channel estimation and imperfect 

feedback on both the information-theoretic and the practicable capacities. The 

problem of information-rate maximization with output SNR constraint with non-

adaptive modulation is treated in Chapter 6. Chapter 7 addresses adaptive RS 
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coded modulation in eigen-MIMO. The thesis concludes with proposed future 

directions for this research in Chapter 8.  

The notation of this thesis is conventional, as follows. Symbols for 

matrices (in capital letters) and vectors are in boldface. The notations ( )H
. , ( )T

.  

and ( )*
.  stand for conjugate transpose, transpose, and complex conjugate, 

respectively. I  is the identity matrix, 
F

.  denotes the Frobenius norm, ( ).tr  is 

the trace of a matrix and ( ).E  denotes expectation. A matrix X  containing 

entries of i.i.d. zero-mean complex Gaussian entries with variance 1, is written 

X ~ )1,0(CN . 
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2: OFDM WITH DECISION-DIRECTED ITERATIVE 
CHANNEL ESTIMATION 

OFDM has broad uptake in wireless communications. Although standards 

are in place, the structure of OFDM transmission is still evolving as new 

technology and applications develop. OFDM in its current form is best for 

dispersive channels which do not vary quickly. Because of OFDM’s ubiquitous 

uptake, including its increasing extensions to time-varying mobile channels with 

widely different rates of change, and higher radio frequencies, its structure and 

capacity efficiency should continue to be researched. 

OFDM signals have been optimized over various components such as 

partitioning  [2.1], adaptive loading  [2.2] and coding  [2.1]. All optimization depends 

on the channel, thus the modeling and the estimation of the channel is critical. 

Furthermore, for OFDM systems with multiple antennas, accurate channel 

estimation is required for the combining, interference suppression, and the 

ensuing signal detection  [2.1]. 

With accurate channel estimation and tracking, OFDM systems can use 

coherent detection (taken here to mean a receiver which has CSI, and optimal 

coherent detection is taken to mean having perfect CSI) for a ~3dB SNR gain 

over differential detection. The system with differential detection has simpler 

implementation and uses differential modulation (also called differential 

encoding) at the transmitter and conventional differential detection at the receiver 
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in order to avoid the need for channel estimation. Its development is discussed in 

documents such as in the Eureka 147 project from the 1980s in which DPSK 

modulation is employed in each subcarrier. The simplicity of the receiver design 

of a differential system comes at the price of a performance degradation relative 

to that of coherent combining. The degradation can be attributed to several 

different mechanisms. Firstly, if the reference symbol is a noisy estimate of the 

actual symbol, a conventional differential detector suffers from error propagation 

(sometimes referred to as noise boosting) in the decision metric, compared to 

coherent detection. Secondly, in differential detection, two symbol times are 

needed for detection, so the noise power is essentially doubled relative to 

coherent detection. Thirdly, for time-varying channels, the channel variation 

between adjacent symbols will introduce significant performance degradation for 

differential detection. For the case of OFDM, the subchannel bandwidth is small, 

resulting in a long OFDM symbol interval, which may allow significant channel 

variation between adjacent OFDM symbols. In addition, inter-carrier interference 

(ICI) may be introduced by OFDM due to the loss of orthogonality caused by the 

Doppler spread of the time-varying channels. 

In practice, the channel can be estimated either by the use of pilot 

symbols or in a decision-directed manner. Adding training sequence pilots or 

carrier pilots in the time or frequency domain enables estimation of the channel 

response (CR) at the pilot positions. The CRs at the other positions can be 

estimated by interpolation. Pilot schemes for channel sounding not only require a 

reduction in the available payload capacity, but they may also add complexity – 
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both the receiver and transmitter must have in-built a priori knowledge of the pilot 

scheme, and both must deploy the extra processing to implement the pilot 

scheme. (For compatibility, the Standards must also enumerate the complex 

details of the timing and its tolerances of the pilot scheme.) Nevertheless, this is 

the status quo, because the link performance cannot be realized currently by 

other means. No formal studies appear to have been undertaken on the 

complexity of pilot systems versus non-pilot systems; the point here is that some 

complexity must be associated with the inclusion of a pilot sceme in a system for 

channel sounding. 

Many pilot-based methods for estimating the channel have been 

proposed; e.g.,  [2.3]- [2.10], and more recently others too numerous to list. 

Particular attention has been paid to optimizing and analyzing the effects of the 

location of the pilots within the frequency band for a given pilot density, the 

number of pilot symbols per packet, and the power dedicated to the pilots relative 

to the data, e.g.,  [2.6]- [2.8]. As the channel varies more rapidly (in time or 

frequency), denser pilots are required. But increasing the number of pilots also 

acts to reduce the available payload capacity, so the pilot-based scheme can 

only be optimized for a given rate of change of the channel. There have been 

attempts to get round this while maintaining constant pilot density. In  [2.9] a 

pseudo pilot algorithm based on a regressional model-based least-squares-fitting 

is proposed for fast-varying channels without increasing the pilot density. In 

 [2.10], pseudo pilots are created using diversity detected data symbols. However, 

a fundamental problem remains with such systems - pilots are still required. 
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Existing blind channel estimation methods for OFDM systems can be 

classified as statistical or deterministic. (They are referred to as “blind” in this 

section, following the terminology of the references, and thereafter in this thesis, 

“decision directed” is used.) Examples of statistical blind channel estimation 

include using correlation methods  [2.11] and cumulant fitting  [2.12], [2.13]. These 

statistical approaches exhibit slow convergence, making them unsuitable for 

mobile radio channels, or any burst transmission. Another blind equalization 

criterion has been introduced in  [2.14]; it does not apply to traditional OFDM 

systems since it relies on a transmitter without cyclic prefix (CP). Also, 

correlation-matching methods based on the transmitted signal cyclostationarity 

have been proposed in  [2.15]- [2.16]. However, their possible implementation in 

existing systems is complicated in practice by the presence of null side carriers 

which affect the proposed identification results. Some algorithms based on 

subspace decomposition are also proposed  [2.17]- [2.19] that essentially take 

advantage of the inherent redundancy introduced by the CP to blindly estimate 

the channel. In order to avoid the convergence period of the blind subspace 

algorithms during which the estimation is unreliable, known pilots are transmitted 

at the beginning of each OFDM frame. These methods are sometimes referred to 

as “semi-blind” despite the need for channel-sounding pilots. More recently, a 

new blind system was proposed in  [2.20] that comprises simple linear 

transformation applied to blocks of symbols before they enter the OFDM system. 

The transform imposes a correlation structure on the transmitted blocks, which is 

used at the receiver to recover the channel via simple cross-correlation 
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operations. Channel estimation/tracking based on Kalman filtering is also well 

established, e.g.,  [2.21]- [2.22] based on the tenet that the recursive least squares 

(RLS) algorithm and the Kalman filtering algorithm are both better than the LMS 

algorithm in convergence rate and tracking capability. 

The blind deterministic methods process the post DFT received blocks 

and exploit the finite-alphabet property of the information-bearing symbols. A 

blind deterministic approach based on the maximum likelihood (ML) principle has 

been proposed for OFDM systems in  [2.23]. This method has the advantage of 

producing a channel estimate from a single OFDM symbol, but high complexity is 

needed to execute the maximization in the algorithm and there is an ambiguity in 

the recovered phase. To recover the phase completely, additional pilots can be 

inserted. Although only a few such pilots are needed, the scheme is no longer 

blind. To address this problem and reduce complexity, a modification of the ML-

method has been introduced in  [2.24] which combines different modulation 

schemes on adjacent subcarriers to resolve the phase ambiguity. A limitation of 

the ML-methods ( [2.23], [2.24]) is the restriction to constant modulus modulations 

(PSK), otherwise they have high complexity owing to the vector maximization 

algorithm  [2.23]. Iterative Bayesian methods that alternate between channel 

estimation and symbol detection/decoding have also been proposed in  [2.25]-

 [2.27] for the case of coded OFDM systems. Furthermore, taking into account 

specific properties of M-PSK or QAM signals while utilizing an exhaustive search, 

a blind method has been presented in  [2.28]. In comparison to the statistical 

methods, the deterministic ones converge much faster; however, they involve 
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high complexity, which becomes even higher as the constellation order 

increases. Finally, two deterministic blind channel estimation methods that take 

advantage of receive diversity and do not require an exhaustive search, are 

proposed in  [2.29] and  [2.30]. 

In this work  [2.31], a new statistical decision-directed channel estimation 

technique is presented for uncoded OFDM, open loop systems. The open loop 

form means that no channel information is sent back to the transmitter, so there 

is no adaptive power control at the transmitter. It works as follows. When an 

OFDM symbol is received, a decision algorithm first makes primary symbol 

estimates of the data on each subcarrier based on constrained linear minimum 

mean square error criterion. These primary data estimates are then used for the 

MMSE channel estimation. Once the channel estimates are obtained, standard 

data detection is applied.  

The main thrust of this work is to introduce and describe the new decision-

directed channel estimation technique and compare its error performance with: 

optimal coherent/differential detection as the benchmark; a known decision-

directed technique based on decision-directed Kalman-filtering  [2.21]; and two 

pilot-aided OFDM schemes (block pilots and comb pilots). Here, improved 

performance is observed. Clearly, the presented system requires more 

computational complexity. Complete evaluation of the computational complexity 

is quite cumbersome; however; some insight is possible into computational 

complexity in one iteration (symbol time), through an approximate operations 

count of the implementation equations. Finally, the impact of assumptions in the 
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channel modeling is quantified using simulation, offering a feel for the 

performance with mismatch between the channel model and the receiver 

assumptions. These are: channel taps cross-correlation mismatch; and channel 

taps time-correlation coefficient mismatch. 

The rest of the chapter is organized as follows. Section  2.1 describes the 

channel and OFDM signal models. The decision-directed estimation is 

formulated in section  2.2 followed by complexity evaluation in section  2.3. The 

simulations are presented in section  2.4, with the conclusions in section  2.5. 

2.1 Channel and OFDM Signal Model 

In general, at the nth OFDM symbol time, N  data symbols 

{ }],[ kns Nk ,...,1; =  are converted to the time-domain using the IFFT. The cyclic 

prefix of length P , although itself consuming potentially available payload 

capacity, is needed to preserve the subcarrier orthogonally and to eliminate the 

inter-OFDM symbol interference. The OFDM symbol time is sOFDM )( TPNT += , 

with sT  the duration of the input data symbol, ],[ kns .  

The baseband representation of the channel impulse response can be 

modeled by a tapped delay line (TDL), here with M taps  [2.32] 

     ∑
=

−=
M

m

mm thth
1

)()(),( ττδτ  ( 2-1) 

where mτ  is the delay of the mth tap, and the Mmth m ,...,1;)( =  are the complex 

taps. When the symbol duration is much greater than the delay spread, then 

assuming wide-sense stationary uncorrelated scattering (WSSUS), the TDL taps 
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should be correlated  [2.33], [2.34]. According to  [2.33], the tap correlations often 

lead to analytical difficulties. It is common to simply treat the taps as uncorrelated 

 [2.32]. Clearly, this changes the channel from what was intended in the modeling. 

However, for the derivation of the proposed algorithm here, the )(thm ’s are 

assumed in the usual way to be independent, wide-sense stationary (WSS), zero 

mean, complex Gaussian processes. The impact of finite channel taps’ cross-

correlation on an OFDM system is quantified in the simulations below.  

In addition, it is assumed that the time-varying channel taps each have the 

same autocorrelation function 

)()( 2 ttR
mm hh ∆=∆ ρσ

 
( 2-2) 

with Mm
mh ,...,1;2 =σ  the  corresponding channel  branch  coefficients’ variances  

and )( t∆ρ  the normalized time-correlation function. For simulation, it is taken as 

)2( D0 tfJ ∆π  where Df  is the maximum Doppler frequency (this may correspond 

to a vehicle moving with the speed of m/sλv cDf=  with cλ  the wavelength of the 

arriving plane wave in meters). This form encompasses a commonly used, but 

major, assumption - a 2D-omnidirectional incident uncorrelated power distribution 

and 2D-omnidirectional antennas. However, the exact form of the correlation 

function is not important here in the sense that the algorithm below uses only one 

sample value of it. In practice, if this correlation sample value changes with time, 

it will do so slowly, and this allows time to track its estimate for its application in 

this algorithm. In fact sensitivity analysis (shown below) indicates that the 
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proposed decision-directed techniques are robust for a moderate mismatch of 

the channel’s second-order statistics, i.e., the correlation function values, relative 

to the a priori information assumed by the receiver. 

Using ( 2-1) and its assumptions, the frequency response of the time-

varying dispersive channel is denoted 

∫ ∑
+∞

∞− =

−− ==
M

m

fj

m

fj methdethftH
1

22 )(),(),(
τπτπ ττ  ( 2-3) 

and its time-frequency correlation function has the well-known structure, e.g., 
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where 2

Hσ  is the total average power gain of the channel, i.e.,  

∑=
m

hH m

22 σσ  
( 2-5) 

and  

∑ ∆−=∆
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2

)(  ( 2-6) 

is the frequency correlation coefficient function. 

The received waveform is sampled at skTt =  and the CP is removed 

before the FFT. It is assumed that there is no intercarrier interference. For 

deriving the algorithm, the channel ),( τth  is approximated as remaining constant 
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for the OFDM symbol duration. In the simulations, the channel changes within an 

OFDM symbol according to eqn. (2.4). By assuming perfect synchronization (in 

practice, “good enough” synchronization is achieved using the preambles in 

standard OFDM), the received symbol of the kth subcarrier at the nth OFDM 

symbol time (after the FFT block) can be represented by 

],[],[],[],[ knvknsknHkny +≈  ( 2-7) 

where ],[ knH  is the frequency response of the channel at the kth subcarrier and 

the nth OFDM symbol time, and ],[ knv  is the zero mean white Gaussian noise 

with variance 2

vσ . 

2.2 Decision-directed Channel Estimation and Data Recovery 

Equation ( 2-7) can be written in matrix form as 

nnnn vsΛy +≈  ( 2-8) 

where                                                           

                      [ ] T

n Nnynyny ],[]2,[]1,[ L=y  

                       [ ] T

n Nnsnsns ],[]2,[]1,[ L=s  

                       [ ] T

n Nnvnvnv ],[]2,[]1,[ L=v  

and nΛ  is a diagonal matrix with elements ],[ knH . With knowledge of the ],[ knH , 

the MMSE estimator of ns  given ny , is known, e.g.,  [2.35], to be 
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[ ] n

H

nsn

H

nsn yΛRRRs v

1~̂ −
Λ+Λ=  ( 2-9) 

where { }H

s E ssR =  and { }H
E vvR v = . The statistics are assumed known, so here 

these quantities are not estimated on the fly. The matrix inversion in ( 2-9) is 

averted if the data, { }],[ kns , is i.i.d. with variance 2

sσ , and similarly for the noise, 

{ }],[ knv . In this case, ( 2-9) simplifies to 
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In ( 2-10), the channels are needed at each OFDM symbol interval. Here, 

the idea is to estimate each subchannel in a decision-directed manner for 

obtaining the data estimates from ( 2-10). Upon reception of the nth OFDM 

symbol, the decision algorithm first obtains a primary data estimate of ],[ kns , 

denoted ],[ˆ kns pri , for the kth subcarrier, as follows.  

We assume that the unbiased MMSE estimate of the channel frequency 

response at kth subcarriers, ],1[ˆ knH − , obtained from previous OFDM symbol 

interval and the corresponding variance associated with the estimation process, 

]1[2
ˆ −n

kH
σ , are both available. This is a standard type of assumption in deriving 

iterative algorithms, see, e.g.,  [2.35]. Then for the kth subcarrier at the end of      

(n-1)th OFDM symbol interval, the channel estimation is 

]1[]1[],1[],1[ˆ
ˆˆ −−+−≈− nwnknHknH

kk HH
σ  ( 2-11) 
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where the last term is the estimation noise with ]1[ˆ −nw
kH

 denoting white 

Gaussian noise with unity variance.  

Furthermore, from the channel frequency response correlation function 

[see ( 2-4)] at sTPNt )( +=∆  and 0=∆f , i.e., )()0,( OFDM

2

OFDM TfTtR HH ρσ==∆=∆ , 

the relation between ],[ knH  and ],1[ knH −  can be approximated by the first order 

autoregressive (AR) process 

],[)(1],1[)(],[
2

OFDMOFDM knwTknHTknH H ρσρ −+−≈  ( 2-12) 

where ],[ knw  is the AR white Gaussian noise process with variance 1.  

It is noted here that the approximation models of (2-11) and (2-12) (and 

also in Chapter 3, e.g., eqn. (3-11), and in Chapter 5, eqn. (5-4)) for are only 

used for deriving the proposed decision algorithm. In the simulations, the correct 

structure of MMSE estimator (i.e., without approximation) is used for the channel 

estimation in (2-22) below.  

Considering ( 2-11) and ( 2-12) along with ( 2-7), the new measurements 

],[ kny  Nk ,...,1; =  can be approximated as 

NkknvknsknHTkny pri ,...,1;],[~],[],1[ˆ)(],[ OFDM =+−≈ ρ  ( 2-13) 

where 

],[]1[]1[)(

],[],[)(1],[],[~

ˆˆOFDM

2

OFDM

knsnwnT

knsknwTknvknv

priHH

priH

kk

−−−

−+=

σρ

ρσ
 ( 2-14) 

is the zero mean random noise with variance  
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~ ]1[)( sHHHvv nT

kk
σσσρσσσ −−−+=  ( 2-15) 

The equations of ( 2-13) can be re-written as 

( ) ],[~],[],1[ˆ)(],[ OFDM knvgknsknHTkny pri +−≈ ρ  ( 2-16) 

where 1=g . In the arrangement of ( 2-16), the key idea, also used in later 

chapters, of introducing g  is to treat it as an unknown deterministic variable and 

attempt to estimate it. Now for each subchannel, there is a search over the 

transmitted signal constellation set to see which candidate of ],[ kns pri  yields the 

MMSE of g  according to the observations ],[ kny  constrained by { } 01ˆ jgE += .  

Denoting { }LsssC ,...,, 21=  to be the set of transmitted signal constellation 

points with set size LC = , then the primary estimate of symbol ],[ kns  is 

( ) Nkggkns j
Cs

pri
j

,...,1;ˆminarg],[ˆ
2

=−=
∈

 ( 2-17) 

where jĝ ; Lj ,...,1= , is the unbiased linear minimum mean square estimator of 

g  obtained by 

( ) Lj
f

kny
knyfffg

j
vjjvjj kk

,...,1;
],[

],[)()(ˆ 12
~

*1
12

~
*

=== −−− σσ  ( 2-18) 

where               

                                       jj sknHTf ].,1[ˆ)( OFDM −= ρ  

and the variance in estimation jg  is 
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{ } ( ) 1
12

~
*2

)(ˆ
−−=− jvjj ffggE

k
σ  ( 2-19) 

As noted in chapter 1, the proposed decision algorithms in this thesis are 

presented in a general format in the sense that they can be formulated for SISO 

or MIMO systems. For SISO systems, or for the special cases where the MIMO 

system is decoupled into an equivalent system of SISO channels, the estimator 

jĝ  beomes independent of the variance of noise v~ . (The variances in the 

numerator and denominator of eqn. (2-18) cancel.) As a result, the structure of 

the proposed decision algorithm (2-17) becomes a scaled version of the classical 

minimum Euclidean distance estimator which is independent of the variance of 

noise. This situation holds for OFDM where a wideband frequency-selective 

channel is treated as many SISO narrowband subchannels. Consequently, for 

OFDM, jĝ  in (2-18) becomes independent from the noise variance 2
~

kvσ  as noted 

above and the proposed estimator ],[ˆ knspri  is also independent of 2
~

kvσ  as 

     Nk
s

sknHTkny
kns

j

jOFDM

Cs
pri

j

,...,1;
],[ˆ)(],[

minarg],[ˆ 2

2

=














 −
=

∈

ρ
.   

As an example, for L-PSK, the conventional minimum Euclidean distance 

detector would produce the same decisions, ],[ˆ knspri , as the proposed decision 

algorithm. 

The inclusion of the variable g , is specifically for MIMO systems, the 

subject of the thesis. For MIMO, the estimators  ],[ˆ knspri  and jĝ  turn out to be 

functions of the covariance of the associated noise which in turn depend on the 
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channel estimates at the previous symbol time. (cf., eqs. (3-20) – (3-23) in 

chapter 3 for MIMO system, ref. [1.6] for Alamouti coding, and ref [1.5] for MRC 

receiver with correlated antennas.) Thus, for MIMO systems, the decision 

algorithm (2-17) is different to that of ML, MMSE and ZF estimators. Intuitively 

(i.e., from the principles of estimation), (2-17) should work better for MIMO, 

because of the extra statistical information about the channel estimates used in 

the algorithm. 

Specifically, consideration of the channel estimates at the previous symbol 

time in the proposed decision algorithm should result in more accurate primary 

symbol estimates Nkkns pri ,...,1;],[ˆ = , than those obtained from mismatched 

receivers.  Mismatched receivers means receivers that effectively assume the 

channel estimate is perfect, and these are known to be suboptimal simply 

because the channel estimate is never perfect. For ML, MMSE and ZF 

estimators, one factor contributing to the imperfection is that some statistical 

information regarding the channel estimate at the previous time is discarded and 

is not used for data symbol estimation. This is not the case for the presented 

decision algorithm using g, for MIMO. This is the basis for expecting (2-17) to 

work better than ML, etc., in MIMO. However, this difference has not been tested; 

it is emphasized that it is an assumption in this thesis. 

Now by having the primary data estimates, { }],[ˆ kns pri  Nk ,...,1; =  at hand, 

the TDL channel impulse response coefficients, Mmnhm ,...,1;][ = , in the duration 

of the nth OFDM symbol, can be estimated. Equation ( 2-8) can be modified to 
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nnprin vhQSy +≈ ˆ  ( 2-20) 

where                                    

                         [ ]{ }],[ˆ]2,[ˆ]1,[ˆˆ Nnsnsnsdiag pripripripri L=S   

                                 [ ]MqqqQ L21=  

                   [ ] TNTmjTmj

m
ss ee

N

)1(
1

1 −∆−∆−= ωω Lq  

with sNT/2πω =∆ , and nh  is length-M vector of channel coefficients 

Mmnhm ,...,1;][ = . The MN ×  matrix Q  is composed of the first M  columns of 

the NN ×  unitary DFT matrix F  defined as 

[ ] 1,...,0,;
1
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, −==
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Nkie
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ik
j

ki

π

F  ( 2-21) 

Thus, the MMSE estimator of nĥ  given ny , is obtained as 
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with [ ]{ }222

21 Mhhhdiag σσσ L=A  and the channel estimation covariance 

matrix 
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Note that the diagonal elements of 
nh

C ˆ , are the associated channel taps’ 

estimation variances, i.e. [ ] Mm
mmnh nm

,...,1;
,

2

][ˆ ˆ ==
h

Cσ . Finally, the MMSE vector 

estimate of the channel frequency response is 
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with associated error covariance matrix 
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 ( 2-25) 

where B  is a diagonal matrix with elements [ ]
2

2

ˆ,
ˆ

mhmm h
m

+= σB , and accordingly, 

[ ] Nkn
kkHk

,...,1;][
,ˆ

2

ˆ ==
H

Cσ . 

The matrix inversion in ( 2-22) can be omitted if all the signal constellation 

points have the same energy sE . In this case, since IQQ* = , ( 2-22) simplifies to 

n
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n ySQBh ˆˆ =  ( 2-26) 
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Finally, by substituting ],[ˆ knH  into ( 2-10), the estimates of the transmitted 

symbols, ],[~̂ kns , are obtained. The hard decision block then yields the detected 

symbols, ],[ˆ kns  by setting the optimal thresholds in the constellation regions of 
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the transmitted signal  [2.32]. Figure  2-1 illustrates the block diagram of the 

proposed receiver after the DFT operator. 

The channel estimates obtained from ( 2-24) and the variances 

Nkn
kH

,...,1;][2

ˆ =σ  also help the decision algorithm in the subsequent, (n+1)th 

iteration (OFDM symbol interval) to obtain the next   set   of   primary  data  

estimates Nkkns pri ,...,1;],1[ˆ =+ . For initialization of the proposed iterative 

algorithm in typical application (i.e. a slow channel fading rate, see below) of 

OFDM systems, any the algorithms developed in  [2.36] can be used only once at 

the beginning of the whole data sequence transmission. So for the case of slow 

channel fading, the initialization is once only for the lifetime of the transmission. 

This means that, for the first OFDM symbol, any kind of training-based scheme, 

e.g., using a block-type or comb-type pilot-aided structure, can be used to form 

an estimate of the channel ],1[ˆ knH = . From the second OFDM symbol, 2=n  , 

the algorithm switches to the proposed iterative algorithm and uses the channel 

estimate ],1[ˆ kH  that is at hand. The initial channel estimates obtained this way, 

are accurate enough for the algorithm to have fast convergence for the typical 

application of OFDM systems where there is a slow time-varying channel (using 

IEEE.802 standards in the 2.4 GHz band, for  a  maximum  walking  speed  of  2 

m/s,  the  maximum  Doppler  frequency is 16/2 == cmf λ  Hz. With this Doppler 

shift and the OFDM time duration of sµ4  for IEEE.802 standards, the fade rate 

normalized to the OFDM symbol duration is 00064.0OFDMD =Tf  which 

corresponds to a very slow changing channel). The initialization training 
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requirement of the proposed algorithm for different fade rates is analyzed via 

simulations below, see Fig. 2-4. For the faster fade rates than “typical”, multiple 

initializations may be required.   
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Figure  2-1 Block diagram of the proposed receiver - after the FFT operator (the CP is 
already removed) 

 

2.3 Complexity Evaluation 

Complete evaluation of the computational complexity is major exercise 

requiring the development of a working FPGA prototype. However; some insight 

is possible by considering the computational complexity per iteration (symbol 

time) using an approximate operations count of those implementation equations. 

An “operation” is roughly equivalent to a multiply-and-accumulate. This would be 
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implemented in fixed point, unlike the floating point used in the simulated 

performance evaluation. Fixed point operations should not exceed 32 bit 

accuracy for FPGA implementations, but for the range of SNRs of interest, this is 

not a biting constraint. The presented decision-directed channel estimation 

comprises four steps: the decision algorithm; the channel impulse response   

estimation; the channel frequency response estimation; and data recovery.   

Each iteration begins with the decision algorithm. For the kth subcarrier, 

the primary data symbol estimate ],[ˆ kns pri  is obtained using ( 2-17)-( 2-18) with 

complexity of )(LO . Since there are N subcarriers, the overall complexity of the 

decision algorithm is )(NLO .  

Next, the channel impulse response is estimated via ( 2-22) and ( 2-23). A 

breakdown of operations counts in implementing ( 2-22) is as follows. Here, the 

formulas in angular brackets (e.g., MN ) above and below the matrix formulas, 

give approximate operation counts for implementing the equation. The channel 

estimation is 

{
{
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( 2-27) 

So this requires a total of MMNNMM +++++ )1(2)2(2 operations. The 

complexity in estimating the channel impulse response follows as 

))(( 2 NMMO + . However, the complexity at this step is reduced significantly if all 



 

 33 

the signal constellation points have the same energy (e.g, PSK). In this case, 

( 2-26) is used as an alternative to ( 2-22). We have 

} 48476

321

N

n

H

pri

NM

H

M

n ySQBh ×××= ˆˆ  ( 2-28) 

which yields the overall complexity of )(MNO . 

Now, the MMSE vector estimate of the channel frequency response, along 

with its associated error covariance matrix, are obtained through ( 2-24) and 

( 2-25) with the breakdown of operation counts as follows 
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( 2-30) 

This requires a total of NMMN 2)1(2 ++  operations. Thus the complexity 

is )( 2MNO . Finally, by substituting ],[ˆ knH  into ( 2-10), the data symbols are 

recovered with the complexity of )(NO . As a result, the presented technique has 

the overall complexity of ))(( LNMNO + . 

2.4 Simulation Results 

We consider an uncoded OFDM system which essentially follows current 

IEEE 802.11a and 802.11g standards configurations  [2.37], [2.38]. The IEEE 

802.11g wireless LAN standard is virtually identical to the 802.11a Standard in its 

link layer design. The bandwidth of 300 MHz is divided into 20 MHz channels that 
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can be assigned to different users. In the simulations, the number of subcarriers 

is N = 64, and all the subcarriers are used for data transmission. (In the 802-11 

Standards, subcarriers at the band edges are not used.) The length of the cyclic 

prefix is set as 16=P , so the total number of samples associated with each 

OFDM symbol, including both the data samples and the cyclic prefix, is 

80=+ PN .  

Since 16=P  and 20/1 =sT MHz  ( µs05.0s =T ), the maximum delay spread 

for which ISI is removed is µs8.0smax =< PTτ  which corresponds to the maximum 

excess delay for a typical indoor environment. The long-range situation is of most 

interest in wireless, and this is typically non-line-of sight with Rayleigh fading as 

formulated above. The channel is frequency selective modeled by a TDL with 8 

independent taps with an average power gain of unity. The power delay profile is 

exponential with a mean path delay of 0.17 sµ  and an RMS delay spread of 

0.2 sµ . Including both the OFDM symbol and cyclic prefix, there are 80 samples 

per OFDM symbol, so the OFDM symbol time is µs4)( sOFDM =+= TPNT . For the 

transmitted symbols, i.i.d. data is modulated with each subcarrier using QPSK, 

with variance 1; but the technique is readily applicable for any linearly modulated 

signaling. 

Here, the value of )2()( OFDMD0OFDM TfJT πρ =  and the channel tap variances 

are assumed to be known, i.e., estimation of these statistics is not included as 

part of the algorithm. Including these estimates is a relatively straightforward 

extension, but the goal here is to quantify the behavior of the decision-directed 
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estimation with known channel statistics. The impact of any mismatch in the time-

correlation coefficient mismatch (perhaps caused by an incorrect estimate of Df ) 

on the proposed system’s error performance is analyzed by simulation below. It 

is shown that the proposed technique is robust for a mild mismatch of the 

channel’s second-order statistics, i.e., the correlation function values which relate 

to Df , relative to the a priori information assumed by the receiver. However, a 

large degradation in performance is demonstrated as the mismatch increases, as 

expected, and this is demonstrated below. 

The BER performance, from simulation, is compared with the optimum 

coherent/differential detection curves  [2.39], decision-directed Kalman-based 

estimation in  [2.21] and two pilot-aided OFDM schemes: a block-type pilot; and a 

comb-type pilot  [2.40]. Throughout the simulations, the proposed scheme and the 

Kalman filtering both are initialized using the comb-type pilot structure. 

In the block-type pilot system, OFDM channel estimation symbols are 

transmitted periodically. Here, each block consists of a fixed number of OFDM 

symbols, which is 8 in the simulations. Pilots are sent in all the sub-carriers of the 

first OFDM symbol of each block and the channel estimated at the beginning of 

the block is used for all the following OFDM symbols of the block. In the comb 

pilot system, pN  pilot tones are uniformly inserted, i.e., the pilots and the data are 

transmitted simultaneously on all OFDM symbols. For the latter scheme, 8 tones 

are used corresponding to carrier indices { } 7,...,0;48 =+ LL  for training and the 

second-order interpolation is used to estimate the channel at the data subcarrier 

positions at each OFDM symbol. For a fair comparison between the two pilot-
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aided systems, in the block-type pilot scheme the channel is estimated only after 

receiving 8 consecutive OFDM symbols. This is to ensure that both pilot 

schemes have the same training overhead.  

Figure  2-2 illustrates the BER results for fade rate 015.0OFDMD =Tf  or 

Hz3750D ≈f (for the GHz4.2  band, this corresponds to a speed of 

m/s468λv cD ≈= f ; or better interpreted, for the GHz60  band, a speed of m/s19 ) 

and an SNR range of 0-25 dB. The error performance is within 1 to 3 dB of the 

optimum, with the gap increasing with increasing SNR. The performance is 

always better than optimal differential detection and this difference is almost 2 dB 

for high SNR, at least for the fade rate of 0.015. 

The proposed technique also outperforms the decision-directed Kalman- 

based  channel  estimation. This is because in the conventional decision-directed 
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Figure  2-2  Comparison of BER performance of OFDM systems employing different 

channel estimation techniques for fade rate 015.0OFDMD =Tf for s4OFDM µ=T  
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Kalman-filter  algorithm, once the channel is predicted in the prediction stage, it is 

used – as if it is perfect - to obtain the coarse symbol estimates needed to 

formulate the measurement equations in the Kalman filtering. The decision-

directed Kalman filtering uses the zero forcing criterion for obtaining the coarse 

symbol estimates before the update stage and uses the MMSE criterion for final 

data symbol recovery once the channel estimates are obtained in the update 

stage. Since the proposed decision algorithm yields the same result as ML 

estimator (for the system under consideration), more accurate primary data 

symbol estimates are obtained compared to the coarse symbol estimates of the 

decision-directed Kalman-filtering with zero forcing.  

With the two pilot-aided schemes, the comb pilot system has the better 

error performance with the difference increasing with increasing SNR. The 

proposed decision-directed system performs better than the comb pilot system 

for SNR larger than about 10 dB, at least for the specific fade rate. For increasing 

SNRs, the improvement increases. This is because, in the proposed technique, 

the channel is estimated at all subcarrier positions, while in the comb pilot 

system, the pilots enable estimation of the channel response only at the pilot 

positions, and the CRs at the other positions can be estimated by interpolation. In 

addition, since ]1[2

ˆ −n
kH

σ  (more information from previous iteration) is also 

contributed in the channel estimation process, more accurate channel estimation 

is obtained at the { } 7,...,0;48 =+ LL  indices compared to the pilot sub-carriers 

position in comb-type pilot system which uses MMSE estimation relying only on 

the information from current received symbols. Furthermore, in the block-type 
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pilot-aided system the channel is estimated only after 8 consecutive OFDM 

symbols whereas in the proposed decision-directed system the channel is 

estimated at each OFDM symbol which results in more accurate channel 

estimates in a time-varying environment.  

We can further compare the performance of different channel estimation 

techniques by setting the normalized mean square error (NMSE) criterion as a 

measure in estimating the channel frequency response. Here, 100=M  Monte 

Carlo runs are carried out and the NMSE at nth iteration (OFDM symbol time) is 

defined as 

2

1 1

],[],[ˆ1
)(NMSE ∑∑

= =

−=
M

m

N

k

m knHknH
NM

n  ( 2-31) 

where ],[ˆ knH m  denotes the estimate of ],[ knH  at mth Monte Carlo run. We note 

that for the block-type pilot scheme, since the channel is estimated at the 

beginning of the block and is used for all the following OFDM symbols of the 

block, the definition ( 2-31) is not suitable and the NMSE has to be defined as the 

NMSE averaged over a block.  

Figure  2-3 illustrates the resulted NMSE versus iteration index n for SNR = 

20 dB and fade rate 0.015. The proposed scheme converges in three iterations 

(very fast) and has the least NMSE among others. This was expected 

beforehand from Figure  2-2, since the proposed scheme outperforms the other 

techniques. Furthermore, as the proposed scheme and the decision-directed 

Kalman filtering both are initialized using the comb-type pilot structure, the 

NMSEs at the first iteration are the same as the one within the comb-type pilot 
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system.  The   NMSE   associated   with  the  comb-type  does  not  improve  with 

iteration index n, since the channel estimates are obtained in the independent 

manner from previous iterations. The same holds for the block-type scheme 

where the channel estimates are obtained independently from block to block. 
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Figure  2-3 Comparison of normalized mean square error (NMSE) in estimating the channel 
frequency response using different estimation techniques.  

                   SNR=20 dB and fade rate is 015.0OFDMD =Tf . For the block-type pilot system, 

the NMSE is defined as the NMSE averaged over a block. 

 

NMSE measure can also be used for analyzing the initialization training 

requirement of the proposed algorithm. In general, re-initialization is needed 

when a decision-directed channel estimator fails to track the time-variation of the 

channel. The re-initialization criteria is usually of the form ε>)NMSE(n , where ε  

is small and positive. Figure  2-4 illustrates the initialization period for various 

values of maximum Doppler shift over sending 100 OFDM symbols with 

3105 −×=ε . While re-initialization is needed after each 45 OFDM symbols at 
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maximum Doppler shift of Hz3750D =f (i.e. 015.0OFDMD =Tf  for s4OFDM µ=T ), no 

re-initialization is required over 100 OFDM symbols for values of fade rate 

smaller than Hz50~D <f (i.e. 0002.0~OFDMD <Tf  for s4OFDM µ=T ; this corresponds 

to the very slowly changing channel of typical applications of OFDM systems).   
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Figure  2-4  The initialization period requirement of the proposed decision-directed 

algorithm over sending 100 OFDM symbols and 3105 −×=ε  

 The robustness of the proposed technique to the time-variations of the 

channel can also be quantified by simulation. The effect of fade rate (governed 

by the maximum Doppler frequency) on error performance is shown in Figure  2-5 

at dB20SNR =  and the range to demonstrate this is Hz5000Hz50 D << f  (i.e. 

02.00002.0 OFDMD << Tf  for µs4OFDM =T ). The algorithm is presented in a general 

format using the baseband representative of channel and signal model. It can be 

applied to an OFDM system whose terminal can be moving at practical speeds 

operated in any carrier frequency (e.g any ISM bands defined by the ITU-R 
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(International Telecommunication Union Radio-communication) such as  2.4 

GHz, 5.8 GHz, 24 GHz, 60 GHz, etc.). The range of maximum Doppler frequency 

Hz5000Hz50 D << f  given in Figure  2-5 provides us useful information regarding 

the performance of OFDM systems for a desired speed in any ISM band. The 

main reason that the  x-axis in Figure  2-5  is labeled as maximum Doppler 

frequency is that for any speed at any carrier frequency, the Df  can be calculated 

according to 
cf λ/vD =  and the corresponding system performance can be read 

from the figure.  
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Figure  2-5  The impact of maximum Doppler frequency on system BER performance  

                    SNR = 20 dB. For a static fading channel, the curves coincide. The range of 
Doppler frequency shown above corresponds to fade rate range 

02.00002.0 OFDMD ≤≤ Tf   for µs4OFDM =T  

 

For a given mobile speed, as the carrier frequency increases, the 

corresponding 
Df  increases and the advantage of the presented algorithm 

compared to the conventional techniques becomes more pronounced. The 
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values from Figure  2-2 at dB20SNR =  correspond to the values in Figure  2-5 for 

a maximum Doppler frequency of  Hz3750D ≈f  ( 015.0OFDMD =Tf ). In this 

example, there is a maximum performance degradation of 16% in the BER 

(compared to 100% for comb pilot system) for a fading rate 01.0~OFDMD ≤Tf , 

relative to the case of block fading in a quasi-static channel. It is clear that the 

pilot-aided systems are more sensitive to time-variations of the channel. 

 However, in general, the system performances depend on many factors 

such as channel fade rate, SNR and pilot scheme, and the carrier frequency 

used. For example, the block pilot system is always worse than the comb pilot 

system on this measure, and at low fade rates (approaching static fading) which 

can correspond to a practical speed in WLAN systems operating at 2.4 GHz 

band (e.g., the speed of 120 km/h in 2.4 GHz band corresponds to the maximum 

Doppler frequency of Hz267  or fade rate 0011.0OFDMD =Tf  for µs4OFDM =T ), the 

four algorithms (two-pilot aided systems, Kalman-based estimation, and the 

proposed decision-directed system) yield nearly the same performance at all 

values of SNR. However, as the fade rate increases, the difference between the 

BER curves increases. Some other examples for the practical speed of km/h120  

m/s)33.33(=  is presented in for the examples of the ISM bands: In 5.8 GHz band, 

the maximum Doppler shift is Hz643D ≈f , and at 24 GHz, Hz2667D ≈f , and 

finally at 60 GHz, Hz6667D ≈f . The benefit of the proposed algorithm over the 

conventional techniques is evident for carrier frequencies above about 5 GHz.                    
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The results show that it is beneficial to use the presented decision-

directed system for practical vehicular speeds at ISM bands such as 5.8 GHz, 24 

GHz and 60 GHz where the use of current training-based OFDM systems 

becomes prohibitive (including the IEEE 802.11 configurations at the 2.4 GHz 

ISM band). There is only a small degradation in performance compared to quasi-

static fading case as in WLAN systems. The degradation in performance occurs 

since the primary data symbol estimation ( 2-17) becomes less accurate for 

increasing fade rates because of extra noise, as shown in ( 2-16), with its higher 

variance given explicitly in ( 2-15). It should be noted here that there may well 

emerge a new Standard for the higher ISM bands (e.g., 24 GHz or 60 GHz), 

although there is no action on this as yet, and so in this sense the comparisons 

here may not be fair. But currently, the de facto usage is for 802.11 type 

standards, and many systems already use these at high ISM bands (e.g., at 60 

GHz), and for this situation, the comparison is fair. 

It is not clear if decision-directed channel estimation systems (igonring the 

initialization) or pilot-based systems are more capacity efficient, so this is 

investigated as well. For a benchmark, the upper bound for the approximate 

aggregate number of payload bits per second per Hertz (uncoded throughput) for 

a general OFDM system is  [2.1] 
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where N  is the number of subchannels and P  is the CP length. kb  and kSNR  

denote the data  rate in  bits/sec/Hz,  and the  SNR  per  symbol  assigned  to  

the kth  subchannel, respectively. Γ  is called the SNR gap which for any coding 

scheme and a given target probability of error, is defined as  [2.1] 
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 ( 2-33) 

Here, R  is the rate in bits/sec/Hz and C  is the maximum rate, or capacity, of an 

AWGN channel, i.e., C  is the upper bound for the capacity of a fading channel 

with the same average SNR  [2.41]. The use of codes, say trellis coding and/or 

forward error correction, reduces the gap, for example, to 1 dB for 6
10

−≤eP . For 

uncoded, square QAM, and 6
10

−=eP , the SNR gap Γ  is about 8.8 dB.  

In Figure  2-6, the upper bound for the uncoded rate of the decision-

directed OFDM system, is compared with the block and comb pilot systems. The 

same channel and system parameters are used as above. Both pilot systems 

have the same rate because they are configured (see above) to have the same 

transmission overhead  in  order  to  get a fair comparison. The pilot systems and 

decision-directed system behave similarly. In fact, the decision-directed system 

outperforms the pilot systems by up to a few dB in SNR, with the difference 

increasing with increasing SNR.  

This demonstrates that the proposed system has better capacity, as 

defined above, than the pilot systems considered here. It appears that decision-

directed detection can replace pilot systems. 
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Figure  2-6  Comparison  of  the upper bound for aggregate data transmission rate in 
bits/s/Hz for decision-directed estimation and the pilot-based systems, with 
uncoded square QAM modulation on each subcarrier 

 This is a significant result although it is found for one value of pilot density 

only. Systems using a different density of pilots may behave differently. From the 

promising results above, further research seems justified on this subject. 

The comparison of simulation results with benchmark and other known 

results puts a focus on the importance of checking the channel modeling. Thus, 

the rest of the simulations concerns with analyzing the impact of mismatches 

between the channel model and the receiver assumption. 

2.4.1 Channel Taps Cross-Correlation Mismatch 

In the above simulations, the frequency selective channel was generated 

using a TDL with independent taps. We used a receiver with the same TDL 

model. This is a common approach in communications modeling. But such 

matched models for the channel and receiver can lead to optimistic performance. 
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As noted above, in a T-spaced TDL channel, the taps are usually correlated in 

real-world channels  [2.33], [2.34]. To study the impact of mismatches between the 

channel model (taps with finite cross-correlation) and the receiver assumption 

(assumed to have zero cross-correlation), a correlated TDL channel is applied 

and the receiver with the same structure and fixed fading rate as above is 

employed. Here, the taps’ normalized cross-correlation matrix is modeled with a 

tri-diagonal correlation matrix in which 
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where   { }
ji hhjiji nhnhE σσρ /)()( *

, = 8,...,1,; =ji     denotes     the   finite   complex   

correlation coefficient between channel taps )(nhi  and )(nh j . Accurate analysis 

of the impact of taps cross-correlation on system performance involves 

considering the whole region 10 0 ≤≤ ρ  in the two-dimensional complex 

correlation domain which is rather complicated. Thus, in order to further simplify 

the analysis, only real values of +ℜ∈0ρ  are considered here. Figure  2-7 

illustrates the resultant BER for different real values of +ℜ∈0ρ , at SNR = 20 dB.   

 Even with the perfect channel state information (CSI) at the receiver 

(lowest  curve), the error performance degrades sharply for higher correlation, as 

+ℜ∈0ρ  increases. The proposed decision-directed scheme and the Kalman-

based estimation system tracks (runs in parallel to) the perfect CSI performance 

curve. 
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Figure  2-7  The  impact  of  channel taps cross-correlation coefficient on BER performance 

at   SNR = 20 dB and fade rate 015.0OFDMD =Tf  

The pilot schemes are less susceptible in error performance to the 

increasing taps’ cross-correlations, although they start from worse performance 

position. For the systems considered here, and the given fading rate, the 

proposed system still outperforms the comb pilot system for moderately 

correlated ( 8.0~0 <ρ ; +ℜ∈0ρ ) taps.  However, for high correlations, the gap 

closes and the comb pilot system is better than the decision-directed technique 

for 92.0~0 >ρ ; +ℜ∈0ρ . The decision-directed scheme outperforms the block-pilot 

scheme and the Kalman-based estimation for all correlations. 

2.4.2 Channel Taps Time-Correlation Coefficient Mismatch 

In the previous sections, the normalized time-correlation function of the 

channel coefficients is assumed to be known beforehand. In the channel 

estimation process use is made of one value of the channel normalized 
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correlation coefficient function, i.e. )2()( OFDMD0OFDM TfJT πρ = . However, a real-

world, local autocorrelation is seldom exactly 0J  even in the main lobe region, 

and almost never 0J  away from the main lobe. Furthermore, estimating a 

correlation coefficient from finite samples introduces uncertainty depending on 

the number of samples used. In order to get a reliable estimate where the 

function becomes small, a very large number of samples is required  [2.42]. 

Here, in order to test the performance sensitivity to the second-order 

statistics, a simple percentage correlation function sample mismatch is defined 

as 
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where the normalized time-correlation function used at the receiver takes on 

different values from )2()( OFDMD0OFDM TfJT πρ = . Figure  2-8 illustrates the effect of 

the mismatch parameter 0ηη =miss  on BER performance, given as the relative 

change in BER, ( ) 00 /
0 === −

missmissmiss
BERBERBER ηηηη , using the example of BPSK 

with SNR = 20 dB. The system remains moderately insensitive to the mismatch 

in ( 2-35) up to 20% for fate rate 0.015, but for higher mismatch, there will be a 

larger  degradation  in the BER performance. Also, there is more sensitivity to the 

mismatch for higher fade rates. The reason is that for a given mismatch, the 

higher fade rate results in the addition of an error term to ( 2-16) which in turn 

causes more signal estimation inaccuracies in the decision algorithm. 
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Figure  2-8  The effect of mismatch parameter on relative BER performance of system 
employing the proposed decision-directed channel estimation at SNR = 20 dB 

 

 Thus, for the typical applications of OFDM system, the proposed decision-

directed technique is robust to the mild mismatches of the channel’s second-

order statistics since the interest is in very slow changing channels (e.g. for the 

pedestrian speed of 2 m/s in 2.4 GHz band using IEEE 802 Standards with 

OFDM time duration of sµ4 , the fade rate would be 0.00064 which corresponds 

to very slow changing channel). The figure helps to quantify the sensitivity of the 

proposed receiver to the modelling of the temporal second order statistics of the 

channel. 

2.5 Summary and Conclusions 

In this work, a new decision-directed channel estimation technique for 

OFDM is formulated and its performance evaluated by simulation. The simulated 

OFDM system essentially follows current IEEE 802.11 standards configurations, 

but the formulation is for a general structure. The performance is very promising. 



 

 50 

The simulations show that the technique compares favorably with known 

decision-directed Kalman-based estimation, and with the training-based schemes 

from established research which have a fixed pilot density. Specific tie points are 

as follows. The bit error-rate of the decision-directed system stays within about 3 

dB SNR of optimum coherent detection, with this gap decreasing with decreasing 

SNR. In particular, it is very close - within 1.5 dB - of the optimum, for SNR less 

than 15 dB at fade rate of 015.0OFDMD =Tf . The decision-directed system always 

outperforms optimum differential detection and known decision-directed Kalman-

based channel tracking. It also outperforms the standard pilot-based systems for 

SNR values greater than 10 dB (Figure  2-2). In addition, the proposed system is 

more spectrally efficient than pilot-aided systems for the range of simulated 

channels, and is more robust to the time-variations of the channel than pilot-

aided systems. The results show that the decision-directed channel estimation 

and data detection can be employed for high Doppler frequencies. Here, the use 

of current OFDM systems with IEEE 802.11 configurations suffers from 

prohibitive training requirements. These high Doppler frequencies are of 

particular interest for the increasingly-used higher ISM bands (e.g., 24 GHz, or 

60 GHz ISM band). 

The comparison of simulation results with benchmark and other known 

results puts a focus on the importance of checking the channel modeling. For the 

channel taps’ cross-correlation mismatch, the error performance of the decision-

directed technique tracks that of the optimum behavior, i.e., both of these have 

similar sensitivity; however, the pilot techniques are less sensitive, but they are 
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also “less tuned” in the sense that they operate from a worse error performance 

datum. For high correlations between all taps (correlation coefficient more than 

about 0.9), the comb pilot system gains an edge on the decision-directed system. 

The decision-directed system outperforms the comb pilot system for lower 

correlations, and always outperforms the block pilot system and decision-directed 

Kalman-based tracking technique, under this error measure. Furthermore, it is 

shown that the proposed technique is robust for a moderate mismatch of the 

channel’s second-order statistics, i.e., the correlation function values, relative to 

the a priori information assumed by the receiver. However, a large degradation in 

performance is demonstrated as the mismatch increases, as expected. 
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3: JOINT DECISION-DIRECTED CHANNEL ESTIMATION 
AND NONLINEARITY COMPENSATION IN MIMO 
SYSTEMS WITH NONLINEAR AMPLIFIERS 

The use of multiple antennas at both the transmitter and receiver in 

wireless communications provides increased spectral efficiency compared to 

single antenna systems  [3.1]. Nevertheless, there is not a significant commercial 

presence for full-MIMO systems that use large numbers of elements, which is 

where the potential increase of spectral efficiency becomes dramatic. One 

reason for this lack of commercial uptake is that the extra hardware for many-

element systems is too expensive for commercial viability. Being able to use low 

cost amplifiers is particularly important. 

The performance of MIMO systems has been studied extensively, and 

simulation is the basic tool for estimating the communications performance. Most 

studies assume that both the transmitter and receiver amplifiers are operated in 

the linear region and so that the MIMO channel matrix is linear. A microwave 

amplifier can indeed operate as a quasi-linear device under small signal 

conditions, and low signal distortion is possible with low power efficiency and 

higher cost (because they are higher power) amplifiers. It follows that there is a 

tradeoff between power efficiency and the resulting signal distortion. In 

communications systems, this tradeoff is governed by the need to limit the out-of-

band interference in the radio spectrum. Nonlinear distortion at the transmitter 

causes interference both inside and outside the signal bandwidth. The in-band 
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component determines a degradation of the communications performance, often 

expressed as bit-error rate (BER)  [3.2]- [3.3], whereas the out-of-band component 

affects users in adjacent frequency bands.  

For more powerful MIMO systems (i.e., those with more antenna 

elements) to emerge as economically viable, there is a need for highly efficient 

power amplifiers, especially for battery-powered terminals. In other 

communications systems, such as satellite, the payload weight, including the on-

board high power amplifiers (HPAs) is critical, and the amplifiers must run at high 

efficiency. In these applications, distortion compensation is also possible using 

signal processing. 

At the receiver, the low noise amplifiers (LNAs) are key components 

because their gain and noise tend to dominate the sensitivity. In fact, the LNA 

design involves many trade-offs. These are between noise figure, gain, linearity, 

impedance matching, power dissipation and cost. With large-dimensioned MIMO 

systems where the capacity efficiency, with sufficient assumptions, becomes 

proportional to the number of antennas, a large number of high performance 

LNAs are required. This can make the cost prohibitive, and lower cost (with 

greater distortion) LNAs are always a pragmatic solution. However, the impact of 

their non-linearities will need to be compensated. The cost for the compensation 

using signal-processing is relatively low in the sense that the digital processors 

are in place anyway and the extra processing is relatively modest.  

Nonlinear LNAs and their problems appear in many applications. For 

example, designers strive to minimize the intermodulation distortion at the 
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receiver by a minimum of nonlinear LNA cascades  [3.4]- [3.5]. Also, to enable 

consumer products (e.g., GPS, etc.), an integrated receiver should minimize the 

number of off-chip components, particularly the number of passive filters which 

are relatively expensive. These considerations motivate research into highly 

integrated CMOS solutions which typically feature nonlinearity in the LNAs  [3.6]-

 [3.7]. Another example is satellite diversity (a form of MIMO, using many PAs), 

used for fading channels in low earth orbit systems  [3.8]. These issues motivate 

research into the impact of nonlinear amplifiers in MIMO systems. 

A related problem in communications is estimating the channel in order to 

deploy signal processing for reliable communications. The time-varying MIMO 

channel has to be estimated and this is undertaken either by using pilot symbols 

or in a decision-directed manner. Many channel estimation techniques for linear 

MIMO systems have been reported. Examples of pilot-aided systems are  [3.9]-

 [3.11]. The cost of using training-based approaches includes: a reduced payload 

bandwidth because the pilots bite into the communications bandwidth; and the 

added complexity of the implementation. Also, the training symbols can produce 

inaccurate channel estimates owing to the limited duration and number of training 

intervals available for time-varying channels  [3.12].  

Decision-directed techniques have become topical in research, because of 

the unique advantage they offer, viz., the channel is effectively sounded without 

biting into the communications bandwidth. In decision-directed techniques, the 

channel estimation is developed based on second or higher-order statistics of the 

fading process, see, for example,  [3.13]- [3.32], and other references too 
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numerous to list. However, most blind methods that employ higher order 

statistics typically require a large number of data symbols, and a shortfall of 

symbols causes poor convergence which means poor channel estimates and 

decreased channel efficiency. The convergence problems associated with blind 

techniques can be avoided by using a so-called semiblind technique  [3.20]-

 [3.25], i.e., employing a reduced number of training symbols together with blind 

statistical information.  

One semi-blind approach for identification of the main eigenmode, without 

estimating the channel matrix itself, is presented in  [3.23]. Two whitening-

rotation-based algorithms for semi-blind estimation of the flat MIMO channel are 

presented in  [3.24] and  [3.25]. Such estimation procedures arise naturally in the 

ICA-based source separation  [3.26]. The use of higher-order statistics based ICA 

is widespread in multiuser detection, e.g.,  [3.27]- [3.28]. The main advantage of 

ICA techniques is that, under mild mathematical conditions (independence of the 

sources), signal recovery is guaranteed regardless of the source constellation 

and spectral characteristics  [3.29]. But this guarantee is for static or slow-

changing channels only. Channel estimation/tracking based on Kalman/particle 

filtering is also well established, e.g.,  [3.30]- [3.31]. These are based on the tenet 

that the recursive least squares (RLS) algorithm and the Kalman filtering 

algorithm are both better than the LMS algorithm, in convergence rate and 

tracking capability. Kalman filtering has long been used to extend forms of the 

recursive least-squares (RLS) algorithm which tracks better than the standard 

RLS and LMS forms  [3.32].   
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In this work  [3.33], signal processing is used to compensate for the non-

linearity. This is done in conjunction with formulating the proposed decision-

directed channel estimation technique for MIMO systems with nonlinearity in both 

transmitter and receiver amplifiers. The mobile MIMO channel considered is 

time-selective and has Rayleigh flat fading, i.e., it is narrowband - which is where 

the power of MIMO dominates other communications techniques for gaining 

spectral efficiency. Bussgang’s theorem  [3.34]- [3.35] is used to model the 

amplifier-induced nonlinearity in the received signal. The model has time-varying 

coefficients which depend on both the data and channel. Using this model, a 

primary data vector estimate of the transmitted signal is obtained based on the 

constrained linear minimum mean square error (LMMSE) criterion. Then, the 

channel matrix is estimated/tracked using two alternative, recursive methods: 

statistical linearization via unscented transformation; or analytical linearization 

which results in a nested iterative scheme for updating the channel matrix 

estimate. Finally, the transmitted data vector is recovered using the channel 

matrix estimates. 

This extends the work in  [3.36] where the nonlinearity is introduced only at 

the receiver amplifier. Here, we formulate and describe the first proposed 

decision-directed channel estimation technique in the form of two alternative 

linearization approaches (statistical and analytical linearizations) and evaluate 

the performance of the systems with nonlinear amplifiers at both the transmitter 

and the receiver. For a nonlinear system, simulations are used to compare the 

results with the benchmark performance of coherent detection with perfect 
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channel state information (CSI) at the receiver. We also compare the results of 

the two linearization techniques with a look-up table (LUT) approach to the 

nonlinear problem. The statistical/analytical linearization approaches are 

marginally better for low SNR (the usual region for wireless) but the LUT is better 

for high SNR. In addition, for the linear system, the performance comparison is 

made with the result of the conventional decision-directed Kalman filtering and 

two pilot-aided systems already known in the signal-processing community. 

Here, improved performance is observed over the known techniques. The 

robustness of the proposed technique to time variations of the channel is also 

quantified and compared with that of conventional channel estimation 

techniques. Finally, the impact of assumptions in the channel modeling is 

quantified using simulation, offering a feel for the performance with time-

correlation coefficient mismatch between the channel model and the assumed 

model at the receiver. 

The rest of the chapter is organized as follows. Section 3.1 describes the 

system model, and this, and the other sections, are couched in terms of 

communications signal processing notation for MIMO. The decision-directed 

estimation technique is formulated in section 3.2 and the simulation results are 

presented in section 3.3. Section 3.4 concludes the chapter. The notation is 

conventional, as follows. In order to distinguish the amplifiers at the transmitter 

and the receiver, the sub-(super-) script “T” refers to the amplifiers at the 

transmitter side and the sub-(super-) script “R” refers to the amplifiers at the 

receiver. 
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3.1 Nonlinear MIMO System Model 

The baseband equivalent representation of a non-linear MIMO system 

with M  transmit and N  receive antennas employing a spatial multiplexing 

scheme is displayed in Figure  3-1. At the transmitter, data is picked up from a 

constellation set with set size L, and the uncoded data stream is demultiplexed to 

M  branches at each symbol time with symbol time duration sT . Then data 

symbols are passed through transmit amplifiers (each with nonlinear 

function ).(Tf ) before launching from transmit antennas. It is assumed that the 

transmitted pulse shape is full Nyquist. For a Rayleigh flat fading MIMO channel, 

the received signal from the nth antenna is modelled by the equality 
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where [ ]T

Mk sfsfsf )()()()( T2T1TT L=sf  and ).(Rf  is the nonlinear function 

introduced by the receiver amplifier. The vector ks  is the 1×M  transmit signal 

vector with i.i.d. data symbol entries each with variance 2

sσ , and kn  is the zero 

mean additive white Gaussian noise with variance 2

nσ . (In practice, for a 
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Figure  3-1 Baseband representative of nonlinear MIMO system 
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and  other  systems,  i.e.,  the  interference is assumed here to be Gaussian.) 

)(n

kh  is the nth row of channel matrix [ ]TN

kkkk

)()2()1(
hhhH L= , comprising i.i.d. 

complex Gaussian entries, Mmh mn ,...,1;, = , each with variance 1; index k is the 

time index showing that at each iteration (symbol time) the channel matrix is 

changing.  

For both amplifiers’ nonlinearity ( ).(Tf  and ).(Rf ), the general 

memoryless AM/AM and AM/PM characteristics  [3.37]- [3.38] are considered. In 

particular, denoting a transmitter/receiver amplifier complex input as 

( )( ) ( ) ( ) ( ) j t
r t x t j y t t e

ϕρ= + = , the signal at the output of a nonlinear block, becomes 

( ) ( )

( ) ( ))()(,)(

.)()(

RT/RT/

)()(RT/
R/T

trftytxf

eetFto tjtFj

A

P

==

= φρ
ρ

 ( 3-2) 

where ( ).R/T

AF  and ( ).R/T

PF  are the real functions for AM-to-AM and AM-to-PM 

conversions respectively. The super-script T/R in ( ).R/T

AF  and ( ).R/T

PF  means 

that ( 3-2) is written in the general format and holds for any amplifier at the 

transmitter or receiver with AM/AM and AM/PM characteristics.  

The application of the nonlinear functions ).(Tf  and ).(Rf  to symbol-

spaced (i.e., non-oversampled), discrete-time signals constitutes an 

approximation. This is because the nonlinearity can cause bandwidth expansion, 

and yet the sampling rate remains unchanged. The accuracy of this sampling 

(with aliasing) depends on the detail of the fluctuations of the continuous-time 

signal. This accuracy has not been checked here, however, the simulation results 

include the effect of this approximation.   
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Based on Bussgang’s theorem  [3.34]- [3.35], the output of a nonlinear 

memoryless amplifier excited by a Gaussian distributed signal can be 

represented by the scaled version of the original signal plus an additive noise 

term. Here, use is made of of Bussgang’s theorem to approximate the 

nonlinearity introduced at the receiver side, i.e., ).(Rf , with a linearized model 

having time-varying coefficients. By using the constant amplitude signaling with 

{ } 22 ||||2
ssEs ==σ , e.g.  L-PSK, however, the Gaussianity of the inputs of the 

receive amplifiers is guaranteed. (It is noted, therefore, that the formulation 

presented here is not applicable to 16-QAM, etc.) Under such a condition, 

recalluing the input of a receive amplifier as ( )r t , the associated receive amplifier 

output can be represented by  [3.34] 

)()()( tdtrKto +=  ( 3-3) 

where K  is a deterministic complex coefficient (expressed as a function, below), 

and )(td  is an additive noise term. It is desirable to have zero-mean noise, 

uncorrelated to the input process )(tr . This can be achieved by setting K  as 

 [3.3] 
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where the expectation is over the ensemble of the channels and signals. But 

calculating this expectation likely to be very difficult, so an approximation is made 

using an instantaneous value, see below.  
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Denoting ( ) ( ) ( )ρρ ρ
AeF PFj

A =
R

R , the derivatives appearing in ( 3-4) are 

formulated as 

( ) ( )φφφ
ρ
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φφφρ cossinsin
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),( 22 j
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AEK  ( 3-6) 

Also, the variance of the noise term in ( 3-3) can be obtained as 

{ } { } { } { } { }22222222 )( ρρσ EKAErEKoEdEd −=−==  ( 3-7) 

Applying Bussgang’s theorem to ( 3-1), 
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where K  has been approximated with its instantaneous value 
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This approximation for K  is used because the algorithm is to operate online, and 

the expectation from (3-6) is likely not available. Even if the process 
ρ

ρ
ρ

)(
)(

A
A +′  

is stationary, calculating an accurate estimate for the ensemble-average in (3-6) 
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by time-averaging is not appropriate for online system, because the channel is 

changing. 

In order to recover the transmitted data vector from 

[ ])()2()1( N

kkkk yyy L=y , the channel matrix [ ] TN

kkkk

)()2()1(
hhhH L=  has to 

be estimated. The idea is to estimate the channel matrix in a decision-directed 

manner at each symbol time without making use of pilot symbols or training 

sequences. 

3.2 Decision-directed Channel Estimation 

Many authors have tried to approximate the time variation of the fading 

channel by different dynamic models depending on the application. However, the 

results in  [3.39] have shown that the first-order autoregressive model provides a 

sufficiently accurate model for time-selective fading channels. Therefore, the 

relation between kH  and 1−kH  can be approximated as 

ksksk TT WHH
2

cor1cor )(1)( ρρ −+≈ −  ( 3-10) 

where   )(cor sTρ   is    the   value   of    the  channel   coefficients’ autocorrelation 

function, )(cor t∆ρ , evaluated at sTt =∆  and kW  is a matrix with zero-mean 

independent white Gaussian noise entries each with variance 1. When the fading 

statistics are unknown, )(cor sTρ  can be usually estimated from the data in a 

training-assisted mode or decision-directed mode  [3.40]. However, there is no 

attempt to estimate this statistic here, and for simulation, it is taken as 
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)2( D0 sTfJ π  where 0J  is the zero-order Bessel function of the first kind and Df  is 

the maximum Doppler frequency. This form encompasses a commonly used, but 

major, assumption - a 2D-omnidirectional incident uncorrelated power distribution 

and 2D-omnidirectional antennas. The exact form of the correlation function is 

not important here in the sense that the algorithm below uses only one sample 

value of it. In practice, if this correlation sample value changes with time, it will do 

so slowly, and this allows time to track its estimate for its application in this 

algorithm. A sensitivity analysis (shown below) indicates that the proposed 

decision-directed technique is robust for a moderate mismatch of the channel’s 

second-order statistics, i.e., the correlation function values, relative to the a priori 

information assumed by the receiver. 

On reception of the nth data symbol, the receiver first employs a new 

decision algorithm to obtain a primary data vector estimate of the transmitted 

signal. The detail is descried below. 

3.2.1 Decision Algorithm 

Having the unbiased MMSE estimate of the channel matrix coefficients, 

)1(ˆ
, −kh mn , and the corresponding error variances associated with the estimation 

process, 2

)1(ˆ
, −kh mn

σ , obtained from the previous symbol interval (this is a standard 

type of assumption in deriving iterative algorithms), the channel matrix estimation 

process at the )1( −k th symbol time can be expressed by 

111
ˆ

−−− +≈ kkk VHH  ( 3-11) 
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where [ ] )1(ˆˆ
,,1 −=− kh mnmnkH   and  1−kV   is  a  matrix  with  zero-mean independent 

white Gaussian noise entries having the corresponding variances 
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( 3-12) 

Since the 1−kV  is a matrix with zero-mean noise, taking expectation from both 

side of (3-11), we have { } { }11
ˆ

−− = kk EE HH  which models the unbaised channel 

matrix estimation process at the previous symbol time. 

The approximation models of (3-10) and (3-11) are only used for deriving 

the proposed algorithm. In the simulations below, the correct structure of MMSE 

estimator (without approximation) is used for the channel estimation at each 

symbol time in (3-36).  

Moreover, the optimal channel coefficients’ linear predictions, given that 

the channel follows the AR(1) model of ( 3-10), but ignoring the addition of 

received data measurements Nny
n

k ,...,1;)( = , are 

)1(ˆ)()( ,cor, −= khTkh mnsmn ρ  ( 3-13) 

with the corresponding prediction error variances 
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From ( 3-10)-( 3-13) and the set of equations ( 3-8) in matrix form, the 

received vector ky  is approximated as 
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in which 
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In the above expressions, the notation ( )
k

N
kkk shhh ,,...,, )(

1
)2(
1

)1(
1

.
−−−

is used to 

emphasize that the noise vector kd  and matrix kK  depend on )()2()1( ,...,, N

kkk hhh , 

and ks . The equation of ( 3-15) can be  re-written as 
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≈ −ρ  ( 3-19) 

where 01 jb += . In the arrangement of ( 3-19), b  is introduced, as in (2.16), as 

an unknown deterministic variable to be estimated. The receiver searches over 

the M-dimensional transmit data vector constellation set { }M
L

kkk

M
C sss L21=  
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to see which candidate of  pri

ks  yields the MMSE estimate of b according to the 

observations ky  constrained by { } .01ˆ jbE +=   

The primary data vector estimate is 
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where ib̂  is the unbiased LMMSE of b  obtained by 
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~  is the noise covariance matrix calculated at i
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According to ( 3-12) and since the elements in kd  are independent, matrix i

k
v

R~  is 
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In calculating [ ]
nn

i
k ,

~v
R , the noise variance 2

)( n
k

d
σ  is substituted by its 

instantaneous value since calculating the expectation in ( 3-7) is difficult. ib̂  is a 

function of i

k
v

R~  which, in turn, depends on NnMm
kh mn

,...,1;,...,1;
2
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,

==
−
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Consideration of these in the above equations makes the new decision algorithm 

yield a more accurate primary symbol data vector estimate pri

kŝ .  

3.2.2 Channel Estimation 

Having the primary data vector estimate pri

kŝ  at hand, the channel matrix 

estimate can now be refined in the form of two, alternative methods: using 

statistical linearization via unscented transformation; or using analytical 

linearization which results in a locally (nested) iterative scheme for updating the 

channel matrix estimate. Both of these methods are presented below. 

3.2.2.1 Statistical Linearization 

Here, the knowledge gained from observing the measurements 

Nny
n

k ,...,1;)( =  are used to refine the predicted channel vector 

[ ] Nnkhkhkh Mnnn

n

k ,...,1;)()()( ,2,1,

)( == Lh . At first, the new set of observations 

is generated as 
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 ( 3-24) 

The Unscented Transformation (UT)  [3.41]- [3.42] is to handle the 

nonlinearities in ( 3-24). However, the standard UT is characterized with real-

valued random variables. As a result, to fit the UT principles to our problem 

involved with complex random variables, a summary of UT is described below. 
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Consider propagating a p-dimensional real-valued random vector a  with 

mean a  and covariance aC , through an arbitrary nonlinear function 

bag
npn ℜ→ℜ =

: , to produce a random variable )(agb = . A set of  12 +p  points, 

called sigma points, are generated by the following algorithm whose sample 

mean and sample covariance are a  and aC , respectively  

                                 
)(

; 00
κ

κ
ξ

+
==

p
aα   

( ) pi
p

p iii ,...,1
)(2

1
;)( =

+
=++=

κ
ξκ aCaα  ( 3-25) 

( ) ppi
p

p iii 2,...,1
)(2

1
;)( +=

+
=+−=

κ
ξκ aCα a   

where  κ   is  a  scaling  parameter  such that ℜ∈≠+ κκ ;0p , and ( )
i

p aC)( κ+  

is the ith column of the matrix square root of aC)( κ+p , and iξ  is the weight that 

is associated with the ith point. The weights are normalized; that is, they satisfy 

∑ =
=

p

i i

2

0
1ξ . The set of samples chosen by ( 3-25) are guaranteed to have the 

same sample mean, covariance, and all higher, odd-ordered central moments, as 

the distribution of the random vector a . The matrix square root and κ  affect the 

fourth and higher order sample moments of the sigma points  [3.42]. Now each 

sigma point is propagated through the nonlinear function g , 

piii 2,...,0;)( == αgβ  ( 3-26) 

and the first two moments of b  are computed as follows 
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To fit the UT principle to our problem, all the real and imaginary parts of 

Mmkh mn ,...,1;)(, =  are stacked into 12 ×M  vector )(n

ka  as follows 
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)( L=a  ( 3-29) 

Considering the above arrangement along with ( 3-13)-( 3-14), )(n

ka  would 

be a random vector with mean )(n

ka and MM 22 ×  diagonal covariance matrix 
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With the assumption of a wide sense stationary uncorrelated scattering 

(WSSUS), { }mnh ,Re  and { }mnh ,Im  are uncorrelated random variables with equal 

variances. Finite-sample estimates of these variances are not equal, but are 

considered “asymptotically equal” by averaging over sufficient realizations 

[2.33]). As a result, for a complex channel coefficient, { } { }mnmnmn hjhh ,,, ImRe += ,  
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Thus, )( n
ka

C  in  ( 3-31) is approximated by 
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Now, ( ).R

AF  in ( 3-24) is taken as the nonlinear function with the 

corresponding output, )(n

kz  and 14 +M  sigma points, { } M
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α  are generated 

according to ( 3-25). These sigma points are passed through the nonlinear 

function ( ) 
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with variance 
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The problem of refining the channel vector estimate )(n

kh , is finalized with a 

new estimation problem as follows. We wish to linearly estimate the random 

vector )(n

ka  as in ( 3-29) with mean )(n

ka  and covariance matrix 
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kυ  is the innovation 

term). The LMMSE estimator is  [3.43] 
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Finally, )(ˆ
, kh mn  which is the mth element of vector )(ˆ n

kh  is obtained as 
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with approximated estimation variance [ ] [ ] )(
2
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Each of the channel vectors Nn
n

k ,...,1;ˆ )( =h  is obtained individually from 

the algorithm described above. 

3.2.2.2 Analytical Linearization 

Here, the set of equations ( 3-8) are rewritten as 
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where pri
k

n
k

n

kK
sh ˆ,

)(
)(  is the value of )(n

kK  evaluated at )ˆ,( )( pri

k

n

k sh .  

For brevity, let ( )Tn

k

)(
hx =  and { })(

1

)(

1

)()( ...,,, nn

k

n

k

n

k yyy −=Y  denote the set of all 

sampled received signal from nth antenna up to kth symbol time. Using Bayes’ 

theorem on the conditional density for memoryless sensor systems yields  
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with c a normalization constant 
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The approximation is made such that both the predicted channel matrix 

elements in ( 3-13) and the noise term in ( 3-39) are considered normally 

distributed. Thus, the posterior probability density )( )(n

kp Yx , would be the product 

of two Gaussians. Therefore, the task is now to find the maximum of )( )(n

kp Yx  

for MAP estimation. Equivalently, its logarithm can be maximized. After the 

elimination of the irrelevant constants and factors, it boils down to minimization 

the following function 
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with Tn

k )( )(
hx =  and 

[ ]2

)(

2

)(

2

)( ,2,1, khkhkh Mnnn

diag σσσ L=xC  ( 3-43) 

and w~C  the associated measurement noise variance. 

The strategy of finding a minimum is to use Newton-Raphson iteration 

starting from xx =0
ˆ . At the beginning of the uth iteration step, there is already an 
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estimate 1
ˆ −ux  obtained from the previous step. Now the set of equations ( 3-8) is 

better approximated by 
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with noise variance 
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At this point, ( )xΦ  is expanded around 1
ˆ −ux  to a second order Taylor 

series approximation 
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where 
x∂

Φ∂
=Φ∇  and 

( )
∗∂

Φ∇∂
=Φ∇

x

2  denote the Gradient and Hessian matrix of 

( )xΦ  with respect to complex vector x , respectively.  

The estimate ux̂  is the minimum of the approximation of ( 3-46). It is found 

by equating the gradient of the approximation to zero. Differentiation of ( 3-46) 

with respect to complex vector x  gives 
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which results in 
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The Gradient and Hessian of ( )xΦ , in explicit form, are obtained from 

( 3-42) as 
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Substitution of ( 3-49)-( 3-50) into ( 3-48) yields the following iteration 

scheme 
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We note that, ux̂  converges very fast and it is possible to fix the number of 

iterations to some small number U , e.g. 3=U . (The effect of U on system error 

performance is analyzed through simulation below). The final result is set to the 

last iteration, i,e, T

U

Tn

k xxh ˆˆˆ )( == .  

The factor  ( )( ) 1

ˆ

1
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1

11
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Ω∇Ω∇+

uu w

H

xxx CC  in ( 3-51) can  be  regarded  as  

the  error  covariance  matrix associated with ux̂ , i.e. 
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This insight gives another connection to the last term in ( 3-51) because, in 

comparison with the standard Kalman filter recursion formulas, the term 

( ) 1
~ˆ

)(

ˆ 1
| −

−
Ω∇ w

Hn

uu
CC xx  can be regarded as the Kalman gain matrix during the uth 

iteration.  

Again, each of the channel vectors Nn
n

k ,...,1;ˆ )( =h  has to be obtained 

individually from the locally iterative algorithm described above. 

3.2.3 Data Vector Recovery 

Here, the receiver recovers the transmitted data vector using the channel 

matrix estimate [ ]TN
kkkk

)()2()1( ˆˆˆˆ hhhH L=  and the primary data vector estimate 

pri

kŝ . The minimum distance receiver  [3.45] chooses the vector kŝ  that solves 
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where 
F

.  denotes the Frobenius norm and 
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In ( 3-53) the search is performed over all the candidate vector symbols, 

ks , and the decoding complexity of the receiver is exponential in M. Note that in 

fact, ( 3-53) is the optimum ML decoder when the MIMO system is linear.  

Finally, the estimated symbols are fed to the hard decision block to yield 

the detected transmitted symbols by setting the optimal thresholds in the 

constellation regions of the transmitted signal. The channel matrix estimate, 
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[ ]TN
kkkk

)()2()1( ˆˆˆˆ hhhH L= and the corresponding variances associated with the 

estimation processes, MmNn
kh mn

,...,1;,...,1;2

)(ˆ
,

==σ , also help the decision 

algorithm in the subsequent (k+1)th symbol interval to obtain the subsequent 

primary data vector estimate pri

k 1
ˆ

+s . We note that for initialization, it is sufficient for 

the proposed algorithm to use any of the training approaches developed in  [3.44] 

only once at the beginning of whole data sequence transmission. To obtain a 

meaningful estimate of H  at the beginning, there is needed at least as many 

training measurements as unknowns, which implies that at the first Mth iteration, 

any kind of training-based scheme, e.g., LS or MMSE pilot-aided channel 

estimation, is used for an initial estimate of the channel, Mini HH ˆˆ = . From the 

(M+1)th iteration, the algorithm switches to the presented iterative algorithm and 

uses the channel estimate MĤ  that is at hand. This means that the algorithm 

switches to a “blind” approach (in the sense that no further pilots are required) 

after at least the Mth iteration. The initial channel estimates obtained this way, 

are accurate enough for the algorithm to have fast convergence for the typical 

application of systems with fade rates of 005.0~D ≤sTf . 

3.3 Simulation Results 

The optimal receiver performance sets a lower bound on the error rate 

probability of sub-optimal receivers. However, no exact optimal analytical solution 

is available for error probability, even for linear MIMO systems. (For linear 

systems several upper bounds on error probability for the ML as well as other 
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sub-optimal receivers have been derived.) Thus, simulation for the SER 

performance results of coherent detection with perfect CSI is used for a 

benchmark, and evaluated and compared against the results of the presented 

decision-directed system with the associated perfect CSI reference ones.  

We take i.i.d. QPSK data symbols with zero mean and variance 1, and for 

convenience of interpretation, the data symbol duration is ms1.0s =T  (i.e., 10k 

symbols/sec) and the channel fate rade is 001.0sD =Tf . Also, throughout the 

simulations, the signal to noise ratio is 
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 ( 3-54) 

The proposed algorithm is formulated in a general form and it can be 

applied to any linear and nonlinear MIMO systems with nonlinearities introduced 

by (.)Tf  and (.)Rf  in (1). The last sub-section below,  3.3.2, is dedicated to linear 

MIMO systems since with this choice, more direct assessment of the proposed 

channel estimation technique on system error performance is possible. Also, this 

allows fair performance comparison with known results of the conventional 

decision-directed Kalman filtering  [3.30] and two pilot-aided systems (least-

squares (LS), and an MMSE pilot-aided system  [3.11]). 

Here, the value of )2()( D0cor ss TfJT πρ =  is assumed to be known, i.e., 

estimation of these statistics is not included as part of the algorithm. Including 

this estimate is a relatively straightforward extension, but the goal here is to 

quantify the behaviour of the decision-directed estimation with known channel 
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statistics. The impact of any mismatch in the time-correlation coefficient 

mismatch (perhaps caused by an incorrect estimate of Df , or simply because the 

model is incorrect) on the proposed system’s error performance is analyzed by 

simulation below. We show that the proposed technique is robust for a mild 

mismatch of the channel’s second-order statistics, i.e., the correlation function 

values which relate to Df , relative to the a priori information assumed by the 

receiver. However, a large degradation in performance is demonstrated as the 

mismatch increases, as expected, and this is demonstrated below. 

3.3.1 Nonlinear MIMO System 

Despite nonlinearities being usually small, they are known to be very 

difficult to deal with  [3.45]. Here, for both transmit and receive amplifiers some 

examples are provided from the family of Solid State Power Amplifier (SSPA) 

nonlinearity which is defined as  [3.37]- [3.38] 
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( 3-55) 

where q  defines the smoothness of the transition from linear operation to 

saturation and sA  is the saturation output amplitude where for simulation it is set 

as 1=sA . q  is a standard parameter which the designer must assign to the 

SSPA amplifier. This may require a calibration measurement. Designers would 

be able to decrease the cost of the amplifiers if a larger non-linearity could be 

tolerated. For large values of q, the SSPA model approaches the soft limiter 
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model that is commonly used to represent the clipping operation  [3.46] to reduce 

the dynamic range of the OFDM signal. The soft limiter model is specified as  
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ss
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A AA
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ρρ
ρ
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;
)(         ,          0)( =ρPF .                              ( 3-56) 

We note that the model used in ( 3-55) is just an example of amplifier 

nonlinearity provided here for simulation purposes. Any kind of memoryless 

AM/AM and AM/PM characteristics can be used instead. Furthermore, 

throughout the simulations, Tq  and Rq  are used as the corresponding transmit 

and receive amplifier smoothness parameter, respectively. 

Figure  3-2 illustrates the SER performance of a 22×  nonlinear MIMO 

system with different nonlinearity configurations for transmit and receive 

amplifiers when the statistical linearization technique is used. In general, as 

either of the parameters Tq  or Rq  increases, less degradation in performance is 

observed since the nonlinearity becomes smoother. 

 A useful result is that, for a given receiver nonlinearity represented by Rq  

parameter, the ensuring system performance curves are  essentially shifted 

versions of the curves obtained with the ideal linear transmit amplifier ( ∞→Tq ). 

This  is seen in Figure  3-3 where the effect of nonlinear parameter Tq  

(representing the nonlinearity at the transmitter) on the system SER performance 

with fixed 2R =q  is illustrated. As an example, there is a shift of 1.1 dB in SNR, 

except near the error floor region. As a result, in order to assess the impact of the 

receiver nonlinearity (represented by Rq ) on system error performance more 
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directly, in the rest of the simulations, the SER performance is evaluated of 

nonlinear  MIMO  systems  with ideal linear amplifiers at the transmitter by setting   
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Figure  3-2  SER performance of a 22 ×  nonlinear MIMO system with different nonlinearity 
configurations for transmit and receive amplifiers  

                   The statistical linearization technique is used, and fade rate is 0.001 
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Figure  3-3 Effect of nonlinear parameter Tq  (representing the nonlinearity at the 

transmitter) on the system SER performance with fixed 2R =q  



 

 85 

∞→Tq .  Here   we   can   also   benchmark   the   two statistical/analytical 

linearization techniques with a look-up table (LUT) approach to the nonlinear 

problem. 

3.3.1.1 Statistical/Analytical linearization approaches: ∞→Tq  

 The impact of nonlinearity parameter Rq  on the SER performance of a 

22×  nonlinear MIMO system using the statistical linearization technique is 

shown in Figure  3-4. Comparison is also made with the linear system error curve 

which corresponds to large values of Rq  (soft limiter model). The nonlinearity is 

nearly  compensated  for  values  of  SNR < 13 dB for 5.0R ≥q . The performance 

curves with analytical linearization also follow the same trend as the curves with 

statistical linearization. The SNR value of 13 dB would change with different 

fading rates.  
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Figure  3-4 Impact of nonlinearity parameter Rq  on SER performance of a 22×  nonlinear 

MIMO system employing the statistical linearization technique while ∞→Tq   
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At large values of SNR, the difference between the curves of the 

statistical/analytical linearization approaches and that for a linear system 

increases with SNR. The performance degradation associated with the 

statistical/analytical  approaches  can  be  explained via equation ( 3-8): it is found 

via simulations (not shown here) that the noise variance 2

dσ  (see ( 3-7)) increases 

with SNR. As a result, the Bussgangs’ approximation in ( 3-8) becomes less 

accurate for larger values of SNR. In turn, this causes inaccuracies in the 

decision algorithm which is built up from ( 3-8). 

Figure  3-5 shows the SER  performance  of  a nonlinear SISO and  a 22×  

nonlinear MIMO system with the nonlinearity parameters 5.0R =q  and perfect 

CSI at the receiver. The corresponding curves of the presented decision-directed  

13 13.2 13.4 13.6

10
-1.4

10
-1.32

0 2 4 6 8 10 12 14 16 18 20
10

-3

10
-2

10
-1

10
0

SNR (dB)

S
y
m

b
o
l 
e
rr

o
r 

ra
te

Analytical lin.

1 X 1 system

Analytical lin.

2 X 2 system

Statistical lin.

1 X 1 system

Statistical lin.

2 X 2 system

coherent detection 

perfect CSI: 2 X 2 system

coherent detection

perfect CSI: 1 X 1 system

 
 

Figure  3-5 SER performance of a nonlinear SISO and a 22×  nonlinear MIMO system with 

the nonlinearity parameter 5.0R =q  and ∞→Tq .  

                   Dashed and solid lines correspond to coherent detection with perfect CSI and 
the proposed systems, respectively. The analytical linearization parameter is 

3=U  
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system employing statistical and analytical linearization techniques are also 

illustrated. The analytical linearization technique finishes the locally iterative 

(nested) scheme in 3=U  steps. 

The effect of U  on system performance is studied below. The degradation 

in performance of a 22×  nonlinear system is more than that in the nonlinear 

SISO system. This trend is expected since more nonlinear amplifiers   contribute   

more   nonlinearity  as  the  number  of  receive  antennas increases. Figure  3-5 

reveals the details. 

Finally, the impact of the analytical linearization parameter U  on SER 

performance is shown in Figure  3-6. Typically, the performance gets better as the 

total number of iterations in the proposed local iterative scheme increases from 1 

to 3.   
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Figure  3-6  Impact of the analytical linearization parameter U on SER performance of a 

22×  nonlinear MIMO system for ∞→Tq  
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For 3≥U , the  local  iterative  scheme  nearly  converges  to a steady 

state which is the locally optimum value and as a result no further improvement 

in performance is observed. 

 As in Section 2.4.2, and repeated here for convenience, it is assumed that 

the normalized time-correlation function of the channel coefficients is known, and  

only one value of the channel correlation coefficient function, )2()( D0cor ss TfJT πρ = , 

is  required.  As  already  noted,   a  real-world,   local  autocorrelation  is  seldom 

exactly 0J  (or some other model), even in the main lobe region, and almost 

never 0J  (or another model) away from the main lobe. Furthermore, estimating a 

correlation coefficient from finite samples introduces uncertainty depending on 

the number of samples used. In order to get a reliable estimate where the 

function becomes small, a very large number of samples is required  [3.47]. 

In order to test the performance sensitivity to the second-order statistics, 

the simple percentage correlation function sample mismatch, as in (2.35), is 
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η  ( 3-57) 

where the normalized time-correlation function used at the receiver takes on 

different values from )2()( D0cor ss TfJT πρ = . Figure  3-7 illustrates the effect of the 

mismatch parameter 0ηη =miss  on SER performance, given as the relative SER 

change, ( ) 00 /
0 === −

missmissmiss
SERSERSER ηηηη , at SNR = 20 dB using the statistical 

linearization. The system remains moderately insensitive to the mismatch of 

( 3-57) - up to 20% for fate rate 0.005, but for higher mismatch, there will be a 
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larger  degradation  in the SER performance. Also, there is more sensitivity to the 

mismatch for higher fade rates. The reason is that, for a given mismatch, the 

higher fade rate results in the addition of an error term to equation ( 3-19) which in 

turn  causes  more signal estimation inaccuracies in the decision algorithm. Thus, 

for the typical applications with fade rate 005.0~D ≤sTf , the proposed technique 

is robust to mild mismatches of the channel’s second-order statistics. The figure 

helps to quantify the sensitivity of the proposed receiver to the modelling of the 

temporal second order statistics of the channel. 
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Figure  3-7   The effect of mismatch parameter on the relative SER performance of system 
employing the presented decision-directed channel estimation.  

                     The statistical linearization is used at SNR = 20 dB. 

 

3.3.1.2 Look-up table approach followed by linear channel estimation: ∞→Tq  

We may also attempt to directly compensate the nonlinearity at the 

receiver before proceeding to channel estimation and data recovery by means of 

an LUT approach. First, by processing Nnyy
n

kn ,...,1;)( =≡  as shown in Figure  3-8,  
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Figure  3-8  Receiver nonlinearity compensation by means of LUT, here for the nth antenna 

branch and ∞→Tq .  

                   The outputs of all branches, Nrrr ,...,, 21 , are fed to the multiple antenna decoder 

block for channel estimation and data recovery, designed for linear MIMO 
systems. 

 

the estimation values of Nnrr
n

kn ,...,1;ˆˆ )( =≡  are obtained. The estimation process 

at this step, can be modelled as 

kkkekk erwrr +=+= ~ˆ σ  ( 3-58) 

where 
kw~  is a vector with i.i.d. complex Gaussian entries each with variance 1 

and 2

eσ  is the associated estimation error variance reflecting the inaccuracies in 

estimating kr̂ . 

Next, these estimates are fed to the multiple antenna decoder block, 

designed for linear MIMO systems where decision-directed channel estimation 

and data recovery is carried out. From the SNR point of view,  

2

10ˆ log10 eSNRSNR σ−= rr  ( 3-59) 

Equation ( 3-59) states that the proposed channel estimation/data recovery 

designed for the linear system is going  to  operate  on  the signal (i.e., kr̂ )  that 
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has the reduced SNR value of 2

10log10 eσ  in comparison to kr . Simulations show 

that 2

eσ  depends mainly on the gridding size (quantization for LUT) and does not 

change with SNR. As a result, for a fixed gridding size, the curves of LUT-based 

system are essentially shifted versions of the curve for a linear system. We note 

that the inversion operation ).(
1−

AF  shown in Figure  3-8 is performed by means of 

LUT. 

The SER performance curves of system based on LUT compensation are 

shown in Figure  3-9 for the nonlinearity parameters 5.0R =q . The effect of 

different values of gridding sizes (quantization for the LUT) is also illustrated. 

Here, the input signal full scale amplitude is taken as 0 to 4, so a grid size of 

0.005 means there are 800 LUT entries.  
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Figure  3-9 SER performance curves of a 22×  system with nonlinearity compensation 

using LUT for 5.0R =q  and ∞→Tq  

                    The effect of gridding size on the error performance is also illustrated and 
comparison is made with the presented statistical/analytical linearization 
approaches of section III. 
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The curves are essentially shifted versions of the curve for a linear system which 

confirm equation ( 3-59). However, as the gridding size increases (less LUT 

entries), a larger shift is observed. 

The comparison can also be made with the SER results of the techniques 

proposed in section 6.2 using statistical/analytical linearization and Bussgang’s 

theorem. The proposed statistical/analytical linearization approaches outperform 

the system based on LUT for SNR values smaller than about 13.5 dB. Since the 

error  performance  of  statistical/analytical linearization approaches coincide with 

the curves of linear system for low values of SNR (where the nonlinearity is 

completely compensated), it is concluded that the main reason that the 

performance of LUT-based approach falls behind the statistical/analytical 

approaches, is the gridding size. In particular, for very small values of gridding 

sizes, 0
2 →eσ , the resultant LUT-based curve coincides with the corresponding 

curve for the linear system (see ( 3-59) and the LUT-based approach and the 

statistical/analytical approaches  yield  the  same  performance  for  small  values 

of SNR (SNR < 13.5 dB for the example provided). On the other hand, at large 

values of SNR, the difference between the curves of the statistical/analytical 

approaches and that for a linear system, increases with SNR while the LUT-

based curves experience a constant degradation  in all SNRs. As a result, for 

large values of SNR the LUT-based approach outperforms the presented 

statistical/analytical linearization approaches. 

 Comparison is also made between the performance of the presented 

algorithm and that of LUT-based approach in a 22×  system with nonlinear 
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amplifiers at both transmitter and receiver (both Tq  and Rq  are small). The 

results are illustrated in Figure  3-10 for 1R =q  and various values of the transmit 

nonlinearity parameter, Tq . The LUT has a grid size of 0.005. For small values of  

Tq , the presented algorithm outperforms the LUT-based approach in SER 

performance for all values of SNR. In particular, the difference between SER 

performances becomes larger as Tq  decreases. This is simply because the 

presented LUT-based approach is not designed to compensate the transmit 

nonlinearity. The result in Figure  3-10 lays out that the presented algorithm is 

more effective than the LUT-based approach in MIMO systems with 

nonlinearities at both transmit and receiver amplifiers. 

 We note that all presented techniques require knowledge of the 

nonlinearity  characteristics,  ).(R/T

AF   and ).(R/T

PF . However,  the systems based 
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Figure  3-10  Comparison of SER performance of the presented algorithm with that of LUT-
based approach in a 22 ×  system with nonlinear transmit and receive 

amplifiers ( 1
R

=q  and various values of 
T

q )     
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on LUT require the extra memory of the table. The size of the extra memory 

increases, as the gridding size decreases. 

In order to assess the impact of the proposed channel estimation 

technique on system error performance more directly, the next section 

consideres linear MIMO systems. This also allows fair performance comparison 

with a known decision-directed system employing Kalman filtering to track the 

channel  [3.30] and two pilot-aided systems (least-squares (LS), and an MMSE 

pilot-aided system  [3.11]). 

3.3.2 Linear MIMO System: ∞→Tq , ∞→Rq  

For the linear MIMO systems ( ∞→Tq and ∞→Rq ) , the signal model 

( 3-1) is simplified to 

kkkk
M

nsHy +=
1

 ( 3-60) 

The  proposed  channel  estimation  can  be  joined  with  any  decoding 

structure (e.g., ML, MMSE, ZF and MMSE-OSUC) at the receiver. Each 

decoding structure provides a specific order of diversity. The zero forcing (ZF) 

receiver provides 1+− MN  order diversity  [3.48] (the same as MMSE and 

successive cancellation (SUC) receivers but with different SNR loss). As an 

alternative, one may take advantage of an ordered successive cancellation 

(OSUC) receiver  [3.49] which may have more than 1+− MN  order diversity 

because of the ordering (selection) process  [3.48], or use the optimal ML receiver 

which extracts N  order diversity with the expense of high decoding complexity 
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(exponential in M ). For  different  decoding  structures, the SER performance of 

the system employing the proposed channel estimation is compared with the 

associated coherent detection curve with perfect CSI. The results are illustrated 

in Figure  3-11 for a 22 ×  system. Each pair of curves bearing the same color 

(also labeled) corresponds to a specific decoding structure (the “dotted line” is 

associated with the “coherent detection with perfect CSI” and the “solid line with 

marker” is the performance when the effect of decision-directed channel 

estimation is added to that system).  
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Figure  3-11  SER  performance  of  a  linear  22×   MIMO system employing ML, MMSE, ZF, 
and MMSE-OSUC receivers.  

                      Dashed and solid lines correspond to coherent detection with perfect CSI and 

proposed system, respectively; ∞→Tq , ∞→Rq . 

 

The statistical and analytical linearization techniques yield the same 

performance in this case since no nonlinearity exists. With each receiver type 

(decoding structure), the presented system exploits the same diversity order as 

the  coherent  detection with perfect CSI but experiences an SNR loss. However, 
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the SNR loss depends on the system parameters and the type of decoding 

structure. In  particular,  it  is  within 3 dB (specifically, 2.5 dB)  of the  perfect CSI 

curves in an ML (in MMSE-OSUC) receiver at fade rate 001.0sD =Tf  and SER of 

210− .  
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Figure  3-12  Comparison  of SER performances of linear 22×  MMSE-OSUC receivers 
employing different channel estimation techniques.  

                        The system uses SM-HE, QPSK signaling at fade rate 001.0D =sTf  

 

We may also compare the results of a system employing the presented 

decision-directed channel estimation with that of a system using other channel 

estimation techniques for a given decoding structure. Here, a fair comparison is 

possible with a known channel estimation based on Kalman filtering 

(conventional decision-directed Kalman filtering  [3.30]), and two known pilot-

aided channel estimations: Least Squares (LS) and an MMSE pilot-aided system 

 [3.11]. The results are shown in Figure  3-12 using the MMSE-OSUC receiver. 

The presented system outperforms both pilot-aided channel estimation 
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techniques but with just a slight improvement in performance over the decision-

directed Kalman-based estimation at moderate-high values of SNR.  

Recall that the technique of  [3.30] is a decision-directed algorithm which 

uses channel predictions to obtain the coarse symbol estimate for formulating the 

measurement equations in the Kalman filtering. However, obtaining the coarse 

symbol estimate is undertaken without considering the associated channel  

estimation  error  variances, 2

)1(ˆ
, −kh mn

σ , whereas  these have been taken into 

consideration in the proposed decision algorithm  (( 3-15)-( 3-22)). Compared to 

pilot-aided systems, the proposed decision-directed system has superior 

performance for all SNRs, at least for the fade rate used here. This is expected, 

because in pilot-aided systems, the channel is  estimated  only  after at least M  

consecutive symbols, whereas in the presented technique, the channel is 

estimated at each symbol time which results in more accurate channel  estimates  

in  the  time-varying  environment. 

The robustness of the proposed system to the time-variations of the 

channel can also be quantified by simulation and compared with that of other 

conventional channel estimation techniques. The MMSE-OSUC decoding 

structure is used for all the systems. The effect of fade rate (maximum Doppler 

shift) on error performance is shown in Figure  3-13 for Hz300Hz10 D ≤≤ f  at SNR 

= 20 dB. For the proposed system, there is a maximum performance degradation 

of 15% in the SER (compared to 60% in pilot-aided systems) for a fading rate 

01.0~D ≤sTf  or Hz100~D <f , relative to the case of block fading in a quasi-static 
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channel (the Kalman-based estimation has the same trend as with the proposed 

channel estimation). The pilot-aided systems are more sensitive to time-

variations of the channel. However, in general, the system performances depend 

on many factors such as channel fade rate, SNR and pilot scheme used. 
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Figure  3-13 The effect of maximum Doppler shift on decision-directed/pilot-aided system 
error performance employing MMSE-OSUC receiver at SNR = 20 dB. 

 

 For example, the LS pilot-aided system is always worse than the MMSE 

pilot-aided system on this measure, and at very low fade rates (static fading) the 

all the algorithms (two-pilot aided systems, the Kalman-based estimation, and  

the proposed channel estimation technique) yield nearly the same performance 

at all values of SNR. However, as the fade rate increases, the deference 

between the SER curves increases.  

Techniques that are based on the three conventional channel estimators 

under comparison (the two LS/MMSE pilot-aided channel estimator and decision-

directed Kalman filtering) and/or detectors such as ZF, MMSE and OSUC, 
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become ineffective in nonlinear MIMO systems. This is because these channel 

estimators and detectors are designed based on the linearity in a system. As 

another example, it is well known that the Kalman filter is the optimum linear 

state estimator when the set of state and observation equations are linear  [3.43], 

 [3.30]. The performance of a Kalman filter degrades significantly even when a 

mild nonlinearity exists in the system. More severely, in most nonlinear cases the 

Kalman filter does not converge at all if an inappropriate initial state value is set 

within the algorithm  [3.43]. As a result, a decision-directed Kalman-based 

channel estimator is not capable of tracking the time-variation in the channel 

when the system in nonlinear, and the system remains running without 

appropriate channel estimates, and the receiver fails to detect the transmitted 

symbols correctly. 

This is not the case with the presented algorithm. As shown earlier, the 

presented algorithm is also effective for nonlinear MIMO systems. As a result, 

this can be considered as one of the advantages of the presented algorithm over 

the other conventional techniques (including detection and channel estimation) 

designed exclusively for linear systems. 

3.4 Summary and Conclusions 

The amplifiers in a practical MIMO system can be performance-limiting. 

Amplifier non-linearity is modelled here with a memoryless, AM/PM amplifier 

characterization. The theory and signal-processing is presented for 

compensating the link degradation caused by the non-linearity. This includes 

formulating the first proposed decision-directed approach in the form of two 
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alternative channel estimation/tracking methods (statistical and analytical 

linearization) for nonlinear MIMO systems. The MIMO performance is estimated 

by simulation. For a fixed nonlinearity in each receiver amplifier, the resultant 

system error curves are essentially shifted versions of the curves obtained with 

ideal linear transmit amplifiers. Furthermore, for the examples provided, the 

proposed approach is capable of nearly compensating the nonlinearity induced at 

the receiver side for values of SNR less than about 13 dB. That is, in this range 

of SNR, the error curves coincide with those of the linear MIMO system when the 

amplifiers are linear. The two channel estimation methods, statistical linearization 

and analytical linearization, have similar performance, being within a fraction of a 

dB in SNR. They both follow the same trend as coherent systems with perfect 

CSI for small- to mid-sized SNR, and develop an error floor for large SNR. The 

look-up table (LUT) approach also offers good performance, being more effective 

than the presented algorithm in compensating the receiver nonlinearity at high 

SNR when the transmit amplifier is linear. This is at the expense of extra 

memory. For smaller values of the SNR which are typical of wireless at extended 

ranges, the performance is similar, with the linearization outperforming the LUT 

approach by about a half dB. However, with nonlinearities at both transmit and 

receiver amplifiers, the presented algorithm is more effective than the LUT-based 

approach in MIMO systems at all values of SNR. 

As the MIMO system becomes linear, typically possible by using 

expensive amplifiers, the performances of the statistical and analytical 

linearization approaches converge. The scheme presented here compares 
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favourably against known decision-directed schemes such as conventional 

Kalman filtering, and two established, pilot-aided systems. The proposed channel 

estimation is also more robust to the time-variations of the channel compared to 

LS/MMSE pilot-aided systems. 

The comparison of simulation results with benchmark and other known 

results puts a focus on the importance of checking the channel modeling. We 

show that the proposed technique is robust for a moderate mismatch of the 

channel’s second-order statistics, i.e., the correlation function values, relative to 

the a priori information assumed by the receiver. However, a large degradation in 

performance is demonstrated as the mismatch increases, as expected.  

 

 



 

 102 

REFERENCE LIST 

[3.1] G. J. Foschini and M. J. Gans, “On limits of wireless communications 
in a fading environment when using multiple antennas,” J. Wireless 
Personal Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998. 

[3.2] R. O’Neil and L. B. Lopes, “Performance of amplitude limited multitone 
signals,” IEEE Veh. Technol. Conf., pp. 1675–1679, Jun. 1994. 

[3.3] D. Dardari, V. Tralli, and A. Vaccari, “A Theoretical Characterization of 
Nonlinear Distortion Effects in OFDM Systems,” IEEE Trans. 
Commun., vol. 48, no, 10, pp. 1755-1764, Oct. 2000. 

[3.4] W. A. Morgan, “Minimize IM distortion in GaAs FET amplifiers,” 
Microwaves and RF., vol. 25, no. 10, pp. 107-110, 1986. 

[3.5] V.M. Vladimirov, S.N. Kulinich, Yu.Y.Shikhov, “LNA – Active bandpass 
filter for receiver-indicator of Glonass+GPS,” in Proc. Int. Conf. Inf. 
Commun. Energy Sys. Technol., Oct. 2002. 

[3.6] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, 
Cambridge, U.K.: Cambridge University Press, 1998.  

[3.7] T. H. Lee, “5-GHz CMOS wireless LANs,” Trans. Microwave Theory 
and Technique, vol. 50, no. 1, pp. 268-280, Jan. 2002.  

[3.8] M. Ibnkahla, et al., "High-Speed satellite mobile communications: 
Technologies and challenges,” IEEE Proceedings, vol. 92, no. 2, Feb. 
2004. 

[3.9] Q. Sun, D. C. Cox, H. C. Huang, and A. Lozano, “Estimation of 
continuous flat fading MIMO channels,” IEEE Trans. Wireless 
Commun., vol. 1, no. 2, pp. 549–553, Oct. 2002. 

[3.10] X. Ma, G. B. Giannakis, and S. Ohno, “Optimal training for block 
transmission over doubly selective wireless fading channels,” IEEE 
Trans. Signal Process., vol. 51, no. 5, pp. 1351–1366, May 2003. 

[3.11] M. Biguesh, and A. B. Gershman, “Training-Based MIMO Channel 
Estimation: A Study of Estimator Tradeoffs and Optimal Training 
Signals,” IEEE Trans. Signal Process., vol. 54, no. 3, pp. 884-893, 
Mar. 2006. 



 

 103 

[3.12] B. Hassibi and B. M. Hochwald, “How much training is needed in 
multiple-antenna wireless links?,” IEEE Trans. Inf. Theory, vol. 49,  no. 
4, pp. 2515–2528, Apr. 2003. 

[3.13] C.-Y. Chi and C.-H. Chen, “Cumulant based inverse filter criteria for 
MIMO blind deconvolution: Properties, algorithms, and application to 
DS/CDMA systems in multipath,” IEEE Trans. Signal Process., vol. 49, 
no. 7, pp. 1282-1299, July 2001. 

[3.14] Z. Ding and T. Nguyen, “Stationary points of a kurtosis maximization 
algorithm for blind signal separation and antenna beamforming,” IEEE 
Trans. Signal Process., vol. 48, no. 6, pp. 1587-1596, Jun. 2000. 

[3.15] C. Y. Chi, C. Y. Chen, CH Chen, C. C. Feng  “Batch processing 
algorithms for blind equalization using higher-order statistics,” IEEE 
Signal Process. Magazine, vol. 2, no. 1, pp. 25-49, Jan. 2003.  

[3.16] J. Liang, and Z. Ding, “Blind MIMO system identification based on 
cumulant subspace decomposition,” IEEE Trans. Signal Process., vol. 
51, no. 6, pp. 1457-1468, Jun. 2003.  

[3.17] C. Shin, R. W. Heath, and E. J. Powers, “Blind Channel Estimation for 
MIMO-OFDM Systems”, IEEE Trans. Veh. Technol., vol. 56, no. 2, pp. 
670-685, Mar 2007.   

[3.18] B. Chen, A. P. Petropulu,  “Frequency domain blind MIMO system 
identification based on second and higher order statistics,” IEEE Trans. 
Signal process., vol. 49, no. 8, pp. 1677-1688, Aug. 2001. 

[3.19] T. Acar, Y. Yu, and A. P. Petropulu, “Blind MIMO system estimation 
based on PARAFAC decomposition of higher order output tensors,” 
IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4156-4168, Nov. 
2006. 

[3.20] M. A. Khalighi, and S. Bourennane, “Semi-blind channel estimation 
based on superimposed pilots for single-carrier MIMO systems”, IEEE 
Veh. Technol. Conf. pp. 1480-1484, Apr 2007. 

[3.21] J. Gao, and H. Liu, “Low-complexity MAP channel estimation for 
mobile MIMO-OFDM systems”, IEEE Trans. Wireless Commun., vol. 7, 
no. 3, pp. 774-780, Mar 2008. 

[3.22] Z. Ding, T. Ratnarajah, and C. F. N. Cowan, “HOS-based semi-blind 
spatial equalization for MIMO Rayleigh fading channels,” IEEE Trans. 
Signal Process., vol. 56, no. 1, pp. 248-255, Jan. 2008.  

[3.23] T. Dahl, N. Christophersen, and D. Gesbert, “Blind MIMO eigenmode 
transmission based on the algebraic power method,” IEEE Trans. 
Signal Process., vol. 52, no. 9, pp. 2424-2431, Sep. 2004. 



 

 104 

[3.24] A. K. Jagannatham, and B. D. Rao, “Whitening-rotation-based semi-
blind MIMO channel estimation,” IEEE Trans. Signal Process., vol. 54, 
no. 3, pp.  861-869, Mar. 2006. 

[3.25] A. Medles and D. T. M. Slock, “Semiblind channel estimation for MIMO 
spatial multiplexing systems,” in Proc. Veh. Technol. Conf., vol. 2, pp. 
1240–1244, Oct. 2001. 

[3.26] R. Everson and S. Roberts, Independent Component Analysis, 
Principles and Practice, Cambridge, U.K.: Cambridge University Press 
2001. 

[3.27] V. Zarzoso, and A. K. Nandi, “Blind MIMO equalization with optimum 
delay using independent component analysis,” Int. J. Adapt. Control 
Signal Process., Vol. 18, No. 3, pp. 245-263, Mar. 2004. 

[3.28] A. Mansour, “A mutually referenced blind multiuser separation of 
convolutive mixture algorithm,” Signal Processing, Vol. 81, No. 11,  pp. 
2253-2266,  2001. 

[3.29] V. Zarzoso, and A. K. Nandi, “Exploiting non-Gaussianity in blind 
identification and equalization of MIMO FIR channels,” IEE Proc. in 
Vision, Image and Signal Process., Vol. 151, No. 1, pp. 69-75, Feb. 
2004. 

[3.30] A. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel, “Multi-input 
multi-output fading channel tracking and equalization using Kalman 
estimation”, IEEE Trans. Signal Process., Vol. 50, No. 5,  pp. 1065-
1076, May, 2002.  

[3.31] W. H. Chin, D. B. Ward, A.G. Constantinides “Semi-blind MIMO 
channel tracking using auxiliary particle filtering,” Proc. GLOBECOM, 
Vol. 1, pp. 322-325, Nov. 2002. 

[3.32] S. Haykin, A. H. Sayed, J. R. Zeidler, P. Yee, and P. C. Wei. “Adaptive 
tracking of linear time-variant systems by extended RLS algorithms.” 
IEEE Trans. Signal Process., Vol. 45, No. 5, pp. 11 18-1 128, May 
1997. 

[3.33] S. A. Banani, and Vaughan, R. G., "Compensating for non-linear 
amplifiers in MIMO communications systems", accepted in IEEE Trans. 
Antennas and Propagation, Jul. 2011. 

[3.34] J. J. Bussgang, “Cross correlation function of amplitude-distorted 
Gaussian input signals,” Res. Lab Electron., M.I.T., Cambridge, MA, 
Tech. Rep. 216, Vol. 3, Mar. 1952. 

[3.35] J. Minkoff, “The role of AM-to-PM conversion in memoryless nonlinear 
systems,” IEEE Trans. Commun., Vol. 33, No. 2, pp. 139 – 144, Feb. 
1985. 



 

 105 

[3.36] S. A. Banani, and R. G. Vaughan, “Blind channel estimation for MIMO 
systems with nonlinearities at the receiver,” IEEE Veh. Technol. Conf. 
pp. 1-5, May 2010. 

[3.37] S. Benedetto, E. Biglieri, and V. Castellani, Digital Transmission 
Theory. Englewood Cliffs, NJ: Prentice-Hall, 1987. 

[3.38] A. M. Saleh, “Frequency independent and frequency dependent 
nonlinear model of TWT amplifiers,” IEEE Trans. Commun., Vol. COM-
29, pp. 1715–1720, Nov. 1981. 

[3.39] H.Wang and P. Chang, “On verifying the first-order Markovian 
assumption for a Rayleigh fading channel model,” IEEE Trans. Veh. 
Technol., Vol. 45, No. 2, pp. 353–357, May 1996. 

[3.40] L. M. Davis, I. B. Collings, and R. J. Evans, “Coupled estimators for 
equalization of fast-fading mobile channels”, IEEE Trans. Commun., 
Vol. 46, No. 10, pp. 1262 – 1265, Oct. 1998. 

[3.41] S. Julier, J. Uhlmann, and H.F. Durrant-White, “A new method for 
nonlinear transformation of means and covariances in filters and 
estimators,” IEEE Trans. Automatic Control, Vol. 45, No. 3, pp.477- 
482, Mar. 2000. 

[3.42] E. A. Wan and R. van der Merwe, “The unscented Kalman filter for 
nonlinear estimation,” IEEE Symp. on Adaptive Systems for Signal 
Proc., Comm. And Control (AS-SPCC), pp.153-158, 2000. 

[3.43] A. H. Sayed, Fundamentals of Adaptive Filtering, Hoboken, NJ: Wiley, 
2003. 

[3.44] M. K. Tsatsanis, G. B. Giannakis, and G. Zhou, “Estimation and 
equalization of fading channels with random coefficients,” Signal 
Process., Vol. 53, No. 2–3, pp. 211–229, Sep. 1996. 

[3.45] J. G. Proakis, Digital Communications, 5th ed. New York: McGraw-Hill, 
2008. 

[3.46] R. Prasad, OFDM for Wireless Communications Systems, Norwood, 
MA: Artech House, 2004. 

[3.47] R. Vaughan, and J. Bach Anderson, Channels, Propagation and 
Antennas for Mobile and Personal Communications, London, U.K.: 
IEE, 2003. 

[3.48] A. Paulraj, R. Nabar and D. Gore, Introduction to space-time wireless 
communications, Cambridge, U.K.: Cambridge University Press, 2003. 



 

 106 

[3.49] G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, 
“Simplified processing for high spectral efficiency wireless 
communication employing multi-element arrays,” IEEE JSAC, Vol. 17, 
No. 11,  pp. 1841-1852, Nov. 1999. 



 

 107 

4: JOINT DECISION-DIRECTED CHANNEL ESTIMATION 
AND DISCRETE SPEED TRACKING IN WIRELESS 
SYSTEMS 

The communications performance of many time-varying wireless systems 

depends on the accuracy of the estimation of the unknown parameters, such as 

the fading channel coefficients, by the mobile station (MS). The channel 

coefficients must be estimated by either pilot symbols (training sequences) or in 

a decision-directed manner. In all channel estimation techniques, one significant 

source of channel estimate inaccuracy is the Doppler phenomenon. The 

maximum Doppler frequency (Doppler shift) is proportional to the relative speed 

of transmit and receive terminals. Most channel estimation techniques are 

designed and implemented for a fixed maximum Doppler frequency which 

corresponds to a mobile terminal moving with a constant speed (within fixed 

scatterers). However, if the speed or direction of the moving terminal changes, 

the parameters of the channel estimation algorithm have to be reset accordingly 

in offline mode.  

A mobile trajectory can be divided into segments, each corresponding to a 

different behavioral mode of movement. That is, the mobile terminal may stand 

still or change its speed, etc. In such cases, a single motion model cannot 

characterize the mobile dynamics of the terminal. The motion can be modeled by 

one of a pre-specified, finite number of modes, each of which represents a 

different mobile dynamic. Here, the terminal movement is approximated by D 
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different constant velocities (or speeds, since the scatterers are considered as 

fixed direction). Simulations here have the actual speeds of the mobile terminal 

quantized to these values.  

In this chapter  [4.1] a new ICA-based decision-directed channel estimation 

technique (second proposed decision-directed approach in the thesis) is 

presented for spatial multiplexing MIMO schemes where the relative speed of the 

transmit/receive terminals may change. This changing speed is called 

maneuvering. This extends the work in  [4.2] where the system with non-

maneuvering terminals only is considered. We also present a new hard decision 

switching algorithm to handle the system under maneuvering scenario. It is 

shown by simulation that if the switching block is disabled in the algorithm within 

the maneuvering scenario, a large degradation in performance is observed. This 

further demonstrates the advantage of the switching block. In addition, as the 

switching algorithm selects between different speed modes of the maneuvering 

terminals at the symbol rate, the speed can also be tracked via the data 

communication link. This is accomplished based on only the received data 

information signal, i.e., no other information (for example from a speed sensor or 

radar, etc.) is required. This work is new in the sense that it is the first to address 

tracking of the mobile terminal in combination with communications reception.  

The formulation is for general MIMO, and the specific examples 

considered are single-input single-output (SISO), maximum ratio combining 

(MRC) and a 2 by 2 MIMO. The channels are assumed to be time-selective 

Rayleigh flat fading. Non-stationary ICA with a generalized exponential density 
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function is used to separate each source signal and particle filtering is used to 

track the channel. Performance is evaluated by simulation and is compared with 

optimal coherent detection as benchmark. Moreover, under a non-maneuvering 

scenario (the mobile is moving with only one constant speed), a fair comparison 

with other channel estimation techniques (a known decision-directed technique 

based on Kalman-filter tracking  [4.3] and two known pilot-aided systems  [4.4]) is 

also possible. Here, improved performance is observed. Clearly, the presented 

system requires more computational complexity. Complete evaluation of the 

computational complexity is difficult; however; some insight is possible into the 

computational complexity of one iteration (symbol time), through an approximate 

operations count of the implementation equations. 

The rest of the chapter is organized as follows. Section  4.1 describes the 

system model. The ICA based decision-directed estimation is formulated in 

section  4.2 followed by complexity evaluation in section  4.3. Simulations results 

are presented in section  4.4, and section  4.5 is the summary and conclusions. 

4.1 System Model and Formulation 

Throughout, an uncoded spatial multiplexing (SM) scheme is assumed, 

i.e. the transmitter demultiplexes the uncoded data stream to the M  antennas at 

each symbol time with symbol time duration sT . This is a common and 

reasonable assumption. Assuming a Rayleigh flat fading MIMO channel, 

assuming perfect synchronization, the signal model is given by 
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where  ky  is the received 1×N  vector, ks  is the 1×M  transmit signal vector with 

i.i.d. data symbol entries, and kn  is the zero mean white Gaussian noise with 

covariance matrix Nn IR
2σ=  at kth symbol time. kH  is the channel MN ×  matrix 

with i.i.d. complex Gaussian entries, MjNih ji ,...,1;,...,1;, == , with associated 

variances 12

,
=

jihσ . The factor M/1  accounts for the even division of the 

available energy between the transmit antennas. This choice is suboptimal in an 

information theoretic sense, but is used since there is no channel state 

information (CSI) at the transmitter. The optimum eigen-channel MIMO requires 

extensive channel sounding and its efficient deployment for fast-fading channels 

is not yet developed. The index k shows that, at each iteration (symbol time), the 

channel matrix is changing.  

The terminal movement is approximated by D different dynamic modes 

described by known D different constant speeds, { }Dv...,,v,v 21 , where each 

corresponds to a specific maximum Doppler frequency, dfm , via the relation 

D,...,1;m/s
λ

v

c

d
m == df

d  ( 4-2) 

with cλ  the nominal wavelength. The same formula is used in Doppler radar 

 [4.5]- [4.6] to measure the speed of a detected object using the Doppler shift of a 

target, and similarly for sonar.  
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We are not trying to estimate different values of fade rates here. The goal 

of the work is to present a new switching scheme to adaptively select between 

different speed modes. This makes it possible to track the discretized relative 

speed of transmit/receive terminals.  

It is also assumed that the time-varying channel matrix coefficients, during 

the dth speed mode, each have the same form of normalized autocorrelation 

function, 

)2()( m0,
tfJt

d

h ji
∆=∆ πρ  ( 4-3) 

with 0J  is the zero order Bessel function of the first kind. This model implies a 

specific physical scenario (the product of the distribution of incoming waves and 

the antenna pattern is uniform and omnidirectional), but other forms could be 

used in more advanced algorithms. The results in  [4.7] show that the first-order 

autoregressive (AR) model provides a sufficiently accurate model for time-

selective fading channels. Therefore, from ( 4-3) at sTt =∆ , the relation between 

)(, kh ji
 and )1(, −kh ji

 for the dth speed mode, can be approximated by 

D,...,1;)()2(1)1()2()( ,

2

m0,m0, =−+−≈ dkvTfJkhTfJkh jis

d

jis

d

ji ππ  ( 4-4) 

where )(, kv ji  is the AR white Gaussian noise process with unity variance.  

The model in ( 4-1) suits the standard noisy ICA problem where there are 

M independent source components and N observations  [4.8]. Maximum 

likelihood estimation, perhaps the most commonly used statistical estimation 
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principle, can be used to estimate the ICA model. It is closely related to the 

infomax principle described widely in the neural network literature. If the densities 

of the independent components are known in advance, a very simple gradient 

algorithm can be derived. To speed up convergence, the natural gradient 

version, and especially the Fast-ICA fixed-point algorithm, can be used. If the 

densities of the independent components are not known, the situation is 

somewhat more complicated. Fortunately, a very rough density approximation is 

seems to work, and in an extreme approximation case, just two types of density 

models (sub- and supergaussian) are sufficient to approximate the densities of 

the independent components. The choice of density can then be based on 

whether the independent components are sub- or supergaussian. This estimate 

(choice) can be simply added to the gradient methods, and this is automatically 

done in Fast-ICA algorithms. 

Since multiple sources are involved in this problem and it is difficult to use 

a switching model for separating the sources with light-tailed probability density 

functions  [4.9], a model is needed which is more flexible than the traditional 

cosh/1  model  [4.10]. We use the generalized exponentials model  [4.8] as the 

source model. This model, like the mixture Gaussian model  [4.11], can be used 

to model non-Gaussian sources for multi-source tracking, but it is not as 

computationally complex as a mixture Gaussian model in target tracking 

applications  [4.8]. Here, the ICA approximates each source density by 

( ) Mi
ms

bsp

i

i

r

i

ii

iiis ,...,2,1;exp =











 −
−=

ω
θ  ( 4-5) 
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where   

)/1(2 ii

i

i
r

r
b

Γ
=

ω
 ( 4-6) 

is the normalizing constant with )(xΓ  denoting the Gamma function. The density 

depends upon parameters { }
iiii rm ,,ωθ = . The location of the distribution is set 

by im , its width by iω , and its tails by ir . Densities with 2<r  are called super-

Gaussian, while those with 2>r  are called sub-Gaussian. With 1=r , )( iis sp
i

θ  

is Laplacian; and as ∞→r , )( iis sp
i

θ  becomes uniform. Generalized exponential 

source models in static ICA can separate mixtures of Laplacian, Gaussian and 

uniformly distributed sources, while methods using a static tanh  nonlinearity 

cannot separate such mixtures  [4.10]. If there is a priori knowledge of the 

sources (data symbols) available, then the distribution parameters can be 

selected accordingly. For example, if the receiver knows that the modulation is D-

QAM, then the density in (4-5) can be set to equi-likely delta functions, i.e., the 

probability mass function (pmf) of the modulation, and the value of the pmf is 

(discrete-) uniform and 1/D. Section 4.4, below, also notes the usage of the pmf 

in the simulation. Using the ICA allows channel estimation even without 

knowledge of the modulation type at the receiver.  If there is no such knowledge, 

then the ICA must check its stability condition (to ensure that the distribution is 

suitable) at each iteration  [4.8]. 

Here, as in other ICA implementations, the scaling ambiguity between 

variances of the sources and the scaling of columns of kH  is resolved by 
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normalizing the variance of each source  [4.8], i.e. setting 1=iω  for all i and 

allowing all the scaled information to reside in the columns of kH . Furthermore, 

the mean of each source density can be set to zero, using a priori knowledge, 

and this reduces complexity. 

4.2 Decision-directed Channel Estimation / Tracking 

The block diagram of the presented decision-directed technique applied to 

a SM-MIMO system is illustrated in Figure  4-1. At each iteration (symbol time), 

first, the dominant speed mode, say mode L, is detected by the hard decision 

switching block described below in subsection  4.2.3. Having selected speed 

mode L, the corresponding set of equations ( 4-4) associated with the speed 

mode L is taken as the state (dynamic) equations and the  ICA model ( 4-1)  as  

the  measurement equations. These set of equations make a state-estimation 

problem with the channel matrix coefficients considered as the state variables.  

Here, a particle filter combined with ICA is used to track the channel. 
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Figure  4-1 Block diagram of a SM-MIMO system employing the presented technique 
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4.2.1 Particle Filtering 

The problem is now to track kH , as the new observation vector ky  is 

received. If { }11:1 yyyy L−= kkk  denotes the set of all previous observations 

up to time k, then the goal of the filtering is to estimate the probability density 

function (PDF) of the states, )( :1 kkp yH , where kH  consists the set of all the 

state variables at iteration k, i.e., { }MmNnkh mnk ,...,1;,...,1;)(, ===H .  

Particle filters from the sampling importance resampling (SIR) filter  [4.12] 

firstly represent the state density )( 1:1 −kkp yH  by a set of "particles", each with a 

probability mass. Then, the probability mass of each particle is modified using the 

state and observation equations after a new independent sample is obtained 

from the posterior )( :1 kkp yH  before proceeding to the next 

prediction/observation step. The particle filtering facilitated by ICA is summarized 

below.  

At the end of )1( −k th iteration, the SIR algorithm finds a set of pN  equally 

weighted particles that approximate the a posteriori )( 1:11 −− kkp yH . We denote 

{ } p

11

N

n

n

k =−H  as the set of pN  particles where each is distributed as an independent 

sample from )( 1:11 −− kkp yH . At time instant k, the filtering proceeds as follows. 

4.2.1.1 Prediction stage 

Having  pN   samples,  { } p

11

N

n

n

k =−H ,  at  time  instant  1−k ,  pN   samples   are  
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drawn,  { }p

1|

2

1|

1

1| ,...,,
N

kkkkkk −−− HHH , from the importance density ),( 1:1 kkkq yHH −  [4.12]. 

The most popular choice for the importance density is the transitional prior  [4.13] 

which can be obtained from formulation in ( 4-4) associated with mode L 

),(),,,(),,( 12:111:1 LpLqLq kkkkkkkkk −−−− == HHyHHHyHH  ( 4-7) 

If the particles { } p

11

N

n

n

k =−H  are the independent samples from )( 1:11 −− kkp yH , 

then the particles { } p

11|

N

n

n

kk =−H  will be the independent samples from )( 1:1 −kkp yH . 

4.2.1.2 Update stage 

By receiving the new observation, ky , the prediction states represented by 

the set { } p

11|

N

n

n

kk =−H  are updated (corrected). Each particle is weighted by the 

likelihood of the observation ky . The observation is generated from ( 4-1) with the 

elements of kH  assembled from the state variables, n

kk 1| −H . We note since the 

MIMO system in our case, is operating over a flat fading channel (described by 

set of measurement equation ( 4-1) sampled at symbol time and the data vector 

symbols are independent), the current observation ky  is independent of the 

previous observations 1−ky , L,2−ky . Thus  

)(),,,(),( 1:11:11:1:1 kkkkkkkkk ppp HyyHHyyHy == −−−   

where { }11:1 HHHH L−= kkk . This makes it possible to update the 

importance weights according to  [4.12] 
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and the corresponding normalized weights are 

p

1
11

11

,...,1;

)(

)(
Nn

pw

pw
w

pN

n

n

kkk

n

k

n

kkk

n

kn

k ==

∑
=

−−

−−

Hy

Hy
 

( 4-9) 

Note that for each sample the likelihood function )(
1

n

kkkp
−

Hy  is 

kkk

n

kkk

n

kkk dppp sssHyHy
s

)(),()(
11 ∫ −−

=  ( 4-10) 

where ks  is the vector of sources (data symbols) at time instant k, modelled by 

( 4-5). Owing to the assumed independence of original sources,  

k

M

i

isk

n

kkk

n

kkk dsppp
i

ssHyHy
s

∏∫
=

−−
=

1

11
)(),()(  ( 4-11) 

Equation ( 4-11) may be evaluated using the Laplace approximation  [4.14] 

or Monte Carlo integration. Monte Carlo integration is more general, but more 

computationally expensive  [4.15]. The Laplace approximation is appropriate 

when the observation noise is small  [4.14].  

For the N-dimensional integral 

( ) sss dhfI )(exp)( −= ∫  ( 4-12) 

when )(sh  is sharply peaked, the Laplace approximation is 
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( )∫ −−−−≈ sssAssss dhfI T 2/)~()~()~(exp)~(  ( 4-13) 

where A is the Hessian matrix with the matrix elements [ ]
*

2

,

)(

ji

ji
ss

h

∂∂

∂
=

s
A  and s~  is 

the s  that minimizes )(sh . Thus 

( ))~(exp)~()2det( 1
ssA hfI −≈ −π  ( 4-14) 

To relate the integral in ( 4-11) to the Laplace approximation, the additive 

observation noise is assumed to be Gaussian with zero mean and covariance 

matrix R , as noted above. Thus, ( 4-11) becomes 

( ) k

M

m

mmkk
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kk
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kk
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kkN
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kkk
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sysHRysH
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 ( 4-15) 

Using the family of generalized exponentials as the source model, the 

Gaussian term in ( 4-15) is considered as ( ))(exp sh−  and the product of 

generalized exponentials and normalizing factors as )(sf . This results in  

2/)
1

()
1

()(
1

1

1 kk

n

kk

H

kk

n

kkk
MM

h y-sHRy-sHs
−

−

−
=  ( 4-16) 

which is minimized at 

k

Hn

kk

n

kk

Hn

kk

n

k
MMM

yRHHRHs
1

1

1

1

1

1

1
)

11
(~ −

−

−

−

−

−
=  ( 4-17) 

and the Hessian matrix is 
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Consequently the likelihood is approximated as 
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where the normalizing factor c is 

)det()
1

det(
1

1

1
RHRH n

kk

Hn

kk
M

B
c

−

−

−

=  
( 4-20) 

and B  is the product of the source normalizing constants, i.e. MbbbB ...21= .  

Comparison with Monte-Carlo integration shows that this approximation is 

suitable over a wide range of noise covariance  [4.14]. 

4.2.1.3 Resampling stage 

For the resampling stage, the systematic resampling algorithm (SR) 

introduced in  [4.16] is used. The particles, n

kk 1| −H , and the weights, n

kw , 

approximate )( :1kkp yH . With resampling, the particles with large weights are 

replicated and the ones with negligible weights are removed. Thus, the 

resampling process is completed with pN  replacements to form an approximate 

sample from )( :1 kkp yH , where all particles are carrying equal weights. This new 

sample can now be used as the basis for the next prediction step. 
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Knowledge of the a posteriori density )( :1 kkp yH , enables one to compute 

an optimal state estimate with respect to any criterion. For example, the MMSE 

estimate is the conditional mean of kH , i.e. { }
kkk E :1

ˆ yHH = , while the maximum a 

posteriori  (MAP) estimate is the maximum of )( :1 kkp yH , i.e.  

)|(maxargˆ
:1kkp

k

yHH
H

= . However, since a linear-Gaussian case (linear set of state 

and observation equations with additive Gaussian noises) is considered here, the 

mean state estimate is equivalent to the MAP state estimate. Note that 

MjNikh ji ,...,1;,...,1;)(ˆ
, ==  are the elements of kĤ  which yield the channel matrix 

estimate kĤ . 

4.2.2 Source / Data Recovery 

Having the estimate, kĤ , the source vector ks  can be estimated in 

different ways. For example, using MAP estimation, kŝ  is found by maximizing 

( ))(),ˆ(log kkkk pp ssHy , which is equivalent to minimizing 

ir
M

i i

ii

kkk

H

kkk

ms

MM
∑

=

−
−

+−−
1

1 )ˆ1
()ˆ1

(
ω

sHyRsHy  ( 4-21) 

Using the pseudo-Newton method  [4.17] when the noise variance is small, 

the estimated source would be 

k

H

kk

H

kk M yHHHs ˆ)ˆˆ(ˆ 1−≈  ( 4-22) 
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If there is no a priori knowledge about the source distribution, then the 

stability criterion needs checking at this point. If the criterion is not satisfied, then 

the ICA algorithm needs to try the other source distribution model (super- instead 

of sub-Gaussian, or vice versa), and start again from ( 4-15). 

The estimator ( 4-22) has the same structure as a zero forcing (ZF) 

receiver which provides only 1+− MN  order diversity  [4.18] (the same as MMSE 

and successive cancellation (SUC) receivers but with different SNR loss). As an 

alternative, one may take advantage of ordered successive cancellation (OSUC) 

receiver  [4.19] which may have more than 1+− MN  order diversity because of 

the ordering (selection) process  [4.18], or use the optimal ML receiver which 

extracts N  order diversity with the expense of high decoding complexity 

(exponential in M ). We simulate the presented decision-directed system with 

different decoding structures (ML, MMSE, ZF and OSUC) below. Finally, the 

estimated symbols are fed to the hard decision block to yield the detected 

transmitted symbols by setting the optimal thresholds in the constellation regions 

of the transmitted signal.  

4.2.3 Hard Decision Switching Algorithm 

The goal is to process observation ky  to determine the dominant speed 

mode of the mobile station in time sample k. At the start of each iteration (before 

proceeding to prediction/update stage of filtering), an artificial observation vector 

kz is generated as follows 
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 ( 4-23) 

where 1  denotes a 1×N  column vector with all elements of 1 and 01 jb += . In 

the arrangement of ( 4-23), b is again introduced and treated as an unknown 

deterministic variable for estimating. In this visualization, one may think of b  as 

the signal generated from a hypothetical source. In essence, the artificial data 

vector kz  in ( 4-23), represents the effect of all real sources 

[ ] T

Mk sss L21=s  including the hypothetical source b transmitted over an 

)1( +× MN  MIMO channel with channel matrix [ ]1HH kk M/1
~

= . Since the 

source b does not exist in the real world but it affects the observation vector kz , it 

can be called a hypothetical source. The ZF estimate of b constrained to 

{ } 01ˆ jbE +=  [4.22] is 

( )[ ]
1,)1(

1 ~~~ˆ
+

−
=

Mk

H

kk

H

kb zHHH  ( 4-24) 

Note that kH
~

 is an )1( +× MN  matrix. As a result, the necessary condition 

for the matrix ( ) 1~~ −

k

H

k HH  to exist is NM ≤+1 ; This means that the above 

formulation, while applicable to MRC, is not applicable for a SISO or for the 

NN ×  MMO systems. For these cases, as an alternative, two artificial 

observation vectors )1(

kz  and )2(

kz  are generated as follows: 

kkkkk
M

n1sH1yz ++=+=
1)1(  ( 4-25) 
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The two above equations can be rewritten in one formulation 
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Using ZF criterion yields an estimate of b  as 
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with o  denoting a 1×M  column vector with all zero elements. Here kH
~

 is a 

)1(2 +× MN  matrix and the necessary condition for the matrix ( ) 1~~ −

k

H

k HH  to exist 

is NM 21≤+  which is suitable for any NN ×  MIMO systems as well. This 

concludes the basic scheme. 

 To estimate the speed mode, first, a set pc NN <<  of particles, { } cN

n

n

k 11 =−H , is 

taken from time iteration 1−k  and cN  samples { }cN

kkkkkk 1|

2

1|

1

1| ,...,, −−− HHH are 

generated using the prediction stage of the filtering for each of the possible 

dynamic modes D,...,1=d . That is, the samples  ( ){ } D,...,1;
c

1
1

=
=

−
d

N

nd

n

kk
H  are 

predicted. Then, for each dynamic mode, the corresponding mixing matrix 

( )
d

n

kk 1

~
−

H  is formed using the sample point ( )
d

n

kk 1−
H , and the estimation values 

( )
d

n

kb̂  are obtained using ( 4-28) (or ( 4-24) for system with NM ≤+1 ),  

accordingly.  
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Next, the estimated values of b for different speed modes, ( )
dkb̂ , are 

compared with the true value of 01 jb += , and the corresponding errors are 

recorded. The mode with the minimum root mean square error (RMSE) is then 

identified as the speed of the mobile for that iteration. The estimated RMSE for 

dynamic mode d  is calculated as 

( )( ) ( )( ) D,...,1;ˆˆ1
)(RMSE

1

*

c

=−−= ∑
=

dbbbb
N

d
cN

n

d

n

kd

n

kk  ( 4-29) 

If mode L has the least RMSE, then it is selected in the kth iteration, i.e., 

{ })(RMSEminargmode dL k
d

=  ( 4-30) 

A small cN  allows the above decision with low complexity. After selecting 

mode L, the filtering begins by generating an pN  set of particles for the desired 

dynamic mode in the prediction step.  

We note that for initializing the presented iterative algorithm, it is sufficient 

to use any of the approaches developed in  [4.20] only once at the beginning of 

whole data sequence transmission. The receiver requires knowledge of the 

different values of mobile terminal’s relative speed, the channel matrix variances, 

and one value of the channel normalized time correlation function, )( sTρ . We do 

not include estimation of these statistics as part of the algorithm. Including these 

estimates is a relatively straightforward extension, but the goal here is to quantify 

the behavior of the decision-directed estimation with known channel statistics.  
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4.3 Complexity Evaluation 

Again, complete evaluation of the computational complexity is too 

complicated and only some insight can be offered into the complexity in one 

iteration (symbol time), through an approximate operations count for the 

implementation equations. An operation in this accounting is roughly equivalent 

to a multiply-and-accumulate. The joint decision-directed channel estimation and 

speed tracking technique comprises four stages: the switching algorithm, the 

prediction stage, the update stage, and the resampling stage. The complexity 

evaluation of the data/source recovery stage is not considered here since this 

depends on the type of decoder (ZF, MMSE, OSUC, ML, etc.) used. 

Each iteration begins with the switching algorithm (described in section 

 4.2.3). Let sN  be the number of operations needed for drawing a sample from a 

statistical distribution function. Since the total number of state variables is MN , 

the complexity of predicting the samples { } D,...,1;)(
c

11
=

=−
d

N

n
d

n

kk
H  is 

( )
sc NMNNDO . Now, for each speed mode candidate the estimation values 

cd

n

k Nnb ,...,1;)ˆ( =  are obtained from ( 4-28). A breakdown of operations counts in 

implementing ( 4-28) is as follows (the formulas (in angular brackets) above the 

matrix formulas give the rough operation counts for implementing this formula) 
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This requires the total of ))1()1()1(( 232
NNMMNMND c ++++++  

operations for all the speed mode candidates.  

Equation ( 4-29) has one nested summation for each of the speed mode 

candidates. In addition, let rN  be the number of operations needed for 

calculating ).(sqrt  function. Thus equation ( 4-29) has the complexity of 

( ))( rNNDO c + . Finally, the overall complexity of the switching algorithm is 

( )r

2 ))()1(( DNNMNNMMNDO sc ++++ . 

Once the dominant speed mode is determined, the prediction stage of 

particle filtering has the complexity of ( )sNMNNO p  in order to obtain the pN  

predicted samples { }p

1|

2

1|

1

1| ,...,,
N

kkkkkk −−− HHH .  

In the update stage, importance weights associated with pN  predicted 

particles have to be updated according to ( 4-8). In the worst case (if there is no a 

priori knowledge about the source distribution), this involves calculating the pN  

likelihood functions )(
1

n

kkkp
−

Hy  (according to ( 4-19)) for each combination of 

source distribution models that is assigned within the ICA. Here, for each particle, 

n

k
s~  has to be obtained via implementing ( 4-17), first. A breakdown of operations 

counts in implementing ( 4-17) and )~(
n

k
h s  is shown below, for the case Nn IR
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( 4-33) 

Furthermore, if fN  denotes the total number of operations needed for 

calculating all functions within ( 4-19) (e.g. ).(exp , ).(det , ).(sqrt , etc.) the overall 

complexity of ( 4-19) calculated for all pN  particles is ( )))()(( f

2

p NNMMNO ++ . 

We note that this operations count is only for one combination of the source 

distributions assigned within the ICA.  

As mentioned above, if there is no a priori knowledge about the source 

distribution, then the stability criterion needs checking once the sources are 

detected at the data recovery stage (Section  4.2.2), for each iteration. If the 

criterion is not satisfied, then the ICA algorithm needs to try the other 

combinations of source distributions (sub- or super-Gaussian), and repeat the 

update stage of particle filtering. Since there is a total of M2  combinations of 

source distribution models, in the worst case, the update stage has the overall 

complexity of ( )))()((2 f

2

p NNMMNO
M ++ . However, if some prior knowledge of 

the data is available at the receiver, a proper choice for the source distributions 

can be set within the ICA only once at the beginning (e.g. with QPSK signaling, 

the source densities in ( 4-5) are chosen to be uniform), and this reduces the 

complexity significantly. This is the usual case - with most receivers there is 

some prior knowledge of the signaling type.  

After the update stage, there is the resampling stage. In general, any 

resampling algorithm (e.g. systematic resampling (SR), residual systematic 
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resampling (RSR), etc.) can be used here. The complexity of the SR and RSR 

algorithms is of )( pNO  [4.21]. So the resampling stage has little contribution to the 

overall system complexity.  

4.4 Simulation Results 

As noted above, the ML receiver performance lower bounds the error rate 

probability of other sub-optimal (ZF, MMSE, OSUC, and etc.) receivers. No 

exact, optimal, analytical solution is available. However, several upper bounds on 

error probability for the ML as well as other sub-optimal receivers have been 

derived. Thus, the BER performance results are simulated using perfect CSI, as 

the benchmark, and these are evaluated and compared to the results of the 

presented decision-directed system with the associated perfect CSI reference 

ones.  

In all the simulations, 200p =N  and 20=cN . For convenience, i.i.d. QPSK 

data symbols with zero mean and variance 1 are used, but the presented 

technique is applicable to any signaling. Using this prior knowledge on the data, 

the source densities in ( 4-5) are chosen to be uniform. In other words, in view of 

the ICA, M sources, each with uniform density are mixed to yield the observation. 

For convenience of interpretation, the data symbol duration is ms1.0s =T  (i.e., 

10k symbols/sec); and the channel matrix coefficients all have the unity variance, 

i.e., 12

,
=

jihσ . The presented algorithm is formulated in a general format and it can 

be applied to any MIMO system with maneuvering or non-maneuvering 

terminals.  In order to assess the impact of the presented channel estimation 
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technique on system error performance more directly, the first subsection below 

is dedicated to MIMO systems with non-maneuvering terminals (the speed is not 

changing). This choice also allows fair performance comparison with a known 

system employing Kalman filtering to track the channel  [4.3] and two pilot-aided 

systems (least-squares (LS), and an MMSE pilot-aided system  [4.4]). Throughout 

the simulations, the signal-to-noise ratio (SNR) refers to each of the receivers. 

4.4.1 MIMO System with Non-Maneuvering Terminals 

Figure  4-2  illustrates  the  symbol  error  rate  (SER)  performance  of  the  

presented system along with the coherent detection curves for ML, MMSE, ZF, 

and   MMSE-OSUC  receivers  employing  specially  multiplexing  and  horizontal  
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Figure  4-2  SER performance of a 22 ×  MIMO system employing the presented decision-
directed channel estimation technique, along with the coherent detection 
curves for ML, MMSE, ZF, and MMSE-OSUC receivers  

                     The system employs specially multiplexing and horizontal encoding (SM-HE), 

at fade rate 001.0D =sTf  (non-maneuvering terminals).  
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encoding (SM-HE), with 2== NM  and fade rate 001.0sD =Tf  (this fade rate 

corresponds to maximum Doppler frequency Hz10m =f  or the vehicle speed 

km/h5.4v ≈  at GHz4.2 band). With each receiver type, the presented system 

exploits the same diversity order as coherent detection, but experiences an SNR 

loss which depends on the system parameters and the type of decoder used. In 

particular,  it  is  within 3 dB (specifically, 2.5)  of  the perfect CSI curves in an ML 

(OSUC) decoder at fade rate 001.0sD =Tf  and symbol error probability of 210− .   

We may compare the results of the presented decision-directed system 

with a known decision-directed system  [4.3] which employs Kalman-based 

estimation with channel prediction, and with two pilot-based systems: least-

squares (LS), and an MMSE pilot-aided system  [4.4].  
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Figure  4-3  SER performance of a 22×  MIMO system employing MMSE-OSUC decoder 
with different channel estimation techniques.  

                      The system uses SM-HE, at fade rate 001.0D =sTf  (non-maneuvering 

terminals). 
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 The results are shown in Figure  4-3 for fade rate 0.001, and using MMSE-

OSUC receiver. The presented system outperforms the other techniques, 

including a slight improvement in performance over the Kalman-based estimation 

at moderate-high values of SNR. The reason for this slight improvement is not 

clear (the ICA operation is complicated) but it is noted below that the Kalman 

filter has considerably less complexity.  

 Compared to pilot-aided systems, the presented ICA-based system has 

superior performance  for  all  SNRs, at least for the fade rate used here. This is 

expected, because in pilot-aided systems, the channel  is  estimated  only after at 

least M  consecutive symbols, whereas in the presented technique, the channel 

is estimated at each symbol time which results in more accurate channel 

estimates in the  time-varying  environment. 

4.4.2 MIMO System with Maneuvering Terminals 

Consider a mobile station (vehicle) in a data communication link operating 

at GHz4.2  band with three constant speed modes km/h45v1 = , km/h5.67v2 =  

and km/h90v3 = . According to ( 4-2), these velocities correspond to the 

maximum Doppler frequencies Hz100)1(

m =f , Hz150)2(

m =f  and Hz200)3(

m =f (fade 

rates 01.0)1(

m =sTf , 015.0)2(

m =sTf  and 02.0)3(

m =sTf ), respectively.  

As an example, the relative speed of mobile terminals is tracked for s60  in 

a SISO data communication link with the following discrete speed trajectory 
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At each symbol time ms1.0=sT , the dominant speed mode is detected by 

the presented hard decision switching algorithm; however, for better illustration 

an instantaneous result of the detected speed is shown every s1.0  in Figure  4-4 

at dB20SNR = . For this SNR, the probability of false detection would be 

approximately %20 . 
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Figure  4-4    Instantaneously    detected    discrete    speeds   for   a    SISO   system   with 
maneuvering terminals operating at dB20SNR = .  

                      The results are shown every s1.0 . The true speed is shown as a solid line. 

 

To   further   analyze   the  effect  of  the  maneuvering  terminals  on  SER 

performance, the presented decision-directed channel estimation technique 

equipped with the new switching algorithm is applied to different systems (a 
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SISO, a MRC system with two receive antennas and a 22×  MIMO system) with 

the mobile speed motion as in ( 4-31). The results are illustrated in Figure  4-5, 

Figure  4-6, and Figure  4-7.  

The comparison is also made with SER results of the systems under non-

maneuvering scenario having constant relative speed km/h5.67v ≈  at 2.4 GHz 

band ( km/h5.67v ≈  is the average speed of real speed motions in ( 4-31)). As the 

SNR  increases,  the  difference  between   the   SER   curves   obtained   in   the 

maneuvering and non-maneuvering scenarios decreases for low-to-mid values of 

SNR and stays within a fraction of dB for higher SNRs. This is because for 

smaller  values  of SNR, the switching block experiences a larger estimation error 

which in turn increases the probability of false detection. 
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Figure  4-5   SER  performance of  a  SISO system employing  the  presented decision-
directed channel estimation in maneuvering and non-maneuvering scenarios.  

                     The comparison is also made with the case where the switching dynamic 
scheme is disabled in the algorithm. For the non-maneuvering case, the 
relative speed of terminals is considered to be km/h5.67v ≈ in 2.4 GHz band. 
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Figure  4-6  SER  performance of an MRC system with two receive antennas with the 
presented decision-directed channel estimation in maneuvering and non-
maneuvering scenarios.  

                      The comparison is also made with the case where the switching dynamic 
scheme is disabled in the algorithm.  
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Figure  4-7   SER performance of a 22×  MIMO system employing MMSE-OSUC detection 
and the presented decision-directed channel estimation in maneuvering and 
non-maneuvering scenarios.  

                      The comparison is also made with the case where the switching dynamic 
scheme is disabled in the algorithm. 
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We can also benchmark our results with the one obtained when the switching 

algorithm knows perfectly the speed of the MS (dotted line) using the same 

channel estimation  technique. With known speed modes, the resultant curves 

nearly coincide with the ones obtained under non-maneuvering for mid-high 

values of SNR.    

Finally, if the switching block is disabled in the algorithm within the 

maneuvering scenario, a large degradation in performance is observed. This is 

also illustrated in Figure  4-5, Figure  4-6, and Figure  4-7 where the decision-

directed channel estimation technique with parameters set for fix fade rate 0.015 

(corresponding to the average speed km/h5.67v ≈ ) is applied without using 

switching dynamic scheme. This demonstrates the advantage of the switching 

block in systems with maneuvering transmit/receive terminals. 

4.5 Summary and Conclusions 

In this chapter, a new ICA-based decision-directed channel estimation is 

presented which employs particle filtering to track the time-varying channel 

matrix in spatially multiplexed, horizontally encoded MIMO systems having 

maneuvering terminals. The introduction of the new switching scheme in 

conjunction with the decision-directed channel estimation technique makes it 

possible to track the discrete relative speed of the maneuvering terminals. This is 

accomplished in parallel with channel estimation and data recovery based on 

only the received data information signal. The performance is very promising. 

The advantage of introducing the switching dynamic block is also demonstrated 

by disabling it within the algorithm which results in large degradation in 
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performance. The presented system also performs well in non-maneuvering 

scenario where it outperforms (by a small amount) known systems using 

Kalman-based estimation and established pilot-aided systems. 
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5: PRACTICABLE CAPACITY IN EIGEN-MIMO WITH 
CHANNEL ESTIMATION AND MEAN FEEDBACK 

To achieve high capacity in wireless communication systems, multiple 

antennas at both ends of the fading channel are used to increase the spectral 

efficiency. The foundation for increasing capacity efficiency (bits per sec per Hz) 

is understanding the behavior of the information-theoretic capacity (strictly should 

be expressed as bits per channel use). It is possible, in principle, for the capacity 

to increase linearly with the number of antennas even when the channel state 

information (CSI) is unknown at the transmitter  [5.1]. A further increase in 

capacity is possible when CSI is known at the transmitter  [5.2]. These capacity 

results require many assumptions, including the need for the CSI to be known 

perfectly. In practice, perfect CSI is never known perfectly a priori and its 

estimation, without using an ideal blind technique (none are available), requires 

channel resource which reduces the capacity efficiency. So the practical 

comparison of open- and closed-loop MIMO capacities requires care because of 

their information theoretic nature. Fine differences may be overwhelmed by the 

engineering compromises inherent in a practical design for a given channel type. 

Such compromises include the deployment of practical communications 

techniques including choices of modulation such as QAM signaling (instead of 

Gaussian signals) and coding, pulse shaping and filter sizes, and finite block 

lengths (instead of infinitely long codes), and the associated guardbands which 

contribute to the required bandwidth, etc. Furthermore, eigen-MIMO requires 
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channel state information at the transmitter, and the capacity is compromised by 

factors such as channel estimation error and imperfect feedback. In particular, a 

closed loop capacity should strictly include the bandwidth resource required for 

the feedback link, but most of the current literature does not address this as part 

of the capacity. This chapter addresses that feedback requirement. 

When the channel is reciprocal (as can be arranged in some time division 

duplex systems), the transmitter can use the uplink signal to estimate the 

downlink channel  [5.3]. But in general the CSI estimated at the receiver must be 

linked back to the transmitter via CSI feedback-link mechanisms. The required 

channel resource for the feedback link can be relatively small in terms of 

bandwidth consumption, but its inclusion requires considerable processing and, 

in particular, protocol (i.e., spectral) resource. In this sense, the CSI feedback link 

becomes an expensive aspect of the MIMO system. The feedback link is 

imperfect in practice, and this is sometimes referred to as partial feedback. There 

have been previous investigations of MIMO performance degradation from 

channel estimation and imperfect feedback, for example,  [5.4]- [5.13], and other 

references too numerous to list owing to the topicality of the research. In these 

examples, the optimal feedback and transmission strategy in the presence of a 

feedback link capacity constraint is considered in  [5.4]. The optimal MIMO 

multiuser transmission design with a partial power feedback constraint is 

investigated  [5.5] and  [5.6]; and the influence of CSI feedback errors on capacity 

of linear multi-user MIMO systems is studied  [5.7]- [5.9]. Furthermore, the effect 

of channel estimation error on the capacity of MIMO systems is investigated in 
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 [5.10]- [5.11], while the optimal training and feedback design is given in  [5.12]-

 [5.13]. However, none of the previous works investigate the joint impact of 

channel estimation and imperfect feedback on the practicable capacity in a digital 

link; although the capacity penalty resulting from using finite block length and 

uncoded QAM with the assumption of perfect CSI is investigated, e.g. in  [5.17]-

 [5.18]. 

In this work  [5.19]- [5.20], we investigate the simultaneous effect of 

training-based channel estimation and imperfect CSI feedback link (in particular, 

mean feedback) on both the practicable capacity and the information-theoretic 

capacity of eigen-MIMO systems with a feedback throughput constraint which 

imposes a maximum number of feedback bits per symbol duration. The 

capacities are given as a function of receiver branch signal-to-noise ratio (SNR), 

number of training symbols, channel estimation variance, feedback delay, 

feedback quantization noise, and the feedback throughput constraint. Then the 

capacities are maximized by solving different individual/joint optimization 

problems, using both analytical and simulation approaches.  

An analytical formulation is given for the optimal allocation of transmission 

power between the training and the data payload. Furthermore, by considering 

the feedback codeword size (number of VQ indexing bits) as a variable, the 

capacity is jointly optimized over the number of training symbols and the 

feedback delay interval length. A comparison is also possible with the maximized 

theoretic capacity of an open-loop MIMO system such as that given in  [5.14]. The 

comparison is only truly fair if the bandwidth resource required for the CSI 
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feedback link is accounted for. For channels that change extremely slowly, the 

feedback link can have a negligible capacity compared to the MIMO 

transmission, and in such a case the capacity requirement of the feedback link 

can be omitted. Even though the total time duration for training and data 

transmission and the SNR are reduced (effective values are used in the 

formulation) as the result of feedback delay time and feedback noise, 

respectively, the closed-loop theoretic capacity remains larger than the open-loop 

one, at least for low (SNR~6 dB) to mid  (SNR ~14 dB) values of SNR.   

The rest of the chapter is organized as follows. Section  5.1 describes the 

closed-loop MIMO system model. The information-theoretic/practicable capacity 

and the optimization problems are formulated in section  5.2. The simulations are 

presented in section  5.3, with the conclusions in section  5.4. The channel matrix 

H  is treated as random with i.i.d. zero-mean complex Gaussian entries each with 

variance 1. Estimators of H  are for a particular channel realization corresponding 

to the current block of the received data.  

5.1 The Closed-Loop MIMO System Model 

We consider an MN ×  MIMO quasi-static, flat block-fading channel 

model. The channel state remains static over a fading block of T symbols 

duration, but becomes independent across different blocks. For every block, 

there is a header of training symbols for CSI estimation at the receiver.  

In order to estimate the channel matrix H , let MT ≥τ  symbol durations be 

dedicated to channel sounding, i.e., training. Denote τS  as the τTM ×  matrix of 
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training symbols transmitted with power constraint τττ TM
H =SStr . The 

assumption of perfect symbol synchronization allows the  received τTN ×  matrix 

of training symbols to be written as the usual linear, additive noise, MIMO model, 

ττ
τ

τ

ρ
VSHY +=

M
 ( 5-1) 

where τV  is an τTN ×  matrix representing the noise with τV ~ )1,0(CN , and τρ  is 

the SNR for the training symbols. Further below, a different SNR is introduced for 

the data symbols, and it is convenient to keep these SNRs different for now.  

The channel matrix can be estimated under different optimization criteria, 

such as maximum likelihood, minimum-mean square error (MMSE), least 

squares, etc. We use the MMSE estimator because of its pragmatic tradeoff 

between simplicity and performance. Then the channel matrix estimate is written 

as 

1

r
ˆ

−









+= H

M

H MM
ττ

τ

ττ

τ ρρ
SSISYH  ( 5-2) 

with the associated channel estimation error rr
ˆ~
H-HH = . Since rĤ  is zero-

mean, its variance can be written as H
ENM rr

12
ˆ

ˆˆtr)(
r

HH
H

−=σ , and from the 

orthogonality principles of MMSE estimates, 

2
~

2

ˆ
rr

1
HH

σσ −=  ( 5-3) 

where HENM rr

12
~

~~
tr)(

r

HH
H

−=σ . Thus, the channel estimation can be approximated 

by the following random process ( ˆ
r

H is the estimate of H ) 
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rr

~~r

~ˆ
HH

W-HH σ≈  ( 5-4) 

where 
r

~
~

H
W  is a MN ×  matrix with 

r

~
~

H
W ~ )1,0(CN . As with (2-11) and (3-11), the 

approximation model of (5-4) is only used for deriving the proposed  algorithm. In 

the simulations, the correct structure of MMSE estimator (without approximation) 

is used for the channel estimation in (5-2).  

Dedicating a larger interval for training improves the channel estimation 

and reduces 2
~

rH
σ ; however, for a fixed feedback delay, less channel time is 

available for data transmission. 

Once the channel is estimated at the receiver, a quantized form of the 

channel matrix (using a linear quantizer or rate distortion method) is fed back to 

the transmitter, via the CSI feedback link. The number of bits of the quantizer is b 

for the real and the imaginary part, i.e., there are 2b bits per complex channel 

coefficient, and there are MN  channel coefficients. This means that the total 

number of bits for each estimate of CSI feedback is bMNB 2=  bits.  

These B  bits are to be fed back to the transmitter with a throughput 

constraint of fbR  bits per symbol duration. As a result, it takes a time of 

fbfb /RBT =  symbol times to feed back the codeword, excluding any protection 

coding bits for it, although the protection can be accounted by including a non-

unity coding rate in fbT . Such channel feedback coding is not included here. This 

is because it is assumed that the CSI feedback errors are dominated by the 

quantization process  [5.7]. Here, a special form of imperfect feedback is 
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considered, called mean feedback  [5.6] and  [5.15], where the estimated channel 

at the receiver is viewed from the transmitter end as the following random 

process ( Ĥ
t
is an estimate of Ĥ

r
) 

fbfbrt
ˆˆ WHH σ+≈  ( 5-5) 

with corresponding variance 

2

fb

2
~

2

fb

2
ˆ

2
ˆ

rrt

1 σσσσσ +−=+=
HHH

 ( 5-6) 

where 2

fbσ  is the overall feedback noise variance, and fbW  is an MN ×  matrix 

with fbW ~ )1,0(CN . Thus, the channel matrix can be approximated as, cf., (5-4), 

fbfb~~t
rr

~ˆ WWHH
HH

σσ −+≈ . ( 5-7) 

The signs on the rhs are different in this zero-mean formulation, but it doesn’t 

matter because the added terms are random processes (i.e., not deterministic). 

With this formulation, it is possible to relate the feedback noise variance to 

the various feedback parameters. For example, if the feedback noise is purely 

from linear quantization error, then  

    
b

r

22
ˆ

2

fb

2

1
≥

H
σ

σ
 ( 5-8) 

where b  is the number of quantizer bits for either of the real or the imaginary part 

of each of the channel matrix coeffients (there are 2b bits per complex channel 

coefficient). Since there are MN  channel coefficients, the total number of bits for 

each estimate of CSI feedback is bMNB 2=  bits.     
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The equality in (5-8) corresponds to the case where the quantizer input 

(the estimated channel at the receiver) is uniformly distributed, covering all the 

quantization levels. For the Gaussian case, the proportionality coefficient is often 

set to 6. This means that b

r

22
ˆ

2

fb 2/6/ =
H

σσ  [5-22]. Now 2

fbσ  can be related to the 

feedback delay and the feedback throughput constraint, fbR  by 

MNRTMNBb

r

//22
ˆ

2

fb

fbfb2

6

2

6

2

6
===

H
σ

σ
 ( 5-9) 

 As an alternative, based on the rate distortion method we can obtain an 

upper bound on the capacity (equivalently, lower bound on the required feedback 

bits) by using MNBb

r

/22
ˆ

2

fb 2/12/1/ =≥
H

σσ  [5-22]. In the simulations below, the 

performance is analyzed using each of the two quantization equations: linear 

quantizer and rate distortion.  

As the VQ indexing bits (feedback codeword length, B) increases, the 

quantization error, 2

fbσ , decreases. However, with a feedback throughput 

constraint, it takes longer for the codeword to be fed back. Thus the feedback 

delay increases. This, in turn, given a fixed training interval, decreases the time 

available for data transmission. This relation is used below in simulations to 

obtain an optimal number of VQ index bits (via finding the optimal feedback delay 

time) that maximizes the theoretic/practicable capacity. 

With channel knowledge at the transmitter, improvement of the capacity in 

the data transmission is now the focus. A transmit filter, or beamformer, 

comprising weights W  (not to be confused with the white noise notation above, 
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denoted by a subscripted W , such as fbW ) derived using channel knowledge, is 

shown in Figure  5-1. 

d
x

d
s

d
v

d
y

 

Figure  5-1  A closed-loop MIMO system with a transmit beamformer for using channel 
knowledge which is fed back from the receiver 

 

At each symbol time, the 1×M  data vector signal to be transmitted, dx , is 

multiplied by the MM ×  weight matrix W , before transmission. From dx  

satisfying M

H
E Ixx =dd  and dd xWs = , the covariance matrix of the transmitted 

signal H
E dd ssR ss =  is given by 

H
WWR ss = . ( 5-10) 

Thus, the input-output relation for the MIMO system in the data 

transmission can be written 

dd
d

dd
d

d VSHVXWHY +=+=
MM

ρρ
 ( 5-11) 

where: dX  is the matrix of data symbols to be sent over dT  symbol durations with 

power constraint dddtr TE
H =XX ; matrix dV  represents the additive noise with 

dV ~ )1,0(CN ; and dρ  is the SNR for the data transmission.  
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Similarly, W  satisfies M
F

== ssRW tr
2

. As a result, with dd XWS = , we 

have dddtr TME
H =SS . Moreover, the cycle starting from the training transmission, 

including the channel estimation, quantization, codeword feedback, and 

calculation of the new beamformer, and detection of the received symbols is to 

be completed within T  symbol durations. Thus,  

TTTT =++ dfbτ  ( 5-12) 

We note that dT , τT , and fbT  are all integers which denote a time in symbol 

durations. From a time-partitioning of the energy, an average (over the training 

and data transmission) SNR at each receiver branch is 

fb

dd

TT

TT

−

+
=

ρρ
ρ ττ  ( 5-13) 

Given ρ  and T , values are sought for the SNR during training and data 

transmission ( τρ  and dρ , respectively), and the optimum number of training and 

data intervals ( τT  and dT , respectively) that maximize the information 

theoretic/practicable capacity, under the feedback throughput constraint, fbR . 

Furthermore, joint optimization over the number of training symbol and the 

feedback delay time can be undertaken by varying B . 

5.2 Information-Theoretic/Practicable Capacity 

First, the information-theoretic capacity and the practicable capacity are 

formulated in subsections  5.2.1 and  5.2.2, respectively. Then, the capacities are 

maximized over various parameters such as the training and data power 
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allocation, the number of training symbols, and the feedback delay length interval 

in subsection  5.2.3.  

Although the channel is stochastic, the capacity of a sample realization of 

the channel is treated. Finally, the ergodic capacity is obtained as the ensemble 

average of the capacity achieved when the optimization is performed for each 

realization of H , i.e. HCEC = . 

5.2.1 Information-Theoretic Capacity 

The information theoretic capacity of the MIMO system (expressed in bits 

per sec/Hz for comparison) with a fixed channel H  is obtained by maximizing the 

mutual information, denoted below with the help of the usual I(.), between the 

known and received signals ( τS , τY , dY ) and the unknown transmitted data signal, 

dS , over the distribution of the transmit signal, denoted ).(dSp , with 

dddtr TME
H =SS  and feedback-link throughput constraint fbR . This can be written 

as 

( )

( )fbdd
tr),.(

fbdd
tr,).(

,,;
1

max

;,,
1

max

dddd

dddd

RI
T

RI
T

C

TMEp

TMEp

H

H

ττ

ττ

YSSY

SYYS

SSS

SSS
H

=

=

=

=

 ( 5-14) 

Using ( 5-7) in (( 5-11), 

ddt
d

d

~ˆ VSHY +=
M

ρ
 ( 5-15) 

where                    ddfbfb
d

d~~
d

d
rr

~~
VSWSWV

HH
+−= σ

ρ
σ

ρ

MM
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is the resultant noise matrix with the associated noise variance 
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 ( 5-16) 

Finally, since dddtr TME
H =SS , ( 5-16) reduces to 

( )2

fb

2
~d~

rd

1 σσρσ ++=
H

2

V
 ( 5-17) 

and the capacity in (( 5-14) becomes  [5.14],  [5.16] 
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ss2

V
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ss

ss2

V
ss

SSSV
H

σ

σρ

σ
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( 5-18) 

where 
t

ˆtt /ˆ
H

HH σ= is the normalized channel estimate at the transmitter with 

tH ~ )1,0(CN . Applying singular value decomposition, the matrix tH  with rank 

( )NMr ,min=  can be rewritten as H

t

2/1

ttt VΛUH =  where tV  and tU  are the 

unitary matrices containing the corresponding input and output singular vectors, 

respectively and 2/1

tΛ  is a non-negative MN ×  diagonal matrix with ith diagonal 

element as 
2/1

iλ  (the square root of ith eigenvalue). In addition the diagonal 

elements satisfy 1+≥ ii λλ . As a result, HH

ttttt VVHH Λ= , and  
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=

2/1

ttt

2/1

t2
d

tr
detlogmax

dd

ΛVRVΛI ss
ss

H

Heff

N
ME MT

T
C

H

ρ
 ( 5-19) 

where 2

VH dt

~
2
ˆd /σσρρ =eff  is an effective SNR, and note that this is averaged over 

the channel realizations, i.e., it does not depend on the specific channel matrix 

realization (whereas, maximizations of ( 5-19)  relate to a particular channel 

realization). Also, note that tt

~
VRVR ssss

H=  is non-negative definite because ssR  

is, and that ssss RR tr
~

tr = . As a result, the maximization over ssR  with  

ME
H =ddtr ss , can be over ssR

~
 with ME

H =dd
~~tr ss . Since for any non-negative 

definite matrix A , [ ] iii ,det AA ∏≤ , 

( ) [ ]∏ 







+≤+

i

iii

eff

effN
M

λ
ρ

ρ
,

2/1

t

2/1

t

~
1

~
det ssss RΛRΛI  ( 5-20) 

with the equality for when ssR
~

 is diagonal. Thus,  

[ ]∑
=

= 
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r

i

iii

eff

ME MT

T
C

H

1
,2

d

~~tr

~
1logmax

dd

λ
ρ

ss
ss

H R  ( 5-21) 

The optimal diagonal entries of ssR
~

 can be found via water-filling  [5.2], i.e., 

[ ] ri
M

p
ieff

iii ,...,1;
~ opt

,
=














−==

+
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where ( )+
x  implies ( )





<

≥
=

+

0;0

0;

x

xx
x  and µ  is a constant calculated iteratively 

as 














+

+−
= ∑

+−

=

1

1

11
1

1

qr

i ieffqr

M

λρ
µ  ( 5-23) 
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with the iteration count q , starting from 1. If the power allocated to the 

eigenchannel with the lowest gain is negative, i.e. [ ] 0
~

1
<

+−qrssR , this 

eigenchannel is discarded by setting [ ] 0
~

1
=

+−

opt

qrssR  and µ  is again calculated with 

the iteration count q  incremented by 1. Once opt

ssR
~

 is found, an optimal 

beamformer opt
W  is obtained from (( 5-10) and H

t

opt

t

opt ~
VRVR ssss = as 

( ) 2/1opt

t

opt ~
ssRVW =  ( 5-24) 

Now the capacity ( 5-21) can be rewritten as 

∑
+−

=








+=

1

1

2
d 1log

qr

i

ii

eff
p

MT

T
C λ

ρ
H

 ( 5-25) 

Therefore, the information-theoretic capacity of MIMO system is obtained 

by summing the capacity of each SISO eigenchannel which is governed by the 

SNR imposed on each eigenchannel (the SNR at the receiver of the ith 

eigenchannel is iieff pM λρ )/( ). The remaining task is to maximize ( 5-25) with 

respect to various parameters such as τρ , dρ , τT , dT , and fbT . This is presented 

in subsection  5.2.3. 

5.2.2 Practicable Capacity 

The formulation of ( 5-25) requires many assumptions including the need 

for independent Gaussian signals at the input and infinitely long data codes. 

However, the practicable capacity offers a MIMO performance limit which 

accounts for the use of signal processing. This specifically includes digital 
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modulation and finite block coding. The impact of finite block length and digital 

modulation (e.g., QAM signaling) can be evaluated as follows. For uncoded D-

QAM where D denotes the number of points in each signal constellation, the 

attainable normalized throughput (practicable capacity) in bit per sec/Hz for a 

SISO channel can be given in terms of the block error rate (BLER) for block 

length BL as [ ] [ ]BL
SNRSERSNRBLERR )(1.Dlog)(1.Dlog 22 −=−=  , cf.,   [5.17], 

which uses BER  instead of SER , although both forms turn out to yield the same 

result. Here, SER  is the probability of symbol error (symbol-error rate) for an 

AWGN channel with D-QAM modulation and coherent detection. For example, 

for a uniform D-QAM, the SER  is approximated as  [5.21] 












−
≈

1D

3
4)(

SNR
QSNRSER  ( 5-26) 

with SNR  is the signal-to-noise ratio per symbol.  

The above practicable capacity, R , formula assumes perfect error 

detection, wherein blocks are correctly detected if and only if all bit decisions are 

error-free. Also, the formula assumes BL  independent symbols per block, 

independent of the signal constellation. An alternative is to keep the number of 

bits per block fixed [5.17], but that would require using different block lengths for 

different substreams. 

Following the SVD analysis, the MIMO channel is transformed into parallel 

SISO eigenchannels with unequal instantaneous SNRs (the SNR of the ith 

eigenchannel is iieff pM λρ )/( ). Therefore, the throughput (practicable capacity) 

of MIMO system (with a fixed channel H ) is the sum of the throughputs 



 

 154 

corresponding to eigenchannels. For example, for a system with no adaptive 

modulation and no coding, the throughput with uniform D-QAM signaling is 

[ ]
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 ( 5-27) 

with 2

VH dt

~
2
ˆd /σσρρ =eff .  Either non-adaptive or adaptive modulation can be used 

here. In non-adaptive modulation one type of QAM is used for all eigenchannel 

irrespective to the SNR on the eigenchannels, whereas in the adaptive 

modulation the QAM may be chosen for each eigenchannel in a standard 

optimum way so that the corresponding eigenchannel throughput (practicable 

capacity) remain as close as possible to the Shannon limit of SISO channel. The 

8 dB minimum capacity penalty resulting from using finite block length and 

uncoded QAM with adaptive modulation over a SISO AWGN channel is reported 

in  [5.17]- [5.18] and it is helpful for the discussion below to include this here 

(Figure  5-2). Some elaboration is useful here, and the following paragraph is 

from [5.22]. In the flat, saturated region of the curves, the throughput is 

insensitive to the block size. However, in the steep dropoff region, the curves are 

very sensitive to the block size. The dropoff region – especially the corner, where 

throughput begins to fall away – is critical knowledge for any designer. This is 

analysed as follows. Defining the corner as 10% BLER (90% chance of the block 

being receiver error-free), the corner then corresponds to 

{ 1.0)1(lim)1(lim
/

==−≈− −

∞→
≡

∞→

xBL

BL

BL

BLx
BL

e
BL

x
SER  or 1.0≈x . Thus, for any large value of 
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block length, we need BLSER /1.0<  or SERBL /1.0< . As an example, for SER  of 

410− , then the block length can not exceed 1000  symbols. 

Table  5-1 illustrates the QAM selection respect to the SNR imposed on 

each eigenchannel and Figure  5-2 for the block size of 100=BL  symbols. This is 

the most efficient digital technique map for the MIMO system.   
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Figure  5-2 Single AWGN channel practicable capacity (throughput) penalties for D-QAM 
versus SNR for a block size of 100 symbols 

Table  5-1  The digital adaptive modulation selection strategy 

 

Modulation Selection 

( iD -QAM ) 

SNR on ith eigenchannel 

( iii pMSNR eff λρ )/(=  

256-QAM iSNR≤dB6.29  

128-QAM dB6.29dB5.26 <≤ iSNR  

64-QAM dB5.26dB4.23 <≤ iSNR  

32-QAM dB4.23dB4.20 <≤ iSNR  

16-QAM dB4.20dB17 <≤ iSNR  

8-QAM dB17dB9.13 <≤ iSNR  

4-QAM dB9.13dB1.10 <≤ iSNR  

2-PAM dB1.10<iSNR  
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Therefore,   the   throughput (practicable capacity) of MIMO system with 

adaptive modulation (with uniform Di-QAM signaling on ith eigenchannel) is 

written as 

∑∑
+−

=

+−

= 
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qr
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pM
Q

T

T
RR

λρ
H  ( 5-28) 

Ideally, adaptive modulation allows a wide range of SNRs to bear a good 

throughput, but it is not easy to implement, and not effective in fast-changing 

channels. (Of course, in this sense, SVD is similarly unsuited to fast-fading 

channels.) The reason is that, in practice, it is very difficult (large observation 

interval required) to estimate the SNR on the eigenchannels with accuracy of 

decimal points of a dB, nevertheless for limiting capacity calculations ideal 

estimation of SNR is assumed. On the other hand, non-adaptive modulation has 

lower complexity compared to the adaptive modulation, but the SNR needs 

constraining for good throughput. The curves of Figure  5-2 show a zero-capacity 

region for each modulation, for example, 64-QAM, the zero-capacity region is for 

a SNR below about 20 dB. This shape of curve also appears in the simulations 

for the eigen-MIMO channels, below.  

All that remains is maximizing ( 5-27) and ( 5-28) with respect to various 

parameters such as τρ , dρ , τT , dT , and fbT . Both adaptive and non-adaptive 

modulations are considered.  
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5.2.3 Maximizing the Capacities 

The first parameter for optimization is the choice of the training signal τS  

which affects the capacities HC  in ( 5-24), HR  in ( 5-27), and HR
~

 in ( 5-28) through 

the effective SNR, effρ . Since all the three capacities are increasing functions of 

effρ , it can be shown, following the same procedure as in  [5.14] for open-loop 

systems, that the optimal training signal is a multiple of a matrix with orthonormal 

columns. With this choice of training, there results  [5.23], 

τ
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Now, from (( 5-6), ( 5-17) and ( 5-29), the effective SNR becomes 
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 ( 5-30) 

which makes explicit its dependence on τρ  and dρ .  

Since the allocation of power to the training and data affect all the three 

capacities HC , HR , and HR
~

 only through effρ , with capacities an increasing 

function of effρ , the optimal power allocation is chosen to maximize effρ . 

Denoting α  as the fraction of the total transmit energy that is devoted to the 

data, i.e., 

)( fbdd TTT −= αρρ  ( 5-31) 
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and                     

                              )()1( fbTTT −−= ραρ ττ 10; << α ,                                    
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Differentiating effρ  with respect to α  and equating to zero, yields the 

optimal value for α  as 
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( 5-33) 

with 
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Thus the optimal training and data power allocation, 

ττ ραρ TTT /)()1( fb

optopt −−=  and dfb

opt

d /)( TTT
opt −= ραρ , respectively, are obtained 

as a functions of various parameters such as τT , dT , and fbT . However, these 

parameters affect the capacities HC , HR , and HR
~

 in different ways.  
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For example, on one hand, as the number of training symbols, τT , is 

increased, the estimate of the channel improves. This means that 2
~

rH
σ  decreases 

(from ( 5-29)) and effρ  increases since 

1
)(1

)21(1

)(1

)1(

2

fb

2
~d

2

fb

2

fb

2
~d

2

fb

2
~d

rr

r −
++

++
=

++

+−
=

σσρ

σρ

σσρ

σσρ
ρ

HH

H d
eff  ( 5-34) 

This results in an increase in capacities through effρ . On the other hand, 

as τT  increases, the time available to transmit data, dT , decreases. Thus the 

capacities decrease linearly through the term TT /d .  

In addition, the feedback link parameters fb(R , fbT , and 2

fbσ ) affect the 

capacities in different ways. These parameters not only affect the capacities HC , 

HR , and HR
~

 through pre-log coefficient, but also influence the capacities via 

SNR. As the feedback delay fbT  increases, the capacities decrease linearly 

through the term TTTT /)( fb τ−−  for a given τT . However, the feedback noise 

variance decreases since 12
ˆ

r

≈
H

σ  (the channel variance in )1/()(
r

ˆ T
M

T
M

ττ ρρ
σ +=2

H
 

can be approximated to 1 since MT ≥τ  and 1>τρ  for typical wireless 

applications, e.g., dB5>τρ . Thus, 1/ >>MTττρ ), the formula of (5-9) reduces to 

MNRT /2

fb
fbfb2/6≈σ . This increases effρ  , seen mathematically by rewriting ( 5-30) as 

( )
1

2

fbdd

dd +
++++

++−
=

TMTMM

TMMT
eff

τττ

ττττ

ρσρρρ

ρρρρ
ρ  ( 5-35) 

and this in turn affects all the three capacities.  



 

 160 

By fixing the feedback constraint fbR , the feedback delay can be changed 

by varying the number of VQ index bits, B , see ( 5-8) and (5-9). It is shown below 

that for a moderate to high SNR, the capacities are sensitive to the feedback 

delay and further increase in capacities are possible by joint optimizing over the 

number of training symbols and the feedback delay length interval.  

However, since analytical solution is not available, the optimal values opt

τT  

and opt

fbT  for each of the capacities are obtained via Monte-Carlo simulations. This 

requires searching over { }1,...,1;1,...,),( fbfbfbτ −−=−−== MTTTTMTTTS τ  with 

set size S  to see which pair candidate SkSTT
k ,...,1;),( fbτ =∈  maximizes the 

capacity.  

Denoting kCH , kRH  and kRH

~
 as the corresponding capacities evaluated at 

k
TT ),( fbτ , the optimal pair associated with each capacity is obtained as 

k

STT
C CTT

k
HH

∈

=
),(

opt

fb

opt

τ

fbτ

maxarg),(  ( 5-36) 

k

STT
R RTT

k
HH

∈

=
),(

opt

fb

opt

τ

fbτ

maxarg),(  ( 5-37) 

k

STT
R

RTT
k

H
H

~
maxarg),(

),(

~
opt

fb

opt

τ

fbτ ∈

=  ( 5-38) 

The Monte Carlo simulations conducted can be represented by the 

flowchart in Figure 5-3 below. 
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Figure  5-3  Flowchart of the simulation 
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5.3 Simulation Results 

 A communication system may not have the luxury of individual  power  

adaptation for training and data phases and dedicate the same power to the 

training and data symbols for transmission. Thus, two cases are considered: 

systems with optimized allocation of power between training and data; and the 

systems with equal training and data power (an arbitrary choice).  

 The signaling rate is governed by the channel. For a delay spread τσ  sec., 

the coherence bandwidth in Hertz is 1/ ( )
f

x τσ σ≈ , where: 2x π≥  from the 

uncertainty principle (with the associated assumptions about the channel); and in 

practice, 8x ≈  (Gans’ law); and for conservative design, 10x =  is often used. The 

symbol rate should be no more than this coherence bandwidth. Alternatively 

stated, the symbol duration should be least ten times the delay spread, in order 

to avoid intersymbol interference. The example considered in the remainder of 

the chapter can be related to a pedestrian in a cellular system.  The delay spread 

of an outdoor channel is about 1µ secτσ = , much larger than indoor values which 

are typically well below 100n sec . The minimum symbol duration follows as 

sec1010 µστ ==sT , i.e., the maximum symbol rate is ksym/sec100 . For a walking 

speed of a few km/hr and a carrier frequency of about 1 GHz, the channel is 

slowly varying, having a typical maximum Doppler frequency of Hz10D =f . The 

coherence time is conservatively taken to be a tenth of this maximum rate of 

change, i.e., )10/(1 Df  sec, and this corresponds to 1000 symbol times. This value 
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is the time that the channel is essentially constant and it is used for the block 

length from now on.  

 In the figures below, the solid lines correspond to capacity results with 

optimized power allocation and dashed lines correspond to the results with equal 

power allocation. Also, the lines with a “star” marker are the associated results 

based on (5-9) with linear quantizer and the lines with “circle” marker are the 

upper bounds on capacity based on rate distortion method. The simulations are 

for a 1010×  MIMO system, but the formulation is applicable to any MN ×  MIMO 

system. 

At first, it is useful to include an illustration serving as a motivation for 

changing the feedback delay interval. Figure  5-4 and Figure 5-5 illustrate the 

ergodic capacities’ behavior versus fbT  for the example of fb 25R =  (i.e., the 

feedback link requires at least 25 bits/symbol time), 1000=T  at moderate SNR, 

dB18=ρ ,  using  the optimal training interval. In each system, the capacity Is 

maximized at a particular feedback delay. For example, with a linear quantizer, 

the theoretic capacity is maximized at the feedback length of 56opt

fb =T  symbol 

times. Thus the total number of feedback bits is 1400fb

opt

fb == RTB bits ( 7=b  bits 

for the real or the imaginary part of one channel coefficient). With rate distortion, 

the lower bound on the number of beedback bits is 10002540fb

opt

fb =×== RTB bits 

(or 5=b , that is less 2 bits per real or imaginary part of a channel coefficient).    

The change in the feedback delay interval  is rather insensitive at low SNR  
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Figure  5-4 The effect of feedback delay fbT  on the theoretic/practicable capacities 

with fb 25R = , and 1000=T .  

                      The solid lines correspond to capacity results with optimized power 
allocation and dashed lines correspond to the results with equal power 
allocation. The lines with “star” marker are the associated results based on 
linear quantizer and the lines with “circle” marker are the upper bounds on 
capacity based on rate distortion method. 

 

(not shown here), however, for a moderate or higher SNR, the capacities are 

sensitive to the feedback delay. This figure suggests that it is beneficial to 

change the number of feedback bits, fb

opt

fb RTB =  (or quantization bits b), 

accordingly and motivates a joint optimization over the number of training 

symbols and the feedback delay length interval. 

The resultant ergodic capacities (in bits per sec/Hz) for different values of 

SNR is illustrated in Figure 5-6 and Figure 5-7 for the example of fb 25R =  and 

1000=T . Here joint optimization over the training interval and the feedback delay 

is performed. It is emphasized here that the feedback link, running at 25 bits per 
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symbol, is not accounted for in the capacity of the forward link, which includes 

the lesser bit symbol sizes of 4-QAM and 16-QAM. 
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Figure  5-5 The effect of feedback delay fbT  on the practicable capacities with non-adaptive 

modulations and fb 25R = , 1000=T .  

                      The lines with “star” marker are the associated results based on linear 
quantizer and the lines with “circle” marker are the upper bounds on capacity 
based on rate distortion method. For every block of 1000 symbols using 64-
QAM, about 64 symbol times at 25 bits per symbol are required for the 
feedback. 

  

Figure 5-6 also includes the maximized theoretic capacity of an open-loop 

MIMO system, as given in  [5.14]. For the closed loop case, the total time duration 

for training and data transmission is reduced to an effective value by the 

feedback delay. Similarly, the SNR is reduced to an effective SNR ( effρ  - a 

quantity used only in the formulation) as the result of channel estimation error 

and feedback noise. Despite these degradations, the theoretic closed-loop 

capacities are higher than that of the open loop system for low to moderate 
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values of SNR 13~<ρ dB. However, there is no guarantee that a closed-loop 

system has higher theoretic capacity than an open-loop system for high values of 

SNR, and this is formulated here through the (generous) limitation of the 

feedback link. The situation is illustrated in Figure  5-6 for SNR values greater 

than 13~>ρ dB. Nevertheless, for wireless applications the SNR of interest is 

normally low, and here the closed-loop system has higher capacity. 
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Figure  5-6  The theoretic capacities versus SNR for fb 25R = , 1000=T .  

                      The solid lines correspond to capacity results with optimized power allocation 
and dashed lines correspond to the results with equal power allocation. The 
lines with “star” marker are the associated results based on linear quantizer 
and the lines with “circle” marker are the upper bounds on capacity based on 
rate distortion method. 

  

 The practicable capacities with adaptive/non-adaptive modulation are 

included in Figure 5-7 with adaptive modulation and perfect CSI, the MIMO 

practicable capacity experiences similar capacity penalty as in SISO channel (the 
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MIMO practicable capacity is 8 dB away from the optimal theoretic capacity with 

perfect CSI). Furthermore, the shape of the practicable capacity curves with non- 

adaptive modulation follows the same trend as the curves of Figure  5-2, with cut-

off and limiting capacity behavior for a given modulation.  
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Figure  5-7  The practicable capacities versus SNR for fb 25R = , 1000=T .  

                      The solid lines correspond to capacity results with optimized power allocation 
and dashed lines correspond to the results with equal power allocation. The 
lines with “star” marker are the associated results based on linear quantizer. 

 

An interesting result is that, with the theoretic capacity, the optimal training 

interval turns out to follow the same trend as the open-loop system. The optimal 

training interval is still equal to the number of transmit antennas when the optimal 

power allocation is used. With the equal power constraint, we get the optimized 

training time, MT
opt ≥τ . However, this is not the case with the practicable 

capacities, as laid out in Figure  5-8 and Figure  5-9, for  different  values  of SNR. 
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Generally,  as ρ   increases, the opt
Tτ  decreases to reach M  and, for a given ρ , 

the optimal training interval increases ( 2
~

rH
σ  decreases) with the constellation size 

D . In particular, with the adaptive modulation, the optimal training interval is 

equal or greater than the optimal training interval associated with the theoretic 

capacity. Also, with the non-adaptive modulation, a very large number of training 

symbols is suggested specially at low to mid values of SNR and large 

constellation sizes where most of the eigenchannels are operated in the near-

zero capacity region (cf., Figure  5-2). It can be concluded that the logarithmic 

increase of capacity through effρ  is more effective than the linear decrease of 

capacity through TT /d  at low-mid SNRs. In particular, for a given constellation 

size D , opt

τT  using the optimal power allocation is greater than opt

τT  with the equal 

power allocation at low-mid SNRs.  
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Figure  5-8   The optimal training interval versus SNR (dB) with optimal power allocation 

using linear quantizer for fb 25R = , 1000=T . 
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Figure  5-9   The optimal training interval versus SNR (dB) with equal power allocated for 

training and data transmission using linear quantizer for fb 25R = , 1000=T . 

 

However,  at  higher  SNRs (where the eigenchannels are operated in the non-

zero capacity region), more time is dedicated to the data payload transmission 

and opt

τT  using the optimal power allocation would be smaller than that of with the 

equal power allocation. 

 From Figures 5-5 and 5-8, for each forward transmission block of 1000 

symbols, for the case of say 18dB SNR, 64-QAM and optimal power allocation, 

there are about 64 symbols (at 25 bits per symbol) needed for the feedback, and 

in the forward link, about 300 symbols are needed for the training symbols. If the 

feedback and the forward link training are lumped into in a 1000 symbol block 

(they are actually treated separately in the above capacity formulation) , it leaves 

about 636 symbols for the payload. 
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Finally, there are some interesting points regarding the optimal number of 

feedback bits or equivalently the required number of bits per real (imaginary) part 

of one channel coefficient, b . The corresponding results based on the theoretic 

and the practicable capacities are illustrated in Figure 5-10 and Figure 5-11, 

respectively with the optimal power allocation. Figure 5-20 also includes the 

lower bounds on the required number of bits using the rate distortion method. We 

note that, based on the information given in these figures, the total number of 

feedback bits B  and the feedback length fbT  can be calculated easily by 

bB 200=  and bRbT 8/200 fbfb == .   

In general, the required number of bits increases with SNR. Moreover, for 

a  given  SNR,  the  optimal  feedback bits increases with the constellation size D   
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Figure  5-10 The optimal number of bits “b” (based on theoretic capacity) for different 
values of SNR (dB) with optimal power allocation using linear quantizer / rate 

distortion for fb 25R = , 1000=T . 
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Figure  5-11 The optimal number of bits “b” (based on practicable capacity) for different 
values of SNR (dB) with optimal power allocation and linear quantizer 

for fb 25R = , 1000=T . 

 

(Figure 5-11). This suggests a larger number of feedback bits which results in a 

decrease in the feedback noise variance (5-9). Since a larger training interval 

(makes 2
~

rH
σ  decrease) is preferred for higher constellation sizes (Figure  5-8, and 

Figure  5-9), it is evident from ( 5-7) that increasingly accurate knowledge of the 

channel at the transmitter is required for increasing constellation sizes. 

 

5.4 Summary and Conclusions 

For an eigen-MIMO wireless link, the information-theoretic and the 

practicable capacities are formulated, and then maximized over the training and 

data power allocation, the number of training symbols, and the feedback delay 

interval. The spectral resource required for the feedback is not included in the 

theoretical or practicable capacity, but its requirement is significant in a changing 
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channel, and has been quantified for a slowly changing channel example. The 

imperfection of the feedback is included in the capacity formulation, through the 

feedback noise variance (quantization noise, but not delay because of the block-

fading model) of equation (5-9). Under these conditions, the optimal training 

interval for maximum theoretic capacity turns out to follow the same trend as in 

an open-loop system i.e., with the optimal power allocation, the optimal number 

of training symbols is equal to the number of transmit antennas. However, this is 

not the case with the practicable capacities: with adaptive modulation, the 

optimal training interval is equal to or greater than the optimal training interval 

associated with the theoretic capacity; without adaptive modulation, a large 

number of training symbols is required especially at low to mid values of SNR 

where most of the eigenchannels are operated in their near-zero capacity region. 

 In particular, for a given SNR, the optimal training and feedback delay 

intervals (number of required quantization bits) both increase with the modulation 

constellation size. This relates to the need for more accurate CSI at the 

transmitter for modulations with larger constellations. A comparison is also made 

with the maximized theoretic capacity of an open-loop MIMO system, and it turns 

out that as the result of imperfect feedback, a closed-loop system may not have a 

higher theoretic capacity than the open-loop system at high values of SNR. 

However, for typical wireless mobile communication systems, operation at low 

SNRs is important, and here the closed-loop system offers a higher information-

theoretic capacity. 
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6: THROUGHPUT AND SER TRADE-OFF IN EIGEN-MIMO 
WITH FIXED MODULATION 

Water-filled eigenchannels maximize the multiple-input multiple-output 

information theoretic capacity, but for realization, adaptive modulation means 

high complexity. A simplification is to have a fixed number of eigenchannels with 

a common modulation. For such a system, the uncoded SNR/SER performance 

trades off with the throughput which depends on the receiver SNR and the power 

allocation on the eigenchannels. In this chapter, an eigen-MIMO system, 

simplified by imposing a fixed number of eigenchannels with a fixed, common 

modulation, is analyzed. The throughput and reliability (the uncoded SER), are 

determined together. The method is to constrain the eigenchannel SNRs for 

reliability and seek a power allocation over the eigenchannels for high capacity. A 

feature of this design approach is that the capacity (and the throughput, which 

has similar behavior) and the error performance can be managed through the 

choice of the maximum allowable SNR loss on eigenchannels. 

Spatial multiplexing  [6.1] and diversity, e.g.,  [6.2],  [6.3] are candidates for 

achieving high data rates in multiple-input multiple-output (MIMO) wireless links. 

Both systems have the practical advantage that no channel knowledge is 

required at the transmitter. But this practical advantage comes with a 

performance penalty (relative to what is theoretically possible) because joint 

optimization between the transmitter and receiver is not fully deployed. With 
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feedback from receiver to transmitter, also called closed loop MIMO, system 

performance can be improved based on: a desired optimization criterion such as 

capacity, average error rate, etc.; channel knowledge (full or partial); a transmit 

power constraint (total power, peak power, etc.); or other considerations such as 

constraints on the type of signaling, multiple access, and receiver design, etc.  

Several linear precoder-decoder (LPD) designs for closed loop operation 

which are jointly optimal for different criteria are presented in the literature  [6.4]-

 [6.20]. In these, the required channel state information (CSI) at the transmitter is 

often assumed to be perfect and undelayed. The optimal design for maximizing 

SNR is to allocate all the power to the eigenchannel with the maximum gain, 

sometimes called dominant eigenmode transmission  [6.6]. The optimum design 

that maximizes capacity with a total power constraint, is water-filled eigen-MIMO 

 [6.7],  [6.8]. In terms of adaptive antennas, the narrowband transmit and receive 

weights for each parallel eigenchannel are given by the sets of right and left 

singular vectors, respectively, of the channel matrix. Eigenchannels allow good 

capacity realization using established, high spectral efficiency communications 

techniques. For the Rayleigh channels of mobile communications, the large 

majority of the capacity is available through deploying just one or a few of the 

available eigenchannels, e.g.,  [6.9]. In the idealized MIMO channel, the 

maximum eigenchannel has full diversity order, and the lowest eigenchannel has 

less capacity than any of the transmit and receive element pairs. 

 Other examples of optimized LPD designs are as follows. The optimal 

design that minimizes the sum of output symbol estimation errors, allocates the 
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available power to the eigenchannels according to an inverse water-filling policy 

 [6.5],  [6.10]. A different approach based on inverse SNR (or equivalently mean 

squared estimation error) between the input and output of each mode is 

presented in  [6.5],  [6.11]. A general solution is a weighted sum of inverse SNRs 

and leads to a number of well-known solutions depending on the choice of 

weights  [6.11]. The optimum LPD design that maximizes SNR subject to a zero-

forcing constraint on the channel has also been considered in  [6.10]. The optimal 

LPD design for minimizing the pairwise error probability (PEP) with a total 

transmit power constraint is given in  [6.12]. Minimization of the geometric mean 

square error, defined as the determinant of the error covariance matrix, is the 

subject in  [6.13],  [6.14]. There are also power allocation optimizations for 

different types of communications systems, e.g.  [6.15],  [6.16], which, like several 

of the above schemes, optimize the power allocation for minimizing the uncoded 

error rate. The work in  [6.17] considers the problem of information rate 

maximization with a constraint on the peak power. There are many other 

specialized schemes (e.g.  [6.18]- [6.28] which include the previous investigations 

of MIMO performance degradation from channel estimation and imperfect 

feedback), too numerous to include here, but the basic principles for closed loop 

MIMO have appeared in different forms from different disciplines such as 

information theory, signal processing, communications theory and techniques, 

and adaptive antennas.  

There remain major technical challenges for optimized LPD designs even 

when the CSI is assumed perfect. Design challenges include having a system 
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with good throughput and good reliability at the same time. Because of these 

challenges, there is ongoing interest in configurations which are simplified, and 

their associated analysis of throughput and error performance. For the limiting 

capacity case of perfect water filling, the different eigenchannel gains (and 

different numbers of eigenchannels, in general, between different channel 

realizations) contribute to the difficulty of optimally allocating different digital 

modulations to different eigenchannels  [6.29]. Sophisticated hardware is needed 

(and usually not available in legacy systems) at all the terminals to support 

variable modulation, and a sophisticated protocol is required to support the 

modulation adaptation via data exchange and timing handshakes for the blocks 

of differently modulated data. A major simplification is to have a fixed, common 

modulation with a common signaling rate, for a fixed number of eigenchannels. 

With this scheme, the simplification affects both the protocol, and in particular, 

the hardware and software at all the terminals of a multi-user system. However, 

the system is still has the complexity of being closed loop because the 

eigenchannels must be established and maintained, i.e., the adaptive antenna 

weights (i.e., the precoder-decoder) are still required along with a protocol to set 

them. 

A feature of water-filling with fixed (or adaptive) modulation, is that the 

uncoded SNR/SER performance of the overall system deteriorates with the 

weakest eigenchannel. The nature of this deterioration is presented below, for 

33×  and a 44×  systems. The deterioration is serious because of the large 

difference between the gains of the eigenchannels, and an associated large 
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degradation occurs in the overall system SER performance. For example, in a 

33×  system with water-filling, the difference between the average SNR on the 

strongest and weakest eigenchannel is about 13.5 dB when the average SNR at 

each receiver is 20 dB. This difference increases to 16.8 dB in a 44×  system. As 

a result, full eigen-MIMO systems with water-filling (i.e. with maximized capacity 

without an error performance constraint) have a weak uncoded SER 

performance which is not desirable in practice. A preferred system has good 

reliability and high throughput, simultaneously. 

In this work [6-30], an eigen-MIMO system, simplified by imposing a fixed 

number of eigenchannels with a fixed, common modulation, is analyzed. The 

throughput and reliability (the uncoded SER), are determined together. The 

method is to constrain the eigenchannel SNRs for reliability and seek a power 

allocation over the eigenchannels for high capacity. 

For discussing the approach, some elaboration on capacity is helpful. In 

this chapter, the term capacity refers to the ergodic, information-theoretic 

capacity, typically with units of bits/channel-use. This is also referred to here as 

the theoretic capacity or information-theoretic capacity where the context calls for 

emphasis of this definition. The capacity carries the assumption of error-free 

transmission of symbols, which in turn implies infinitely long code blocks. The 

term throughput, in bits/sec/Hz, is used for the throughput of bits that would be 

perfectly detected by an ideal coder. The throughput carries the assumption of 

error free transmission of finite blocks of symbols. Throughput is also referred to 

in the literature as practicable capacity (also in in Chapters 5 and 7), data 
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throughput, goodput, spectral efficiency, etc. Only uncoded data is discussed 

here, although the choice of SNR/SER constraint in the formulation is useful 

because it defines the required performance for a designer’s choice of coder. 

The actual throughput is therefore not discussed here, and in fact is seldom 

addressed in the MIMO capacity literature, because it is system-specific. Its 

calculation requires the implementation detail of a coding architecture (trellis, 

turbo, LDPC, and associated code rates, etc.) for the system, the actual RF 

bandwidth used (i.e. the choice of filters and guardbands and guardtimes, etc.), 

and needs to account for the spectral resources required for any multiple access 

scheme, and maintaining the eigenchannels (channel sounding, transmission of 

the CSI and any variable modulation information and associated timing, etc.) for 

each user. The throughput, in combination with an understanding of the coder 

requirements from the error performance detail (the error rate for each 

eigenchannel), is used in this chapter to govern a basic design configuration, 

preparing the way for system-specific implementation protocol and coding. The 

allocation of one example of coding - viz., Reed-Solomon (chosen because only 

RS is the only coding that has a tractable error expression) - to eigen-MIMO, and 

the optimized throughput that results from such a system, are presented in 

chapter 7 and  [6.31]. 

In order to determine the trade-offs between the throughput and reliability 

for the fixed eigen-MIMO system, a maximization of throughput with a 

constrained SNR is sought. The throughput depends on the constellation size of 

the modulation and the average SNR at the receivers. In particular, for high 
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values of receiver SNR, the MIMO throughput reaches its maximum of, for 

example, 8Dlog2 =L  for uncoded 4-QAM ( 4D = ) transmission over an idealized 

44×=× LL  system. But for lower values of SNR, the throughput depends on 

SNR (cf., Figure  6-9 and Figure  6-10, below). In addition, the power allocation 

over the eigenchannels affects the throughput differently for different values of 

SNR. In seeking to realize the limits of the throughput, the following issues arise. 

• Unlike the capacity, there is no exact analytical formulation for the 

throughput available. Although some approximate formulations are 

available, they require specific assumptions. For example, in  [6.32], the 

throughput is expressed in terms of a block error rate (BLER) which 

requires perfect detection. But there is no error detection or correction, 

and so the coder performance is not included in the throughput 

calculation. Also, the throughput calculation assumes that blocks are 

correctly detected if and only if all decisions within the block are error-free. 

This is a major assumption. To attempt to realize this throughput, a choice 

of coding scheme is required of course, and the coder performance would 

have to be included in order to establish the actual capacity. The expected 

coder performance in turn requires knowledge of the (uncoded) BER and 

its distribution across the eigenchannels. 

• There has not been a common approach for evaluation of throughput. For 

example, the results in  [6.32], which are obtained with no constraint on 

BER, are the same as in  [6.33] where the throughput (referred to in  [6.33] 
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as spectral efficiency), is obtained by an optimization of variable power 

transmission for a constrained uncoded BER (referred to as output BER). 

• The algorithms presented in  [6.23]- [6.34] (and many other related works) 

are based on adaptive modulation for achieving the highest throughput 

over single-input, multiple-output channels with variable power at the 

transmitter. In other words, these are not addressing the power allocation 

which is addressed here. 

Because of the above points, the problem of power allocation is tackled 

here through maximization of the capacity with an eigenchannel SNR constraint, 

and then applying the resulting power allocation for the fixed modulation 

arrangement. Although the power allocation obtained this way is unlikely to be 

optimum for maximizing the throughput (because the optimization is based on 

the capacity rather than throughput), it is shown via simulation that the 

throughput using the presented power allocation shows similar behavior to the 

capacity. In this sense, the capacity is being maximized under some SNR 

constraints, in order to determine the tradeoff between the error performance and 

throughput (at each receiver SNR) for a reduced complexity system which is 

uncoded and has fixed modulation. 

Mathematically, the approach comprises information rate maximization in 

eigen-MIMO which is constrained by total input power and a maximum allowable 

SNR loss on the weakest eigenchannel. The maximum allowable SNR loss is the 

maximum difference between the average SNR on the weakest eigenchannel 

and the average SNR at each receiver. This is a quantity available to a system 



 

 183 

designer which manages the tradeoff between acceptable throughput and 

acceptable uncoded SER (defines the performance required from the choice of 

coding arrangement) for the system. The optimum LPD design of eigenchannels 

requires a power allocation in terms of SNR in each eigenchannel. Three 

different models for the SNR constraint are considered, each of which is 

characterized using a parameter (γ , below) which controls the allowable 

maximum SNR loss on the weakest eigenchannel. The optimal power allocation 

is obtained via convex optimizations with inequality constraints, using an interior-

point method called the logarithmic barrier method  [6.35]. 

Based on the average receiver SNR at each antenna and the maximum 

SNR loss on the weakest eigenchannel, the best power allocation scheme (along 

with the best choice for the parameter γ ) is selected for maximum capacity. The 

selection is from the three SNR models (I / II / III) presented below; water-filling 

applied to different numbers of eigenchannels; and dominant eigenmode 

transmission. As expected, the resultant capacities are upper and lower bounded 

by the optimal water-filled capacity and the one obtained via dominant 

eigenmode transmission, respectively. The position of the capacity between 

these bounds can be controlled by deploying the appropriately selected SNR 

model, along with the parameter characterizing it. The throughput (based on the 

formula provided in  [6.32]) and the SER performance, are also evaluated by 

simulation for a system which uses fixed QAM. The presented approach gives 

better SER performance for the fixed modulation system than using water-filling, 

at the expense of a small loss in throughput. 
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The rest of the chapter is organized as follows. Section  6.1 describes the closed-

loop MIMO system model followed by the information rate maximization with 

SNR constraints in section  6.2. The simulations results are presented in section 

 6.3, with the conclusions in section  6.4. The sub-script “ H ” refers to sample 

realization of channel matrix H . 

x s

v

y

 

Figure  6-1  A closed-loop MIMO system with a transmit beamformer for using channel 
knowledge which is perfectly fed back from the receiver 

 

6.1 Closed-Loop MIMO System Model 

As introduced in 5.1, and repeated here for convenience, the MIMO 

channel is quasi-static, flat block-fading with M  transmit and N  receive. The 

channel is random but remains static over a fading block cycle (starting from the 

training transmission, including the channel estimation, quantization, codeword 

feedback, and calculation of the new beamformer, and detection of the received 

symbols), but is independent, across different blocks. A beamformer of weights 

W  derived using channel  knowledge at the transmitter, is reproduced for 

convenience from  Figure 5-1, in Figure  6-1.  At  each  symbol  time,  the 1×M  

data vector signal to be transmitted, x , is multiplied by the MM ×  weight matrix 

W , before transmission. The input-output relation for the MIMO system in the 

data transmission is often written 
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vsHvxWHy +=+=
MM

ρρ
 ( 6-1) 

where y  is the 1×N  received signal vector and H  is the channel matrix with i.i.d. 

zero mean complex Gaussian entries each with unity variance; and ρ  is the 

constant (across blocks) average SNR at each receive antenna for the data 

transmission. The vector v  represents the additive noise with v ~ )1,0(CN . From 

x  satisfying M

H
E Ixx =  and xWs = , the covariance matrix of the transmitted 

signal H
E ssRss =  is given by 

H
WWR ss = . ( 6-2) 

Similarly, from the total average transmit power constraint, W  satisfies 

M
F

== ssRW tr
2

 so with xWs = , we have ME
H =sstr .  

6.2 Information-Rate Maximization 

This section develops the mathematical basis for the constrained 

information rate maximization. The instantaneous capacity – that of a sample 

realization of the channel - is first addressed. This capacity, with a fixed channel 

H , is defined as  [6.8] 









+==

=

H

N
MEp M

IC
H

HHRIy);s ss
sss

H

s

ρ
detlogmax(max 2

)](tr[)(

 ( 6-3) 

where )(ssp  is the probability density function of the vector s , and )( y;sI  is the 

mutual information between s  and y . The ergodic capacity is the ensemble 
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average of the capacity achieved when the optimization is performed for each 

realization of H , i.e. ][ HCEC = . 

Applying singular value decomposition, the matrix H  with rank 

( )NMr ,min=  can be rewritten as HVUΛH 2/1=  where V  and U  are the unitary 

matrices containing the corresponding input and output singular vectors, 

respectively, and 2/1
Λ  is a non-negative MN ×  diagonal matrix with ith diagonal 

element as 
2/1

iλ  (the positive square root of ith eigenvalue of HHH ). In addition 

the diagonal elements satisfy 1+≥ ii λλ .  As a result, HH VVHH Λ= , and  









+=

=

2/12/1
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detlogmax VΛRVΛI ss
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ME M
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 ( 6-4) 

Also,  VRVR ssss

H=
~

 is   non-negative  definite  because ssR  is  non-

negative  definite,  and )(tr)
~

(tr ssss RR = . As a result, the maximization over ssR  

with ME
H =)]([tr ss , can be over ssR

~
 with ME

H =)]~~([tr ss   [6.6],  [6.8]. Since for 

any non-negative definite matrix A , [ ] iii ,det AA ∏≤ ,  

[ ]∏
=









+≤








+

r

i

iiiN
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det λ

ρρ
ssss RΛRΛI  ( 6-5) 

with the equality for when ssR
~

 is diagonal. Thus 
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1logmax λ
ρ

ss
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 ( 6-6) 

where [ ]
iiip

,

~
ssR=  (Note ip  is different to )(ssp ). We see that the optimum design 

corresponds to the SNR on the eigenchannels. The above results are known. 
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The remaining problem is the optimal power allocation under different SNR 

constraints described below. Once opt~
ssR  is found, an optimal beamformer opt

W  is 

obtained from ( 6-2) and H
VRVR ssss

optopt ~
=  as 

( ) 2/1optopt ~
ssRVW = , ( 6-7) 

meaning that the data vector x  is multiplied by the matrix opt
W  before 

transmission occurs. In turn, the receiver multiplies the received data by the 

matrix H
U . As a result, the overall transmission relationship is 

vxΛyUy ~~~ 2/1 +==
M

H ρ
 ( 6-8) 

where xRx ss

2/1opt )
~

(~ =  and vUv
H=~ )1,0(~ CN . This denotes the transformation of 

the MIMO channel into parallel eigenchannels with unequal instantaneous SNRs 

(the SNR of the ith eigenchannel at channel realization H, is 

iii pMSNR λρ )/(, =H )), and the MIMO capacity is obtained by summing the 

eigenchannel capacities which are governed by their SNRs. Three different 

configurations for the SNR constraint come to mind, as follows. 

6.2.1 SNR Constraint Model I 

In the first model, the rL ≤≤2  strongest eigenchannels are used and the 

output SNR of the eigenchannels is constrained to be 

LjSNRSNR j ,...,2;,1, == HH γ  ( 6-9) 
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where jjj p
M

SNR λ
ρ

=H,  is the instantaneous output SNR of the jth eigenchannel 

(for fixed channel H ) and 10 ≤< γ  is a parameter that makes it possible for the 

user to control the relative SNR in each eigenchannel. From ( 6-9), 

Ljpp jj ,...,2;11 == λγλ  ( 6-10) 

From the above 1−L  constraints and Mp
L

i i =∑ =1
, the power allocation is 

simply obtained through the set of L  linear equations     
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and is given by dBp 1opt −= . As a result, ∑
=









+=

L

i

iip
M

C
1

opt

2 1log λ
ρ

H
. for 1=L , the 

configuration is simply the dominant eigenmode transmission. 

6.2.2 SNR Constraint Model II 

Here, the rL ≤≤2  strongest  eigenchannels are used and are constrained 

to satisfy 

LjSNRSNR j ,...,2;,1, =≥ HH γ  ( 6-12) 

Thus,    in    this     case,     there     are     1−L      inequality     constraints, 
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Ljpp jj ,...,2;11 =≥ λγλ  along with one equality constraint, Mp
L

i i =∑ =1
. The 

mutual information maximization problem is now 

Mp
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 ( 6-13) 

where the objective for the maximization, i.e. ∑
=
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, is concave in 

the variable Lip i ,...,1; = . Equivalently, ( 6-13) can be rewritten as 
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where Lfff ...,,, 21  are convex real functions of Lip i ,...,1; = . In fact, ( 6-14) is a 

convex optimization problem that includes inequality constraints. An interior-point 

algorithm called the logarithmic barrier method  [6.35] is used here to solve 

( 6-14). The first step is to rewrite the problem ( 6-14), making the inequality 

constraints implicit in the objective, i.e.,  

Mp

pppfgpppf

L

i i
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L
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L
ppp L

=

+
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)),...,,((),...,,(minimize
21  ( 6-15) 

where ℜ→ℜ:g  is an indicator function for the nonpositive reals, viz., 
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The problem ( 6-15) has no inequality constraint, but its objective function 

is not differentiable, so descent methods (e.g, gradient descent, Newton’s 

method, etc.) cannot be applied. The basic idea of the logarithmic barrier method 

is to approximate the indicator function, g , by the function 

)(log)/1()(ˆ
10 utug −−=  ( 6-17) 

where 0>t  is a parameter that sets the accuracy of the approximation. Like g , 

the function ĝ  is convex and nondecreasing, and yields ∞  for 0>u . Unlike g , 

however, ĝ  is differentiable and closed: it approaches infinity as u  approaches 

zero. As t  increases, the approximation becomes more accurate. Substituting ĝ  

for g  in ( 6-15) gives the approximation 

Mp

pppftpppf
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−−+
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21
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10211
,...,,
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)),...,,((log)/1(),...,,(minimize
21  ( 6-18) 

The objective here is convex, since )(log)/1( 10 ut −−  is convex and 

increasing in u , and differentiable. The function 

)),...,,((log),...,,( 21

2

1021 Lj

L

j

L pppfppp −−= ∑
=

φ  is called the logarithmic barrier or log 

barrier for the problem ( 6-18). Its domain is the set of points that strictly satisfies 

the inequality constraints of ( 6-14). As a result the objective function in ( 6-18) is 

convex only over the region that Ljpppf Lj ,...,2;0),...,,( 21 =≤ . No matter what 

value the positive parameter t , the logarithmic barrier grows without bound if 

Ljpppf Lj ,...,2;0),...,,( 21 =→ . Denoting ),...,,( optopt

2

opt

1 Lppp  as the solution of 
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( 6-18), it is shown  [6.35] that ),...,,( optopt

2

opt

1 Lppp  is no more than tL /)1( − -

suboptimal. This suggests a straightforward method for solving the original 

problem ( 6-14), with a guaranteed accuracy ε  by taking ε/)1( −= Lt .  

The next step is to solve the equality constraint problem ( 6-18), by 

eliminating the equality constraint and then solve the resulting unconstrained 

problem using methods for unconstrained minimization. We can eliminate 1p  (for 

example) using the parameterization 

∑
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The reduced problem is then 
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or equivalently     
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                                                                                                                       ( 6-21) 

where  we  have  multiplied the objective by t . Since the composition of a convex 

 function within an affine function is also convex, eliminating equality constraints 

preserves convexity of a problem. Moreover, the process of eliminating equality 

constraints and the reconstructing the solution of the original problem from the 
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solution of the transformed problem, involves standard linear algebra operations. 

Thus, the problems ( 6-18) and ( 6-21) are equivalent. 

Now, since ),...,,( 32 Lpppψ  is differentiable and convex, a necessary and 

sufficient condition for a point ),...,,( optopt

3

opt

2 Lppp  to be optimal is 

( ) 0),...,,( optopt

3

opt

2 =∇ Lpppψ  ( 6-22) 

where ( ).∇  denotes the gradient operator. Thus solving the unconstrained 

minimization problem ( 6-21) is the same as finding a solution of ( 6-22), which is a 

set of 1−L  equations in the 1−L  variables Lppp ,...,, 32 . Since a closed-form 

solution to the minimization problem ( 6-21) does not exist, the problem can be 

solved by any iterative algorithm such as gradient descent method. This is written 

as 

ψµ ∇−=+ )()()1( nnn pp  ( 6-23) 
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( 6-24) 

In ( 6-23), )(nµ  is the step size at iteration n that, in general, can be fixed a 

priori, or chosen via inexact line search. Here, a simple and effective inexact line 

search is used called backtracking line search  [6.35] which depends on two 
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constants α , β  with 5.00 << α , 10 << β . It is called backtracking because it 

starts with unit step size and then reduces it by the multiplicative factor β  until 

the stopping condition 

ψψαµψψµψ ∇∇−≤∇− Tnnnn )()()()( )()( pp  ( 6-25) 

holds. The constant α  can be treated as the acceptable fraction of the decrease 

in ψ  predicted by linear extrapolation. In the terminology of iterative methods, the 

convergence of the gradient descent algorithm using the backtracking line search 

is at least linear  [6.35].  

The stopping convergence criteria of such an iterative algorithm is usually 

of the form ηψ ≤∇ , where η  is small and positive, as suggested by the 

suboptimality condition  [6.35]. The stopping criterion is often checked 

immediately after the descent direction, ψ∇− , is computed. 

  The method requires a suitable starting point )0(p . We note that the 

objective function in ( 6-21) is convex only on the region that the inequality 

constraints Ljpppf Lj ,...,2;0),...,,( 21 =≤  are satisfied. As a result the objective 

function ( 6-21) is not convex over the whole work space 
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32 ;0),...,,(  of the iterative gradient 

descent algorithm in ( 6-23). Since the objective function ),...,,( 32 Lpppψ  may have 

several local minima, the work space S  is divided into D  distinct subspaces and 

the iterative algorithm is run with different starting point candidates chosen from 
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different subspaces. For example, with uniform gridding of the work space and 

splitting the interval for jp  into  q  equal, distinct segments, there are, at most, 

1−= LqD  subspaces. Then, the converged results are compared to see which one 

is the global minima. Denoting )(c

dp  as the convergent point associated with the 

starting point chosen from the dth segment, the optimum power allocation is set 

as 
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In practice, MIMO systems with 4≤N  are of immediate interest, and it 

can be verified via simulations that for any 4≤N , the choice 1−= Nq  suffices to 

avoid local convergence using the above procedure. Having optp , there results 
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 and the ergodic capacity is the ensemble average of 

the capacity achieved when the optimization is for each realization of H , i.e. 

][ HCEC = . In simulations, this average is approximated with a finite sample size 

of course. 

6.2.3 SNR Constraint Model III 

In this case, the SNR constraints are further restricted to follow 
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Thus the optimization problem now becomes 
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Following the same procedure described in section  6.2.2, the inequality 

constraints in ( 6-28) can be made implicit in the objective as (for large values of 

t ) 
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( 6-29) 

Next, by eliminating the equality constraint, the problem ( 6-29) is reduced 

to 
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                                                                                                                       ( 6-30) 

Finally, the problem is solved using the gradient descent algorithm as in 

the case with ( 6-21). The work space here is a subset of the work space in the 

previous case (section  6.2.2) since the set of constraints ( 6-27) automatically 

satisfies the constraints in ( 6-12). As a result, the optimum solution of ( 6-28) can 

be expected to be one of the local minima in ( 6-14). The structure of the SNR 

model III is very similar to the SNR architecture in the water-filling scheme, i.e., 
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1,...,1;,1, −=≥ + LjSNRSNR jj HH , except there is no guarantee that 

1,...,1;1 −=≥ + Ljpp jj . 

6.2.4 Switching Between Different Power Allocation Schemes 

In general, none of the three SNR models maximizes the ergodic capacity 

for all values of system parameters ρ , γ , and LSNR . (this can be seen in the 

simulations below.) The designer may choose from different power allocation 

schemes with the metric of ergodic capacity constrained by a maximum 

allowable SNR loss (relative to ρ ) on the weakest eigenchannel, denoted SNRδ  in 

dB. SNRδ  can also be written in terms of the minimum allowable SNR imposed on 

the weakest eigenchannel, * (dB)LSNR , as (dB)(dB)(dB)*

SNRL δρSNR −= . The 

designer picks SNRδ  according to the desired capacity and SER system 

performances, i.e., capacity and SER are traded off through this parameter. 

The different power allocation schemes for selection are from: the three 

SNR models I / II / III; the water-filling schemes applied to different number of 

eigenchannels, 2≥L ; and the dominant eigenmode transmission. The selection 

procedure is as follows. For each value of SNRδ , the best power allocation 

scheme, along with the best choice for L  and γ  that achieves the highest 

information rate, is selected from the Capacity– LSNR  plane to be to the right of 

(dB)(dB)(dB)(dB) *

SNRLL δρSNRSNR −=≥ . This selection guarantees that the 

average SNR loss on each eigenchannel would be smaller than SNRδ .  
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6.3 Simulation Results 

6.3.1 Capacity Results 

To evaluate the performance of the three proposed SNR models 

described in section III, a 22× , a 33×  and a 44×  MIMO system are simulated, 

although the proposed design approach is applicable to any MN ×  MIMO 

system. In addition, the capacity of water-filled eigen-MIMO, and of dominant 

eigenmode transmission, are included in the graphs as benchmarks.  

The capacities of a 44×  MIMO system and the corresponding SNR 

imposed on the weakest eigenchannel, ][ , HLL SNRESNR = , are illustrated in 

Figure  6-2 and Figure  6-3 respectively, for 105.0 ≤≤ γ  and 20=ρ dB. Using the 

strongest two eigenchannels (i.e., 2=L ), the maximized capacity with the SNR 

models III and II yield the same result as of SNR model I for 3.0~>γ . For small 

values of 2.0~<γ , the capacity with SNR models III and II become within 0.1 

bits/channel-use of the optimal water-filled capacity (typically this is the case in a 

MIMO system with 3≥r ). SNR model II achieves the highest capacity among the 

three SNR models for fixed system parameters γ  and L .   

As expected, the capacity results are bounded by those obtained via full 

eigen-MIMO (water-filling) and dominant eigenmode transmission. These results 

are  sensitive  to  the  choice  of γ ,  as  demonstrated  in  Figure  6-2.  The  same 

situation holds for the LSNR  results of Figure  6-3. This sensitivity is beneficial. It 

makes   it   possible   to   select  the  capacity  and  the  corresponding  allowable  
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Figure  6-2   The ergodic capacity (in bits per channel use) as a function of γ  for a 44×  

MIMO system using different SNR constraint models and 20=ρ dB 
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Figure  6-3  The  output  SNR posed on the weakest eigen-channel, LSNR  in dB, as a 

function of γ  for  a 44× MIMO system using different SNR constraint models 

and 20=ρ dB 
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maximum SNR loss imposed on the weakest eigenchannel, by appropriately 

choosing γ  along with the SNR model. 

The information in Figure  6-2 and Figure  6-3 can be represented in 

another way. In fact, given an SNR model, each γ  value constitutes a point in 

the Capacity– LSNR  plane. Figure  6-4 and Figure  6-5  illustrate  the  resultant 

ergodic capacity versus LSNR  for a 44×  and a 3 3×  MIMO systems at a specific 

receiver  SNR, 20=ρ dB,  respectively. For  a  given LSNR , the capacity obtained 

under SNR model III outperforms that from SNR models II and I for the same 

number of used eigenchannels, although capacities with SNR models III and II 

converge  for  small  values  of  γ   (e.g., 12.0≤γ  when 4=L , and 25.0≤γ  when 

3=L  in a 44× system). Still, the capacity results of all the SNR models fall below 

the  optimal water-filled eigen-MIMO capacity for the same L . The reason is that, 
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Figure  6-4  The ergodic capacity – LSNR  plot for a 44×  MIMO system with 20=ρ dB 
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Figure  6-5  The ergodic capacity – LSNR  plot for a 33×  MIMO system with 20=ρ dB 

 

unlike the water-filling scheme which discards the weakest eigenchannels, all of 

the available (from the constrained set) L  eigenchannels are used within the 

three presented SNR models at all times (i.e., regardless of the ratio of 

eigenvalues).  

It turns out that none of the power allocation schemes (the three SNR 

models I / II / III, water-filling with a constrained number of deployed 

eigenchannels, and dominant eigenmode transmission) maximizes the capacity 

for all values of ρ  and SNRδ . But for a given choice of SNRδ , the maximum 

capacity is achieved via the presented selection (section  6.2.4) from these 

different schemes. Some examples are provided in Table 1 for a specific SNR, 

viz., 20=ρ dB. Details of how the simulations are undertaken for the selection 

procedure are provided in Appendix 1. 
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Table  6-1   Selected system configuration for different values of SNR loss SNRδ (dB) for a 

44×  system with 20=ρ dB 

 

(dB)SNRδ  Selected  
Model 

Ergodic capacity 
(bits per channel use) 

(dB)LSNR  γ  

-8 dominant eigenmode trasns. 9.9 29.9 N/A 

- 4.7  SNR model I / II / III, 2=L  16.33 24.7 0.97 

- 4 SNR model I / II / III, 2=L  16.50 24 0.62 

-1  –  -3 water-filling, 2=L  16.58 23.42 N/A 

0 SNR model III, 3=L  19.79 20 0.79 

1 SNR model III, 3=L  20.43 19 0.27 

2 SNR model III, 3=L  20.63 18 0.21 

3 – 6 water-filling, 3=L  20.98 17.12 N/A 

10 SNR model III, 4=L  20.98 17.12 N/A 

12 SNR model III, 4=L  21.16 9 0.008 

13 water-filling, 4=L  22.26 7.48 N/A 

 

From Figure  6-4 and Figure  6-5, the dominant eigenmode transmission 

has the lowest SNR loss, )][(log10 max10
dom λδ ESNR −= , among all schemes. However, 

with 2≥L , the SNR loss SNRδ  is lower bounded by a value that is achieved by 

setting 1=γ  (equal SNRs of all eigenchannels) within any of the SNR models I / 

II / III, using the first two strongest eigenchannels ( 2=L ). This is proved in 

Appendix 2 and also can be seen from Figure  6-4 and Figure  6-5. Since in this 

chapter the interest is in using more than one eigenchannel ( 2≥L ) in order to 

maximize capacity, so the associated minimum possible value for SNRδ  that can 

be set within the algorithm (selection procedure) is of particular interest and is 

denoted as bound

SNRδ . The value of bound

SNRδ  depends on the various system 

parameters such as ),min( NMr = (e.g., for a 44×  system, the smallest choice of 

SNRδ  is approximately -4.7dB, whereas in a 33×  system 8.1bound −≈SNRδ dB, and in a 

22×  system 96.3bound +≈SNRδ  dB). We note that for bounddom

SNRSNRSNR δδδ ≤≤  the only 

possible scheme is dominant eigenmode transmission.  
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For different values of the average receiver SNR, ρ , Figure  6-4 and 

Figure  6-5 would be different set of curves. So for a given SNRδ , the selection 

depends on ρ . Among the three SNR models, model III yields the highest 

capacity, as seen in the right half plane given by 

(dB)(dB)(dB)(dB) *

SNRLL SNRSNR δρ −=≥  for the same L . Thus, the selection 

procedure does not need to include SNR models I and II, and can draw from just: 

SNR model III; water-filling with an appropriately selected number of deployed 

eigenchannels; and dominant eigenmode transmission. In addition, with 2=L , 

the highest possible capacity that is achieved to the right of 

(dB)(dB) *

LL SNRSNR ≥ , is the same via any of the three SNR models. Therefore, 

going with SNR model I is preferable when 2=L , as it is the simplest. 

Figure  6-6, Figure  6-7, and Figure  6-8 are plots of the maximum capacity 

from selection in a 44× , a 33×  and a 22×  MIMO system, respectively, 

constrained with different choices of SNRδ  for 300 −=ρ dB. In general, for larger 

values of SNRδ , a system with higher capacity is expected. This is because of the 

trade-off between the capacity and minimum allowable SNR. The described 

approach offers a configuration that achieves the highest capacity for a maximum 

SNR loss allowed on the eigenchannels. The position of the capacity between 

the upper and lower capacity bounds can be controlled by appropriately setting 

the SNR model along with the parameter characterizing it. 
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Figure  6-6   The maximum ergodic capacity achieved via selection in a 44× MIMO system 

constrained with different choices of SNRδ  for 300 −=ρ dB 
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Figure  6-7   The maximum ergodic capacity achieved via selection in a 33× MIMO system 

constrained with different choices of SNRδ  for 300 −=ρ dB 
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Figure  6-8   The maximum ergodic capacity achieved via selection in a 22× MIMO system 

constrained with different choices of SNRδ  for 300 −=ρ dB 

 

Some interesting results from Figure  6-6, Figure  6-7, and Figure  6-8 are: 

• In a MIMO system with 2>r  and 0≥SNRδ dB, the capacity curves obtained 

via selection (seen from Figure  6-6 for a 44×  MIMO and Figure  6-7 for a 

33×  MIMO) are upper and lower bounded by the optimal water-filled 

capacity using all eigenchannels ( rL = ) and by the capacity obtained via 

water-filling applied to the first two strongest eigenchannels ( 2=L ), 

respectively. This shows that in MIMO systems with 2>r  there is always 

opportunity to outperform the water-filled eigen-MIMO with 2=L , with an 

allowable SNR loss 0≥SNRδ dB.  

• For bound
SNRSNR δδ ≥  and 2>r , the capacity lower bound decreases to the one 

obtained with the proposed algorithm via any of the SNR models I / II / III 

with 2=L  and bound

SNRSNR δδ = . 
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• In a 22 ×  MIMO system (seen from Figure  6-8), the dominant eigenmode 

transmission is the best scheme for 6≤SNRδ dB and values of SNR less 

that 13~<ρ  dB. 

• With no constraint on SNRδ , the dominant eigenmode transmission yields 

the lower bound on capacity regardless of r (a known result). 

6.3.2 Throughput Results 

Based on the formula provided in  [6.32], the corresponding throughput of 

a MIMO system with the power allocation from the above approach with fixed 

modulation can be calculated. For uncoded D-QAM where D denotes the number 

of points in the signal constellation, the attainable throughput for a single-input 

single-output channel can be given in terms of the block error rate (BLER) for the 

block length of BL symbols as  [6.32] 

[ ] [ ]
BL

SNRSERSNRBLERR )(1.Dlog)(1.Dlog 22 −=−=H  ( 6-31) 

Here, SER  is the probability of symbol error for an AWGN channel with   D-QAM 

modulation and coherent detection, and SNR  is the signal-to-noise ratio per 

symbol. For example, for a uniform, square D-QAM, the SER  is approximated as 

 [6.36] 












−
−≈

1D

3
)

D

1
1(4)(

SNR
QSNRSER  ( 6-32) 

Figure  6-9 illustrates the single AWGN channel throughput penalties for   

D-QAM versus SNR with coherent detection. The associated throughput for a 
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single Rayleigh fading channel are also depicted for the examples of 4-QAM,     

8-QAM and 16-QAM. For each constellation size, there is a zero-capacity region 

and a capacity-saturated region. From Figure  6-9, the ergodic capacity-saturated 

region for 4-QAM occurs for an SNR above about 25 dB. In other words, for 

values of SNR above 25 dB, the single channel ergodic throughput is                  

2 bits/sec/Hz, while at low to moderate values of SNR <~ 25 dB, the single 

channel throughout is lower than 2 bits/sec/Hz and for values of SNR <~ 5 dB, 

the  throughput  is  almost  zero.  
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Figure  6-9  The throughput (solid lines) for uncoded data transmission over a single 
Rayleigh fading channel for the examples of 4-QAM, 8-QAM and 16-QAM. The 
associated AWGN throughputs (dotted lines) are included for comparision. 

 

 Thus in general, the throughput depends on  the constellation size of 

modulation as well as the average SNR of the channel. The same situation holds 

for MIMO throughput. The MIMO throughput is obtained by summing the 
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eigenchannel throughputs which are governed by their SNRs. For example, for 

uniform square D-QAM, the throughput of a MIMO system (with a fixed 

channel H ) is the sum of the throughputs of the eigenchannels:- 
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 ( 6-33) 

where iii pMSNR λρ opt)/(=  is the output SNR per symbol on the  ith eigenchannel 

with opt
ip  obtained from the presented algorithm. Figure  6-10 presents the 

resulting throughput for a 22×  MIMO system with 4-QAM and the different power 

allocation schemes. Here, the SNR region is for the throughput being lower than 

the limiting 44log2 2 =  bits/sec/Hz, but approaching this limit for high SNR.  
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Figure  6-10 The throughput achieved via selection in a 22 ×  MIMO system with the power 
allocation from the presented algorithm and QAM 
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The  power  allocation  obtained  via the presented optimization problem is  

not optimum for the throughput maximization because the optimization is based 

on the information-theoretic capacity formula rather than throughput. However, it 

turns out that the resulting throughput shows similar behavior to the capacity (see 

Figure  6-6 - Figure  6-8) in the sense that lower throughput (but better SER 

performance) is realized with a smaller SNRδ . The discontinuities in the throughput 

curves result from the selection nature of the design approach. 

6.3.3 Overall System SER Performance 

An important aspect of the above design approach is that the resulting 

SER performance is better than that of water-filling and using digital modulation 

(QAM). This is expected (because the water filling does not account for error 

performance and so the SER is “out of control”) and this error performance 

improvement is quantified below. The design is simulated with independent QAM 

signals transmitted over each of the eigenchannels. The overall SER can be 

defined as 

∑

∑

=

=
∆

=
r

i

r

i

i

i

1

1

eleigenchannoversymbolsdtransmitteof#

eleigenchannoversymbolsdetectedcorrectlyof#

SER  ( 6-34) 

 

which is general in the sense that the number of deployed eigenchannels in the 

summations may be smaller than r . The actual number depends on the type of 

power allocation scheme used. For example, with the dominant eigenmode 

transmission, only the first eigenchannel contributes and 1=r .    
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The overall SER results for a 22 ×  and a 33×  system are illustrated in  

Figure  6-11 and Figure  6-12. Also depicted are the SER curves associated with 

each of the eigenchannels when water-filling is used. Including these individual 

eigenchannel performance curves is useful since they illustrate how the overall 

SER performance of the system deteriorates with the weakest eigenchannel. 

(With adaptive modulation, using higher modulations for the stronger 

eigenchannels,  the  individual  SER  performance of the higher eigenchannels is 

worse than using fixed modulation and as a result the overall system SER 

performance with adaptive modulation is worse than that of using fixed 

modulation. But the capacity with adaptive modulation is higher than for fixed 

modulation of course.)  Based  on  the above overall SER metric, water-filling has  
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Figure  6-11  The overall SER results of a 22×  system using different power allocation 
schemes and QAM 
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the worst overall SER performance and the dominant eigenmode transmission is 

best.  

As with the throughput, the SER curves have discontinuities. Because of 

the selection process, several SER curves for different values of SNRδ  may lie 

together for some SNR regions. For example, in Figure  6-11, the curves tagged 

with dB6=SNRδ , dB5.4=SNRδ , and dB96.3=SNRδ  lie on the SER result of dominant 

eigenmode transmission for low to moderate SNR (in particular, dB13~<ρ  for 

dB6=SNRδ , and dB16~<ρ  for dB96.3=SNRδ ). A similar case is also seen from 

Fig 12 where the curves tagged with various values of dB0≥SNRδ , partially lie on 
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Figure  6-12  The overall SER results of a 33×  system using different power allocation 

schemes and QAM 
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the result of water-filling scheme with 2=L  (e.g. dB6~>ρ  for dB0=SNRδ ; 

dB0≥ρ  for dB3=SNRδ ; and dB23~<ρ  for dB6=SNRδ ). 

The SNR-constrained design is the reason that the overall SER 

performance is better than that of eigen-MIMO water-filling. For example, in a 

22×  system with dB4≈SNRδ , the difference between SER curves (the error 

performance curve using the design approach) is almost 3 dB for moderate to 

high values of SNR ( dB16~≥ρ ). This improvement is at the expense of a loss of 

just 0.3 bits/s/Hz in throughput compared to that of water-filled eigen-MIMO 

(seen from Figure  6-10). The improvement of the SER performance at low values 

of SNR is clear since the selection scheme chooses the dominant eigenmode 

transmission as the best scheme among others for dB16~<ρ  and 

dB4≈SNRδ (this holds for all the three cases dB4≈SNRδ , dB5.4=SNRδ  and 

dB6≈SNRδ  when dB13~<ρ ). Here, there is only a very small loss in throughput 

(smaller than 0.1 bits/s/Hz for dB10~<ρ ) relative to that with water-filling power 

allocation. It turns out that the SNR/SER performance of the overall eigen-MIMO 

system can be improved while maintaining its high throughput. 

As another example, in a 33×  system with dB6=SNRδ , the resultant SER 

with the design approach outperforms that of full eigen-MIMO water-filling by 4 

dB at high SNR, dB23~≥ρ . This improvement in SER is at the expense of a 

loss of 2.5 bits per channel use in the capacity (seen from Figure  6-7) compared 

to that of water filling (with no error performance constraint). At low to moderate 

values of SNR, the advantage of the design approach is highlighted since a large 
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improvement in SER – equivalent to more than 15 dB change in SNR for 

SER~10-3 - is observed. Here the water-filling with 2=L  is selected as the best 

scheme and there is only a modest loss in capacity (smaller than 1 bit per 

channel use for dB15~<ρ ) relative to that of optimal eigen-MIMO.  

The presented design approach makes it possible to configure a reliable 

system with high capacity (i.e., optimal capacity, suboptimum throughput, and 

actual capacity not addressed) and manage the trade-off between the capacity 

(and the throughput which has similar behavior) and error performance. The SNR 

loss on the eigenchannels can be associated with the overall SER performance. 

Some form of error correcting coding would be expected in a practical system, 

but has not been included here. The use and allocation of FEC complicates the 

optimization of actual capacity, and such an optimization also depends on the 

implementation detail of the protocol, etc. By using the above design approach, a 

robust basic configuration for the fixed modulation system can be established. 

For example, with knowledge of the receiver SNR, desired throughput and SER 

figures such as Figure  6-10 (for throughput) and Figure  6-11 and Figure  6-12 (for 

SER) define a basic design configuration with power allocation. 

6.4 Summary and Conclusions 

In this chapter, an eigen-MIMO system with fixed modulation on a fixed 

number of eigenchannels is described and analyzed. The configuration allows 

control of the tradeoff between the throughput (viz., throughput of correctly 

detected bits that could be achieved with an idealized coding system) and the 

reliability in the form of uncoded SER performance. A design approach has been 
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presented. The dependence of the throughput on the average receiver SNR ( ρ ) 

and the power allocation over the eigenchannels is determined by simulation. 

Since there is no exact analytical formulation for throughput, the design basis is 

the maximization of constrained capacity followed by selection between different 

power allocation schemes. These schemes comprise the power allocation form: 

the three presented SNR constraint models; water-filling with an appropriately 

fixed number of deployed eigenchannels; and dominant eigenmode transmission. 

The approach yields optimal capacity, but suboptimum throughput.  However, the 

throughput turns out to be high in the sense that its behavior follows the trend of 

the capacity. 

Small MIMO systems are evaluated, having the following performance tie-

points. With more than two eigenchannels (e.g., in a 33×  or a 44×  system, etc.), 

the resulting optimum capacity is upper bounded by the full eigen-MIMO (water-

filled) capacity, and lower bounded by the capacity obtained via the capacity 

optimization for the strongest two eigenchannels with an equal SNR constraint, 

an intuitively expected result. In particular, for a system with a minimum 

eigenchannel SNR less than ρ  (in the notation of the chapter, the maximum 

allowable SNR loss is dB0≥SNRδ ), the capacity from the three SNR models can 

outperform the water-filled capacity applied to the strongest two eigenchannels. 

For a 22×  system, the dominant eigenmode transmission is the best choice for 

an SNR loss dB6≤SNRδ  and for a receiver SNR of dB13~<ρ . The throughput 

follows similar behavior to the capacity in the sense that lower throughput (but 

better SER performance) is realized with a smaller SNRδ . For example, in a 22×  
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system with dB4≈SNRδ , the difference between SER curves is almost 3 dB for 

moderate to high values of receiver SNR, viz., dB16~≥ρ . At lower SNRs, the 

advantage of the design approach is more emphasized since a large 

improvement in SER is possible with only a very small loss in throughput (smaller 

than 0.1 bits/s/Hz for dB10~<ρ ) relative to that with water-filling power 

allocation. This demonstrates that the SNR/SER performance of the overall 

eigen-MIMO system can be improved while maintaining its high throughput, by 

using the presented power allocations. 
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APPENDICES 

Appendix 1 

The simulation for the design approach is depicted by the flowchart in 

Figure  6-13. It has two phases, and both of these are undertaken in an offline 

mode, so the calculations do not need to be made online, i.e., for maintaining the 

link operation. 

1) In the first phase, the ergodic capacity along with the average SNR on 

the lowest eigenchannel, LSNR , associated with each of the power allocation 

schemes (three SNR model I / II / III; water-filling; and dominant eigenmode 

transmission) are evaluated for different values of 10 ≤< γ  and rL ,...,2= . This 

requires discretizing the interval ]10(  into Γ  equal distinct segments (here, Γ  

denotes the discrete set consisting of Γ∈kγ – the value chosen from the kth 

segment – with set size Γ )  and calculating the instantaneous capacities and the 

instantaneous SNRs on the lowest eigenchannel for various discrete values kγ  

and L . As an example, LkC
,II,model γ

H  and L

L,
kSNR
,II,model γ

H  (seen from flowchart in 

Figure  6-13) stands for the instantaneous capacity and the instantaneous SNR 

on the lowest eigenchannel respectively, associated with the SNR model II using 

the  first  L  eigenchannels and parameter value kγ . The  ergodic  capacities  and  
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Figure  6-13  Flowchart of simulation 
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the average SNRs on the lowest  eigenchannel  are  calculated  by averaging the 

instantaneous capacities, e.g. LL kk CC
,II,model,II,model

avg
γγ

H=  ; 

L

L,

L

L
kk SNRSNR

,II,model,II,model
avg

γγ
H= .  The Capacity– LSNR  plots (Figure  6-4  for  a 

44×  MIMO; and Figure  6-5  for  a 33×  MIMO) are the output of the simulations 

in phase 1. These simulation results are used in the second phase. 

2) The designer first chooses a value for the maximum allowable SNR 

loss on eigenchannels, SNRδ . The choice is according to SER system 

performance which is required by a coding scheme, and this is traded off against 

the desired throughput performance. Next, given ρ  and SNRδ , the best power 

allocation scheme is selected using the metric of highest capacity. Based on the 

type of the selected scheme, the best value for kγ  ( optγ ) and/or the optimum 

number of eigenchannels, optL , are provided as the output of second phase of 

simulation. Once the best scheme (along with parameters optγ  and optL ) is 

identified, the designer can deploy the power allocation for online operation from 

the selected best scheme. 
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Appendix 2 

Here it is shown that SNRδ  (in dB) cannot be smaller than a specific value 

that is achieved by setting 1=γ  (equal SNRs of all eigenchannels) within any of 

the presented SNR models applied to the first two strongest eigenchannels.  

Since (dB)(dB)*

SNRLSNR δρ −= , the case that maximizes *

LSNR  is sought. 

For an MN ×  MIMO system with 2),min( ≥= NMr , it is possible to choose from 

a different number of eigenchannels, rL ≤≤2 . The maximum of 

LLL pMSNR λρ )/(, =H  is achieved for the largest possible values of Lp  and Lλ . 

Since Lλλλ ≥≥≥ L21 , the largest possible value for Lλ  is 2λ . It is likely that Lp  

is the largest when the total power is distributed between only the first two 

strongest eigenchannels. This means that the largest LSNR  is associated with the 

case with 2=L , i.e. 2maxarg , =HL
L

SNR . Now the H,2=LSNR  maximization 

problem can be written as 

Mpp

SNRSNR

p
M

SNR
pp

=+

≤

=

21
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22,2
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tosubject

maximize
21

HH

H λ
ρ
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Equivalently, ( 6-35) can be rewritten as 

Mpp

p
M

p
M

ppf

p
M

ppf
pp

=+

≤−=

−=

21

1122212

22211
,

0),(tosubject

),(minimize
21

λ
ρ

λ
ρ

λ
ρ

 
( 6-36) 

 



 

 219 

where 21, ff  are convex real functions of 1p  and 2p . Following the same 

procedure described in section  6.2.2, the inequality constraints in ( 6-36) can be 

made implicit in the objective as ( ∞→t ) 

Mpp

p
M

p
M

p
M

t
pp

=+









−−−

21

22111022
,

tosubject

logminimize
21

λ
ρ
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λ
ρ

 ( 6-37) 

Next, by eliminating the equality constraint, the problem ( 6-34) is reduced 

to 
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Finally the value of 2p  that minimizes )( 2pϕ  is obtained by setting 

0
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With these values of 1p and 2p , HH ,2,1 SNRSNR =  which is satisfied by 

setting 1=γ  within any of the presented SNR models I / II / III. 
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7: ADAPTIVE RS CODED MODULATION FOR 
PRACTICABLE CAPACITY MAXIMIZATION IN EIGEN-
MIMO 

Adaptive coded modulation (ACM) is for spectral efficiency and 

robustness in digital transmission schemes, e.g.,  [7.1]- [7.16], and works by 

adapting the transmission parameters (transmitted power, modulation rate, 

coding rate, spreading factor, etc.) to match a transmission rate to the current 

channel conditions. Some examples are as follows. In  [7.2]- [7.3], trellis coded 

adaptive MQAM is considered where the system is optimized for maximal 

average spectral efficiency while maintaining the instantaneous bit-error-rate 

(BER) below a target value, BER0. With perfect CSI, this design shows an 

effective coding gain of 3 dB relative to uncoded adaptive MQAM, for a simple 

four-state trellis code (higher coding gains are possible with a more complex 

trellis) in SISO fading channels. In  [7.4]- [7.5], pilot symbol assisted modulation 

(PSAM) is used for channel estimation, and the impact of the imperfect CSI on 

trellis coded modulation is investigated. In  [7.6] a MIMO system is analyzed 

where perfect but delayed CSI (i.e., outdated) is applied. No pilots are used, and 

the BER constraint is subject to instantaneous BER and average BER, 

respectively. 

Examples of ACM schemes based on low-density parity-check (LDPC) 

codes can be found in, e.g.,  [7.7]- [7.12]. The asymptotic performance of LDPC 

codes, optimized for multi-level coding, is analyzed in  [7.9]. LDPC codes are 
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promising candidates for channel codes because of their capacity-approaching 

performance  [7.10]. However, ACM based on LDPC typically leads to high 

system complexity because many encoders/decoders (CODECs) for dedicated 

LDPC codes are needed to support a wide range of transmission rates. As a 

result, achieving flexible throughput is not currently attractive for the large 

required chip size. Complexity reduction through using one CODEC is also 

considered in  [7.11]- [7.12].  

There are many other specialized schemes (e.g.  [7.13]- [7.15] based on 

turbo and convolutional coding), too numerous to include here. Despite the large 

body of literature on MIMO capacity, there are practical aspects which justify 

further investigation since they can lead to new capacity realization techniques. It 

appears that no previous work has formally considered adaptive Reed-Solomon 

(RS) coding for improving the spectral efficiency  [7.16]. RS-ACM schemes are 

instead typically presented for reliability enhancement, e.g.  [7.17]- [7.19]. RS 

codes are widely applied in digital communications, digital media, and memory 

storage systems. They also maintain their presence in newly developed 

communications systems such as WiMAX and DVB. Owing to their ability to 

correct burst errors, RS codes are still preferred where low delay and robust 

communication are high priorities  [7.20].   

 In this work  [7.21], an adaptive coded 2D-QAM scheme based on RS 

codes is presented for spectral efficiency improvement in eigen-MIMO. The RS 

codes closed form error formula is convenient for optimizing the modulation 

constellation size(s), code rate(s) and the power allocation over eigenchannels, 
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in order to achieve the highest instantaneous practicable capacity (data 

throughput). The optimization is here constrained by the total transmitter power. 

The formulation is new, reveals interesting capacity behavior, and allows 

comparison between inner and outer coding quantifying the improvement in 

practicable capacity from the inner-coding architecture. In the simplest, but 

topical example of a 22×  system, inner coding shows an effective coding gain of 

4.5 dB over uncoded adaptive modulation with water-filling power allocation.  

This chapter extends the work in  [7.16] which considers a system with RS 

coding and fixed common modulation over eigenchannels. Accurate 

approximations are also given here for the overall BER using the presented ACM 

scheme for a single Rayleigh fading channel and a 22×  system, via nonlinear 

least squares curve-fitting. These error curve expressions are useful for quick 

assessment of the system error performance. Here, use is made of these error 

curves for selecting between different system configurations (different 

combinations of CODECs constrained with fixed number of deployed 

eigenchannels, and power allocation schemes. This includes the presented ACM 

applied to dominant eigenmode transmission) so as to achieve the highest 

practicable capacity for a given average or instantaneous output BER. This 

selection procedure is presented in the simulation section below. 

The problem considered here is different to previous works on adaptive 

modulation, e.g.,  [7.1]- [7.6], as: 

1) The adaptive schemes in  [7.1]- [7.6] are to maximize the average 

spectral efficiency (weighted sum of the throughput associated with different 
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modulations), whereas the algorithm here maximizes the instantaneous eigen-

MIMO throughput.  

2) Here, the total power at the transmitter is fixed for each MIMO channel 

realization, which favors regulatory arrangements; whereas in  [7.1]- [7.6], variable 

power transmission is considered (at each channel realization, the power at the 

transmitter changes according to the channel conditions although the average 

transmit power is fixed). Up to now, the variable transmit power schemes are 

mostly designed for single antenna systems channels as in  [7.1]- [7.3] and single-

input multiple-output systems as in  [7.4]- [7.5]. With eigen-MIMO, the challenging 

problem of power allocation over eigenchannels arises. Perhaps because of this, 

previous treatments of power allocation in MIMO have been constrained by fixed 

total transmit power for each channel realization  [7.6],  [7.22]- [7.23].  

3) Unlike in  [7.1]- [7.6], the algorithm presented here is similar to  [7.24]-

 [7.25] in the sense the capacity maximization problem is initially formulated (that 

is, optimization excluding selection between different system configurations 

presented in the simulation section) without constraint on the output BER. 

However, including such a constraint is a straightforward extension of the 

algorithm presented here. The selection procedure presented below addresses 

capacity maximization with a target (i.e., a constrained) output BER. An average 

or an instantaneous BER can be targeted, both of which are treated here. It is 

worth noting that, as an alternative to the presented selection procedure, it is 

possible to initially reformulate the capacity maximization problem to be subject 

to an instantaneous BER, a topic for future work. 
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The rest of the chapter is organized as follows. Section  7.1 describes the 

closed-loop MIMO system model. The problem of adaptive RS coded 2D-QAM is 

addressed in section  7.2, with the simulation results presented in section  7.3 and 

concluded in section  7.4.  

7.1  Closed-Loop MIMO System Model 

As in Figures 5.1. and 6.1, and explained again here for convenience, the 

MIMO channel is a quasi-static, flat block-fading channel with M  transmit and N  

receive antennas. The channel is modeled by a random (fading) distribution 

which remains static over a fading block cycle (starting from the training 

transmission, including the channel estimation, quantization, codeword feedback, 

calculation of the new beamformer, and detection of the received symbols), but is 

independent across different blocks. With perfect channel knowledge at the 

transmitter, improvement of the throughput (practicable capacity) is the focus. A 

transmit filter (beamformer) comprising weights W  is shown in Figure  7-1. At 

each block, the 1×M  data vector (with independent elements) to be transmitted, 

x , is multiplied by the MM ×  weights W , before transmission. Assuming perfect 

timing, etc., in the usual way, the MIMO model is 

x s

v

y

 

Figure  7-1  A closed-loop MIMO system with a transmit beamformer for using channel 
knowledge which is perfectly fed back from the receiver 
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nsHnxWHy +=+=
MM

ρρ
 ( 7-1) 

where  y  is the 1×N  received signal vector, ρ  is the known average SNR at 

each receive antenna branch, H  is the channel matrix  with  )1,0(~)( , CNjiH ,  and 

n ~ )1,0(CN  is the additive noise. The total transmit power constraint is expressed 

as ME
H == ssRss trtr  (note this is different to the variable power transmissions 

of cellular system terminals). Following singular value decomposition, the 

channel matrix H  with rank ),(min NMr =  is written as HVUΛH 2/1=  where V  

and U  are the unitary matrices containing the corresponding input and output 

singular vectors, respectively, and 2/1
Λ  is a non-negative MN ×  diagonal matrix 

with ith diagonal element as 
2/1

iλ  (the positive square root of ith eigenvalue of the 

gram matrix of H ), with eigenchannel gains 1+≥ ii λλ .  So VW =  is the set of 

transmit weights, and H
U  contains the receiver weights, and the overall 

transmission relationship is 

nxΛyUy ~~ 2/1 +==
M

H ρ
 ( 7-2) 

where nUn
H=~ )1,0(~ CN . Since VxxWs ==  and ME

H =sstr , then  

ME
H == xxRxx trtr . Therefore, the MIMO channel is transformed into r  parallel 

eigenchannels with unequal gains and the capacity is the sum of eigenchannel 

capacities governed by their SNRs (for the ith eigenchannel, the SNR is 

iipM λρ )/( , where [ ]
iiip

,xxR= ). The above formulation is written in a general 
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format in the sense that the data to be transmitted over each of the 

eigenchannels can be either uncoded or selected from a modulation and a 

coding set comprising a set of RS codes with different code rates, in order to 

match a transmission rate and to current channel conditions. Furthermore, only 

the first rr ≤≤1  strongest eigenchannels are deployed and the remaining rr −  

weakest eigenchannels are unused. In the formulation here, r  is chosen and left 

fixed, and so the number of deployed eigenchannels is not part of the 

optimization. 

The different arrangements of the CODECs are depicted in Figure  7-2. For 

the  outer  coding  design (Figure  7-2 (b)), one RS code is assigned to the overall  
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Figure  7-2 The use of the first r  strongest eigenchannels with (a) the uncoded 
transmission in MIMO system; (b) the outer coding arrangement of 
encoder/decoder in MIMO system; (c) the inner coding arrangement of 
encoders/decoders in MIMO system 
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serial data, and  here  a  common constellation size and code rate is assigned for 

all of the r  eigenchannels. For the inner coding design (Figure  7-2 (c)), a 

constellation and code rate is assigned to each eigenchannel for each channel 

realization so as to achieve the highest possible MIMO throughput for a given 

receive SNR, ρ . The inner coding has high complexity since at each channel 

realization, the SNR for each eigenchannel is required in order to select the 

constellation sizes and code rates, and the deployment requires a capacity 

overhead. Nevertheless, an “eigen set” of RS CODECs are relatively 

straightforward to implement, considering the inherent high complexity of eigen-

MIMO. 

RS ( cn , ck ) codes are nonbinary cyclic codes with symbols of  2D >  bits 

for  which 220 D +<<< cc nk , where ck  is the number of data symbols being 

encoded and cn  is the total number of symbols in the encoded block. Here, 

conventional RS ( cn , ck ) codes are considered, as  [7.20] 

)212,12(),( DD

ccc tkn −−−=  ( 7-3) 

where ct  is the symbol-error correcting capability of the code with ccc tkn 2=−  the 

number of parity symbols. Requiring correction of at least one symbol error, the 

code can provide 2/)1( −cn  different rates 

2,...,3,1; −== cc

c

c
c nk

n

k
R  ( 7-4) 



 

 232 

Denoting )(i

cR  as  the  code rate  associated  with the  selected RS code 

on the ith eigenchannel, it is possible to select between  uncoded  data or  RS 

coded data  associated  with  different constellation sizes to obtain the optimal 

code rates opt)()2()1( ),...,,( r

ccc RRR  in order to maximize the instantaneous practicable 

capacity.  

The power allocation over eigenchannels also needs addressing. It is 

constrained by the total of the powers allocated to all the deployed 

eigenchannels, recalled as  Mp
r

i i ==∑ = xxRtr
1

, where [ ]
iiip

,xxR= . The 

information-theoretic capacity for a given channel realization, 

∑ += ))/(1(log 2 iipMC λρH
, is maximized by the water-filled power allocated to 

the ith eigenchannel. However, for implementation, where digital techniques such 

as QAM (instead of Gaussian signals), and finite block lengths (instead of 

infinitely long codes), etc., will degrade the capacity from the Shannon limit to the 

practicable possibilities of a digital link, the optimality of the water-filling scheme 

is no longer guaranteed  [7.26]. This motivates the problem of joint power 

allocation and code rate adaptation for the practicable capacity maximization in 

an eigen-MIMO with the total input power constraint. The optimal outer coding 

design is also the special case of inner coding design where )()2()1( ... r
ccc RRR === . 

7.2  Adaptive Reed-Solomon Coded Modulation 

The capacity of a sample realization of the channel is first addressed. The 

ergodic capacity is the ensemble average of the capacity achieved when the 
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optimization is performed for each realization of H , denoted HRER = . (Note 

that the symbol R  here is different to the symbol R  which is a covariance 

matrix.) 

The attainable normalized throughput (practicable capacity) in bits/sec/Hz 

for the RS-coded data on ith eigenchannel can be given in terms of the block 

error rate (BLER) as 

[ ])(1.D )()()( i

ci

i

c

i
SNRBLERRR −=H  ( 7-5) 

where )(i

cBLER  is the  probability of  block  errors  (block-error rate)  associated 

with RS coded QAM2
D −i  data on the ith eigenchannel with coherent detection. 

With hard decision decoder, )(i

cBLER  (codeword error probability) can be given as 

jnj
n

tj

i

cii

c

i
c

ii

i
c

i
c

i
PP

j

n
SNRPBLER

−

+=

−









≈ ∑

)(

)(

)(

)1()())(( DD

1

)(

)(

D

)(  ( 7-6) 

where 
i

PD  is the probability of symbol error of uncoded QAM2
D −i  modulation. 

For example, for uniform QAM2
D −i , )(

)(
D

i
SNRP

i
 is approximated as 












−
≈

12

)/(3
4)(

D

)(

D
ii

iii pM
QSNRP

λρ
 ( 7-7) 

with ii

i
pMSNR λρ )/()( =  being the SNR per symbol in the ith eigenchannel. 

Equation ( 7-5) assumes perfect error detection with no error correction, wherein 

blocks are correctly detected if and only if codeword is error free.  
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Figure  7-3 Single AWGN channel practicable capacity penalties for uncoded and RS coded 
data transmission with different code rates for 8-QAM, 16-QAM and 32-QAM 

                   Only the capacity results for some of the code rates are included.  

 

Figure  7-3 illustrates the single AWGN channel practicable capacity 

(throughput) penalties for uncoded and RS coded data transmission with different 

code rates for the examples of 8-QAM, 16-QAM and 32-QAM. There is a zero-

capacity and a capacity-saturated region for each modulation with a specific 

coding rate. The impact of increased coding strength (larger ct ) is to decrease 

the saturated value of the curve and shift its transition to the left. The figure 

quantifies how stronger codes give better performance at low SNR and poorer 

performance at high SNR.  

 With a predefined power allocation scheme such as water-filling or equal 

power, a look-up-table (LUT) can be used with the adaptive coding. In these 

cases, for each eigenchannel, selection would be performed among different 
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candidates of transmission schemes (uncoded and coded data with different 

code rates associated with different constellation sizes) in a standard optimum 

way so that the corresponding eigenchannel practicable capacity remains as 

close as possible to the Shannon limit of the single AWGN channel. The LUT is 

set up by identifying which transmission scheme achieves the highest practicable 

capacity for a given SNR and during operation, the LUT would use of the known 

SNR over each eigenchannel. However, this LUT approach is not applicable for 

the architecture here because the SNRs on different eigenchannels are unknown 

until the optimal power allocation is obtained via the optimization problem 

described below. Maximization of the practicable capacity is from joint 

optimization of power allocation and code rate over the eigenchannels. 

Since the RS ),( cc kn  code can provide )12(2/)1( 1D −=− −
cn  different code 

rates, including uncoded data transmission, there are 

1D22/)1(12/)1( −=+=+− cc nn  different candidates for 3DQAM2 ;
D ≥− . Confining 

the modulation set to { }7DD2QAM2D =≤≤− ∗  (e.g., the modulation set 

consists of 4-QAM, 8-QAM, 16-QAM, 32-QAM, 64-QAM and 128-QAM), the total 

number of transmission candidates over each eigenchannel would be ∑ =

−
*D

3D

1D2 , 

plus uncoded 4-QAM. It follows that there are 
r






 += ∑ =

−
*D

3D

1D21ξ candidates for 

a MIMO system with  r   deployed eigenchannels when inner coding design is 

used. For outer coding design, there are only ∑ =

−+=
*D

3D

1D21ξ  candidates.  
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Denoting kR ,H  and opt

kp  as the instantaneous MIMO practicable capacity 

and the optimal power allocation associated with the kth candidate of the 

transmission scheme (note k is different to ck  which denotes the number of data 

symbols being encoded by a RS code), the best transmission scheme index 

along with the associated optimal power allocation is obtained as 

)(maxarg),( opt

,

,...,1

optopt

opt kk

k

Rk
k

pp H
p

ξ=

=  
( 7-8) 

where opt

kp  denotes the optimum power allocation associated with kth 

transmission scheme candidate.                    

The complexity in the above search can be reduced by omitting those 

transmission candidates which are always worse than that of others in 

practicable capacity. For example: the single AWGN channel capacity of 

uncoded 4-QAM as well as the resultant capacities of RS coded 16-QAM with 

7,5,3,1=ck  are fully covered by those of RS coded 8-QAM (seen from Figure 

 7-3); and the capacity of uncoded 16-QAM transmission is worse than those of 

RS coded 32-QAM transmission for all values of SNR. As a result, the RS 

13,11,9;),15( =cc kk  codes based on 16-QAM are the only three RS codes that 

achieve the highest single AWGN channel throughput for a range of SNR.  

A similar trend holds for higher constellation sizes at well.  The RS 

21,...,3,1;),31( =cc kk  codes based on 32-QAM yield lower single channel 

practicable capacities than those obtained with RS coded 16-QAM for all values 

of  SNR.  Also, the  uncoded  32-QAM single channel capacity is less than that of 
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Table  7-1 RS coded QAM2
D − candidates for transmission over each eigenchannel in the 

efficient search procedure 

 
 

 transmission schemes based on QAMD2 −           # of trans. schemes based on QAMD2 −  

8-QAM 5,3,1;),7(RS =cc kk  38 =m  

16-QAM 13,11,9;),15(RS =cc kk  316 =m  

32-QAM 29,27,25,23;),31(RS =cc kk  432 =m  

64-QAM 61,59...,,51,49;),63(RS =cc kk  764 =m  

128-QAM 125,123,...,107,105;),127(RS =cc kk +  uncoded 128-QAM 12128 =m  

 

RS coded 64-QAM. It follows that the four RS 29,27,25,23;),31( =cc kk  codes 

(based on 32-QAM) are the only transmission scheme candidates. Table  7-1 lists 

the RS codes for the more efficient search for this example, and is based on the 

assumption that the modulation set is confined to { }7DD3QAM2 *D =≤≤−  with 

8-QAM and 128-QAM being the lowest and largest constellation sizes, 

respectively. Denoting Dm  as the efficient number of transmission schemes 

candidates based on QAM2D − , there are ∑
∗

=

D

3D Dm  transmission candidates for 

each eigenchannel. Consequently, the total number of transmission candidates 

for a MIMO system with r  deployed eigenchannels and inner coding, is 

r

m 




= ∑

∗

=

D

3D Deffξ . With outer coding, this number reduces to ∑
∗

=
=

D

3D Deff mξ .  

Relative to the full search with 7D* = , this more efficient search has its 

complexity reduced by 
20

1eff ≈
ξ

ξ
 with inner coding design (

13

3eff ≈
ξ

ξ
 with outer 

coding).   
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The last step is to show how the optimal power allocation can be found for 

each of the transmission scheme candidates. In the following, as an example, the 

problem is formulated of finding the optimal power allocation when fixed RS 

coded QAM2
D −i ; ri ,...,1=  with code rates ),...,,( )()2()1( r

ccc RRR are assigned to the 

eigenchannels. This configuration is assumed to be the kth power allocation 

candidate, opt

kp  (to be used in ( 7-8)) so the subscript k is added in the formulas 

below. For a chosen number of deployed eigenchannels, r ,  the  MIMO  

practicable capacity (with a fixed channel H ) is the sum of the throughputs 
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with )( )(

D

i
SNRP

i
 given in ( 7-7). In ( 7-9) there is one equality constraint, 

M
r

i i
p =∑ =1

. This needs to be eliminated so that resulting unconstrained problem 

can be solved. We can eliminate 1p  (for example) using the parameterization 

∑ =
−=

r

i ipMp
21 . The reduced problem is then 

∑ ∑

∑∑
∑

=

−

+=

−

==

+=



























−
−











−







−+

























−

−
−×

























−

−









−

=

r

i

jn

ii

j

ii

n

tj

i

c

i

i

c

jn
r

i i

j
r

i i
n

tj

c

c

r
ppp

i
c

ii

i
c

i
c

c

c

c

r

pM
Q

pM
Q

j

n
R

pMM
Q

pMM
Q

j

n
R

ppp

2
DD

1

)(

)(

D

12

D

12

1

)1(

1

)1(

32
,...,,

)(
)(

)(

)1(

11

)1(

)1(

32

)
12

)/(3
(41)

12

)/(3
(41D

)
12

))(/(3
(41)

12

))(/(3
(41D

),...,,(maximize

λρλρ

λρλρ

ψ

                              

                                                                                                                       ( 7-10) 



 

 239 

The elimination of the equality constraints (and reconstructing the solution 

of the original problem from the solution of the transformed problem) involves 

standard linear algebraic operations. Thus the problems ( 7-9) and ( 7-10) are 

equivalent. A condition for a point ),...,,( optopt

3

opt

2 rppp  to be optimal is 

( ) 0),...,,(
optopt

3

opt

2 =∇ rpppψ  ( 7-11) 

where ).(∇  denotes the gradient operator. Thus solving the unconstrained 

maximization problem ( 7-10) is the same as finding the solution of ( 7-11), which 

is a set of 1−r  equations in the 1−r  variables rppp ,...,, 32 . There is no analytical 

solution to the optimality problem ( 7-11) and so an iterative technique is used, for 

example using the gradient descent method 

ψµ ∇−=+ )()()1( nn

k

n

k pp  ( 7-12) 

is used, where Tn
r

nnn
k ppp ][

)()(
3

)(
2

)( L=p  is the estimated solution at the nth 

iteration. The required derivative uses an approximation of )(xQ  given by  [7.27] 

∑
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−−≈
U
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x
xaexQ

1

12/2

)(  ( 7-13) 

where                               
!)2(

)1(
1

1

uB

A
a

u

uu

u +

+−
=

π
                                                ( 7-14) 

with 98.1=A  and 135.1=B , and for the simulations 10=U  is sufficient. Let  

∑
=

−−=≈
U

u

u

u

x
xaexfxP
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12/

D

2

4)()(  ( 7-15) 

then from ( 7-6), 
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In ( 7-12), )(nµ  is the step size at iteration n, chosen via a backtracking line 

search. In the terminology of iterative methods, the convergence of the gradient 

descent algorithm using the backtracking line search is at least linear  [7.28]. The 

stopping convergence criteria of an iterative algorithm such as ( 7-12) is usually of 

the form εψ ≤∇ , where ε   is small and positive, following the suboptimality 

condition  [7.28]. The method also requires a suitable starting point )0(
kp . Since the 

objective function ),...,,( 32 rpppψ  is not convex, it may have several maxima in the 

work space };0|),...,,{(
21

1

32 MppMppppS
r

j jj

r

r =−≤≤ℜ∈= ∑ =

−  of the iterative 

gradient descent algorithm ( 7-12). The work space S  is divided into G subspaces 

and the algorithm is run within these. For example, with uniform gridding of the 

work space and splitting the interval for jp  into q equal, distinct segments, there 

results, at most, 1−= rqG . The subspace solutions are compared to see which  

one  is  the  global  maxima.  Denoting 
gk S

c

k ∈)0(|)(

p
p   as  the  convergent  point  

associated with the gth segment, the optimum point is 
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ψ                                       ( 7-19)   

In practice, MIMO systems with ( ) 4,min ≤= NMr  are of immediate 

interest, and simulations suggest that for any 4≤r , setting 1−= rq  is suitable for 

the above procedure. Finally, for the kth transmission scheme candidate, 
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We note that for those candidates of transmission schemes which include 

uncoded data transmission over at least one of the eigenchannels, the 

formulation in ( 7-9)-( 7-17) has to be modified ( cR  cannot simply be set to 1) 

according to [ ]BLi

i

i

c

i
SNRPRR )(1.D )(

D

)()(

i
−=H  where BL  is the block length in 

uncoded symbols (this capacity formulation is presented in chapters 5 and 6 in 

detail) in order to account for the uncoded throughput where it is appropriate.  

7.3 Simulation Results 

For simulations, the modulation set is confined to 

{ }7DD2QAM2D =≤≤− ∗  (the set consists of 4-QAM, 8-QAM, 16-QAM, 32-

QAM, 64-QAM and 128-QAM) and the presented adaptive RS-coded modulation 

is applied to the examples of a single Rayleigh fading channel, and a 22×  MIMO 

system with different system configurations (different arrangements of CODECs 
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with different number of deployed eigenchannels 2≤r  and power allocation 

scheme); although the algorithm is applicable to any MN ×  MIMO system. The 

deployment of different numbers of eigenchannels in MIMO includes the case of 

ACM applied to only the eigenchannel with the maximum gain (so 1=r ), referred 

to as dominant eigenmode transmission. In this case, as well as transmission 

over a single Rayleigh fading channel, the LUT-based approach can be used as 

an alternative to the presented ACM algorithm. This is because at each channel 

realization, all the fixed available power at the transmitter is dedicated to a single 

channel and the SNR on the channel is known before searching for the best 

transmission candidate with the highest capacity. Therefore, the power allocation 

problem is discarded, and the presented algorithm and the LUT-based approach 

yield the same result. However, when the number of deployed eigenchannels in 

MIMO is greater than one, the use of an LUT-based approach for the cases with 

a predefined power allocation scheme such as water-filling, would not yield the 

same result as with the presented algorithm (shown below).  

Figure  7-4 illustrates the resulting ergodic practicable capacities for a 

single Rayleigh fading channel. The presented ACM scheme shows an effective 

coding gain of 2 dB relative to adaptive uncoded modulation in a SISO system for 

moderate values of SNR. It is emphasized that the results presented here are for 

the case where the total transmit power at the transmitter is fixed at each channel  

realization.  With  variable  power  transmission,  higher  coding  gain  is 

expected  since  the  power  at   the  transmitter  changes  according  to  channel  
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Figure  7-4  The ergodic practicable capacities resulting from the presented adaptive RS 
coded modulation applied to a single Rayleigh fading channel and a 22 ×  
MIMO system with inner coding design.  

                     The practicable capacities of the uncoded systems are also included. The 
curves use 5000 realizations to approximate the ergodic capacity 

 

conditions. The resulting enhancement in the capacity is from the variable power 

transmission and associated ACM. As noted in the chapter introduction, variable 

power transmission is not considered here since the focus is on power allocation 

with fixed total power at the transmitter.  

In the fixed total transmit power (for each channel realization) case treated 

here, the power allocation over eigenchannels contributes to capacity 

enhancement. The resulting practicable capacities for a 22×  MIMO system with 

outer/inner coding design are presented in Figure  7-4 and Figure  7-5, and the 

associated practicable  capacities  with  water-filling  power allocation are also 
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included. With either of outer and inner coding designs, the maximized capacity 

(with the optimal power allocation) is higher than that from using water-filling 

power  allocation. As  an  example,  the  difference  in  the  respective  capacities 

reaches 0.7 bits/sec/Hz at moderate values of SNR. Alternatively stated, ACM 

with the optimal power allocation increases the capacity by 30% over the case 

where water-filling is used. The results in Figure  7-5 quantify the non-optimality of 

the practicable capacity from using water-filling for the power allocation, for this 

system configuration.  
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Figure  7-5   Comparison of the resulting ergodic practicable capacities with optimal power 
allocation for outer/inner adaptive RS coded modulation with the 
corresponding capacities using water-filling in a 22 ×  MIMO system 

 

The inner coding design outperforms the outer coding design irrespective 

of the power allocation used. For example, for a rate example of 8 bits/sec/Hz, 

the difference in the average SNR requirement is about 1.5 dB. In general, it 
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turns out that the difference between the capacity curves depends on many 

factors such as average SNR at the receiver ρ , power allocation scheme, 

arrangement of CODECs, minimum number of transmit and receive antennas r , 

and number of deployed eigenchannels r . In a 22×  MIMO system, ACM with 

2=r  and inner coding achieves the highest practicable capacity among other 

configurations. It shows an effective coding gain of about 4.5 dB relative to 

uncoded adaptive modulation with water-filling, for moderate values of SNR 

(above 6 dB) typical of wireless systems. Although in the presented algorithm the 

power allocation part cannot be separated from the coding and modulation 

assignment over eigenchannels, the coding gain of  4.5 dB may be intuitively 

viewed as the addition of two gains resulting from: the effect of the ACM scheme 

with non-optimal power allocation applied to uncoded system (3.1 dB gain - the 

difference between the inner coded ACM with water-filling and the uncoded 

system with water-filling); and the correction of the optimal power allocation (1.4 

dB gain - the difference between the inner coded ACM with optimal power 

allocation and the inner coded ACM with water-filling power allocation). 

Although the presented ACM with 2=r  and inner coding offers the 

highest practicable capacity in a 22×  system, the error performance of the 

overall system deteriorates with the weakest eigenchannel. Because of the 

sharply decaying distribution of eigenvalues over eigenchannels  [7.23],  [7.29], 

there is a large difference between the average SNR of the strongest and the 

lowest eigenchannel. For example, in a 22×  system, the difference  between the  
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Figure  7-6   The overall BER performance of the presented adaptive RS coded modulation 
applied to a single Rayleigh fading channel and a 22 ×  MIMO with different 
system configurations.  

                     The individual BER curves associated with each of the eigenchannels are also 
included. 

 

average  SNRs  on  eigenchannels  is  approximately 8.5 dB  when  the  average 

receive SNR  is  20 dB, and this difference increases to 13.5 dB in a 33×  system 

 [7.30]. As a result, a large degradation occurs in the overall system BER 

performance. The overall BER performance of the system (referring to the BER 

of the overall serial data in MIMO) is a measure for comparison among different 

system configurations. The overall BER for a single Rayleigh fading channel and 

a 22×  MIMO using the presented ACM are illustrated in Figure  7-6. The BER 

curves associated with each of the eigenchannels are included since they help to 

understand how the overall BER performance of the system deteriorates. Based 

on the overall BER performance, the use of ACM with dominant eigenmode 
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transmission is the best. This was expected since it is the optimum design that 

maximizes the output SNR.  

The presented ACM yields nearly the same performance with either of 

inner or outer coding design for small to mid values of SNR. However, for large 

values of SNR, the system with outer coding experiences a large degradation in 

overall BER performance. This is because of the assignment of only one 

transmission scheme (constellation size and code rate) to all of the 

eigenchannels with the metric of highest MIMO practicable capacity. Since the 

uncoded 128-QAM transmission yields the highest practicable capacity (of the 

schemes considered) for large values of SNR, it is selected as the transmission 

scheme for all eigenchannels in the outer coding design. As a result, the overall 

BER performance of the system severely deteriorates with the weakest 

eigenchannel transmitting uncoded 128-QAM.       

Accurate  polynomial  approximations  for the overall BER of system using 

the proposed ACM scheme can be found from a nonlinear least-squares curve-

fitting in the form 

∑
Γ

=

=
1

)()()(
i

ib
eiaBER

ρρ  ( 7-21) 

where )(ia  and )(ib ; Γ= ,...,1i  are the (complex-valued) coefficients that can be 

found curve fitting to the simulated overall BER performance of the ACM. The 

approximations are illustrated in Figure  7-7 for 4=Γ , showing the good 

accuracy. The coefficients are given in Table  7-2. These BER expressions are 
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useful for quick assessment of the systems’ error performance. In particular, for 

each system configuration, the minimum SNR can be found at which the average  
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Figure  7-7 The BER approximations for the presented ACM applied to a single Rayleigh 
fading channel and a 22 ×  MIMO with different system configurations.  

                    The dotted lines denote the approximations obtained via nonlinear LS curve 
fitting, whereas the markers represents the results from simulations 

Table  7-2 The coefficients of the BER approximation expression ( 7-21) associated with the 
presented adaptive RS-coded modulation applied to a single Rayleigh fading 
channel and a 22 ×  MIMO with different system configurations  

 

 single Rayleigh  
fading channel         

dominant eigenmode 

transmission in a 22 ×  
MIMO   

overall BER of 

a 22 × MIMO  
with inner coding 

overall BER of 

a 22 × MIMO  
with outer coding 

)1(a  0.1095 - 0.5154i 0.0545 + 0.1258i 0.0261 + 0.8417i 0.0015 + 0.0002i 

)1(b  
-0.2531 + 
0.0660i 

-0.6317 - 0.2091i -0.2577 - 0.0560i -0.1255 + 1.6298i 

)2(a  0.1095 + 0.5154i 0.0545 - 0.1258i 0.0404 - 0.0946i 0.1647 - 0.0002i 

)2(b  -0.2531 - 0.0660i -0.6317 + 0.2091i -0.2701 - 0.3495i -0.1108 + 0.0001i 

)3(a  0 0 0.0276 - 0.8417i -0.0166 + 0.0034i 

)3(b  0 0 -0.2576 + 0.0559i -0.0617 + 0.3306i 

)4(a  0 0 0.0403 + 0.0946i -0.0168 - 0.0035i 

)4(b  0 0 -0.2701 + 0.3494i -0.0623 - 0.3308i 
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BER falls  below  a  targeted value. For  example,  for  a  target  average BER of 

01.0 , denoted   as   01.0BER0 = ,  the  minimum  SNR  for  the  presented   ACM   

over dominant  eigenmode  transmission  is dB5SNR
0BER

dom

min = . This value 

increases to 19 dB for ACM with inner coding. In general, none of the system 

configurations simultaneously maximizes the practicable capacity and satisfies a 

targeted BER constrained, for all values of SNR. For a given SNR, the choice is 

from different system configurations with the metric of highest practicable 

capacity subject to an average BER value. Different system configurations for 

selection are different combinations of CODECs (inner and outer coding) with 

different number of deployed eigenchannels 2≤r , and power allocation scheme 

(optimal power allocation and water-filling). The selection is from those system 

configurations that have the required minimum SNR for the BER constraint 

satisfaction. For example, for 01.0BER0 =  and dB17dB5 ≤≤ ρ , the dominant 

eigenmode transmission is the only available scheme, whereas for 20=ρ dB, the 

selection is from multiple system configurations. This is depicted in Figure 8 

which illustrates the capacity results with selection for different values of target 

average BER.  

With the presented selection, the capacity curves are piece-wise 

discontinuous. The discontinuities are the result of selection part of the algorithm. 

This is not restrictive since at each SNR value the best system configuration is 

selected irrespective to other SNR values. We note that, as the result of 

selection, several capacity curves for different values of 0BER  may lie together  
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Figure  7-8  The practicable capacities resulted from selection between different system 
configurations subject to different values of average output BER for the 22 ×  
MIMO example.  

                     Dominant eigenmode transmission (with the presented ACM) gives the best 
capacity (constrained by BERo=0.01) for an SNR of 5 to 19dB, and for larger 
SNRs, the inner coded system has the highest capacity.  

 

 

for some SNR regions. For example, in Figure  7-8, the curves tagged with 

01.0BER0 = , 005.0BER 0 = ,  and  001.0BER0 =  partially  lie on the capacity result 

of dominant eigenmode transmission and ACM with inner coding for moderate 

and   high   values   of  SNR,  respectively.  In  particular,  with  005.0BER 0 = ,  for 

dB22~dB6~ << ρ  the curve lies on the result of dominant eigenmode 

transmission and for ρ<dB22~  the capacity curve jumps to the capacity of the 

ACM with inner coding. This shows how a target average output BER, say 

3

0 10BER −= , in a MIMO system constrained with a fixed total input transmit 
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power, forces the data to be transmitted over just one or a few eigenchannels 

having the strongest eigenvalues. 

Targeted with an average BER, the selection procedure is undertaken in 

an off-line mode. Once the best system configuration is identified for a given 

SNR, the designer deploys the selected system configuration for on-line 

operation.  

The selection procedure for the highest practicable capacity can also be 

subject to a target instantaneous BER. In this case, at each channel realization, 

the instantaneous error probabilities are computed for different system 

configurations and the one with the highest instantaneous practicable capacity is 

selected. This  selection  has  to  be carried  out  online. The  associated  ergodic  
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Figure  7-9  The practicable capacities resulted from selection between different system 
configurations subject to different values of instantaneous output BER for the 

22 ×  MIMO example. 
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practicable capacity is the ensemble average of the instantaneous capacities 

achieved via selection at different channel realizations. The results are depicted 

in Figure  7-9 for different values of target instantaneous BER. As the result of 

ensemble averaging, continuous curves are obtained here. 

Regardless    of    the    type    of    output    BER    constraint  (average  or 

instantaneous),  the   resultant  capacity curves via selection are upper and lower 

bounded by the capacities obtained from the presented ACM applied to inner-

coded full-eigen MIMO, and dominant eigenmode transmission, respectively. In 

general, for smaller values of 0BER , the system with lower capacity is expected. 

Nevertheless, the described selection procedure makes it possible to design a 

system that achieves the highest practicable capacity with a desired output 

0BER . In other words, the position of the capacity between the upper and lower 

capacity bounds can be controlled by appropriately setting the 0BER  and the 

output BER constraint type. 

7.4  Summary and Conclusions 

The problem is addressed for joint power allocation and code rate 

adaptation maximizing the practicable capacity in an eigen-MIMO digital link with 

Reed-Solomon coded adaptive modulation. As can be intuitively expected, inner 

coding performs better than outer coding, but at the expense of higher 

complexity, and here the performances are quantified. Also, it turns out that 

water-filling is not the optimum power allocation for the practicable capacity 

maximization for given system configuration. The approach allows the capacity to 
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be compared between uncoded and adaptively RS-coded modulation schemes 

with respect to: the CODEC architecture (inner or outer coding); average SNR; 

the power allocation scheme; the number of antennas; and the number of 

deployed eigenchannels. For example, with inner coding, the presented ACM 

shows an effective coding gain of 4.5 dB for moderate to high SNRs compared to 

that of uncoded adaptive modulation with water-filling in a 22 ×  system. 

Comparison of the error curves of the ACM algorithm with different system 

configurations including ACM applied to dominant eigenmode transmission, allow 

an optimal capacity selection for a target average or instantaneous output BER, 

0BER . None of the system configurations maximizes the capacity for all values of 

SNR and 0BER . Nevertheless, with a given choice of 0BER , the maximum 

capacity is achieved by selection from these different system configurations. The 

capacity curves via selection are upper bounded by the inner coded full eigen-

MIMO ACM capacity, and lower bounded by the capacity obtained via the 

presented ACM applied to the dominant eigenmode transmission. Furthermore, 

the position of the capacity between the upper and lower capacity bounds can be 

controlled by appropriately setting the 0BER  and the type of the output BER 

constraint. 
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8: APPENDIX: LIST OF IDEAS FOR FUTURE WORKS 

Some future research projects, that would follow from this thesis, is as 

follows: 

• Consideration of decision-directed channel estimation for systems with 

cooperative communications and relaying.  

• Decision-directed channel estimation for closed-loop MIMO system. In 

this regard, one have to tackle the challenges regarding the practical 

communications techniques such as the choice of modulation, coding, 

the allowed transmit power, and especially the required feedback 

which consumes bandwidth. The required channel resource for the 

feedback link can be relatively small in terms of bandwidth 

consumption, but its inclusion requires considerable processing and 

protocol resource. 

• Adaptive Reed-Solomon coded modulation in eigen-MIMO with 

channel estimation and imperfect feedback. 

• Adaptive trellis-coded modulation in eigen-MIMO with variable power 

transmission (instead of fixed total transmit power) at the transmitter. 

This includes the challenging problem of optimal power allocation over 

eigenchannels. 


