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Abstract

Recently there has been tremendous interest in sensor networks for its ubiquitous applica-

tions, and in many of these applications, robots have became an integral part of the system,

and therein robot mobility and network communication are two deeply coupled compo-

nents. In this thesis, we investigate some interesting interplays between communication and

mobility.

The first half of the thesis studies communication-assisted motion planning of robots,

where a static sensor network deployed in the environment is used to navigate robots. We

revisit some existing researches in wireless communication from the perspective of robot

motion planning, and propose an effective and efficient distributed algorithm for robot nav-

igation based on communication backbone. Toward another direction, we see the emerging

trend of more sophisticated in more capable sensor networks, where sensors (such as cam-

eras) give a spatial map rather than a single reading. We integrate the classic sampling-based

planning techniques, and propose a distributed probabilistic roadmap algorithm for such ap-

plications. The proposed method is also able to deal with physical obstacles, and navigates

robots through potential narrow passages, as traditional sensor networks with simple sensors

are not able to.

The second half the thesis discusses communication-constrained motion planning of

robotic sensor networks, where a team of mobile robots form a mobile sensor network, and

actively maintain connectivity of the system so that robots can always communicate with

each other, either directly or via other robots. We propose a novel hierarchical distributed

cooperative control scheme based on communication backbone of the network: Backbone-

Based Connectivity Control (BBCC). Key advantages of BBCC are that it is completely

general in that it can deal with arbitrary system topologies; it is a distributed method using

iii



only two-hop neighbor information; and finally, it has low communication cost. Further-

more, we look into potential local minimum issues that can arise because multiple objectives

are considered. Our empirical observations motivate a classification of local minima based

on the underlying cause, and we outline strategies to escape these minima.
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Chapter 1

Introduction

1.1 Introduction

There has been tremendous interest in sensor networks in the past decade due to their ubiq-

uitous applications [88]. Such applications include environmental monitoring [68], human

health monitoring [79], civil structure monitoring [58], intelligent transportation systems

[47], battlefield surveillance [66], enemy detection [82], and many others. While sensor

networks provide new capabilities for perceiving the physical world, they lack the ability

to adapt and interact with it, which normally requires mobility and actuation. Bringing

robots into the sensor network system can greatly alleviate such limitation and introduce

new capabilities [25, 51, 97]. Mobile robots can be used to actively deploy sensors over a

terrain [14, 99], to do active sampling and reduce the number of sensors [108], and to im-

prove coverage of a sensor network [56, 75]. Furthermore, a group of mobile robots equipped

with sensors and potentially actuators constitute a mobile actuator and sensor network [92],

where sensor nodes can move on their own and interact with the physical environment.

Such a mobile actuator and sensor network is capable of performing more sophisticated and

dynamic tasks, such as emergency search and rescue [49], autonomous ocean sampling[31],

chemical plume tracing and neutralizing [23], convoy protection [87], improving communi-

cation performance [94], and so on. At the same time, bringing robot mobility into sensor

networks also introduce new problems and challenges in many aspects of such systems [104],

including navigation and control, self-organization, etc. In my research at the Robotic Al-

gorithms and Motion Planning (RAMP) Lab, at Simon Fraser University, I studied some

of the problems for those cases where mobility is deeply coupled with communication, and

1
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Figure 1.1: Robots and sensor network as first responders. Figure courtesy of [49].

I have been looking into the interrelationship between communication and mobility from

motion planning point of view. In particular, we study two problems: communication-

guided motion planning, where communication provides guidance to the robot motion, and

communication-constrained motion planning, where communication imposes constraints on

robot motion.

Our motivating application is to use robots and sensor network as first responders in

emergency rescue, first proposed in [49]. Figure 1.1 shows such an application scenario,

where the aim is to make rescuing safer and more intelligent by leveraging latest commu-

nication and robotic technologies. Such a system consists of different elements including

human fire-fighters, sensor networks with various sensors for perception and navigation,

and multiple robots for assistive functions and rescue tasks. These elements interact with

each other and accomplish rescue tasks in a cooperative way: (i) The temperature sensor

and surveillance camera sensor network can be used to safely guide human fire-fighters or

rescue robots through a fire scene toward victims; (ii) Often multiple fire-fighters (or robots)

need to carry a victim out in a stretcher, or move furniture in order to make room for rescue,

and ideally the sensor network should also be able to provide guidance in these cooperative
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tasks. (iii) There can also be cooperative tasks of larger scale among fire-fighters and rescu-

ing robots. For example, when there are not enough sensors, a team of robots can be sent

into the burning building to deploy more sensors, or thoroughly search an area for victims.

During the tasks, robots/fire-fighters need to communicate with each other in a timely fash-

ion, so they can collaborate for better decision and faster response. These cooperative tasks

can be abstracted into two problems:

1. Communication-guided motion planning. This is for the problem of using sensor

networks to guide robots (or humans) toward a goal across a hazardous environment.

In such a case, robots might not have enough knowledge of an environment due to

their limited sensing capability, not to mention dynamic changes in the environment.

However, by communicating with a sensor network deployed in an environment to

continuously perceive changes, robots can respond to events outside their perception

ranges, and move with guidance obtained from the network.

2. Communication-constrained motion planning. This is for the problem of con-

trolling a group of robots while maintaining connectivity among them, i.e., all robots

are required to remain connected to each other (either directly, or via other robots).

Such a connectedness constraint is essential in coordinated and cooperative control,

since team members need to communicate and share information with each other, and

more importantly, in many cases connectedness is a necessary condition for stability

of the system [50, 60].

These problems, however, are challenging, as such a distributed system imposes a unique

set of characteristics and constraints. The first challenge is how to tackle these problems in

an efficient, responsive and scalable way. Sensor nodes normally have limited computational

power and battery life, and can not afford high volume of communication and extensive

movement, at the same time, we expect the system to have fast response to the dynamic

environments, while the size of a system (in terms of number of sensor nodes) can be as

large as thousands nodes or even more. In these cases, reliance on global information for

decisions should be avoided whenever possible, as gathering global information is energy

and time consuming. We are looking for distributed algorithms that primarily use local

information to solve the problem, since such algorithms are in general more efficient, and

have better scalability.
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The second challenge is how to incorporate global objectives and constraints in a dis-

tributed framework. Whereas distributed methods that use only local information to achieve

overall system objectives are intrinsically more desirable, in many of these problems, a cer-

tain degree of performance optimality is desired, for example, minimize traveling distance

(i.e., shortest path); or a certain constraints need to be satisfied, besides achieving goals,

for example, robots must stay connected to each other (i.e., connectivity constraint). Note,

that such optimization and constraints may require global information, and may be difficult

to be incorporated in a distributed framework, without inducing high communication cost.

1.2 Thesis contributions

This thesis makes key contributions for each of these two problems.

• For communication-guided motion planning problem:

– we propose a novel communication backbone based distributed method for robot

navigation amidst a wireless sensor network. The proposed method finds a safe

path with less communication cost compared to existing methods.

– We further extend our approach to use more sophisticated sensors capable of

giving a detailed map for its sensing region, and propose a distributed sampling

based planning framework that takes into account physical obstacles. To the best

of our knowledge, ours is first such distributed algorithm that takes into account

the maps obtained via sensors.

• For the problem of communication-constrained motion planning:

– we propose a novel distributed paradigm, Backbone-Based Connectivity Control

(BBCC), to deal with connectivity constraint among a team of mobile robots.

Key advantages of the proposed BBCC paradigm are that it can deal with ar-

bitrary system topologies, and it is a distributed method and uses only two-hop

neighbor information.

– The proposed BBCC above uses potential field based techniques and hence suffer

from local minimum problems. To deal with the problem, we propose a prelim-

inary somewhat empirical categorization of different types of local minima that
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can arise and distributed strategies to deal with these local minima. To our best

knowledge, no other distributed algorithm has attempted such categorization.

1.3 Related works

In this section we briefly review some of the research literature related to robot motion

planning and sensor networks, and some existing work on combining the two.

1.3.1 Robot motion planning

Robot motion planning algorithms have been intensively studied, and comprehensive review

for single robot motion planning algorithms can be found in [52]. In the last decade, prob-

abilistic sampling-based methods have been shown to be effective in solving many difficult

motion planning problems. The idea behind these methods is to construct a connectivity

roadmap in the configuration space (C-space) by randomly placing landmarks (configura-

tions) into the C-space, and trying to set up the connections between neighboring landmarks.

Probabilistic Roadmap Method (PRM ) [46], Rapidly-exploring Random Tree (RRT ) [53, 48]

are most used sampling based algorithms.

These sampling based motion planning algorithms have inspired a few algorithms for

the robot navigation problem in sensor network [3, 15, 20, 4], including ours [100, 103].

For navigation and path planning in sensor networks, the key challenge is how to do the

path planning in a distributed way [20], since there is no central global representation of

the environment, and the perception of the environment comes from distributed sensors.

Note that there is another thread of research studying distributed motion planning from

the perspective of parallelism [40, 5, 67, 89], which focuses on distributing computation into

different processors. All these works, however, assume processors have access to either a

shared or a private copy of a global C-space representation, and therefore address a different

problem.

1.3.2 Wireless sensor networks

Good reviews of wireless sensor networks research in general can be found in [104, 1].

Akyidiz et al. [1] gave a thorough review on sensor network applications, design factors,

and communication architecture. A more recent review [104] by Yick et al. focused on
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recent development, and touch on broader issues in wireless sensor networks. Both surveys

identified many open research problems in various aspects of the field. Here, we only briefly

review some closely related topics.

Data-centric routing algorithms

Many parts of our research are closely related to topology control and routing in wireless

sensor networks, which is very a challenging problem due to the inherent characteristics

of sensor networks [2], such as its relatively large network size, constrained energy, and

application dependence design. Traditional IP-based host-centric routing techniques are

not suitable for wireless sensor networks. Instead, data centric routing is more effective

and efficient, where nodes are not addressed by their addresses but by the data they sense.

Directed diffusion [44] is an important data-centric and application-aware routing and data-

aggregation scheme. The basic idea of Directed Diffusion is that, instead of flooding raw

data, it propagates an interest (e.g. maximum temperature in the network) through the

network in a hop by hop fashion, and each sensor node receives and aggregates the interest

and sets up a gradient toward the sensor nodes from which it receives the interest. By

building the gradient, a shortest-path tree is created for further data aggregation and avoid

flooding. Directed Diffusion has been studied extensively with many variants and extensions

[16, 78, 80], and shown to be a very effective technique to reduce energy consumption, and

achieve scalability.

Clustering algorithms and communication backbone

Another technique for a similar purpose is clustering for hierarchical routing for topology

management. A flat network can waste energy and cause latency in communication and

tracking events, and hence it can result in poor scalability. Clustering is a technique to

scale down networks with a large number of nodes by creates an hierarchy for the network.

The basic idea is to group a set of nodes based on their physical proximity, and represent

each group with a single node as clusterhead. Good review of clustering algorithms can be

found in [22, 42, 96, 12].

One of the first clustering algorithms for sensor network is LEACH algorithm proposed

by Heinzelman et al. [39], which randomly rotates clusterheads. However, LEACH assumes

single-hop communication from clusterheads to the sink node (base station), and requires
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strict time synchronization between clusterheads and nodes within a local cluster. A more

general technique for clustering algorithms is to use graph domination and its variants. A

dominating set, D, is a set of vertices that makes all vertices of the graph either in D or

adjacent to at least one vertex in D. Formally,

D ⊆ V, ∀u ∈ V −D, ∃v ∈ D s.t. (u, v) ∈ E.

The members of a dominating set (DS) can be used to represent clusterheads, each of which

forms a cluster with their neighbors. A connected dominating set (CDS), C ⊆ V , is a

dominating set of G, such that the subgraph induced by C is connected. A CDS in general

includes a set of clusterheads as in the dominating set, and gateways that connect them.

Thus connected dominating set can be used as communication backbone [26], which is widely

used in communication to reduce broadcast redundancy and thereby energy consumption

[83]. Unfortunately, the problems of finding a minimum dominating set (MDS), and mini-

mum connected dominating set (MCDS) have been proved to be NP-hard [34]. Due to the

hardness of the domination problems, different algorithms use different heuristics to choose

dominating sets as clusterheads (and gateways), and such heuristics can be based on node

ID [55], degree [36], mobility [11]. In this thesis, we adopt the TMPO (Topology Manage-

ment by Priority Ordering) algorithm by Bao and Garcia-Luna-Aceves [10], which choose

MCS/MCDS locally based on a comprehensive heuristic combining multiple criteria.

Localization

In our research, we assume the sensor network is well localized, and a mobile robot can be

localized with assistant of the network. There are many research in localization algorithms

for sensor networks [59, 9, 17], with or without GPS. These algorithms covers indoor [41]

and outdoor [19] environments, single-hop [37] or multi-hop [61] networks, and use different

distance measurements, such as radio signal strength (RSS) [41], angle-of-arrival (AOA) [62],

time-difference-of arrival (TDOA) [76], or simply hop counts [61]. Most of them assume the

existence of anchor nodes that already know their locations, with a few being anchor-free

[37] and mobile robots have been used as mobile beacons for localization [29, 33, 81, 70].

There are also localization algorithms for mobile sensor networks, based on the Monte Carlo

localization method [90].
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1.3.3 Robot navigation with static sensor networks

Several distributed algorithms have been proposed for the problem of navigating an indi-

vidual robot using sensor networks, and most of these algorithms are based on Directed

Diffusion. One class of the algorithms propagates a navigation field over the entire sensor

network: messages flood from the goal, so that each sensor node will have knowledge about

best movement to reach goal. The algorithms in [13, 54, 93, 63] fall into this category, and

they differ in the definition of navigation field based on different objectives. All the above

algorithms, however, use flooding to propagate a navigation field, which is not efficient in

terms of network energy consumption due to high communication volume. Recently, in-

spired by PRM, roadmap based methods have been proposed to reduce flooding and hence

communication cost [3, 15, 20, 4]. Rather than propagating the navigation field over the

entire network, these methods navigate the robot through a roadmap, a smaller subset of

the network. To be specific, Alankus et al. [3] and Bhattacharya et al. [15] proposed to

find a feasible path incrementally as the robot travels along the roadmap, and flooding is

reduced by limiting query to only nodes in vicinity of the robot; Bhattacharya et al. [15]

further reduced communication by building a virtual grid road-map in the area, and limiting

query to nodes close to roadmap edges. Buragohain et al. of [20] proposed to scale down

the original network by building a skeleton graph based on geographic information. More

recent by Alankus et al [4] proposed to build a roadmap by randomly choosing a certain

number of nodes as milestones, and making connections among them. However, all these

methods still need a certain degree of flooding for all nodes in roadmap construction, and for

non-roadmap nodes to compute the navigation field to guide the robot toward the roadmap;

therefore they do not take full advantage of the roadmap.

Besides, all existing works for the problem assume only simple sensors, such as temper-

ature sensors, are available, and hence the entire sensing region of a sensor is either free

or in danger (so we call such sensing model as “binary” model), and they do not take into

account physical obstacles in the planning phase, and leave physical obstacle avoidance to

the execution phase and require replanning when the robot detects an obstacle in the way

[4]. This may result in quite lengthy and costly paths. In addition, the binary sensing

model is too simple for more sophisticated applications, especially in the context of visual

sensor network [84], or, for example, in emergency rescue applications, where a networked

of mobile robots are equipped with laser scanners.
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1.3.4 Connectivity control for multirobot formation

There is extensive literature for multi-robot systems, and good reviews can be found in

[21, 7], and a recent book by Bullo et al. [18]. Connectivity constraints have been considered

in the context of different problems, such as cooperative exploration [91, 73], and relay

communication [77]. More recent works have addressed connectivity constraints in path and

motion planning of networked systems. Among these works, algorithms in [65, 24, 30, 32]

assume each robot has its own goal configuration to achieve, and those in [85, 45, 106,

107] deal with more general objectives (e.g., consensus, or formation control) on top of

connectivity constraints. Some of the algorithms are centralized [24, 32, 106] and suffer from

high dimensionality of the problem (i.e., high dimensionality of the composite state space)

for large systems and may not be suitable for real time applications. Distributed methods

that use only local information are intrinsically more desirable. However, as pointed out in

[86], it is difficult to embed connectivity constraints into geometric and analytical models

typically used in distributed motion control or planning algorithms, due to the combinatorial

and global nature of connectivity constraints.

Due to difficulty of the problem, many works make simplifications. Some [65, 30] sim-

plified the problem by assuming a predefined and fixed topology of system (e.g., “constraint

graph”), and others [45, 27] assumed either the goal formation to be a subgraph of the

initial formation, or vice versa. Clearly, fixed topology does not capture full dynamics of

multi-robot systems, since a system topology changes as robots move in and out of commu-

nication range of each other. Such presumptions on formation topology are quite limiting,

are not realistic in many applications, and may prevent certain tasks from being achieved.

The authors in [85, 107] considered more general solutions. They are similar in that they

both use certain sub-graphs to represent system topologies, and guarantee connectivity by

maintaining existing links in the representative sub-graphs. However, these approaches have

drawbacks. The algorithm in [85] uses information flow to represent the system topology,

and updates the information flow based on local connectivity robustness. The resulting

information flow is a non-expanding topology: once a robot is within in two hops of another

robot, the two robots are not allowed to be further apart in subsequent stages. This is still

limiting and may not be suitable for a general task. The algorithm in [107] uses spanning

subgraphs to capture the system topology, and determining creation/deletion of a connec-

tion is done by auction, which may involve all robots of the system and hence induce high
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communication cost.

1.4 Thesis overview

The first half of the thesis studies communication-assisted motion planning of robots, where

a static sensor network deployed in the environment is used to navigate robots. We start

with circular robots, and propose a backbone based roadmap algorithm; then we investigate

navigation with more general robots and more sophisticated sensing model in sensor network,

and look into methods doing finer-grain path planning for robots with non-trivial size and

shapes. The second half the thesis discusses communication-constrained motion planning

of mobile sensor networks, where a team of mobile robots form a mobile sensor network,

and actively maintain connectivity of the system throughout a task. We propose a general

and efficient Backbone-based cooperative control scheme for the problem, and also look into

local minimum issues that arise with the problem.

1.4.1 Backbone based roadmap for robot navigation

We propose a backbone based roadmap framework for robot navigation. This is inspired by

distributed clustering algorithms in sensor networks for constructing communication back-

bone to eliminates unnecessary flooding. For robot navigation problem, we first extract the

backbone of the sensor network via a clustering algorithm adapted from TMPO algorithm

[10], and use the backbone as roadmap for path planning. It is advantageous to use backbone

network as a roadmap: There is no need of flooding in order to construct the backbone; A

node decides whether to become a backbone node, based on its 2-hop neighbor information.

More importantly, backbone systematically captures the system connectivity, and some of

its properties make it desirable in our motion planning problems: (i) Backbone preserves

connectedness. The backbone has same number of connected components as the original

network. (ii) Backbone provides a hierarchical representation of the system topology and

scales down the original network. The size of backbone depends on network connectivity,

and when connectivity is high, the number of clusterheads decreases, resulting in a smaller

backbone. Hence, good scalability is promised. (iii) The backbone spreads out in the net-

work, such that every network node is at most 1-hop away from a clusterhead (and hence

backbone). As shown later in Section 2.5, this property provides performance guarantee (in

terms of robot traveling distance).
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1.4.2 Distributed roadmaps for navigation using spatial sensors

As mentioned earlier, most existing works for robot navigation in sensor networks assume

point robot and binary sensing model. We propose a distributed sampling based framework

for sensor networks whose sensors are equipped with more sophisticated senors, for exam-

ple, cameras in the context of visual sensor networks. These sensors provide much richer

information, e.g., a spatial map rather than a single reading. At the same time, the naviga-

tion tasks in this case are usually more complicated. For instance, in the emergency rescue

application, collapsed walls may block some areas, and a feasible path may run through

a narrow passage of some sort lying across sensed regions of multiple sensors. In order to

effectively navigate a rescue robot or a fire-fighter through the rubble, these multiple sensors

need to cooperate with each other, take into account obstacles when planning paths, and

thereby plan a feasible and more efficient path.

The proposed distributed sampling based planning algorithms, Distributed PRM (D-

PRM) and Distributed RRT (D-RRT), systematically incorporate a general spatial sensing

model for each sensor, and take into account obstacles in determining feasible paths. Each

sensor creates a local roadmap (a patch) similar to the classic PRM or RRT, but only for

its locally-sensed environment. Two different patches of roadmap are “stitched” together

with a set of relay points lying in the common region shared by the two patches. Sensor

nodes mutually negotiate the connectivity of their patches by sending messages regarding

the status of their respective relay points. When two adjacent sensor nodes see a relay

point free, it becomes a connecting point for the two patches. To find the shortest path on

distributed roadmaps, a distributed navigation field is created across the sensor network,

which maps each sample in local roadmaps into distance to the desired goal, and the best

path is computed by gradient descent. The proposed algorithms are general and applies to

robots with non-trivial shapes, and even for formations with multiple robots. To the best

of our knowledge, this is the first work to study the distributed path planning in sensor

networks with complex spatial sensing capability.

1.4.3 Backbone based connectivity control for mobile robots

We propose a Backbone Based Connectivity Control (BBCC) scheme for a team of mobile

robots, where system topology changes when mobile robots move. In order to maintain

connectivity among robots, such that all robots can communicate with one another either
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directly or via other other robots, the proposed BBCC scheme uses communication backbone

to represent the dynamic topology of the system. Backbone of the mobile robot network is

updated in real time to capture the dynamic topology of the system and to impose motion

constraints on robots so that network connectivity is maintained. To be more specific,

BBCC maintains the system connectivity with a two-levels hierarchy: it first maintains

a connected backbone, by maintaining existing connections (communication links) in the

backbone; and then for a non-backbone robot, one of the backbone robots is chosen as leader,

and connection to the leader is maintained. The overall philosophy is similar to [85, 107]

in that they all use certain sub-graphs to represent system topologies, and guarantee the

connectivity by maintaining existing links in the representative sub-graphs.

BBCC has several advantages compared to existing methods: (i) BBCC makes no as-

sumption on system topology, and can deal with arbitrary initial and goal formations.

Because communication backbone is essentially a connected dominating set, it captures the

system connectivity nicely, and provides effective representation of the system connectivity.

(ii) BBCC is a distributed scheme and does not require global message exchange. Back-

bone can be constructed and updated in a distributed fashion, using only two-hop neighbor

information.

1.4.4 Local minimum escape scheme for connectivity control

Similar to most existing works for connectivity control, BBCC uses a potential field based

technique to maintain critical links, and suffers from local minima problem when multiple

criteria are considered, such as achieving goal, maintaining connectivity, and avoiding colli-

sions. Furthermore, as mentioned in [86], in some scenarios, using only local information is

doomed to failure and global decision needs to be made in order to achieve a certain task.

We extend BBCC framework to a general motion planning framework that is capable of

escaping from local minima, and making global decisions when necessary. To the best of

our knowledge, our scheme is the first distributed approach to attack the local minimum

problem in mobile networks.

In the proposed scheme, local minima are detected when one or more robots do not

progress toward their goals. We classify local minima into three different categories: Type-I

(Regional obstacle-induced local minimum), Type-II (Individual connectivity-induced local

minimum), and Type-III (Structural compound local minimum). Different types imply

different natures and causes of the minima, and need different escaping strategies. In the first
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category, the robot may be able to escape the minimum merely by simple local behavior (e.g.,

we use Random Walk strategy), whereas in latter two categories, a robot needs help from

others in order to make global decisions for local minimum escaping, and we use Backbone-

based Navigation, and Backbone-based Leader-following respectively. These two strategies

incorporate distributed global decision making and exploit existing backbone constructed

under BBCC toward this purpose. Backbone based Navigation strategy uses the backbone to

take advantage of the knowledge (sensing) embedded in the entire network system, gathers

path planning information (roadmap) that is beyond sensing and communication range

of one single robot, and provides guidance to robots to escape Type-II local minimum.

Backbone based Leader-following strategy tries to achieve maximum mobility by reducing

the number of connectivity constraints, and looks for maximum reconfigurability in order

to escape Type-III local minimum.

1.5 Thesis organization

The remainder of the thesis is organized as follows. In Chapter 2, we present the backbone

based roadmap for a single circular robot navigation in static sensor networks. In Chapter

3, we investigate the robot navigation problem with more sophisticated sensing model and

more general robots. In Chapter 4 and 5, we study the problem of controlling a team

of mobile robots with connectivity constraints. The Backbone-based Connectivity Control

scheme is presented in Chapter 4, and in Chapter 5, we discuss the local minimum issues

that arise in the problem. Finally, conclusion and future work is presented in Chapter 6.



Chapter 2

Backbone-based Roadmaps for

Robot Navigation

2.1 Overview

In this chapter, we study the robot navigation problem in a static sensor network. Consider

a sensor network consists of a set of sensor nodes, S = {s1, · · · , sn}, in the environment.

A sensor node can measure state of the environment (e.g., temperature) within its sensing

range, ds. Danger areas (e.g., with excessive heat) can be detected by sensors, if the sensor

reading is beyond a certain threshold. We assume that sensor nodes know their location,

{x1, · · · , xn}, and a simple unit disk model [72]. Namely, two nodes can communicate

with each other, if they are within distance, dc, the communication range. The network

formed by sensor nodes is modeled as a proximity graph, G(V,E), whose vertices, V =

{1, · · · , i, · · · , n}, represent sensor nodes, and an edge (i, j) represents the communication

link between nodes i and j. The set of neighbors of node i is denoted by N(i) =
{

j
∣

∣ ‖xj −
xi‖ ≤ dc

}

.

The robot, A, is assumed to be a circular robot. It is mounted with sensing and wireless

communication devices that can communicate with sensor nodes within communication

range, dc. The robot responds to a certain event (e.g., a victim in a rescue scene [49]).

When a sensor node sg in the network detects a target event, the sensor network navigates

the robot A toward sg while avoiding danger areas (e.g. fire).

The challenges of the problem come from the fact that (i) the robot has very limited

14
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sensing range, and does not have global knowledge of the environment, and (ii) the envi-

ronment may change over time. With the sensor network, the problem can be solved in

two steps. (1) Path planning: this is done within sensor network alone to find a feasible

path in terms of sensor nodes; (2) Path navigation: with continuous interaction between

the sensor network and the robot, the sensor network navigates the robot along the feasible

path by moving the robot from one sensor node to another. Most existing methods for the

problem reviewed in Chapter 1 adopt similar scheme. But these methods require flooding

among sensor nodes, and result in high communication cost. In this chapter, we propose a

different roadmap method, which eliminates flooding in the path planning phase.

The proposed method is inspired by distributed clustering algorithms for constructing

communication backbone to eliminates unnecessary flooding. The proposed backbone-based

roadmap works as follows. It first extracts the communication backbone of the static sensor

network, and uses the backbone as roadmap for path planning. The overall scheme is shown

in Figure 2.1. The main activities (shown in ovals) of the scheme include backbone-based

roadmap construction and update, path planning, and path execution.

1. Backbone construction and update. The sensor network constructs the commu-

nication backbone when the system starts, and keeps updating the backbone when

nodes detect dangers or their energy levels drop to a certain level.

2. Path planning. In response to a certain event, the robot needs to move to a certain

goal. Then path planning is initiated (by the goal), and uses the constructed roadmap

to find a safe path (a communication route).

3. Path execution. Then robot follows the found path from one node to another, by

continuously communicating and interacting with the network.

Since the backbone of the sensor network is computed via a clustering algorithm adapted

from TMPO algorithm (Topology Management with Priority Ordering) [10], we first briefly

review the original TMPO algorithm in Section 2.2, before we present the proposed algo-

rithm in Section 2.3. Various extensions are discussed in Section 2.4, with some theoretical

results in Section 2.5. In Section 2.6 we show simulation results, followed by summary in

Section 2.7.
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Figure 2.1: Robot navigation scheme in static sensor networks. The oval shapes represent
main activities, and the rectangles with curved bottom represent data of interest.

2.2 Background: TMPO

2.2.1 Backbone construction

TMPO computes a dominating set (DS) as clusterheads, and then choose gateways and

doorways (a special type of gateways) to connect clusterheads. Clusterheads, gateways,

and doorways form a connected dominating set (CDS), the communication backbone. With

TMPO, a node decides whether or not to be a CDS member based on a knowledge of its

2-hop neighbors, and their priority, which is a function of node energy and mobility. The

criteria are as follows, and note that these criteria are stated with respect to local 2-hop

neighbor information.

A node becomes a clusterhead (CH), if it satisfies either of the following conditions:
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Figure 2.2: Clusterhead election.
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(C.1) It has the highest priority among its 1-hop neighbor, as shown in Figure 2.2(a);

(C.2) It has the highest priority among some node’s 1-hop neighbors, as shown in Figure 2.2(b);

It has been proved that clusterheads elected based on (C.1) or (C.2) make a dominating

set. Furthermore, for any clusterhead, the closest clusterhead (if there exists one) is at most

3-hop away. To form the backbone, connections between clusterheads need to be established

to make them connected. If two clusterheads are only 1-hop away, the link between them

is kept. If two clusterheads are 2-hop away, and there is no other clusterhead in between, a

gateway is needed to connect them. If two clusterheads are 3-hop away, and there is no other

clusterhead in between, a doorway is needed to bring them one-hop closer, and a gateway is

needed to connect the doorway and the other clusterhead. Simply put, the shortest path (of

length 3) with the highest priority node is used to connect these two clusterheads, and the

node (with the highest priority) becomes doorway and connects to one of the clusterheads,

and a common neighbor (with the highest priority) of the doorway and the other clusterhead

is elected as a gateway to connect the doorway and the other clusterhead. More specifically,

a node becomes a doorway (DW), if it satisfies all of the following conditions:

(D.1) It has one clusterhead, c1, as 1-hop neighbor.

(D.2) It has another clusterhead, c2, as 2-hop neighbor, but no other clusterhead neighboring

c2.

(D.3) c1 and c2 are not neighbors, and there is no other nodes connecting c1 and c2;

(D.4) There is no other path between c1 and c2 that has a higher priority node.

A node becomes a gateway (GW), if it satisfies all of the following conditions:

(G.1) It has two disjoint clusterheads, or one clusterhead and one doorway, n1 and n2 as 1-hop

neighbors;

(G.1) There is no 1-hop neighbor that is a common neighbor of n1 and n2, and has higher

priority.

2.2.2 Performance

The main objectives to evaluate a backbone construction algorithm include: size of con-

structed backbone, message overhead, and time taken to construct and update the back-

bone, and maintenance of the backbone. In practice it is difficult to achieve these objectives

at the same time. The best approximation algorithm, proposed in [95], gives a constant
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approximation ratio 8 with respect to minimum backbone size, which is by far the best

approximation ratio for the problem, and it also achieves message complexity of O(n log n),

which has been shown as the message complexity lower-bound for non-trivial1 backbone

construction. The backbone construction therein requires multiple negotiation phases: it

first computes a spanning tree, and then extracts the backbone based on the computed

spanning tree. As a consequence, constructing and updating the spanning tree requires

global consensus, and hence demands O(n) time and (O log n) messages for construction

and each update.

TMPO, on the other hand, is not an approximation algorithm in the sense that it does

not guarantee an approximation ratio with respect to the optimal backbone size, and the

constructed backbone may it may contain cycles. However, the empirical study in [10] shows

that TMPO performs well in practice. In fact, the size of backbone is not the most important

objective in our application. Instead, the more important objective is to keep the message

overhead associated with creating and maintaining the backbone low, to effectively take into

account multiple factors such as safety and overall longevity of the network. TMPO does

not requires multiple global negotiation phases, and it constructs and updates solely based

on 2-hop neighbor information. As shown in Section 2.5, TMPO achieve message complexity

of O(|CDS| · ∆), where |CDS| is the size of backbone and ∆ is the maximum degree of

the network. Furthermore, backbone construction in TMPO is based on a comprehensive

definition of priority, which can be easily adapted to take into account safety and energy

consumption factors in our application.

2.3 Backbone for navigation

2.3.1 Node priority for navigation

In [10], priority is defined as a function of energy and mobility, and a node that has higher en-

ergy and lower mobility is more likely to be a clusterhead, thereby achieving longer lifetime,

and more stable backbone. We adapt and generalize this definition for robot navigation.

As we consider static sensor networks in this problem, we remove the mobility factor, but

we take into account the distance to dangers for path safety. We define the priority Pi, of

1A connected dominating set is said to be trivial if it consists all nodes. For example the CDS for a ring

graph is trivial because it contains all nodes.
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node i, as a function of energy and safety:

Pi(do, E) = B1
⊕

B2
⊕

B3

B1 = ⌊do · log2(1− 0.9E)⌋
B2 = do

B3 = do · node id

(2.1)

where Bi is a bit-string and
⊕

is bit-concatenation operation, do is the distance to danger,

and E ∈ [0, 1] is remaining energy. The
⊕

defines different priority for the three terms, B1

is in the most significant bits therefore has highest priority. As do ≥ 0, the priority will be

non-negative, and when do = 0, Pi(do, E) ≡ 0. When the battery is depleted (E = 0), the

logarithmic term goes to zero, and B1 becomes zero.

2.3.2 Roadmap construction

The backbone construction procedure essentially elects members of CDS, as described in

Section 2.2. We make two key modifications to the original TMPO algorithm, since the

navigation problem imposes safety constraints. First, with the priority defined in Eq.(2.1),

nodes that are further away from danger, and have more energy are more likely to be elected

in the CDS. In order to eradicate the possibility of electing a node in danger, which has zero

priority, we include an extra criterion for CDS election:

(E.1) A zero-priority node is not eligible to be a CDS node.

Furthermore, during the election, a node simply ignores a neighbor, if this neighbor has

zero-priority, as if the neighbor were not in the list of neighbors. Equivalently, the election

is done with respect to the network with all nodes in danger removed. Note that inclusion of

(E.1) may result in a disconnected backbone, even if the original network is a connected one.

In such a case, the backbone will be the union of CDS for each connected component. For

the sake of easy description, we may interchange the terms of CDS and backbone throughout

the dissertation.

The second modification is regarding information propagation after election. In the

original TMPO algorithm, clusterheads and doorways need to propagate their type (CH,

DW, or GW) information, because election of doorways depends on which nodes are clus-

terheads in neighborhood, and election of gateways depends on information of clusterheads

and doorways. In our problem, in order to (further) reduce the communication volume for
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goal dissemination in later stages, we propose to propagate extra information for doorways

and gateways. That is, besides type information, a doorway or gateway should also prop-

agate the information about which clusterheads (or doorways) it connects to. In this way,

backbone nodes are connection-aware, and only handle messages from directly connected

nodes.

The backbone roadmap is constructed by the distributed algorithm detailed in Algorithm

2.1, and the same algorithm runs in every sensor node. When CDS nodes are elected,

connections among them are formed implicitly by constructing employers and employees.

For a doorway, employers is a list of clusterheads it connects, for a gateway employers

is a list of clusterheads and doorways it connects, and a clusterhead has an empty set

of employers. Once a node changes its type (e.g., newly elected as a clusterhead), it

propagates its type by broadcasting a TYPE CHG message for two hops. TYPE CHG

message includes employers, and upon reception of the message, clusterheads and doorways

update their employees by including all doorways and gateways that connect them to

another clusterhead. Clearly, a gateway has an empty set of employees. employers and

employees will be used in the next stage for goal dissemination for navigation.

2.3.3 Goal dissemination

The purpose of goal dissemination is to notify every node of the specified goal, so that every

node can provide guidance (to the robot) when the robot is in the neighborhood. Now

that we have constructed the backbone as a roadmap, the goal dissemination propagates a

potential field over the network via the roadmap, and the best path is found by following

the field. The definition of path quality depends on applications, and different potential

functions can be used, e.g., [4] uses a weighted combination of path length and maximum

danger level. While nothing prevents one from adopting other potential functions, here

we simply choose the shortest path in the roadmap, as we have already taken safety into

consideration when constructing the roadmap, and all nodes in the roadmap are in safe areas.

The goal node initiates the goal dissemination procedure by broadcasting a GOAL message,

and backbone nodes forward the message to every node of the network. Algorithm 2.2 shows

how a sensor node (including non-backbone nodes) handles the GOAL message, and update

related information: current distance to goal (hopstogoal), and best movement toward

goal (nexttogoal). If the received message gives a better path to goal, a node updates the

information, and the message is re-broadcast only if the receiving node is a backbone node
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Algorithm 2.1: Roadmap construction

employers ← ∅; type ← Regular;1

if ((C.1) or (C.2)) and (E.1) then2

type ← CH;3

else4

if (D.1-4) and (E.1) then5

type ← DW;6

employers ← CHs that it connects;7

endif8

if (G.1-2) and (E.1) then9

type ← GW;10

employers ← CHs and DWs that it connects;11

endif12

endif13

if type changes then14

omsg.msgid ← TYPE CHG;15

omsg.content.type ← type;16

omsg.content.param ← employers;17

Broadcast omsg;18

endif19

if imsg received and imsg.msgid=TYPE CHG then20

if from 1-hop neighbor then Broadcast imsg;21

if ( type = CH or DW) then Update employees;22

endif23

Algorithm 2.2: Goal Dissemination

forme ←false; //Is the message for me?1

if imsg received and imsg.msgid=GOAL then2

if ( type is CH or GW or DW) then3

if sender ∈ employees then forme ←true;4

else if sender ∈ employers then forme ←true;5

else6

forme ←true;7

endif8

if forme = true and imsg.hops+1<hopstogoal then9

imsg.hops ← hopstogoal ← imsg.hops+1;10

nexttogoal ← imsg.sender;11

if type 6= Regular then Broadcast imsg;12

endif13

endif14
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(Line 9-13). The number of messages is reduced by limiting rebroadcasting (forwarding):

A backbone node only processes messages from its employers, employees, and the goal

node; in these cases a flag forme is set to indicate a valid message as in Line 2-8. If a

message comes from any other nodes, the receiving node simply discards the message; A

regular node receives and processes GOAL messages but never forwards the message.

2.3.4 Robot navigation

After the procedure above, a potential field is computed over the network via the roadmap,

with nexttogoal pointing to goal in each sensor node. During execution, with the cooper-

ation of sensor nodes, the robot finds the best path by following the field. The procedures

on both sensor network and robot sides are shown in Algorithms 2.3 and 2.4. When a robot

moves amidst the sensor network, it constantly broadcasts a QUERY message, and waits

for response from sensor nodes in the neighborhood. When sensor nodes receive QUERY

message, they respond with NAVIG messages which contain hopstogoal and nexttogoal.

This information for every node has been updated in the goal dissemination stage. When

receiving NAVIG message, the robot chooses the best movement (i.e., smallest number of

hops to goals). After execution, the query-respond-move procedure repeats again, until the

goal is reached.

Remarks In Algorithm 2.2, the shortest path is computed based on hop-count distance

model. Li and Rus [54] showed that the hop-count distance between two sensor nodes is

well related to their Euclidian distance, especially when the network density is high. The

Euclidian distance of a k-hop path has the expectation of kE, and the deviation of
√
kd,

whereE and d is the expectation and the deviation of the length of a hop. So it is appropriate

to navigate the robot based on the shortest path computed in Algorithm 2.2.

2.4 Other considerations

2.4.1 Dynamic environments

Algorithm 2.5 shows how the roadmap adapts to dynamic dangers. In Line 1- 6, when a

sensor node detects danger, do becomes 0, and it broadcasts a DANGER message. In Line

7-12, nodes receive the message, update their value of do, and forward the message up to a

certain distance, dmax. Upon change of do, node priority changes, and re-election of CDS
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Algorithm 2.3: Navigation (in robot)

repeat1

hopstogoal ←∞;2

Broadcast QUERY message;3

while not timeout do4

if imsg received and imsg.msgid=NAVIG then5

if ( imsg.hopstogoal < hopstogoal) then6

hopstogoal ← imsg.hopstogoal;7

nexttogoal ← imsg.nextogoal;8

endif9

endif10

endw11

if hopstogoal 6=∞ then12

Robot moves toward nexttogoal;13

else14

Robot makes random movement;15

endif16

until hopstogoal =0 ;17

Algorithm 2.4: Navigation (in nodes)

if imsg received and imsg.msgid=QUERY then1

omsg.hopstogoal = hopstogoal;2

omsg.nexttogoal = nexttogoal;3

Broadcast omsg;4

endif5
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is done locally again to adjust the roadmap for the changed environment (Line 13). When

some nodes in backbone have changed, the navigation field over the previous backbone

needs update. As local changes in backbone may result in global changes in the navigation

field, rather than updating the field locally, a STALE message is sent to the goal node, and

another round of goal dissemination will be initiated (Line 14).

Remarks (i) Danger detection may involve non-backbone nodes, as a non-backbone node

can also detect dangers. (ii) The propagation of danger information may need a small degree

of flooding depending on the value of dmax. However, note that there is no flooding needed

in backbone election/re-election (i.e., roadmap construction), where all messages are sent

at most 2 hops.

Algorithm 2.5: Roadmap Maintenance

/* Upon sensor reading changes. */

if reading > T then1

do ← 0;2

omsg.msgid = DANGER;3

omsg.danger.dist = 0;4

Broadcast omsg;5

endif6

/* Upon receiption of DANGER msg. */

if imsg received and imsg.msgid=DANGER then7

if imsg.danger.dist+1< do < dmax then8

imsg.danger.dist← do ←imsg.danger.dist+1;9

Broadcast imsg;10

endif11

endif12

/* Wait for a certain period, then: */

Call procedure in Algorithm 2.1;13

if type changes then Send a STALE message to goal node;14

2.4.2 Load balance: network longevity

Generally backbone nodes should be kept alive for navigation, and hence they consume more

energy. To achieve overall longevity of the sensor network, nodes in the network should share

their roles as backbone nodes. With the definition of priority in Eq.(2.1), this can be easily

achieved. Remaining energy is represented by a set of discrete levels. When the energy

drops to the next level, a node broadcasts an ENERGY message to notify its neighbors
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within two hops. Upon reception of the message, its neighbors recompute the priority and

reelect backbone if needed.

2.4.3 Implementation issues

Synchronization For simplicity of explanation in description and theoretic analysis, we

assume synchronous communication. In our implementation, asynchronous mechanism is

used to avoid congestion and synchronous sudden loss of the old network states (e.g., if all

neighboring sensor nodes decide to compute backbone at the same time). As in [10], we

use a simple random time slot offset for a node to uniformly distribute the local backbone

re-election and communication over the time horizon.

Robustness In our problem, sensor nodes are static, and we do not globally update the

backbone topology periodically as in [10], since such updates can be costly. Instead, we

only update backbone locally when it is indeed necessary: dangers are detected, or a node’s

battery drops to a certain level. In realistic scenarios, the backbone may not always reflect

the actual environment. For instance, a node can be burnt before it has a chance to send

out a DANGER message, or imperfect communication may result in inconsistent neighbor

information. This needs to be taken into consideration, in order to make the proposed

algorithm robust enough to implement on a real system. What we do is somewhat similar

to the strategy in [4]. We verify the path on the execution phase: before the robot moves,

it confirms (with current associated sensor node) that the next sensor node is indeed alive

and safe. If otherwise is indicated, a local CDS re-election is initiated, and the robot waits

until the backbone is updated and a new movement is given.

2.5 Theoretical results

We define a subset Vbad ⊆ V as nodes in dangerous regions, Vgood = V − Vbad as nodes

in safe regions, and Vrdmp as roadmap nodes. Ggood is a subgraph of G, induced by Vgood.

Grdmp(Vrdmp, Erdmp) is the constructed backbone roadmap, and (u, v) ∈ Erdmp if and only

if u, v ∈ Vrdmp and u is in employers or employees list of v. We have the following lemma:

Lemma 1. (i) All nodes in the roadmap constructed as in Algorithm 2.1 are safe nodes.

That is Vrdmp ⊆ Vgood. (ii) Vrdmp is a CDS of Ggood. If Ggood is a connected graph, Grdmp

is a connected graph.
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Proof. Recall that the algorithm elects backbone nodes based on priority defined in Eq.(2.1).

When a node, si, is in a danger area, do = 0, and consequently Pi = 0. A node with zero

priority will not be selected, due to condition (E.1). Therefore, Vrdmp ⊆ Vgood. The second

half of the lemma follows from the fact that, on election, a node ignores all neighbors with

zero-priority. When si is in danger areas, it notifies all its neighbors, and all its neighbors

take si out of consideration on backbone selection. The neighbor list (in each node) that the

CDS election is based on is same as the neighbor list in Ggood. Therefore the resulting Vrdmp

is a CDS of Ggood. With Vrdmp being a connected dominating set, Grdmp has exact same

number of connected components as Ggood. So, when Ggood is a connected graph, Grdmp is

a connected graph.

Corollary 1. (Correctness) Assume ds > dc/2, if there exists a safe sensor path in the

original network, G, then there exists a safe one in the constructed backbone, Grdmp.

Proof. A more general statement of Lemma 1 is: Vrdmp consists of CDSs of all connected

components of Ggood. Assume that the sensing range ds is larger than half of the communi-

cation range dc/2, which implies that moving between two safe nodes results in a safe path.

With Lemma 1, the correctness of the algorithm follows.

Recall that we have already taken safety into account when constructing the back-

bone/roadmap: nodes in danger (with zero priority) will never be backbone nodes; the

closer is a node to danger, the smaller the priority it has, and the less chance it has to be

chosen as a backbone node. We take the shortest path in the roadmap as the best path,

which gives a feasible path. The next theorem gives bounds on the path length.

Theorem 1. (Path length) For a connected graph Ggood, the shortest path found in the

constructed roadmap, Grdmp, is bounded by the shortest path found in Ggood:

Drdmp(u, v) ≤ 3Dgood(u, v) + 2

where Drdmp(u, v) and Dgood(u, v) are lengths of the shortest path between u and v, in Grdmp,

Ggood, respectively.

Proof. We show that we can always find a path in backbone related to the shortest path.

From Lemma 1, vertices of Grdmp is a CDS of Ggood. Assume, in the worst case, all nodes

in a shortest path between u and v are not in the backbone. Consider Figure 2.3(a). The
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squared nodes are clusterheads, the dark/grey round nodes are doorway/gateway nodes, and

all other white nodes are regular nodes. The thick lines represent connections in backbone,

and the thin ones represent those not in backbone. (The path u,w1, w2, w3, v is an example

of the worse case shortest path.)

As shown in Figure 2.3(b), since each vertex must be dominated by a clusterhead,

clusterheads (e.g. c1 and c2) dominating two adjacent vertices (e.g. w1 and w2) are at most

3-hops away. As w1 and w2 are not in backbone, there must exist another path of length

≤ 3 between c1 and c2 in backbone (e.g. c1 − a − b − c2). There must be at least one

connection between one of {w1, w2} and one of {b, c}, otherwise, w1, and w2 would have

been in backbone.

For the start and goal nodes(i.e., u, and v), each of them should have a dominating

clusterhead node within 1-hop. So in total, Drdmp(u, v) ≤ 3Dgood(u, v) + 2. Figure 2.3(a)

also gives a worst case scenario, showing that the bound is tight; once any vertex in the

shortest path becomes a backbone node, or two of them share a clusterhead, the path length

reduces.
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Figure 2.3: Bound on path length.

As mentioned, Algorithm 2.1 based on TMPO does not guarantee an approximation

ratio with respect to the size of MDS. Nevertheless, the following known results on the

size of minimum connected dominating set give a rough idea of the size of backbone based

roadmaps. Let γc denote the cardinality of minimum connected dominating set, and ∆ the

maximum vertex degree of the graph.

Theorem 2. (Bounds on optimal roadmap size) For any connected graph G,

1. γc ≤ n−∆; [38]
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2. n
(

∆−1
) ≤ γc ≤ 2m−n, where n, m is the number of vertices and edges of G respectively.

The equality for lower bound is attained if and only if ∆ = n − 1, and equality for

upper bound is attained if and only if G is a path graph. [74]

Theorem 3. (Communication complexity) Let |CDS| be the size of the backbone. The

roadmap construction procedure in Algorithm 2.1 takes O(|CDS| · ∆) messages. The goal

dissemination procedure in Algorithm 2.2 takes O(|CDS|) messages, if the messages are

time-sorted.

Proof. Once a node is elected as a CDS node, a TYPE CHG message will be sent for 2

hops. That is at most (1 +∆) messages for every node in CDS. Thus, in total, the number

of messages is O(|CDS| ·∆).

Algorithm 2.2 finds a shortest path in the backbone. To show its communication com-

plexity, we first assume the messages are time-sorted, which is a concept introduced in [8].

Message are said to be time-sorted if messages from a closer node arrive earlier than those

from a further node. With such an assumption, if a node receives two GOAL messages, the

one received later is further away from goal. So every node forwards only the first message it

receives, and hence the total number of messages generated is |CDS|. Even though messages

are not time-sorted in general, also shown in [8] is that the messages become time-sorted if

we introduce a small extra wait time before broadcasting in each node.

2.6 Computer simulations

We have performed simulations to show performance of proposed method using backbone

as roadmap. We used an in-house developed software simulator for senor network, which

models the unit disk communication, and simple point robots. In the following simulations,

sensor nodes are uniformly distributed within a 1000m × 1000m field.

2.6.1 Comparison with AER

The work closest to our approach is Adaptive Embedded Roadmaps (AER) recently pro-

posed in [4]. It builds a roadmap by randomly choosing a certain number of nodes as

milestones, and making connections among them. It works as follows, and for more details,

please refer to the original paper. (1) Each sensor node decides weather or not to be a
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milestone in the roadmap with a predefined probability p (we used p = 0.1 in our simula-

tor, as in the original paper). (2) Milestone nodes broadcast Neighbor-Discover messages

to discover the neighboring milestones. (3) Neighboring milestones respond with unicast

Neighbor-Found messages, along the discovered path connecting two milestones. (4) Once

neighboring milestones are discovered with the best (with respect to a defined goodness

function) routes connecting them, unicast Edge-Create messages are sent to finalize edges

connecting neighboring milestones; Nodes receiving the message become edge nodes. (5)

When a goal is specified, the goal node becomes a milestone, and a similar neighbor discov-

ery and edge creation procedure start as above to connect the goal node into the roadmap.

After that the rest of the goal dissemination procedure are similar to ours in Algorithm 2.2.

To compare with AER, we have done simulations for different sizes of network, and

different communication ranges. In the first simulation, the communication range is fixed at

100m, and the network size ranges from 200 to 800 sensor nodes. In the second simulation,

the network size is fixed at 200 nodes, and the communication range varies from 100m to

300m.

Table 2.1: Performance in networks with different size, and communication range fixed to
100m.

Size d Method Mcon Mgoal
Roadmap Path
Nv Ne Lo L

200 5
TMPO 1049 157 121 196

18
20

AER 1135 272 96 150 21

300 8
TMPO 1624 288 165 322

17
18

AER 2952 713 149 282 19

400 11
TMPO 2231 377 210 427

18
19

AER 5665 1256 191 434 20

500 14
TMPO 2850 479 243 568

17
19

AER 7852 2083 239 523 19

600 17
TMPO 3578 299 266 679

17
17

AER 13099 3233 309 776 18

700 20
TMPO 4108 339 310 789

17
17

AER 18913 4289 359 946 17

800 22
TMPO 4814 352 338 884

17
17

AER 25305 6321 423 1174 17

The results are shown in Table 2.1 and 2.2. The performance metrics we compared

include: (1) Mcon, number of messages needed to construct a roadmap, which includes
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Table 2.2: Performance in networks with different communication range, and network size
fixed to 200 nodes.

Range d Method Mcon Mgoal
Roadmap Path
Nv Ne Lo L

100m 5
TMPO 1049 157 121 196

18
20

AER 1135 272 96 150 21

150m 15
TMPO 1119 132 97 218

11
12

AER 3161 639 86 193 13

200m 21
TMPO 1153 102 75 177

8
9

AER 5754 860 95 233 9

250m 32
TMPO 1193 54 50 119

6
7

AER 9465 896 92 296 7

300m 44
TMPO 1236 37 29 61

5
6

AER 11346 859 74 251 6

messages used to collect neighborhood information; (2) Mgoal, number of messages needed

for goal dissemination. A message can either be a broadcast message or a unicast message,

i.e., they both count as 1. (3) roadmap size, represented by number of nodes (Nv) and the

number of links (Ne) used in the constructed roadmap. For AER, we set the probability of

being a landmark to be 0.10 as used in [4], and roadmap size includes edge nodes. (4) path

length, L, in terms of number of hops. For each case, we also computed the average degree

(d) of the entire network, and the optimal path length Lo.

The simulation results show that TMPO (i) generates fewer messages for roadmap con-

struction and goal propagation, and (ii) produces a smaller roadmap when the network

connectivity is high (network size ≥ 600 in Table 2.1, and range ≥ 200m in Table 2.2).

The smaller number of messages in TMPO is mainly due to use of broadcasting as opposed

to unicast used in AER. The smaller roadmap for high connectivity is achieved because of

the nature of dominating set; intuitively when the connectivity is higher, it allows a node

to dominate more nodes, and hence a smaller dominating set in general. Please note that,

empirically in our simulations at least, the length of paths computed by both algorithms

is generally fairly close to optimal, even though we have given a looser theoretic bound on

path length for the TMPO algorithm whereas there is not such guarantee in AER.
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2.6.2 Roadmap changes upon danger

In this simulation we show how the roadmap changes in response to dynamic dangers, where

a sensor has reading beyond a predefined threshold. Figure 2.4(a) shows the initial roadmap.

Sensor nodes (represented by ⊡) detect some dangers when they get excessive readings, as

described in Algorithm 2.5, they reset their priority to 0, and hence lose their privilege to

become backbone nodes. These sensor nodes send DANGER messages, and the roadmap

thus adapts to these dangers, as shown in Figure 2.4(b) and (c), and in extreme cases, it

may result in a disconnected roadmap.

(a) (b) (c)

Figure 2.4: Roadmap changes with dynamic danger. ⊡ represents danger

2.6.3 Roadmap changes over time

In this simulation we show that nodes can share their roles as backbone nodes to average

out the energy consumption to achieve a longer life of the network. Figure 2.5(a) shows the

initial roadmap, Figure 2.5(b) shows the roadmap after 1 hour (scalable), and Figure 2.5(c)

shows the roadmap after 2 hours. We can see the roadmap changes over time, and contains

different set of nodes.

2.7 Summary

In this chapter, we proposed a new method for robot navigation in sensor networks. The

method extracts backbone of the sensor network via a clustering algorithm, and uses the

backbone as planning roadmap. The constructed backbone consists of a connected domi-

nating set of the (safe portion of the) network, and is elected based on the defined priority
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(a) (b) (c)

Figure 2.5: Roadmap adapts over time, as nodes need to share their roles as backbone nodes
to enhance network longevity.

which takes energy and distance to danger into account to achieve network longevity and

path safety. As the backbone can be constructed in a distributed way with only 2-hop neigh-

bor information, the method avoids flooding in roadmap construction and path planning.

Since the backbone is a connected dominating set of the sensor network, it closely related

to network connectivity: The backbone has exact same number of connected components

as the original sensor network, and any safe sensor node is at most one hop away from the

backbone. As a result, it guarantees to find a feasible path if there exists one, and moreover,

it provides a performance guarantees on the length of the computed path with respect to

the optimal solution.



Chapter 3

Distributed Roadmaps for

Navigation

3.1 Overview

In the previous chapter, we assume binary sensing model for sensors: in measuring state

of the environment (e.g., temperature) within its sensing range, the sensor returns a single

reading, if the reading is beyond a certain threshold, then the entire sensing region of the

sensor node is deemed to be Danger (e.g., too hot), otherwise is deemed to be free. In

this chapter, we study the navigation problem under a more general sensing model, where

a sensor node can sense obstacles and other potential dangers within its sensing range.

We propose a distributed sampling based planning algorithm, Distributed PRM (D-PRM)

and Distributed PRM (D-RRT) , to systematically incorporate the general spatial sensing

model for each sensor. It takes into account obstacles in determining feasible paths. Each

sensor creates a local probabilistic roadmap (a patch) similar to the classic PRM [46], or

RRT [53] , but only in its locally-sensed environment. Two different patches of roadmap

are “stitched” together with a set of relay points, lying in the common region shared by

the two patches. Sensor nodes mutually negotiate the connectivity of their patches by

sending messages regarding the status of their respective relay points. When two adjacent

sensor nodes see a relay point free, it becomes a connecting point for the two patches. To

find the shortest path on distributed roadmaps, a distributed (discrete) navigation field is

created across the sensor network, which maps each landmark (i.e., a random sample) in

33
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Figure 3.1: Sensor model of nodes (a) and (b). Black represents Blocked, white represents
Free, and gray represents Unknown. Circle is the sensing range.

local roadmaps into distance to the desired goal, and the best path is computed by gradient

descent.

Similar to previous chapter, consider a system with a stationary sensor network and a

robot. A sensor node can sense obstacles and other potential dangers within its sensing

range, ds, and creates a map, Hi, for its local physical environment, as shown in Figure 3.1.

A point on a map, Hi, is in one of three different states: Free, Blocked, or Unknown, and

we denote the free portion as Hfree
i . The distributed representation of the environment is

H = {H1,H2, · · · ,Hn}. Certainly two maps may overlap, and we call the overlapped region

of two maps as relay zone, RZ(i, j) = Hi

⋂Hj . Note that it is possible that the same point

in the overlap region has different states in two maps, for example due to occlusion, a point

may be Free in Hi, but Unknown in Hj.

For simplicity, we will start with a point (circular) robot as in the previous chapter,

A, for which the workspace and the configuration space (C-space) are identical. Then we

consider a holonomic robot with nontrivial shape, where orientation of the robot needs to

be taken into account, and the robot can translate and rotate freely, i.e., its configuration

space is 3-dimensional (x, y, θ). Finally, we look into navigation of a robot formation for

cooperative tasks. In all cases, robots are mounted with sensor and wireless communication

devices that can communicate with sensor nodes within dc, as well as with each other in

the formation case. We assume a robot knows its own location, xA, with respect to a global

frame. This can be realized either by mounting the robot with devices such as GPS, or
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Figure 3.2: Messaging in distributed path planning.

using localization techniques reviewed in Section 1.3.2.

Thus, the distributed path planning problem is to find a distributed path,

Π =
{

Π1,Π2, · · · ,Πm

}

for the robot to go from the current position, xs, to a desired goal, xg, such that (i) Π is

a continuous path, i.e., Πk(τ), τ ∈ [0, 1], and Πk(1) = Πk+1(0), and (ii) each path segment,

Πk in a sensor node, is guaranteed to be collision free inside the sensed local environment.

3.2 Solution outline

The proposed distributed sampling based framework consists of four different phases as

shown in Figure 3.2. Detailed algorithms are given in Section 3.3-3.5.1, and the general

solution is outlined as follows. For conceptual simplicity we present these phases as distinct

and in a sequential order. In practice, these phases may overlap or interleave, especially

when there are dynamic changes in the environment.
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3.2.1 The four phases

Local perception, pre-processing and roadmaps

In this phase, the sensor network gains knowledge of the system connectivity and the environ-

ment. Sensor nodes broadcast their basic information (e.g., positions), establish connections

with their neighbors, and perceive their local environments by using sensors (e.g., cameras,

laser, etc.). Pre-processing of planning is also done in this phase. For example, D-PRM

creates a C-space roadmap, Ri = (Vi, Ei), for the locally-sensed environment, where Vi is
the set of landmarks (random samples), and Ei is the set of connections among landmarks.

The set of neighbors of a landmark, v, is denoted by Ni(v) =
{

u
∣

∣(u, v) ∈ Ei
}

. Note that

each roadmap is local, there is no sharing of roadmaps, and hence there is no communication

involved, as far as local roadmap building is concerned. In our simulation, each sensor node

is assumed equipped with a laser range-finder to sense the environment, and uses grid map

as local world representation, however other choices of sensors (e.g. cameras) and world rep-

resentation (e.g., continuous function) are also possible, and our algorithms easily extend

to these cases as well.

Task dissemination

When the robot wants to go somewhere, it sends out a request (in MSG TASK message)

to the sensor network asking for direction. A sensor node that has the goal inside its sensed

region then initiates distributed planning, in the next phase.

Distributed planning

This is the main phase. We model the distance to goal as a generic cost function, C(v), and

local roadmaps in different sensor nodes are “stitched” together by propagating a distributed

navigation field based on C(v) . The propagation starts from the sensor node that senses

the goal, and is relayed to it neighboring sensor nodes by sending MSG RELAY messages,

which contain the information regarding cost function values at shared relay points. With

the navigation field, each sensor node knows the local segment of the path (to the goal) from

any point inside its local environment by following the navigation field, which is essentially

the gradient descent on the cost function.
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Query and execution

The robot queries for the path from the sensor network (with MSG QUERY message), and

moves from one sensor node to another. A sensor node receiving the query message returns

the local segment of the path to goal (in MSG PATH message) based on its local navigation

field. The robot moves along the returned segment of the path, reaching next sensor node

and repeats the query/execution procedure again until the desired goal is reached.

3.2.2 Relay sets - the stitches

A roadmap, Ri, defines local C-space connectivity corresponding to Hi, and connectivity

between Ri and each of its neighbors, say Rj , is defined by a relay set, RS(i, j), within

RZ(i, j), the relay zone. As shown in Figure 3.3, a relay set consists of relay points, and each

relay point comprises two relay landmarks, one each from the two neighboring roadmaps,

Ri and Rj . The two landmarks are at the same position but their status may differ in

two roadmaps. When the two landmarks are both Free, they are implicitly “stitched”

together (as in inset 1), and the relay point becomes a connecting point between Ri and Rj;

Otherwise, they are disconnected, as shown in inset 2, where the dark dot is occluded by

obstacles, and hence its status is unknown. The connectivity of the relay set is determined

by MSG RELAY messages in the planning phase (detailed in the next section).

There are two main ways of choosing relay sets: in a deterministic manner, or in a

probabilistic manner. For instance, one choice would be to lay a grid of uniform resolution dr

in RZ(i, j) and the relay points correspond to the center of grid cells. Another choice would

be random samples in RZ(i, j). The latter is more in line with the probabilistic philosophy

of sampling based algorithm, however, they carry higher communication overhead, since

messages will need to contain position information of each sample.

For point robots, we chose to use the deterministic manner for simplicity, and to reduce

the communication overhead, we further restricted the set of relay points to be on a line

segment connecting the two intersecting points of communication boundary circles, as shown

in Figure 3.3. However, when the environment gets more complicated, particularly with

narrow passages, a full-blown fine-resolution grid might be needed in order to find the

solution. Unfortunately, such a deterministic manner quickly suffers from the perils of

increased dimensionality, if we change the relay sets from points on a line segment to a 2-d

grid, and to a 3-d grid for general robots. Therefore, in these cases, we chose the probabilistic
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Figure 3.3: Distributed Roadmaps. Dark dots represent landmarks for node i, white dots
represent landmarks for node j, and gray squares represent relay points. As shown in
the insets, each relay point comprises two relay landmarks, one each from the neighboring
roadmaps.

relay sets, with sophisticated sampling techniques, such as Bridge Test sampling in [43], in

order to reduce the number of samples in relay zones while maintaining good connectivity,

3.2.3 Notation Summary

• G = (V,E): proximity graph of the system;

• N(i): neighboring sensor nodes of a node i;

• Hi: local physical environment perceived by node i;

• Ri = (Vi, Ei): C-space roadmap for environment Hi;

• Ni(v): neighboring landmarks of v on Ri;

• Ci(u): cost to goal from a local landmark u ∈ Vi;
• πi(u): next landmark in the path from u to goal.

• RZ(i, j) = Hi ∩Hj : relay zone (in physical space) between node i and j;

• RS(i, j) = Ri ∩Rj : relay set (in C-space) between node i and j;

We use i, j, k to refer to sensor nodes in the sensor network, and u, v, w for landmarks

in a roadmap.
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3.3 Distributed roadmaps for point robots

3.3.1 Planning

In planning phase, a distributed navigation field is computed over the local roadmaps. For

each landmark u in Ri, we define two functions: Ci(u) and πi(u), where Ci(u) is the distance

from u to the desired goal, and πi(u) is the next landmark in the shortest path from u to

the desired goal. Note that (u, v) points in the negated gradient direction of Ci(u),

πi(u) = argmin
v∈Ni(u)

(

Ci(v) = Ci(u) + ‖v − u‖
)

.

The procedure of updating the navigation field is given in sub-routine, Update F ield() (Line

16-25, Algorithm 3.1), which is essentially a distributed Dijkstra algorithm. It maintains U

as a list of landmarks with the smallest cost so far (often called open list in the literature),

and examines all adjacent landmarks of every u ∈ U . If the condition

v ∈ Ni(u) and
(

Ci(v) < Ci(u) + ‖v − u‖
)

in Line 19 holds, it means a shorter path has been found from v to the goal, via u. Therefore,

v is added into U . There are two ways to trigger the navigation field update:

• A sensor node that has the desired goal within its sensed region initiates the planning

by adding the desired goal as a landmark in the roadmap, and sets its distance to goal

as 0, then updates its navigation field (Line 2-7, Algorithm 3.1).

• When a sensor node i receives an MSG RELAY message from one of its neighbor, say

j, it compares its own relay set to those in the message, if some in the message give

any smaller cost (better path) for any relay points in the set, these relay points are

updated to the smaller cost, and these newly-improved relay points are added into U

for update of the navigation field (Line 8-15).

As shown in Line 26-29, after updating the navigation field, if the cost (C(v)) for any

relay point in a relay set, R(i, k), k ∈ N(i), has been improved, it means a shorter path

is found for the relay point, and a MSG RELAY message is sent to notify node k. The

message contains a list of relay points and their newly-improved costs.



CHAPTER 3. DISTRIBUTED ROADMAPS FOR NAVIGATION 40

Algorithm 3.1: Local PRM Planning of Sensor Node i

begin1

if qg ∈ Hi then /* sensed the goal? */2

Add qg into roadmap Ri;3

vg ← (qg); Ci(vg)← 0;4

U ← {vg};5

Update Field(U); /* see sub-routine */6

endif7

if MSG RELAY:
(

j, {Cj(v), v ∈ RS(i, j)}
)

received then8

foreach v ∈ RS(i, j), s.t. Cj(v) < Ci(v) do9

Ci(v)← Cj(v);10

U ← U
⋃

{v};11

endfch12

Update Field(U);13

endif14

end15

Sub-Routine: Update Field(U)16

begin17

foreach u ∈ U do /* Loop until U = ∅ */18

foreach v ∈ Ni(u) and Ci(v) < Ci(u) + ‖v − u‖ do19

Ci(v)← Ci(u) + ‖v − u‖;20

πi(v)← u;21

U ← U
⋃

{v};22

endfch23

U ← U\{u};24

endfch25

for k ∈ Ni do26

Vu ←
{

v
∣

∣v ∈ RS(i, k), and Ci(v) is improved
}

;27

Send MSG RELAY :
(

k, {Ck(v), v ∈ Vu}
)

to k;28

endfor29

end30



CHAPTER 3. DISTRIBUTED ROADMAPS FOR NAVIGATION 41

3.3.2 Path Query

When the navigation field has been computed as in previous section, an MSG REQUEST

message is sent to the robot, indicating that the sensor network is ready to help navigate

it. To move toward the desired goal, the robot constantly interacts with sensor nodes of the

network, as shown in Algorithms 3.2 and 3.3:

• The robot sends an MSG QUERY message to sensor nodes around, and waits (Line

3-5 in Algorithm 3.2).

• A sensor node receives the message, and looks up its navigation field, computes the

segment of the best (shortest) path, and sends the path segment back to the robot in

an MSG PATH message (Algorithm 3.3).

• The robot may receive multiple MSG PATH messages from different sensor nodes. It

decodes the segment in each message, picks the best path, and moves along the chosen

path segment (Line 5-10 in Algorithm 3.2). When it reaches the end of the segment, it

approaches another sensor node, and it sends out another query message. The robot

repeats such query-and-move procedure until it reaches the desired goal.

Algorithm 3.2: Robot Query for Paths

begin1

x← Robot current position;2

path← ∅, c←∞;3

Send MSG QUERY message with x;4

repeat5

Receive MSG PATH :(p, l), where p is the found path segment and l is the cost defined;6

if l < c then7

path← p, c← l;8

endif9

until timeout ;10

Robot execute path p;11

Repeat from Line 3, until p(1) = xg;12

end13

3.4 Distributed roadmaps for geometric shapes

The key change in extending above algorithm to robots with shapes is that the orientation

of the robot now matters, which makes a 3-dimensional C-space for the robot, as opposed
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Algorithm 3.3: Sensor Respond to Query with Distributed PRM

begin1

Receive MSG QUERY :(x) from the robot;2

us ← {x};3

U ←
{

v ∈ Vi
∣

∣‖us − v‖ < r, (us, v) collision free
}

;4

Ci(us)← minv∈U

(

Ci(v) + ‖us − v‖
)

;5

πi(us)← argminv∈U

(

Ci(v) + ‖us − v‖
)

;6

l ← Ci(us), Πi ← {us};7

while πi(us) 6= nil do8

Πi ← Πi

⋃

{πi(us)};9

us ← πi(us);10

endw11

Send MSG PATH :(Πi, l);12

end13

to the previous 2-dimensional space, and therefore the roadmap in each sensor node is

constructed in the 3-dimensional space, so is relay sets.

3.4.1 Notify robot shape

As shown in Figure 3.2, with Distributed PRM, each sensor node constructs roadmap in

the pre-processing phase. To plan for robots with shapes, sensor nodes certainly need to

have a knowledge of robot geometry in order to have effective local roadmaps. We assume

either sensor nodes have such knowledge in advance, or such knowledge can be injected into

the network via an MSG SHAPE messages. In the later case, the MSG SHAPE messages

include a list of points representing the robot’s polygonal shape.

3.4.2 Probabilistic relay sets for 3D C-space

In the previous case of deterministic relay set, a relay set is uniquely defined by two neigh-

boring nodes. For robots with shapes, we use probabilistic relay sets, and sensor nodes

exchange random samples in relay zone by sending messages. Relay points in a relay set are

randomly generated by different sensor nodes and then sent to each other, and this results

in the “directed” representation of relay sets. In each sensor node, two relay sets are kept

for each neighbor, one inbound, the other outbound. For example, in sensor node, i, for

a neighbor j ∈ N(i), RSi(i, j) is the outbound relay set whose points are generated by i

and to be sent to its neighbor j, whereas RSi(j, i) is the inbound relay set whose points are

generated by j, and sent to i via MSG POINTS messages. In general, RSi(i, j) 6= RSi(j, i),

on the other hand, RSi(i, j) = RSj(i, j), as RSj(i, j) is regenerated from a MSG POINTS
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Algorithm 3.4: Roadmap and relay set construction for sensor i

begin1

//Sampling and creating roadmap

for i=1 to MAX do2

qr ← RandomConfig();3

if qr is collision free then4

Add qr into roadmap Ri;5

J ← {j|‖xj − xr‖ < dc, j ∈ N(i)};6

foreach j ∈ J do Add qr to RS(i, j);7

endif8

endfor9

//Sending new relay points to neighbors

foreach k ∈ N(i) do10

Sk ← newly-added samples in RS(i, k);11

Send MSG POINTS :
(

k, Sk

)

to node k;12

endfch13

//Getting new relay points from neighbors

if MSG POINTS:
(

j, Sj

)

received then14

foreach qn ∈ Sj do15

Add qn into RS(j, i);16

if qn is collision free then Add qn into roadmap Ri;17

endfch18

endif19

end20
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message sent by i: node j adds relay set Ri(i, j) received from node i to its own Rj(i, j).

The roadmap and relay set construction procedure is detailed in Algorithm 3.4. Line 2-9

generate random landmarks, and add them to the roadmap. If a landmark is within the

relay zone with a neighbor, it will be added into the outbound relay set Ri(i, j), as in Line

6-7. In Line 10-13, new relay points in the outbound relay points are sent to correspond-

ing neighbors. In Line 14-19, node i receives MSG POINTS message, extracts new relay

points, and adds these points into inbound relay set RSi(j, i); collision free points thereof

are further added into roadmap Ri. Note that in Algorithm 3.4, since all relay sets are with

respect to i, we omit the superscript i in the pseudo-code.

RandomConfig() in Line 3, generates random landmarks, and it can be implemented

with different sampling strategies. A straightforward choice is uniform sampling. However,

as known in sampling based path planning literature, uniform sampling does not yield good

performance in difficult environments, particularly with narrow passages. More advanced

sampling strategies, such as the Bridge Test Sampling [43], have been proposed to deal with

such environments. The common idea behind these strategies is to bias toward and put

more samples in difficult regions. Here, we adopt the Bridge Test (BT for short hereafter)

sampling, which starts with an in-collision configuration, and find another in-collision con-

figuration nearby, and then takes the mid-point of the two, if it is collision free. As shown in

Algorithm 3.5, we employ a hybrid sampler combining uniform sampling and BT sampling,

where a ratio w,

ω =
current # of bridge test samples

current # of uniform samples
(3.1)

and a threshold η are defined. Only when ω < η, BT sampling strategy is enabled (Line

5-3.5), otherwise it simply uses the uniform sampling. In this way, roadmaps will have

enough samples to cover difficult areas as well as open areas.

3.5 Other extensions

3.5.1 Distributed roadmaps for cooperative tasks

The extension of D-PRM to multi-robot formation is relatively straightforward if we assume

that we have a rigid formation, where all robots relative position are fixed. We use a

polygonal shape to bound the entire formation, as shown in Figure 3.4. Then we apply the

motion planning scheme above for the bounding polygon, and find a path for the center of
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Algorithm 3.5: RandomConfig: Random C-space Sampler

begin1

qa ← A uniform sample in C-space;2

/* ω: in Eq.(3.1); η: predefined threshold. */

if qa is collision free and ω ≥ η then3

/* Keep uniform samples */

return qa;4

else if qa is NOT collision free and ω < η then5

/* To attain BT samples */

qb ← A sample around qa with N (qa, σ);6

if qb is NOT collision free then7

qm ← midpoint of (qa, qb);8

qr ← A sample around qm with N (qm, σ);9

if qr IS collision free then return qr;10

endif11

return NIL; /* Otherwise, ignore the sample */12

end13

formation. The paths for individual robots are computed based on their relative position to

the center of formation.

With multi-robot formation, one robot is elected as the leader, and others follow the

leader. Only the leader interacts with the navigating sensor network, sending MSG TASK

and MSG QUERY messages, and receiving MSG REQUEST and MSG PATH messages,

as shown in Figure 3.2. The interaction between the leader and the sensor network is

regarding the entire formation rather than the leader robot itself. When the leader sends the

MSG TASK message, the bounding polygon is embedded in the message; and the planned

path, with respect to the center of the formation, is returned in the MSG PATH message.

When the leader receives the message, it shares the path information with followers, and

the leader and followers translate the received formation path into their individual paths.

To simplify the problem, we assume robots in the formation are circular robots, namely

even though the orientation of the formation matters, the orientation of each individual robot

does not have effect on formation orientation, and only the positions of the robots define

the orientation of the formation. Assign a frame F to the center of the robot formation,

and denote xF = (xF , yF , θF ) the position and orientation of the frame, and assume a robot

k in the formation has relative position to the center of the formation, with respect to F ,
pF
k = (xFk , y

F
k ). Therefore, the planned formation path is translated into each robot’s local
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Figure 3.4: Shape representing a formation.

path as follows, with respect to a universal frame,

xk =

(

xk

yk

)

=

(

xF

yF

)

+R(θF ) · pF
k

where R(θF ) is the 2× 2 rotation matrix.

3.5.2 Distributed Random Tree (D-RRT)

We also implemented Distributed RRT (D-RRT ), based on RRT. The detailed algorithms

of D-RRT planning and local query are shown in Algorithm 3.6 and 3.7 respectively. D-

RRT can be seen as a special case of D-PRM, however, unlike D-PRM, in D-RRT the local

roadmap Ri is actually a forest, a set of trees, instead of a general graph as in D-PRM.

Every tree in Ri either roots at a relay point in a relay set, or at the goal. (Line 3 and 8

in Algorithm 3.6.) It represents a free space reachable from the goal, and hence every time

the goal changes, the tree needs to be regenerated. Other difference between D-RRT and

D-PRM are as follows.

• In order to guarantee the overall roadmap to form a tree structure instead of a graph,

growing trees (forest) inside each sensor node is delayed into the planning phase,

otherwise the overall (proximity) graph structure of the sensor network may induce a

cycle when forests are stitched together. As shown in Algorithm 3.6, Line 6-11, a tree

in Ri is created and starts to grow only after a relay point is reached by a forrest in

its neighbors (therefore the MSG RELAY message). The update sub-routine, Line

14-32, grows the forest and updates the navigation field at the same time, whereas D-

PRM creates a roadmap in the preprocessing phase, and only updates the navigation

field in the planning phase (as in Algorithm 3.1).
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• This limits parallelism of the planning phase in that a sensor node will not start

growing its forrest until some of its replay points have been reached from the expanding

tree. To compensate, D-RRT sends anMSG RELAY message as soon as a relay point

is connected to the forest (Line 29), so that the neighbor can start growing its forest

upon reception of the message. D-PRM, on the other hand, waits until local navigation

field update finishes, and sends out only one message for all improved relay points in

a relay set, since D-PRM cares for the shortest path in the roadmap generated in the

preprocessing phase.

• Since Ri is a forest, it defines a unique navigation field: πi(u) always points to the

parent node of u. This difference also results in slight differences in the query phase

(on the sensor side), as shown in Algorithm 3.7.

3.6 Discussions

Sensing and communication ranges

In our implementation, while obstacles occlude sensing, they do not prevent communication

(no line-of-sight constraint for communication). These assumptions result from our choice

of modality for communication (wireless). Our methodology can be adapted to different

types of communication constraints. Generally speaking, the communication constraint can

indirectly impact map generation and computation of relay points. In order to ensure that

the robot is able to communicate with at least one sensor node at any time while moving

along the planned path, the local roadmap of a sensor node must be generated in the

overlap of its communication and sensing regions. Relay points must be generated in the

overlap of the communication regions of two neighboring sensor nodes. So, for example, one

could easily incorporate line-of-sight constraint for communication, by (i) generating local

roadmap for each sensor node in region visible to the node, and (ii) generating relay points

in regions that are visible to both neighboring sensor nodes, which requires some change on

Line 6 in Algorithm 3.4 to take field of view into account.

Complexity and Robustness

As shown in Figure 3.2, different messages occur in different phases. MSG POINTS mes-

sages are sent in roadmap and relay point construction phase, and they occur only once.
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Algorithm 3.6: Local RRT Planning of sensor node i

begin1

if qg ∈ Hi then /* sensed the goal? */2

Create a tree rooted at qg, and add the tree into Ri;3

vg ← (qg); Ci(vg)← 0;4

endif5

if MSG RELAY:
(

j, {Cj(v), v ∈ RS(i, j)}
)

received then6

foreach v ∈ RS(i, j), and Ci(v) =∞ do7

Create a tree rooted at v, and add it into Ri;8

Ci(v)← Cj(v);9

endfch10

endif11

Update Gi and Fi; /* see sub-routine */12

end13

Sub-Routine: Update Gi and Fi14

begin15

/* Similar to RRT, but Gi(Vi, Ei) is a forest rather than a single tree. */

repeat16

vrand ←RandomConfiguration();17

vnear ←NearestNeighbor(vrand);18

vnew ← Extend(vnear, vrand);19

if IsCollisionFree(vnear , vnew) then20

Vi ← Vi
⋃

{vnew};21

Ei ← Vi
⋃

{(vnear, vnew)};22

Ci(vnew)← Ci(vnear) + ‖vnear − vnew‖;23

πi(vnew)← vnear ;24

endif25

for k ∈ N(i) do26

Vu ←
{

v
∣

∣v ∈ RS(i, k),27

Ci(v) =∞, and ‖v − vnew‖ < ǫ,
}

;28

Send MSG RELAY :
(

k, {Ck(v), v ∈ Vu}
)

to k;29

endfor30

until timeout ;31

end32

Algorithm 3.7: Sensor Response to Query with Distributed RRT

begin1

Receive MSG QUERY :(x) from the robot;2

us ←NearestCollisionFreeNeighbor(x);3

l ← Ci(us) + ‖x− us‖;4

Πi ← {x, us};5

while πi(us) 6= nil do6

Πi ← Πi

⋃

{πi(us)};7

us ← πi(us);8

endw9

Send MSG PATH :(Πi, l);10

end11
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MSG GOAL, MSG RELAY messages are sent every time a new goal for the robot is spec-

ified. MSG QUERY and MSG PATH are sent when the robot executes and moves along

the computed path.

In constructing roadmaps and relay points (Algorithm3.4), the number of MSG POINTS

messages, is O(n∆) , where n is the number of sensor nodes and ∆ is the average node

degree of the sensor network. As pointed out in [98], with n randomly placed nodes, the

necessary and sufficient condition to form a connected network is that each node connects

to O(log n) neighbors. Therefore, ∆ in a typical sensor network is O(log n), and hence the

communication complexity for construction phase is O(n log n). In search phase (Algorithm

3.1), the number of MSG GOAL and MSG RELAY messages is O(n2). In execution phase

(Algorithms 3.2 and 3.3), the number of MSG QUERY and MSG PATH messages is (n).

A centralized algorithm, where sensor nodes send their local environment map (or the

local roadmap) to the robot, and then use a traditional PRM, would certainly be worse in

communication complexity. The total number of messages needed to build the global map

(or global roadmap) in the worst case would be O(n2), since each sensor node need to set up

a route to the robot. More significantly, when sending a local map (or the local roadmap),

the size of each message is much larger. Even with a modest 256 × 256 sensing resolution,

the size of each local map (and hence the message) would be 8K bytes, about 30 times

larger than the message size in the D-PRM case, which consists of information about relay

points, about 240 bytes (typically 20 relay points × 12 bytes for each relay point location,

(x, y, θ). If a local roadmap were to be sent instead, still the message size is significantly

larger. It would consist of the entire local roadmap, which is about 2-3 times larger than

relay points sent in D-PRM case.

Given sensor data is correct and the assumptions and constraints of our communication

model are satisfied, D-PRM is a correct algorithm in that the path it computes is guaranteed

to be collision free. In addition, D-PRM is intrinsically robust to communication failure in

that the overall roadmap will adapt to communication failure. If a node fails during the

planning phase, it is automatically excluded from consideration, since there is no message in

and out of the failed node; if a node fails during execution phase, it will not respond to robot

enquiry, and the robot will choose amongst the paths sent by other nodes, and continue with

the best alternative path available. However, once the failed nodes result in a disconnected

communication graph, and consequently a disconnected roadmap, the algorithm may fail

to find a feasible path due to disconnection. Also note that the sampling based algorithm
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provides only probabilistic assurance in that with more landmarks, the probability that it

finds an existing solution is higher. However, it is possible that even if there is a feasible

path, the algorithm may not find it due to a limited number of landmarks in the run time

allowed.

Extension to higher dimensional robots

In previous section, we have shown the extensions to 3-DOF robots with shapes, and robot

formations. The extension to high-DOF robots, such as a mobile manipulator or even a

snake robot is conceptually straightforward, as long as the geometries and kinematics of the

robot are given in MSG SHAPE, by which sensor nodes are notified of robot C-space.

Other assumptions

Many specific choices in our implementation, such as use of laser scanner as a sensor, grid

map representation of environment, etc. can be modified. The key here is to have a map in

each individual sensor node that can be used to determine if a robot configuration is free or

not. Such occupancy information can be obtained from camera images using standard image

processing, such as stereo-vision. Such image/vision processing algorithms with overhead

cameras can be easily incorporated in visual sensor networks such as the ones mentioned in

[84].

We do assume stationary networks, however, it does not have to be a permanently static

sensor network. For example, in an emergency rescue application such as the one mentioned

in the introduction, it can be a mobile sensor network, (where each sensor node itself is a

mobile robot) that becomes stationary temporarily to help navigate a rescue robot or a fire

fighter.

3.7 Computer simulations

We now present simulation results to show the effectiveness of the proposed distributed

sampling based planning method. Our simulation is based on Player/Stage [35] integrated

with the sensor network simulator presented in Chapter 2. The network layer of the previous

simulator is now replaced with the wsn (wireless sensor network) model that comes with

Player/Stage to transmit user data of different sizes. Robots and sensor nodes are equipped
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(a) Scene. (b) Proximity graph.

(c) Local roadmaps on selected nodes. (d) Overall roadmap.

(e) Incremental queries in Case 1. (f) Found path for Case 1.

Figure 3.5: Simulation scene for Case 1 and Case 2.
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(a) Scene. (b) Proximity graph.

(c) Local roadmaps on selected nodes. (d) Found path for Case 3.

Figure 3.6: Simulation scene for Case 3 and Case 4.
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with such wsn, and communicate with each other, and they also carry a laser scanner which

can detect obstacles (in surveillance application, sensors can be overhead cameras).

In the first scenario, we have a relatively small office-like environment with three rooms,

as shown in Figure 3.5(a). Six sensor nodes with the associated proximity graph forming

a grid (Figure 3.5(b)) help to navigate robot between rooms. Since every room has only

one door facing the corridor, the only way to go from one room to another is through the

corridor. The coordinates of the lower-left and upper-right corners are (−9,−4) and (9, 4),

respectively. We have 2 cases in this scenario, each corresponding to a different start/goal.

In Case 1, the robot moves from Xs : (−7,−2) to Xg : (7,−2); and in Case 2 (used for

comparison in Table 3.1), the robot moves from Os : (7,−3) to Og : (7, 3), as shown in

Figure 3.5(a).

In Case 1, the robot wants to go from the leftmost room to the rightmost one. Most

existing distributed planning works, in this case, will give the shortest path in the sensor

network (i.e., the dotted line in Figure 3.5(b)), and replan the path when the robot moves

closer and detects the blocking walls, because they do not take physical obstacles into

account during planning. With our proposed method, each node senses its local environment

within the sensing region, then creates a local roadmap. Fig 3.5(c) shows the sensing regions

for sensors 1 and 5, and roadmaps therein. We emphasize that each node maintains only

its own local roadmap. These local roadmaps are “stitched” together and form an implicit

roadmap, as in Fig 3.5(d). In order to compute a feasible path for the robot, a navigation

field is propagated over the implicit roadmap, with the goal as the unique global minimum.

Then, the robot queries the sensor network for the path and moves along the planned path

(Fig 3.5(e) for Case 1), and the final path for Case 1 is shown in Fig 3.5(f).

In the second scenario, we simulated a larger outdoor environment, where polygonal

shapes simulate high grounds, or dangers (e.g., minefield), and the sensor network con-

sists of 55 sensor nodes randomly dropped (Figure 3.6(a)). The resulting proximity graph

is shown in Figure 3.6(b). The coordinates of the lower-left and upper-right corners are

(−15,−15) and (15, 15), respectively. As indicated in Figure 3.6(a), the robot moves from

Xs : (−12,−12) to Xg : (12, 12) in Case 3, and from Os : (−4,−6) to Og : (3,−10) in Case

4. Figure 3.6(c) shows only selected local roadmaps for clarity. The final path executed by

the robot for Case 3 is shown in Figure 3.6(d).

Table 3.1 gives a summary of some important metrics and parameters in the above

simulations, including size of the communication network (|V | and |E|), size of roadmap



CHAPTER 3. DISTRIBUTED ROADMAPS FOR NAVIGATION 54

Table 3.1: Simulation Results for Point Robots
Case 1 Case 2 Case 3 Case 4

|V | 6 6 55 55

|E| 7 7 129 129

Nlm 149 139 996 1010

Nmsg 22 22 333 362

Ncc 13706 12283 207579 226095

Tplan 5.0 1.5 26.6 4.2

Lpath 24.5 9.6 43.0 16.7

Table 3.2: Uniform sampling vs. BT sampling in D-PRM for general robots and formations
Case 5 Case 6 Case 7 Case 8

(Uniform) (BT) (Uniform) (BT)

‖V ‖ 6 6 55 55

‖E‖ 7 7 129 129

Nlm 944 232 894 501

Nrelay 636 242 2840 1601

Nmsg 133 56 1015 1051

Ncc 3291985 222232 4961373 1438760

Tplan 8.3 5.9 36.0 39.3

Lpath 24.9 24.9 40.6 44.1

(Nlm, number of landmarks), total number of messages (Nmsg), total number of colli-

sion checks (Ncc), planning time (Tplan, seconds between MSG TASK sent, and the last

MSG REQUEST received), and the traveling distance of the robot along the path (Lpath).

The results are averaged over 12 runs, with the roadmap being regenerated in every run.

Note that in D-PRM, planning involves all sensor nodes in the network, so the size of

the roadmap and the total number of messages are similar in the same environment (e.g.,

Cases 1 and 2, or Cases 3 and 4). However, the planning time depends on the distance

between start and goal. Since message passing is a major part of the planning, existence

of a shorter path results in less intermediate sensor nodes involved in finding the path, and

hence less message passing before the MSG RELAY reaches the robot, hence a shorter

planning time.
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(a) Scene. (b) Found path. (c) Robot trajectory.

(d) Roadmap in Case 5. (e) Landmarks in Case 5. (f) Relay points in Case 5.

(g) Roadmap in Case 6. (h) Landmarks in Case 6. (i) Relay points in Case 6.

Figure 3.7: Simulation scene for Case 5 and Case 6.
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We now show the extension of D-PRM for a robot of a nontrivial shape (Cases 5 and 6),

and for multiple robots moving in a formation (Cases 7 and 8). Two cases for each extension,

using different relay set schemes, one for uniform sampling, and the other for (hybrid) BT

sampling. To show the extension for robots with shaped, we reused the scenario and the

task in Case 1: the robot moves from Xs : (−7,−3) to Xg : (7,−3) in an office environment,

as shown in Figure 3.7(a). The difference is in this case, instead of a circle robot, the robot

is L-shaped, as shown in Figure 3.7(a). Two different cases, Cases 5 and 6 use different

choice of relay points. Case 5 uses uniform samples as relay points, and Case 6 adopts the

BT samples. In two cases, the planned path and execution are similar, as shown in Figure

3.7(b) and (c). With uniform sampling, the distributed roadmap is shown in Figure 3.7(d),

Therein landmarks are shown in Figure 3.7(e), and the portion of which used as random relay

points is shown in Figure 3.7(f). With bridge-test strategy, resulting roadmap, landmarks

and relay points are shown in Figure 3.7(g),(h) and (i), respectively.

In the last set of simulation, Case 7 and 8, we demonstrate our extension of D-PRM

to robot formations. As shown in Figure 3.8(a), in an environment similar to the second

scenario we simulated a team of 3 robots forming a triangle formation, whose center moves

from Xs : (−12,−12) to Xg : (12, 12). The distributed roadmap is shown in Figure 3.8(b),

Therein landmarks are shown in Figure 3.8(c), and the portion of which used as relay points

is shown in Figure 3.8(d).

Table 3.2 shows the results of using uniform sampling and BT sampling in D-PRM for

general robots and formations. With random relay set, D-PRM generates more messages

than Cases 1 and 3 where relay set are chosen from a line segment, and this is because

exchange of random relay points between sensor nodes requires extra messages. At the

same time, with general robots and formations, the problems become much more difficult,

which can be seen from increase of the number of collision checks. When comparing the

uniform sampling and BT sampling, clearly BT sampling induced fewer landmarks and relay

points: by more than 60% between Case 6 and 5, and by 40% between Case 8 and 7.

We also tested D-RRT in simulations. One notable difference is that the paths found by

D-RRT are generally more tortuous than those found by D-PRM. For example, Figure 3.9

shows a path found by D-RRT for Case 3, and compared to Figure 3.6(d) the path is more

zigzag. Such a difference results from the nature of the algorithm: D-PRM tries to find an

optimal path (in the roadmap) for the robot whereas D-RRT tries to find a feasible one.

Another observed difference is D-RRT consumes 20−50% more messages than D-PRM, and
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(a) Scene. (b) Found path. (c) Robot trajectory.

(d) Roadmap in Case 7. (e) Landmarks in Case 7. (f) Relay points in Case 7.

(g) Roadmap in Case 8. (h) Landmarks in Case 8. (i) Relay points in Case 8.

Figure 3.8: Simulation scene for Case 7 and Case 8.
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Figure 3.9: Path found by D-RRT.

this is mainly because of the compensation for parallelism as mentioned earlier in Section

3.5.2: In D-RRT, in order to maintain overall tree structure, growing forrest in side a sensor

node is delayed until some relay points of the sensor node have been reached from the goal;

To compensate, more messages are sent to trigger forest growing in neighboring sensor nodes

as soon as possible.

Another conceptual difference between D-PRM and D-RRT is that D-PRM is a multi-

query method in that the generated roadmap can be reused for different tasks, whereas

D-RRT is single-query in that the random tree is generated only in the reachable space

from a specific goal; therefore when a different goal is specified, D-RRT needs to regenerate

a brand new random tree, and hence another round of messaging is required. When D-

PRM propagates the navigation field in the distributed phase starting from a specific goal,

it essentially grows a tree structure in the roadmap, and the navigation field only propagates

to the reachable space from the goal. The difference from growing such a tree structure to

the random tree in D-RRT is that D-PRM makes use of the pre-generated landmarks where

as D-RRT needs to regenerate landmarks on the fly, and hence requires more computation.

In our application of navigation in sensor network, where energy is scarce resource for sensor

nodes and computation and messaging is energy consuming, D-PRM is therefore certainly

a better choice.
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3.8 Summary

In this chapter, we proposed a distributed sampling based planning algorithm for robot

navigation in sensor networks. It is particularly applicable to networks where each sensor

node is equipped with sophisticated sensors capable of giving a map for its sensing region. To

keep communication cost low, there is no global representation of C-space in our algorithm.

Instead, each sensor node creates a local roadmap within its locally-sensed environment, and

these local roadmaps are “stitched” by a set of relay points, which lie in the overlapping

sensing regions of sensor nodes. When the desired goal of the robot is specified, a navigation

field is propagated over the implicit roadmap, and gives directions to the desired goal. The

robot moves toward its goal by continually querying the sensor network for the directions.

Even though we focus on static sensor networks as navigation assistant, our algorithm

can be extended to mobile sensor networks, where mobile nodes can sense the environment

while moving, and carry larger maps accumulated along their trajectories. Another direction

of future work is to support cooperative collision checking. Our current algorithm for general

robots (and formations) assumes that the local environments and relay zones always have

large enough free space to contain the entire shape, and collision checks by individual node

is enough to find a feasible path. However, there are more difficult and extreme cases. For

example, in some cases, because of occlusion, two neighboring sensor nodes can only see a

small part of relay zone from different side; in other case, the dimension of robot is simply

too large, and it has to span multiple maps of adjacent sensor nodes. In these cases, search

for collision-free path requires cooperative collision checking from different sensor nodes.



Chapter 4

Backbone-Based Connectivity

Control

4.1 Overview

In this chapter, we study the problem of controlling networked mobile robots while maintain-

ing connectivity among them, i.e., all robots are required to remain connected to each other

(either directly, or via other robots). As mentioned before, such connectedness constraint

is essential in coordinated and cooperative control. For example, in the emergency rescue

application in Chapter 1, rescue robots need to communicate with each other so that they

can have better collaboration and coordination throughout the task. More importantly, in

many cases connectedness is a necessary condition for stability of the system [60]

We consider a group of n mobile robots, A = {1, 2, · · · , n}, with their positions denoted

as X (t) =
{

x1(t), x2(t), · · · , xn(t)
}

. Robots know their own positions, and can communicate

with each other within a communication range dc. We model interaction of the group

as a time-varying proximity graph, G(t) =
(

V (t), E(t)
)

, whose vertices represent robots,

V (t) ≡ A, and edges represent communication links between robots. Let (i, j) denote an

edge between robots i and j, thus,

(i, j) ∈ E(t)⇐⇒ d(i, j) = ‖xi(t)− xj(t)‖ ≤ dc

Each robot, i, has its own goal configuration, xgi , so Xg = {xg1, x
g
2, · · · , x

g
n}. The problem

is how to maneuver the group of robots to reach their respective goals, with the constraint

that G(t) remains connected throughout the task.

60
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As we have reviewed in Chapter 1, this is a difficult problem, and existing approaches

to the problem either fail to handle general cases, or result in high communication costs.

On the other hand, in Chapter 2, we showed that communication backbone provides a good

representation of network topology, and a good tool to scale down the network. Inspired

by that, in this chapter, we propose a distributed Backbone Based Connectivity Control

(BBCC) framework for the problem. It first maintains a connected backbone, by main-

taining existing connections in the backbone; and then for a non-backbone robot, one of

the backbone robots is chosen as leader, and connection to the leader is maintained. The

proposed BBCC framework works as follows:

1. With the communication graph, G(t), BBCC first constructs the backbone, GB(t) =
(

VB(t), EB(t)
)

, where EB(t) ⊆ E(t) and VB(t) ⊆ V (t), in a distributed fashion. The

backbone consists of backbone robots and connections among them, and these robots

and connections are critical for the system connectivity. Figure 4.1 shows an example

of backbone-based hierarchy. There are 3 backbone robots: A, B, and C, where A,

B are clusterheads, and C is a connecting gateway. Ai’s are non-backbone robots

associated with A, and A along with Ai’s forms one cluster. Bi’s are non-backbone

robots associated with B, and they form the second cluster.

2. Based on the constructed backbone and respective goals, motion of each robot, ẋi(t),

is determined. For the backbone robots, we formulate the backbone as a constraint

graph, and motion control is derived (via a judicious use of potential fields) such that

every connection in backbone is maintained; and for non-backbone robots, we use,

loosely speaking, a sort of leader-follower control (explained later in Section 4.3) with

the associated backbone robot as the leader. In Figure 4.1, to guarantee connectivity,

connections (A,C), (B,C) are preserved, and within its own cluster, A is the leader

and A′
is maintain connections to A. Same for B and Bi’s.

3. After robots move with constraints of backbone for a period of time, T , communication

graph G(t) may have changed, and thus the backbone GB(t) is updated, and robots

move with the new backbone as constraint graph.

We stress that BBCC is a distributed scheme, there is no central global representation

of G(t), GB(t), and update of G(t), GB(t) and ẋi(t) are done locally. However, some

synchronization is necessary to make the proposed scheme work correctly as explained in
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Figure 4.1: Backbone-based hierarchy.

Section 4.4. With communication backbone being a general and effective representation

of system connectivity, BBCC provides a more flexible (in that it makes no assumption on

system topology) and more efficient (in terms of communication cost, since it uses only local

2-hop neighbor information) solution than existing ones.

Generally speaking, backbone robots have less freedom than non-backbone robots, since

a non-backbone robot is only constrained by its single leader whereas a backbone robot is

constrained by all its backbone neighbors. We can look at it this way: backbone robots

are mainly responsible for keeping core connectivity while non-backbone robots are mainly

responsible for reconfiguration, by switching to different backbone robots from time to time.

To compute the backbone, we again adapt TMPO algorithm for backbone construction and

real-time update, and make the constructed backbone suitable for motion planning/control

purposes. The heuristics to compute backbone robots, and for a non-backbone robot to

switch to another backbone robot is based on the motion planning objective: getting closer

to their goals.

4.2 Backbone based hierarchy

4.2.1 Robot priority for connectivity control

Definition of priority depends on tasks of the system, and performance objectives of concern.

[10] defined priority as a function of energy and mobility in order to achieve longer lifetime,

and more stable backbone. In Chapter 2, we brought into account distance to dangers in its
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priority while taking out mobility, for safe navigation among static sensor networks. Here,

we define priority for motion planning purpose. In this problem, robots move at similar

speeds toward their respective goals, and energy consumption induced by communication is

much smaller compared to that by mobility. Therefore, we do not include mobility (velocity)

and energy factors in our priority definition, and instead we define priority as a function of

goal (which is the key objective of motion planning), such that a robot closer to its goal

will be assigned a higher priority, and hence more likely to be elected as a backbone robot.

More specifically, let P (i) be the priority of robot i.

P (i) = PT (i)
⊕

PI(i)

where
⊕

is bit-concatenation operation, PI(i) is a unique index (e.g. robot ID) of the robot

in order to make the priority unique across the network, and PT (i) is the priority based on

the given task. Note that PT occupies the higher bits of P , thus a robot with higher PT

always has a higher priority. Since each robot has its own goal, we can define PT (i) as a

function of current distance to its goal:

PT (i) =

{

MAX = 1/de, if ‖xi − xgi ‖ ≤ de

1/‖xi − xgi ‖, Otherwise
(4.1)

where de is a small “end-game” threshold.

Similar to the backbone construction procedure in Section 2.3, a robot decides whether

or not to be a backbone robot (CDS member) based on a knowledge of its 2-hop neighbors,

and their priorities, and there are three types of robots in the backbone, clusterheads

(CH), doorways (DW), and gateways (GW). We collectively call clusterheads, door-

ways, gateways as backbone robots, and all others as non-backbone robots. The backbone

construction procedure in this section is very close to that in Section 2.3, except that we

remove the condition regarding zero-priority ((E.1) in Section 2.3.2).

4.2.2 Backbone with less connections

The aim of the backbone construction procedure above is to elect as few robots (i.e., vertices)

as possible to be members of backbone. However, it is not concerned about number of

connections (i.e., edges) within backbone, and in fact may generate redundant connections.

Redundant connections in backbone impose unnecessary constraints for the planned motion,

since we use backbone as the constraint graph for motion control, therefore we remove
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(a) (b) (c)

Figure 4.2: Refine connections. Dotted edge are removed from backbone for less constraints.

redundant connections in the backbone as much as possible. However, such refinement

should rely on local information only so that it does not introduce significant computational

and communication overhead. For instance, we avoid constructing the minimum spanning

tree, which reduces connections to minimum, but requires global message exchanges and

hence results in high communication cost. Rather, we use only local rules, and apply the

following to reduce the number of connections (while ensuring connectivity).

1. Refine connections between clusterheads: In general a clusterhead (directly) connects

to clusterheads in 1-hop neighborhood, however to avoid redundant connections where

three clusterheads make a triangle, as shown in Figure 4.2(a), the connection between

two clusterheads with lower priority will be removed from backbone connections.

2. Refine connections between doorways and clusterheads: A connection between a door-

way and a clusterhead is removed if there is another neighboring clusterhead with

higher priority connected to this doorway, as shown in Figure 4.2 (b).

3. Refine connections between gateways and clusterheads: When more than two neigh-

boring clusterheads share a gateway, we remove connections to the lower-priority clus-

terheads. A connection between a gateway and a clusterhead is removed if there is

another neighboring clusterhead with higher priority connected to this gateway. As

shown in Figure 4.2 (c), GW is a gateway for {CH0, CH1}, {CH0, CH2}, {CH0, CH3}
and {CH0, CH4}; however, since CH2 has the highest priority among other cluster-

heads, connections from GW to CH1, CH3, CH4 are removed. Moreover, the whole

path between {CH1, CH4} is removed. This is because CH1 and CH4 are connected

to two adjacent clusterheads with higher priority.
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(a) (b) (c)

Figure 4.3: Motion constraints to robots.

4.3 Motion control with backbone

Our control scheme uses the backbone derived above to impose motion constraints on indi-

vidual robots. Simply put, the motion of a backbone robot is constrained by its neighbors

in backbone, so that it remains within the communication range of the neighbors; and the

motion of a non-backbone robot is constrained by a chosen backbone robot (e.g., the corre-

sponding clusterhead) that it is associated with, as shown in Figure 4.3. We use potential

functions for connectivity maintenance and goal achievement, and different potential func-

tions are defined for different purposes. Furthermore, backbone robots and non-backbone

robots have different potential functions.

4.3.1 Connectivity potential

First we define a general attractive potential between i, and its neighbor j:

UC
i,j =







1
2

(

1
dc−dij

− 1
dc−dL

)2
dL ≤ dij ≤ dc

0 dij ≤ dL
(4.2)

where dij = ‖xi − xj‖, dc is the communication range, and dL is a predefined distance

of influence of connectivity. This general potential is then used to maintain connectivity

constraints between different types of nodes as follows.

For a non-backbone robot, connectivity is maintained by following a leader in backbone.

Thus, its connectivity potential is defined with respect to the chosen leader. Denote Li as

the leader for a non-backbone robot, i. We choose Li as the neighboring backbone robot

that is closest to current robot’s goal, xgi , i.e.,

Li = arg min
l∈GB(t)

{

d(xgi , l)
∣

∣(l, i) ∈ G
}

(4.3)
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Note that there are alternative criteria for leader election. For example, instead of using a

task-based criterion as above, we can choose a leader based on priority (e.g. the neighboring

clusterhead with the highest priority). Once a leader is selected, the connectivity potential

is defined as,

UC
i = UC

i,Li
(4.4)

For a backbone robot, the total connectivity potential of i is defined as:

UC
i =

∑

j∈Nb(i)

UC
i,j +

∑

k∈Nf (i)

UC
i,k (4.5)

where Nb(i) =
{

j
∣

∣(i, j) ∈ EB

}

is the set of neighbors of i in the backbone, and Nf (i) =

{k|i = Lk, k /∈ VB} is the set of followers of backbone robot i, and can be computed from

two-hop neighbor information. It is worth noting that our leader-follower control scheme

is not strictly a leader-follower scheme, since the leader’s potential is affected by motion of

followers. This mitigates the known problem of poor disturbance (e.g. due to obstacles)

rejection in leader-follower formation control scheme, which may cause connections between

the leader and its followers to be broken.

4.3.2 Task potential

Each robot (backbone or non-backbone), i, has its own goal, xgi , which imposes an attractive

potential on robot i, denoted by UT
i , also called the task potential, and is given by:

UT
i =

1

2

∥

∥xi − xgi
∥

∥

2
(4.6)

4.3.3 Collision potential

We define a general repulsive potential for collision avoidance between robots, as well as for

obstacle avoidance.

Φ(d) =







1
2

(

1
d
− 1

ds

)2
d < ds

0 d ≥ ds
(4.7)

where d is a distance to collision (with other robots or obstacles), and ds is a predefined safe

distance threshold. For obstacle avoidance, UO
i = Φ(doi ), where doi is distance from robot i

to the closest obstacle. For collision avoidance between robots i, and j, UA
i,j = Φ(dij), and

we differentiate between backbone and non-backbone robots in collision avoidance. A non-

backbone robot needs to avoid collision with all other robots, backbone and non-backbone
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ones. A backbone robot has privilege over non-backbone robots, and hence it only considers

avoiding collision with other backbone robots. So,

UA
i =

{

∑

(i,j)∈G UA
i,j if i is a non-backbone robot

∑

(i,j)∈GB
UA
i,j if i is a backbone robot

(4.8)

4.3.4 Motion of robots

Thus, the composite potential of robot i is given by:

Ui = γ ·
(

UO
i + UA

i

)

+ α · UT
i + β · UC

i (4.9)

where α, β and γ are predefined scalar weights. Motion (velocity) of robot i is thus given

by following the negated gradient of Ui:

ẋi = −∇Ui (4.10)

Note that this first order model does not explicitly limit acceleration, however, in practice,

it is not an issue unless the mobile robots are moving at high speeds.

4.4 Discussions

4.4.1 Synchronization

In our algorithm, robot motion is derived based on backbone connections, so the motion

derivation should be done only after the backbone computation is “settled down”, and

hence synchronization is needed. We use timers for synchronization purpose, robots are

scheduled to update backbone every (predefined) T seconds. In our simulations, robots

simply stop moving every T , wait for TBB until the new backbone is stably computed, and

then resume moving. In practical applications, the stopping can be relaxed to ẋiTBB ≪ dc,

i.e. robots move fairly slowly so that the distance travelled in time TBB is much less than

the communication range.

4.4.2 Correctness

Lemma 2. If G(t) is connected, GB(t) computed by BBCC is connected.
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This follows directly from the original TMPO algorithm. As mentioned in Section 4.2,

we have three main modifications to the original TMPO algorithm. Our definition of pri-

ority does not change uniqueness of the priority assignment, based on which the elected

clusterheads are guaranteed to form a dominating set. Our second modification, that of

bidirectional backbone connections, does not change the result of backbone election either,

but rather just adds more information associated with the elected connections. The last

modification for reducing backbone connections does change the number of connections in

the backbone, however it is straightforward to prove that the connection refining procedure

in Section 4.2.2 does not change existence of a path between two clusterheads, even though

the refinement may increase the path length between two robots. This is because a connec-

tion is removed only if there exists another path connecting the two robots (but with higher

priority robots in the path).

Correctness of the motion control method based on potential field can also be proved.

We have defined continuous potential functions for connectivity maintenance and obstacle

avoidance. For example, for the connectivity potential function defined in Eq.(4.2), it blows

up when the a backbone connection is about to break, i.e., limdij→d−c
UC
i,j = ∞. Similarly,

when collision occurs, UO
i =∞, or UA

i =∞. Thus we have,

Theorem 4. If all robots are collision free and connected at t0, then BBCC is guaranteed

to maintain the system to be collision free and connected for t ≥ t0.

Proof. Based on Lemma 2, we only need to prove that G(t) remains connected between two

backbone updates. Assume the backbone is updated at time t0, and then at t0 + T . We

prove that G(t) remains connected and collision free for t ∈ (t0, t0 + T ). Denote X as the

stack vector of all robot position vectors, i.e., X = (xTi , · · · , xTn )T , and define an overall

potential for the entire system as,

U(X(t)) =
n
∑

i=1

(

αUT
i +

1

2
βUC

i + γ
(

UO
i +

1

2
UA
i

)

)

Note U is not simply summation of Ui (defined in Eq.(4.9)), because in
∑

i Ui connec-

tivity and collision potentials between two robots are counted twice, and that is why

there is the 1
2 factor with them. With this definition, Ẋ = (ẋT1 , · · · , ẋTn )T = −∇XU =

(−∇TUi, · · · ,−∇TUn)
T , where ẋi = −∇Ui as in Eq.(4.10), This means our control strategy

does not increase the potential U during the period. i.e.,

U(X(t)) ≤ U(X(t0)) ∀t ∈ (t0, t0 + T )
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: Comparison of motion without and with connectivity constraints. (a) Initial
and goal formations. (b) Without connectivity constraints, robots become disconnected.
(c) Trajectories for all robots without connectivity constraints. (d)-(e) With connectivity
constraints, robots remain connected. (f) Robot trajectories with connectivity constraints.

Clearly, if collision occurs or connectivity constraint is violated, U(t) reach infinity. As the

system is collision free and connected at t0, U(X(t0)) < ∞, it remains collision-free and

connected during (t0, t0 + T ).

4.4.3 Local minima

We model the goal achievement and connectivity maintenance as attractive potentials, and

obstacle avoidance as a repulsive potential, then robots follow the negative gradient of the

composite potential. As expected, such composite potential may have local minima, and

some robots or the entire team may get stuck. One can conceivably construct navigation

functions, which have no local minima, but this generally requires global knowledge (which

is not available in our problem) and tuning of parameters can be difficult especially for

dynamic environments. Furthermore, connectivity constraint aggravates the local minima

problem. In the next chapter (Chapter 5), we study possible strategies to escape local

minima, especially those ones due to connectivity constraints.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: Motion with connectivity constraints. (a) Initial (complete graph) and goal
formations. (b)-(e) Snapshots along the path. (f) Trajectories for all robots.

4.5 Computer simulations

We now present simulations to show the effectiveness of the proposed BBCC method. We

simulate a team of robots moving in an arena of 120m× 120m, from an initial formation to

a goal formation. To show the generality of the approach, we use different initial and goal

formations ranging from a simple path graph to a complete graph, from a grid graph to a

circular graph, and labeling (vertex indices) of these formations is random and independent

from simulation to simulation. Unless otherwise indicated, the number of robots is 10,

and communication range between robots is set to 15m. For the BBCC method, we chose

T = TBB = 2 second, and the maximum speed of robots is 0.5m/s.
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4.5.1 Without connectivity constraints

We first use potential field (similar to Eq.(4.9)) to move the formation, but without taking

into account connectivity constraints (i.e., no connectivity potential term ∇UC
i ). The initial

and goal formations are shown in Figure 4.4(a). Figure 4.4(b) shows that robots become

disconnected along the trajectory (in Figure 4.4(c)).

4.5.2 With connectivity constraints

Figure 4.4(d)-(f) show that, for the same problem as above, taking connectivity constraints

into account ensures robots remain connected along the trajectory. In the snapshots, back-

bone is shown in color: red, green and blue nodes are clusterhead, doorway and gateway

robots respectively; red, green and blue connections are connections between clusterheads,

between clusterhead and doorway, and between gateway and clusterhead/doorway respec-

tively; and non-backbone robots and connections are shown in black. Another simulation

is shown in Figure 4.5. The system has 25 robots, and communication range is set to 8m.

In both cases, the proposed BBCC is able to maneuver the team into the final formations

without being disconnected. Since in both cases, the initial and goal formations are dra-

matically different, robots have to remain fairly close while moving in order to reconfigure

without disconnection. As mentioned earlier, in general backbone robots have less free-

dom than non-backbone robots, since a non-backbone robot is only constrained by it single

leader whereas a backbone robot is constrained by all its backbone neighbors. Intuitively,

backbone robots are mainly responsible for keeping connectivity while non-backbone robots

are mainly responsible for reconfiguration. If there is no “better” (in the sense of Eq.(4.3),

i.e., closer to goal topology) connection for a non-backbone robot, it sticks to current back-

bone robot (i.e., Li in Eq.(4.3) remains the same) until a better one comes in. So robots

tend to move closer to one another looking for “better” ones. As robots move closer to

one another, the system connectivity increases and consequently the size of the backbone

(i.e., number of robots and connections in backbone) decreases and hence reconfiguration

freedom increases. When a non-backbone robot approaches its goal, its priority increases

quickly (as in Eq.(4.1)), and it is more likely to became a backbone node. As more and

more non-backbone robots become backbone robots and reconfigure to goal topology, re-

maining non-backbone robots can seek their goals while remaining connected to the current

backbone.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: Motion with connectivity constraint in the presence of obstacles. (a) Initial and
goal formations. (b)-(e) Snapshots along the path. (f) Trajectories for all robots.

4.5.3 With obstacles

In Figure 4.6, robots move in an environment with obstacles. Robots start with a complete

graph, and the goal formation is a circular graph wrapping around an obstacle. The proposed

BBCC is able to maneuver the team into the goal formation. However it can get stuck in

local minimum. These issues are explored in detail in Chapter 5.

4.6 Summary

In this chapter, we proposed a novel distributed BBCC scheme for cooperative control with

connectivity constraint. BBCC uses a two level hierarchy based on communication backbone

of mobile robots as the key to maintaining connectivity. Robots in the team are categorized
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into backbone robots and non-backbone robots, and thus connectivity is maintained at two

levels. For backbone robots, backbone connections are maintained by imposing them as

constraints over robots’ movement. For non-backbone robots, with certain backbone robots

chosen as leaders, a leader-follower type scheme is used to maintain their connections to

backbone. At the same time, non-backbone robots search for reconfiguration by choosing

different leaders. Unlike many existing approaches to the problem, BBCC does not make

any assumption on system topology, and deal with arbitrary initial and goal formations.

Moreover, it is a distributed method using only two-hop neighbor information; and hence

has low communication cost. Computer simulations have been done to verify the proposed

framework, where BBCC is able to find paths while maintaining connectivity. The algorithm

is able to handle obstacles, although in some situations with obstacles, the team got into

local minima. In next chapter, we will look into local minimum issues that arise in the

problem.



Chapter 5

Distributed Strategies for Local

Minimum Escape

5.1 Overview

In previous BBCC framework, when computing robot motion, we model the goal achieve-

ment and connectivity maintenance as attractive potentials, and obstacle avoidance as a

repulsive potential. The robots then follow the negated gradient of the composite potential.

As expected, such composite potential may have local minima, and some robots or the en-

tire team may get stuck. Our empirical observations motivate a classification of these local

minima based on different underlying causes. While the interplay between these underlying

causes is complex, our empirically based classification helps us suggest strategies to cope

with these local minima.

In this chapter, we present the classification and corresponding strategies in details. We

first classify local minima into three different categories: Type-I (Regional obstacle-induced

local minimum), Type-II (Individual connectivity-induced local minimum), and Type-III

(Structural compound local minimum), and different types imply different natures of the

minima. In the first category, the robot may be able to escape the minimummerely by simple

local strategies (e.g.,random walk), whereas in latter two categories, a robot needs help from

others in order to make global decisions for local minimum escaping. Corresponding to these

different types, three respective strategies are used to tackle these local minima: Random

Walk, Backbone-based Navigation, and Backbone-based Leader-following.

74
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5.2 Local minimum detection and classification

To detect local minima, we keep track of a robot’s trajectory. We save the last K positions

of the robot, and compute their variance. If the variance is smaller than a threshold,

indicating the robot does not progress toward it goal, then this robot is deemed to be in a

local minimum. We further categorize local minima into three different levels:

1. Type I: Regional obstacle-induced local minimum. This is mainly because of

obstacles, and connectivity constraints are not the limiting factor (i.e., they are easily

maintained in that region). Intuitively, this is what may occur for a single robot,

and local strategies that do not involve other robots, such as random walk, suffice

to escape such local minima. Figure 5.1(a) shows a scenario, where a small obstacle

blocks robot 4 from its goal, and a random walk (or another local strategy) should be

enough for the robot to get around the obstacle and reach its goal. More complicated

local minima, where a robot needs help from others in order to make global decisions

for escaping the local minimum, are further classified into Type II or III.

2. Type II: Individual connectivity-induced local minimum. This type of local

minimum is normally caused by connectivity constraints, and it may have weak inter-

action with local obstacles. In such a scenario, only a single robot (or small number

of robots) is in local minimum. Simple local strategies may not be possible for the

robot(s) to escape, but it is possible to resolve the minimum by moving individual

robots without major connectivity reconfiguration. Figure 5.1(b), shows one example,

where connectivity constraint to robot 6 prevents robot 9 from reaching its goal. To

escape, global path planning is needed (only) for robot 9 to break out of its current

connectivity constraint with robot 6, and successively switching to other robots in

order to reach its goal while maintaining connectivity to the network along the shown

path.

3. Type III: Structural compound local minimum. This type of local minima is

also caused by connectivity constraints, but has strong interaction with obstacles and

other robots. In such a case, a number of the team members are stuck into local

minima, and even worse these local minima are coupled to one another. It is not

possible to resolve these minima individually as in the previous case, instead a major

connectivity reconfiguration of the entire mobile network is needed in order to move
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(a) Type I. (b) Type II. (c) Type III.

Figure 5.1: Categories of local minimum. Dotted nodes are goal positions of corresponding
robots

out of these minima. Figure 5.1(c) shows such an example. Clearly in this case, from

each robot’s local point of view, all edges in the initial cycle formation are critical in

maintaining connectivity. In order to achieve the goal formation, some edge has to be

broken ((2, 3) in the shown example); and making decision as to which edge to break

needs to involve all robots.

5.3 Heuristics for classification and escaping

Although given examples illustrate different types of local minima, the distinctions may

not be as clean cut in reality. There is ample scope for investigating these further in a

more formal manner. In practice, our overall scheme for classifying and escaping these

local minima is shown Figure 5.2. It starts with core BBCC, as introduced in the previous

Chapter, and a local minimum is detected when one or more robots have variance of the

last K positions smaller than a certain threshold. When a robot detects a local minimum,

it first assumes the minimum is a Type-I minimum, and uses simple local strategies (we

used random walk for a certain period of time; other local strategies, such as bug algorithm

[57], could be used as well.) to escape. If a local minimum persists for M iterations, the

minimum is either Type-II or Type III minimum, global assistance is needed in order for the

robot to escape. Therefore, at this stage, all robots will be notified of the minimum. When

a robot receives such a notification, it stops for further determination (Type II or III) and

resolution of the local minima by the entire network. This determination and resolution
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Figure 5.2: Overall scheme.

relies on the hierarchical structure of the network.

The difference between Type II and Type III minima is whether the robot in local

minimum is a backbone robot or not. If it is not a backbone robot, it implies a type II

minimum; if it is a backbone robot, it implies a type III minimum. The rationale is as follows.

Recall that in our hierarchical scheme the backbone is a connected dominating set of the

network, and it captures the system topology in that all other robots are just one hop away

from the backbone. Backbone robots are key to maintaining connectivity, and non-backbone

robots reconfigure around backbone robots. So a backbone robot in local minimum indicates

a problematic topology and need a systematic reconfiguration. For Type-II minimum, since

no backbone robot is in local minimum, we use the backbone as a navigation roadmap to

navigate the (non-backbone) local minimum robot to get as close as possible to its goal.

We call this strategy Backbone-based Navigation. To escape a Type III minimum, all robots

should move closer toward each other to increase the system connectivity, and thereby

reduce the number of backbone robots, increase the number of non-backbone robots and

increase reconfigurability. We implement a Backbone-based Leader-following strategy, which

constructs a spanning tree of the stationary backbone in a way such that the root robot

of the tree is the robot that is the farthest away from those robots deemed to be at local

minima (and hence most likely to be free from local minimum), and acts as a leader. All

other robots follow this leader according to the tree hierarchy and move toward their parents

instead of their ultimate goals.
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It is possible that more than one robot are simultaneously at their respective local min-

ima, and these are handled as follows. A Type-III minimum has the highest priority to

be solved, followed by a Type-II, followed by a Type-I minimum. Each strategy handles

multiple local minima of the same type. For multiple Type-I minima, robots can random

walk at the same time. If there are multiple Type-II minima (but no Type-III minimum),

the Backbone-based Navigation strategy creates routes to each robot that is in local mini-

mum, i.e., they are simultaneously handled. The Backbone-based Leader-following strategy

naturally handles multiple Type-III minima by selecting the leader to be farthest away from

any local minima.

5.4 Backbone-based escaping strategies

Since Type-II and Type-III minima need global communication to escape, a robot in either

type of local minimum notifies all other robots by sending out a MSG DETECT message,

with its information, such as its current and goal position. All robots maintain a list of

robots in local minimum, lmList. When a robot receives the MSG DETECT message, it

stores the corresponding local minimum information into lmList, and forwards the message

(if it is the first time). At the end, given perfect communication, all robots will have

the exact same list. To initiate Backbone-based Navigation or Leader-following escaping

procedure, upon receiving the MSG DETECT message, all robots stop moving and thus

backbone become stationary; To reflect the connectivity of the stopped network, robots stop

updating the backbone during escaping.

5.4.1 Backbone-based Navigation strategy

For Type-II minima, since no backbone robot is in local minimum, we use the stationary

backbone as a navigation roadmap to navigate the local minimum robot to get as close

as possible to its goal. The backbone-based robot navigation scheme proposed in Chapter

2 for single robot navigation in a static sensor network is ideally suited to be used a local

minima escape strategy. Recall that the scheme computes a shortest path from current robot

location to a given goal sensor node based on the backbone of the static sensor network.

Here, we use a simplified version of the scheme, since the backbone is already constructed

by BBCC, we only adopt the second (path planning) phase of the scheme (Section 2.3.3).

Denote Am as the non-backbone robot that is in local minimum, and define a cost function
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of robot i, to be the distance between robot i and the goal of Am, xgm.

C(Ai, Am) = ‖xi − xgm‖ (5.1)

The basic idea is to propagate a navigation field (with C(Ai, Am) as the navigation func-

tion) over the (stationary) backbone, then Am follows the field along the gradient descent

direction. Details are given below.

1. Subgoal election: For an Am, the backbone robot with the smallest cost will be chosen

as its subgoal. This is a global election, and involves all robots. A backbone robot

proposes itself to be a subgoal candidate if it has smaller cost (i.e., closer to xgm) than

any of its backbone neighbors. Note that the proposal is only based on a robot’s

(2-hop) neighbor information, and it is possible that there are more than one robot

assuming itself to be the sub-goal. To reach a global decision, the planning step

follows.

2. Planning: Candidates broadcast a MSG PLAN NBB message with its own informa-

tion (including position). A robot receives the message and stores the route to the

candidate. A robot may receive more than one message, and if the received message

gives a better (smaller-cost, and shorter) path to the goal of Am, xgm, the robot updates

the route, and forwards this message if the receiving robot is a backbone robot. At

the end, all robots store the shortest path to xgm via one of the candidates, the elected

subgoal. This procedure is similar to the goal dissemination procedure as in Chapter

2 (Section 2.3), except that we may have multiple sources (i.e., multiple subgoal can-

didates) here. At the end of the procedure, all robots come to a unified conclusion of

who is the winning subgoal for Am, and every robot has the best route to the sub-

goal. Please note that a backbone robot only processes MSG PLAN NBB messages

from backbone robots it connects to, and simply discards the messages from any other

robots; A non-backbone robot receives and processes MSG PLAN NBB messages but

never forwards the message.

3. Navigation: After previous planning step, all robots store the next robot in the best

route to the subgoal of Am, so they can provide guidance (to Am) regarding the best

movement toward its subgoal. To escape from the local minimum, Am constantly

broadcasts a query to the backbone; backbone robots respond with next via-point

based on stored routes; and Am chooses the best next via-point as “sub-sub-goal”,
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and move toward that. Such query-respond-move procedure repeats until the subgoal

is reached.

4. Back to BBCC: After Am has reached its subgoal, it broadcasts a MSG ESCAPED

message to notify all robots that it is out of local minimum. Robots receive the message

and remove the robot from lmList. Once all robots have reached their respective

subgoals, the system resumes to BBCC. If one or more of the robots are unable to

reach their respective sub-goals, the strategy simply reports a failure. In future work,

we will explore more sophisticated strategies in such cases.

5.4.2 Backbone-based Leader-following strategy

For a Type-III minimum, the system uses Backbone-based Leader-following strategy. The

basic idea is to construct a leader-following tree hierarchy with a leader that is most likely

free from local minima, and then move closer toward the leader to increase connectivity

and hence reconfigurability. Define a gain function for robot i, as its distance to the local

minimum robot Am.

G(Ai, Am) = ‖xi − xm‖ (5.2)

The Leader-following escaping procedure then includes the following steps.

1. Leader candidates: The backbone robot that has maximum gain (i.e., farthest from

any local minimum robot) is elected as the leader. Similar to subgoal election in

previous Navigation strategy, leader election involves all robots. A backbone robot

proposes itself to be a leader candidate if it has bigger gain than any of its backbone

neighbors.

2. Spanning tree construction and leader election: Spanning tree and global leaders are

computed in one go. Leader candidates broadcast a MSG PLAN BB message with

its gain. A robot receives the message, and checks if the received message gives a

better (with larger gain, and shorter route) leader. If so it updates its route to the

new leader, and if the receiving robot is a backbone robot, it forwards the message.

At the end, all robots have routes to the winning leader (Al) with the highest gain.

These routes make a tree hierarchy with Al as the root. Note that since during the

construction, only backbone robots forward the message, the resulting spanning tree

has all non-backbone robots as leaves.
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3. Leader-following: Once the spanning tree is constructed, robots move in a leader-

following fashion. A robot follows its parent in the spanning tree, and moves toward

its parent, instead of toward its ultimate goal.

4. Back to BBCC: After the (vertex) connectivity of the local minimum robot has in-

creased by a certain degree (a user-defined parameter in the algorithm), or simply

after moving for a certain period of time, the system stops and resumes to the regular

BBCC to move to original goal.

5.4.3 Implementation details

We have introduced general ideas of the framework, and skipped some important technical

implementation details for clarity. We present these details in this section. Figure 5.3 shows

our state machine design for the proposed local minima escaping scheme. The same state

machine runs on all robots, but it may take different transitions on different hosts depending

on whether the host is a backbone or non-backbone robot, and whether it is a robot in local

minimum.

Synchronization

In the framework, the system may switch from BBCC moving mode to Navigation escaping

mode, or to Leader-following escaping mode, and then switch back to BBCC. In different

modes, robots move with different constraints. Switching between modes needs synchroniza-

tion, since we need to make sure robots move with proper constraints engaged, otherwise

the system may became disconnected. To synchronize switching, we introduce some in-

termediate states/modes, and some extra messages. While backbone construction involves

only local robots and generates O(∆) messages for each of backbone robots, synchroniza-

tion messages (including all messages shown in the Figure 5.3) need to reach all robots, and

generate O(n) messages for each round of synchronization, where n is the number of mobile

robots.
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Figure 5.3: State machine implementation for Type-II and Type-III minimum escape with Backbone-based Navigation
strategy and Backbone-based Leader-following strategy.
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Freezing and unfreezing the backbone Once a robot detects a Type-II or Type-III

minimum, it stops moving and broadcastsMSG DETECT message, and robots receiving the

message also stop moving. However, robots should not stop updating backbone while any

robot is still moving. As a consequence, the backbone may have changed since the time the

local minimum is first detected. Therefore, we introduce two extra states, LM Detected and

LM Frozen, and an extra message, MSG UPDATE to synchronize the backbone. When

a robot first detects a local minimum, or receives the MSG DETECT message, it stops,

transits into LM Detected state, and waits for T Spread seconds. Assuming after this wait

all robots have stopped and backbone has been stationary, the local minimum robot sends

a MSG UPDATE message after timeout to freeze the backbone, and update the lmList in

each robot. Similarly, when the system resumes from escape mode to BBCC, robots should

start updating the backbone before they can start moving. The LM Unfrozen state serves

this purpose and makes sure the backbone is updated by waiting for T Spread seconds before

transitioning back to LM None state (BBCC).

Planning and spanning tree construction In LM Planning state, robots do path

planning or spanning tree construction depending on what type of local minimum the system

is dealing with. Once the path has been planned, or the spanning tree has been constructed,

all robots transition into LM Planned state where escaping robots can prepare for escape.

Specifically, in Leader-following escape mode, the spanning tree (instead of the backbone)

is used as connectivity constraints, and should be engaged in LM Planned state.

5.5 Computer simulations

We now present simulations to show the effectiveness of the proposed scheme in escaping

local minima. We simulate a team of robots moving, in an arena of 120m × 120m, from

an initial formation to a goal formation. The communication range between robots is set

to 15m. Again, we assume unit disk communication model and obstacles do not obstruct

communication.

5.5.1 Escaping Type-I minimum

Figure 5.4 shows a case of Type-I minimum, where two small obstacles blocked robot 0 and

3 from their goals. While the robots were trying to reach their goals, the obstacles kept



CHAPTER 5. DISTRIBUTED STRATEGIES FOR LOCAL MINIMUM ESCAPE 84

(a) Init. (b) Goal (c) Traj. (d) (e) (f) (g)

Figure 5.4: Escaping from Type-I minimum. (a) Initial formation. (b) Goal formation. The
shaded regions are obstacles to be avoided.(c) Successful trajectories of robot 0 and 3 with
Random Walk strategy. (d)-(g) Snapshots of the system along the successful trajectories.
(d) Local minima detected by robot 0 and 3. (e) Robot 3 escaped the minimum, while robot
0 detected another minimum and eventually escaped with another around of random walk.

pushing them away, and therefore local minima were detected around the obstacles. After

detecting that they are in local minima, robots tried random walk to avoid the obstacles,

and after random walk the robots moved toward their respective goals again. Due to the

random nature, it might take several rounds of random walk to escape the minimum. For

example, in the shown simulation, it took robot 0 longer to escape. Other deterministic

local strategies may yield better performance.

5.5.2 Escaping Type-II minimum

Figure 5.5 shows a case of Type-II minimum, where all robots were right at their goal

position, except one, robot 5, as shown. It tried to move toward its goal position, but

the combination of obstacles and connectivity constraints prevented it from doing so, and

the robot detected local minimum as shown in (d). After trying random walk for several

times, the local minimum persisted, since the obstacle was relatively large. As robot 5 was a

non-backbone robot, the local minimum was deemed to be Type-II, and the Backbone-based

Navigation strategy was activated for escaping. To navigate robot 5 out of its local minimum,

the existing backbone (bold colored lines and robots) was used as planning roadmap, and

location of robot 4 was elected as subgoal for 5. In snapshots from (d) to (f), robot 5 moved

along the found path, and reached the subgoal. Clearly, from there it could easily reach its

final goal.
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(a) Initial (b) Goal (c) Trajectory

(d) Local minimum detected (e) Moves along backbone (f) Moves along backbone

Figure 5.5: Escaping from Type-II minimum. (a) Initial formation. (b) Goal formation. (c)
A successful trajectory of the local minimum robot, with our Backbone-based Navigation
strategy. (d) A local minimum detected. (e)-(f) Snapshots of the system as the local
minimum robot along the successful trajectory guided by the stationary backbone.

5.5.3 Escaping Type-III minimum

Figure 5.6 shows a case of Type-III minimum, where all robots were wrapped around an

obstacle in the initial configuration, and the obstacle was so large that a robot could only

communicate with its immediate neighbors (a). In this case, all robots were in the backbone

(c), because from every robot’s local point of view, all its edges were critical in maintaining

connectivity. The goal formation was a complete graph away from the obstacle (as in (a)).

In order to achieve the goal, the team had to break some links between robots. When the

team tried to move toward the goal formation, connectivity constraints kept the robots from

moving any further as in (d). Clearly random walk did not help much in this case, and the

system detected a Type-III minimum, as a backbone robot (robot 1 as shown) was in local

minimum, and hence the Backbone-based Leader-following strategy was engaged. With the
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strategy, a spanning tree was constructed, as shown in (e). The root of the spanning tree

(the leader) was the backbone robot that was farthest away from the local minimum robots.

Then for a certain period of time, all robots moved and followed this leader, resulting in

formation in (g), and from there the system easily reached the goal formation.

5.6 Summary

We have proposed distributed local minimum escape strategies for motion planning with

connectivity constraint for mobile networks. The strategies leverage the backbone con-

structed from our earlier proposal, Backbone Based Connectivity Control. Backbone-based

Navigation strategy is adopted for non-backbone robots in local minimum (i.e., a Type-II

minimum); then the backbone is used as a roadmap to navigate robots deemed to be in local

minimum, to move toward its goal. Backbone-based Leader-following strategy is used when

a backbone robot is in local minimum (i.e., a Type-III minimum); then a spanning tree hier-

archy, based on the backbone, is established among robots, and robots follow the hierarchy

and move closer to each other for reconfiguration. We showed, via computer simulations,

that the proposed strategies are effective in escaping local minima.
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(a) Initial (b) Goal (c) Trajectory

(d) (e) (f)

(g) (h) (i)

Figure 5.6: Escaping from Type-III minimum. (a) Initial and goal formations. (c) Successful
trajectories of all robots, with Backbone-based Leader-following strategies. (d)-(i) Snapshots
of the system along the successful trajectories. (d) Backbone of initial formation, and
all robots were in the backbone. (e) A local minimum detected. (f) Spanning tree was
constructed. (g-h) Moving in leader-following mode. (i) Back to BBCC.



Chapter 6

Conclusions and Future Works

6.1 Conclusions

We have investigated two different types of interaction between robot motion and net-

work communication: communication-assisted motion planning for single robot navigation

in static sensor network, and communication-constrained motion planning for connectivity

control in mobile sensor networks.

Communication-assisted motion planning. This problem studies how to use sensor

network deployed in a (hazardous) environment to guide a mobile robot through a safe path.

Depending on sensors used in the network, we investigated the problem from two different

aspects. (i) We started with a simple sensor model, where a sensor only gives a simple

reading within the sensing range. In this case, sensing regions with excessive readings are

deemed to be dangerous and should be to avoided. We propose a distributed path planning

method using communication backbone as a path planning roadmap. In building and main-

taining the roadmap, it takes into account safety and network longevity, and therefore the

roadmap adapts to dynamic dangers and evolves over time for load balance. (ii) For more

sophiscated sensor networks, where sensors give spatial maps within their sensing regions,

fine-grain path planning is possible to deal with physical obstacles, and navigate robots

through narrow passages. We propose a distributed sampling based planning algorithm,

where every sensor node creates a local probobilistic roadmap in its locally-sensed envi-

ronment; these local roadmaps are “stitched” together by passing messages among nodes

88
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and form a larger implicit roadmap without having a global representation of the environ-

ment. Based on the implicit roadmap, a feasible path is computed in a distributed manner.

The proposed algorithm applies to robots with non-trivial shapes, as well as multi-robot

formations.

Communication-constrained motion planning. This problem studies how to main-

tain connectivity among a team of mobile robots in a cooperative task. We propose a

hierarchical connectivity control scheme based on communication backbone of the network.

The key idea of Backbone Based Connectivity Control (BBCC) is to use adaptive backbone

to represent the system topology, which is updated in real time to capture the dynamic topol-

ogy of the system and to impose motion constraints on robots so that network connectivity

is maintained. BBCC maintains the system connectivity in two levels: it first maintains

a connected backbone, by maintaining existing connections (communication links) in the

backbone; and then for a non-backbone robot, one of the backbone robots is chosen as

leader, and connection to the leader is maintained. However, BBCC uses potential field

based techniques to maintain critical links, so local minimum may arise when the team of

robots trying to achieve their respective goals, maintain connectivity and avoid collisions at

the same time. To deal with the local minimum problem, we classify local minima into three

different categories: Type-I (Regional obstacle-induced local minimum), Type-II (Individual

connectivity-induced local minimum), and Type-III (Structural compound local minimum).

Different types imply different natures and causes of the minima, and we adopt different es-

caping strategies: RandomWalk, Backbone-based Navigation strategy, and Backbone-based

Lead-following strategy for the three different types of local minima respectively.

6.2 Future works

Multi-layer clustering for backbone-based roadmap. To further reduce the size of

backbone-based roadmap, the network can be further scaled down by K-hop clustering [6]

algorithms where every node in the network should have at least one clusterhead within k-

hop(k ≥ 1), or by using multi-layer clustering [71], where further clustering can be applied

on top of the backbone network.

Cooperative collision check for distributed probabilistic roadmap. Distributed-

PRM assumes that the local environments and relay zones always have large enough free
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space to contain the entire shape or formation, and collision checks by individual node is

enough to find a feasible path. However, there are more difficult and extreme cases. In some

cases, because of occlusion, two neighboring sensor nodes can only see a small part of relay

zone from different side; in other cases, the dimension of robot is simply too large, and it

has to span multiple maps of adjacent sensor nodes. In these cases, search for collision-free

path requires cooperative collision checking from different sensor nodes.

Convergence and stability analysis of BBCC. There have been several recent works

on stability and convergence analysis of multi-robot systems [60, 64]. These works are

mostly limited to specific tasks, such as consensus, rendezvous, swarming, or flocking, and

ignore either connectivity constraints or obstacle avoidance aspects in the tasks. Based

on these works, we are looking to analyze backbone based connectivity control scheme for

aforementioned specific tasks (e.g. consensus, etc.), and then for the more general problem

as we formulated.

More formal local minimum classification and escaping. As a first attempt to

attack the local minimum problems, the proposed local minima classification and strategies

to deal with them are based on emperical observations and are somewhat heuristic based.

We are looking into more systematic ways to treat them.

Implementation on real systems. We tested proposed algorithms based on software

simulations, and implementation and experiments on a real system can be quite different

and challenging, as many realistic conditions need to be considered, particularly imperfect

communication. For example, in BBCC, interference and latency in communication may

result in inconsistent neighbor information, and hence may affect the backbone construction

and update.

Relationship with modular robot reconfiguration. The problem of motion planning

with connectivity constraints are somewhat similar to reconfiguration planning problem

for self-reconfigurable modular robots [105], which studies how to plan a motion for each

modular robot without disconnecting the system, such that the system will reconfigure from

the initial to the goal configuration. Even though modular robots usually assume physical

contact for communication, and uses primitive discrete motion model, there are possible

connections between them. In BBCC, communication backbone is an adaptive and efficient
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way to represent the topology of the system, so it can be a good tool to realize adaptability,

robustness and low cost of reconfigurable systems, which are key challenges in modular

systems [105]. On the other hand, some existing results in modular robot reconfiguration

may be instructive in deriving our theoretic results in the connectivity control problem for

mobile networks. For example, Prevas et al.[69] showed that, under certain assumptions,

it is always possible to transform from one connected configuration to another connected

configuration. Dumitrescu and Pach [28] showed a similar result, and also showed the upper

bound of reconfiguration complexity in terms of number of moves to transform between two

configurations. Even though these results are only valid for some specific systems (e.g.,

hexagon or grid modular robots), they may be helpful in finding similar but more general

results for mobile networks.
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