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Abstract

The dynamics of traffic flow, where drivers are distinguished by distinct velocity classes,

can be described using a nonlinear system of hyperbolic conservation laws. The equations

are a generalization of the scalar Lighthill, Whitham and Richards (LWR) model. We

first derive the exact solution to the corresponding Riemann problem in the case of two

classes. We then motivate the use of a Roe solver and derive the Roe linearization with a

corresponding entropy fix. Finally, we implement the scheme for two- and three-class flow

using CLAWPACK, a publicly available package for solving hyperbolic conservation laws.
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Chapter 1

Introduction

Lighthill and Whitham (1955) [17] and Richards (1956) [20] independently proposed a con-

tinuum model to describe traffic flow known as the LWR model. It describes the evolution

of the density of traffic ρ along a one-dimensional road using the conservation equation,

ρt + (ρv(ρ))x = 0, (1.1)

where v is a given function of the density chosen to best represent empirical data. Known for

its simplicity, the LWR model does a remarkable job of capturing real traffic phenomenon

such as shock waves and anisotropic behavior which is the tendency for drivers to react

only to the vehicles ahead [21]. However, there are other observed traffic patterns that this

model cannot predict.

Many extensions of the LWR model have been developed in an attempt to explain more

complex traffic patterns. Recently, much attention has been given to developing a model

that accounts for a heterogeneous population of drivers. These different classes of drivers can

include different desired maximum velocities [25, 29, 28, 3, 26, 19], multiple lanes [30, 31],

or varying vehicle length [2, 3].

Wong and Wong [25] were one of the first to formulate a multi-class extension of the

LWR model to account for multiple driver types. Their paper characterized a driver’s

class in terms of a desired maximum velocity. A first order Lax-Friedrichs scheme was

used to solve a system with nine classes of vehicles that was then compared against actual

traffic data. Interestingly, this multi-class system was able to describe some of the more

complex traffic patterns that the LWR model could not. One such result was able to

replicate platoon dispersion which is the tendency for drivers that are grouped together to

1



CHAPTER 1. INTRODUCTION 2

disperse. The following year, a second paper was produced [28] with the same model, but

with a more accurate numerical scheme: a fifth order weighted essentially non-oscillatory

scheme (WENO). It was found that the Lax-Friedrichs scheme was so diffusive that it had

smoothed out an interesting staircase like behavior captured by the WENO scheme. Because

of its accuracy, WENO has been used in other traffic flow models such as in [29] where an

alternative velocity function is studied for three-class traffic flow.

Around the same time, Benzoni-Gavage and Colombo [3] developed a model for a pop-

ulation of n driver classes. Their work focused on the analytical solution to the Riemann

problem and worked out a particular example of the exact solution for n = 2 classes. Part

of the motivation for this work was to provide the analytical solution needed for a Godunov-

type numerical scheme.

We would like to mention that there are many other multi-class traffic models that

are not extensions of the LWR equation [12, 4]. One such traffic model was developed

by Hoogendoorn and Bovy [12] to account for the fact that drivers slow down gradually

unlike in the LWR model where velocities change instantaneously. To produce this type of

behavior the gas-kinetic equations, not discussed in this thesis, were used as a basis and were

then extended to allow for different classes of drivers each seeking to drive at a class-desired

velocity. It was demonstrated that these two processes, gradually slowing down due to other

vehicles and seeking a desired maximum velocity, can produce localized structures seen in

actual traffic.

While there has been a lot of interest on developing multi-class models, relatively little

has been done on testing different numerical schemes. The purpose of this thesis is to derive

a Riemann solver, particularly a Roe solver, for a system of hyperbolic conservation laws

corresponding to multi-class traffic flow. The equations are of LWR type with a different

maximum velocity characterizing each class. Employing a numerical scheme that builds in

knowledge of the exact solution will produce equivalent and in some cases improve on the

accuracy of the WENO approach. Furthermore, through the use of CLAWPACK, a publicly

available tool for solving hyperbolic PDEs using Riemann solvers, the implementation of

this scheme is made relatively easy.

In chapter 2, background information is provided about 1-dimensional scalar traffic

flow, including discussion of the LWR model and the fundamental diagram for traffic. We

also discuss the idea behind the Riemann problem and the method of characteristics. In

chapter 3 we introduce finite volume methods, particularly Godunov’s method and Roe’s
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method, for scalar conservation laws. Chapter 4 provides a detailed analytical solution to

the Riemann problem for two-class traffic flow. And finally chapter 5 describes the numerical

implementation of a Roe solver for two-class traffic flow. Comparisons of two-, three- and

nine-class results are made with two different WENO schemes from [28, 29]. This work sets

the stage for further research on multi-class traffic flow.



Chapter 2

Scalar Conservation Laws

Imagine an infinitely long, straight tunnel with no entrances or exits, filled with vehicles.

In this tunnel vehicles are characterized by their density (ρ), velocity (v) and flow rate (f)

also referred to as flux. Assuming that motion is only in the direction x, we can take ρ, v

and f to be functions of x and t. The flow rate, also referred to as flux, is written f = v(ρ)ρ

where the velocity function v(ρ) is typically chosen based on empirical data. Any model for

such a scenario should at least conserve vehicles.

2.1 Conservation Laws

Conservation of vehicles means that the change in density along a small stretch of tunnel

from (x1, x2) is equal to the flux through x1 i.e. f(ρ(x1, t)) minus the flux through x2 i.e.

f(ρ(x2, t)),
d

dt

∫ x2

x1

ρ(x, t)dx = f(ρ(x1, t))− f(ρ(x2, t)). (2.1)

As the segment (x1, x2) shrinks to a point, equation (2.1) becomes the differential conser-

vation law:
∂

∂t
ρ(x, t) +

∂

∂x
f(ρ(x, t)) = 0, where ρ(x, 0) = g(x) (2.2)

and g(x) is the initial density. Equation (2.2) can be written in non-conservative form by

expanding the partial derivative of f and assuming that f and ρ are smooth functions of x.

This yields:
∂

∂t
ρ(x, t) + f ′(ρ(x, t))

∂

∂x
ρ(x, t) = 0. (2.3)

4



CHAPTER 2. SCALAR CONSERVATION LAWS 5

This gives an evolution equation for the density, assuming the flux function is known. In

some models such as the shallow water equations, the flux is determined by a second PDE

derived from the conservation of momentum. Models with a separate PDE for the velocity

function have been developed for traffic flow problems which account for a driver’s reaction

time (i.e. acceleration) [21]. Another option is to use empirical data which shows a strong

correlation between the flux and density.

Many flux functions have been proposed for traffic flow, the simplest being the Green-

shield’s flux where

v(ρ) = α(1− ρ

ρm
) (2.4)

and

f(ρ) = αρ(1− ρ

ρm
). (2.5)

These equations imply that there is no flow when the density is at its maximum ρ = ρm or

minimum ρ = 0, and that the highest flux will be achieved when when density is at half the

maximum value. The parameter α is the maximum velocity that a vehicle can reach, the

speed limit.

The conservation law (2.2) and equation (2.5) were proposed as a model of traffic flow

by Lighthill, Whitham and independently by Richards. From hereon it will be referred

to as the LWR model. Without loss of generality we use a scaled flux function such that

α = ρm = 1. We remark that the chosen flux function is convex, since f ′′ = −2α
ρm

is strictly

negative. Our analytical and numerical methods will rely on this fact.

2.2 Method of Characteristics

We now turn to a common technique for solving a conservation law with convex flux. The

method of characteristics capitalizes on the fact that it is possible to find curves X(t) in the

xt-plane, along which the solution ρ(X(t), t) = ρ0 is constant. Assume there exists such a

curve X(t) along which the solution is constant such that

d

dt
ρ(X(t), t) = 0. (2.6)

Expanding (2.6) gives,
d

dt
ρ(X(t), t) = ρt +

dX

dt
ρx = 0. (2.7)
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0 1
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)=0
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m

Figure 2.1: The velocity and flux functions for the LWR model

This is exactly equation (2.3) when

dX

dt
= f ′(ρ(X(t), t)) = f ′(ρ0). (2.8)

Curves of constant density are found by solving this ODE for X(t):

X(t) = f ′(ρ0)t+ c. (2.9)

These curves of constant ρ are called characteristic curves and for scalar conservation laws

these characteristics are straight lines with slope 1
f ′(ρ0)

in the xt-plane. The slope of a char-

acteristic is called the characteristic speed. Finally, the value of ρ0 along each characteristic

is found by tracing along the characteristic back to the initial value ρ(x, 0) = g(x).

For a linear conservation law this information would be enough to determine the solution

for all x and t because characteristics are parallel and therefore fill the entire xt-plane. How-

ever, for nonlinear conservation laws, since characteristics are not always parallel, we must

understand how to deal with the two scenarios where characteristics collide and where they

diverge. The idea of convexity is important here because it implies that the characteristic

speed f ′(ρ) is varying monotonically as ρ varies. Without convex flux more complicated

solutions can arise in which a combination of both colliding and diverging characteristics

can occur [16]. To simplify our analysis we study the Riemann problem which is a simplified

initial condition consisting of piecewise constants.
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2.3 Riemann Problem

A Riemann problem is a conservation law (2.2) paired with piecewise constant initial data

ρ(x, 0) =

{

ρL if x ≤ 0,

ρR if x > 0.

Studying the Riemann problem allows us to focus on the case when characteristics collide

and when they diverge. First, let’s discuss what happens when characteristics collide.

2.3.1 Case 1: f ′(ρL) > f ′(ρR), Characteristics Collide

−1 −0.5 0 0.5 1

0.35

0.8

x

ρ

(a) Solution Profile

ρ
L

ρ
R

∆x=st

−1 −0.5 0 0.5 1

(b) Characteristic Lines

x

t ρ
L

ρ
R

x=st

Figure 2.2: The solution profile is given for the LWR model where f ′(ρL) > f ′(ρR). In
plot (a) the dashed black line is the initial condition. The red line shows the discontinuity
propagating backward in time. For f ′(ρL) > f ′(ρR) to occur in traffic flow the density must
be lower on the left implying that velocity on the left is greater. If traffic on the left is
moving faster then it will catch up to the slower moving traffic causing a shock. Figure (b)
shows how the characteristics in the xt-plane collide to form a shock.

The characteristics will be curves X(t) = f ′(ρ)t + x0. The green characteristics in

Figure 2.2 are lines along which the density is ρL or ρR, with slopes given respectively by:

f ′(ρL) = 1− 2ρL (2.10)

f ′(ρR) = 1− 2ρR (2.11)

Notice that the slopes in the figure are actually 1
f ′ because t is on the vertical axis. Since

f ′(ρL) > f ′(ρR), characteristics will collide creating what is known as a shock wave, char-

acterized by a jump in the density. This discontinuity in the density propagates with speed
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s given by the Rankine Hugoniot condition or RHC,

s =
f(ρL)− f(ρR)

ρL − ρR
.

The shock speed for the LWR model is then s = 1 − ρL − ρR. Details of the derivation of

the RHC can be found in [11]. Notice that a shock does not mean that vehicles collide, but

rather their speed changes instantaneously to that of the speed of the ρR traffic to avoid

collision.

One more condition is needed in order to ensure the solution is unique. This condition

is chosen to put a restraint on how the entropy of the system behaves. The most common

entropy condition is the Lax-entropy condition which requires the shock speed to lie between

the two characteristic speeds. This idea is written as

f ′(ρL) > s > f ′(ρR). (2.12)

The solution to the Riemann problem is then given by,

ρ(x, t) =

{

ρL if x ≤ st,

ρR if x > st.
(2.13)

2.3.2 Case 2: f ′(ρL) < f ′(ρR), Characteristics Diverge

In case 2, characteristics diverge from each other thereby creating a gap between the two

green characteristics x = f ′(ρL)t and x = f ′(ρR)t shown in Figure 2.3. To determine

how the density varies between these two characteristics we will use what is called the

similarity solution, details for which are given in [15]. Since characteristics must be straight

lines, and uniqueness requires that characteristics cannot cross, this suggests that we look

for a solution of the form ρ(x, t) = w(xt ) in the wedge between the leading and tailing

characteristics. Substituting this into the conservation law we find that f ′(w) = x
t or

w = (f ′)−1(xt ). Thus, characteristics in this intermediate state have slope x
t , creating a fan

in the xt-plane corresponding to the density spreading out. This is called a rarefaction wave.

For the LWR model the constant density given by the characteristics in the expansion fan

is w(xt ) =
1
2 − x

2t . The full solution to the rarefaction case can then be written as

ρ(x, t) =















ρL if x < f ′(ρL)t,

w(xt ) if f ′(ρL)t ≤ x ≤ f ′(ρR)t,

ρR if x > f ′(ρR)t.

(2.14)
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−1 −0.5 0 0.5 1

0.35

0.8

x

ρ

(a) Solution Profile

ρ
R

ρ
L

∆x=f’(ρ
R

)t

∆x=f’(ρ
L
)t

−1 −0.5 0 0.5 1

(b) Characteristic Lines

x

t ρ
L

ρ
R

x=f’(ρ
L
)t x=f’(ρ

R
)t

Figure 2.3: Figure (a) shows the solution profile for a rarefaction. The dashed black line
is the initial condition. The blue line shows the rarefaction wave spreading out in time.
For f ′(ρL) < f ′(ρR) to occur in traffic flow, density must be higher on the left, implying
that the velocity on the left is slower. If cars on the left are moving slower then they will
get further away from the leading cars creating a spreading out effect. Plot (b) shows the
characteristics diverging to form a rarefaction wave.



Chapter 3

Numerics for Scalar Conservation

Laws

We now discuss numerical methods for scalar hyperbolic conservation laws. In particular

this section will give an overview of finite volume methods as well as a first glimpse of the

Roe scheme, a particular type of finite volume method, which will lead to our main work in

chapter 5.

Hyperbolic conservation laws require a special choice of numerical method for two rea-

sons. First, traditional finite difference approximations break down near discontinuities by

failing to capture the correct shock speeds. And second, since the equation for our model

is conservative, it makes sense to require the numerical method to also be conservative. It

turns out that a non-conservative scheme will not converge for discontinuous solutions [24].

Because of these requirements finite volume methods are used which derive the discrete

equations based on an alternate formulation of the PDE called the integral form.

The integral form of a conservation law is useful for two reasons. First, conservation

laws are derived from physical conservation principles that can be expressed as integral

relations on control volumes. And second, the integral form of a conservation law allows for

the possibility of discontinuous solutions [15].

10
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x
i−1/2

x
i+1/2

Q(x
i−1

,t
n
) Q(x

i
,t

n
) Q(x

i+1
,t

n
)

t
n

t
n+1

Grid Cells

Figure 3.1: A grid cell is a rectangular box in the xt-plane over which the conservation law
is being integrated.

3.1 Finite Volume Methods

Let us begin by understanding the integral form of the following scalar conservation law,

ρt + f(ρ)x = 0. (3.1)

We will integrate (3.1) over a finite volume in the xt-plane called a grid cell shown in

Figure 3.1. The cell is defined in the x direction by the left cell edge at xi−1/2 and the

right cell edge by xi+1/2 and in the t direction from tn to tn+1. Integrating over this control

volume first in space and then in time yields,

∫ xi+1/2

xi−1/2

ρ(x, tn+1) dx =

∫ xi+1/2

xi−1/2

ρ(x, tn) dx−
∫ tn+1

tn

f(ρ(xi+1/2, t)) dt+

∫ tn+1

tn

f(ρ(xi−1/2, t)) dt.

(3.2)

Equation (3.2) is the integral form for the conservation law (3.1). In words, it states

that the total number density in a cell at time tn+1 is equal to the total number density

in the cell at tn plus the incoming density minus the outgoing density. The integral form

is an exact representation of the conservation law and is the foundation for a conservative

numerical scheme.

We define Qn
i to be an approximation of the average density in a cell:

Qn
i ≈ 1

∆x

∫ xi+1/2

xi−1/2

ρ(x, tn) dx (3.3)
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and Fn
i−1/2 as the numerical flux, which is an approximation to the average flux across a cell

interface:

Fn
i−1/2 ≈

1

∆t

∫ tn+1

tn

f(ρ(xi−1/2, t)) dt. (3.4)

A conservative scheme for the scalar conservation law (3.1) is then a numerical method of

the form

Qn+1
i = Qn

i +
∆t

∆x

(

Fn
i−1/2 − Fn

i+1/2

)

. (3.5)

The general idea of finite volume methods is as follows. The domain is broken into cells

i = 1, ..., N and Qn
i denotes the average density in the ith cell. As a result, the solution

is approximated by a piecewise constant function as pictured in Figure 3.2. At each cell

interface is a local Riemann problem with left state Qn
i−1 and right state Qn

i that can be

solved using the method of characteristics discussed in the previous chapter. The beauty of

these local Riemann problems is that the flux is constant along each cell interface making

integral (3.4) easy to compute.

The following two sections will highlight two closely-related finite volume methods: Go-

dunov’s method and Roe’s method. They differ in how they derive the numerical flux (3.4).

Godunov’s method utilizes the exact solution to the Riemann problem, while Roe’s method

utilizes the solution to an approximate Riemann problem.

3.2 Godunov’s Method

As stated above, Godunov’s method uses the exact solution to the Riemann problem to

determine the density along the cell interface and thereby determining the numerical flux.

We define Qi−1/2 to be the density along the cell interface xi−1/2 obtained by solving the

local Riemann problem. If the characteristics emanating from the cell interface between

Qi−1 and Qi are all right-going then Qi−1/2 = Qi−1. If the characteristics are all left-going

then Qi−1/2 = Qi. From equation (3.4), the numerical flux is simply,

Fn
i−1/2 = f(Qi−1/2). (3.6)

In the case where the trailing speed f ′(Qi−1) < 0 and the leading speed f ′(Qi) > 0, which

we will call a transonic rarefaction, as shown in red in Figure 3.2, the density along the cell

interface is still constant. This is because the cell interface is itself a characteristic line, the

particular one with zero speed. Thus, Qi−1/2 = QS is determined by solving f ′(QS) = 0,
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Figure 3.2: The discretization process for finite volume methods is shown in plots 1 and 2.
The second figure shows the local Riemann problems that arise at cell interfaces. And the
third figure shows the characteristics from equation (3.1) in each grid cell.

where QS is the sonic value. Finally, the numerical flux in the case of a transonic rarefaction

is

Fn
i−1/2 = f(QS). (3.7)

A simple rule can be written to determine Fn
i−1/2 for all possible scenarios of the Riemann

problem. If the waves are all right-going then Fn
i−1/2 = f(QL), if the waves are all left-going

then Fn
i−1/2 = f(QR) and if the waves are transonic then Fn

i−1/2 = f(QS).

We now have enough information to write a Godunov scheme for a scalar conservation

law. The benefit of using this method is that exact information is being incorporated into

the numerical scheme. The downside however is that it can be computationally expensive

to find the exact solution to the Riemann problem for nonlinear systems of PDEs. For this

reason we will discuss a modification of Godunov’s method where Fn
i−1/2 is determined by

solving an approximate Riemann problem.
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Figure 3.3: Roe’s method replaces all non-transonic rarefaction waves with a single wave
with the same direction. Transonic rarefactions as shown in red, are replaced with two
waves traveling at the leading and trailing speeds of the original rarefaction.

3.3 Roe’s Method

Roe’s method for scalar conservation laws is nearly identical to Godunov’s in terms of the

numerical flux. We discuss Roe’s method in this chapter however, because it is much easier

to visualize and to compare the two methods. Keep in mind that we will extend these ideas

to systems where Roe’s method will make it considerably less expensive to compute the

numerical flux.

The basis for Roe’s method is to solve an approximate linearized Riemann problem in

which all non-transonic rarefaction waves in the original problem are approximated with a

single shock wave traveling in the same direction as the original wave. This is demonstrated

by the blue characteristics in Figure 3.3. Approximating a transonic rarefaction with a

single wave will not be good enough because the value of the density along the cell interface

is neither Qi−1 nor Qi, but some value in between. In this case the transonic rarefaction, as

shown in red, must be replaced with two waves traveling at the same speeds as the leading

and trailing characteristics of the original rarefaction fan. The sonic value QS is a constant

state in between the two waves. The discussion of this special case is reserved for the next

section.
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Deriving a Roe solver relies on finding a linear PDE that approximates equation (3.1)

and on deriving the corresponding numerical flux that is consistent with equation (3.4).

To approximate a nonlinear PDE with a linear one we must find a constant A such that

f ′(ρ) ≈ A where A depends only on Qi−1 and Qi. Thus, the original nonlinear conservation

law

ρt + f ′(ρ)ρx = 0 (3.8)

is replaced with the linear PDE given by

ρ̃t +A(Qi−1, Qi)ρ̃x = 0. (3.9)

The variable ρ̃ represents the solution to the linear PDE. Roe proposed two criteria for

determining A:

1. A(Qi−1, Qi) → f ′(v) as Qi−1 and Qi → v, a consistency condition for smooth flow.

2. A(Qi−1 −Qi) = f(Qi−1)− f(Qi) enforcing consistency for shocks.

A more general set of criteria for systems will be given in chapter 5. For the scalar case, A

is uniquely determined by condition 2, the Rankine Hugoniot condition for the shock speed

A = s =
f(Qi−1)− f(Qi)

Qi−1 −Qi
. (3.10)

Consider the meaning of replacing f ′(ρ) with equation (3.10). It simply states that

shocks are left unchanged and all rarefactions are replaced with a single wave propagating

at a speed in between the leading and trailing characteristic speeds. For the scalar case this

means that Godunov’s method and Roe’s method are equivalent granted the local Riemann

problem does not produce a transonic rarefaction.

Now that we know the linear PDE that is to be solved at each cell interface, we must

discuss how we will derive the numerical flux from this approximate Riemann problem to

be consistent with the original nonlinear problem. In order to derive the numerical flux for

Roe’s method we will first derive a general property for the flux across a cell interface.

Flux Property

Consider a single Riemann problem where the domain D = [−M,M ]× [0, T ] is large enough

to include the shock or rarefaction characteristics emanating from the initial discontinuity.

This is illustrated in Figure 3.4. Then let CL = min(s, f ′(ρL), f
′(ρR)) be the slowest wave
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slowest wave speed CL and fastest wave speed CR are fully contained in the domain.

speed and CR = max(s, f ′(ρL), f
′(ρR)) be the fastest wave speed . Note that if a shock

occurs CL = CR. Using D and the integral form of our conservation law, we will derive

a property that must hold for the flux across a cell interface. This will help us derive a

consistent numerical flux for Roe’s method. The integral form of the conservation law (3.1)

on this control volume reads,

∫ M

−M
ρ(x, T ) dx =

∫ M

−M
ρ(x, 0) dx−

∫ T

0
f(ρ(M, t)) dt+

∫ T

0
f(ρ(−M, t)) dt. (3.11)

Evaluating the right-hand side of this expression yields,

∫ M

−M
ρ(x, T ) dx = M(ρR + ρL) + T (f(ρL)− f(ρR)). (3.12)

Now we split the integral on the left-hand side of (3.12) into three integrals as

∫ M

−M
ρ(x, T ) dx =

∫ TCL

−M
ρ(x, T ) dx+

∫ TCR

TCL

ρ(x, T ) dx+

∫ M

TCR

ρ(x, T ) dx. (3.13)

Two of these three integrals can easily be evaluated leading to

∫ M

−M
ρ(x, T ) dx = ρL(TCL +M) +

∫ TCR

TCL

ρ(x, T ) dx+ ρR(M − TCR). (3.14)
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Using equation (3.14) to further simplify equation (3.12) yields
∫ TCR

TCL

ρ(x, T ) dx = T [f(ρL)− f(ρR) + ρRCR − ρLCL]. (3.15)

Thus the integral of the exact solution to the Riemann problem between the slowest and

fastest wave speeds is a constant given by the right-hand side of equation (3.15). Now we can

use equation (3.15) to find the flux across a cell interface by splitting it into two integrals.

The first integral is over the left side of the control volume from [0, TCL] leading to
∫ 0

TCL

ρ(x, T ) dx = T [f(ρL)− f(ρ(0, t))− ρLCL] (3.16)

and the second from [0, TCR] producing,
∫ TCR

0
ρ(x, T ) dx = T [f(ρ(0, t))− f(ρR) + ρRCR]. (3.17)

Finally, rearranging (3.16) to solve for the flux across x = 0 leads to

f(ρ(0, t)) = f(ρL)− CLρL − 1

T

∫ 0

TCL

ρ(x, T ) dx. (3.18)

We can also write an equivalent statement by rearranging (3.17) leading to

f(ρ(0, t)) = f(ρR)− CRρR +
1

T

∫ TCR

0
ρ(x, T ) dx. (3.19)

Equations (3.18) and (3.19) define the flux across the cell interface for any conservation

law, and so the numerical flux must be consistent with these equations. We will derive the

numerical flux for Roe’s method based on this property.

Since (3.18) and (3.19) holds for any flux function we can write this property in terms

of the linear PDE given by equation (3.9), where f(ρ) = Aρ̃. This leads to the following

two forms:

Aρ̃(0, t) = AρL − CLρL − 1

T

∫ 0

TCL

ρ̃(x, T ) dx (3.20)

Aρ̃(0, t) = AρR − CRρR +
1

T

∫ TCR

0
ρ̃(x, T ) dx. (3.21)

Rearranging to solve for the integrals in (3.20) and (3.21) yields

1

T

∫ 0

TCL

ρ(x, T ) dx = AρL − CLρL −Aρ̃(0, t) (3.22)

1

T

∫ TCR

0
ρ(x, T ) dx = −AρR + CRρR +Aρ̃(0, t). (3.23)
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At this point a subtle approximation is made. We define equations (3.18) and (3.19) to

be the flux from the original nonlinear problem across a cell interface. Because (3.18) and

(3.19) contain a potentially difficult integral to compute exactly, we will approximate these

integrals with the integrals derived from the linear problem given by equations (3.22) and

(3.23). This leads to the following,

f(ρ(0, t)) = f(ρL) +A[−ρL + ρ̃(0, T )] (3.24)

and

f(ρ(0, t)) = f(ρR)−A[ρR − ρ̃(0, T )]. (3.25)

Since the right-hand side is constant, the numerical flux (3.4) is easily derived from here.

Notice we only need to provide the constant state along the cell interface Qi−1/2 which in

the scalar case is either Qi−1 or Qi. Using equation (3.24), the numerical flux is then given

by

Fn
i−1/2 = f(QL) +A(−QL +Qi−1/2), (3.26)

which is equivalent to using (3.25) leading to

Fn
i−1/2 = f(QR)−A(QR −Qi−1/2). (3.27)

We have shown how do derive a Roe linearization for a scalar conservation law and

determined the numerical flux given that all shock or rarefaction waves are either fully

right-going or fully left-going. We will now describe the fix that is needed in the case of a

transonic rarefaction.

3.3.1 Entropy Fix

Figure 3.5 (a) shows the results from applying Roe’s method without an entropy fix being

applied in the transonic rarefaction case. The solution produced is a non-physical, entropy

violating solution sometimes called an expansion-shock. For this reason an entropy fix is

required. There are many types of entropy fixes and in this section we will focus on the

Harten-Hyman entropy fix [24]. We will use the notation QL to denote the density to the

left of the trailing rarefaction wave and QR to denote the density to the right of the leading

rarefaction wave.

The idea behind this fix is to split the single jump propagating at speed A into two

smaller jumps propagating at speeds f ′(QL) and f ′(QR) as shown in Figure 3.6. These
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Figure 3.5: The figures above show the computed solution to a Riemann problem using
Roe’s method with and without an entropy fix. It is clear that without an entropy fix
non-physical solutions will be attained. It is interesting to note that a slight bump in (b) at
x = 0 is sometimes referred to as the sonic glitch and it vanishes as ∆x → 0 [23].

two jumps are separated by a constant intermediate state QS . Using the integral form of

the PDE we can show that QS should be chosen such that it produces the same change in

density in the cell as the linearized problem. Figure 3.6 demonstrates that the addition of

the areas contained in the blue rectangles, with the light blue area being negative, must

equal the area contained by the red rectangle. This is written as,

f ′(QL)(QL −QS) + f ′(QR)(QS −QR) = A(QL −QR). (3.28)

Equation (3.28) can then be rearranged to solve for QS :

QS =
QL(A− f ′(QL)) +QR(f

′(QR)−A)

f ′(QR)− f ′(QL)
(3.29)

With this information, the numerical flux for the transonic case is calculated by sub-

stituting QS = Qi−1/2 into either of equations (3.26) or (3.27). Care must be taken here

though, since we replaced the single wave propagating at speed A with two waves propa-

gating at speeds f ′(QL) and f ′(QR) the numerical flux must reflect the fact that the jumps

−QL + QS and QR − QS are moving at these new speeds. Thus, in the transonic case
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Fn
i−1/2 6= f(QL) +A(−QL +QS), but rather:

Fn
i−1/2 = f(QL) + f ′(QL)(−QL +QS) (3.30)

= f(QR)− f ′(QR)(QR −QS). (3.31)

Now the implementation of Roe’s method for scalar conservation laws can be summed up

compactly as follows:

1. If A is transonic then Fn
i−1/2 = f(QL) + f ′(QL)(−QL +QS).

2. If A is right-going then Fn
i−1/2 = f(QL).

3. And if A is left-going then Fn
i−1/2 = f(QR),

where A is given by equation (3.10). This concludes the formulation of Roe’s method.



Chapter 4

Two-Class Traffic Flow

The goal of this section is to extend the LWR model to account for two classes of drivers so

that the model includes a density evolution equation for each type. One can think of this as

a scenario for a group of drivers who are late for work in the morning (fast drivers) sharing

a road with a group of drivers who are simply out to enjoy the scenery (slow drivers). We

will begin by introducing the governing equations for two-class flow.

4.1 Governing Equations

Let ρ1 be the density of fast drivers seeking to move at a maximum speed α1. Similarly, ρ2

will be the density of slow drivers seeking to move at a maximum speed α2. The densities

will be represented in vector form as ~q = [ρ1, ρ2]
T . It will also be useful to talk about the

total density, as one’s velocity should depend on the total density ρ = ρ1+ρ2 in the vicinity

and not just the density of one’s own class [25, 30, 29] . The velocity function for the kth

class is then given by,

vk(~q) = αk

(

1− ρ

ρm

)

. (4.1)

And so, the full equations governing two-class flow with fk(~q) = vkρk are,

∂tρ1 + ∂x

[

α1ρ1

(

1− ρ

ρm

)]

= 0, (4.2)

∂tρ2 + ∂x

[

α2ρ2

(

1− ρ

ρm

)]

= 0. (4.3)

By non-dimensionalizing these equations the above system can be written in terms of only

a single parameter. This will simplify the notation in our later discussion.

22
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4.1.1 Non-Dimensionalization

Let ρ̃1 =
ρ1
ρm

, ρ̃2 =
ρ2
ρm

, t̃ = t
T , x̃ = x

L , then the partial derivatives become

∂

∂t
=

∂t̃

∂t

∂

∂t̃
=

1

T

∂

∂t̃
∂

∂x
=

∂x̃

∂x

∂

∂t̃
=

1

L

∂

∂x̃
.

Dropping the tilde’s and substituting into the original equations leads to

∂tρ1 + α1
T

L
∂x[ρ1(1− ρ)] = 0

∂tρ2 + α2
T

L
∂x[ρ2(1− ρ)] = 0.

Finally, we simplify the equations by choosing the time scale T so that Tα1

L = 1 and then

define α2

α1
= ᾱ. The system in non-dimensionalized conservative form is given by,

∂tρ1 + ∂x[ρ1(1− ρ)] = 0 (4.4)

∂tρ2 + ∂x[ᾱρ2(1− ρ)] = 0.

The system can also be written in vector form as,

∂t~q + ∂x

[

ρ1(1− ρ)

ᾱρ2(1− ρ)

]

= 0, (4.5)

and in nonconservative form as,

∂t~q +

[

1− 2ρ1 − ρ2 −ρ1

−ᾱρ2 ᾱ(1− 2ρ2 − ρ1)

]

∂x~q = 0, (4.6)

where the matrix is the Jacobian of the flux function, ∇~f~q with eigenvalues

λ1,2 =
1

2
(γ1 + ᾱγ2 ∓

√
η) (4.7)

where,

γ1 = 1− 2ρ1 − ρ2, γ2 = 1− 2ρ2 − ρ1 and η = (−γ1 + ᾱγ2)
2 + 4ᾱρ1ρ2.

Clearly, both eigenvalues are real because η > 0 for all ρ1, ρ2 > 0 meaning our system is

hyperbolic.
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Figure 4.1: The wave structure for two-class flow includes two elementary waves, the 1-wave
and the 2-wave, separated by a constant middle state ~qM .

4.2 The Riemann Problem for Two-Class Flow

For the remainder of this chapter the focus will be on finding the analytic solution to

the Riemann problem for two-class flow. With this information we can confirm that the

numerical results in Chapter 5 are correct, as well as gain a deeper understanding of Riemann

solvers. The Riemann initial data for system (4.4) is given by,

~q(x, 0) =

{

~qL if x ≤ 0

~qR if x > 0.
(4.8)

For a system of two hyperbolic conservation laws, the method of characteristics tells

us that the solution to the Riemann problem will consist two elementary waves. These

elementary waves will be some combination of shocks, rarefactions, or contacts (a degenerate

wave). Our attention will focus on shocks and rarefactions since a contact is simply a

degenerate shock. The important new idea for two-class flow is that between these two

elementary waves a constant middle state ~qM arises. We will define the elementary wave

connecting the left state ~qL to the middle state ~qM as the 1-wave and the elementary wave

connecting the middle state ~qM to the right state ~qR as the 2-wave. This characteristic
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Figure 4.2: The four possible non-degenerate wave types are shown. (a) 1-shock, 2-
rarefaction, (b) 1-shock, 2-shock, (c) 1-rarefaction, 2-rarefaction, and (d) 1-rarefaction, 2-
shock. Notice that a constant middle state ~qM separates the two waves in each case.

structure for two-class flow is shown in Figure 4.1 where the colored lines represent either

of the two elementary waves types. Information about why systems take on this structure

can be found in [16].

Figure 4.2 shows the four possible non-degenerate wave combinations for our problem.

Given these four possibilities, two questions motivate the derivation of the exact solution.

First, which one of the four wave types will occur given the left state ~qL and the right state

~qR? And second, what is the value of the constant middle state ~qM separating the two

waves? Answering these questions will rely on an understanding of the Hugoniot locus for

shocks and integral curves for rarefactions. This section will provide the analysis of the

Hugoniot locus and integral curves for the 1-wave. In other words we will focus on finding

all possible ~qM that can connect to ~qL by a 1-wave keeping in mind that the same procedure

can be applied for the 2-wave.
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Figure 4.3: The red and magenta curves represent ~qM satisfying the Rankine Hugoniot
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4.2.1 The Hugoniot Locus for Shock Waves

The Hugoniot Locus or HL is defined as curves in ρ1ρ2-space that represent all possible

~qM that can connect to the left or right state by a shock. From our knowledge of scalar

hyperbolic PDEs a shock must satisfy two conditions. First, the shock speed must satisfy

the Rankine Hugoniot condition (RHC),

s∗(~q∗ − ~qM ) = ~f(~q∗)− ~f(~qM ), (4.9)

or in component form as,

s∗(ρ1∗ − ρ1M ) = ρ1∗(1− ρ∗)− ρ1M (1− ρM ), (4.10)

s∗(ρ2∗ − ρ2M ) = ρ2∗ᾱ(1− ρ∗)− ρ2M ᾱ(1− ρM ).

The * represents either the left or the right state (L or R), where sL and sR correspond to

the speed of the 1-shock and the 2-shock respectively. Since we are focusing on the 1-wave

the ∗ represents L. System (4.10) can be solved for ρ2M in terms of ρ1M to produce curves

of ~qM through ~qL satisfying the RHC. These curves are shown in Figure 4.3 in red and

magenta.
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The second condition that a shock must satisfy is the entropy condition that was dis-

cussed in Chapter 2. The entropy condition for the 1-wave is such that the λ1 characteristics

collide to form a shock i.e. λ1(~qL) > sL > λ1(~qM ) as in Figure 2.2. The fact that the 1-shock

is only dependent on λ1 follows from ordering of the eigenvalues. Further explanation of

why this holds is given in the appendix.

The solid red line in Figure 4.3 represents all possible values of ~qM that will connect to

~qL by an entropy satisfying 1-shock. Along this curve the RHC and entropy condition are

satisfied. The dashed magenta curve will play a clear role in section 4.2.3. It turns out to

be the special curve in which ~qM = ~qL and is therefore a curve of all possible ~qR that will

connect to ~qM = ~qL through a 2-shock. From this definition this curve satisfies the entropy

condition for a 2-shock i.e. λ2(~qL) > sR > λ2(~qM ). Now that the possible middle states are

known that will produce a 1-shock, we conduct a similar analysis for a 1-rarefaction.

4.2.2 Integral Curves for Rarefaction Waves

Just as the Hugoniot locus helps us determine the middle state when a shock is involved,

integral curves help determine the middle state when a rarefaction is involved. From our

knowledge of scalar hyperbolic PDEs a rarefaction must satisfy two conditions. The first

condition is that the solution along a rarefaction must be the similarity solution. Making

the change of variable ~q(x, t) = ~w(x/t) = ~w(ξ) leads to our system of conservation laws in

the following form:

∇~f(~w)~w′ = ξ ~w′. (4.11)

For ~w′ > 0, equation (4.11) states that ~w′ must be proportional to an eigenvector of ∇~f(~w)

and ξ must be the corresponding eigenvalue, i.e ξ = λk(~w(ξ)). Then

~w′
k(ξ) = a(ξ)~mk(~w(ξ)), (4.12)

where a(ξ) depends on the parameterization of the integral curve, k represents the kth wave

and the eigenvectors ~m1 and ~m2 are given by,

~m1 =

[

1
2ᾱρ2

(ᾱγ2 − γ1 +
√
η)

1

]

and ~m2 =

[

1
2ᾱρ2

(ᾱγ2 − γ1 −
√
η)

1

]

. (4.13)

Equation (4.12) states that eigenvectors are tangent to integral curves.
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Figure 4.4: The blue and cyan curves represent ~qM satisfying the similarity solution. The
solid blue curve represents ~qM such that λ1 increases from the left to the middle state. And
the dashed cyan curve represents ~qM such that λ2 increases from the left to the middle state.
The gray arrows show how ~m1 eigenvectors are tangent to the blue integral curve.
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respectively.
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To simplify system (4.12) we take the second equation in the system divided by the first

producing a single ODE for ρ2 as a function of ρ1 yielding,

dρ2(ξ)

dρ1(ξ)
=

m2k(~w(ξ))

m1k(~w(ξ))
and ρ2(ρ1∗) = ρ2∗. (4.14)

The solution to this ODE gives a curve in state space defining the kth rarefaction solution

~w(ξ) between ~q∗ and ~qM . Figure 4.4 shows the curves of ~qM in blue and cyan that satisfy

ODE (4.14). These curves are shown in blue and cyan. This figure also demonstrates how

the eigenvector ~m1, shown in gray, runs tangent to the 1-rarefaction curve, shown in blue,

as expected.

The second condition that a rarefaction must satisfy is the idea that characteristics

diverge i.e. λ1(~qL) < λ1(~qM ) as discussed in Chapter 2. Figure 4.5 shows the contours of λ1

demonstrating that the 1-rarefaction is chosen so that λ1 is increasing from ~qL to ~qM . The

solid blue curve represents the ~qM satisfying both the similarity solution and the entropy

condition for a 1-rarefaction. The dashed cyan curve will play a clear role in section 4.2.3.

It again turns out to be the special curve in which ~qM = ~qL and is therefore a curve of all

possible ~qR that will connect to ~qM = ~qL through a 2-rarefaction. From this definition this

curve satisfies the second condition for a 2-rarefaction i.e. λ2(~qL) < λ2(~qM ). Now that the

possible middle states are known that will produce a 1-rarefaction and a 1-shock we can put

these ideas together to determine the wave combination and the middle state.

4.2.3 Putting it all together

We now refer to our original two questions: how to determine the wave combination and

how to find the value of ~qM . Question 1 is answered by Figure 4.6 (a) which is simply

Figures 4.3 and 4.4 combined. The solid curves represent all possible ~qM and the dashed

curves give the boundary for which ~qM = ~qL. These curves define four regions in state space

corresponding to the four possible non-degenerate wave combinations. The location of ~qR

will determine how ~qL connects to ~qR. For example, if ~qR lives in region (III) then ~qL will

connect to ~qM by a 1-rarefaction and ~qM will connect to ~qR by a 2-shock. Figure 4.6 (b)

shows the integral and loci curves through ~qL when ~qL is in region 3. Question 2 is answered

by Figure 4.7 (a) in which the two figures from 4.6 are overlaid. The middle state is then

uniquely determined by the intersection of the 1-curve through ~qL and the 2-curve through

~qR.
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Figure 4.6: (a) The four integral and loci curves split solution space into four regions where
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Finally, Figure 4.6 (b) shows how the waves and middle state are translated from the ρ1

vs. ρ2 diagram to the density vs. space diagram. The wave speeds are either given by the

characteristic speed for rarefactions, or by the RHC for shocks. And the solution along the

rarefaction is given by the solution along the integral curve. This concludes the analysis for

the full solution to the Riemann problem for two-class traffic flow. The next section will

look at a special case where ᾱ = 1, providing additional insight to the analytical solution.

4.3 Riemann Problem for ᾱ = 1

In the case where ᾱ = 1 our problem is greatly simplified and so it is possible to demonstrate

all the ideas above explicitly. We discuss this case because it summarizes the ideas of the

Hugoniot locus and integral curves as well as highlights the third type of elementary wave,

the degenerate contact wave keeping in mind that a contact is also possible in the general

case. The eigenvalues and eigenvectors of this special system are the following:

λ1 = 1− 2ρ, ~m1 =

[

ρ1

ρ2

]

, λ2 = 1− ρ, ~m2 =

[

1

−1

]

. (4.15)

Again we will focus on how the left state connects to the middle state through the 1-wave

acknowledging that the same process can be applied for the 2-wave.

4.3.1 Hugoniot Locus for ᾱ = 1

We begin with the Hugoniot loci, curves of ~qM satisfying the Rankine Hugoniot condition

and entropy condition. With ᾱ = 1, we can derive the equations for the loci from system

(4.10). Doing so leads to two straight lines given by

ρ2M =
ρ2L
ρ1L

ρ1M (4.16)

and

ρ2M = −ρ1M + ρL. (4.17)

We now look for sections of these two curves that satisfy the entropy condition for shocks.

A 1-shock through ~qL will satisfy λ1(~qL) > s > λ1(~qM ) and a 2-shock through ~qL will satisfy

λ2(~qL) > s > λ2(~qM ). Letting (4.16) be curve (I) and (4.17) be curve (II) we can now solve

for λ1, λ2 and s along curves (I) and (II). Along curve (I)

λ1(~qM ) = 1− 2

(

1 +
ρ2L
ρ1L

)

ρ1M , (4.18)
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λ2(~qM ) = 1−
(

1 +
ρ2L
ρ1L

)

ρ1M (4.19)

and

s = −ρ1M

(

1 +
ρ2L
ρ1L

)

+ (1− ρL). (4.20)

And along curve (II)

λ1(~qM ) = 1− 2ρR, (4.21)

λ2(~qR) = 1− ρR (4.22)

and

s = 1− ρL. (4.23)

We then find that a 1-shock is satisfied along curve (I) for

0 < ρ1L < ρ1M .

Notice that the location of the 1-shock is similar to the location in the general problem.

For the 2-shock we find that λ2(~qL) = s = λ2(~qM ) everywhere along curve (II). The fact

that equation there is an equality brings us to the idea of a third type of elementary wave

called a contact wave. A contact wave is a discontinuity that travels at the characteristic

speed [16]. Physically this means that the individual densities may be different in different

constant states, but the total density remains the same. This tells us that when ᾱ = 1 the

2-wave will always be a contact wave. Figure 4.8 shows the entropy satisfying 1-shock and

2-contact curves through ~qL when ᾱ = 1.

4.3.2 Integrals Curves for ᾱ = 1

To find the integral curves we apply equation (4.14) first for ~m1 to determine all possible

~qM that will connect to ~qL by a 1-rarefaction and second for ~m2 to determine all possible

2-rarefactions.

First we solve the ODE for the 1-rarefaction:

dρ2
dρ1

=
ρ2
ρ1

, where ρ2(ρ1L) = ρ2L, (4.24)

which yields the integral curve,

ρ2 =
ρ2L
ρ1L

ρ1. (4.25)
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Along this curve the condition λ1(~qL) < λ1(~qM ) is satisfied for ρ1M < ρ1L. Second we solve

the ODE for the 2-rarefaction:

dρ2
dρ1

= −1, where ρ2(ρ1R) = ρ2R. (4.26)

which produces,

ρ2 = −ρ1 + ρR. (4.27)

Along this curve the condition λ2(~qL) < λ2(~qR) is never true. In fact, just as in the shock

case, λ2(~qL) = λ2(~qR). This means that the characteristics λ2(~qL) and λ2(~qR) are parallel

just as in a linear problem. For this reason, we call the 2-wave a linearly degenerate contact.

The entropy satisfying integral curves are shown in Figure 4.8.

In general, we can determine if a wave is linearly degenerate by showing that the change

in λk along an integral curve is identically zero. If an integral curve is parameterized by

~w(ξ) then,
d

dξ
λk(~w(ξ)) = ∇λk(~w) · ~w′(ξ) = 0.

Since an integral curve is always in the direction of the kth eigenvector then,

∇λk(~w) · ~w′(ξ) = ∇λk · ~mk = 0. (4.28)

If equation (4.28) does not equal zero, then we say that the kth wave is genuinely nonlinear

[16]. Computing equation (4.28) for the special case ᾱ = 1 for the 1-wave we find

∇λ1 · ~m1 =

[

−2

−2

]

·
[

ρ1

ρ2

]

6= 0.

And computing equation (4.28) for the 2-wave we find

∇λ2 · ~m2 =

[

−1

−1

]

·
[

1

−1

]

= 0.

Therefore the 2-wave is always a contact.
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Chapter 5

Numerics of Multi-Class Traffic

Flow

Chapter 4 determined the exact solution to the Riemann problem for two classes of drivers.

This information can be incorporated into a numerical scheme such as Godunov’s method

described in chapter 3, where the value in each cell is updated by finding the exact flux

along the cell interface xi−1/2. However, computing the exact solution at each cell interface

can be computationally expensive, especially if the goal is to move toward more classes.

Roe’s method gives an alternative to finding the exact solution of a nonlinear PDE and

instead finds the solution to a related but approximate linear problem. This section will

first describe the Riemann problem for linear systems, then explain a way to approximate

the nonlinear problem with a linear one. The Roe solver will be described for systems and

specifically derived for multi-class traffic flow.

5.1 Riemann Problem for Linear Systems

The Riemann problem for a linear system is written as

~qt +A~qx = 0

with initial data

~q(x, 0) =

{

~qL if x ≤ 0,

~qR if x > 0,

35
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Figure 5.1: These two plots demonstrates how the characteristics of the exact problem
change when the problem is linearized. The left-going rarefaction in (a) reduces to a single
discontinuity that is also left-going. While the right-going shock, shown in magenta, remains
a right-going shock, usually with a different speed. The black dashed lines show the cell
interfaces. In this case the constant solution along the vertical cell interface is the middle
state ~qM . The corresponding plot in the ρ1ρ2-plane shows how to find qM for both the exact
and linear problem. ~qM is the middle state corresponding to the approximate Riemann
solution found by the intersection of the eigenvectors of A.
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where A is an n × n matrix with constant entries. If A is diagonalizable, then it has

an eigenvalue decomposition A = PDP−1, where D is the diagonal matrix of eigenvalues

(λ1 ≤ ... ≤ λn) and the columns of P are the corresponding eigenvectors (~m1, ..., ~mn).

Making the change of variable ~q = P~r, the PDE simplifies to a decoupled system of linear

equations:

~rt +D~rx = 0

with initial data

~r(x, 0) =

{

~rL if x ≤ 0,

~rR if x > 0.

where ~rL = P−1qL and rR = P−1qR.

Figure 5.2 shows the characteristics and the solution in each region for a system of

n = 3 linear PDEs. In each region, the solution ~q(x, t) can be found by the matrix-vector

multiplication ~q = P~r. Furthermore, ~q can be written as a linear combination of the n
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eigenvectors ~mk, where k = 1, ..., n as

~q(x, t) = P~r(x, t) =
n
∑

k=1

rk ~mk.

It will prove useful to express the total jump in ~q from the right to the left state, in terms

of the jump across each of the k waves. Doing this yields

~qR − ~qL = P~rR − P~rL

=

n
∑

k=1

(rkR − rkL)~mk

=

n
∑

k=1

Wk

where Wk = (rkR − rkL)~mk is the jump in the solution ~q across the kth wave. Any constant

intermediate state can be found simply by adding the jump across successive waves to the

left state, or alternately by subtracting successive jumps from the right state yielding

~q(x, t) = ~qL +
∑

k:x≥λkt

Wk (5.1)

= ~qR −
∑

k:x<λkt

Wk. (5.2)

This idea of determining a constant middle state by adding jumps in the solution across suc-

cessive waves will be used in our numerical method once we approximate the nonlinear traffic

model with a linear system of equations. Next we will discuss how the Roe linearization is

obtained.

5.2 Roe Linearization for Systems

Recall in chapter 3 that we derived A, an approximation to the characteristic speed f ′(ρ)

for a scalar hyperbolic equation. For systems, this linearization is equivalent to finding an

approximation to ∇~f(~q), the Jacobian matrix. Roe determined that for the linear problem

to be consistent with the nonlinear one, this approximate Jacobian matrix A must satisfy 3

conditions:

1. A is diagonalizable with real eigenvalues, that is, the linearized system remains hy-

perbolic.
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parameterization of the straight line path along the eigenvector from Qi−1 to Qi.

2. A(Qi−1, Qi) → ∇~f(~q) as Qi−1 and Qi → ~q, which is a consistency condition for smooth

flow.

3. A(Qi−1 −Qi) = ~f(Qi−1)− ~f(Qi), which enforces consistency for shocks.

To find a matrix A satisfying these three properties, Roe used the argument that “near a

shock wave the Riemann problems arising at cell interfaces will typically have a large jump

in at most one wave family” [16]. For this reason we require that when Qi−1 and Qi are

connected by a single shock wave in the original Riemann problem (i.e. there is no middle

state), the approximate solution should also have a shock with the same speed. Thus, A

should be constructed such that Qi−1−Qi is an eigenvector and s, the exact shock speed, is

the corresponding eigenvalue. This idea is illustrated in Figure 5.3 where the black curves

represent the Hugoniot loci connecting the left state directly to the right state by a single

shock. The red curve is an eigenvector of A and we require that it also connects Qi−1
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directly to Qi. From this the following eigenvalue problem is obtained

A(Qi−1 −Qi) = s(Qi−1 −Qi). (5.3)

Since s is the exact shock speed, s is given by the RHC as

s(Qi−1 −Qi) = ~f(Qi−1)− ~f(Qi). (5.4)

Equations (5.3) and (5.4) lead directly to condition 3:

A(Qi−1 −Qi) = ~f(Qi−1)− ~f(Qi). (5.5)

Another interpretation of equation (5.5) is that the jump in flux across the cell edge is

equivalent for both the linear and nonlinear problem.

Now we would like a systematic way of deriving the matrix A from ~f . One way is to

integrate the Jacobian over a suitable path in state space between Qi−1 and Qi. Let the

parameterized curve ~q(ξ) be the path satisfying

~q(ξ) = (Qi−1 −Qi)ξ +Qi where 0 ≤ ξ ≤ 1. (5.6)

Then, the right-hand side of equation (5.5) can be written as an integral along ~q(ξ)

~f(Qi−1)− ~f(Qi) =

∫ 1

0

d~f(~q(ξ))

dξ
dξ

=

∫ 1

0

d~f(~q)

d~q
~q ′(ξ) dξ.

Since ~q ′(ξ) = (Qi−1 −Qi) from equation (5.6) it follows that

~f(Qi−1)− ~f(Qi) = (Qi−1 −Qi)

∫ 1

0

d~f(~q)

d~q
dξ

= (Qi−1 −Qi)

∫ 1

0
J dξ.

Therefore, A is derived by finding the mean value of the Jacobian along the straight line

connecting Qi−1 to Qi.

This formulation of A guarantees that conditions 2 and 3 are satisfied, while condition

1 must be verified for the specific problem. For the multi-class traffic problem considered in

this thesis, this method for finding A is very straightforward. However, in general, finding

a suitable Roe linearization can be difficult, requiring a special change of variables that
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has been obtained for only a few nonlinear systems (Euler equations and shallow water

equations to name two). As a result, a number of alternatives to the Roe linearization have

been proposed. For example, The Roe-Pike method eliminates the need to construct A and

instead seeks to find averaged quantities of the primative variables ρi which are then used

to evaluate the eigenvalues, eigenvectors and wave strengths directly [24].

5.3 Roe’s Method

Recall that the general updating scheme for finite volume methods is given by

Qn+1
i = Qn

i +
∆t

∆x
(Fi−1/2 − Fi+1/2) (5.7)

where the numerical flux for systems is the same as described in chapter 3:

Fn
i−1/2 = f(QL) +A(−QL +Qi−1/2) (5.8)

or equivalently,

Fn
i−1/2 = f(QR)−A(QR −Qi−1/2). (5.9)

The ideas from section 5.1 can be applied to write the flux in another form. Since −QL +

Qi−1/2 is the the jump from the left state to the constant state along the cell interface, it

can be written as

A(Qi−1/2 −QL) =
∑

k:λk<0

AWk (5.10)

A(QR −Qi−1/2) =
∑

k:λk>0

AWk. (5.11)

where Wk is the jump across the kth wave. Then, since ~mk is an eigenvector of A, A~mk =

λk ~mk. The numerical flux for Roe’s method for systems can then be written as

Fn
i−1/2 = f(QL) +

∑

k:λk<0

λkWk (5.12)

Fn
i−1/2 = f(QR)−

∑

k:λk>0

λkWk. (5.13)

As described in chapter 3, the approximate linear system will give non-physical solutions

when a transonic rarefaction occurs. The next section will extend the entropy fix derived

in chapter 3 for scalar problems to systems.
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5.3.1 Entropy Fix

Remember that by linearizing the Jacobian matrix using Roe’s method, we are essentially

replacing all rarefaction waves with shocks. This is sufficient except if the kth wave satisfies

λkL < 0 < λkR, where λkL and λkR are the characteristic speeds to the left and right of the

kth wave, in which case the kth wave is transonic. Suppose for example that the 1-wave is

transonic. Then the wave speed to the left of the 1-wave is the simple case λ1L = λ1(QL).

To the right of the 1-wave λ1R = λ1(Q1R) = λ1(QL +W1), where Q1R is found by adding

the jump across the first wave Wk to the left state. Now the same logic can be used that

was described in chapter 3. For this example, the consistency condition is written as

λ1L(QL −QS) + λ1R(QS −Q1R) = λ1(QL −Q1R) (5.14)

where λ1 is the smallest eigenvalue of A. Equation (5.14) can be rearranged to solve for QS ,

the constant intermediate state between λkL and λkR given by

QS =
QL(λ1 − λ1L) +Q1R(λ1R − λ1)

λ1R − λ1L
, (5.15)

Thus, the numerical flux is written as

Fn
i−1/2 = f(QL) + λ1L(−QL +QS). (5.16)

Rewriting (5.16) using the expression for QS yields

Fn
i−1/2 = f(QL) + λ1L

(

λ1R − λ1

λ1R − λ1L

)

(Q1R −QL) (5.17)

= f(QL) + λ1L

(

λ1R − λ1

λ1R − λ1L

)

W1. (5.18)

5.4 Roe Solver for 2-Class Traffic Flow

We will now demonstrate Roe’s method for our system of two equations. The first step is

to find a Roe linearization of the Jacobian matrix

J =

[

1− 2ρ1 − ρ2 −ρ1

−ᾱρ2 ᾱ(1− 2ρ2 − ρ1)

]

.

To do this we integrate each element of the matrix along the straight line connecting ~qL to

~qR parameterized by

~q(ξ) = (~qR − ~qL)ξ + ~qL where 0 < ξ < 1 (5.19)

leading to
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A =

[

∫ 1
0 (1− 2ρ1(ξ)− ρ2(ξ))dξ −

∫ 1
0 ρ1(ξ)dξ

−
∫ 1
0 ᾱρ2(ξ)dξ

∫ 1
0 ᾱ(1− 2ρ2(ξ)− ρ1(ξ))dξ

]

.

As an example, we will provide the details for the integral of the first component.

∫ 1

0
(1− 2ρ1(ξ)− ρ2(ξ))dξ = 1− 2

(

1

2
(ρ1L + ρ1R)

)

− 1

2
(ρ2L + ρ2R).

Letting ρ̄1 =
1
2(ρ1L + ρ1R) and ρ̄2 =

1
2(ρ2L + ρ2R) and completing the other three integrals,

the matrix A is given by

A =

[

1− 2ρ̄1 − ρ̄2 −ρ̄1

−ᾱρ̄2 ᾱ(1− 2ρ̄2 − ρ̄1)

]

.

The eigenvalues and eigenvectors are

λ1,2 =
1

2
(γ̄1 + ᾱγ̄2 ∓

√
η̄) (5.20)

and

~m1,2 =

[

1
2αρ̄2

(ᾱγ̄2 − γ̄1 ±
√
η̄)

1

]

where

γ̄1 = 1− 2ρ̄1 − ρ̄2, γ̄2 = 1− 2ρ̄2 − ρ̄1 and η̄ = (−γ̄1 + ᾱγ̄2)
2 + 4ᾱρ̄1ρ̄2. (5.21)

Note that A satisfies condition 1 since it has real eigenvalues.

Now that we have found a valid Roe linearization the next step is to determine the

numerical flux which involves finding the jump Wk across the kth wave. This calculation

involves solving the linear system

~qL − ~qR = P (~rL − ~rR) (5.22)

for ~rL − ~rR. Using this vector we can find Wk the jump across the kth wave

Wk = (rkL − rkR)~mk. (5.23)

As for the transonic case we only need to consider the 1-wave due to the fact that λ2 ≥ 0.

Since λ2 = 0 for ρ̄ = 1
2 and ρ̄ = 1 and since λ2 > 0 on 0 < ρ̄ < 1

2 and 1
2 < ρ̄ < 1 we claim

that λ2 > 0. This analysis shows that we only need an entropy fix for the 1-wave. Therefore,
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for two-class flow there are only three cases for the approximate Riemann problem. In case

1, as shown in Figure 5.4 (a), all eigenvalues of A are right-going and so

Fi−1/2 = f(QL). (5.24)

In case 2, as shown in Figure 5.4 (b), λ1 is left-going and λ2 is right-going and so

Fi−1/2 = f(QL) + λ1(−QL +QM) = f(QL) + λ1W1. (5.25)

And in case 3, as shown in Figure 5.4 (c), λ1 is transonic and so

Fi−1/2 = f(QL) + λ1L(−QL +QS) = f(QL) + λ1L

(

λ1R − λ1

λ1R − λ1L

)

W1. (5.26)

5.5 CLAWPACK Simulations

All of the simulations that will be presented have been solved using the publicly available

CLAWPACK package for solving hyperbolic PDEs using exact or approximate Riemann

solvers. The user only needs to supply CLAWPACK with the eigenvalues and eigenvectors

of the exact Jacobian, or Roe linearized matrix along with Wk and the entropy fix. Variable

time stepping, boundary conditions and flux limiters are built in functions making this a

relatively straightforward way of implementing a Roe solver. Details about this package can

be found in [16].

5.5.1 Two-Class Simulations

In this section we will show the four solution profiles, one from each of the possible non-

degenerate cases, discuss the convergence of our method and show that our results match

a test case found in the literature. Figure 5.5 shows an example from each of the four

possible non-degenerate cases produced from different Riemann initial data. The wave

speeds produced by Roe’s method match well with the exact solution. These simulations

were all produced with ᾱ = 0.5, T = 1 and with N = 300 cells on the domain from [−1, 1].

Plot (c) in Figure 5.5 contains a transonic rarefaction in the 1-wave since the slowest wave

in the rarefaction is moving to the left and the fastest wave in the rarefaction is moving to

the right of the initial discontinuity. The sonic glitch is at x = 0 and will vanish as dx → 0.

Now we will study the convergence of Roe’s method. The convergence rate will be

observed for a case with a discontinuous solution and another case with a smooth solution.



CHAPTER 5. NUMERICS OF MULTI-CLASS TRAFFIC FLOW 45

Q
i−1

Q
M

Q
i

x
i−1

x
i

t

λ
1

λ
2

Fully Supersonic

(a)

Q
i−1

Q
M

Q
i

x
i−1

x
i

t

λ
1

λ
2

λ
1
 Subsonic, λ

2
 Supersonic

(b)

Q
i−1

Q
M

Q
S

Q
i

x
i−1

x
i

t

λ
1

λ
2

λ
1L

λ
1R

λ
1
 Transonic

(c)

Figure 5.4: There are three scenarios that are possible for two-class traffic flow. In (a) the
wave speeds are all right-going and thus Qi−1/2 = QL. (b) is the case where λ1 is left-going
and λ2 is right-going leading to Qi−1/2 = QM . (c) shows that λ1 is transonic which leads
to Qi−1/2 = QS .
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Figure 5.5: The solution profiles are shown for the four non-degenerate combinations of
elementary waves discussed in chapter 4. The dashed black lines show the initial condition
while the solid blue and green lines show the exact solution derived in section 4. The red
dots represent the solution computed using a Roe method with second order corrections.



CHAPTER 5. NUMERICS OF MULTI-CLASS TRAFFIC FLOW 47

103 104

mx

10−4

10−3

E
rr

o
r

Convergence Study with 1st Order Method t=0.10

L1 Norm

L2 Norm

(a) l1 = 0.7, l2 = 0.45

103 104

mx

10−5

10−4

10−3

E
rr

o
r

Convergence Study with 2nd Order Method t=0.10

L1 Norm

L2 Norm

(b) l1 = 0.99, l2 = 0.52

Figure 5.6: Convergence rates for discontinuous shock-rarefaction case. For (a) the first
order method and (b) the second order method.

For each of these we will show how the convergence rates differ when CLAWPACK is run

with and without higher order correction terms. One of CLAWPACKs built in functions is

the ability for the user to choose the order of accuracy to be first or second. For all of the

convergence plots we will use N = [200, 500, 1000, 2000, 5000, 10000, 15000] and fixed time

stepping with dt = 0.0001, the largest possible dt for the finest mesh.

To study the convergence of a nonlinear hyperbolic problem we will use the l1 and

l2 norms so that the large errors that can occur near discontinuities are not being over

emphasized as would be the case in the l∞ norm. Figure 5.6 shows the convergence rates

of the l1 and l2 norms found when applying both the first and second order methods in

CLAWPACK. The initial condition is taken from Figure 5.5 plot (a) and is run to T = 0.1

on the domain from [−0.5, 0.5]. This shows that with the second order correction terms,

our method is first order convergent in the l1 norm for discontinuous solutions. When the

second order corrections are not implemented, the convergence rate is considerably lower.

Achieving the accuracy of the respective methods is only expected in regions of smooth

flow and reductions of order are expected when discontinuities are present. However, the

convergence rates here are still lower than expected and at this time we do not have an
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Figure 5.7: Convergence rates in the l1 and l2 norms for smooth flow.

explanation for this.

Now we examine the convergence of for a smooth solution with Gaussian initial data. The

error will be found by comparing the numerical solution to one on grid with N = 30000.

The results are shown in Figure 5.7 for the first and second order methods. The major

difference in this study is that the l2 rate is now the same as for the l1 norm. The l1 norm

is slightly better although not as high as we would expect.

Our final simulation is one with initial data given in [28]. The initial condition is shown

in blue in Figure 5.8 where the platoon on the left carries an even distribution of slow and

fast drivers. In this scenario the fast drivers seek to drive at a maximum velocity that is

twice that of the slow drivers, so that ᾱ = 0.5. We plot the solution after time T = 1.2 with

N = 800 grid points on the domain from [0, 2]. Since the number of grid cells is not included

in the paper, we cannot make any conclusions about the accuracy of one scheme relative to

the other, however it is clear that we do reproduce the correct intermediate states and wave

speeds.
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Figure 5.8: Comparison of Roe’s method to a benchmark case that was computed using a
5th order WENO scheme from [28].

5.5.2 Three-Class Simulations

For the system discussed in this thesis the Roe matrix can easily be generalized for any

number of classes as:

A =





















α1(1− 2ρ̄− ρ̄1) −α1ρ̄1 . . . −α1ρ̄1

−α2ρ̄2 α2(1− 2ρ̄− ρ̄2) . . . −α2ρ̄2
...

. . .
...

−αn−1ρ̄n−1 . . . αn−1(1− 2ρ̄− ρ̄n−1) −αn−1ρ̄n−1

−αnρ̄n . . . −αnρ̄n αn(1− 2ρ̄− ρ̄n)





















with ρ̄i = 0.5(ρiL + ρiR). Because of this structure the extension of our problem to more

classes takes little extra work. The main difference from the two-class case is that the eigen-

values and eigenvectors can no longer be found explicitly and so we will have to implement

an eigensolver into the code. This can be done through LAPACK. We will now focus on

two examples studied by Zhang et. al [29] that solve the same multi-class traffic flow, but

instead use a Lax-Freidrichs flux-splitting method with a 5th order WENO reconstruction

and a 3rd order TVD Runge-Kutta time discretization.
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Figure 5.9: Experiment 1: Comparison of our method to [29] for ~qL = [0.2, 0.1, 0.1] and
~qR = [0.25, 0.25, 0.3] with N = 800.



CHAPTER 5. NUMERICS OF MULTI-CLASS TRAFFIC FLOW 51

0.0 0.2 0.4 0.6 0.8 1.0
x

0.05

0.10

0.15

0.20

0.25

0.30

D
e
n

si
ty

ρ1

ρ2

ρ3

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

ρ

(c) Roe’s Method (d) FDM

Figure 5.10: Experiment 2: Comparison of our method to [29] for ~qL = [0.1, 0.08, 0.12] and
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Figure 5.11: Results from experiment 1 with fewer grid cells.

For the following experiments the maximum velocities for each class are αi = [0.6, 0.8, 1].

The initial discontinuity of the Riemann problem is located at x0 = .3 on the domain from

[0, 1] and the simulation is run with T = 1.2. The first experiment is an all shock scenario

with ~qL = [0.2, 0.1, 0.1] and ~qR = [0.25, 0.25, 0.3]. The second experiment is a 1-shock,

2-shock, 3-rarefaction scenario with ~qL = [0.1, 0.08, 0.12], ~qR = [0.2, 0.25, 0.3]. Our code

has been set to use variable time stepping and N = 800. Figures 5.9 and 5.10 show the

individual densities and total density given by Roe’s Method compared with [29] for the

the two experiments. From observation Roe’s method is outperforming Zhang et. al’s. The

middle states and shocks are better resolved by our method and in particular we see none

of the oscillations seen in Zhang et. al.

Since we are seeing better results from our method, we would like to know for what

grid size our results begin to look less resolved. Figure 5.11 shows the results for the same

problem in Figure 5.9 with N = 200 and N = 400 grid cells. Figure 5.12 shows a zoomed

in picture of a single class around the 2-shock and 3-shock with N = [200, 400, 800, 1600].

Clearly, the N = 800 solution has essentially converged.
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Figure 5.12: Zoomed in picture of the 2-shock and 3-shock from experiment 1. (a) and (b)
show how ρ2 and ρ3 are resolved for grid sizes N = [200, 400, 800, 1600].

5.5.3 Nine-Class Simulations

Finally, we wanted to test our scheme against the WENO scheme for a nine-class case. This

is an interesting comparison because of the fact that this example was originally computed

using the Lax-Friedrichs method in [25] which was so diffusive it smoothed out a staircase

like behavior later illuminated by the WENO scheme in [28]. Note that this is a different

WENO scheme than for the three-class comparison in the previous section.

Our nine-class experiment begins with an initial platoon shown in blue in Figure 5.8

where the initial total density is 40 and the maximum density is ρm = 200. In the platoon

the individual classes have densities

ρi = [1.6, 3.2, 4.8, 6.4, 8, 6.4, 4.8, 3.2, 1.6]

and maximum velocities

αi = [60, 67.5, 75, 82.5, 90, 97.5, 105, 112.5, 120], (5.27)

respectively. Our method is run with variable time stepping and N = 1600 on the domain

from [0, 2]. Looking at the results in Figure 5.13 our method is capturing the middles states
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Figure 5.13: Comparison of Roe’s method to a 5th order WENO scheme at various times.
The initial condition is given in blue.

and waves equally as well as the WENO scheme. We can zoom in on the peak of the

solution profile at time t = 0.02 to determine how this region is resolved for different grid

sizes. Figure 5.14 shows that our method will still capture this peak with N = 400 and

N = 800 grid cells.

One final consideration is the transonic rarefaction case that was not considered by

Zhang et. al. It is mentioned in [28] that the Godunov scheme is difficult, if not impossible,

to compute when the eigenvalues change sign. For this reason we compute a case with a

transonic rarefaction using Roe’s method. The initial total density is 0.7 with the same class

distribution as in the previous run. The max velocities are given by (5.27). In Figure 5.15

the sonic point at x = 1 is better resolved in the case with N = 800. These results are

expected, however we remark that there is no analytical solution to compare to.
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Figure 5.14: Zoomed in picture on the peak of the solution profile at time t = 0.02.
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Figure 5.15: A transonic rarefaction is computed with N = 400 and N = 800. The sonic
point is at x = 1 and is clearly smoother in the N = 800 grid cell case.



Chapter 6

Conclusions

Our approach to the study of multi-class traffic flow is based on solving a system of hyper-

bolic PDEs derived from the Lighthill-Whitham and Richards (LWR) model. This extension

of the LWRmodel to incorporate multiple driver types was first proposed byWong andWong

[25] in 2002 in which each driver class was characterized by its desired maximum velocity.

Our focus has been to implement a finite volume method of Godunov-type that makes use

of an approximate Riemann solver. We compare our results to other published work in the

literature [25, 28, 29] for systems with up to nine classes of drivers.

We begin by deriving the exact solution to the Riemann problem for the case with two

driver classes. This requires an understanding of the Hugoniot locus for shocks and integral

curves for smooth solutions that describe the solution path joining arbitrary left and right

states. An understanding of these curves reveals that the two elementary waves emanating

from the initial discontinuity are determined by the location of the right state relative to the

Hugoniot loci and integral curves through the left state. In particular, the constant middle

state is determined by the intersection of the 1-curve through the left state and the 2-curve

through the right state.

This analysis motivates our use of a Godunov-type method that incorporates a local

Riemann solver. Our experience in deriving the exact solution to the Riemann problem

for the two-class case suggests that using an exact Riemann solver in the numerical scheme

would be too expensive. Therefore, we use an approximate Riemann solver of Roe type

instead.

An approximate Riemann solver of Roe type requires a linearized Roe matrix that we

derive for a general number of driver classes. We then determine an entropy fix so that
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the numerical solution is consistent for transonic rarefaction waves. The algorithm is im-

plemented in Fortran using the CLAWPACK software package [16].

A convergence study shows that our method is first order accurate in space. We then

compare to several different studies in the literature with three and nine classes of drivers.

In the three-class study we find that our method shows better resolution of the middle states

where the comparison case shows small oscillations using a fifth order WENO method. In

the nine-class study, we obtained similar accuracy to other published results. While we

cannot draw conclusions about which scheme is better suited for this problem, we can say

that incorporating knowledge of the solution to the Riemann problem into the finite volume

scheme yields results with similar accuracy to the WENO scheme even when half the number

of grid cells are used.



Appendix

1-wave, 2-wave

For λ1 < λ2 we claim that the 1-wave which connects ~qL to ~qM is determined only by the

relative size of λ1(~qL) and λ1(~qM ) while the 2-wave which connects ~qM to ~qR is determined

only by the relative size of λ2(~qM ) and λ2(~qR).

Shock-Shock Case

Given that both the 1-wave and 2-wave are shocks, with sL being the left most shock and

sR the right most shock, the above statement suggests that

λ1(~qL) > sL > λ1(~qM ) (6.1)

and

λ2(~qM ) > sR > λ2(~qR) (6.2)

must hold by the Lax-entropy condition.

Now let’s assume the opposite is true. Let the 1-wave be defined by the λ2 characteristics

and the 2-wave by the λ1 characteristics. Then the lax entropy condition says that

λ2(~qL) > sL > λ2(~qM ) (6.3)

and

λ1(~qM ) > sR > λ1(~qR) (6.4)

must hold. But this leads to a contradiction. Since λ1(~qM ) < λ2(~qM ) by assumption it

follows that sR < sL. In other words, the right most shock is to the left of the left most

shock.
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Rarefaction-Rarefaction Case

Given that both the 1-wave and 2-wave are rarefactions the above statement suggests that

λ1(~qL) < λ1(~qM ) (6.5)

and

λ2(~qM ) < λ2(~qR) (6.6)

must hold.

Again let’s assume the opposite is true. Let the 1-wave be defined by the λ2 character-

istics and the 2-wave by the λ1 characteristics. Then

λ2(~qL) < λ2(~qM ) (6.7)

and

λ1(~qM ) < λ1(~qR) (6.8)

must hold. This leads to an immediate violation of the assumption that λ1(~qM ) < λ2(~qM ).
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