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Abstract

Most of today’s commodity processors have single-instruction multiple-data(SIMD) instruc-

tions built in and provide SIMD within a register. However, different processor vendors tend

to have different SIMD instruction sets which poses significant challenges to cross-platform

SIMD programming. This thesis proposes a model called IDISA+ to overcome the compati-

bility issues and enable portable SIMD programming. There are more than 60 well-selected

SIMD operations defined in the model, which are believed to support a broad range of appli-

cations. We have implemented the model as a toolkit with two components, a code generator

for producing portable libraries and a test suite for both correctness and performance anal-

ysis on the libraries. For performance concerns, our model uses a least instruction count

mechanism to select the best among implementation alternatives of library routines. The

experimental results demonstrate the effectiveness of the generator and show that generated

libraries in our model perform better than hand-tuned libraries.
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Chapter 1

Introduction

In traditional scalar processing, operands are fetched in serial fashion into the processing

unit before execution. At each step, a single instruction is applied on one piece of data to

produce a single result. For example, an arithmetic add instruction would add together only

two operands to get an answer at a time. This sequential computing system is often referred

to as Single Instruction Single Data (SISD) in Flynn’s taxonomy [24], which exploits neither

instruction-level parallelism nor data-level parallelism.

Desktop computers, especially personal computers (PCs), have gone through a rapid

development in past decades. As a result, compute-intensive applications, like multimedia

processing and digital signal processing, became more and more popular on PCs. Many

improvements and expansions have been integrated into architectures to meet the strong

demand for this particular type of computing and improve the performance over traditional

SISD systems of which one of the most important features is Single Instruction Multiple

Data (SIMD).

SIMD is a parallel processing technology which is able to perform the same instruction

on multiple data simultaneously. Compared to SISD, SIMD mainly has two advantages.

First of all, when the data is stored in blocks, SIMD can load one block of data at a time in

only a single instruction [48] instead of a series of instructions fetching the data one by one

in SISD. Another advantage is that instructions in SIMD can be applied to all the data of

a block in one operation. More specifically, for the arithmetic add operation, SIMD would

perform the addition on eight pairs of values to produce eight sums in a register. Thus, from

the computer architecture’s point of view, SIMD systems exploit data-level parallelism, and

are being used to improve the performance of today’s many software applications.

1



CHAPTER 1. INTRODUCTION 2

Nowadays, commodity processor manufacturers including Intel, AMD, ARM and IBM

have expanded their instruction set architectures with SIMD extensions to accelerate algo-

rithms used in gaming and multimedia related processing. Some of the SIMD extensions

have even evolved for many generations, such as the Streaming SIMD Extensions (SSE) se-

ries on Intel platform [56]. However, each processor vendor develops and maintains his own

versions of SIMD instruction sets due to the lack of a unified commercial standard. That

being said, although most commodity processors support SIMD techniques natively, chal-

lenges still exist for creating SIMD applications over different platforms. Detailed reasons

are listed as follows.

• Because of the high diversity of design and associated algorithms in architectures, the

instructions, field widths and the size of registers differ substantially between differ-

ent SIMD instruction sets. An application written in a source-level language is often

implemented based on the current hardware details, such as the available SIMD op-

erations and memory access restrictions. Such implementations are unlikely to work

properly if the underlying platform is changed. For example, there is an instruction

called pcmpgtq in Intel SSE4 instruction set [30] which is to compare two pairs of

packed quadword (64-bit) data for “greater than” simultaneously, however, no such

instruction existed in PowerPC AltiVec instruction set [47]. Hence, an application

built on Intel platform with SSE4 using the pcmpgtq instruction is not likely to work

on the PowerPC platform. This makes it difficult and time consuming to write pro-

grams which achieve good performance over various architectures, even though these

architectures are fairly similar to each other in most important ways.

• A SIMD instruction set is usually designed and implemented as an expansion within an

existing architecture. Due to the redesign and modification cost of the architecture, the

instruction set would have a set of limited functionality and algorithms that is believed

to be the most economical and effective implementation on its host platform. Thus,

it is common that even within the same SIMD instruction set, the implementation of

an instruction is only available on some pre-chosen data sizes. Take the Intel SSE2

instruction set [32] as an example. The instruction pmaxsw in SSE2 computes the

maximum of packed signed word (16-bit) integers. But this instruction only works

on packed 16-bit numbers, and does not provide the functionality of maximum for

other data sizes. This makes it tough to use SSE2 if we have an application that
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heavily relies on 32-bit integer maximum operations. Also, for those instructions

under some specific data sizes and not yet implemented as built-ins, the alternative

implementations should be found if the cross-platform programming is a concern.

• Often, programs developed based on an early version of a SIMD instruction set con-

tinue to be used on the later versions. But, new instructions that may improve per-

formance are usually checked in as the instruction set evolves within an architecture.

It is quite difficult for programmers to tune the performance of the programs over

multiple generations.

As SIMD has been incorporated into many commercial processors and is still been ac-

tively maintained and promoted by the chip vendors, it is believed that SIMD instruction

sets will continue to evolve in many aspects such as new instructions, larger register size and

so forth. On the other hand, developers have also used many kinds of SIMD instruction sets

to build fast applications on various platforms over years. As a result, programmers might

transfer their code from one platform to another with a hope of no incompatibility issues,

and they would also like to make use of the capabilities of a newly released instruction set

without doing too much work.

Towards addressing the cross-platform issues of SIMD programming and filling the gap

between developers and underlying SIMD instruction sets, a portable and high performance

SIMD programming model is presented in this thesis.

The model is based on the inductive doubling principle [19] for making in-register SIMD

operation sets. Details about inductive doubling principle are provided in the Chapter 3. For

implementing the model itself, the thesis has focused on building a toolkit to provide portable

and high performance SIMD library support targeting kinds of commodity platforms. There

are three main contributions in the thesis:

• The model defines a set of carefully selected operations as library routines which pro-

vide a uniform and clean interface for higher level development over various platforms.

The operation set is well defined and is believed to capture the most important fea-

tures of SIMD integer programming so that a wide range of applications could be built

upon it.

• The model is built in a way that the implementations of SIMD operation are automat-

ically generated according to the current architecture information and compiler flags.
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It is also designed to be very flexible that it allows users to define new operations and

add support for new architectures. In fact, the process of defining a new operation

or adding support of a entire new architecture into the model is easy and fast. More

details about this will be explained in later chapters.

• Performance concerns are considered in the model as well. Normally speaking, a model

with more portability maybe expected to sacrifice performance. However, this is not

true in our model. In the experiments of the thesis, it shows that the implementa-

tions generated by the model achieve slightly better performance than the hand-tuned

implementations.

The remainder of this thesis is organized as follows. Chapter 2 reviews the background

of SIMD implementations on various architectures and the related work on portable SIMD

programming. The detailed definition of the model is given in Chapter 3. In Chapter 4, the

algorithm for implementing the model is presented. Chapter 5 collects all the evaluation

results and gives some related analysis. At last, Chapter 6 concludes the thesis with a

summary of results and directions for future work.



Chapter 2

Background

2.1 SIMD Basics

SIMD is a parallel computing concept which describes computers with processing units that

perform the same operation on multiple data elements simultaneously. The first use of

SIMD instructions was in vector supercomputers of the early 1970s, which could operate

on a vector of data with a single instruction [7]. In contrast to scalar computing, SIMD

computing is able to apply instructions to each of the vector’s elements independently or

cumulatively. Unlike other parallel computing systems such as multi-core computing or

distributed computing, the development of SIMD is a relatively cheap way of exploiting

parallelism with emphasis on data-level parallelism. Generally speaking, SIMD systems can

be divided into two types, vector-based and array-based systems.

In the vector-based system, it usually has one processor with a set of vector registers.

When executing an instruction, data is loaded into one register which can store some fixed

number of elements, and then the instruction is performed on some or all of the elements

simultaneously. With the help of vector processing, it allows the processor to achieve better

performance than traditional scalar processing. If the SIMD register size is 128-bit, it could

get 4 times faster compared to the non-parallel processing when doing 4 pairs of 32-bit

integer addition. Figure 2.1 shows the general idea about SIMD vector processing.

However, the vector-based SIMD processors are not well suitable for solving problems

involving two or more dimensions. In the array-based system, the SIMD processors are

used to deal with the data in large multi-dimensional arrays. Such a system would have a

single control unit and a bunch of multiple processing elements (PEs) which are connected

5
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Figure 2.1: An Example of SIMD Vector Processing

Figure 2.2: An Example of SIMD Array Processing

in shapes of multi-dimension. The instructions are distributed by the control unit to the

PEs, and each PE receives the instructions and applies them on its own data stream. An

example of SIMD array system is shown in Figure 2.2.

Historically, the early SIMD machines were array-based systems and mostly character-

ized by massively parallel processing-style supercomputers. The most important reason

is that supercomputers are normally used to process and analyze a very large amount of

data as in meteorological applications and physics simulations, hence, the SIMD on array-

based processors with capability of processing multi-dimensional data efficiently were the

best choice to accomplish the jobs. As the inexpensive Multiple Instruction Multiple Data

(MIMD) approaches became more powerful later, the interest in SIMD array-based systems

waned [7]. However, since desktop processors have become powerful enough in terms of high

CPU clock rates, large register complements and advanced system bus designs to support

real-time multimedia applications, the SIMD approach is now widely used in machines from



CHAPTER 2. BACKGROUND 7

Figure 2.3: Examples of Two Different Partitions on a 128-bit Register

the desktop-computer market in a form of vector-based processing.

2.2 SIMD Within A Register

In this thesis, we target our portable SIMD programming model on the systems which

support SIMD within a register (SWAR). Almost all of today’s PCs and workstations are

the SWAR-capable systems, in which SIMD instructions are executed across sections of a

register.

The SWAR model has a very unique property that every register in it can be partitioned

into fields and each field is independent from any other field. However, the partition is not

a real physical partition but a logical view of partition on registers. For example, a register

with 128 bits could be viewed as four 32-bit fields (in Figure 2.3) or eight 16-bit fields (in

Figure 2.3) or other possible partitions. Each partition is independent and a SIMD operation

in SWAR requires corresponding operand fields to be manipulated without interfering with

adjacent fields.

As you see, this property of partition matches perfectly with the SIMD processing idea

that an operation is applied on many data simultaneously, hence, the SWAR model is

very suitable for supporting SIMD operations with a minimal requirement of hardware

enhancements. Since SWAR doesn’t restrict the size of each field in a register, we can

explicitly set the precision for the field widths as desired when applying operations. More

importantly, SWAR systems are designed in a way that there is no penalty for data crossing

the logical boundaries inside a register, which provides room for inductive algorithms on

emulating SIMD operations.

Unfortunately, the implementations of SWAR systems strongly depend on the architec-

tures and the target services of the systems. Available operations are determined according
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to the needs of applications especially the multimedia related programs, so the instruc-

tion sets are different between architectures, and even within the same architecture some

operations are not supported or supported on just a few field widths.

In summary, the SWAR model with the feature of logical partition on registers and its

diverse implementations over platforms, is the target for which our high performance and

portable SIMD programming model is built.

2.3 Commercial SIMD Instruction Sets

Having a comprehensive understanding about current mainstream SWAR families in IT

industry is very important for developing a good SIMD programming model over different

kinds of platforms. In the past, the SWAR instruction sets were made to improve the perfor-

mance of multimedia programs and were usually integrated into the existing architectures

as new instruction sets using the SIMD processing paradigm.

Each instruction set was customized by individual microprocessor vendor for the sake

of better supporting compute-intensive algorithms and applications on its host platform.

Given the variety of microprocessors, each SWAR extension has a unique set of instructions

and the supported SIMD operations vary widely. But, this doesn’t mean SWAR instruction

sets are totally different from each other. In fact, the underlying algorithms of many SWAR

operations are equivalent for different platforms although the operations might differ in

available field widths or performance. So it turns out that every SWAR instruction set has

implementations which are similar or even identical to those of others.

Early SWAR instruction sets on a platform were normally limited to a few of instructions

which only serve the most frequently used operations and applications for this particular

architecture. Later extensions were often created to address some issues in previous versions

and provide a wider range of SWAR related instructions. Thus, one SWAR instruction set

might evolve for many generations and ultimately become more complete and powerful.

In this section, several typical SWAR instruction sets in current commodity processors

are reviewed to show their capabilities and limitations and also to provide the guidance for

designing and implementing our portable SIMD programming model.
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Figure 2.4: The View of MMX Registers

2.3.1 Intel MMX

MultiMedia eXtension (MMX) is a SWAR instruction set designed by Intel in 1996 to

improve performance of multimedia and communication algorithms. It was the first major

addition to the Intel Architecture-32 (IA-32) since the Intel 386TMarchitecture [29]. The

definition of MMX technology evolved from the Intel i860TMarchitecture which was the

industry’s first general purpose processor for graphics rendering with the functionality of

parallel computing on multiple adjacent data operands.

MMX adapts to SIMD approach by defining the packed data format for data repre-

sentation which allows the input data to be processed simultaneously in small data fields

such as 8-bit or 16-bit. There are eight 64-bit registers defined in MMX, known as MM0

through MM7. To maintain the compatibility with the IA-32 architecture of that time,

those registers were not defined as a new set of registers but aliases of the existing IA-32

Floating-Point Unit (FPU) stack registers. MMX only uses the low 64 bits of each FPU

register and sets the unused bits to be all ones to reduce confusion between a MMX data

value and a valid floating-point value. Figure 2.4 shows the overview of MMX registers in

the FPU registers. However, because the dual usage of the FPU registers doesn’t allow the

concurrent execution of both MMX code and floating-point code (meaning that the MMX

code and floating-point code must be in separate code sequences), there is a mode switch

cost if an application uses both codes.

However, MMX only provides integer operations to meet the requirement of integer math

used in early graphical applications. The set of operations provides a relatively wide range of
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support for the SIMD programming, which includes arithmetic logic operations, saturating

arithmetic, fixed-point arithmetic and repositioning of data elements within a register. The

design of MMX had limited it to contain new instructions specifically designed for audio,

graphics and other multimedia applications. Although there were 57 new instructions added

in MMX [45], the implementations are not available over consistent field widths and also

lack full support for many types of operations, such as comparison operations. Moreover,

many of the instructions have little application outside the multimedia domain. Thus, MMX

is not a general purpose instruction set for a high level SIMD programming model.

For further information about MMX, readers can refer to [50] which provides an overview

of the MMX instruction sets and also [32] which has detailed information about the MMX

instructions including intrinsics and programming convention.

2.3.2 SSE Series

A few years after MMX was released, Intel introduced Streaming SIMD Extensions (SSE) in

their Pentium III series processors in 1999. SSE instruction sets were subsequently extended

in a series of versions including SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4a and SSE4.2. Intel

was the main contributor designing all SSE generations except SSE4a which was created by

AMD.

SSE

In contrast to the MMX extension, SSE added 70 new instructions, primarily dedicated to

support single-precision floating-point data [56]. It also added a few integer instructions

such as minimum or maximum instructions that work on MMX registers. In addition, SSE

added a set of eight new independent registers named XMM0 through XMM7 which are

128-bit SIMD floating-point registers. In short, MMX instructions are still available in SSE

using the 80-bit floating-point stack registers to process integer data while SSE operations

process the XMM registers with four 32-bit single-precision floating-point values as its data

representation.

SSE2

In 2001, SSE2 was released by Intel along with the initial version of Pentium 4 to extend

the earlier SSE instruction set [32]. It migrated all the MMX instructions to operate on

XMM registers allowing an application to work on both SIMD and scalar floating-point data
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without the switch cost required between MMX instructions and floating-point operations.

More importantly, SSE2 added a rich set of integer instructions which extends MMX func-

tionality to 128-bit XMM registers. This gives SSE2 a significant advantage that it could

execute instructions twice as fast as MMX in theory due to the doubled register size.

AMD soon added support for SSE2 in its Athlon 64 processors based on the AMD64

architecture. In AMD’s implementation, it doubled the number of XMM registers to sixteen

as XMM0 through XMM15. In 2004, Intel adopted these additional registers as part of their

SSE2 implementation for the IA-64 architecture [2].

SSE3

The third iteration of SSE instruction sets of Intel is the SSE3, which was introduced with

the Prescott revision of the Pentium 4 processors in 2004. In SSE3, the major improvement

is that some instructions working horizontally in a register with floating-point values were

added to simplify certain DSP and 3D graphics related algorithms [9]. A new instruction

which does misaligned integer vector load was also included to achieve better performance

on loading data across cache-line boundaries.

SSSE3

SSSE3, the fourth generation of the SSE series, was included with Core micro-architecture

based Intel processors in 2006. It contains 16 new instructions compared to its precursor,

most of which are signed magnitude arithmetical instructions and instructions working hor-

izontally on XMM registers with packed integer data.

SSE4

As the last iteration in SSE family, SSE4 was officially announced in 2006, and became

available in hardware in early 2007 for both Intel and AMD processors. SSE4 now has

three variation, SSE4.1, SSE4a and SSE4.2 which contribute more than 50 instructions all

together.

SSE4.1 is the major extension of SSE4 with 47 instructions added including some in-

structions that are not specific to the multimedia domain such as conditional copying or

shuffle of elements from one location to another based on the bits in an immediate operand

or a XMM register. Some other instructions are mainly about arithmetic operations on

packed integer data and memory related operations.
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SSE4.2 completed the SSE4 instruction set by adding 7 new instructions, most of which

are comparison operations on packed explicit length strings.

SSE4a, introduced by AMD on the AMD K10 micro-architecture in 2007 [10], imple-

ments part of SSE4.1 instructions from Intel and adds its own 6 instructions for bit manip-

ulation as well.

Evolving for years and reaching five generations in total, the series of SSE instruction

sets have formed a powerful SWAR extension in the microprocessor industry. However,

SIMD operations supported in SSE series are still limited to a few field widths, and there

are only a few instructions which are outside multimedia applications. Although the SSE

series is fully upward compatible with MMX, there are two different sets of programming

intrinsics for MMX and SSE. This poses a challenge for developers to migrate MMX based

programs to SSE based programs, which might require them to make significant revision to

source code in order to adopt the SSE programming convention.

The initial goal and design of SSE instruction sets is given in [56]. Full descriptions of

SSE instructions and programming model can be found in the IA-64 and IA-32 architecture

software developer’s manual [32]. Some detailed information about SSE4a was posted at

the online AMD developer central [10].

2.3.3 ARM NEON

An advanced SIMD extension named NEON was introduced by ARM in their Cortex-A

series processors to improve the performance of multimedia and signal processing algorithms

such as 3D graphics, gaming and audio/speech processing. It has a comprehensive set of

instructions and some of the instructions are shared with the ARM Vector Floating Point

(VFP) extension. NEON supports 8-bit, 16-bit, 32-bit and 64-bit signed and unsigned

integers and also 32-bit single precision floating point values naturally.

There are 32 featured 64-bit registers associated with NEON implementation, which can

be accessed by both NEON and VFP processing units. Interestingly, NEON can view its

register set in two different ways, one way is thirty-two 64-bit doubleword registers (D0-

D31), the other is sixteen 128-bit quadword registers (Q0-Q15). In fact, the doubleworld

registers and the quadword registers alias each other with the 64-bit registers D2∗i and

D2∗i+1 mapping against the same physical location of the register Qi.

NEON can utilize both register views to process data, which means that data from



CHAPTER 2. BACKGROUND 13

Figure 2.5: An Example of Multiplication in NEON

Figure 2.6: An Example of Structure Load in NEON

registers in different views could be accessed in the same instruction. With this particular

property, instructions in NEON could have different size input and output registers and

be able to promote or demote data elements in an operation. For example, in Figure 2.5,

“VMULL.S16 Q0, D3, D4” multiplies four pairs of 16-bit values from doubleworld registers

D3 and D4 at a time and produces four 32-bit products in the 128-bit quadworld register

Q0.

Another notable property of NEON is that, it not only has instructions which can load

and store multiple data from or to a SIMD register, but also includes some instructions that

can transfer complete data structures between several SIMD registers and memory location

with interleaving and de-interleaving options. An example is shown in Figure 2.6.

There are many references about ARM NEON available. Some introduction on NEON
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can be found in [16, 51]. The white paper titled “ARM NEON support in the ARM compiler”

[15] discusses the compiler support for SIMD from the automatic recognition approach and

also the perspective of the use of intrinsic functions. The assembler guide [14] describes all

the instructions and the underlying assembly programming of NEON in detail.

2.3.4 AltiVec

AltiVec is a SIMD extension to the PowerPC architecture [6], developed by Motorola, Apple

and IBM in late 90s. Apple was the main consumer of AltiVec until they switched to Intel

x86 based processors in 2006 while Motorola had been the main manufacturer for providing

AltiVec chips. IBM declined to be involved in AltiVec, instead, they have made the VMX

which is similar to AltiVec out of their Power processors. AltiVec is now a trademark owned

solely by Freescale, the former semiconductor products division of Motorola.

AltiVec expands the PowerPC architecture through the addition of a vector processing

unit with thirty-two 128-bit registers built in. It supports 8-bit, 16-bit and 32-bit integers

and also 32-bit floating point data. There are 164 new instructions added in AltiVec, provid-

ing a general set of instructions including intra and inter-element arithmetic instructions,

intra and inter-element conditional instructions and some powerful repositioning instruc-

tions. Unlike the SSE series instructions that store results back into a source operand

register, each instruction in AltiVec is a non-destructive instruction which can preserve the

content of source operand after the instruction is executed. Furthermore, AltiVec has a

powerful and flexible vector permute instruction which can extract the data elements from

either of two operand registers and reposition them in the resulting register according to the

parameters in yet another register. This allows for sophisticated manipulations on ordering

data in a single instruction.

An introduction on AltiVec and the ways to vectorize code using AltiVec are shown

in [26]. The programming environment manual of AltiVec technology [46] contains guide

for assembler programmers and has detailed information about instructions. High-level

programmers should refer to [47] which provides C/C++ programming interface for using

the AltiVec instruction set.
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Figure 2.7: The Overview of AVX Registers

2.3.5 Intel AVX

In 2008, a new SIMD extension to Intel x86 architecture named Advanced Vector Extensions

(AVX) was announced. AVX extends the previous Intel SIMD instruction sets such as

MMX and SSE series by adding many new features to provide even better performance on

multimedia applications and vector processing. The actual implementation came with Intel

Sandy Bridge processors [3] in early 2011.

Compared to SSE series, AVX increases the size of its SIMD registers from 128 bits to

256 bits. The AVX registers named YMM0 through YMM15 are aliased over the initial

128-bit XMM registers of SSE series with the XMM registers as the lower 128-bit of the

corresponding YMM registers, shown in Figure 2.7. Hence, AVX fully supports legacy SSE

instructions including the SIMD data type used in SSE as well. AVX instructions operate

on 8-bit, 16-bit, 32-bit, 64-bit and 128-bit integers as well as 32-bit and 64-bit floating point

values.

One of the most important improvements made in AVX is that instructions are non-

destructive, mostly with two source operands and a separate destination operand. Thus, the

AVX instructions enable the preservation of the content in source operand after execution so

that potential movements between registers as in the SSE series could be reduced. Besides,

there are a few of four-operand instructions added to allow smaller and faster code written

in AVX.

As another significant change made in AVX, a new extension coding scheme (VEX) has

been designed to encode instructions and make future additions easier. The VEX is a prefix

encoding with space of two or three bytes, which was designed to simplify the current and

future Intel x86 based instruction encoding and allow more instructions to be included and

encoded. It extends the older SSE instructions by adding a VEX prefix for accessing the
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new 256-bit registers and three-operand forms. Unfortunately, the current implementation

of AVX only allows the integer instructions to operate on the lower half of YMM registers

with options to zero or retain the higher half parts. However, there are some instructions

which can move or extract data of either the high or low 128 bits of the YMM registers,

making it possible to achieve parallel processing on 256 bits.

According to Intel’s documentation [31], it is believed that AVX is designed to support

registers with 512 or 1024 bits in the future. AVX2, the next immediate generation of AVX,

will ensure every legacy SSE instruction has a VEX form to operate on the entire 256 bits

of the YMM registers naturally. In [43], it introduces the overall design and goal of AVX.

The Intel AVX programming reference [31] contains specific information about instructions

and programming model in AVX and AVX2. Besides, a AVX C/C++ intrinsics emulation

provided by Intel [1] enables developers to program with Intel AVX intrinsics on the machines

which do not support AVX.

2.3.6 Others

Because of their wide usage and comprehensive support of instructions, several representa-

tive SIMD extensions on various commodity microprocessors are reviewed in above sections.

Nevertheless, there are also other extensions which play important roles in the parallel pro-

cessing area, which either contribute as the basis of the recent SIMD extensions or provide

functionality for some specific applications beside multimedia.

Intel i860, also known as 80860, was the first microprocessor having vector processing

instructions, introduced by Intel in 1989. It has a graphics unit using FPU registers as

SIMD registers to process instructions for 3D graphical applications. The development of

i860 was the groundwork for Intel x86 based system to support SIMD instructions, and it

influenced the MMX functionality heavily in Intel Pentium processors later [50].

In 1994, HP developed its initial version of Multimedia Acceleration Extension named

MAX-1 on 32-bit PA-RISC 1.1 architecture PA-7100LC processors [42, 40]. It uses a very

small set of SIMD instructions and enables real-time video decompression without the need

of special hardware enhancements [41]. Two years later, with the 64-bit PA-RISC 2.0

architecture introduced, HP extended the earlier MAX-1 instruction set to create a new

set of SIMD extension called MAX-2 which could operate on the 64-bit registers with more

instructions available.

Sun Microsystems developed a SIMD extension called Visual Instruction Set (VIS) for
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SPARC V9 microprocessors, and the first implementation of VIS was released along with

UltraSPARC microprocessor in 1995 [55, 54]. The second generation, VIS-2 was imple-

mented in the UltraSPARC III later as an enhancement. VIS uses the 64-bit floating point

registers to hold data which is similar to the Intel MMX design. The instructions of VIS

are primarily for visual and graphical applications such as format conversions between pixel

data and 16/32-bit values and some arithmetic operations on data with small bits.

Since Intel MMX doesn’t support SIMD instructions on floating point values, AMD

added a new extension named 3DNow! on AMD K6-2 processors in 1998 to enable arith-

metic operations on single precision floating point values. In the first generation of Athlon

processors, AMD introduced the enhanced 3DNow! as the extension to the older 3DNow!

by adding many new 3DNow! and MMX instructions [12]. Couple years after enhanced

3DNow! was released, starting from the AMD Athlon XP, 3DNow! Professional has been

used as the name for a combination of 3DNow! technology and SSE instructions sets.

2.4 Related Work

With the rapid growth of SIMD instruction sets on commodity microprocessors, quite a bit

of research has been done on these SIMD extensions, expanding from building a portable

SIMD programming model over platforms to using SIMD instructions to auto-vectorize or

optimize the sequential programs [11, 49]. To my knowledge, the research can be divided

into two categories, the compiler technology for SIMD instructions and the library support

for SIMD programming.

Compiler Technology for SIMD Instructions

Fisher’s work on compiling for SIMD within a register [22] proposed a general-purpose SIMD

programming model with a C-like module language and an associated compiler named Scc.

Based on the C language, the module language adopted many base data types from C and

also added a vector type to support SIMD programming. Thus, it allows programmers

to describe the SWAR data types and algorithms in a portable manner. The associated

compiler Scc supports parsing the code written in the module language and implementing

the specified algorithms into C code based on the capabilities of the target architecture.

According to Fisher’s PhD thesis [23], this model supports code generation on AltiVec,

3DNow!, MMX and SSE.
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While Fisher’s work was the groundwork for portable SIMD programming, the imple-

mentations generated by his model did not achieve good performance in some circumstances,

particularly when the application relied on many non-built-in operations. As shown in his

thesis [23], the code generated by Scc targeting MMX did not gain any speedup but slowed

down the performance at a ratio between 0.4 and 0.8. Although there were many compiler

techniques added into the model to optimize the generated implementations for non-built-in

operations, the study on emulation techniques for non-built-in operations was still insuffi-

cient which limits the further use of the model for a general-purpose SIMD programming.

Bocchino and Adve presented a virtual vector instruction set called Vector LLVA for

media processing [34]. The Vector LLVA supports arbitrary-length vectors for streaming

processors and also fixed-length vectors for processors equipped with multimedia/SWAR

extensions like AlitVec and SSE. It defines a relatively rich set of instructions covering gen-

eral arithmetic operations, vector-memory operations and data movement operations. This

vector programming model was also attached with translators which are able to translate

the Vector LLVA code into C code that use the intrinsics and programming conversions of

three target architectures (Motorola RSVP, AltiVec and Intel SSE2) individually.

However, Vector LLVA model requires developers to write and tune applications at an

instruction level which is challenging work for source-language level programmers. And

the performance of implementations generated by Vector LLVA was not well balanced,

sometimes slightly better than hand-tuned implementations while sometimes worse. Besides,

the Vector LLVA has a fixed set of instructions and its translators only support those built-

in instructions, hence, it is not likely to allow people to add new instructions or operations

for their own purpose.

Liquid SIMD [20] is another compiler technology for supporting programming and appli-

cations on multiple SIMD extensions. It has both compiler support and dynamic translation

to decouple the instruction set architecture from the implementation of a SIMD accelerator.

The way it achieves portability relies on two stages. First, it identifies SIMD instructions

and compiles them into a virtualized SIMD schema using the scalar instruction set of a pro-

cessor. Then, during program execution, it uses a light-weight dynamic translation engine

to convert these scalar instructions back into SIMD instructions that can be executed on an

arbitrary SIMD accelerator. However, more experiments on other platforms are needed to

be done as Liquid SIMD was only demonstrated on the ARM platform.

In addition to the compiler technology for portable SIMD programming, there are some
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other techniques which could parallelize parts of a sequential program automatically. The

idea is to identify the potential parallelism spots in source codes, especially in the loops

and basic blocks, and try to replace the traditional instructions by SIMD instructions so

that certain speedups could be gained. In [36], Larsen and Amarasinghe presented a novel

way of viewing parallelism in multimedia applications called Superword Level Parallelism

(SLP). They also developed a compiler for detecting SLP targeting basic blocks rather than

loop nests. In Larsen’s PhD thesis [35], he worked further on SLP technology and made

two major improvements, one is the effective management of memory alignment for compil-

ing short-vector instructions, the other is a selective vectorization technique for balancing

computation across scalar and vector resources in a processor based on software pipelining.

Shin also proposed a compiler framework based on SLP to exploit parallelism automati-

cally in sequential programs [53]. Shin’s compiler has a number of optimizations compared

to Larsen’s, it extends SLP in the presence of control flow constructs to increase the ap-

plicability of SLP and treats the SIMD register file as compiler-controlled cache to avoid

unnecessary memory access.

Library Support for SIMD Programming

In his PhD thesis [52], Rojas implemented a set of multimedia macros for portable optimized

programs. Each macro has an individual implementation for each supported architecture,

and all macros together provide a unique interface for high-level programming. The author

developed the implementation for each macro on a certain architecture by manually trying

different algorithms and picking the best one with the criteria in terms of instruction count

and execution time in CPU cycles. The set of macros supports 8-bit, 16-bit and 32-bit

integers and 32-bit floating point values on AltiVec, Intel MMX/SSE/SSE2 and TriMedia

TM 1300. To gain the portability for SIMD programming, Rojas’s macros actually slow

down the performance as the experimental results in his work shown that the performance

based on the portable macros lost around 12% for a certain algorithm compared to a specific

hand-tuned implementation.

To encourage the development of applications in compute-intensive areas on Mac OS

X or later computers, Apple has created an accelerate framework [13, 28] for high perfor-

mance numerical computations. The framework’s implementations are highly optimized

for AltiVec and Intel SSE platforms by Apple to fully take advantage of those platforms’
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capabilities especially the SIMD processing units. There are two sub-frameworks in the ac-

celerate framework, vecLib and vImage. General numerical operations including addition,

multiplication and so forth for both scalar and vector data are included in vecLib, while

vImage provides a set of image processing routines. This accelerate framework provides

developers a set of abstract programming interfaces in C to allow them to use the vector

processing resources of the target platforms without worrying about the low level difference

between platforms.

libSIMD [4] is a open-source mathematical library using SIMD processing capabilities

of 3DNow! and Intel SSE processors to accelerate some commonly used algorithms. The

library provides function interfaces in C for programmers and only supports 32-bit and 64-

bit precision floating point values. Most implementations in the libSIMD were written in

assembly codes to get as much performance as possible. Similarly, SIMDx86 [8] is another

optimized math library mostly written in assembly codes for graphics applications especially

the 3D games engines and 3D visualizations and so on. SIMDx86 provides C function

routines that can work on 3DNow!/Enhanced 3DNow!, Intel MMX and SSE/SSE2 platforms.

Instead of building a C library for high-level SIMD programming, some work has been

done to provide C++ libraries using template metaprogramming mechanism. EVE [21], an

object oriented SIMD library designed for AltiVec processors, which was built upon a tem-

plate metaprogramming engine to support a STL-like programming interface for developers

to write efficient applications compared to the traditional C libraries. Provided by pixelglow

software, a C++ library called macstl [5] was distributed for generic SIMD programming

to Macintosh and Windows platforms. In macstl, there is a class named vec for manipulat-

ing vector data, which supports a standard vector initialization syntax in a C++ template

manner and includes a common programming interface for developers to write fast SIMD

applications that work with AltiVec and Intel MMX/SSE/SSE2/SSE3 instruction sets. Due

to the strong demand of fast numerical applications, Boost just announced in early 2011

that they are going to add a SIMD library [27] to support vector processing on various

architecture families including Intel x86, PowerPC and ARM.
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Model Definition

3.1 Objectives

As shown in the related work of Chapter 2, many compilers made for SIMD instructions

have a problem that the performance usually drops off compared to a specific hand-tuned

implementation. With these compilers, programmers are normally required to play with

the low-level instructions directly when writing applications. In this thesis work, instead of

building a virtual SIMD instruction set and an associated compiler, we decided to create a

library support for the portable SIMD programming.

The goal of this library support is to enable portable programming among diverse SWAR

architectures, provide a clean and uniform interface for ease of programming, and more im-

portantly, ship the same and even better performance as the specific architecture-dependent

implementations.

Portability

Supporting programming over platforms is a challenging task. First of all, there are many

operations that have to be implemented as for a SIMD library, and even worse, an operation

usually has several versions depending on the operating field width. Thus, it is impractical

and very time-consuming for human-beings to develop each library for every architecture

by hand. Secondly, even if hand-written libraries are acceptable, finding the best imple-

mentations of them involves lots of human efforts and expertise knowledge in computing.

Besides, a library is often released as a set of fixed interfaces so that adding a new operation

or function which incorporates well with the library is difficult.

21
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The way we achieve portability mainly relies on two aspects. First and foremost, we do

not want the library in our model to be hand-written because that requires huge efforts and

is not flexible for further optimization. Therefore, we have developed a framework which

could generate the objective libraries for various architectures automatically in C++. In

the next place, the framework we have built provides an interface that allows users to add

new operations easily and improve the library’s implementations with a few effort.

Performance

Performance is a critical concern when designing libraries. In particular, a portable library

should not trade too much performance out in order to support portability. However, there

are many factors that affect the performance, such as cache algorithm, instruction pipeline

interactions and memory access latency and so forth. Nevertheless, an optimized library

must take full advantage of the target’s capabilities, especially its instruction set, to keep the

number of instructions of an application as less as possible. To accomplish that, our model

has a mechanism to optimize the implementation of each operation in terms of minimizing

instruction count. Generally speaking, it is expected our model out-performs the hand-

optimized libraries.

3.2 Inductive Doubling Principle

Before designing what SWAR operations our model wants to support and showing how we

support them, it’s better to first look at some properties of SWAR operations in general.

• Any of SWAR operations applies the same operation on partitioned fields of a register

simultaneously with each field has the same width.

• The size of fields is normally 16 bits, 32 bits and other power-of-2 bit widths; these

work well with the frequently used data types like char and int in most programming

languages.

• In current available SWAR instruction sets on commodity processors, an operation

might not have full support for all power-of-2 field widths, i.e., the operation lacks

implementations for some field widths.

When it comes to implement a SWAR operation for a missing field width, it is very

natural to use the implementation of the same operation on other close field widths to do the
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Figure 3.1: An Example of Using 16-bit Addition to Emulate 32-bit Addition

job. In [19], Dr. Cameron has proposed an inductive doubling instruction set architecture

(IDISA) which nicely captures the idea of simulating SWAR operations for missing field

widths based on the observation that implementing a SWAR operation on a certain data

size could use the algorithm for the operation on halved data size and vice versa.

For example, we could use an addition operation on 8 pairs of 16-bit numbers simulta-

neously along with some shifting and combination work to get an operation of capability to

perform addition on 4 pairs of 32-bit numbers at a time. Figure 3.1 gives such an example.

Conversely, the addition on 4 pairs of 32-bit numbers can also be used to simulate the 8

pairs of 16-bit numbers addition. The idea is shown in Figure 3.2.

Overall, inductive doubling principle provides a general approach for emulating a SWAR

operation for missing field widths within the same operation family. However, people could

always find implementations for a SWAR operation in a totally different manner instead

of the inductive doubling fashion. An extreme example would be using bit-wise xor to

accomplish the 1-bit addition between two SIMD registers. That being said, inductive

doubling principle is not the entire methodology of our model but a basic foundation which

provides guidance for making the library support in our model.

3.3 Integer Operations or Floating Point Operations

To best serve the higher level applications using our library support, we have defined a set

of well-chosen operations in our model. The operations are carefully selected in order to
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Figure 3.2: An Example of Using 32-bit Addition to Emulate 16-bit Addition

fully exploit the features of vector parallelism and supply SIMD functionalities as well as

possible.

Unlike many other portable SIMD programming models which primarily serve the fast

mathematic applications and support operations on vectors of floating point values, the

current operations defined in our model are intended for working on vectors of integer values.

The reasons why we decided to support integer operations not floating point operations are

as follows.

• A floating point data is often either single precision (32-bit) or double precision (64-

bit) in terms of binary representation. Usually, operations on the floating point data

can not be simulated in the inductive doubling manner. For example, it is very difficult

to get the result with high enough precision by using two 32-bit floating point values

to act like a 64-bit floating point value when applying SIMD operations. However,

that is not a problem for integer numbers as we could easily use two 32-bit integers

to hold a 64-bit integer without losing any precision.

• If we want to define operations for floating point values, there would be two indepen-

dent versions for each operation with one works for 32-bit floating point values while
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the other works for 64-bit floating point values. This essentially requires two different

SIMD data types and makes our model quite complex.

• In supporting only the SWAR integer operations, there is still an extensive application

space. Not only are the traditional media processing applications based on integer

operations, but also are many other applications such as high-speed XML parsing

using parallel bit stream technology [17, 18].

At present, we define integer operations in the model as built-in operations because

we mainly target our model on some specific applications where integer operations are the

dominant operations. However, our portable model is designed as an improvable model so

that users can define their own operations even like floating point operations in the model

easily if they really want to.

3.4 Defined Operations

Every operation in our model is defined to work on a SIMD register with a number of fw-bit

fields, and the width of all fields is a power-of-2, i.e., fw = 2k for 0 ≤ k ≤ K, where the size

of the SIMD register is sz = 2K bits. Among the commercial SWAR instruction sets, the

value of K is 6 for Intel MMX with 64-bit registers, 7 for Intel SSE series and ARM NEON

with 128-bit registers, and 8 for the Intel AVX with 256-bit registers.

If a certain field width fw is specified, a register r can be viewed as sz/fw fields with

fields indexed r0 through rsz/fw−1, in which rsz/fw−1 is the highest field and r0 is the lowest

one. In Figure 3.3, it shows the view of numbering. For an operation op working on two

register a, b with fw-bit fields, we denote it as opfw(a, b).

So far, there have been more than 60 operations defined in the model with all of them can

be grouped into six categories: logic operations, vertical operations, horizontal operations,

expansion operations, field movement operations and bitblock operations. Before going into

the detailed description of operations, we first present several virtual functions in Table 3.1

to better explain the functionalities of defined operations.

3.4.1 Logic Operations

A logic operation performs bit-wise operation on one or more registers and is in the form of

r = simd op(a) or r = simd op(a, b), where a and b are input registers. There are six logic
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Figure 3.3: The View of Field Numbering on a 128-bit Register

Function Name Description

Signed(ri) return the i-th field of register r as a signed integer

Unsigned(ri) return the i-th field of register r as an unsigned integer

Highfw(ri) select the high half part of the i-th field of register r,
i.e., ri >> (fw/2)

Lowfw(ri) select the low half part of the i-th field of register r,
i.e., ri&((1 << (fw/2))− 1)

NumberOfFieldfw(r) return the number of fields in r, i.e., sz/fw

UnsignedSaturationfw(ri)

if ri < 0, return 0

else if ri ≤ 2fw/2 − 1, return ri
else, return 2fw/2 − 1

SignedSaturationfw(ri)

if ri < −2fw/2−1, return −2fw/2−1

else if ri ≤ 2fw/2−1 − 1, return ri
else, return 2fw/2−1 − 1

IndexfieldNum(mask, i)

if fieldNum = 2, return 1&(mask >> i)
else if fieldNum = 4, return 3&(mask >> (i ∗ 2))
else if fieldNum = 8, return 7&(mask >> (i ∗ 3))
else if fieldNum = 16, return 15&(mask >> (i ∗ 4))

Table 3.1: Virtual Functions Used to Better Explain the Operations’ Functionalities
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Operation Meaning Description

simd nor perform bit-wise or on a, b
and then perform bit-wise not
on the result

t = ¬(a|b)

simd not perform bit-wise not on a t = ¬a
simd andc perform bit-wise and on a, ¬b t = a ∧ (¬b)
simd or perform bit-wise or on a, b t = a ∨ b

simd and perform bit-wise and on a, b t = a ∧ b

simd xor perform bit-wise xor on a, b t = a⊕ b

Table 3.2: The Logic Operations

operations provided in the model, In Table 3.2, it describes all these logic operations.

3.4.2 Vertical Operations

The vertical operations refer to the operations which perform on vertically aligned fields

between two different registers. They operate on operand registers with fw-bit fields and

produce a register with fw-bit fields as result. Many common operations fall into this

category such as addition, subtraction and so on. The general computing logic of vertical

operations is shown in Figure 2.1.

Depending on the number of arguments, vertical operations can be further divided into

four different sub-categories, the vertical bitmask constants, the vertical unary operations,

the vertical binary operations and the vertical ternary operations.

The Vertical Bitmask Constants

Only two bitmask operations are defined in the vertical operations, they are himask and

lomask operations. Both of them do not have any argument in addition to the field width

information, and they can be denoted in the form of t = vertical opfw(), where t is a register

with a certain bit pattern. Table 3.3 shows the two operations.

The Vertical Unary Operations

These operations are in the form of t = vertical opfw(a), where fw is the field width, a is

the only argument which can be either a register or an immediate value, and t is the result

register. Table 3.4 lists all the vertical unary operations with detailed description.
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Operation Meaning Description

himask return a register with the high
half part of each field all set to
be 1 while the low half part of
each field all set to be 0

ti = ((1 << (fw/2))− 1) << (fw/2)

lomask return a register with the high
half part of each field all set to
be 0 while the low half part of
each field all set to be 1

ti = (1 << (fw/2))− 1

Table 3.3: The Vertical Bitmask Operations

Operation Meaning Description

abs calculate the absolute value of
each field

ti = −ai if Signed(ai) < 0 else ai

neg negate each field ti = −Signed(ai)

add hl add the high and low half
parts of each field

ti = Highfw(ai) + Lowfw(ai)

xor hl bitwise xor the high and low
half parts of each field

ti = Highfw(ai) xor Lowfw(ai)

popcount bit counting in each field ti = the number of 1 bits in ai
ctz count trailing zeros in each

field
ti = the number of consecutive 0 bits
in ai counting from the right

constant return a register with every
field set to be the same value
specified in a, where a is an
immediate value

ti = a

Table 3.4: The Vertical Unary Operations
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Operation Meaning Description

add addition on the corresponding
fields of a and b

ti = ai + bi

sub subtraction on the corresponding
fields of a and b

ti = ai - bi

mul multiplication on the correspond-
ing fields of a and b

ti = ai * bi

eq check equality on the correspond-
ing fields of a and b

ti = (1 << fw) − 1 if ai == bi
else 0

gt check signed greater than on the
corresponding fields of a and b

ti = (1 << fw) − 1 if
Signed(ai) > Signed(bi) else 0

ugt check unsigned greater than on
the corresponding fields of a and
b

ti = (1 << fw) − 1 if
Unsigned(ai) > Unsigned(bi)
else 0

lt check signed less than on the cor-
responding fields of a and b

ti = (1 << fw) − 1 if
Signed(ai) < Signed(bi) else 0

ult check unsigned less than on the
corresponding fields of a and b

ti = (1 << fw) − 1 if
Unsigned(ai) < Unsigned(bi)
else 0

max get maximum values from the
corresponding fields of a and b

ti = ai if Signed(ai) >
Signed(bi) else bi

Table 3.5: The Vertical Binary Operations Part I

The Vertical Binary Operations

Vertical binary operations are in the form of t = vertical opfw(a, b), where fw is the field

width, a is the operand register and b can be either an operand register or an immediate

value, and t is the result register. The vertical binary operations are organized in Table 3.5

and Table 3.6.

The Vertical Ternary Operations

There is only one vertical ternary operation defined in the model, the ifh operation. We

denote it as t = vertical ifhfw(a, b, c), where fw is the field width, a, b and c are the

operand registers, and t is the result register. Table 3.7 explains this operation in details.
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Operation Meaning Description

umax get unsigned maximum values
from the corresponding fields of
a and b

ti = ai if Unsigned(ai) >
Unsigned(bi) else bi

min get minimum values from the
corresponding fields of a and b

ti = ai if Signed(ai) <
Signed(bi) else bi

umin get unsigned minimum values
from the corresponding fields of
a and b

ti = ai if Unsigned(ai) <
Unsigned(bi) else bi

sll shift each field in ai left logical by
the number of bits specified in bi

ti = ai << bi

srl shift each field in ai right logical
by the number of bits specified in
bi

ti = Unsigned(ai) >> bi

sra shift each field in ai right arith-
metic by the number of bits spec-
ified in bi

ti = Signed(ai) >> bi

slli shift each field in ai left logical by
the number of bits specified in b,
where b is an immediate value

ti = ai << b

srli shift each field in ai right logical
by the number of bits specified in
b, where b is an immediate value

ti = Unsigned(ai) >> b

srai shift each field in ai right arith-
metic by the number of bits spec-
ified in b, where b is an immediate
value

ti = Signed(ai) >> b

Table 3.6: The Vertical Binary Operations Part II

Operation Meaning Description

ifh select fields from either b or c
based on the highest bit of the
corresponding fields in a

ti = bi if the highest bit of ai is
set else ci

Table 3.7: The Vertical Ternary Operations
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Figure 3.4: The Computing Logic of Horizontal Operations on 32-bit fields

Figure 3.5: The Computing Logic of Horizontal Signmask Operation

3.4.3 Horizontal Operations

The horizontal operations accept one or two input registers and pack the fields of two

registers into a single result register or an ordinary integer value. The process of packing

a fw-bit field might pack one or more bits of the field, the high half or the low half of the

field or even the entire field under certain mechanisms such as saturation. The computing

logic of horizontal operations on 32-bit fields is shown in Figure 3.4.

Depending on the number of arguments, horizontal operations can be further divided

into two different sub-categories, the horizontal unary operations and the horizontal binary

operations.

The Horizontal Unary Operations

Only one horizontal unary operation has been defined in the model, which is called signmask

operation. We denote it as t = horizontal signmaskfw(a), where a is an operand register

and t is an integer number. The Table 3.8 and Figure 3.5 below show the idea of signmask.

Operation Meaning Description

signmask pack together the highest bit
of each field in a and return
the result as an integer

see Figure 3.5

Table 3.8: The Horizontal Unary Operations



CHAPTER 3. MODEL DEFINITION 32

Figure 3.6: The Concatenation of Two Operand Registers

Figure 3.7: The Computing Logic of Expansion Operations

The Horizontal Binary Operations

Horizontal binary operations are in the form of t = horizontal opfw(a, b), where fw is

the field width, a and b are input registers, and t is the result register. We use c as the

concatenation of a and b for better illustration of horizontal binary operations, see Figure

3.6. The horizontal binary operations are shown in Table 3.9 and Table 3.10.

3.4.4 Expansion Operations

The expansion operations take one or two operand registers and use only half number of

the fields from each input register to get a single result register with the same width as

the operand registers. Essentially, these operations double the size of data fields and that’s

also why they are called expansion operations. The general computing logic of expansion

operations is shown in Figure 3.7.

Depending on the number of arguments, expansion operations can be further divided

into two different sub-categories, the expansion unary operations and the expansion binary

operations.
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Operation Meaning Description

add hl pack the sums
between the
high halves
and the low
halves of each
field of c into t

ti[fw − 1 : fw/2] = Highfw(c2∗i+1) + Lowfw(c2∗i+1)

ti[fw/2− 1 : 0] = Highfw(c2∗i) + Lowfw(c2∗i)

min hl pack the min-
imum between
the high halves
and the low
halves of each
field of c into t

ti[fw − 1 : fw/2] = Highfw(c2∗i+1)
if Signed(Highfw(c2∗i+1)) < Signed(Lowfw(c2∗i+1))
else Lowfw(c2∗i+1)

ti[fw/2− 1 : 0] = Highfw(c2∗i)
if Signed(Highfw(c2∗i)) < Signed(Lowfw(c2∗i))
else Lowfw(c2∗i)

umin hl pack the
unsigned mini-
mum between
the high halves
and the low
halves of each
field of c into t

ti[fw − 1 : fw/2] = Highfw(c2∗i+1)
if Unsigned(Highfw(c2∗i+1)) < Unsigned(Lowfw(c2∗i+1))
else Lowfw(c2∗i+1)

ti[fw/2− 1 : 0] = Highfw(c2∗i)
if Unsigned(Highfw(c2∗i)) < Unsigned(Lowfw(c2∗i))
else Lowfw(c2∗i)

Table 3.9: The Horizontal Binary Operations Part I
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Operation Meaning Description

packl pack the low
halves of each
field of c into t

ti[fw − 1 : fw/2] = Lowfw(c2∗i+1)

ti[fw/2− 1 : 0] = Lowfw(c2∗i)

packh pack the high
halves of each
field of c into t

ti[fw − 1 : fw/2] = Highfw(c2∗i+1)

ti[fw/2− 1 : 0] = Highfw(c2∗i)

packus pack the entire
each field of c
with unsigned
saturation into
t

ti[fw − 1 : fw/2] = UnsignedSaturationfw(c2∗i+1)

ti[fw/2− 1 : 0] = UnsignedSaturationfw(c2∗i)

packss pack the entire
each field of
c with signed
saturation into
t

ti[fw − 1 : fw/2] = SignedSaturationfw(c2∗i+1)

ti[fw/2− 1 : 0] = SignedSaturationfw(c2∗i)

Table 3.10: The Horizontal Binary Operations Part II
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Figure 3.8: The Computing Logic of Expansion Unary Operations

Operation Meaning Description

signextendh sign-extend each of the high
half fields of a to get t

see Figure 3.8

signextendl sign-extend each of the low
half fields of a to get t

see Figure 3.8

zeroextendh zero-extend each of the high
half fields of a to get t

see Figure 3.8

zeroextendl zero-extend each of the low
half fields of a to get t

see Figure 3.8

Table 3.11: The Expansion Unary Operations

The Expansion Unary Operations

Expansion unary operations are in the form of t = expansion opfw(a), where fw is the

field width, a is the only input register and t is the result register. Table 3.11 lists all the

operations. For better understanding the expansion unary operations, Figure 3.8 gives a

explicit demonstration on how they works.

The Expansion Binary Operations

Expansion binary operations are in the form of t = expansion opfw(a, b), where fw is the

field width, a and b are input registers, and t is the result register. In Table 3.12, it describes

all the expansion binary operations.

3.4.5 Field Movement Operations

The field movement operations are the operations which could move, extract or rearrange

the fields of operand registers while leaving the content of fields unchanged. They can be
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Operation Meaning Description

mergeh merge the high half fields of a
and b to get t

see Figure 3.7

mergel merge the low half fields of a
and b to get t

see Figure 3.7

multh multiply the high half fields of
a and b to get t

see Figure 3.7

multl multiply the low half fields of
a and b to get t

see Figure 3.7

Table 3.12: The Expansion Binary Operations

further divided into three sub-categories, field movement binary operations, field movement

ternary operations and field movement pattern fill operations.

The Field Movement Binary Operations

Field movement binary operations are in the form of t = field movement opfw(a, b), where

fw is the field width, a is an input register and b is either an register or an immediate value,

and t is the result which could be either an register or an integer number depending on the

operations. Table 3.13 shows all these operations.

The Field Movement Ternary Operations

There are two field movement ternary operations available in the model, which are dsrli

and dslli operations. They are in the form of t = field movement opfw(a, b, c), the first

two arguments are input registers, while the last one is an immediate value. Both of them

apply shifting on the concatenation of two operand registers and return a single register

with the width as the operand registers. Figure 3.9 shows the idea and Table 3.14 describes

the operations.

The Field Movement Pattern Fill Operations

These pattern fill operations are mainly used to fill the fields of the result register with

some values. They are in the form of t = field movement opfw(v1, ..., vi, ...), where vi is an

integer. Table 3.15 lists all these operations.
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Operation Meaning Description

splat broadcast the b-th field of a
into each field of t, where b is
an immediate value

ti = ab

slli shift fields of a left logical by
the number of fields specified
in b, where b is an immediate
value

ti = ai−b if i− b ≥ 0 else 0

srli shift fields of a right logical by
the number of fields specified
in b, where b is an immediate
value

ti = ai+b if i+b < fieldNum else 0, where
fieldNum = NumberOfFieldfw(a)

shufflei shuffle the fields of a based on
the mask b, where b is an im-
mediate value

ti = aj where j =
IndexNumberOfFieldfw(ti)(b, i)

shuffle shuffle the fields of a based on
the masks specified in b, where
b is an operand register

ti = abi if Signed(bi) ≥ 0 else 0

extract extract the b-th field of a and
return it as an unsigned inte-
ger

t = Unsigned(ab)

Table 3.13: The Field Movement Binary Operations

Figure 3.9: The Computing Logic of Fill Movement Ternary Operations
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Operation Meaning Description

dslli shift fields of the concatena-
tion of a and b left logical by
the number of fields specified
in c

ti = ai−c if i − c ≥ 0 else
bfieldNum−c+i, where fieldNum =
NumberOfFieldfw(a)

dsrli shift fields of the concatena-
tion of a and b right logical by
the number of fields specified
in c

ti = bi+c if i + c < fieldNum
else ai+c−fieldNum, where fieldNum =
NumberOfFieldfw(b)

Table 3.14: The Field Movement Ternary Operations

Operation Meaning Description

fill fill each field of t with v1 t0 = v1; t1 = v1; ...

fill2 fill alternating fields of t with
v1 and v2

t0 = v1; t1 = v2; ...

fill4 fill each set of 4 fields of t with
v1 through v4

t0 = v1; t1 = v2; t2 = v3; t3 = v4; ...

fill8 fill each set of 8 fields of t with
v1 through v8

t0 = v1; t1 = v2; t2 = v3; t3 = v4; t4 =
v5; t5 = v6; t6 = v7; t7 = v8; ...

fill16 fill each set of 16 fields of t
with v1 through v16

t0 = v1; t1 = v2; t2 = v3; t3 = v4; t4 =
v5; t5 = v6; t6 = v7; t7 = v8; t8 = v9; t9
= v10; t10 = v11; t11 = v12; t12 = v13;
t13 = v14; t14 = v15; t15 = v16; ...

Table 3.15: The Field Movement Pattern Fill Operations
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Operation Meaning Description

any check if there is any non-zero
bit in a

t = true if a contains at least one non-
zero bit, otherwise, t = false

all check if there is no zero bit in
a

t = true if a contains no zero bit, oth-
erwise, t = false

Table 3.16: The Bitblock Unary Operations

Figure 3.10: Examples of Bitblock Load/Store Operations

3.4.6 Bitblock Operations

The bitblock operations treat the operand registers as unpartitioned registers and apply

operations on the entire body of the registers. Depending on the features of operations,

they can be divided into two sub-categories, bitblock unary operations and bitblock memory

operations.

The Bitblock Unary Operations

All the unary operations defined in the model are boolean functions and are in the form of

t = bitblock op(a), where a is the only input register and t is a boolean value. In Table 3.16,

it shows these bitblock unary operations.

The Bitblock Memory Operations

The memory operations defined here include four memory load or store operations, which

are load aligned, load unaligned, store aligned and store unaligned. It is suggested that using

aligned load or store should give the better performance gain in the higher-level applications.

Table 3.17 describes all these memory operations.
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Operation Meaning Description

load aligned load and return a bitblock
value from an aligned location
p, where p is a bitblock type
pointer

see Figure 3.10

load unaligned load and return a bitblock
value from an unaligned loca-
tion p, where p is a bitblock
type pointer

see Figure 3.10

store aligned store a bitblock value to an
aligned location p, where p is
a bitblock type pointer

see Figure 3.10

store unaligned store a bitblock value to an
unaligned location p, where p
is a bitblock type pointer

see Figure 3.10

Table 3.17: The Bitblock Memory Operations

3.5 Chapter Summary

In this chapter, we have described many important aspects of our portable model including

the design goal, the inductive doubling principle as the foundation for implementing the

model and also the core of our model, a set of more than 60 well-defined operations for

supporting a rich set of SIMD functionalities. Compared to the programming mode called

IDISA in Dr. Cameron’s work [19], our portable model refactors and extends the IDISA with

many enhancements including more operations defined, an generator for auto-generating

library codes and so forth. To distinguish from IDISA, we use IDISA+ as the name for the

model.
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Model Implementation

4.1 Programming Interfaces

The libraries produced by IDISA+ offer developers a set of programming interfaces for

using the operations defined in IDISA+ without touching the native SIMD instructions.

Since the libraries are provided in C++, we will use these C++ programming interfaces for

illustration.

4.1.1 Class Declaration

As there are six different categories for IDISA+ operations, it is intuitive to use the C++

class to present each category except the logic one. We map the vertical operations to class

simd, the horizontal operations to class hsimd, the expansion operations to class esimd,

the field movement operations to class mvmd and the bitblock operations to class bitblock.

For logic operations, we do not map them to any class, instead, we make them as static

functions in the libraries with prefix of simd in their function names. And for the vertical,

horizontal, expansion and field movement operations, each of them should have the field

width as an argument, thus, we adopt the C++ template syntax and make the field width

as the template arguments of the classes for these operations. Table 4.1 shows the general

class declaration for each category of operations.

However, some architectures may have multiple SIMD instruction sets available, such

as Intel Sandy Bridge processors which support AVX as well as SSE series. For such ar-

chitectures, we want the users to be able to switch between different instruction sets with

41
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Operation Category Class Name Class Declaration

vertical operations simd

template < uint32 t fw >
class simd
{
...
};

horizontal operations hsimd

template < uint32 t fw >
class hsimd
{
...
};

expansion operations esimd

template < uint32 t fw >
class esimd
{
...
};

field movement opera-
tions

mvmd

template < uint32 t fw >
class mvmd
{
...
};

bitblock operations bitblock

class bitblock
{
...
};

Table 4.1: The General C++ Class Declaration for IDISA+ Operations
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Class Name Class Declaration for 128-bit
Instruction Sets

Class Declaration for 256-bit
Instruction Sets

simd

template < uint32 t fw >
class simd128
{
...
};

template < uint32 t fw >
class simd256
{
...
};

hsimd

template < uint32 t fw >
class hsimd128
{
...
};

template < uint32 t fw >
class hsimd256
{
...
};

esimd

template < uint32 t fw >
class esimd128
{
...
};

template < uint32 t fw >
class esimd256
{
...
};

mvmd

template < uint32 t fw >
class mvmd128
{
...
};

template < uint32 t fw >
class mvmd256
{
...
};

bitblock

class bitblock128
{
...
};

class bitblock256
{
...
};

Table 4.2: The Specific C++ Class Declaration for IDISA+ Operations Depending on Reg-
ister Size

our libraries. So we add two specific sets of class declaration for 128-bit instruction sets

and 256-bit instruction sets in addition to the general one, in which, one set is simd128,

hsimd128, esimd128, mvmd128 and bitblock128, and the other set is simd256, hsimd256,

esimd256, mvmd256 and bitblock256. Table 4.2 shows the two sets of class declaration.

4.1.2 Data Type

To enhance the portability of our libraries, we use exact width integer types from C99 stan-

dards [44] for defining field widths, integer arguments, integer return types and immediate

values. Except when the type of field widths is uint32 t, all other integers involved in the



CHAPTER 4. MODEL IMPLEMENTATION 44

Instruction Set Built-in
SIMD Type

Libraries’
SIMD Type

Type for Field
Width

Type for Other
Integers

SSE2 through
SSE4.2

m128i bitblock128 t uint32 t uint64 t

NEON uint64x2 t bitblock128 t uint32 t uint64 t

AVX m256 bitblock256 t uint32 t uint64 t

Table 4.3: Data Types Used in the Libraries

libraries are defined as 64-bit unsigned integers, i.e., uint64 t. For example, the signmask

operation in hsimd class returns an unsigned integer with uint64 t type and the immediate

value for constant operation of simd class is also uint64 t and so on.

Each SIMD instruction set usually has two data types for representing a SIMD register,

the integer one and the floating point one. Some might even have another type for the

register with double precision floating point values. In order to make our libraries simple

and clean, we only use one type to represent SIMD data or registers for a certain instruction

set, which are bitblock128 t for 128-bit SIMD instruction sets and bitblock256 t for 256-bit

SIMD instruction sets. Table 4.3 gives a summary on the data types.

4.1.3 Function Declaration

In the generated libraries of IDISA+, each function implements an operation defined in

Chapter 3 on fields of a certain size. For the operations which have immediate values as

arguments, the corresponding functions are defined as template member functions in their

classes with the immediate values being the template arguments. For example, the srli

operation in simd128 class would have the following declaration.

template <uint32_t fw>

class simd128

{

...

template <uint64_t sh>

static IDISA_ALWAYS_INLINE bitblock128_t srli(bitblock128_t arg1);

...

};
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The sh is the immediate value associated with srli operation and is defined as the

template argument of srli in simd128 class. This allow compilers to explicitly know that

sh is a compile-time constant and should be given or calculated before the run-time. The

IDISA ALWAY S INLINE is a micro defined by us which is to tell the compiler that the

function decorated with it must be inlined. Both tricks explained here should help improve

the performance to some extend.

4.1.4 Library Layout and Usage

In Figure 4.1, it shows an overview on the structure of libraries generated by IDISA+. All

these ten files in the picture are produced by the IDISA+ generator automatically, in which,

idisa.hpp is the highest level library that gives developers access to both 128-bit and 256-

bit SIMD instruction sets. Similarly, idisa128.hpp defines the 128-bit instruction sets, such

as Intel SSE2 through SSE4.2 and ARM NEON, while idisa256.hpp supports the 256-bit

instruction sets, now only Intel AVX on current commodity processors.

In general, users only have to include the idisa.hpp file in order to make use of the

IDISA+ operations. The default setting of idisa.hpp is to provide operations on SSE2

instruction set with blocksize = 128. Users can define the blocksize to 256 if they want to

switch to operations on AVX instruction set. With idisa.hpp, the way of calling IDISA+

operations is to use the general C++ class member functions, such as simd<32> :: add,

mvmd<16> :: fill or bitblock :: any.

If users are working on AVX instruction set but want to use the operations on SSE2,

they can include idisa128.hpp and define a macro USE SSE2 to get access to the SSE2

operations. In this case, the way of calling SSE2 operations is to use the specific C++ class

declarations, such as simd128<32> :: sub, mvmd128<16> :: fill2 or bitblock128 :: all. The

separated libraries for 128-bit and 256-bit instruction sets enable users to freely use these

two versions of IDISA+ operations in the same program.

4.2 Generator of IDISA+

For implementing a portable SIMD programming model, there are usually two ways to go.

One is doing hand-tuned implementations for each platform separately, the other is writing

a compiler or translator to translate the instruction written code into real programming

language code or assembly code. No matter which way people choose to create a portable
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Figure 4.1: The Layout of Libraries Generated by IDISA+

SIMD programming model, the implementations generated by the model should be as good

as possible in terms of speed, system resource consumption and so forth. Furthermore, a

fairly nice model would automatically generate implementations to avoid as many human

efforts involved in writing or developing as possible.

The following content in this section presents our approach of having a library generator

to create a portable model as well as the most important modules of generator in details.

4.2.1 System Architecture

Figure 4.2 shows the overall structure of the generator. The working process of the generator

is given as follows.

• At starting stage, the generator accepts the instruction set information specified by

the user, and loads all the corresponding built-in intrinsics of that instruction set and

then pushes this data to the translator module.

• When receiving the intrinsics, the translator starts to load all the defined operations

and parse each available strategy to get the temporary implementations for operations.

Then it sends these temporary implementations of operations to the analyzer module.
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Figure 4.2: The Architecture of IDISA+ Generator

• After having the temporary implementations of operations, analyzer scans and an-

alyzes each of them to find the best one for every defined operation according to

some criteria. At last, it produces the library containing the final implementations of

operations for the input instruction set.

Outside the main body of the generator, users are allowed to create new operations as

a defined operation and also feed their own strategies so that the generator could produce

implementation for a new operation or improve the existing implementations as well.

4.2.2 Description of Modules

Intrinsics

In general, an intrinsic is more like a built-in function in a certain programming language

for which the developers do not need to write the implementation. The compilers of this

particular language are able to recognize the intrinsic and implement it in an inline manner

as one or more instructions.

Almost of all today’s SIMD instruction sets provide intrinsics as the wrapper of the sup-

ported SIMD instructions in C/C++ languages for higher level programming. For example,

Table 4.4 shows the SSE2, NEON and AVX intrinsics for integer addition on 32-bit fields.

The intrinsics module defines dictionaries for mapping the operations to the correspond-

ing intrinsics in different instruction sets. Besides, the dictionaries also include some in-

trinsics that are not matched to any operation. Those are the intrinsics used for emulating
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Instruction
Set

Operation Intrinsic

SSE2 simd128<32> :: add m128i mm add epi32( m128i a, m128i b)

NEON simd128<32> :: add uint32x4 t vaddq u32(uint32x4 t a, uint32x4 t b)

AVX simd256<32> :: add m256i mm256 add epi32( m256i a, m256i b)

Table 4.4: An Example on Intrinsics

the operations which are not natively supported. With the intrinsics module, the generator

would be able to tell which operation has an intrinsic so that it knows to directly use the

intrinsic as the real implementation for that operation. For those operations which do not

have intrinsics, the generator can switch the task to translator and let the translator figure

out implementations for them based on the available strategies.

IDISA+ Operations

The operations defined in Chapter 3 are imported into the generator as IDISA+ operations.

Each IDISA+ operation defines three fields signature, args type and return type, which

are helpful for facilitating the generator’s work. Table 4.5 shows some IDISA+ operations.

We have included four reserved types to help define the IDISA+ operations, they are

SIMD type, range(0, x), unsigned int(x), int. The meanings of those reserved types are

shown in Table 4.6. As stated in earlier sections, integers involved in the generated libraries

are defined as either uint32 t or uint64 t integers for simplicity on data type. However,

the IDISA+ testing framework has to know the exact data type or range for each integer

argument so that it could create test data in the right range for testing operations of the

libraries. That is the main reason we make range(0, x) and unsigned int(x) as two of the

reserved types.

Strategies

As discussed before, not every IDISA+ operation is supported naturally for a specific in-

struction set. So far, there is little research conducted on effectively making and optimizing

the implementations for those non-built-in operations. A common way used in many SIMD

programming models is to have certain fixed rules to connect non-built-in operations with

built-in ones. But the rules are usually implemented in an ad-hoc way and are independent

among different SIMD programming models. And, optimizations based on the rules are still
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Operation IDISA+ Operation

or

signature:
SIMD type simd or(SIMD type arg1, SIMD type arg2)
args type: {arg1 : SIMD type, arg2 : SIMD type}
return type: SIMD type

simd add

signature:
SIMD type simd<fw> :: add(SIMD type arg1, SIMD type arg2)
args type: {arg1 : SIMD type, arg2 : SIMD type}
return type: SIMD type

simd srli

signature:
SIMD type simd<fw> :: srli<sh>(SIMD type arg1)
args type: {sh : range(0, fw), arg1 : SIMD type}
return type: SIMD type

hsimd signmask

signature:
int hsimd<fw> :: signmask(SIMD type arg1)
args type: {arg1 : SIMD type}
return type: unsigned int(64)

mvmd fill

signature:
SIMD type mvmd<fw> :: fill(int val1)
args type: {val1 : unsigned int(fw)}
return type: SIMD type

Table 4.5: Examples of IDISA+ Operations

Type Name Description

SIMD type It stands for the general type for a SIMD register and will be
replaced by either bitblock128 t or bitblock256 t in the generated
libraries

range(0, x) It stands for an integer which is in range of [0, x-1] and will be
replaced by uint64 t in the generated libraries.

unsigned int(x) It stands for a x-bit unsigned integer and will be replaced by
uint64 t in the generated libraries.

int It stands for a general-purpose integer type and is not identical
to the int type in any programming language. It is only used in
signatures of idisa operations to imply the data types are integer.
It will be replaced by uint64 t in the generated libraries.

Table 4.6: The Reserved Types for Defining IDISA+ Operations
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insufficient in these models.

In our IDISA+ model, we present a strategy based approach which groups together a set

of strategies of connecting non-built-in and built-in operations and is able to analyze these

rules and find the best rules for implementing the non-built-in operations. This approach is

so flexible that it allows users to create their own strategies for improving performance or

supporting new operations.

A strategy essentially provides a general algorithm for emulating one or more non-

built-in operations based on built-in ones. Shown below is a strategy that is applicable for

emulating addition or subtraction operations on n-bit fields based on addition or subtraction

operations on 2n-bit fields.

strategy_1 =

{

"body":r’’’

hiMask = simd_himask(2*fw)

return simd_ifh(1, hiMask, simd_op(2*fw, arg1, simd_and(hiMask, arg2)),

simd_op(2*fw, arg1, arg2))

’’’,

"ops":["simd_add", "simd_sub"],

"fws":[-1],

"platforms":[configure.ALL],

},

In the IDISA+ model, all strategies are written in Python language syntax as a dictionary

of four elements. The first element is the body of the strategy describing its algorithms, the

second element stores a list of operations that are suitable to use this strategy, the third

element is a list of field widths that are applicable for the operations to operate on and the

last element contains the platforms for which the strategy applies. For better understanding

of the concepts of a strategy, some important features of strategies are listed below.

• In the strategy body, functions with simd/hsimd/esimd/mvmd/bitblock as prefix are

the IDISA+ operations. For example, simd ifh is the ifh operation in the simd

class while hsimd packh is the packh operation in the hsimd class. When writing a

function in the strategy body, the first argument is sometimes reserved for indicating
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the field width if the operation is in simd, hsimd, esimd or mvmd class, such as

simd add(2 ∗ fw, arg1, arg2), and the second argument is reserved for the immediate

value if the operation has a template argument, e.g., simd slli(fw, 1, arg1).

• We have also included three abstract functions called simd op, simd uop and simd sop,

which are used to simplify the strategy writing. In strategy 1, the simd op will be

replaced by either simd add or simd sub in the strategy translation phrase. Similarly,

the simd uop or simd sop would be replaced by the unsigned or signed version of an

operation, such as simd ugt when op = gt or simd gt when op = ugt.

• As some strategies might only work for several field widths, so there is a requirement

on field width for each strategy. The fws element in a strategy is defined as an array

which could be a list of one or more values. [−1] in strategy 1 means the strategy

could use every possible field width, and [2, 4, 8] infers that the strategy only works

on 2-bit, 4-bit or 8-bit fields.

• Strategy bodies may contain some intrinsics directly. Such intrinsics are those intrin-

sics which can not be mapped to any IDISA+ operation directly but could be used

for simulating some IDISA+ operations. For example, mm slli si128 is an intrinsic

in Intel SSE2 for shifting the entire 128-bit field left by certain amount of bytes while

shifting in zeros, and it can be used to implement simd slli on 128-bit fields. Hence,

mm slli si128 can be written directly into the strategy body, and the generator will

automatically check it with the dictionary in intrinsics module to make sure it is an

intrinsic and emit it as it is in the generated libraries.

In practice, there are many strategies existing for implementing a certain operation.

Below shows another strategy for addition on n-bit fields based on addition on n/2-bit

fields.

strategy_2 =

{

"body":r’’’

partial = simd_add(fw/2, arg1, arg2)

carryMask = simd_or(simd_and(arg1, arg2), simd_andc(simd_xor(arg1, arg2),

partial))
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Operation Algorithm

simd<1> :: add(arg1, arg2) simd xor(arg1, arg2)

simd<1> :: sub(arg1, arg2) simd xor(arg1, arg2)

simd<1> :: mult(arg1, arg2) simd and(arg1, arg2)

simd<1> :: eq(arg1, arg2) simd not(simd xor(arg1, arg2))

simd<1> :: gt(arg1, arg2) simd andc(arg2, arg1)

simd<1> :: ugt(arg1, arg2) simd andc(arg1, arg2)

simd<1> :: lt(arg1, arg2) simd andc(arg1, arg2)

simd<1> :: ult(arg1, arg2) simd andc(arg2, arg1)

simd<1> :: max(arg1, arg2) simd and(arg1, arg2)

simd<1> :: umax(arg1, arg2) simd or(arg1, arg2)

simd<1> :: min(arg1, arg2) simd or(arg1, arg2)

simd<1> :: umin(arg1, arg2) simd and(arg1, arg2)

simd<1> :: ctz(arg1) simd not(arg1)

Table 4.7: The Algorithms for Vertical Binary Operations on 1-bit Fields

carry = simd_slli(fw, fw/2, simd_srli(fw/2, fw/2-1, carryMask))

return simd_add(fw/2, partial, carry)

’’’,

"ops":["simd_add"],

"fws":range(2, currentRegSize+1),

"platforms":[configure.ALL],

}

For some operations on small fields, we could create very concise but efficient strategies

only based on logic and a few shifting operations. A quick example would be using simd xor

operation to emulate add and sub operations on 1-bit fields. Table 4.7 summarizes these

kinds of computing algorithms for some vertical operations on 1-bit fields. Similarly, we

could use shifting operations in addition to the logic operations to emulate those operations

on 2-bit fields. The reason shifting operations are involved is because the low bit of each

2-bit field in input registers contributes to the high bit of every 2-bit field in the result

registers.

Translator

Since all the strategies are written in Python syntax, there must be a module which could

parse the strategies and produce the corresponding C++ codes. In our model, we developed
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Strategy Name Function Calls

strategy 1 [simd himask 16, simd ifh 1, simd add 16, simd and,
simd add 16]

strategy 2 [simd add 4, simd or, simd and, simd andc, simd xor, simd slli 8,
simd srli 4, simd add 4]

Table 4.8: The Function Calls in Strategies

Strategy
Name

C++ Implementations

strategy 1

template<> IDISA ALWAYS INLINE bitblock128 t
simd<8> :: add(bitblock128 t arg1, bitblock128 t arg2)
{

bitblock128 t hiMask = simd<16> :: himask();
return simd<1> :: ifh(hiMask, simd<16> :: add(arg1,

simd and(hiMask, arg2)), simd<16> :: add(arg1, arg2));
}

strategy 2

template<> IDISA ALWAYS INLINE bitblock128 t
simd<8> :: add(bitblock128 t arg1, bitblock128 t arg2)
{

bitblock128 t partial = simd<4> :: add(arg1, arg2);
bitblock128 t carryMask = simd or(simd and(arg1, arg2),

simd andc(simd xor(arg1, arg2), partial));
bitblock128 t carry = simd<8> :: slli<4>(

simd<4> :: srli<3>(carryMask));
return simd<4> :: add(partial, carry);

}

Table 4.9: The C++ Implementations of Strategies

such module called translator that takes the intrinsics, the IDISA+ operations and all

available strategies together to create a table containing candidate lists for every operation

on some field widths. The candidate list for an operation on a certain field width not only

has the real C++ implementation for it but also extracts a list of all the function calls in

that C++ implementation for further analysis.

For example, when the translator is working on simd<8> :: add, i.e., op = simd add

and fw = 8, and the optional strategies are strategy 1 and strategy 2. It would generate

the following candidate list for simd<8> :: add, in which the function calls are shown in

Table 4.8 and the associated C++ implementations are shown in Table 4.9.
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Analyzer

Given the candidate lists produced by the translator, we must have a method to effectively

select the best implementation for an operation with a specific field width. In the analyzer

module, it uses the following mechanism to evaluate each temporary implementation.

Least Instruction Count

The implementation which has the least instruction count is the best one. Meanwhile, the

least instruction count mechanism makes an assumption that every intrinsic provided by

an instruction set has cost of only one instruction. However, it is notable that there are

some intrinsics which are composite intrinsics with each of them containing more than one

instructions. But those intrinsics are few in a given instruction set, so the assumption still

holds in most cases such that the compiler produces single instruction for an intrinsic.

Based on the least instruction count mechanism, an iterative algorithm has been de-

veloped to automatically find the best implementation for every IDISA+ operation. The

pseudo-code summarized in Algorithm 1 illustrates the idea of this iterative algorithm.

• Initially, every built-in operation has cost of 1 and its C++ implementation is set

directly to be the corresponding intrinsic. Any other non-built-in operation has cost

of a very large value and its C++ implementation is set to be null at this moment.

• At each iteration, the algorithm scans the candidate lists and gets a list of function

calls and temporary implementations for each operation op fw. Then it exams each

function calls in the list to calculate an estimated cost tmpCost, and compares the

tmpCost with op fw’s current best cost opCost[op fw]. If tmpCost < opCost[op fw],

the algorithm will set opCost[op fw] to be tmpCost and the C++ implementation of

op fw is updated to be the temporary implementation whose cost is tmpCost.

• If there are no updates occurring within an iteration, the algorithm terminates and

returns the implementations for all operations. Otherwise, it continues to the next

iteration.

Time Complexity of the Iterative Algorithm

In each iteration, the algorithm mainly does two things. First, it scans every strategy to try
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Algorithm 1 IterativeAlgorithm(Intrinsics, CandidateLists)

1: opCost← {}, cppImp← {}
2: for op fw in CandidateLists do
3: opCost[op fw]← a very big positive number
4: end for
5: for op fw in Intrinsics do
6: #Each intrinsic only has one instruction
7: opCost[op fw]← 1
8: cppImp[op fw]← Intrinsics[op fw]
9: end for

10: while True do
11: changed = False
12: for op fw in CandidateLists do
13: for (funcCalls, tmpImp) in CandidateLists[op fw] do
14: tmpCost← CalculateCost(funcCalls)
15: if tmpCost < opCost[op fw] then
16: opCost[op fw]← tmpCost
17: cppImp[op fw]← tmpImp
18: changed← True
19: end if
20: end for
21: end for
22: if changed == False then
23: break
24: end if
25: end while
26: return cppImp
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to update the costs and implementations for operations. Secondly, there is at least one op-

eration gets updated in each iteration, otherwise, the algorithm would terminate. Suppose

we have N operations and M strategies, in the worst case, the algorithm is going to run N

iterations with M strategies being scanned in each, so the total time complexity is O(N ∗M).

In practice, the algorithm works pretty fast and normally produces the results in one second.

Set Different Cost for Intrinsics

As stated before, we assume each intrinsic has a cost of one instruction and therefore such an

intrinsic takes one CPU cycle in terms of execution time. However, in reality, one instruction

usually takes less than a CPU cycle to be finished due to the instruction-level parallelism in

the modern processors with superscalar architectures. Some instructions like multiplication

might take more than one CPU cycle depending on the hardware implementation for that

instruction.

Thus, people normally use the reciprocal throughput for better estimating the cost of

an instruction. Reciprocal throughput is measured in cycles per instruction, which reflects

the time of executing an instruction. In the instruction tables provided by Agner Fog [25],

reciprocal throughput of most instructions for Intel, AMD and VIA CPUs are obtained

based on the author’s own experiments on these machines. We could evaluate strategies

more accurately by setting cost for intrinsics in IDISA+ model according to the reciprocal

throughput values from Fog’s paper.

4.3 Tester of IDISA+

In Figure 4.3, it shows the overall architecture of IDISA+ tester. There are two major

components, one is the correctness testing module for testing correctness for each individual

function in the generated libraries, and the other one is the performance analysis module

for getting the actual assembly instruction count of each function. This section reviews the

general idea of these two modules.

4.3.1 Correctness Testing

Correctness testing is mainly composed of the following three phases.

• After the module receives the generated library and the defined IDISA+ operations
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Figure 4.3: The Architecture of IDISA+ Tester

from the generator, it then parses the library as well as the IDISA+ operations in order

to know what operations have been implemented and also to determine the range of

input data for them.

• Based on the information collected in the first phase, it starts to generate a set of

test data for each function, normally one hundred cases per function. Meanwhile, it

produces a C++ file containing all the testing procedures including routines which call

the functions in the generated library with the auto-generated input data and write

the results on the disk. Then the module compiles and runs this C++ file with the

generated library and another library called utility.h containing some I/O routines

and other auxiliary programs.

• The module now loads the simulation programs for IDISA+ operations from the cal-

culating modules. Those programs can take the input data in the second phase and

produce results as standard answers for correctness checking. In the end, the module

compares the answers produced by the simulation programs with the results produced

in the second phase to check if there is any function could not pass the correctness

testing.

One advantage is that the calculating modules are designed to be independent from

the correctness module so that users are able to do the correctness testing on their new
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operations by simply adding the corresponding simulation programs. Another advantage is,

this module provides unit testing in an automatic manner to avoid potential bugs and also

helps verify newly created strategies.

4.3.2 Performance Analysis

The working process of performance analysis is quite similar to that of correctness testing.

At first, it parses the generated library and the IDISA+ operations to know which operations

have been implemented in the library. According to the information about the operations,

it will produce a C++ file for measuring the performance in terms of instruction count for

each function in the generated library. Such a C++ file only has a main function in which

a specific function is called once. Then for each C++ file, the performance analysis module

compiles it into assembly codes and uses a parser to get the number of assembly instructions

for the corresponding function.

4.4 Chapter Summary

In this chapter, we have presented the underlying design and algorithms of the IDISA+

model in details. The model has been implemented as a toolkit which includes two com-

ponents, an improvable generator for producing the portable libraries and a comprehensive

test framework for both correctness and performance analysis on the libraries. The modular

design of the model has shown many advantages in terms of the capabilities to add new

operations and architectures, the ease of maintenance, and an automatic way of getting

portable SIMD libraries. Based on the least instruction count mechanism, it is believed

that the libraries generated by the model would achieve promising results on performance.

In the next chapter, we will conduct some evaluation work to explore the performance of

the libraries.
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Evaluation

In this chapter, we focus on presenting the evaluation work of our IDISA+ model to demon-

strate that the model can not only successfully generate C++ implementations for the

defined operations but can also optimize the implementations by selecting those with the

least number of instructions.

5.1 Overview

Before starting to evaluate the IDISA+ model’s performance, we first show some important

numbers about the model on applicable strategies, used intrinsics, IDISA+ operations and

IDISA+ functions. Table 5.1 summarizes these statistics.

Applicable Strategies

We have created 242 strategies in total to support simulating the non-built-in operations

with some power-of-2 field widths. A strategy might be a universal strategy which is ap-

plicable for certain operations in all kinds of instruction sets. strategy 1 and strategy 2

in Chapter 4 are two such strategies. There are also some other strategies which are only

suitable for operations in a specific instruction set. For example, a strategy using intrinsics

of an instruction set is only applicable to operations in that instruction set. In the current

implementation of IDISA+ model, there are 187 strategies applicable to SSE2, 171 strategies

applicable to NEON and 168 strategies applicable to AVX.

In Appendix B, there are tables which describe the number of applicable strategies for

each IDISA+ function in SSE2, NEON and AVX.

59
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Category

InstructionSet
SSE2 NEON AVX

Applicable Strategies 187 171 168

Intrinsics 71 88 83

IDISA+ Operations 61 58 58

IDISA+ Functions 376 366 411

Table 5.1: Some Statistics on SSE2, NEON and AVX in IDISA+

Used Intrinsics

An intrinsic in an instruction set only corresponds to an operation with a specific field width.

As we have more than 60 operations defined in IDISA+ model and each of them normally

has 7 or 8 different instances or functions depending on the field width, it is common that

not many IDISA+ functions have intrinsics supported in a given instruction set. Hence,

there are only 71 intrinsics used for SSE2, 88 intrinsics used for NEON and 83 intrinsics

used for AVX in our model to directly implement some IDISA+ functions.

Available IDISA+ Operations and Functions

With the current available strategies and intrinsics, we are now able to generate 376 IDISA+

functions for SSE2, 366 IDISA+ functions for NEON and 411 IDISA+ functions for AVX.

Although AVX has less number of intrinsics and applicable strategies, AVX have more

IDISA+ functions compared to SSE2 or NEON due to its larger SIMD register size.

In Appendix A, there are tables showing all the available IDISA+ functions in SSE2,

NEON and AVX.

5.2 Evaluation on IDISA+ Implementations

Given the implementations produced by the IDISA+ generator, we want to know whether

the cost estimation in the generator is reasonable and whether these implementations are

the best possible implementations based on the available strategies and intrinsics. Hence,

we designed two experiments to evaluate these two aspects, in which one experiment is to

study the difference between the estimated instruction count and the real instruction count

for each IDISA+ function in order to gain some understanding about the effectiveness of

the generator’s cost evaluation mechanism, the other experiment is to compare the best
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implementation with the second best implementation for each IDISA+ function based on

the generator’s cost estimation mechanism to see how the generator does on distinguishing

the best strategy from other strategies.

5.2.1 Estimated Instruction Count vs Real Instruction Count

We have chosen five operations as examples to help present the comparison between esti-

mated instruction count and real instruction count. In Table 5.3, it lists the related instruc-

tion count for these operations. The numbers are divided into three groups, the group for

the estimated instruction count, the group for real non-movement instruction count and the

group for real instruction count. The meanings of these groups are given below.

• The estimated instruction count is predicted by the IDISA+ generator according to

its least instruction count mechanism.

• The real non-movement instruction count is the number of non-movement instructions

for a IDISA+ function and is obtained through G++ 4.4.5 compiler under highest (-

O3) optimization level. The reason we report this kind of instruction count is that the

generator can not predict the movement instructions but the normal SIMD instruc-

tions. It is more accurate to compare the difference between the estimated instruction

count with the non-movement instruction count.

• The real instruction count is the number of all instructions including the normal SIMD

instructions as well as movement instructions for a IDISA+ function and is obtained

through G++ 4.4.5 compiler under highest (-O3) optimization level.

From Table 5.3, we can see that the number of estimated instruction count is very close

to the real non-movement instruction count. The main reason is that the generator evaluates

the instruction count of a IDISA+ function based on the number of intrinsics this function

would use, and an intrinsic is often substituted by single instruction through compilation.

However, there might be some extra movement instructions carried out by the compiler

to implement a function due to the limited number of registers in real computer systems.

Unfortunately, the current generator could not predict the movement instructions so that

the real instruction count is always greater than the estimated instruction count in practice.

In Table 5.2, we show the C++ implementation and assembly code for simd<4>::add.

The estimated instruction count is also given as 6 in the C++ implementation, while we
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The C++ Implementation of simd<4>::add

//The Estimated Instruction Count is 6
template<> IDISA ALWAYS INLINE bitblock128 t
simd<4> :: add(bitblock128 t arg1, bitblock128 t arg2)
{

return simd<1> :: ifh(simd<8> :: himask(),
simd<8> :: add(arg1, simd and(simd<8> :: himask(), arg2)),
simd<8> :: add(arg1, arg2));

}
The Assembly Code of simd<4>::add

movdqa .LC15(%rip), %xmm0
movdqa %xmm1, %xmm3
paddb %xmm2, %xmm3
pand %xmm0, %xmm2
paddb %xmm2, %xmm1
movdqa %xmm0, %xmm2
pand %xmm1, %xmm0
pandn %xmm3, %xmm2
movdqa %xmm2, %xmm3
por %xmm0, %xmm3
movdqa %xmm3, 16(%rsp)

Table 5.2: The C++ Implementation and Assembly Code for simd<4>::add

can easily tell from the assembly code that there are exactly 6 non-movement instructions

(2*paddb, 2*pand, 1*pandn, 1*por) and 11 instructions in total. In Appendix C, we collect

the estimated and real instruction count information for each SSE2 individual function.

In addition to the above five operations, we also report a chart in Figure 5.1 which gives

an overall picture about estimated and real instruction count for all IDISA+ functions in

SSE2. An inflection point of a curve in the chart represents the average instruction count

over all IDISA+ operations with a certain field width (e.g., 2 or 4). Thus, a curve in

the chart shows the trend of a specific type of instruction count of IDISA+ functions over

power-of-2 fields. In Figure 5.1, the curve on the top is the trend for real instruction count,

which is always above either the curve for estimated instruction count or the curve for real

non-movement instruction count. The black continuous curve in the middle is for estimated

instruction count while the curve for real non-movement instruction count is at the bottom,

and these two curve are very close to each other with the one for non-movement instruction

count being lower.
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XXXXXXXXXXXX
Operation

fw
1 2 4 8 16 32 64 128

The Estimated Instruction Count

bitblock all N/A N/A N/A N/A N/A N/A N/A 2

esimd mergeh 31 21 11 1 1 1 1 N/A

hsimd packh N/A 47 33 19 3 21 7 7

mvmd splat 16 13 9 5 2 1 5 13

simd add 1 10 6 1 1 1 1 11

The Real Non-movement Instruction Count

bitblock all N/A N/A N/A N/A N/A N/A N/A 2

esimd mergeh 31 21 11 1 1 1 1 N/A

hsimd packh N/A 47 33 19 3 15 7 4

mvmd splat 11 15 11 7 4 1 5 13

simd add 1 10 6 1 1 1 1 8

The Real Instruction Count

bitblock all N/A N/A N/A N/A N/A N/A N/A 2

esimd mergeh 44 30 16 2 2 2 2 N/A

hsimd packh N/A 70 49 28 4 23 10 8

mvmd splat 14 22 17 12 8 2 9 21

simd add 2 17 11 2 2 2 2 12

Table 5.3: The Estimated and Real Instruction Count of Several IDISA+ Operations in
SSE2
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Figure 5.1: Comparison Between Estimated and Real Instruction Count for SSE2

Although the estimated instruction count is quite close to the real non-movement instruc-

tion count, the real non-movement instruction count appears to be less than the estimated

one overall. We think there are two main reasons. First, there are implementations with

ternary conditional statements (i.e., cond ? stateA : stateB) involved, and the generator

is not able to identify the truth of the condition in a ternary conditional statement and

it always sets the cost of this ternary conditional statement to be the higher estimated

cost between the two result statements. Obviously, there is an overhead when dealing with

the ternary conditional implementations which might make the estimated instruction count

greater than the real non-movement instruction count. Secondly, the G++ compiler often

does some very strong optimizations as we compile our IDISA+ implementations with the

highest optimization level, which could also reduce the final instruction count.

As shown in the above tables and the figure, the generator has a good performance in

terms of modeling the number of non-movement instructions for the real assembly code. And

also, a function with less non-movement instructions would normally have less movement in-

structions which ends up with less total instructions. So, we believe that the non-movement

instruction count is a strong factor for weighting a function. In the next section, we show

how our model does on evaluating two different implementations of a function.

5.2.2 Best Implementation vs Second Best Implementation

A certain function in the IDISA+ libraries would have many different kinds of implemen-

tations as we have created hundreds of strategies to help implement certain operations on

some fields. It would be interesting if we can compare the estimated best implementation
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Figure 5.2: Comparison Between Best and Second Best Implementations for SSE2

with the estimated second best implementation for each function to verify whether the least

instruction count mechanism actually works.

In Table 5.4, we list the various instruction count including the estimated instruction

count on the best and second best implementations, and the real non-movement and to-

tal instruction count on the best and second best implementations for three functions,

simd<4> :: max, hsimd<16> :: packh and esimd<8> :: signextendh. The second best

implementation of each function tends to have more assembly instructions in reality than

the best implementation as suggested in the table, which matches well to the estimation of

the generator. Appendix C has listed the related instruction count for all IDISA+ functions

in SSE2.

In Table 5.5, we present the C++ code of both best and second best implementation

for simd<4> :: max. The assembly code generated by G++ compiler for these two im-

plementations are given in Table 5.6, in which we can easily tell that the estimated best

implementation is indeed better than the estimated second best implementation with 13

instructions versus 21 instructions.

The left chart In Figure 5.2 shows the average estimated instruction count for the best

and second best implementations over the IDISA+ functions. The right chart in the same

figure shows the average real instruction count for the best and second best implementations

over the IDISA+ functions. As both charts suggest, the best implementation thought by

the generator is always better than the second best implementation for any function, which

indicates that the least instruction count mechanism in our generator works quite well in

terms of selecting the best strategies to get the promising implementations.
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simd<4> :: max hsimd<16> :: packh esimd<8> :: signextendh

Est. IC
of the Best
Imp.

9 3 4

Est. IC of
the Second
Best Imp.

13 5 8

Real Non-
mov. IC
of the Best
Imp.

9 3 4

Real Non-
mov. IC of
the Second
Best Imp.

13 5 5

Real IC of
the Best
Imp.

13 4 6

Real IC of
the Second
Best Imp.

21 7 7

Table 5.4: The Estimated and Real Instruction Count (IC) of Best and Second Best imple-
mentations of Several IDISA+ Functions in SSE2

The Best C++ Implementation of simd<4>::max

//The Estimated Instruction Count is 9
template<> IDISA ALWAYS INLINE bitblock128 t
simd<4> :: max(bitblock128 t arg1, bitblock128 t arg2)
{

bitblock128 t high bit = simd<4> :: constant<8>();
return simd xor(simd<4> :: umax(simd xor(arg1, high bit),

simd xor(arg2, high bit)), high bit);
}

The Second Best C++ Implementation of simd<4>::max

//The Estimated Instruction Count is 13
template<> IDISA ALWAYS INLINE bitblock128 t
simd<4> :: max(bitblock128 t arg1, bitblock128 t arg2)
{

return simd<1> :: ifh(simd<4> :: gt(arg1, arg2), arg1, arg2);
}

Table 5.5: The Best and Second Best C++ Implementation for simd<4>::max in SSE2
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The Assembly Code of the Best
Imp. of simd<4>::max

The Assembly Code of the Second
Best Imp. of simd<4>::max

movdqa .LC15(%rip), %xmm0
movdqa .LC16(%rip), %xmm3
pxor %xmm0, %xmm2
pxor %xmm0, %xmm1
movdqa %xmm3, %xmm4
pand %xmm2, %xmm3
pand %xmm1, %xmm4
pmaxub %xmm2, %xmm1
pand .LC17(%rip), %xmm1
pmaxub %xmm4, %xmm3
por %xmm3, %xmm1
pxor %xmm1, %xmm0
movdqa %xmm0, 16(%rsp)

movdqa .LC15(%rip), %xmm1
movdqa %xmm3, %xmm0
movdqa %xmm2, %xmm4
movdqa %xmm1, %xmm5
pslld $4, %xmm0
pslld $4, %xmm4
pand %xmm1, %xmm0
pand %xmm1, %xmm4
pcmpgtb %xmm0, %xmm4
movdqa %xmm1, %xmm0
pand %xmm2, %xmm0
pandn %xmm4, %xmm5
pcmpgtb %xmm3, %xmm0
pand %xmm1, %xmm0
por %xmm5, %xmm0
movdqa %xmm0, %xmm1
pand %xmm0, %xmm2
pandn %xmm3, %xmm1
movdqa %xmm1, %xmm3
por %xmm2, %xmm3
movdqa %xmm3, 16(%rsp)

Table 5.6: The Assembly Code of the Best and Second Best C++ Implementation for
simd<4>::max in SSE2
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dew.xml jaw.xml roads-2.gml po.xml soap.xml

Hand-written Li-
braries

5.858 6.309 7.408 7.74 8.581

IDISA+ Libraries 5.859 6.305 7.406 7.675 8.389

Table 5.7: The Performance of Xmlwf on the Hand-written Libraries and the IDISA+
Libraries (cycle per byte)

5.3 The Generated IDISA+ Libraries for Higher Level Ap-

plications

In this section, we want to show how the generated IDISA+ libraries behave for higher level

applications. Thus, we choose two applications which are all developed in our lab and both

have two versions with one version using the hand-written libraries and the other version

using the IDISA+ libraries. The hand-written libraries are highly tuned and optimized as

they were hand written initially and have been maintained and updated through a long

period of time.

Xmlwf

Xmlwf stands for a kind of applications which are to determine if a XML file is well-formed.

In our lab, we developed Xmlwf based on the parallel bit stream technology using SIMD

instructions. The performance of Xmlwf on both the hand-written libraries and the IDISA+

libraries is shown in Table 5.7. The IDISA+ libraries perform as fast as the hand-written

libraries do with an exception of 0.2 cycle faster on the last test file soap.xml. The not

significant difference between these two versions is because Xmlwf heavily relies on logic,

shifting and packing operations and these operations have already been highly optimized in

the old libraries so that the room for further optimization is just little.

Symbol Table

The Symbol Table application here is to use SIMD techniques to support fast validation

on names have the correct XML name syntax if they have appeared previously in the

document, which avoids the traditional byte-by-byte checking for the names. The Symbol

Table program is currently built upon the top of the Xmlwf and it receives the data from

Xmlwf and then processes the validation with the help from symbol table look-up.

In Table 5.8, the performance of Symbol Table based on both hand-written Libraries and
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dew.xml jaw.xml roads-2.gml po.xml soap.xml

Hand-written Li-
braries

7.141 7.754 9.331 10.219 10.965

IDISA+ Libraries 6.974 7.541 9.225 10.164 10.815

Table 5.8: The Performance of Symbol Table on the Hand-written Libraries and the IDISA+
Libraries (cycle per byte)

IDISA+ libraries are shown. The version using IDISA+ libraries performs about 0.2 cycle

faster than the version using hand-written libraries. The performance gain here is mainly

due to the full support of SIMD operations as well as optimizations for every single function

in IDISA+ libraries. In the hand-written Libraries, some operations are only supported

with a few of field widths while some operations are not even supported at all. When using

hand-written libraries to implement the Symbol Table application, we have to manually

simulate some functionalities in a combination of functions from the libraries. In contrast,

many of those functionalities are directly supported and high optimized in the IDISA+

libraries. Hence, a slightly better performance can be achieved by using our auto-generated

IDISA+ libraries.



Chapter 6

Conclusion

6.1 Thesis Summary

In this thesis, we reviewed the concept of SIMD within a register and also several commercial

SIMD instruction sets on commodity microprocessors. Many compute-intensive applications

have adopted those commercial SIMD instruction sets to improve performance. They also

have encouraged more and more research work on issues of using these SIMD instructions,

especially the portable SIMD programming over platforms.

To enable portable SIMD programming, we presented a model called IDISA+ in the

thesis. The goal of this model is to automatically produce C++ libraries for supporting

portable SIMD programming on various architectures. We defined more than 60 operations

in our model to fully exploit the advantages of SIMD computing. The defined operations

are well-organized and carefully-selected, which cover not only the traditional arithmetic

operations but also a good number of field packing and re-arranging operations. These

operations are grouped into six different categories based on the the shape or structure of

field manipulation by the operations.

To implement the IDISA+ model, a toolkit was constructed including a generator for

producing C++ libraries and a test framework for testing the libraries. The generator is

developed as an improvable module which allows users to add new operations and strategies

as long as they follow the definition rules in the generator. We have created an algorithm

based on least instruction count mechanism to discover the best strategy from all the avail-

able strategies for implementing a certain operation. This algorithm works reasonably fast

in practice with time complexity of O(M ∗ N), where M is the number of operations and

70
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N is the number of strategies. The test framework provides correctness and performance

testing for each individual function in the generated libraries. Thus, our IDISA+ model is

guaranteed to offer bug-free libraries with this test framework.

In sum, there are four major advantages in our model. First, it supports auto-generating

the libraries with little human effort while the hand-written libraries usually require con-

siderable effort. Secondly, with the correctness testing module in the tester, we are able to

provide bug-free libraries while errors are usually a big concern with hand-written libraries.

Thirdly, as shown in the previous chapter, the libraries generated by the model achieve better

performance compared to the hand-written libraries. Finally, our model gives users more

opportunities to interact with it, such as improve the performance of generated libraries

by feeding some better strategies, or get more operations supported by simply adding the

operations through the designated modules.

6.2 Future Work

The model introduced in this thesis has few optimizations from compiler technologies, it

would be very nice to incorporate more compiler technologies into the model. One of

such candidates is the LLVM compiler infrastructure [37, 38, 39]. LLVM is a modern and

SSA-based compiler platform with the capability of supporting both static and dynamic

compilation for arbitrary programming languages. It has a very useful target-independent

code generator which supports SIMD code generation over multiple modern architectures.

One possible improvement is to let LLVM understand the strategies defined in IDISA+

model and integrate the analyzer module into LLVM so that it could use the optimization

modules in LLVM to optimize the emitted codes with the knowledge from the strategies.

In such approach, a reduction in cycles could be expected with the help of LLVM’s register

and instruction scheduling algorithms. In addition, we might also enable some other opti-

mizations by adding a peephole optimizer to LLVM. There are situations where a sequence

of IDISA+ operations could be replaced by single composite SIMD intrinsic available on a

particular architecture. Recognizing such instruction patterns and replacing them by the

intrinsic would have substantial benefit.

The other future work on the model is to improve the accuracy of cost estimation. One

such work is to make the generator be able to identify the truth of the conditions in ternary

conditional statements of a strategy. Fortunately, almost all conditions are compile-time
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conditions which makes it possible for the generator to evaluate the cost of a strategy

containing ternary conditional statements more accurately at the stage where the candidate

lists are produced (i.e., the translation stage). If the condition of a ternary conditional

statement is not a compile-time condition, we could set the cost of the statement to be the

average cost of all branches. Another possible work is to try to assign different cost for

intrinsics, for example, logic operations are usually made as intrinsics which have very low

cost in terms of reciprocal throughput (e.g. less than 0.5). It might be more reasonable to

set the cost of intrinsics of logic operations to 0.5 instead of 1. We could also adopt the

numbers from Fog’s paper [25] to guide the cost assignment and see what the performance

of the generated libraries would be.

Although the next extension of AVX will be capable to support integer operations on

the entire 256-bit register (AVX2 is planned to be released in 2013), it is still an interesting

work to improve the implementation for current AVX instruction set. Since the current

version of AVX does not support integer operations on the entire 256-bit register but only

on the register’s low 128 bits, we have to extract the content from an AVX register twice

(one for the high 128 bits and the other for the low 128 bits) every time before we actually

start the processing of the content. What is worse is that we then have to combine these

two content into an AVX register after finishing processing them in order to return a result

with AVX vector type. In a single function, there might be a case that the content in an

AVX register was just combined couple instructions ahead where it has to be extracted

again. This gives non-negligible overhead which we want to get rid of. One possible way to

overcome this problem is to add a optimization module in the generator which can analyze

the implementation of a single function and try to optimize out the combination operation

if there is an extraction on the same content after it.

IDISA+ model now only supports SSE series, NEON and AVX instruction sets, so

another future work is to add new architecture support in the model, such as Altivec. And

also, we might define and add some new operations in the model to support other specific

applications in the future.
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IDISA+ Functions

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128

bitblock :: all N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: any N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: load aligned N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: load unaligned N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: store aligned N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: store unaligned N/A N/A N/A N/A N/A N/A N/A
√

esimd<fw> :: mergeh
√ √ √ √ √ √ √

N/A

esimd<fw> :: mergel
√ √ √ √ √ √ √

N/A

esimd<fw> :: multh × × × × × × × N/A

esimd<fw> :: multl × × × × × × × N/A

esimd<fw> :: signextendh
√ √ √ √ √ √ √

N/A

esimd<fw> :: signextendl
√ √ √ √ √ √ √

N/A

esimd<fw> :: zeroextendh
√ √ √ √ √ √ √

N/A

esimd<fw> :: zeroextendl
√ √ √ √ √ √ √

N/A

hsimd<fw> :: add hl N/A
√ √ √ √ √ √ √

hsimd<fw> :: min hl N/A
√ √ √ √ √ √ √

hsimd<fw> :: packh N/A
√ √ √ √ √ √ √

hsimd<fw> :: packl N/A
√ √ √ √ √ √ √
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hsimd<fw> :: packss N/A
√ √ √ √ √ √ √

hsimd<fw> :: packus N/A
√ √ √ √ √ √ √

hsimd<fw> :: signmask N/A ×
√ √ √ √ √ √

hsimd<fw> :: umin hl N/A
√ √ √ √ √ √ √

mvmd<fw> :: dslli N/A
√ √ √ √ √ √ √

mvmd<fw> :: dsrli N/A
√ √ √ √ √ √ √

mvmd<fw> :: extract
√ √ √ √ √ √ √

N/A

mvmd<fw> :: fill
√ √ √ √ √ √ √ √

mvmd<fw> :: fill2
√ √ √ √ √ √ √

N/A

mvmd<fw> :: fill4
√ √ √ √ √ √

N/A N/A

mvmd<fw> :: fill8
√ √ √ √ √

N/A N/A N/A

mvmd<fw> :: fill16
√ √ √ √

N/A N/A N/A N/A

mvmd<fw> :: shuffle × × × × × × × ×
mvmd<fw> :: shufflei × × × ×

√ √ √
×

mvmd<fw> :: slli N/A
√ √ √ √ √ √ √

mvmd<fw> :: splat
√ √ √ √ √ √ √ √

mvmd<fw> :: srli N/A
√ √ √ √ √ √ √

simd<fw> :: abs N/A
√ √ √ √ √ √ √

simd<fw> :: add
√ √ √ √ √ √ √ √

simd<fw> :: add hl N/A
√ √ √ √ √ √ √

simd and
√

N/A N/A N/A N/A N/A N/A N/A

simd andc
√

N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: constant
√ √ √ √ √ √ √ √

simd<fw> :: ctz
√ √ √ √ √ √ √ √

simd<fw> :: eq
√ √ √ √ √ √ √ √

simd<fw> :: gt
√ √ √ √ √ √ √ √

simd<fw> :: himask N/A
√ √ √ √ √ √ √

simd<fw> :: ifh
√ √ √ √ √ √ √ √

simd<fw> :: lomask N/A
√ √ √ √ √ √ √

simd<fw> :: lt
√ √ √ √ √ √ √ √

simd<fw> :: max
√ √ √ √ √ √ √ √
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simd<fw> :: min
√ √ √ √ √ √ √ √

simd<fw> :: mult
√ √ √ √ √ √ √ √

simd<fw> :: neg N/A
√ √ √ √ √ √ √

simd nor
√

N/A N/A N/A N/A N/A N/A N/A

simd not
√

N/A N/A N/A N/A N/A N/A N/A

simd or
√

N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: popcount
√ √ √ √ √ √ √ √

simd<fw> :: sll × × × × × ×
√ √

simd<fw> :: slli N/A
√ √ √ √ √ √ √

simd<fw> :: sra × × × × × × × ×
simd<fw> :: srai N/A

√ √ √ √ √ √ √

simd<fw> :: srl × × × × × ×
√ √

simd<fw> :: srli N/A
√ √ √ √ √ √ √

simd<fw> :: sub
√ √ √ √ √ √ √ √

simd<fw> :: ugt
√ √ √ √ √ √ √ √

simd<fw> :: ult
√ √ √ √ √ √ √ √

simd<fw> :: umax
√ √ √ √ √ √ √ √

simd<fw> :: umin
√ √ √ √ √ √ √ √

simd xor
√

N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: xor hl N/A
√ √ √ √ √ √ √

Table A.1: All the SSE2 Functions in IDISA+

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128

bitblock :: all N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: any N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: load aligned N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: load unaligned N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: store aligned N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: store unaligned N/A N/A N/A N/A N/A N/A N/A
√
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esimd<fw> :: mergeh
√ √ √ √ √ √ √

N/A

esimd<fw> :: mergel
√ √ √ √ √ √ √

N/A

esimd<fw> :: multh × × × × × × × N/A

esimd<fw> :: multl × × × × × × × N/A

esimd<fw> :: signextendh
√ √ √ √ √ √ √

N/A

esimd<fw> :: signextendl
√ √ √ √ √ √ √

N/A

esimd<fw> :: zeroextendh
√ √ √ √ √ √ √

N/A

esimd<fw> :: zeroextendl
√ √ √ √ √ √ √

N/A

hsimd<fw> :: add hl N/A
√ √ √ √ √ √ √

hsimd<fw> :: min hl N/A
√ √ √ √ √ √ √

hsimd<fw> :: packh N/A
√ √ √ √ √ √ √

hsimd<fw> :: packl N/A
√ √ √ √ √ √ √

hsimd<fw> :: packss N/A
√ √ √ √ √ √ √

hsimd<fw> :: packus N/A
√ √ √ √ √ √ √

hsimd<fw> :: signmask N/A ×
√ √ √ √ √ √

hsimd<fw> :: umin hl N/A
√ √ √ √ √ √ √

mvmd<fw> :: dslli N/A
√ √ √ √ √ √ √

mvmd<fw> :: dsrli N/A
√ √ √ √ √ √ √

mvmd<fw> :: extract
√ √ √ √ √ √ √

N/A

mvmd<fw> :: fill
√ √ √ √ √ √ √

×
mvmd<fw> :: fill2

√ √ √ √ √ √ √
N/A

mvmd<fw> :: fill4
√ √ √ √ √ √

N/A N/A

mvmd<fw> :: fill8
√ √ √ √ √

N/A N/A N/A

mvmd<fw> :: fill16
√ √ √ √

N/A N/A N/A N/A

mvmd<fw> :: shuffle × × × × × × × ×
mvmd<fw> :: shufflei × × × × × × × ×
mvmd<fw> :: slli N/A

√ √ √ √ √ √ √

mvmd<fw> :: splat
√ √ √ √ √ √ √ √

mvmd<fw> :: srli N/A
√ √ √ √ √ √ √

simd<fw> :: abs N/A
√ √ √ √ √ √ √

simd<fw> :: add
√ √ √ √ √ √ √ √
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simd<fw> :: add hl N/A
√ √ √ √ √ √ √

simd and
√

N/A N/A N/A N/A N/A N/A N/A

simd andc
√

N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: constant
√ √ √ √ √ √ √ √

simd<fw> :: ctz
√ √ √ √ √ √ √ √

simd<fw> :: eq
√ √ √ √ √ √ √ √

simd<fw> :: gt
√ √ √ √ √ √ √ √

simd<fw> :: himask N/A
√ √ √ √ √ √ √

simd<fw> :: ifh
√ √ √ √ √ √ √ √

simd<fw> :: lomask N/A
√ √ √ √ √ √ √

simd<fw> :: lt
√ √ √ √ √ √ √ √

simd<fw> :: max
√ √ √ √ √ √ √ √

simd<fw> :: min
√ √ √ √ √ √ √ √

simd<fw> :: mult
√ √ √ √ √ √

× ×
simd<fw> :: neg N/A

√ √ √ √ √ √ √

simd nor
√

N/A N/A N/A N/A N/A N/A N/A

simd not
√

N/A N/A N/A N/A N/A N/A N/A

simd or
√

N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: popcount
√ √ √ √ √ √ √ √

simd<fw> :: sll × × × × × × × ×
simd<fw> :: slli N/A

√ √ √ √ √ √ √

simd<fw> :: sra × × × × × × × ×
simd<fw> :: srai N/A

√ √ √ √ √ √ √

simd<fw> :: srl × × × × × × × ×
simd<fw> :: srli N/A

√ √ √ √ √ √ √

simd<fw> :: sub
√ √ √ √ √ √ √ √

simd<fw> :: ugt
√ √ √ √ √ √ √ √

simd<fw> :: ult
√ √ √ √ √ √ √ √

simd<fw> :: umax
√ √ √ √ √ √ √ √

simd<fw> :: umin
√ √ √ √ √ √ √ √

simd xor
√

N/A N/A N/A N/A N/A N/A N/A
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simd<fw> :: xor hl N/A
√ √ √ √ √ √ √

Table A.2: All the NEON Functions in IDISA+

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128 256

bitblock :: all N/A N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: any N/A N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: load aligned N/A N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: load unaligned N/A N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: store aligned N/A N/A N/A N/A N/A N/A N/A N/A
√

bitblock :: store unaligned N/A N/A N/A N/A N/A N/A N/A N/A
√

esimd<fw> :: mergeh
√ √ √ √ √ √ √ √

N/A

esimd<fw> :: mergel
√ √ √ √ √ √ √ √

N/A

esimd<fw> :: multh × × × × × × × × N/A

esimd<fw> :: multl × × × × × × × × N/A

esimd<fw> :: signextendh
√ √ √ √ √ √ √ √

N/A

esimd<fw> :: signextendl
√ √ √ √ √ √ √ √

N/A

esimd<fw> :: zeroextendh
√ √ √ √ √ √ √ √

N/A

esimd<fw> :: zeroextendl
√ √ √ √ √ √ √ √

N/A

hsimd<fw> :: add hl N/A
√ √ √ √ √ √ √ √

hsimd<fw> :: min hl N/A
√ √ √ √ √ √ √ √

hsimd<fw> :: packh N/A
√ √ √ √ √ √ √ √

hsimd<fw> :: packl N/A
√ √ √ √ √ √ √ √

hsimd<fw> :: packss N/A
√ √ √ √ √ √ √ √

hsimd<fw> :: packus N/A
√ √ √ √ √ √ √ √

hsimd<fw> :: signmask N/A N/A ×
√ √ √ √ √ √

hsimd<fw> :: umin hl N/A
√ √ √ √ √ √ √ √

mvmd<fw> :: dslli N/A
√ √ √ √ √ √ √ √

mvmd<fw> :: dsrli N/A
√ √ √ √ √ √ √ √

mvmd<fw> :: extract
√ √ √ √ √ √ √

N/A N/A
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mvmd<fw> :: fill
√ √ √ √ √ √

× × ×
mvmd<fw> :: fill2

√ √ √ √ √ √
× × N/A

mvmd<fw> :: fill4
√ √ √ √ √ √

× N/A N/A

mvmd<fw> :: fill8
√ √ √ √ √ √

N/A N/A N/A

mvmd<fw> :: fill16
√ √ √ √ √

N/A N/A N/A N/A

mvmd<fw> :: shuffle × × × × × × × × ×
mvmd<fw> :: shufflei × × × × × × × × ×
mvmd<fw> :: slli N/A

√ √ √ √ √ √ √ √

mvmd<fw> :: splat
√ √ √ √ √ √ √ √ √

mvmd<fw> :: srli N/A
√ √ √ √ √ √ √ √

simd<fw> :: abs N/A
√ √ √ √ √ √ √ √

simd<fw> :: add
√ √ √ √ √ √ √ √ √

simd<fw> :: add hl N/A
√ √ √ √ √ √ √ √

simd and
√

N/A N/A N/A N/A N/A N/A N/A N/A

simd andc
√

N/A N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: constant
√ √ √ √ √ √ √ √ √

simd<fw> :: ctz
√ √ √ √ √ √ √ √ √

simd<fw> :: eq
√ √ √ √ √ √ √ √ √

simd<fw> :: gt
√ √ √ √ √ √ √ √ √

simd<fw> :: himask N/A
√ √ √ √ √ √ √ √

simd<fw> :: ifh
√ √ √ √ √ √ √ √ √

simd<fw> :: lomask N/A
√ √ √ √ √ √ √ √

simd<fw> :: lt
√ √ √ √ √ √ √ √ √

simd<fw> :: max
√ √ √ √ √ √ √ √ √

simd<fw> :: min
√ √ √ √ √ √ √ √ √

simd<fw> :: mult
√ √ √ √ √ √ √ √ √

simd<fw> :: neg N/A
√ √ √ √ √ √ √ √

simd nor
√

N/A N/A N/A N/A N/A N/A N/A N/A

simd not
√

N/A N/A N/A N/A N/A N/A N/A N/A

simd or
√

N/A N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: popcount
√ √ √ √ √ √ √ √ √
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simd<fw> :: sll × × × × × × × × ×
simd<fw> :: slli N/A

√ √ √ √ √ √ √ √

simd<fw> :: sra × × × × × × × × ×
simd<fw> :: srai N/A

√ √ √ √ √ √ √ √

simd<fw> :: srl × × × × × × × × ×
simd<fw> :: srli N/A

√ √ √ √ √ √ √ √

simd<fw> :: sub
√ √ √ √ √ √ √ √ √

simd<fw> :: ugt
√ √ √ √ √ √ √ √ √

simd<fw> :: ult
√ √ √ √ √ √ √ √ √

simd<fw> :: umax
√ √ √ √ √ √ √ √ √

simd<fw> :: umin
√ √ √ √ √ √ √ √ √

simd xor
√

N/A N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: xor hl N/A
√ √ √ √ √ √ √ √

Table A.3: All the AVX Functions in IDISA+
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Strategy Count

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128

bitblock :: all N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: any N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: load aligned N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: load unaligned N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: store aligned N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: store unaligned N/A N/A N/A N/A N/A N/A N/A 1

esimd<fw> :: mergeh 2 2 2 3 3 3 3 N/A

esimd<fw> :: mergel 2 2 2 3 3 3 3 N/A

esimd<fw> :: multh 0 0 0 0 0 0 0 N/A

esimd<fw> :: multl 0 0 0 0 0 0 0 N/A

esimd<fw> :: signextendh 2 2 2 2 2 2 2 N/A

esimd<fw> :: signextendl 1 1 1 1 1 1 1 N/A

esimd<fw> :: zeroextendh 2 2 2 2 2 2 2 N/A

esimd<fw> :: zeroextendl 1 1 1 1 1 1 1 N/A

hsimd<fw> :: add hl N/A 1 1 1 1 1 1 1

hsimd<fw> :: min hl N/A 1 1 1 1 1 1 1

hsimd<fw> :: packh N/A 2 2 2 2 2 2 2

hsimd<fw> :: packl N/A 2 2 2 2 2 3 4

81
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hsimd<fw> :: packss N/A 1 1 1 2 2 1 1

hsimd<fw> :: packus N/A 2 2 2 3 2 2 2

hsimd<fw> :: signmask N/A 1 2 3 2 2 2 2

hsimd<fw> :: umin hl N/A 1 1 1 1 1 1 2

mvmd<fw> :: dslli N/A 1 1 1 1 1 1 1

mvmd<fw> :: dsrli N/A 1 1 1 1 1 1 1

mvmd<fw> :: extract 1 2 2 2 3 2 1 N/A

mvmd<fw> :: fill 1 1 1 2 2 1 1 1

mvmd<fw> :: fill2 1 1 1 1 1 1 1 N/A

mvmd<fw> :: fill4 2 2 2 2 2 2 N/A N/A

mvmd<fw> :: fill8 2 2 2 2 2 N/A N/A N/A

mvmd<fw> :: fill16 2 2 2 2 N/A N/A N/A N/A

mvmd<fw> :: shuffle 0 1 1 1 1 1 1 0

mvmd<fw> :: shufflei 0 0 0 0 1 1 1 0

mvmd<fw> :: slli N/A 2 2 3 2 2 2 2

mvmd<fw> :: splat 2 2 2 2 3 3 2 1

mvmd<fw> :: srli N/A 2 2 3 2 2 2 2

simd<fw> :: abs N/A 3 2 2 2 2 2 2

simd<fw> :: add 3 4 3 4 4 4 4 3

simd<fw> :: add hl N/A 5 3 3 2 2 2 2

simd and 1 N/A N/A N/A N/A N/A N/A N/A

simd andc 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: constant 1 1 1 2 2 1 1 1

simd<fw> :: ctz 2 2 1 1 1 1 1 1

simd<fw> :: eq 3 3 2 3 3 3 2 2

simd<fw> :: gt 5 6 5 6 6 6 4 3

simd<fw> :: himask N/A 1 1 1 1 1 1 1

simd<fw> :: ifh 3 2 2 2 2 2 2 2

simd<fw> :: lomask N/A 1 1 1 1 1 1 1

simd<fw> :: lt 6 7 6 6 6 6 5 4

simd<fw> :: max 6 7 6 6 7 6 5 4
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simd<fw> :: min 6 7 6 6 7 6 5 4

simd<fw> :: mult 3 3 2 2 3 2 2 2

simd<fw> :: neg N/A 2 1 1 1 1 1 1

simd nor 1 N/A N/A N/A N/A N/A N/A N/A

simd not 1 N/A N/A N/A N/A N/A N/A N/A

simd or 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: popcount 2 1 1 1 1 1 2 2

simd<fw> :: sll 0 0 0 0 0 0 1 1

simd<fw> :: slli N/A 1 1 1 1 1 1 1

simd<fw> :: sra 0 0 0 0 0 0 0 0

simd<fw> :: srai N/A 5 3 3 4 4 2 2

simd<fw> :: srl 0 0 0 0 0 0 1 1

simd<fw> :: srli N/A 1 1 1 1 1 1 1

simd<fw> :: sub 3 4 3 4 4 4 4 3

simd<fw> :: ugt 7 7 6 6 6 6 6 5

simd<fw> :: ult 7 7 6 6 6 6 6 5

simd<fw> :: umax 5 5 4 5 4 4 4 3

simd<fw> :: umin 5 5 4 5 4 4 4 3

simd xor 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: xor hl N/A 2 1 1 1 1 1 1

Table B.1: The Number of Applicable Strategies for each

SSE2 Function in IDISA+

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128

bitblock :: all N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: any N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: load aligned N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: load unaligned N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: store aligned N/A N/A N/A N/A N/A N/A N/A 1
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bitblock :: store unaligned N/A N/A N/A N/A N/A N/A N/A 1

esimd<fw> :: mergeh 2 2 2 3 3 3 3 N/A

esimd<fw> :: mergel 2 2 2 3 3 3 3 N/A

esimd<fw> :: multh 0 0 0 0 0 0 0 N/A

esimd<fw> :: multl 0 0 0 0 0 0 0 N/A

esimd<fw> :: signextendh 2 2 2 2 2 2 2 N/A

esimd<fw> :: signextendl 1 1 1 1 1 1 1 N/A

esimd<fw> :: zeroextendh 2 2 2 2 2 2 2 N/A

esimd<fw> :: zeroextendl 1 1 1 1 1 1 1 N/A

hsimd<fw> :: add hl N/A 1 1 1 1 1 1 1

hsimd<fw> :: min hl N/A 1 1 1 1 1 1 2

hsimd<fw> :: packh N/A 2 2 2 3 3 4 2

hsimd<fw> :: packl N/A 2 2 2 3 3 4 4

hsimd<fw> :: packss N/A 1 1 1 1 1 1 1

hsimd<fw> :: packus N/A 2 2 2 3 2 2 2

hsimd<fw> :: signmask N/A 1 2 2 3 3 3 2

hsimd<fw> :: umin hl N/A 1 1 1 1 1 1 2

mvmd<fw> :: dslli N/A 1 1 1 1 1 1 1

mvmd<fw> :: dsrli N/A 1 1 1 1 1 1 1

mvmd<fw> :: extract 1 2 2 3 3 3 2 N/A

mvmd<fw> :: fill 1 1 1 2 2 1 1 0

mvmd<fw> :: fill2 1 1 1 1 1 1 1 N/A

mvmd<fw> :: fill4 2 2 2 2 2 2 N/A N/A

mvmd<fw> :: fill8 2 2 2 2 1 N/A N/A N/A

mvmd<fw> :: fill16 2 2 2 1 N/A N/A N/A N/A

mvmd<fw> :: shuffle 0 0 0 0 0 0 0 0

mvmd<fw> :: shufflei 0 0 0 0 0 0 0 0

mvmd<fw> :: slli N/A 2 2 2 2 2 2 2

mvmd<fw> :: splat 3 3 3 3 3 3 3 2

mvmd<fw> :: srli N/A 2 2 2 2 2 2 2

simd<fw> :: abs N/A 3 2 3 3 3 2 2
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simd<fw> :: add 3 4 3 4 4 4 4 3

simd<fw> :: add hl N/A 5 3 3 2 2 2 2

simd and 1 N/A N/A N/A N/A N/A N/A N/A

simd andc 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: constant 1 1 1 2 2 1 1 1

simd<fw> :: ctz 2 2 1 1 1 1 1 1

simd<fw> :: eq 3 3 2 3 3 3 2 2

simd<fw> :: gt 5 6 5 6 6 6 4 3

simd<fw> :: himask N/A 1 1 1 1 1 1 1

simd<fw> :: ifh 4 2 2 2 2 2 2 2

simd<fw> :: lomask N/A 1 1 1 1 1 1 1

simd<fw> :: lt 6 7 6 7 7 7 5 4

simd<fw> :: max 6 7 6 7 7 7 5 4

simd<fw> :: min 6 7 6 7 7 7 5 4

simd<fw> :: mult 3 3 2 3 3 3 2 2

simd<fw> :: neg N/A 2 1 2 2 2 1 1

simd nor 1 N/A N/A N/A N/A N/A N/A N/A

simd not 1 N/A N/A N/A N/A N/A N/A N/A

simd or 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: popcount 2 1 1 2 1 1 1 2

simd<fw> :: sll 0 0 0 0 0 0 0 0

simd<fw> :: slli N/A 1 1 2 1 1 1 1

simd<fw> :: sra 0 0 0 0 0 0 0 0

simd<fw> :: srai N/A 5 3 4 4 4 3 2

simd<fw> :: srl 0 0 0 0 0 0 0 0

simd<fw> :: srli N/A 1 1 2 1 1 1 1

simd<fw> :: sub 3 4 3 4 4 4 4 3

simd<fw> :: ugt 7 7 6 6 6 6 6 5

simd<fw> :: ult 7 7 6 6 6 6 6 5

simd<fw> :: umax 5 5 4 4 4 4 4 3

simd<fw> :: umin 5 5 4 4 4 4 4 3
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simd xor 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: xor hl N/A 2 1 1 1 1 1 1

Table B.2: The Number of Applicable Strategies for each

NEON Function in IDISA+

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128 256

bitblock :: all N/A N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: any N/A N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: load aligned N/A N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: load unaligned N/A N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: store aligned N/A N/A N/A N/A N/A N/A N/A N/A 1

bitblock :: store unaligned N/A N/A N/A N/A N/A N/A N/A N/A 1

esimd<fw> :: mergeh 2 2 2 3 3 3 3 2 N/A

esimd<fw> :: mergel 2 2 2 3 3 3 3 2 N/A

esimd<fw> :: multh 0 0 0 0 0 0 0 0 N/A

esimd<fw> :: multl 0 0 0 0 0 0 0 0 N/A

esimd<fw> :: signextendh 2 2 2 2 2 2 2 2 N/A

esimd<fw> :: signextendl 1 1 1 1 1 1 1 1 N/A

esimd<fw> :: zeroextendh 2 2 2 2 2 2 2 2 N/A

esimd<fw> :: zeroextendl 1 1 1 1 1 1 1 1 N/A

hsimd<fw> :: add hl N/A 1 1 1 1 2 2 1 1

hsimd<fw> :: min hl N/A 1 1 1 1 1 1 1 2

hsimd<fw> :: packh N/A 2 2 2 2 2 2 1 2

hsimd<fw> :: packl N/A 2 2 2 2 2 2 3 3

hsimd<fw> :: packss N/A 1 1 1 2 2 1 1 1

hsimd<fw> :: packus N/A 2 2 2 3 3 2 2 2

hsimd<fw> :: signmask N/A N/A 1 3 2 2 2 2 2

hsimd<fw> :: umin hl N/A 1 1 1 1 1 1 1 2

mvmd<fw> :: dslli N/A 1 1 1 1 1 1 1 1
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mvmd<fw> :: dsrli N/A 1 1 1 1 1 1 1 1

mvmd<fw> :: extract 1 2 2 3 3 3 1 N/A N/A

mvmd<fw> :: fill 1 1 1 2 2 1 0 0 0

mvmd<fw> :: fill2 1 1 1 1 1 1 1 1 N/A

mvmd<fw> :: fill4 2 2 2 2 2 3 1 N/A N/A

mvmd<fw> :: fill8 2 2 2 2 3 1 N/A N/A N/A

mvmd<fw> :: fill16 2 2 2 3 1 N/A N/A N/A N/A

mvmd<fw> :: shuffle 0 0 0 0 0 0 0 0 0

mvmd<fw> :: shufflei 0 0 0 0 0 0 0 0 0

mvmd<fw> :: slli N/A 2 2 2 2 2 2 2 2

mvmd<fw> :: splat 2 2 2 3 3 3 2 2 1

mvmd<fw> :: srli N/A 2 2 2 2 2 2 2 2

simd<fw> :: abs N/A 3 2 3 3 3 2 2 2

simd<fw> :: add 3 4 3 4 4 4 4 3 3

simd<fw> :: add hl N/A 5 3 3 2 2 2 2 2

simd and 1 N/A N/A N/A N/A N/A N/A N/A N/A

simd andc 1 N/A N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: constant 1 1 1 2 2 1 1 1 1

simd<fw> :: ctz 2 2 1 1 1 1 1 1 1

simd<fw> :: eq 3 3 2 3 3 3 3 2 2

simd<fw> :: gt 5 6 5 6 6 6 5 3 3

simd<fw> :: himask N/A 1 1 1 1 1 1 1 1

simd<fw> :: ifh 3 2 2 2 2 2 3 2 3

simd<fw> :: lomask N/A 1 1 1 1 1 1 1 1

simd<fw> :: lt 6 7 6 6 6 6 5 4 4

simd<fw> :: max 6 7 6 7 7 7 5 4 4

simd<fw> :: min 6 7 6 7 7 7 5 4 4

simd<fw> :: mult 3 3 2 2 3 3 2 2 2

simd<fw> :: neg N/A 2 1 1 1 1 1 1 1

simd nor 1 N/A N/A N/A N/A N/A N/A N/A N/A

simd not 1 N/A N/A N/A N/A N/A N/A N/A N/A
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simd or 1 N/A N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: popcount 2 1 1 1 1 1 2 1 2

simd<fw> :: sll 0 0 0 0 0 0 0 0 0

simd<fw> :: slli N/A 1 1 1 1 1 1 1 1

simd<fw> :: sra 0 0 0 0 0 0 0 0 0

simd<fw> :: srai N/A 5 3 3 4 4 2 2 2

simd<fw> :: srl 0 0 0 0 0 0 0 0 0

simd<fw> :: srli N/A 1 1 1 1 1 1 1 1

simd<fw> :: sub 3 4 3 4 4 4 4 3 3

simd<fw> :: ugt 7 7 6 6 6 6 6 5 5

simd<fw> :: ult 7 7 6 6 6 6 6 5 5

simd<fw> :: umax 5 5 4 5 5 5 4 3 3

simd<fw> :: umin 5 5 4 5 5 5 4 3 3

simd xor 1 N/A N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: xor hl N/A 2 1 1 1 1 1 1 1

Table B.3: The Number of Applicable Strategies for each

AVX Function in IDISA+



Appendix C

Instruction Count

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128

bitblock :: all × × × × × × × 2

bitblock :: any × × × × × × × 2

bitblock :: load aligned × × × × × × × 1

bitblock :: load unaligned × × × × × × × 1

bitblock :: store aligned × × × × × × × 1

bitblock :: store unaligned × × × × × × × 1

esimd<fw> :: mergeh 31 21 11 1 1 1 1 ×
esimd<fw> :: mergel 31 21 11 1 1 1 1 ×
esimd<fw> :: multh × × × × × × × ×
esimd<fw> :: multl × × × × × × × ×
esimd<fw> :: signextendh 31 33 13 4 4 12 21 ×
esimd<fw> :: signextendl 31 33 13 4 4 12 25 ×
esimd<fw> :: zeroextendh 24 14 4 3 3 3 4 ×
esimd<fw> :: zeroextendl 24 14 4 3 3 3 1 ×
hsimd<fw> :: add hl × 93 74 42 7 41 13 15

hsimd<fw> :: min hl × 93 82 45 10 41 16 32

hsimd<fw> :: packh × 47 33 19 3 21 7 7

hsimd<fw> :: packl × 45 31 17 3 19 5 7

hsimd<fw> :: packss × 120 86 36 1 1 79 288

89
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hsimd<fw> :: packus × 85 83 35 1 37 18 38

hsimd<fw> :: signmask × × 24 1 4 25 32 39

hsimd<fw> :: umin hl × 93 80 42 7 44 19 34

mvmd<fw> :: dslli × 9 9 3 3 3 3 3

mvmd<fw> :: dsrli × 9 9 3 3 3 3 3

mvmd<fw> :: extract 1 1 1 1 1 2 4 ×
mvmd<fw> :: fill 1 1 1 1 1 1 1 1

mvmd<fw> :: fill16 15 7 3 1 × × × ×
mvmd<fw> :: fill2 1 1 1 1 1 5 5 ×
mvmd<fw> :: fill4 5 5 5 5 3 1 × ×
mvmd<fw> :: fill8 13 13 7 3 1 × × ×
mvmd<fw> :: shuffle × × × × × × × ×
mvmd<fw> :: shufflei × × × × 17 1 1 ×
mvmd<fw> :: slli × 4 4 1 1 1 1 1

mvmd<fw> :: splat 16 13 9 5 2 1 5 13

mvmd<fw> :: srli × 4 4 1 1 1 1 1

simd<fw> :: abs × 9 19 5 5 5 17 49

simd<fw> :: add 1 10 6 1 1 1 1 11

simd<fw> :: add hl × 3 4 4 3 3 3 16

simd and 1 × × × × × × ×
simd andc 1 × × × × × × ×
simd<fw> :: constant 0 0 0 0 0 0 0 0

simd<fw> :: ctz 1 14 14 13 16 19 14 30

simd<fw> :: eq 2 8 9 1 1 1 5 15

simd<fw> :: gt 1 15 10 1 1 1 15 66

simd<fw> :: himask × 0 0 0 0 0 0 0

simd<fw> :: ifh 3 8 13 4 4 4 8 15

simd<fw> :: lomask × 0 0 0 0 0 0 0

simd<fw> :: lt 1 15 18 5 5 5 20 75

simd<fw> :: max 1 18 9 4 1 4 18 65

simd<fw> :: min 1 18 9 4 1 4 18 65
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simd<fw> :: mult 1 23 31 10 1 30 11 205

simd<fw> :: neg × 8 6 1 1 1 1 11

simd nor 2 × × × × × × ×
simd not 1 × × × × × × ×
simd or 1 × × × × × × ×
simd<fw> :: popcount 0 3 7 11 14 17 12 18

simd<fw> :: sll × × × × × × 7 11

simd<fw> :: slli × 2 2 2 1 1 1 4

simd<fw> :: sra × × × × × × × ×
simd<fw> :: srai × 4 10 5 1 1 5 21

simd<fw> :: srl × × × × × × 7 11

simd<fw> :: srli × 2 2 2 1 1 1 4

simd<fw> :: sub 1 11 6 1 1 1 1 11

simd<fw> :: ugt 1 14 12 3 3 3 14 51

simd<fw> :: ult 1 14 20 7 7 7 18 55

simd<fw> :: umax 1 16 6 1 4 7 20 47

simd<fw> :: umin 1 16 6 1 4 7 20 47

simd xor 1 × × × × × × ×
simd<fw> :: xor hl × 4 4 4 3 3 3 6

Table C.1: The Estimated Number of Instructions for Each

Best SSE2 Function in IDISA+

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128

bitblock :: all × × × × × × × 2

bitblock :: any × × × × × × × 2

bitblock :: load aligned × × × × × × × 1

bitblock :: load unaligned × × × × × × × 1

bitblock :: store aligned × × × × × × × 1

bitblock :: store unaligned × × × × × × × 1
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esimd<fw> :: mergeh 31 21 11 9 9 9 9 ×
esimd<fw> :: mergel 31 21 11 9 9 9 9 ×
esimd<fw> :: multh × × × × × × × ×
esimd<fw> :: multl × × × × × × × ×
esimd<fw> :: signextendh 35 37 17 8 8 16 29 ×
esimd<fw> :: signextendl 31 33 13 4 4 12 25 ×
esimd<fw> :: zeroextendh 28 18 8 7 7 7 5 ×
esimd<fw> :: zeroextendl 24 14 4 3 3 3 1 ×
hsimd<fw> :: add hl × 93 74 42 7 41 13 15

hsimd<fw> :: min hl × 93 82 45 10 41 16 38

hsimd<fw> :: packh × 89 87 39 5 39 41 83

hsimd<fw> :: packl × 45 31 17 33 19 21 7

hsimd<fw> :: packss × 120 86 36 21 37 79 288

hsimd<fw> :: packus × 97 88 60 51 46 39 75

hsimd<fw> :: signmask × × 24 1 4 25 32 39

hsimd<fw> :: umin hl × 93 80 42 7 44 19 51

mvmd<fw> :: dslli × 9 9 3 3 3 3 3

mvmd<fw> :: dsrli × 9 9 3 3 3 3 3

mvmd<fw> :: extract 1 1 1 1 1 2 4 ×
mvmd<fw> :: fill 1 1 1 1 1 1 1 1

mvmd<fw> :: fill16 29 29 17 9 × × × ×
mvmd<fw> :: fill2 1 1 1 1 1 5 5 ×
mvmd<fw> :: fill4 11 11 11 7 5 13 × ×
mvmd<fw> :: fill8 27 15 13 13 9 × × ×
mvmd<fw> :: shuffle × × × × × × × ×
mvmd<fw> :: shufflei × × × × 17 1 1 ×
mvmd<fw> :: slli × 4 4 4 4 4 4 4

mvmd<fw> :: splat 17 35 73 149 4 7 5 13

mvmd<fw> :: srli × 4 4 4 4 4 4 4

simd<fw> :: abs × 29 30 27 13 13 19 80

simd<fw> :: add 24 13 28 6 6 6 8 15
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simd<fw> :: add hl × 7 9 4 3 3 13 16

simd and 1 × × × × × × ×
simd andc 1 × × × × × × ×
simd<fw> :: constant 0 0 0 0 0 0 0 0

simd<fw> :: ctz 1 15 14 13 16 19 14 30

simd<fw> :: eq 37 15 14 9 5 5 5 15

simd<fw> :: gt 3 16 13 8 8 11 16 66

simd<fw> :: himask × 0 0 0 0 0 0 0

simd<fw> :: ifh 4 18 13 18 8 8 18 69

simd<fw> :: lomask × 0 0 0 0 0 0 0

simd<fw> :: lt 3 16 21 16 13 13 23 84

simd<fw> :: max 4 19 13 8 4 8 23 69

simd<fw> :: min 4 19 13 8 4 8 23 69

simd<fw> :: mult 57 73 439 204 68 38 427 205

simd<fw> :: neg × 11 6 1 1 1 1 11

simd nor 2 × × × × × × ×
simd not 1 × × × × × × ×
simd or 1 × × × × × × ×
simd<fw> :: popcount 0 3 7 11 14 17 20 28

simd<fw> :: sll × × × × × × 7 11

simd<fw> :: slli × 2 2 2 1 1 1 4

simd<fw> :: sra × × × × × × × ×
simd<fw> :: srai × 8 12 7 4 4 10 24

simd<fw> :: srl × × × × × × 7 11

simd<fw> :: srli × 2 2 2 1 1 1 4

simd<fw> :: sub 26 13 30 6 6 6 8 15

simd<fw> :: ugt 3 17 13 12 10 10 17 56

simd<fw> :: ult 3 17 21 15 11 11 19 55

simd<fw> :: umax 4 18 9 7 14 17 21 47

simd<fw> :: umin 4 18 9 7 14 17 21 47

simd xor 1 × × × × × × ×
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simd<fw> :: xor hl × 6 4 4 3 3 3 6

Table C.2: The Estimated Number of Instructions for Each

Second Best SSE2 Function in IDISA+

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128

bitblock :: all N/A N/A N/A N/A N/A N/A N/A 2

bitblock :: any N/A N/A N/A N/A N/A N/A N/A 3

esimd<fw> :: mergeh 31 21 11 1 1 1 1 N/A

esimd<fw> :: mergel 31 21 11 1 1 1 1 N/A

esimd<fw> :: signextendh 31 34 14 4 4 12 16 N/A

esimd<fw> :: signextendl 31 34 14 4 4 12 17 N/A

esimd<fw> :: zeroextendh 24 14 4 3 3 3 1 N/A

esimd<fw> :: zeroextendl 24 14 4 3 3 3 1 N/A

hsimd<fw> :: add hl N/A 91 72 40 7 29 13 9

hsimd<fw> :: min hl N/A 91 80 43 10 29 16 27

hsimd<fw> :: packh N/A 47 33 19 3 15 7 4

hsimd<fw> :: packl N/A 45 31 17 3 13 5 4

hsimd<fw> :: packss N/A 120 76 36 1 1 73 175

hsimd<fw> :: packus N/A 82 76 34 1 30 18 31

hsimd<fw> :: signmask N/A N/A 10 1 4 13 17 20

hsimd<fw> :: umin hl N/A 91 78 40 7 32 19 28

mvmd<fw> :: dslli N/A 7 3 3 2 3 2 2

mvmd<fw> :: dsrli N/A 7 2 3 3 2 2 2

mvmd<fw> :: extract 1 1 1 1 1 2 4 N/A

mvmd<fw> :: fill 0 0 0 0 0 0 0 0

mvmd<fw> :: fill16 8 3 0 0 N/A N/A N/A N/A

mvmd<fw> :: fill2 0 0 0 0 0 3 3 N/A

mvmd<fw> :: fill4 2 3 3 3 0 0 N/A N/A

mvmd<fw> :: fill8 3 7 3 0 0 N/A N/A N/A
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mvmd<fw> :: shufflei N/A N/A N/A N/A 10 1 1 N/A

mvmd<fw> :: slli N/A 2 4 1 1 1 1 1

mvmd<fw> :: splat 11 15 11 7 4 1 5 13

mvmd<fw> :: srli N/A 1 1 1 0 1 0 0

simd<fw> :: abs N/A 9 17 6 6 6 18 41

simd<fw> :: add 1 10 6 1 1 1 1 8

simd<fw> :: add hl N/A 3 4 4 3 3 3 10

simd and 1 N/A N/A N/A N/A N/A N/A N/A

simd andc 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: constant 0 0 0 0 0 0 0 0

simd<fw> :: ctz 1 14 14 13 16 19 15 25

simd<fw> :: eq 2 8 9 1 1 1 5 9

simd<fw> :: gt 1 15 10 1 1 1 16 44

simd<fw> :: himask N/A 0 0 0 0 0 0 0

simd<fw> :: ifh 3 8 11 5 5 5 9 13

simd<fw> :: lomask N/A 0 0 0 0 0 0 0

simd<fw> :: lt 1 15 18 5 5 5 21 61

simd<fw> :: max 1 18 9 4 1 4 19 57

simd<fw> :: min 1 18 9 4 1 4 19 57

simd<fw> :: mult 1 23 31 10 1 28 10 125

simd<fw> :: neg N/A 8 7 2 2 2 2 9

simd nor 2 N/A N/A N/A N/A N/A N/A N/A

simd not 1 N/A N/A N/A N/A N/A N/A N/A

simd or 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: popcount 0 3 7 11 14 17 13 16

simd<fw> :: sll N/A N/A N/A N/A N/A N/A 6 9

simd<fw> :: slli N/A 2 0 2 1 1 1 1

simd<fw> :: srai N/A 4 11 6 1 1 6 13

simd<fw> :: srl N/A N/A N/A N/A N/A N/A 6 9

simd<fw> :: srli N/A 2 2 0 1 1 1 4

simd<fw> :: sub 1 11 6 1 1 1 1 8



APPENDIX C. INSTRUCTION COUNT 96

simd<fw> :: ugt 1 14 12 3 3 3 15 38

simd<fw> :: ult 1 14 20 7 7 7 19 37

simd<fw> :: umax 1 16 6 1 4 7 20 41

simd<fw> :: umin 1 16 6 1 4 7 20 41

simd xor 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: xor hl N/A 3 3 3 3 3 3 3

Table C.3: The Real Number of Non-Movement Instructions

for Each Best SSE2 Function in IDISA+

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128

bitblock :: all N/A N/A N/A N/A N/A N/A N/A 2

bitblock :: any N/A N/A N/A N/A N/A N/A N/A 3

esimd<fw> :: mergeh 44 30 16 2 2 2 2 N/A

esimd<fw> :: mergel 44 30 16 2 2 2 2 N/A

esimd<fw> :: signextendh 45 50 20 6 6 21 22 N/A

esimd<fw> :: signextendl 45 50 20 6 6 21 23 N/A

esimd<fw> :: zeroextendh 35 21 8 5 5 5 2 N/A

esimd<fw> :: zeroextendl 35 21 8 5 5 5 2 N/A

hsimd<fw> :: add hl N/A 133 107 59 10 43 18 15

hsimd<fw> :: min hl N/A 133 118 64 16 43 24 40

hsimd<fw> :: packh N/A 70 49 28 4 23 10 8

hsimd<fw> :: packl N/A 68 47 26 5 21 8 8

hsimd<fw> :: packss N/A 172 115 55 2 2 113 275

hsimd<fw> :: packus N/A 122 117 50 2 45 28 50

hsimd<fw> :: signmask N/A N/A 13 1 4 17 22 26

hsimd<fw> :: umin hl N/A 133 114 59 10 48 28 45

mvmd<fw> :: dslli N/A 9 4 4 3 4 3 3

mvmd<fw> :: dsrli N/A 9 3 4 4 3 3 3

mvmd<fw> :: extract 1 1 1 1 1 2 4 N/A
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mvmd<fw> :: fill 0 0 0 0 0 0 0 0

mvmd<fw> :: fill16 12 7 0 0 N/A N/A N/A N/A

mvmd<fw> :: fill2 0 0 0 0 0 6 6 N/A

mvmd<fw> :: fill4 5 6 6 6 0 0 N/A N/A

mvmd<fw> :: fill8 6 15 7 0 0 N/A N/A N/A

mvmd<fw> :: shufflei N/A N/A N/A N/A 15 2 2 N/A

mvmd<fw> :: slli N/A 3 6 2 2 2 2 2

mvmd<fw> :: splat 14 22 17 12 8 2 9 21

mvmd<fw> :: srli N/A 2 2 2 1 2 1 1

simd<fw> :: abs N/A 16 29 12 12 12 29 62

simd<fw> :: add 2 17 11 2 2 2 2 12

simd<fw> :: add hl N/A 5 7 7 5 5 5 15

simd and 2 N/A N/A N/A N/A N/A N/A N/A

simd andc 2 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: constant 0 0 0 0 0 0 0 0

simd<fw> :: ctz 2 23 23 21 26 31 23 39

simd<fw> :: eq 4 11 14 2 2 2 8 14

simd<fw> :: gt 2 22 16 2 2 2 22 68

simd<fw> :: himask N/A 0 0 0 0 0 0 0

simd<fw> :: ifh 6 13 17 8 8 8 14 21

simd<fw> :: lomask N/A 0 0 0 0 0 0 0

simd<fw> :: lt 2 22 27 8 8 8 30 91

simd<fw> :: max 2 28 13 8 2 8 28 86

simd<fw> :: min 2 28 13 8 2 8 28 86

simd<fw> :: mult 2 35 48 16 2 43 16 190

simd<fw> :: neg N/A 15 12 3 3 3 3 12

simd nor 4 N/A N/A N/A N/A N/A N/A N/A

simd not 2 N/A N/A N/A N/A N/A N/A N/A

simd or 2 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: popcount 0 5 11 18 23 28 20 25

simd<fw> :: sll N/A N/A N/A N/A N/A N/A 17 21
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simd<fw> :: slli N/A 3 0 3 2 2 2 2

simd<fw> :: srai N/A 6 17 8 2 2 8 17

simd<fw> :: srl N/A N/A N/A N/A N/A N/A 17 21

simd<fw> :: srli N/A 3 3 0 2 2 2 6

simd<fw> :: sub 2 18 11 2 2 2 2 11

simd<fw> :: ugt 2 20 19 5 5 5 20 54

simd<fw> :: ult 2 20 32 11 11 11 27 52

simd<fw> :: umax 2 25 9 2 6 12 33 65

simd<fw> :: umin 2 25 9 2 6 12 33 65

simd xor 2 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: xor hl N/A 5 5 5 5 5 5 5

Table C.4: The Real Number of All Instructions for Each

Best SSE2 Function in IDISA+

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128

bitblock :: all N/A N/A N/A N/A N/A N/A N/A 2

bitblock :: any N/A N/A N/A N/A N/A N/A N/A 3

esimd<fw> :: mergeh 31 21 11 9 9 9 9 N/A

esimd<fw> :: mergel 31 21 11 9 9 9 9 N/A

esimd<fw> :: signextendh 32 35 15 5 5 13 18 N/A

esimd<fw> :: signextendl 31 34 14 4 4 12 17 N/A

esimd<fw> :: zeroextendh 25 15 5 4 4 4 2 N/A

esimd<fw> :: zeroextendl 24 14 4 3 3 3 1 N/A

hsimd<fw> :: add hl N/A 91 72 40 7 29 13 9

hsimd<fw> :: min hl N/A 91 80 43 10 29 16 27

hsimd<fw> :: packh N/A 86 80 38 5 32 40 55

hsimd<fw> :: packl N/A 45 31 17 21 13 12 4

hsimd<fw> :: packss N/A 120 76 36 21 31 73 175

hsimd<fw> :: packus N/A 94 81 51 38 34 38 53
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hsimd<fw> :: signmask N/A N/A 10 1 4 13 17 20

hsimd<fw> :: umin hl N/A 91 78 40 7 32 19 45

mvmd<fw> :: dslli N/A 7 3 3 2 3 2 2

mvmd<fw> :: dsrli N/A 7 2 3 3 2 2 2

mvmd<fw> :: extract 1 1 1 1 1 2 4 N/A

mvmd<fw> :: fill 0 0 0 0 0 0 0 0

mvmd<fw> :: fill16 3 18 9 5 N/A N/A N/A N/A

mvmd<fw> :: fill2 0 0 0 0 0 3 3 N/A

mvmd<fw> :: fill4 7 7 7 3 3 9 N/A N/A

mvmd<fw> :: fill8 7 8 9 9 5 N/A N/A N/A

mvmd<fw> :: shufflei N/A N/A N/A N/A 10 1 1 N/A

mvmd<fw> :: slli N/A 2 4 1 1 1 0 1

mvmd<fw> :: splat 19 25 51 103 4 11 5 13

mvmd<fw> :: srli N/A 1 1 1 1 1 0 1

simd<fw> :: abs N/A 25 29 25 14 14 19 54

simd<fw> :: add 24 11 26 6 6 6 8 15

simd<fw> :: add hl N/A 7 9 4 3 3 10 10

simd and 1 N/A N/A N/A N/A N/A N/A N/A

simd andc 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: constant 0 0 0 0 0 0 0 0

simd<fw> :: ctz 1 15 14 13 16 19 15 25

simd<fw> :: eq 35 15 14 9 5 5 5 9

simd<fw> :: gt 3 16 13 8 8 11 17 44

simd<fw> :: himask N/A 0 0 0 0 0 0 0

simd<fw> :: ifh × 10 11 16 9 9 18 46

simd<fw> :: lomask N/A 0 0 0 0 0 0 0

simd<fw> :: lt 3 16 21 16 13 13 23 50

simd<fw> :: max 3 19 13 8 4 8 24 47

simd<fw> :: min 4 19 13 8 4 8 24 47

simd<fw> :: mult 57 73 IF 162 64 31 258 125

simd<fw> :: neg N/A 12 7 2 2 2 2 9
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simd nor 2 N/A N/A N/A N/A N/A N/A N/A

simd not 1 N/A N/A N/A N/A N/A N/A N/A

simd or 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: popcount 0 3 7 11 14 17 20 23

simd<fw> :: sll N/A N/A N/A N/A N/A N/A 6 9

simd<fw> :: slli N/A 2 0 2 1 1 1 1

simd<fw> :: srai N/A 9 13 8 5 5 7 18

simd<fw> :: srl N/A N/A N/A N/A N/A N/A 6 9

simd<fw> :: srli N/A 2 2 0 1 1 1 4

simd<fw> :: sub 25 11 29 6 6 6 8 15

simd<fw> :: ugt 3 16 13 12 10 10 18 38

simd<fw> :: ult 3 17 21 16 11 11 20 37

simd<fw> :: umax 4 18 9 7 14 17 22 41

simd<fw> :: umin 4 18 9 7 14 17 22 41

simd xor 1 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: xor hl N/A 6 3 3 3 3 3 3

Table C.5: The Real Number of Non-Movement Instructions

for Each Second Best SSE2 Function in IDISA+

PPPPPPPPPPP
Operation

fw
1 2 4 8 16 32 64 128

bitblock :: all N/A N/A N/A N/A N/A N/A N/A 2

bitblock :: any N/A N/A N/A N/A N/A N/A N/A 3

esimd<fw> :: mergeh 44 30 16 14 14 14 14 N/A

esimd<fw> :: mergel 44 30 16 14 14 14 14 N/A

esimd<fw> :: signextendh 46 51 21 7 7 22 24 N/A

esimd<fw> :: signextendl 45 50 20 6 6 21 23 N/A

esimd<fw> :: zeroextendh 36 22 9 6 6 6 3 N/A

esimd<fw> :: zeroextendl 35 21 8 5 5 5 2 N/A

hsimd<fw> :: add hl N/A 133 107 59 10 43 18 15
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hsimd<fw> :: min hl N/A 133 118 64 16 43 24 40

hsimd<fw> :: packh N/A 125 121 54 7 47 64 88

hsimd<fw> :: packl N/A 68 47 26 34 21 21 8

hsimd<fw> :: packss N/A 172 115 55 33 49 113 275

hsimd<fw> :: packus N/A 136 118 75 58 53 62 86

hsimd<fw> :: signmask N/A N/A 13 1 4 17 22 26

hsimd<fw> :: umin hl N/A 133 114 59 10 48 28 74

mvmd<fw> :: dslli N/A 9 4 4 3 4 3 3

mvmd<fw> :: dsrli N/A 9 3 4 4 3 3 3

mvmd<fw> :: extract 1 1 1 1 1 2 4 N/A

mvmd<fw> :: fill 0 0 0 0 0 0 0 0

mvmd<fw> :: fill16 7 31 19 12 N/A N/A N/A N/A

mvmd<fw> :: fill2 0 0 0 0 0 6 6 N/A

mvmd<fw> :: fill4 13 13 13 7 6 18 N/A N/A

mvmd<fw> :: fill8 12 12 18 18 12 N/A N/A N/A

mvmd<fw> :: shufflei N/A N/A N/A N/A 15 2 2 N/A

mvmd<fw> :: slli N/A 3 6 2 2 2 1 2

mvmd<fw> :: splat 27 37 78 158 6 21 9 21

mvmd<fw> :: srli N/A 2 2 2 2 2 1 2

simd<fw> :: abs N/A 36 46 40 25 25 29 79

simd<fw> :: add 38 16 39 11 11 11 12 23

simd<fw> :: add hl N/A 13 16 7 5 5 15 15

simd and 2 N/A N/A N/A N/A N/A N/A N/A

simd andc 2 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: constant 0 0 0 0 0 0 0 0

simd<fw> :: ctz 2 23 23 21 26 31 23 39

simd<fw> :: eq 52 24 19 14 8 8 8 14

simd<fw> :: gt 6 22 19 14 14 21 23 68

simd<fw> :: himask N/A 0 0 0 0 0 0 0

simd<fw> :: ifh × 14 17 25 14 14 25 68

simd<fw> :: lomask N/A 0 0 0 0 0 0 0
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simd<fw> :: lt 5 22 30 26 20 20 32 75

simd<fw> :: max 4 32 21 14 8 14 36 71

simd<fw> :: min 8 32 21 14 8 14 36 71

simd<fw> :: mult 85 109 IF 217 98 42 391 190

simd<fw> :: neg N/A 19 12 3 3 3 3 12

simd nor 4 N/A N/A N/A N/A N/A N/A N/A

simd not 2 N/A N/A N/A N/A N/A N/A N/A

simd or 2 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: popcount 0 5 11 18 23 28 32 35

simd<fw> :: sll N/A N/A N/A N/A N/A N/A 17 21

simd<fw> :: slli N/A 3 0 3 2 2 2 2

simd<fw> :: srai N/A 14 19 10 7 7 11 28

simd<fw> :: srl N/A N/A N/A N/A N/A N/A 17 21

simd<fw> :: srli N/A 3 3 0 2 2 2 6

simd<fw> :: sub 40 16 43 11 11 11 11 24

simd<fw> :: ugt 5 25 19 19 14 14 25 54

simd<fw> :: ult 6 24 33 22 17 17 28 52

simd<fw> :: umax 6 31 14 12 23 28 32 65

simd<fw> :: umin 6 31 14 12 23 28 32 65

simd xor 2 N/A N/A N/A N/A N/A N/A N/A

simd<fw> :: xor hl N/A 9 5 5 5 5 5 5

Table C.6: The Real Number of All Instructions for Each

Second Best SSE2 Function in IDISA+
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