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ABSTRACT 

Magnetoencephalography (MEG) is a powerful tool in measuring magnetic 

fields associated with human brain activities, provided that a reliable inverse 

analysis method is available for mapping the recorded magnetic field patterns to 

active regions of neurons in the brain. The present study aims to develop a 

method of physically generate magnetic field patterns of which the MEG data can 

be used for developing a novel dipole localization technique. The mechanism of 

generating specific magnetic field patterns consists of coils attached to individual 

signal-generating circuits controlled by a central unit linked to a computer through 

a standard USB port. This study explored various coil designs that generated the 

simulated-brain magnetic dipoles. The use of triangular coils, as opposed to 

magnetic dipoles generated by helical coils, was also studied. 

The use of triangular coils was observed to have limitations in modelling 

true dipoles. The inverse analysis technique developed in association with this 

study showed high consistency in mapping the location and directionality of the 

source dipoles. 

Keywords: Magnetoencephalography; Magnetic fields; Inverse analysis; Dipole 
localization; Triangular coil; Current dipole; Signal-generating circuit; Mapping 
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1: INTRODUCTION 

1.1 Basics of Brain Neurons 

The human brain, the most critical part of the central nervous system, 

contains mostly interneurons, which integrate and analyze signals sent from 

sensory neurons and send signals to the motor neurons to perform response in 

accordance to the environmental stimuli [1,2]. The highly evolved ability of 

information integration and interpretation by the human brain is reflected by the 

highly complex interconnection among interneurons in the brain. Neurons are 

composed of three major structures: the dendrite, the cell body, and the axons. 

The neuron cell membrane is impermeable to charged particles. In the resting 

state, the inside of a neuron cell contains a higher concentration of K+ and a 

lower concentration of Na+ compared to the extracellular environment, and the 

bilayer structure of the cell membrane contributes to maintaining the ion 

gradients caused by the difference in charged particle concentrations. The Na+ 

and K+ gradients maintained across the membrane are mainly responsible for the 

activation of a neuron. Upon receiving signals from other neurons by the 

dendrites, the axon of a neuron transmits signals to other neurons. The stimulus 

received by a neuron causes transmembrane proteins called ion channels to 

open up and thus increases the permeability of the membrane. The propagation 

of a nerve pulse within a neuron results as Na+ and K+ ions are passed in and out 

of the neuron down their concentration gradients through gated ion channels 
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located on the cell membrane. After each activation process, the resting potential 

of the neuron is restored by the cell actively pumping these charged particles 

across the membrane against their concentration gradients. The membrane 

potential of a neuron that is constantly stimulated by the signal from a sensory 

receptor consists of a pulse train of action potentials. The freuqncy of the pulse 

trains is dependent upon the magntidue of the stimulus the sensory receptor is 

exposed to. The stronger the external stimulus, the shorter the time interval 

between adjacent action potential pulses is on the neuron. 

Any cognitive and thinking process or environmental stimulation may 

trigger the change of membrane potential in certain neurons [3]. Through this 

membrane depolarization-repolarization process, an action potential is created 

once the magnitude of membrane potential reaches a particular threshold value 

and the electrical signal is passed down the axon of the neuron. The relay of 

signals between two adjacent neurons is achieved by the release of 

neurotransmitters across the gap junction between the transmitting axon of a 

neuron and the receiving dendrite of the next neuron. The combination of the 

action potential and neurotransmitters results in the relay of signals across the 

nervous system. The current and its corresponding magnetic field generated by 

the flow of charged particles when neurons are active in the human brain form 

the basis of the present study. 
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1.2 Methods of Measuring Brain Activity 

Research on human cognitive behaviours and their corresponding regions 

of neurons activated in the brain finds its application in various fields of study, 

including psychology, cognitive science, and clinical science. Moreover, the 

correlation between given cognitive processes and the resulting brainwave 

patterns is also subject to intense study. Various methods have been developed 

for the detection of neuronal activities in human brains. Commonly employed 

methods include positron emission tomography (PET), functional magnetic 

resonance imaging (fMRI), electroencephalography (EEG), 

magnetoencephalography (MEG), and etc .. Both PET and fMRI provide good 

spatial resolution but relatively poor temporal resolution compared to EEG and 

MEG, on the order of seconds or more. PET and fMRI are capable of generating 

high-resolution 3D images [4, 5]. However, as opposed to EEG and MEG, the 

present technology limits PET and fMRI for continuous recording of neuronal 

activity over a substantial period of time. EEG and MEG are capable of resolving 

temporal precision on the order of milliseconds. Furthermore, PET requires the 

test subject to be pre-treated with radioactive tracer molecules, which would 

increase the risk of damaging bio-tissues. EEG measurement, accomplished by 

placing electrodes that record electrical potentials at fixed locations on the scalp, 

is limited by the poor conductivity of the skull. It greatly increases the difficulty to 

locate the source of neuronal activity. Meanwhile, the magnetic fields not 

attenuated by the skull and other tissues make MEG a more effective method in 

spatially localizing the sources in the brain compared to EEG [6]. In addition, 
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MEG is a completely non-invasive method because the sensors do not make 

direct contact with the head. MEG, due to its high spatial resolving capability, is 

often performed in conjunction with EEG due to their complementary measuring 

capabilities, since the fields detected by these two methods are mutually 

orthogonal. MEG detects mainly the activities in the cortical fissures. Notably, it 

is the intracellular post-synaptic potentials on active pyramidal neurons that MEG 

detects, not the potentials created by the polarization-depolarization process 

within the neurons [7]. 

1.3 Inverse Problem 

In electromagnetism, when the source that generates a magnetic field is 

initially known, such as the location, orientation, and current density of a current 

dipole, the resulting distribution of the magnetic flux density can be easily 

computed using Biot-Savart law and Maxwell's equations. Such a procedure of 

determining the magnetic field from a given electrical field is a forward problem. 

However, in the study of biomagnetism, inverse problems are often involved, 

when the information of locations, magnitudes, and numbers of individual dipoles 

are initially unknown, while only measured distribution of magnetic flux densities 

is available. Figure 1.1 illustrates the procedures of studying the pattern of 

magnetic fields generated by brain neuronal activities. 
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Cognition & Acitve Thinking 

Induction 

Exchange of Ions 
(Electrical Signal) 

Magnetic Fields 
(Measured Quantity) 

Inverse 
Analysis 

Figure 1.1: Procedures of studying brain neuronal activities and the emitted magnetic 
fields. 

In a MEG recording with a human subject, very often the resulting 

magnetic field distribution can be modelled as the equivalent current dipole 

(ECD) model [8, 9]. The brain-induced magnetic field that is measured by MEG is 

[10]: 

(1 ) 

! is the impressed current density resulting from neuron cellular bioelectricity, 

equivalent to the source volume dipole moment density if the ECD model is used. 

The OJ'''-Oj''term, being the conductivities of different materials, accounts for any 

inhomogeneity of the volume conductor. Single-dipole model assumes 

5 



synchronous activation of a group of functionally interconnected neurons which 

are closely located in the cerebral cortex, for a given neuron-triggering event. 

Nonetheless, when the resulting distribution of magnetic field involves multiple 

individually activated brain neuron groups or large patches, the single-dipole 

model would be less suitable in estimating the location of the sources [3, 11]. In 

such cases, multidipole models should be used to give accurate estimation of the 

source dipoles. The study of inverse analysis of MEG data is usually combined 

with EEG and fMRI, since EEG detects all primary current components, while 

MEG only detects the tangential components. Meanwhile, fMRI or other 

tomography methods are capable of providing higher spatial resolutions. 

Brain activity reconstruction typically involves forward modelling 

components including the source model, the volume conductor model, and the 

measurement model, together with the reconstruction algorithm for inverse 

modelling [12]. Various inverse algorithms including the commonly adapted 

minimum-norm estimates have been demonstrated to give good source-current 

localization result and often depend largely on the accuracy of the a priori 

information [13, 14]. Given a set of MEG data recorded, the general approach for 

localizing the sources of dipoles using inverse analysis is to make an initial 

assumption about the location and number of individual dipoles based on the 

data. Then the error between the estimation and the actual measured data needs 

to be minimized by iterative computation to yield the best approximation of the 

sources of the measured magnetic field. 
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1.4 Objectives 

The study of the inverse problem on the MEG data using human subjects 

is significantly deterred by the lack of the ground truth about the actual location 

and orientation of the dipoles. The main problem of using a human subject for 

MEG data collection is the actual location of source dipoles, which are 

associated with the neuronal activities in particular regions of the brain. This can 

only be estimated in conjunction with methods such as fMRI, due to the fact that 

normal humans do not have voluntary control over the groups of brain neurons to 

be activated. However, if the magnitude, location, and orientation of the dipole 

sources are initially known, together with the measured MEG data, the accuracy 

of a particular inverse analysis technique can be evaluated. Moreover, study 

using human subjects is more prone of noise due to the movement of the head or 

limbs and the magnetic fields produced by the heartbeats and pulses. 

Constructing realistic brain phantoms have been attempted for assisting the 

inverse analysis study of EEG and MEG data [15-18]. In the present study, a 

brain phantom is constructed to replace human subjects, in attempt to serve 

physical simulation of magnetic field emitted by brain neuronal activities for 

inverse analysis study, as shown in Figure 1.2. More specifically, such a 

phantom is to be used for assisting the development of a dipole localization 

technique by providing control over the pattern of the magnetic fields produced 

and the orientation and location of each individual dipole. Furthermore, the noise 

introduced by the simulation circuit can also be characterized and attenuated. 

Eventually, the objective of the inverse analysis technique development is to 
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more accurately reconstruct the active regions in the brain from measured MEG 

data. Such localization tool can be used for future psychological study or clinical 

diagnosis. 

Magnetic Field Emitting Device 
(Brain Phantom) 

Magnetic Fields 
(Measured Quantity) 

Inverse 
Analysis 
Study 

Figure 1.2: Study of inverse analysis methods by replacing the human subject with a 
magnetic-field-emitting device. 
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1.5 Thesis Outline 

The study presented in this thesis focuses on developing a method of 

physically simulating magnetic fields emitted by the human brain (brain 

phantom), as well as how the brain phantom can be used for developing a novel 

inverse analysis method. Chapter 2 provides a brief overview on the principles of 

magnetoencephalography and its operational mechanism. Chapter 3 covers the 

progression of the current project and earlier development of the present project. 

Chapters 4 and 5 provide details of implementation of the current brainwave 

simulating mechanism in hardware and software aspects, respectively. Chapter 6 

outlines experimental procedures of recording magnetic fields generated using 

the brain phantom developed and results of the inverse analysis technique 

developed. Finally, a conclusion and future work are outlined in the last chapter. 
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2: THEORY AND APPROACH 

2.1 Magnetoencephalography 

Magnetoencephalography measures the biomagnetic signals associated 

with the movement of charged particles in active brain neurons. The problem 

mostly encountered in the measurement of human brain signal is the relatively 

weak magnitude of the signal of interest [4, 19]. The magnetic field produced by 

brain neuron activities is often orders of magnitude weaker than background 

magnetic interference, including the earth's magnetic field. The typical urban 

background noise, which may include the magnetic fields generated by electric 

power lines and geomagnetic field fluctuations, could be in the order of 

microteslas, while the magnetic fields generated by human brain activities are in 

the range of picoteslas. The measurement of human brain signal requires 

superconducting quantum interference device (SQUID), which has extremely 

high sensitivity in detecting the magnetic field of the brain [20]. A typical SQUID 

system consists of a flux transformer connected to the SQUID electronics. The 

flux transformer is composed of a gradiometer and a SQUID assembly. At the 

output of the system, the SQUID electronics renders a voltage signal whose 

magnitude is proportional to the amount of magnetic flux sensed by the 

gradiometer. The gradiometer, which functions as a sensor in detecting the 

magnetic field signals, is connected to the input coil of the SQUID assembly. 

Liquid helium cooling is required for the flux transformer, of which the 
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implementation is based on the Meissner effect and Josephson effects of 

superconductors [21]. Usually, the measurement needs to be conducted in a 

heavily magnetically shielded environment to further attenuate the interference of 

the background noise. The principle of detection relies on the different 

homogeneities of magnetic signals from different sources. In a properly 

magnetically shielded space, while the magnetic field generated by the human 

brain weakens as the distance from the source increases, the background 

magnetic signals are mostly homogeneous across the gradiometer antennae [10, 

21]. A SQUID gradiometer is designed to detect the brain magnetic field from the 

discrepancy in magnetic flux densities caused by the distance. Figure 2.1 

illustrates the mechanism of magnetic field sensing of the first-order gradiometer. 

".,." '"~-~~~"";;:>"'.''''-, 

{
/ Ma£netlc 

Source 
\ 

(a) (b) 

Figure 2.1: Sensing mechanism of (a) axial gradiometer and (b) Planar gradiometer. 
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Located at the Down Syndrome Research Foundation,1 the MEG system 

manufactured by CTF System is capable of measuring 151 channels, formed by 

individual axial gradiometers. These 151 gradiometers are spatially distributed to 

cover the whole brain cortical system and are capable of sensing magnetic field 

emitted by most of the regions in the human brain cortex. The MEG system is 

equipped with two environmental noise reduction methods. Noise reduction can 

be achieved either by higher-order gradiometer formation or by adaptive filtering 

or both. Higher-order gradiometer noise cancellation employs hardware 

mechanism while keeping the filter coefficient static. Adaptive filtering, on the 

other hand, is implemented via signal processing approach using variable 

filtering coefficients [22]. The change of the coefficients depends on the 

environment. As shown in Figure 2.2 below, located in a magnetically shield 

room, the magnetic signal emitting test subject is fitted inside the cavity 

surrounded by the gradiometers together with the liquid helium containing Dewar. 

The signal processing electronics of MEG, meanwhile, is located outside of the 

room to minimize the noise emitted by the MEG circuits. 

1 Down Syndrome Research Foundation is a registered non-profitable charity focusing on both 
servicing the community and researching Down Syndrome. It is located at 1409 Sperling 
Avenue, Burnaby, Be V5B 4J8 
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Figure 2.2: (a) SQUID sensors and a liquid helium Dewar and (b) MEG signal processing 
electronics at Burnaby DSRF. 

2.2 Inverse Analysis 

The novel inverse analysis method for localizing the dipoles in the present 

study was developed by Kishimoto [23]. As shown in Figure 2.3 below, the 

method consists of two major phases: extracting phase and grouping phase. In 

the data extracting phase, in which the magnitude distributions of the dipoles are 

to be determined, truncated singular value decomposition (TSVD) is applied to 

the MEG data recorded using Akaike information criterion for small sample sizes 

(AICC) repeatedly. In the grouping phase, the distributions of the dipoles are 

grouped by data clustering before downhill simplex computation are applied to 

these groups of data for optimizing the locations of these dipoles. 
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Figure 2.3: Procedures of inverse analysis on measured MEG data. 
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3: PROGRESSION OF THE PROJECT 

3.1 Previous Implementation 

An electrolyte-based electromagnetic signal-emitting device was 

previously constructed to physically generating magnetic signal. Such a device 

consisted of a control electronic circuit connected to a symmetrical twisted pair of 

wires ended as a pair of electrodes immersed in a saline solution, which 

functioned as the medium for ion exchange, as shown in Figure 3.1. The twisted 

pair of wires had insulated coating except at the tips which function as the 

electrodes. 

(b) 

Figure 3.1: (a) "Wet phantom" consisting of a pair of electrodes at the end of a twisted 
wire pair immersed in electrolyte and (b) illustration of flow of ions completes 
the current loop inside a wet phantom. 

The previous version of control electronics was developed by Simon 

Fraser University research group for generating basic waveforms such as 
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sinusoidal signals with one frequency component. The control circuit included 

mainly a microcontroller with two 8-bit digital-to-analog converters (DAC's) 

attached. One of the two DAC's was used as a reference DAC for fixing the input 

voltage level of another DAC, the output DAC. While the DAC's lacked memory 

components and could not be programmed, a microcontroller was required for 

dictating the output voltage of the output DAC. The microcontroller was 

programmed with 32 predefined 8-bit coefficients, ranging from 0 to 255 in 

decimal for composing the output waveform. These 32 coefficients defined the 

shape of the waveform to be output to the coil. Sequentially, each of these 

coefficients was transferred one-by-one from the microcontroller to the output 

DAC, which synchronously generated the corresponding voltage level. The signal 

generated by the DAC was transmitted to the twisted pair of wires, and the pair of 

wires, together with the saline solution, formed a closed loop for the current 

sourced by the DAC chip to flow, as shown in Figure 3.1 above. In this case, the 

saline was the electrolyte, in which the ion exchange allowed the charges in the 

wires to be transferred. Due to the symmetrical configuration of the twisted pair, 

the magnetic field emitted by each wire in the twisted pair was largely cancelled 

out, and only the ion exchange between the twisted pair in the electrolyte and the 

current carried by the two arms of electrodes would contribute to a measurable 

magnetic field. 

3.2 Modified Design 

The design elaborated above was not with its limitations. First, the 

electronic design allowed only limited signal generating capability. In addition to 
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only one set of waveform coefficients that could be defined each time, the 

microcontroller had to be re-programmed using a development board provided by 

Atmel®, whenever an alteration of the waveform parameters, such as the 

amplitude or the frequency, was required. Such programming procedures, 

involving the un-mounting and mounting of the microcontroller on the 

development board, tend to be laborious if frequent change of the waveform 

parameters is needed during the operation of the device. Moreover, the 

electronic parts are more prone to damage by electrostatic charges when 

frequent mounting and un-mounting of the microchips are performed. 

Conlrol 
User Contr(jled 

Amplitude & f---- InputADC 
Dala 

Frequency r---

MlerIXontroller 

t:0l 

Digital Amplitude 

Data Display LED r-- & Frequency 
Display 

Conlrol Output DAC ~ Coli r-- Output Analog 
WavefOrm 

Figure 3.2: Hardware configuration of the previously implemented magnetic-signa 1-
generating electronics. 

To improve on the issues mentioned above, it was necessary to design 

control electronics that allowed the waveform parameters to be updated without 

re-programming the microcontroller [24]. The hardware was constructed using 
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electronic blocks shown in Figure 3.2. See Appendix A 1 for the detailed 

schematic. To accomplish this, a voltage and amplitude input control elements 

were integrated to the circuit using analog-to-digital converters (ADC's) and 

potentiometers. Also the corresponding display elements were implemented 

using 7 -segment LED displays. The microcontroller was programmed to 

periodically sample and display the input values of these waveform parameters 

and adjust the DAC's to generate waveforms defined by the specific parameters, 

following the algorithm shown in Figure 3.3. 

Generating voltage 
accord ing to the indexed 
positio n in th e waveform 

N 

Figure 3.3: Control algorithm of the magnetic-signal-emitting electronics (previous 
implementation). 
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Furthermore, the use of liquid electrolyte as the conducive medium 

between the twisted pair of wires, though might more physically resemble the ion 

exchange occurring in each individual neuron in a human brain, would incur 

interference, if the number of twisted pairs of wires increases. One problem for 

using saline water in the construction of a brain phantom is the nonlinearity 

between the source signal and the measured magnetic field due to the electrical 

double layer around the electrodes in the saline water [25]. The electrical double 

layer occurs in the pre-electrolysis process due to the minimum energy required 

for the electrolysis of the saline molecules to begin. Another problem would arise 

if the distance between two pairs decreases, as the number of twisted pairs 

increases, given that they all share the same liquid conductive medium. To form 

a complete loop of electrical charge flow, the amount of current carried by the 

pair of wires has to be replaced by the equivalent amount of charges exchanged 

in the electrolyte at the ends of the twisted pair of wires immersed in the saline. 

Since the direction of ion flow in the electrolyte is not restricted as the flow of 

electrons in a conductive wire, the majority to the ions would take the shortest 

paths between the source and the sink of the electrical charges. When the 

distance between individual twisted pairs becomes comparable to the distance 

between the two electrodes of each individual wire pair, as the number of wire 

pairs increases, interference due to the cross-flow of charges would be expected. 

For allowing a larger number of dipoles to be generated simultaneously 

without cross-interference among individual dipoles, small coils combined with 

twisted pairs of wires were used, termed "dry phantom", as opposed to the "wet 
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phantom" previously described, which has twisted pairs immersed in liquid 

electrolyte. 

In the previous MEG measurement conducted [24, 26], using the 

brainwave simulating circuit aforementioned to provide signals, helical coils were 

properly mounted on a plastic base, as shown in Figure 3.4. In this case, each of 

the coils was positioned at approximately equidistance from the centre of the 

base. Then the base was positioned inside the measurement cavity of the MEG, 

located inside a magnetically shielded room. 

Figure 3.4: (a) Helical coils mounted on a plastic base. (b) Test coils placed in the SQUID 
measurement cavity inside a magnetically shielded room. 

The magnetic flux density recorded by multiple gradiometers over a time 

period is shown in Figure 3.5 using the brain phantom constructed. The observed 

multiple traces at a given time are due to the superimposition of the recordings 

by multiple gradiometers. A sinusoidal and a rectangular waveform source signal 

are shown for example. It can be observed that the magnetic field patterns are 

consistent with the original source signal waveforms. The amount of current j 
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carried by an N-turn helical coil of constant loop area A governs the magnetic 

field strength according to the relationship [27]: 

Be ) - Jlo NiA 
Z ---

21l' z3 
(2) 

and can be adjusted accordingly to fit the range of magnetic field required for the 

experiment. 
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Figure 3.5: Magnetic flux density recorded at MEG channels when (a) a rectangular 
waveform and (b) a sinusoidal waveform was used as the source signal. 
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Meanwhile, the planar view of the spatial distribution of the resulting 

magnetic flux density at a particular time instance is shown in Figure 3.6. The 

inverse analysis method described above was applied to the magnetic flux 

density data measured by the MEG gradiometers. The resulting magnetic field 

distribution after TSVD was applied is shown in Figure 3.7. Figure 3.7 also 

displays the localization results of dipoles after data clustering analysis and 

downhill simplex method were applied, respectively. 
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Figure 3.7: (a) Magnetic flux density distribution after truncated singular value 
decomposition (TSVD) was applied. (b) Localized dipoles after cluster analysis 
was applied to the TSVD result and after down simplex method (DSM) was 
applied to the cluster analysis result. 
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3.3 Further Improvement in Design 

A more advanced version of brain phantom can be implemented by 

introducing a graphic user interface that renders the visualization of the 

waveform shape to be generated. Furthermore, the device needs to allow an 

arbitrary signal waveform to be defined without having to re-program the control 

algorithm of the microcontroller. The rest of the thesis focuses on the 

development of an improved mechanism for creating more complex magnetic 

signals in attempt to more realistically simulate the electromagnetic fields emitted 

by human brain neurons. Such approach is to be used for further improving the 

inverse analysis technique developed in association with this study. 
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4: DESIGN OF HARDWARE 

4.1 Signal Emitting Mechanism 

A magnetic field can be generated by applying electric signals to a coil 

attached to the output of a signal generating circuit via a twisted pair of wires, 

which ensures a detectable magnetic field is created only in the vicinity of the coil 

but not along the pair of current conducting wires. Conventionally, magnetic fields 

are produced by using a solenoid, a tightly wound helical coil of wire, which can 

be modelled as a magnetic dipole. However, the ion exchange associated with 

neuronal activities is more realistically modelled as the emergence of current 

dipoles. The study of the novel dipole localization method in the present research 

attempted both approaches by using both helical coils and triangular coils. 

As previously mentioned, the use of a symmetrical twisted pair of wires 

immersed in saline water provides an eligible model of a current dipole. The use 

of isosceles-triangle coils in constructing the brain phantom was proposed to 

provide several advantages [28]. Using a triangular coil eliminates the need of 

liquid medium for ion exchange while still providing a similar electrical current 

path. Not using electrolyte to form a circuit loop eliminates the non-linearity 

between the generated magnetic field and the applied voltage and achieves 

higher mechanical accuracy. Moreover, it provides more simplicity for the 

experimental setup and eliminates the problem of electrode degradation. 
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4.2 Control Electronics 

The requirement of a graphic user interface that facilitates the real-time 

control of the waveform generation can be met by integrating a computer to the 

design. The concept of the design involves a computer connected to a central 

control unit (CCU) that distributes waveform parameters and control commands 

to an intended waveform-generating unit. Figure 4.1 demonstrates the block 

diagram of the design. Notably, as shown in Figure 4.1, the communication 

established between the host PC and the CCU developed using the protocol 

supplied by Atmel® allows bidirectional packet transfer. This feature can be 

exploited to ensure that the CCU correctly receives the data issued by the host 

PC during the implementation. On the other hand, the unidirectional data transfer 

between the CCU and each channel is limited by the different logic voltage levels 

between them. More specifically, logic level '1' has a voltage level of 3.3 Von the 

CCU, while logic level '1' on each waveform-generating circuit has a voltage of 5 

V. This difference in voltage level presents a limitation on the speed of the circuit, 

which, however, is not of top priority at the present stage. 
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Figure 4.1: Modified design of the overall simulated-brainwave-generating electronics. 

The CCU that facilitates the communication between the host computer 

and the peripheral, and the management of the data and instructions sent by the 

computer is implemented using an AT90USBKEY board supplied with 

A T90USB 1287 microcontroller by Atmel®. The board was specifically designed 

to allow fast data transfer between the host PC and the on-board microcontroller. 

The communication between the host computer and the AT90USBKEY is 

established through USB ports on both the host and the receiving AT90USBKEY. 

Upon receiving the data, the CCU distributes them to the microcontroller of a 

specific waveform-generating unit (WGU) through a demultiplexing circuit (Refer 
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to Appendix A3 for detailed layout of the circuit) consisted of stacks of quad 2-

channel multiplexer/demultiplexer microchips (MC14551). The use of a 

demultiplexing circuit introduces expandability to the design at the expense of 

response time. The limitation of such implementation is that the more layers the 

network contains, the longer it takes the signal to propagate from the CCU to 

each individual unit. The block diagram of the dataflow in each individual signal 

generating unit (SGU), including the WGU and the output coil, is shown in Figure 

4.2. The detailed schematic is included in Appendix A2. 
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Figure 4.2: Dataflow among components in a signal generating unit. 

4.3 Signal Filtering 

The signals generated at the output of each digital-to-analog converter 

(DAC) were observed to contain multiple frequency components, even when the 
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intended signal was a sinusoidal function of single frequency component. This 

was attributed to the method by which the signal was produced. Figure 4.3 

shows an example of an unfiltered output signal of the DAC. Instead of a desired 

smooth sinusoidal signal, the signal exhibited step-like slope. Such a signal could 

be inferred as a mixture of a low-frequency pure sinusoidal signal and a high-

frequency step function, while the step function signal was composed of a wide 

range of frequencies. Since this unfiltered signal contained the unwanted high-

frequency portion added to the signal to be generated, an output lowpass filter 

was used to remove the unwanted frequency components. 

1l .!L D Trig'd M Pos: 0.0005 HORIZONTAL 
~~~~~~~~~~~~~~~ 

.. .. . . . . . . . . . . . . . . . . . . . . . . . . . _ ....................... . · . . . - . . . . · . . . - . . . . · . . . - . . . . · . . . - . . . . ........................ -....................... . · . . . - . . . . · . . . -. .. · . . . - .. . .-

· . . . _. .. ., ...................... _ ....................... . 
1 

· . . . - . . . . · . . . - . . . . · . . . - . . . . · . . . - . . . . ........................ _ ..................... '" · . . . - . . . . · . . . - . . . . · . . . - . . . . · . . . - . . . . 

Window 
Zone 

Window 

Trig Knob 

Hl!IIt 
500.0ns 

CH1 1.00V M 10.0ms CH1 f 2.32V 
12.3546Hz 

Figure 4.3: Unfiltered sinusoidal signal at the output (Vpk-pk = 3.2 V, period = 81 ms). 

A fourth-order Butterworth low-pass filter was implemented by cascading 

two second-order switched-capacitor filter blocks. Using an L TC1 060 switched-

capacitor filter chip by Linear Technology, the cut-off frequency of this low-pass 

filter is adjustable based on the frequency of the input clock signal. In the present 

implementation, the clock signal for the low-pass filter is generated using a pin on 
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the same microcontroller used for controlling the DAC. The particular pin 

selected was dedicated to the output of a built-in counter on ATMega32. Figure 

4.4 demonstrates the relationship between the input and resulting cut-off 

frequencies of the low-pass filter implemented after calibration. The observed 

nonlinearity at high-frequency region of the curve resulted from the particular 

mechanism for generating the clock signal. Using the Clear Timer on Compare 

Match Mode for the built-in counter (Refer to the ATMega32 microcontroller 

datasheet released by Atmel®), the counter output toggled when the counter 

value was decremented to zero and reset. Therefore, the initial counter value 

was proportional to the period of the clock signal it generated. Meanwhile, the 

cut-off frequency of the output filter was governed by the frequency of the clock 

signal. Hence, given a desired output cut-off frequency, the initial counter value 

that was proportional to the reciprocal of the desired cut-off frequency was 

computed by dividing a pre-determined constant value with the desired cut-off 

frequency. As this frequency increased, the resolution of the division result 

significantly decreased, since the counter value was an unsigned 8-bit integer 

limited by the microcontroller. For the current implementation, cut-off frequencies 

beyond approximately 600 Hz are not required, as most of the brainwaves 

emitted by normal human brains have frequencies below 200 Hz. The magnitude 

and phase diagrams of the frequency response of the 4th-order output low-pass 

filter are shown in Figure 4.5, with the cut-off frequency set at approximately 100 

Hz. A very sharp increase in signal attenuation can be observed as frequency 

increased above 100 Hz. Also observable is the phase shift of the output signal 
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was approximately -180° at the frequency of 100 Hz, which indicated the 

frequency response of the filter had 4 poles located near the cut-off frequency. 
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The attenuation of unwanted high-frequency components present in the 

output signal is evident by comparing the unfiltered and filtered output signals 

both in time and frequency domains, as shown in Figures 4.6 and 4.7. 
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Figure 4.7: Frequency spectra of (a) unfiltered and (b) filtered signals. 
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5: DESIGN OF ALGORITHM 

5.1 Overall Design Structure 

The algorithm developed for the design includes the display of a graphic 

user interface (GUI), the embedded control algorithm, and the communication 

between microcontrollers, as the block diagram of the overall design algorithm 

shown in Figure 5.1. On the host PC, a signal-manipulating GUI was designed to 

handle the input of signal parameters and the corresponding mathematical 

processing. Due to the low priority for the need of continuous and synchronous 

data transfer between the GUI and the embedded control, the input signal 

parameters are stored in specific sequence in a text file, which can be 

subsequently retrieved by the embedded control algorithm. The control algorithm 

then encodes the data from the text file to a specific packet format developed to 

be transferred to the peripheral over a USB connection. A host interactive 

display, which was based on the real-time exchange of data packets between the 

host PC and the central control unit, was also programmed to allow real-time 

control of the peripheral, including data sending, signal starting and stopping, and 

other possible control instructions in further expansion. Upon receiving the data 

packets, each of which contains both instruction and coefficient data, the CCU 

decodes the instruction and determines what subsequent operation is to be 

performed and which signal generating unit (SGU) the instruction is intended for. 
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5.2 Graphic User Interface 

The construction of a simple signal waveform, such as a sinusoidal 

function composed of one single frequency component, requires parameters 

such as amplitude, frequency, and phase to be defined. A graphic user interface 

was developed to handle the input of values and manipulate the desired 

waveform using Matlab. Matlab was chosen in this application, owing to its 

mathematical processing capability and the GUI programming tool it provided. In 

the present application, parameters and coefficients were organized in groups, 

each representing the data to be transferred to one single signal-generating unit, 

referred to as a channel in this article. These data were stored as comma­

separated values in a text file with a specific file name. Once started, the 

program loaded the data from the file and stored them in the form of a matrix in 

the program memory. Upon the selection of a particular channel, the plotting area 

on the GUI displayed the waveform defined by the currently stored values of the 

parameters and coefficients associated with the channel. To provide a 

mechanism for composing more complex waveforms, the GUI was designed to 

handle waveforms of a maximum of five frequency components, each also with a 

different amplitude and phase delay. Based on Fourier Theorem, a periodic 

signal waveform can be constructed from a series of basic sinusoidal waves of 

different frequencies [29]. Since human brainwaves normally consist of only 

several frequency components, a mechanism for composing a complex signal 

containing a large number of frequency components is not needed in this 

application. Furthermore, the cut-off frequency at the output can be arbitrarily 
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defined over a certain range from the GUI. The Matlab GUI developed in this 

study is shown in Figure 5.2 below. Refer to Appendix B for the Matlab source 

code. Figure 5.3 demonstrates the customized interactive GUI implemented 

using Atmel® AtUsbHid Library built from Microsoft Foundation Class Library. 

The C++ source code for the interactive GUI is included in Appendix C. 
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Figure 5.2: Graphic user interface for composing the output signal waveform 
(programmed in Matlab). 
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Figure 5.3: Real·time interactive graphic user interface dialog on host PC. 
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The flowchart in Figure 5.4 illustrates the algorithm for implementing the 

waveform composing Matlab GUI. 

5.3 Signal Generating Algorithm 

The generation of signal waveform was accomplished by the use of a 

DAC, of which the output voltage level depended on the input binary code of the 

DAC at a particular time instance. A microcontroller was required to store a 

series of binary codes and transmit them one-by-one sequentially to the DAC 

with a fixed time interval, in order to form a specific waveform. The time interval 

between every two consecutive coefficients would be inversely proportional to 

the pre-defined frequency components of the signal. An 1 Hz sinusoidal signal, for 

example, would have a time interval of 62.5 !-IS, while an 100Hz sinusoidal signal 

would have a time interval of 0.625 !-IS, if 16 sample points are used to compose 

one period of the signal. More specifically, the program computes the 

corresponding value to be loaded in the interval counter based on the frequency 

of the signal. The flowchart of the signal-generating algorithm is shown in Figure 

5.5. 
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Figure 5.4: Control algorithm of the Matlab GUion host PC. 
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Figure 5.5: Implementation of the signal generating algorithm of SGU. 
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To generate a sinusoidal signal with one single frequency component, the 

total number of data points does not have significant effect on the shape of the 

waveform, as the frequency is varied, since it is the time interval between any 

two consecutive points that determines the frequency, and this time interval is 

dependent on the embedded waveform-generating algorithm. However, in the 

case when two or more frequencies exist in a signal, the higher frequency 

components might be significantly distorted, when the number of data points is 

not enough to portray the shape of the fast-varying components. The effect is 

demonstrated below in Figure 5.6. For a signal of two frequency components, as 

the frequency of one component is 10 times that of the other component, the 

higher frequency component is more distorted compared with the case when the 

frequency of one component is 3 times that of the other. Such distortion shows 

that in the present implementation, the larger the difference between the 

frequencies of the fast-varying and the slow-varying components, the fixed 

number of data points is less able to present the details contained in the fast­

varying component. The resolution is limited by the number of data points used 

to construct one period of the fast varying signal. Figure 5.7 shows the same 

sinusoidal waveform represented by different numbers of data points. However, 

the trade-off of using more data points is the demand of more memory space on 

the microcontroller to store these data and a longer delay in data transfer 

between the CCU and the peripheral. Moreover, the control of the signal 

frequency will deviate from linearity, as will be shown in the next section. The on-
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chip EEPROM of the ATMega32 microcontroller used for storing the data points 

in the implementation allows a maximum of 1024 data points. 

p \ 
I \ . \ 

. \ 
'\ 

\ 

(a) (b) 

Figure 5.6: Representation of a sinusoidal signal (a) 3 times and (b) 10 times of the 
coexisting fundamental frequency, both with 32 quantization coefficients. 

250 
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-16 coefficients 
- - -64 coefficien1s 
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Figure 5.7: A sinusoidal signal composed of different numbers of quantization 
coefficients. 

Another advantage of representing a signal with a larger number of data 

points is the reduction of high-frequency components of the signal generated, 
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which usually consist of unwanted noise. Such effect can also be illustrated in the 

frequency domain. Figure 5.8 below shows the frequency responses of an 100-

Hz sinusoidal signal, constructed using different numbers of data points. It can be 

observed that as the number of data points representing a single period 

increases, the number and magnitude of higher-frequency spikes are reduced. 

However, representing a signal waveform with a larger number of quantization 

coefficients using the present signal generating method is not without its trade-

off, as will be explained in the next section. 
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Figure 5.8: Frequency spectra of an unfiltered sinusoidal signal of 100Hz fundamental 
frequency formed with (a) 32, (b) 64, (c) 128, and (d) 256 quantization 
coefficients 
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5.4 Frequency Calibration 

As mentioned previously, the frequency of a generated waveform is 

controlled by adjusting the length of interval between consecutive voltage points. 

The frequencies of produced waveforms, therefore, need to be calibrated against 

the desired frequency of the signal. To accomplish this, a sinusoidal signal with a 

single desired frequency is defined and compared with the actual signal 

waveform generated. Figure 5.9 shows that the relationship between the 

resulting frequency and the value set from the GUI when different numbers of 

data points are used to compose a single period of the waveform. It can be 

observed that with the current waveform-generating algorithm, the output 

frequency levels off at high frequency region. Furthermore, as more data points 

are used to compose a period, the actual output frequency levels off at a lower 

value. 
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Figure 5.9: Relationship between resulting frequency of the output sinusoidal signal and 
the input value of frequency for different number of quantization coefficients 
before frequency calibration. 

The lower-frequency regions of the curves exhibit more linearity between 

the output frequency and the set value and thus can provide more linear control 

of the desired signal frequency. Therefore, it is of great interest to adapt the 

waveform-generating algorithm to the more linear low-frequency regions. By 

increasing the length of interval between consecutive output data points, the 

lower-frequency regions of the curves can be extracted to span the input value 

range. This was accomplished by doubling the initial count of the counter for 

controlling the interval between consecutive points. However, the output 

frequency range is only limited to the lower half of the curves shown. By setting 

the system clock of the microcontroller to a higher speed, the resulting output 

frequency can be increased. Figure 5.10 below shows the resulting relationship 
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as the length between the data points was doubled, while the system clock was 

increased from the original 1 MHz to 4 MHz. It can be observed that with the 

same operating conditions, the resulting output frequency exhibited a larger 

degree of linearity over the desired range. 
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Figure 5.10: Relationship between resulting frequency of the output sinusoidal signal and 
the input value of frequency after frequency calibration. 

5.5 Embedded Control and Communication 

The communication between the host computer and the CCU and 

between the CCU and any of the SGU is accomplished by the exchange of data 

packets having data bytes in a specific sequence. These data packets are 

constructed using a format similar to the format in computer networking 

protocols, by appending bytes that indicate the command to be executed and 

relevant parameters to coefficient bytes. Initially, for each single channel, the GUI 

saves the data in the format shown in Figure 5.11 below, as an array of 
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parameters followed by the coefficients for constructing a period of signal. The 

CSV file generated by the GUI contains arrays in such a format, while the 

number of arrays in the file depends on the total number of SGU attached to the 

CCU. Once the host interactive display is launched, the embedded control 

algorithm on the host PC loads the content of the CSV file into its program 

memory. Every time a function call is made on the host interactive display, one or 

more packets would be sent to the CCU via the USB connection, including a pilot 

packet (Packet 1) containing the instruction byte. If the instruction byte in the pilot 

packet is for coefficient transfer, the number of data packets sent depends on the 

total number of coefficients (data points) used for constructing a particular 

waveform. Upon receiving the pilot packet, the microcontroller on the CCU reads 

byte 6 of the pilot packet that indicates the total number of data points as a 

multiple of 32 and determines the total number of data packets to be received 

following the pilot packet. With this implementation, the total number of data 

points is no longer limited to the maximum number of bytes that can be sent in 

one single packet, as the USB communication protocol provided by Atmel® limits 

the maximum number of bytes in a packet to 64 bytes. Figure 5.12 shows the 

structure of packets sent to the CCU by the host PC for each data transfer. In the 

pilot packet, depending on the command to be executed, the corresponding 

instruction byte following the channel 10 of the intended unit is attached to the 

front of an array containing various signal parameters, such as the base 

frequency, max voltage, and etc .. Upon receiving these data packets, the CCU 

initiates an external interrupt on the intended SGU, and the data are re-directed 
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to the intended channel via the demultiplexing circuit. The source code of the 

CCU embedded algorithm is included in Appendix o. While the microcontroller 

on each SGU is pre-programmed with an unique channel 10, the addition of 

channel 10 byte to the packet to be sent can prevent any unintended SGU to 

execute the command. For example, if a propagation delay caused by the 

demultiplexing network results in the data packets being routed to an unintended 

channel, the SGU at the receiving end would discard the packets because the 

channel 10 in the pilot packet does not match the pre-programmed 10 of the 

receiving SGU. In the present design, the packet can easily accommodate up to 

256 channels and 256 different function calls. 

Figure 5.11: Data structure of the stored parameters for each individual channel on host 
PC. 

Figure 5.12: Structure of the packets sentfrom host PC to CCU during each data transfer. 
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Figure 5.13: Command-decoding algorithm on each SGU. 
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The command decoding sequence implemented on each SGU 

microcontroller is illustrated in Figure 5.13. Once the SGU microcontroller 

receives the pilot packet, and the instruction is decoded to be coefficient transfer, 

byte-by-byte data transfer is performed between the CCU and the intended SGU. 

The scheme of coefficient transfer implemented is shown in Figure 5.14. The 

communication between the CCU and the SGU consists of four states, dictated 

by CommO and Comm1 signal lines. The CommO and Comm1 were 

implemented using a pair of I/O ports between the CCU microcontroller and the 

SGU microcontroller. CommO signal line was configured as an output for the 

CCU and an input for the SGU. The direction of the Comm1 line was the inverse 

of that of CommO. Another connected I/O port between the CCU and the SGU 

was used for transferring the byte data, with the CCU being the sender and the 

SGU being the receiver. Upon the start of transfer, both CommO and Comm1 

lines are reset to '0', and the system is in Reset state. After the CCU writes the 

new byte of coefficient to the data port, it sets CommO to '1' to indicate a new 

byte is ready for the SGU to receive. The system is in Data Ready state at this 

stage. The SGU then reads the new byte of data from the data port and set 

Comm1 to '1'. The Data Received state indicates to the CCU that the current 

byte has been received and a new byte of coefficient can be written to the data 

port. Once the CCU detects a '1' on Comm1, it resets CommO to '0' to switch to 

Cycle Complete state. Subsequently, the SGU resets CommO to '0', and the 

entire cycle is repeated for each of the coefficients. The end of transfer is done 

by exiting the loop when all the coefficient bytes are finished transferring. The 
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communication is achieved by the CCU controlling the status of CommO line and 

the SGU controlling the status of Comm1 line. In any of the states, both the CCU 

and the SGU should check the status of both the CommO and the Comm1 lines 

and perform the corresponding tasks before altering its own signal line. Refer to 

Appendix E for the detailed control algorithm for each SGU microcontroller. 

~ 
sou resets Comm1 

Cycle Complete 
CommO= '0' 
Comm1 = '1' 

Reset 
CommO= '0' 
Comm1 = '0' 

Data Received 
CommO= '1' 
Comm1 = '1' 

CCU writes to the data port, 
setting CommO to '1 ' 

~ 

Data Re.ldy 
CommO= '1' 
Comm1 = '0' 

sou reads from the data port, 
setting Comm1 to '1 ' 

Figure 5.14: Communication states of data point forwarding from CCU to SGU. 
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6: MEASUREMENT AND ANALYSIS 

6.1 Experiment and Method 

A more delicate method of positioning coils was devised, which allowed 

more coils to be mounted on a head-shaped object simultaneously. Each coil at 

the end of a twisted pair was firmly glued on a flat wooden stick with markings 

indicating every centimetre, as illustrated in Figure 6.1. These markings were 

later used for determining the relative spatial coordinate of the coils with respect 

to the reference points in the Polhemus measurement system. 

Figure 6.1: (a) A helical coil (3 loops) and (b) an isosceles triangular coil fixed on a 
wooden stick. The distance between two adjacent marked lines on the stick is 
1 cm. 

These sticks were then mounted on a plastic skull fixed on the base, as 

shown in Figure 6.2 below. Holes were drilled at spots evenly distributed on the 

plastic skull. Then a sheet of rubber layer was glued on the surface of the skull. 

Holes were opened on the rubber sheet at the corresponding locations. Then 

these sticks with the coils attached were inserted into the holes on the skull and 
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held in place by the rubber sheet. Three reference coils (not shown in Figure 6.2) 

which define the nasion, left ear, and right ear positions were fixed on the base 

instead of the corresponding positions on the plastic skull. The reference coils 

also emitted signals recorded by the MEG system; these signals were used for 

determining the relative location and orientation of the test subject in the 

measurement cavity. The overall control and signal generating electronics used 

in the experiment is shown in Figure 6.3. 

Figure 6.2: (a) Front view, (b) left-side view, and (c) right-side view of coil placements on a 
plastic skull covered with a layer of rubber sheet mounted on a plastic base. 
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Figure 6.3: Final assembled magnetic-field-emitting circuit 

The information about the actual spatial locations of the coils was required 

for the inverse analysis results to be compared with, so the performance of the 

inverse analysis method developed could be evaluated. To obtain such 

information, a spatial coordinate locating system developed by Polhemus was 

used. It was necessary to minimize the shifting of the coil locations with respect 

to the three reference coils between the MEG and Polhemus recordings. The 

Polhemus system used in the present is shown in Figure 6.4. The spatial 

coordinates recorded by the Polhemus FASTRAK® system were used for 

determining the relative positions of the test coils and reference coils on the 

phantom and was later used for verifying the spatial localization capability of the 

inverse analysis method developed in association with this study. 
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Figure 6.4: Polhemus FASTRAK® 3D Digitizer used for localizing points in 3D space, 
including a transmitter and a receiver fixed around the test skull during the 
experiment and a stylus used for physically locating the coils on the skull. 

6.2 MEG Measurement using Helical Coils 

Measurement was taken using helical coils mounted on the surface of the 

plastic skull with relative locations of which the planar view is illustrated in Figure 

6.5. All coils were wound with the best attempt to keep the geometry the same. 

6 

3 2 

~ 
1 

Figure 6.5: Relative locations of the helical coils on the head surface. 

53 



.ro . 

100 

50 .. 
(a) 

°O~""--------~50~~----------~I~oo------------~I50 
FreqJerof [Hz) 

(b) 

FreqJerof [Hz) 

Figure 6.6: Frequency spectra of (a) all coils at 13 Hz, maximum current and (b) all coils at 
13 Hz, minimum current. 

The frequency spectra of measured magnetic flux density under various 

test conditions are shown in Figures 6.6 and 6.7. It can be observed all the 

intended frequency components were visible in the recorded magnetic fields. 

Notably the signal at 60 Hz was likely due to the noise present in the power 

supply. 
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Figure 6.7: Frequency spectra of (a) coil 4 at 50 Hz, the rest at 13 Hz, half current and (b) 
coil 4 at 50 Hz, coil 7 at 90 Hz, the rest at 13 Hz, half current. 

6.3 Simulated Magnetic Field Pattern of a Triangular Coil 

An experimental approach of the study was to use triangular shaped coils 

to generate current dipoles. To study the behaviour of current dipoles generated 

by triangular coils, simulations were performed using COMSOL Multiphysics 

software [30]. Models of isosceles triangles were constructed using copper as the 
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material, as illustrated in Figure 6.8. Each side of the triangle consisted of a long 

cylindrical shape with a diameter of 0.15 mm. Since the wire had a constant 

resistance, the current in the coil was proportional to the applied voltage. The 

current density through any cross sections along the long axis of all three 

cylinders would be constant. Notably the corner effect of the triangular shape 

was neglected in the simulation models constructed. Nonetheless, the relatively 

small thickness of the wire compared to the dimensions of the triangular shapes 

simulated, the corner effect would not result in significant difference between the 

simulated and actual magnetic fields. 

Base 

Figure 6.8: Example triangular coil model constructed in COMSOL. 

The orientation of the coil in the simulated space is shown in Figure 6.9 

below. The coils were oriented with the base side of the triangle parallel to the x­

axis at z = 0 of the simulated space. 

56 



Figure 6.9: Simulated space in COMSOl, consisting of a cube of 10-cm side length. 

It was of interest to investigate on the magnetic flux density generated by 

the coil in each dimension of the simulated space. The patterns of the axial 

components of magnetic flux density in the xy, yz, zx planes 5 cm from the origin 

are shown in Figure 6.10, respectively. By varying the leg length of the triangular 

coil while keeping the base length constant at 5 mm, the magnetic flux density 

normal to any plane in the simulated space can be compared. Since 

magnetoencephalography detects only the tangential component of the source 

current, it is of interest to monitor z-component of the magnetic flux density in the 

xy-plane, which is parallel to the base side of the triangular coil. 
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Figure 6.10: (a) Z-component on xy-plane (z = 5 cm). (b) y-component on zx-plane (y = 5 
cm). and (c) x-component on yz-plane (x = 5 cm) of the magnetic field 
generated by the simulated triangular coils. 
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Simulation results indicated the locations of maximum z-component of the 

magnetic flux density on a given xy-plane remained unchanged irrespective to 

the change of base and leg lengths, as long as the origin was fixed at the center 

of the base (See Appendix F). Nonetheless, the maximum y-component on any 

given zx-plane varied as the geometry of the triangle was changed. It appeared 

to be located at the same x and z coordinates as the triangle's centroid. 

The maximum z-component magnetic flux density normal to the xy-plane 

at z = 5 cm, and the y-component along the y-axis on the zx-plane at y = 5 cm for 

various leg-to-base ratios of the coil are shown in Figures 6.11 and 6.12, 

respectively, while the base was kept constant at 5 mm. 
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Figure 6.11: Max z-component magnetic flux density in the xy-plane at z = 5 cm from origin 
of isosceles triangular coils. 
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Figure 6.12: V-component magnetic flux density in the zx-plane at y = 5 cm (x = 0, Z = 0) 
from origin of isosceles triangular coils 

The simulated magnetic flux densities appeared to level off at different 

values of leg-to-base ratio, when the base length was varied, for both z- and y-

components. Next, the effect of increasing the length of the base side of the coil 

was to be modeled. By constructing an equilateral triangular coil with various side 

lengths, the magnetic flux density normal to the planes at the same above 

mentioned positions in the simulated space was modeled, as shown in Figure 

6.13 below. 
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Figure 6.13: Max magnetic flux density in the plane perpendicular to the axial component 
at 5 cm from origin of equilateral triangular coils. 

The simulation result indicated that as the leg-to-base ratio increased, the 

y-component of the resulting magnetic field at the vicinity of the origin behaved 

more similarly to a current dipole. 

6.4 MEG Measurement using Triangular Coils 

MEG data were recorded using triangular coils mounted on the plastic 

skull, as mentioned in the method above. The relative locations of the coils on 

the test skull are illustrated in Figure 6.14 below. Table 6.1 shows the measured 

dimensions of different triangular coils tested. 
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Figure 6.14: Relative locations of the triangular coils on the head surface. 

Table 6.1: Measured base and side lengths of different types of triangular coils used in 
the experiment. 

Coil Base length (mm) Side length (mm) 

1,2,3,4 7.0 7.0 

A1,A2 4.9 13.5 

81,82 3.8 13.5 

The experimental conditions of a sequence of test cases using these 

triangular coils connected to the waveform generating circuit developed are 

recorded in Table 6.2. The same waveform and output resistance were used 

across these test cases. 
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Table 6.2: Coils energized in different test cases in the experiment. 

Test case Coils energized 

1 1 

2 A1 

3 2 

4 A2 

5 1,2 

6 A1,A2 

7 3,4 

8 81,82 

9 1,2,3,4 

10 A1, 81, 82 

11 1,2,3,4,A1,A2,81,82 

The actual locations of the MEG sensors are evenly distributed around the 

measured space, illustrated in Figure 6.15. Each channel consists of an inner 

sensor and an outer sensor. 
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Figure 6.15: Spatial distribution of sensors around the measured space, for a total of 151 
channels, each having an inner and an outer sensors. 
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The spatial distribution maps of measured magnetic fields at a particular 

time instance for different test cases are shown in Figure 6.16 below. In this 

case, time was equal to 1.1 seconds since the beginning of recording. The 

artifact of using a triangular coil to simulate a current dipole can be observed 

towards the back of the measuring space, as sensors were located more towards 

the posterior of the measuring cavity to cover the surface of occipital cortex. As 

indicated by COMSOL simulation in the previous section, a triangular coil 

produces a magnetic field, the pattern of which contains the characteristics of 

both a magnetic dipole and a current dipole. 
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Figure 6.16: Spatial magnetic flux density distribution of test cases 1, 2, 5, 11 at time equal 
to 1.1 seconds after the start of recording (Unit: fT). 
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Figure 6.17: AC component of the recorded magnetic flux densities on all channels for test 
cases 1, 2, 7, 8, 10, and 11. 

The AC components of the measured magnetic flux density with respect to 

time at different channels are shown in Figure 6.17 above. Excluding the DC 
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component allows the signals emitted by different sources to be more 

distinguishable. 

Comparing the AC component of experimental magnetic flux density 

across test cases 1 and 2, 3 and 4, 7 and 8 reveals consistency between the 

simulated and experimental data of change in magnetic flux density with respect 

to the geometry change of the triangular coil. The increase in the recorded 

magnetic field complexity is observable, as the number of magnetic field sources 

increases. Also noticeable in the figure is the opposite magnetic field associated 

with the induced current on the other coil when only one single coil was 

energized, due to the arranged proximity in locations for each pair of coils. The 

resulting magnetic flux density and locations of dipoles obtained from each of the 

TSVD, data clustering, and downhill simplex computation inverse analysis steps 

for several experimental trials are illustrated sequentially in Figure 6.18 (See 

Appendix G for the inverse analysis results of the other test cases). The actual 

locations of the dipoles derived from the Polhemus measurement are also shown 

in the figure. It can be observed that the inversely mapped dipole locations 

converged more toward the actual locations after each subsequent step. 
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Figure 6.18: Left - Resulting magnetic flux density distribution after TSVD; middle­
Resulting dipole locations after data clustering; right - Adjusted dipole 
locations after downhill simplex computation of test cases 5, 8, and 9. 

The resulting dipole moments from inverse analysis for different test cases 

are listed in Table 6.3. The results were grouped into dipole numbers according 

to their associated coils. The orthogonality for each dipole across different test 

cases was also calculated. As shown by the table, the directionality of each 

individual inversely mapped dipole moment was fairly consistent across different 
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test cases. However, the analysis result exhibited a large variation in terms of the 

magnitude for the same dipole across different cases. 

Table 6.3: Resulting dipole moments for the dipole associated with each coil across 
different test cases from the inverse analysis and their correlation. 

Dipole moment (nA o m2
) Orthogonality 

Dipole 
Test With 
case x-comp y-comp z-comp Magnitude test [a·b]/[lallbl] 

case 

1 -11.4126 -2.64473 4.2279 12.4546045 5 -0.99712 

1 5 4.44082 0.694774 -1.79769 4.84100016 8 -0.99722 

8 -9.07006 -2.16781 3.86496 10.0947167 1 0.998896 

3 9.08655 0.745644 4.78266 10.2953976 5 0.989986 

2 5 4.00989 0.247444 2.89069 4.94939744 8 0.968141 

8 2.25881 -0.25313 1.01386 2.48881679 3 0.982892 

2 9.99079 1.81074 -3.97841 10.9051552 6 0.997893 

A1 6 13.8897 2.01862 -6.43405 15.4400645 9 0.996194 

9 12.0714 2.11669 -4.43003 13.031663 2 0.999632 

4 -15.3359 2.13292 -7.68465 17.2856305 6 -0.98913 
A2 

6 11.8206 -2.03927 8.30499 14.5896561 - -

7 -3.46474 4.62228 5.79692 8.18377524 9 -0.9823 
B1 

9 3.66125 -6.27462 -5.18878 8.92743219 - -

7 -0.54642 7.23373 -7.91303 10.7350581 9 0.998203 
B2 

9 -0.25029 2.21183 -2.17895 3.11490925 - -

3 8 4.06249 -8.84695 -8.80414 13.1257469 - -

4 8 0.485255 -5.99561 6.46891 8.83343695 - -
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7: CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

Cognitive science and brain clinical research can benefit from MEG, 

provided that a reliable inverse analysis technique for localizing the active 

regions in the brain can be developed. A consistent electronic method was 

devised to provide the ground truth for the verification of a novel inverse analysis 

technique developed by attempting to physically simulate the magnetic fields 

emitted by active brain neurons. Moreover, the feasibility of using triangular coils 

to simulate current dipoles, which more faithfully represent neuronal activities, 

was also studied. Both simulation and experiment revealed that triangular coils 

with finite base lengths still produce magnetic field patterns of magnetic dipoles. 

Another drawback of using coils for emitting magnetic signal observed is the 

undesirable induction across coils of close spatial proximity. The inverse analysis 

method developed in association with the present study provided accurate 

estimate of the actual dipole location and directionality, while the consistency for 

estimating the dipole magnitude requires improvement. 

7.2 Future Work 

Using the signal generating mechanism developed in the present study, a 

more complex combination of signals across different sources can be devised in 

the next phase of inverse analysis method development. Moreover, the use of 

triangular coils with finite base lengths still does not truly simulate a current 
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dipole, which can more realistically model the ion exchange process in a cluster 

of active brain neuron than a magnetic dipole. A more sophisticated approach 

might involve the use of capacitive elements in the circuit to store charges until a 

controlled triggering event. How to avoid the interference of the generated signal 

due to the triggering mechanism is also subject to further study. In the electronics 

aspect, the method for emitting magnetic signal in the present study does not 

allow controllable synchronization of signals across different signal generating 

units. Having more synchronized signal across different sources might post more 

challenge to the inverse analysis. The future aim is to allow the signal pattern 

resulting from the MEG recording of human subjects to be replicated on the 

signal-generating device before the spatial mapping of sources can be 

proceeded. A more finely calibrated spatial fixation of the coils is also subject to 

more development for any clinical purposes. 
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Appendix A: Schematic Drawings 

Appendix A 1: Schematic of standalone waveform-generating unit in previous implementation 
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Appendix A2: Schematic drawing of waveform-generating unit developed for this thesis work 
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Appendix B: Matlab Code for Waveform-composing GUI 

Note: The following code should be saved as phantomGUl1.m in the same 
directory as the phantomGUl1.fig file and executed in Matlab program. 

function varargout = phantomGUI1 (varargin) 
%PHANTOMGUI1 M-file for phantomGUl1.fig 
% PHANTOMGUI1, by itself, creates a new PHANTOMGUI1 or raises the existing 
% singleton*. 
% 
% 
% 
% 

H = PHANTOMGUI1 returns the handle to a new PHANTOMGUI1 or the handle to 
the existing singleton*. 

% PHANTOMGUI1('Property','Value', ... ) creates a new PHANTOMGUI1 using the 
% given property value pairs. Unrecognized properties are passed via 
% varargin to phantomGUI1_0peningFcn. This calling syntax produces a 
% warning when there is an existing singleton*. 
% 
% PHANTOMGUI1(,CALLBACK') and PHANTOMGUI1(,CALLBACK',hObject, ... ) call the 
% local function named CALLBACK in PHANTOMGUI1.M with the given input 
% arguments. 
% 
% 
% 
% 

*See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one 
instance to run (singleton)". 

% See also: GUIDE, GUIDATA, GUIHANDLES 
% Created by Jeff Liu 
% Last Modified by GUIDE v2.5 30-Nov-2010 14:39:56 

% Begin initialization code - DO NOT EDIT 
guLSingleton = 1; 
gui_State = struct(,gui_Name', mfilename, ... 

'guLSingleton', guLSingleton, ... 
'guLOpeningFcn', @phantomGUI1_0peningFcn, ... 
'guLOutputFcn', @phantomGUI1_0utputFcn, ... 
'guLLayoutFcn', 0, ... 
'guLCaliback', 0); 

if nargin && ischar(varargin{1}) 
guLState.gui_Caliback = str2func(varargin{1}); 

end 
if nargout 

[varargout{1 :nargout}] = guLmainfcn(guLState, varargin{:}); 
else 

guLmainfcn(guLState, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
0/0========================================================================== 
% -- Executes just before phantomGUI1 is made visible. 
function phantomGUI1_0peningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 
handles.Coeff = 0; 
handles.Comp = 0; 
% Data Structure: 
% handles.Coeff = Channel 1: baseFreq, maxV, 3dBJreq, numCoeff/32, Coeff(1), Coeff(2), Coeff(3), ... , 
Coeff(numCoeff) 
% Channel 2: baseFreq, maxV, 3dB_Freq, numCoeff/32, Coeff(1), Coeff(2), Coeff(3), ... , 
Coeff(numCoeff) 
% Channel 3: ... 
% 
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% 
% Channel n: 
% handles.Comp = Channel 1: Comp1_Amp, Comp1Jreq, Comp1_Phase, Comp1_ROD, Comp2_Amp, 
Comp2_Freq, ... , Comp5_Phase, Comp5_ROD 
% Channel 2: ... 
% 
% 
guidata(hObject, handles); % Update handles structure 
0/0========================================================================== 
function varargout = phantomGUI1_0utputFcn(hObject, eventdata, handles) 
varargout{1} = handles.output; 
0/0========================================================================== 
% This function responds to an input to the frequency edit box by checking 
% the validity of the input value and displaying it. 
function ediUreq_ Caliback(hObject, eventdata, handles) 
handles_Val = handles.unitSelect; 
val = get(handles_Val,Value'); 
handles_Val = handles.edit_freq; 
input = str2num(get(hObject, 'String')); 
%Input value limited from 0 to 255. 
if (isempty(input) I (input<O) I (input>255)) 

edit_Val = get(handles_ Val,'Value'); 
set(hObject, 'String',edit_ Val); 

else 
handles.Coeff(val-1,1) = input; 
set(handles_ Val,'Value' ,handles.Coeff(val-1, 1 )); 

end 
guidata(hObject, handles); 
%========================================================================== 
function ediUreq_CreateFcn(hObject, eventdata, handles) 
ifispc 

set(hObject, 'BackgroundColor', 'white'); 
else 

set(hObject, 'Background Color' ,get(O, 'defau ItUicontroIBackgroundColor')); 
end 
0/0========================================================================== 
% This function responds to an input to the max voltage edit box by checking 
% the validity of the input value and displaying it. 
function edit_maxV_Caliback(hObject, eventdata, handles) 
handles_Val = handles.unitSelect; 
val = get(handles_Val,Value'); 
handles_Val = handles.ediCmaxV; 
input = str2num(get(hObject,'String')); 
%Input value limited from 0 to 10.0. 
if (isempty(input) I (input<O.O) I (input>10.0» 

ediC Val = get(handles_ Val,'Value'); 
set(hObject,'String' ,edit_Val); 

else 
handles.Coeff(val-1 ,2) = input; 
set(handles_ Val,'Value' ,handles.Coeff(val-1 ,2)); 

end 
guidata(hObject, handles); 
%========================================================================== 
function edit_maxV _CreateFcn(hObject, eventdata, handles) 
if is pc 

set(hObject, 'Backgrou ndColor', 'white'); 
else 

set(hObject, 'BackgroundColor' ,get(O, 'defaultUicontroIBackgroundColor')); 
end 
0/0========================================================================== 
% This function responds to a selection of channel by displaying all 
% coefficients and parameters of the newly selected channel. 
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function unitSelect_Caliback(hObject, eventdata, handles) 
val = get(hObject, 'Value'); 
string_list = get(hObject, 'String'); 
selected_string = string-'ist{val}; % convert from cell array 
if (val-= 1) 

numCoeff = 32*handles.Coeff(val-1 ,4); 
hObject = handles.CurNumSam; 
set(hObject,'String',num2str(numCoeff); 
x = 1:1:numCoeff; 
y = handles.Coeff(val-1,5:numCoeff+4); 
axes(handles.plot1 ) 
plot(x,y); 
handles_ Val(1) = handles.Amp1; 
handles_Val(2) = handles.Freq1; 
handles_ Val(3) = handles.Pha1; 
handles_ Val(4) = handles.numPer1; 
handles_ Val(5) = handles.Amp2; 
handles_ Val(6) = handles.Freq2; 
handles_ Val(7) = handles.Pha2; 
handles_ Val(8) = handles.numPer2; 
handles_ Val(9) = handles.Amp3; 
handles_ Val(1 0) = handles.Freq3; 
handles_ Val(11) = handles.Pha3; 
handles_Val(12) = handles.numPer3; 
handles_Val(13) = handles.Amp4; 
handles_Val(14) = handles.Freq4; 
handles_Val(15) = handles.Pha4; 
handles_Val(16) = handles.numPer4; 
handles_Val(17) = handles.Amp5; 
handles_ Val(18) = handles.Freq5; 
handles_ Val(19) = handles.Pha5; 
handles_ Val(20) = handles.numPer5; 
handles_3dBFreq = handles.cutoffFreq; 
for i = 1:20 

set(handles_ Val(i),'Value',handles.Comp(val-1,i»; 
celiVal = get(handles_ Val(i),'Value'); 
hObject = handles_Val(i); 
set(hObject, 'String' ,ceIlVal); 

end 
set(handles_ 3dBFreq, 'Value' ,handles. Coeff(val-1,3»; 
celiVal = get(handles_3dBFreq,'Value'); 
hObject = handles_3dBFreq; 
set(hObject,'String',ceIlVal); 

handles_Val(1) = handles.ediUreq; 
handles_Val(2) = handles.edit_maxV; 
for i = 1:2 

set(handles _ Val(i), 'Value' ,handles. Coeff(val-1,i»; 
celiVal = get(handles_ Val(i),'Value'); 
hObject = handles_ Val(i); 
set(hObject,'String',ceIlVal); 

end 
end 
guidata(hObject, handles); %updates the handles 
0/0========================================================================== 
function unitSelecC CreateFcn(hObject, eventdata, handles) 
if is pc 

set(hObject, 'Background Color' ,'white'); 
else 

set(hObject, 'Backgrou ndColor' ,get(O, 'defaultU icontroIBackgroundColor'»; 
end 
0/0========================================================================== 
function typeSelect_ Caliback(hObject, eventdata, handles) 
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0/0========================================================================== 
function typeSelect_CreateFcn(hObject, eventdata, handles) 
ifispc 

set(hObject, 'Background Color' ,'white'); 
else 

set(hObject, 'BackgroundColor' ,get(O, 'defaultUicontroIBackgroundColor'»; 
end 
0/0========================================================================== 
function numSelect_Caliback(hObject, eventdata, handles) 
0/0========================================================================== 
function numSelect_CreateFcn(hObject, eventdata, handles) 
if ispc 

set(hObject, 'Background Color' ,'white'); 
else 

set(hObject, 'BackgroundColor' ,get(O, 'defaultUicontroIBackgroundColor'»; 
end 
0/0========================================================================== 
% This function responds to when the Reload button is pushed by retrieving 
% the data with the corresponding file name stored in a specific sequence. 
function Reload_Caliback(hObject, eventdata, handles) 
handles.Coeff = csvread('testData2_Coeff.dat'); 
handles.Comp = csvread('testData2_Comp.dat'); 
menuHandle = handles.unitSelect; 
set(menuHandle, 'Value', 1); 
menuHandle = handles.typeSelect; 
set(menuHandle, 'Value', 1); 
menu Handle = handles.samSelect; 
set(menuHandle, 'Value',1); 
guidata(hObject, handles); 
%========================================================================== 
% This function responds to when the Save button is pushed by storing 
% the data with the corresponding file name stored in a specific sequence. 
function Save_Caliback(hObject, eventdata, handles) 
csvwrite(,testData2 _ Coeff.dat' ,handles. Coeff); 
csvwrite('testData2_ Comp.dat' ,handles.Comp); 
%========================================================================== 
% This function responds to when the Generate button is pushed by 
% generating a series of coefficients with specified parameters for a given 
% channel and displaying the resulting waveform. 
function Generate_Caliback(hObject, eventdata, handles) 
contHandles = handles.unitSelect; 
unitltem = get(contHandles,'Value'); 
contHandles = handles.typeSelect; 
type Item = get(contHandles,'Value'); 
contHandles = handles.samSelect; 
samltem = get(contHandles,'Value'); 
contHandles = handles.numSelect; 
numltem = get(contHandles,'Value'); 
if (sam Item == 2) 

numCoeff = 64; 
elseif (samltem == 3) 

numCoeff = 128; 
else if (samltem == 4) 

numCoeff = 192; 
else if (samltem == 5) 

numCoeff = 256; 
elseif (samltem == 6) 

numCoeff = 384; 
elseif (sam Item == 7) 

numCoeff = 512; 
end 
if (unitltem -= 1 & sam Item -= 1 & numltem -= 1) 
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handles.Coeff(unitltem-1,4) = numCoeff/32; 
x = (pi/numCoeff):(pi/(numCoeff/2»:(2*pi-(pi/numCoeff); 
for i = 1:(numltem-1) 

A(i,:) = handles.Comp(unitltem-1,4*i-3:4*i); 
end 
if (type Item == 1) 

Y = handles.Coeff(unitltem-1 ,5:numCoeff+4); 
elseif (type Item == 2) 

[baseFreq,ind] = min(A(1 :numltem-1 ,2»; 
if (A(ind,4) -= 1) 

A(ind,4) == 1; 
end 
for i = 1 :(numltem-1) 

if ((A(i,4»(A(i,2)/baseFreq» I (A(i,4)==O» 
A(i,4) = (A(i,2)/baseFreq); 

end 
yComp(i,1 :A(i,4 )*numCoeWbaseFreq/A(i,2» = 

uint8(( (sin(x( 1 :numCoeW A(i,4 )*baseFreq/A(i,2»* A(i,2)/baseFreq+2*pi*A(i,3)/360)+1 )/2). * A(i, 1 »; 
yComp(i,A(i,4 )*numCoeWbaseFreq/A(i,2)+1 :numCoeff) = A(i, 1 )/2; 
%yComp(i,:) = uint8(((sin(x*A(i,2)/baseFreq+2*pi*A(i,3)/360)+1 )/2). * A(i, 1»; 
%yComp(i,:) = uint8(((sin(x*A(i,2)/baseFreq)+1 )/2)*A(i, 1»; 

end 
y = sum(yComp,1); 
[topFreq,ind] = max(A(1 :numltem-1 ,2»; 
contHandles = handles.decay1; 
decayVal = get(contHandles,'Value'); 
range = max(y); 
for i = 1 :numCoeff 

y(1 ,i) = uint8((y(1 ,i)-range/2)*exp((decayVal*i*topFreq)/(numCoeWbaseFreq»+range/2); 
end 

elseif (type Item == 3) 
[baseFreq,ind] = min(A(1 :numltem-1 ,2»; 
for i = 1:(numltem-1) 

for j = 1 :2:(2*A(i,2)/baseFreq)-1 
for k = 1 :numCoeWbaseFreq/(2*A(i,2» 

yTemp(((numCoeWbaseFreq*O-1 »/(2*A(i,2)))+k) = (A(i,1 )*A(i,2)/(numCoeWbaseFreq/2»*k - 1; 
yTemp(((numCoeWbaseFreq*j)/(2* A(i,2)))+k) = A(i,1) -

(A(i,1)* A(i,2)/(numCoeWbaseFreq/2»*(k-1) - 1;; 
%yComp(i,((numCoeWbaseFreq*O-1 »/(2* A(i,2»)+1 :( (numCoeWbaseFreq*j)/(2* A(i,2»» = 

(256* A(i,2)/(numCoeWbaseFreq/2»*i - 1; 
%yComp(i,((numCoeWbaseFreq*j)/(2*A(i,2)))+1 :((numCoeWbaseFreq*O+1 »/(2*A(i,2»» = 256 -

(256/(numCoeff/2»*(i-((numCoeff/2)+1» - 1;; 
end 

end 
yComp(i,1 :numCoeff-(numCoeWbaseFreq*A(i,3)/(360* A(i,2»» = 

yTemp((numCoeWbaseFreq*A(i,3)/(360*A(i,2»)+1 :numCoeff); 
yComp(i,numCoeff-(numCoeWbaseFreq*A(i ,3 )/(360* A(i ,2»)+ 1 :numCoeff) = 

yTemp(1 :(numCoeWbaseFreq* A(i,3)/(360* A(i,2»»; 
end 
y = uint8(sum(yComp,1»; 

else if (type Item == 4) 
[baseFreq,ind] = min(A(1 :numltem-1 ,2»; 
for i = 1 :(numltem-1) 

for j = 1:2:(2*A(i,2)/baseFreq)-1 
%yComp(i,((numCoeWbaseFreq*O-1 »/(2* A(i,2)))+1 :((numCoeWbaseFreq*j)/(2*A(i,2»» = A(i, 1); 
%yComp(i,((numCoeWbaseFreq*j)/(2*A(i,2)))+1 :((numCoeWbaseFreq*O+1 »/(2*A(i,2»» = 0; 
yTemp(((numCoeWbaseFreq*O-1 »/(2*A(i,2)))+1 :((numCoeWbaseFreq*j)/(2*A(i,2»» = A(i,1); 
yTemp(((numCoeWbaseFreq*j)/(2* A(i,2)))+1 :((numCoeWbaseFreq*O+1 »/(2* A(i,2»» = 0; 

end 
yComp(i, 1 :numCoeff-(numCoeWbaseFreq*A(i,3)/(360*A(i,2)))) = 

yTemp((numCoeWbaseFreq*A(i,3)/(360*A(i,2»)+1 :numCoeff); 
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yComp(i,numCoeff-(numCoeff*baseFreq* A(i,3)/(360* A(i,2)) )+1 :numCoeff) = 
yTemp(1 :(numCoeff*baseFreq* A(i,3)/(360* A(i,2)))); 

end 
y = uint8(sum(yComp,1)); 

elseif (type Item == 5) 
Y = uint8(rand(1,numCoeff).*255); 

else 
end 
x = 1:1 :numCoeff; 
handles.Coeff(unitltem-1,5:numCoeff+4) = y; 
axes(handles.plot1 ) 
if «typeltem == 1) I (type Item == 5)) 

plot(x,y); 
else 

if numltem == 2 
plot(x,yComp(1,:),'g',x,y,'b'); 

elseif numltem == 3 
plot(x,yComp( 1,:), 'g' ,x,yComp(2,:), 'y',x,y, 'b'); 

elseif numltem == 4 
plot(x,yComp(1,:),'g',x,yComp(2,:),'y',x,yComp(3,:),'m',x,y,'b'); 

elseif numltem == 5 
plot(x,yComp(1,:),'g',x,yComp(2,:),'y',x,yComp(3,:),'m',x,yComp(4,:),'c',x,y,'b'); 

elseif numltem == 6 
plot(x,yComp(1,:),'g',x,yComp(2,:),'y',x,yComp(3,:),'m',x,yComp(4,:),'c',x,yComp(5,:),'r',x,y,'b'); 

end 
end 
hObject = handles.CurNumSam; 
set(hObject,'String',num2str(numCoeff)); 

elseif (unitltem -= 1 & sam Item -= 1 & numltem == 1) 
handles.Coeff(unitltem-1,4) = numCoeff/32; 
x = (pi/numCoeff):(pi/(numCoeff/2)):(2*pi-(pi/numCoeff)); 
if (typeltem == 1) 

Y = handles.Coeff(unitltem-1,5:numCoeff+4); 
else if (type Item == 2) 

Y = uint8«(sin(x)+1 )/2).*255); 
elseif (typeltem == 3) 

for i = 1 :numCoeff/2 
y(i) = (256/(numCoeff/2))*i - 1; 

end 
for i = (numCoeff/2)+1 :numCoeff 

y(i) = 256 - (256/(numCoeff/2))*(i-«numCoeff/2)+1)) - 1; 
end 

elseif (type Item == 4) 
y(1 :(numCoeff/2)) = 255; 
y«numCoeff/2)+1 :numCoeff) = 0; 

elseif (type Item == 5) 
Y = uint8(rand(1,numCoeff).*255); 

else 
end 
x = 1:1:numCoeff; 
handles.Coeff(unitltem-1,5:numCoeff+4) = y; 
axes(handles.plot1 ) 
plot(x,y); 
hObject = handles.CurNumSam; 
set(hObject, 'String' ,num2str( numCoeff)); 

end 
guidata(hObject, handles); 
0/0========================================================================== 
function samSelect_ Caliback(hObject, eventdata, handles) 
0/0========================================================================== 
function samSelect_CreateFcn(hObject, eventdata, handles) 
ifispc 
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set(hObject, 'Background Color' ,'white'); 
else 

set(hObject, 'BackgroundColor' ,get(O, 'defaultUicontroIBackgroundColor')); 
end 
0/0========================================================================== 
% This function responds to when a specific coefficient number is selected 
% by highlighting the coefficient selected on the waveform displayed in 
% red. The selected coefficient number should be between 1 and the total 
% number of samples used. 
function samNum_Caliback(hObject, eventdata, handles) 
handles_Val = handles.unitSelect; 
unitltem = get(handles_ Val, 'Value'); 
handles_Val = handles.samNum; 
input = uint16( str2num(get(hObject, 'String'))); 
%Input value limited from 1 to the total number of sample points. 
if (unitltem -= 1) 

numSam = 32*handles.Coeff(unitltem-1,4); 
if (isempty(input) I (input<1) I (input>numSam)) 

edit_Val = get(handles_ Val ,'Value'); 
set(hObject, 'String' ,edit_Val); 

else 
set(handles_ Val,'Value',input); 
handles_Val = handles.samVal; 
set(handles_ Val, 'Value',handles.Coeff(unitltem-1 ,input+4)); 
hObject = handles_Val; 
set(hObject, 'String' ,handles. Coeff(unitltem-1 ,input+4)); 
%plots the waveform with the specified point highlighted 
%x = 0:(pi/(numSam/2)):((numSam-1 )*pi/(numSam/2)); 
x = 1:1 :numSam; 
y = handles.Coeff(unitltem-1,5:numSam+4); 
axes(handles.plot1 ) 
%plots the x and y data of selected sample point in red 
plot(x, y ,x(input),y(input), '*r'); 

end 
end 
guidata(hObject, handles); 
%========================================================================== 
function samNum_CreateFcn(hObject, eventdata, handles) 
ifispc 

set(hObject,'BackgroundColor', 'white'); 
else 

set(hObject, 'BackgroundColor', get(O, 'defaultUicontroIBackgroundColor')); 
end 
0/0========================================================================== 
% This function responds to when the value of a selected coefficient number 
% is modified by checking the validity of input value, storing and 
% displaying the new value on the waveform in red. 
function samVaLCaliback(hObject, eventdata, handles) 
handles_Val = handles.unitSelect; 
unitltem = get(handles_ Val,'Value'); 
handles_Val = handles.samVal; 
input = uint8(str2num(get(hObject,'String'))); 
%Input value ranges from 0 to 255 (byte). 
if (unitltem -= 1) 

numSam = 32*handles.Coeff(unitltem-1,4); 
if (isempty(input) I (input<O) I (input>255)) 

edit_Val = get(handles_ Val, 'Value'); 
set(hObject, 'String',edit_ Val); 

else 
handles_Val = handles.samNum; 
ediCVal = get(handles_Val,'Value'); 
handles.Coeff(unitltem-1 ,edit_ Val+4) = input; 
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handles Val = handles.samVal; 
set(handies_ Val,'Value',input); 
set(hObject, 'String' ,input); 
%plots the waveform with the specified point highlighted 
%x = 0:(pi/(numSam/2»:«numSam-1 )*pi/(numSam/2»; 
x = 1:1 :numSam; 
y = handles.Coeff(unitltem-1 ,5:numSam+4); 
axes(handles.plot1 ) 
%plots the x and y data of selected sample point in red 
plot(x,y,x(ediC Val),y(edit_ Val),'*r'); 

end 
end 
guidata(hObject, handles); 
0/0========================================================================== 
function samVal_CreateFcn(hObject, eventdata, handles) 
if is pc 

set(hObject, 'Background Color' ,'white'); 
else 

set(hObject, 'Backgrou ndColor' ,get(O, 'defaultU icontroIBackgroundColor'»; 
end 
0/0========================================================================== 
% This function responds to when the value of the filter cutoff frequency 
% is modified by checking the validity of input value and storing the new 
% value. The resulting value would be the stored value multiplied by 5. 
function cutoffFreCLCaliback(hObject, eventdata, handles) 
handles_Val = handles.unitSelect; 
unitltem = get(handles_ Val, 'Value'); 
handles_Val = handles.cutoffFreq; 
input = uint8(str2num(get(hObject,'String'))); 
%Input value ranges from 0 to 100. 
if (unitltem -= 1) 

if (isempty(input) I (input<O) I (input>100» 
edit_Val = get(handles_ Val,'Value'); 
set(hObject, 'String' ,edit_Val); 

else 
handles.Coeff(unitltem-1 ,3) = input; 
set(handles _Val, 'Value',handles.Comp(unitltem-1 ,3»; 

end 
end 
guidata(hObject, handles); 
0/0========================================================================== 
function cutoffFreq_CreateFcn(hObject, eventdata, handles) 
ifispc 

set(hObject, 'Background Color' ,'white'); 
else 

set(hObject, 'Background Color' ,get(O, 'defau ItUicontrol Backgrou ndColor'»; 
end 
010========================================================================== 
% This function responds to when the value of waveform decay is modified by 
% checking the validity of input value and storing the new value. The value 
% is used for calculating the exponent of a exponential decay function. -1 
% represents the max decay rate and 0 represents no decay. 
function decay1_ Caliback(hObject, eventdata , handles) 
handles_Val = handles.unitSelect; 
unitltem = get(handles_Val,'Value'); 
handles_Val = handles.decay1; 
input = str2num(get(hObject, 'String'»; 
%Input value should be between -1 and 0 (double). 
if (unitltem -= 1) 

if (isempty(input) I (input<-1) I (input>O» 
edit_Val = get(handles_Val,'Value'); 
set(hObject, 'String' ,edit_Val); 
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else 
set(handles_ Val,'Value',input); 

end 
end 
guidata(hObject, handles); 
%========================================================================== 
function decay1_CreateFcn(hObject, eventdata, handles) 
if ispc 

set(hObject, 'Background Color' ,'white'); 
else 

set(hObject, 'BackgroundColor' ,get(O, 'defaultUicontroIBackgroundColor')); 
end 
set(hObject, 'Value' ,0); 
set(hObject, 'String' ,0); 
gUidata(hObject, handles); 
0/0========================================================================== 
% This parameter governs the amplitude of component 1. 
function Amp1_Callback(hObject, eventdata, handles) 
handles_Val = handles.unitSelect; 
unitltem = get(handles_ Val,'Value'); 
handles_Val = handles.Amp1; 
input = uint8(str2num(get(hObject,'String'))); 
%Input value should be between 0 and 50 for each component. 
if (unitltem -= 1) 

if (isempty(input) I (input<O) I (input>50)) 
%set(hObject, 'String', '0') 

ediCVal = get(handles_Val,'Value'); 
set(hObject,'String',edit_ Val); 

else 
handles.Comp(unitltem-1,1) = input; 
set(handles_ Val,'Value',handles.Comp(unitltem-1, 1)); 

end 
end 
guidata(hObject, handles); 
0/0========================================================================== 
function Amp1_CreateFcn(hObject, eventdata, handles) 
ifispc 

set(hObject, 'Background Color' ,'white'); 
else 

set(hObject, 'Background Color' ,get(O, 'defaultUicontrol BackgroundColor')); 
end 
0/0========================================================================== 
% This parameter governs the frequency of component 1. 
function Freq1_Callback(hObject, eventdata, handles) 
handles_Val = handles.unitSelect; 
unitltem = get(handles_Val,'Value'); 
handles_Val = handles.Freq1; 
input = uint8(str2num(get(hObject,'String'))); 
%Input value should be between 1 and 200 for each component. 
if (unitltem -= 1) 

if (isempty(input) I (input<1) I (input>200)) 
%set(hObject, 'String', '0') 

edit_Val = get(handles_Val,'Value'); 
set(hObject, 'String' ,edit_Val); 

else 
handles.Comp(unitltem-1 ,2) = input; 
set(handles_ Val, 'Value' ,handles.Comp(unitltem-1 ,2)); 

end 
end 
guidata(hObject, handles); 
%========================================================================== 
function Freq1_CreateFcn(hObject, eventdata, handles) 
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ifispc 
set(hObject, 'Background Color' ,'white'); 

else 
set(hObject, 'BackgroundColor' ,get(O, 'defaultUicontroIBackgroundColor')); 

end 
%========================================================================== 
% This parameter governs the phase delay of component 1. 
function Pha1_Caliback(hObject, eventdata, handles) 
handles_Val = handles.unitSelect; 
unitltem = get(handles_ Val, Value'); 
handles_Val = handles.Pha1; 
input = uint8(str2num(get(hObject,'String'))); 
%Input value should be between 0 and 360 for each component. 
if (unitltem -= 1) 

if (isempty(input) I (input<O) I (input>360)) 
%set(hObject, 'String', '0') 

ediCVal = get(handles_Val,'Value'); 
set(hObject,'String',ediC Val); 

else 
handles.Comp(unitltem-1 ,3) = input; 
set(handles_ Val,Value',handles.Comp(unitltem-1 ,3)); 

end 
end 
guidata(hObject, handles); 
%========================================================================== 
function Pha1_CreateFcn(hObject, eventdata, handles) 
if ispc 

set(hObject, 'Background Color' ,'white'); 
else 

set(hObject, 'Backgrou ndColor' ,get(O, 'defaultUicontroIBackgroundColor')); 
end 
%========================================================================== 
% This parameter governs the rate of decay of component 1. 
function RofDecay1_ Caliback(hObject, eventdata, handles) 
handles_Val = handles.unitSelect; 
unitltem = get(handles_ Val, Value'); 
handles_Val = handles.RofOecay1; 
input = str2num(get(hObject,'String')); 
%Input value should be between -1 and 0 (double) for each component. 
if (unitltem -= 1) 

if (isempty(input) I (input<-1) I (input>O)) 
edit_Val = get(handles_Val,Value'); 
set(hObject,'String',edit_ Val); 

else 
handles.Comp(unitltem-1,4) = input; 
set(handles_ Val, Value',handles.Comp(unitltem-1,4 )); 

end 
end 
guidata(hObject, handles); 
0/0========================================================================== 
function RofDecay1_CreateFcn(hObject, eventdata, handles) 
if is pc 

set(hObject, 'Background Color' ,'white'); 
else 

set(hObject, 'Backgrou ndColor' ,get(O, 'defaultUicontroIBackgroundColor')); 
end 
0/0========================================================================== 
% Note: The same sets of function calls for controlling the parameters of 
% components 2 to 5 are not shown. 
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Appendix C: C++ Code for Interactive Host GUI 

Note: The following code should be saved as UsbHidDemoCodeDlg.cpp to 
replace the file with the same name and compiled together with modified 
UsbHidDemoCode.rc, UsbHidDemoCodeDlg.h, and resource.h files in the 
UsbHidDemoCode project provided by Atmel® 

// UsbHidDemoCodeDlg.cpp : implementation file 
11/// // //1/11/// //1/ 11/11///11///1/1/// // // // //1/ 1/11/11/11/1/1/1/1/11/11/11/11/ 
1/ This program has been modified by Jeff to accommodate functions required for 
// implementing the interactive GUI for Phantom host PC using the functions of 
1/ the AtUsbHid library. The library functions prototypes can be found in the 
// last part of the AtUsbHid.h file. 
1///11/1/1/1/// // // /11/ 1/ 11/ 1/1/ 1//1/1///1//1 /1/1// // // // //1/ /1/1/1/ /1/1/// /1/1/ 
#include "stdafx.h" 
#include "UsbHidDemoCode.h" 
#include "UsbHidDemoCodeDlg.h" 
#include <winuser.h> 
#include <windows.h> 
#include <dbt.h> 
#ifdef _DEBUG 
#define new DEBUG_NEW 
#undef THISJILE 
static char THIS_FILED = _FILE_; 
#endif 
//////1///////1///1///////1/1//1/////1////1///////1//11/1//11///1/1///1///11/ 
I/Include Atmel Hid Usb 
#include "AtUsbHid.h" 
#define DEFAULT VID Ox03EB 
#define DEFAULT=PID Ox2013 
#define DEFAULT_UNIT 1 
1/ Global variables for storing the data structure 
int coeffArray[8)[S16]; 
short totPckt,pcktNum,curUnit; 
bool morePckt; 
const short totNumPoints = 2000; 
1* -----------------
FUNCTION: handleError 
PURPOSE: Call when an error is return by a function call 
PARMATERS: DWORD errorCode - error code that represent the error 
COMMENTS: Modified for Phantom project 
---------------------*/ 
void handleError(DWORD errorCode) 
{ 

switch( errorCode) 
{ 
case ERROR_MOD_NOT_FOUND: 

AfxMessageBox( "Could not find Atmel USB HID DLL: AtUsbHid.dll\nPlease update the 
PATH variable.\n", MB_ICONSTOP,O); 

exit(-1 ); 
break; 

case ERROR_USB_DEVICE_NOT _FOUND: 
OutputDebugString("Error: Could not open the device.\n"); 
break; 

case ERROR_USB_DEVICE_NO_CAPABILITIES: 
OutputDebugString("Error: Could not get USB device capabilities.\n"); 
break; 

case ERROR_WRITE_FAUL T: 
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OutputDebugString("Error: Could not write.\n"); 
break; 

case ERROR READ FAULT: 
OutputDebugString("Error: Could not read.\n"); 
break; 

default: 
OutputDebugString("Error: Unknown error code.\n"); 

} 
} 
1/1/11/1/1/1/1/1/1/1//1/11/11/1/1/1/1/11/1/1/1/11/1/11/1/1/1/1/1/1/11/11/11/1 
1/ CAboutDlg dialog used for App About 
class CAboutDlg : public CDialog 
{ 
public: 

CAboutDl90; 
1/ Dialog Data 

I/{{AFX_DAT A(CAboutDlg) 
enum {IDD = IDD_ABOUTBOX}; 
/I}}AFX_DATA 
1/ ClassWizard generated virtual function overrides 
I/{{AFX_ VIRTUAL(CAboutDlg) 
protected: 
virtual void DoDataExchange(CDataExchange* pDX); 1/ DDXlDDV support 
/I}}AFX_ VIRTUAL 

I/Implementation 
protected: 

}; 

1/{{AFX_MSG(CAboutDlg) 
/I}}AFX_MSG 
DECLARE_MESSAGE_MAPO 

CAboutDlg::CAboutDI90 : CDialog(CAboutDlg::IDD) 
{ 

} 

I/{{AFX_DATA_INIT(CAboutDlg) 
/I}}AFX_DATA_INIT 

void CAboutDlg::DoDataExchange(CDataExchange* pDX) 
{ 

} 

CDialog::DoDataExchange(pDX); 
I/{{AFX_DATA_MAP(CAboutDlg) 
/I}}AFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) 
1/{{AFX_MSG_MAP(CAboutDlg) 

1/ No message handlers 
/I}}AFX_MSG_MAP 

END_MESSAGE_MAPO 
1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1 
/I CUsbHidDemoCodeDlg dialog 
CUsbHidDemoCodeDlg::CUsbHidDemoCodeDlg(CWnd* pParent I*=NULL */) 

} 

: CDialog(CUsbHidDemoCodeDlg::IDD, pParent) 

I/{{AFX_DAT A_INIT(CUsbHidDemoCodeDlg) 
m_PID = _T("2013"); 
m_ VID = _ T("03EB"); 
m_UNIT = 1; 
/I}}AFX_DATA_INIT 
/I Note that Loadlcon does not require a subsequent Destroylcon in Win32 
m_hlcon = AfxGetAppO->Loadlcon(IDR_MAINFRAME); 

void CUsbHidDemoCodeDlg::DoDataExchange(CDataExchange* pDX) 
{ 

CDialog::DoDataExchange(pDX); 
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} 

/I{{AFX_ DAT A_MAP(CUsbHidDemoCodeDlg) 
DDX_Control(pDX, IDC_SetFreq, m_SetFreq); 
DDX_Control(pDX, IDC_RElOAD, m_Reload); 
DDX_Control(pDX, IDC_STOP, m_Stop); 
DDX_Control(pDX, IDC_START, m_Start); 
DDX_Control(pDX, IDC_CHECK, m_Check); 
DDX_Control(pDX, IDC_FW_UPGRADE, m]wUpgrade); 
DDX_Control(pDX, IDC_LlST, m_RecievedData); 
DDX_Control(pDX, IDC_STATUS_TEXT, m_Status); 
DDX_Control(pDX, IDC_SEND, m_Send); 
DDX_Text(pDX, IDC_PID, m_PID); 
DDV_MaxChars(pDX, m_PID, 4); 
DDX_Text(pDX, IDC_VID, m_VID); 
DDV_MaxChars(pDX, m_VID, 4); 
DDX_Text(pDX, IDC_UNIT, m_UNIT); 
/I 
DDX_Control(pDX, IDC_STATIC_CH, m_Channel); 
/I}}AFX_DATA_MAP 

BEGIN_MESSAGE_MAP(CUsbHidDemoCodeDlg, CDialog) 
/I{{AFX_MSG_MAP(CUsbHidDemoCodeDlg) 
ON_WM_SYSCOMMANDO 
ON_WM_PAINTO 
ON_WM_QUERYDRAGICONO 
ON_BN_CLlCKED(IDC_SEND, SendData) 
ON_WM_TIMERO 
ON_BN_CLlCKED(IDC_PW_UPGRADE,OnFwUpgrade) 
ON_BN_ CLiCKED(IDC_BUTTON_ VID_PID, OnButlonVidPid) 
ON_BN_CLlCKED(IDC_CHECK, OnCheck) 
ON_BN_CLlCKED(IDC_START,OnStart) 
ON_BN_CLlCKED(IDC_STOP,OnStop) 
ON_BN_CLlCKED(IDC_RElOAD,OnReload) 
ON_BN_CLlCKED(IDC_SetFreq,OnSetFreq) 
/I}}AFX_MSG_MAP 
ON_WM_DEVICECHANGEO 

END_MESSAGE_MAPO 
/1/1/1/1/1/1/1/1/1/1/1/11/1/1/1/1/1/1/1//11/1/1/1//1/11/1/1/1//1/11/1/1//111/ 

/I CUsbHidDemoCodeDlg message handlers 
BOOl CUsbHidDemoCodeDlg::OnlnitDialogO 
{ 

CDialog::OnlnitDialogO; 
char Display[220] = ""; 
char temp[5]; 
/I Add "About..." menu item to system menu. 
I/IDM_ABOUTBOX must be in the system command range. 
ASSERT((IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX); 
ASSERT(IDM_ABOUTBOX < OxFOOO); 
CMenu· pSysMenu = GetSystemMenu(FAlSE); 
if (pSysMenu != NUll) 
{ 

} 

CString strAboutMenu; 
strAboutMenu.loadString(IDS_ABOUTBOX); 
if (!strAboutMenu.lsEmpty()) 
{ 

} 

pSysMenu->AppendMenu(MF _ SEPARATOR); 
pSysMenu->AppendMenu(MF _STRING, IDM_ABOUTBOX, strAboutMenu); 

/I Set the icon for this dialog. The framework does this automatically 
/I when the application's main window is not a dialog 
Setlcon(m_hlcon, TRUE); /I Set big icon 
Setlcon(m_hlcon, FALSE); /I Set small icon 
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II Set default Vid and Pid 
Vid = DEFAULT_VID; 
Pid = DEFAUL T_PID; 
Unit = DEFAULT_UNIT; 
pcktNum = 0; 
morePckt = false; 
II Disable All Push Button until connection 
DisableButtonO; 
IIDisplay all the coefficients of the channel 
strcat(Display,"Channel to); 
_itoa(Unit, temp, 10); IIConvert the integer to the corresponding string, ex. 13 -> "13" 
strcat(Display, temp); 
m_ ChanneI,SetWindowText(Display); 
Display[O) = '\0'; 
II Explicitely load the AtUsbHid library. 
hUb = LoadUbrary(AT_USB_HID_DLL); 

if (hUb == NULL) 
{ 

} 

handleError(GetLastErrorO); 
return 0; 

II Get USB HID library functions addresses. 
if (loadFuncPointers(hUb)==NULL) { 

AfxMessageBox( "Could not get USB HID library functions 
addresses",MB_ICONSTOP,O); 

return 0; 
} 
II Modification starts here - for reading in the text file containing the data in specific order 
CFile inputFile; 

inputFile.Open( "C:\\MATLAB7\\work\\testData2_ Coeff.dat", CFile: :modeRead); IIspecifies the 
path of the text file 

char totinput[totNumPoints); 
CString Element = tIll; 
short i,j,k; 
short a = 0; 
short b = 0; 
short c = 0; 
bool flag = 0; IIflag for implementing maxV cell (maxV cell is implemented as b7 .. b4 as the 

higher decimal place and b3 .. bO as lower decimal place) 
long filePointer = 0; 
long fileSize = inputFile.GetLength(); 
UINT IBytesRead; 
while(filePointer < (fileSize/totNumPoints)+1) 
{ 

_ttoi(Element); 

IBytesRead = inputFile.Read (totinput,totNumPoints); 
for(i=O; i<totNumPoints; i++) 
{ 

if (a<8) 
{ 

if(!(totlnput[i) == ',') && !(totlnput[i) == '.') && !(totlnput[i) == '\n')){ 
Element = Element + totlnput[i); 

} 
else{ 

if(totlnput[i) == ','){ 
if (flag == 1) 
{ 

flag =0; 
coeffArray[a][b) = coeffArray[a][b) + 

}else{ 
coeffArray[a][b) = _ttoi(Element); 

IIConvert the string to the corresponding integer, ex. "45" -> 45 
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} 
Element = 1111; 

b++; 
}else if(totlnput[i) == '.') 
{ 

} 
} 

} 
file Pointer = filePointer++; 

} 
inputFile.CloseO; 

}else{ 

coeffArray[a][b) = _ttoi(Element)*1 0; 
Element = 1111; 

flag = 1; 

coeffArray[aJ[b) = _ttoi(Element); 
Element = 1111; 

a++; 
b = 0; 

lIThe following segment of code is for displaying the content of the text file on the interactive GUI 
totinput[O) = '\0'; 
strcat(Display. "Input File Size = "); 
_itoa(fileSize, temp. 10); 
strcat(Display, temp); 
strcat(Display. II characters"); 
AddRecievedData(Display); 
Display[O) = '\0'; 
forO=O; j<8; j++) 
{ 

strcat(Display,"Channel "); 
itoaO+1. temp. 10); IIConvert the integer to the corresponding string. ex. 13 -> "13" 

} 

strcat(Display. temp); 
strcat(Display, II (Freq = "); 
_itoa(coeffArrayU][O). temp, 10); IIchar *_itoa(int value. char * string. int radix) 
strcat(Display, temp); 
strcat(Display. ", maxV = "); 
_itoa«coeffArrayU][1)/10). temp. 10); 
strcat(Display. temp); 
strcat(Display, "."); 
_itoa«coeffArrayUJ[1) % 10). temp, 10); 
strcat(Display, temp); 
strcat(Display. "): "); 
_itoa(32*coeffArrayUJ[3), temp. 10); 
strcat(Display. temp); 
strcat(Display. II data points, "); 
_itoa(5*coeffArrayU][2), temp, 10); 
strcat(Display, "Output filter cutoff frequency = "); 
strcat(Display. temp); 
strcat(Display, "Hz"); 
AddRecievedData(Display); 
Display[O) = '\0'; 

IIDisplays the default Channel 1 on GUI initiation 
AddRecievedData(""); 
strcat(Display."Channel "); 
itoa(1, temp. 10); IIConvert the integer to the corresponding string. ex. 13 -> "13" 
strcat(Display, temp); 
strcat(Display. II (Freq = "); 
jtoa(coeffArray[OJ[O), temp. 10); IIchar *_itoa(int value, char * string, int radix) 
strcat(Display. temp); 
strcat(Display. ", maxV = "); 
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} 

_itoa«coeffArray[D][1]/1D), temp, 1D); 
strcat(Display, temp); 
strcat(Display, "."); 
_itoa«coeffArray[D][1] % 1D), temp, 1D); 
strcat(Display, temp); 
strcat(Display, "): "); 
_itoa(32*coeffArray[D][3], temp, 1 D); 
strcat(Display, temp); 
strcat(Display, " data points, "); 
_itoa(5*coeffArray[D][2], temp, 1 D); 
strcat(Display, "Output filter cutoff frequency = "); 
strcat(Display, temp); 
strcat(Display, "Hz"); 
AddRecievedData(Display); 
Display[D] = '\D'; 
for (k=D; k<8; k++) 
{ 

for(i=k*32+4; i<k*32+36; i++) 
{ 

_itoa(coeffArray[D][i], temp, 1D); 
strcat(Display, temp); 
strcat(Display,", "); 

} 
AddRecievedData(Display); 
Display[D] = ,\D'; 

} 
AddRecievedData(""); 
/I try to connect Device 

ConnectDeviceO; 
DYNCALL(hidRegisterDeviceNotification)«m_hWnd»; 
return TRUE; /I return TRUE unless you set the focus to a control 

void CUsbHidDemoCodeDlg::OnSysCommand(UINT nlD, LPARAM IParam) 
{ 

} 

if «nID & DxFFFD) == IDM_ABOUTBOX) 
{ 

} 
else 
{ 

} 

CAboutDlg dlgAbout; 
dlgAbout. DoModalO; 

CDialog::OnSysCommand(nID, IParam); 

/I Original code 
void CUsbHidDemoCodeDlg::OnPaintO 
{ 

if (Islconic()) 
{ 

CPaintDC dc(this); /I device context for painting 

SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdcO, D); 

/I Center icon in client rectangle 
int cxlcon = GetSystemMetrics(SM_CXICON); 
int cylcon = GetSystemMetrics(SM_CYICON); 
CRect rect; 
GetClientRect( &rect); 
int x = (rect.WidthO - cxlcon + 1) I 2; 
int y = (rect.HeightO - cylcon + 1) I 2; 

/I Draw the icon 
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dc.Drawlcon(x. y. m_hlcon); 
} 
else 
{ 

CDialog::OnPaintO; 
} 

} 
II Original code 
HCURSOR CUsbHidDemoCodeDlg::OnQueryDraglconO 
{ 

return (HCURSOR) m_hlcon; 
} 
/*---------
FUNCTION: Send Data 
PURPOSE: Send the data over the the USB key as packets 

Executed when Send Data button is pushed 
COMMENTS: Created for Phantom project 

void CUsbHidDemoCodeDlg::SendDataO 
{ 

m_ Send.SetWindowTextLT("Send Data")); 
DeactivateButtonO; 
short i; 
char *outArray = 0; 
CString packet = .... ; 
char Display[50] = ""; 
char cell[3]; 
if((m_UNIT < 9)&&(m_UNIT > O»{ 

Unit = m_UNIT; 

*1 

strcat(DisplaY."Sending data to Channel "); 
itoa(Unit. cell. 10); IIConvert the integer to the corresponding string. ex. 13 -> "13" 
strcat(Display. cell); 
AddRecievedData(Display); 
packet = static_cast<char>(Unit); 
packet = packet + static_cast<char>(1); 
for(i=O; i<4; i++) 
{ 

packet = packet + static_cast<char>(coeffArray[Unit-1][i]); 
} 
AddRecievedData("Packet sent:"); 
outArray = packet.GetBuffer(packet.GetLength(»; 
DYNCALL(writeData)((UCHAR*)outArray); 
packet.ReleaseBuffer(); 
packet.EmptyO; 
lIThe following for testing 
_itoa(Unit. cell. 10); 
packet = cell; 
packet = packet + "."; 
_itoa(1. cell. 10); 
packet = packet + cell + "."; 
for(i=O; i<4; i++) 
{ 

Jtoa(coeffArray[Unit-1][i]. cell. 10); 
packet = packet + cell; 
packet = packet + "."; 

} 
Jtoa(32*coeffArray[Unit-1][3]. cell. 10); 
packet = packet + cell; 
packet = packet + "."; 
AddRecievedData(packet); 
packet. ReleaseBufferO; 
packet. EmptyO; 
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totPckt = coeffArray[Unit-1][3]*32164; 
morePckt = true; 
curUnit = Unit; 

/*-------------
FUNCTION: DisableButton 
PURPOSE: Disable All push button 

Change Current Status to Diconnected 
Stop Read Function timer 

Executed when the device is not physically connected 
COMMENTS: Modified for Phantom project 
-------- -----------*' 
void CUsbHidDemoCodeDlg::DisableButtonO 
{ 

/I Disable all push button 
m_ Start.EnableWindow(false); 
m_Stop.EnableWindow(false); 
m_ Send.EnableWindow(false); 
m_ SetFreq.EnableWindow(false); 
/I Disable Firmware Upgrade 
m_FwUpgrade.EnableWindow(false); 
/I Change push button text display 
m_ Start.SetWindowTextL T("")); 
m_ Stop.SetWindowTextL T("")); 
m_Send.SetWindowTextLT('''')); 
m_SetFreq.SetWindowTextLT("")); 
m_Status.SetWindowTextLT("No Connection")); 
CDialog::KiIITimer(1 ); 
IsConnected = false; 

} 
/* 
FUNCTION: DeactivateButton 
PURPOSE: Deactivate All button 
COMMENTS: Created for Phantom project 
----------------------------*' 
void CUsbHidDemoCodeDlg::DeactivateButtonO 
{ 

} 

/I Deactivate All communication button 
m_Start.EnableWindow(false); 
m_Stop.EnableWindow(false); 
m_Send.EnableWindow(false); 
m_ SetFreq.EnableWindow(false); 
m_FwUpgrade.EnableWindow(false); 

/*- ------------------
FUNCTION: ConnectDevice 
PURPOSE: Connect Device using Current Vid and Pid 

if connection is succefull. change status to Connected 
if connection fail Status is set to disconnected 

COMMENTS: Modified for Phantom project 
-----------------------------------------*' 
void CUsbHidDemoCodeDlg::ConnectDeviceO 
{ 

char Display[50] = ""; 
char temp[3]; 
/I Open our USB device. 
if (DYNCALL(findHidDevice)(Vid. Pid)) { 

EnableButtonO; 
Unit = DEFAULT_UNIT; 
strcat(Display."Channel "); 
_itoa(Unit. temp. 10); I/Convert the integer to the corresponding string. ex. 13 -> "13" 
strcat(Display. temp); 
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m_ Channel.SetWindowText(Display); 
Display[O] = '\0'; 

} 
/* 

} 
else { 

DisableButtonO; 

FUNCTION: EnableButton 
PURPOSE: Enable all push button 

Set Read function timer 
COMMENTS: Modified for Phantom project 
------------------------*/ 
void CUsbHidDemoCodeDlg::EnableButtonO 
{ 

} 

CString inReport; 
CString outRe port; 
CString feature Report; 
II Enable all push button 
m_Start.EnableWindow(true); 
m_ Stop.EnableWindow(true); 
m_ Send.EnableWindow(true); 
m_SetFreq.EnableWindow(true); 
II Enable Firmware Upgrade 
mfwUpgrade.EnableWindow(true); 
II Change push button text 
m_ Start.SetWindowTextLT("Start"»; 
m_ Stop.SetWindowTextL T("Stop"»; 
m_ Send.SetWindowTextLT("Send data"»; 
m_ SetFreq.SetWindowTextL T("Set Frequency"»; 
inReport.Format( "%s: %dByte"," In",DYNCALL(getinputReportLengthO»; 
outReport.Format( "%s: %dByte"," Out",DYNCALL(getOutputReportLengthO»; 
feature Report. Format("%s: %dByte"," Feature" ,DYNCALL(getFeatureReportLengthO »; 
CString text = "Connected\t\t"+inReport+", "+outReport+", "+featureReport; 
m_Status.SetWindowText(text); 
SetTimer(1,50,0); 
IsConnected = true; 

/*------ -------------------
FUNCTION: ActivateButton 
PURPOSE: Activate All button 
COMMENTS: Modified for Phantom project 

-------*/ 
void CUsbHidDemoCodeDlg: :ActivateButtonO 
{ 

} 

CString inReport; 
CString outRe port; 
CString feature Report; 
IIActivate all push button 
m_Start.EnableWindow(true); 
m_ Stop. EnableWindow(true); 
m_Send.EnableWindow(true); 
m_SetFreq.EnableWindow(true); 
mfwUpgrade.EnableWindow(true); 

/*--------------------------------
FUNCTION: OnDeviceChange 
PURPOSE: This function is call each time a status change for a device using 

ON_WM_DEVICECHANGEO 
The function will check if this our device change it status: 

There is 2 important type of event: 
DBT_DEVICEARRIVAL: in this case, we try to connect a device using 
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current VID and PID 
DBT DEVICEREMOVECOMPlETE: if our device as been deconnected, 

- we close the device properly using c1oseDeviceO 
if OnDeviceChange is called by another device nothing is done 

PARMATERS: UINT nEventType: Event Id 
DWORD dwData : data associated to the Event 

COMMENTS: Original code 
*/ 

BOOl CUsbHidDemoCodeDlg::OnDeviceChange(UINT nEventType, DWORD dwData) 
{ 

int isOurDevice; 
switch(nEventType) 

{ 
case DBT _DEVICEARRIVAl : 

isOurDevice=DYNCAll(isMyDeviceNotification(dwData»; 
if(isOurDevice&&lsConnected) { 

} 
else { 

OutputDebugString(">>> Our Device Already Connected.\n"); 

II Connect Only if status is disconnected 
OutputDebugString("»> A device has been inserted and is 

nowavailable.\n"); 

} 

} 
return TRUE; 

} 
break; 

ConnectDeviceO; 

case DBT _DEVICEREMOVECOMPlETE : 
isOurDevice=DYNCAll(isMyDeviceNotification(dwData»; 
if(lsConnected&&isOurDevice) { 

} 
break; 

default: 

II Close Connection only once 
DisableButtonO; 
DYNCAlL( closeDeviceO); 
OutputDebugString("»> A device has been removed.\n"); 

OutputDebugString("»> OnDeviceChange : default\n"); 
break; 

/*---------------------------------
FUNCTION: AddRecievedData 
PURPOSE: This function add new message to m_RecievedData CUst and remove the 

100th oldest message to avoid list to be too big. 
PARMATERS: 

CString NewData - New string to display in CUst 
COMMENTS: Original code 
------- -*/ 
void CUsbHidDemoCodeDlg::AddRecievedData(CString NewData) 
{ 

m_RecievedData.AddString( NewData ); 
II display only last 100 messages recieved 
if(m_RecievedData.GetCountO>100) { 

m_RecievedData.DeleteString(O); 
} 
II Set Focus on last Element 
int nCount = m_RecievedData.GetCountO; 
if (nCount > 0) m_RecievedData.SetCurSel(nCount-1); 

} 
/*-----------------------
FUNCTION: OnTimer 
PURPOSE: This function allows us to call the check if a new data has been recieved 
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If true, the buffer imfarmation are display using AddRecievedData 
The Timer for this function must be killed if Connection 

is lost uasing function: CDialog::KiIITimer(1); 
If a device is connected, the timer must be set using: 

SetTimer(1,50,0); 
This program has been modified to check if the data for a single channel 

has been broken down to multiple packets 
PARMATERS: nlDEvent Timer identifier 
COMMENTS: Modified for Phantom project 
--------------------------*/ 
void CUsbHidDemoCodeDlg::OnTimer(UINT nlDEvent) 
{ 

UCHAR sbuffer(512); IIwas 255 
char *outArray = 0; 
CString packet = ""; 
char cell(3); 
short i; 
if(DYNCALL(readData(sbuffer»!=O) { 

if (pcktNum == totPckt) 
{ 

morePckt = false; 
pcktNum = 0; 

} 
if(!morePckt) 
{ 

ActivateButton(); 
} 
for(i=O; i<64; i++) 
{ 

} 

_itoa(sbuffer[i], cell, 10); 
packet = packet + cell; 
packet = packet + ","; 

AddRecievedData("Received packet"); 
AddRecievedData(packet); 
packet.ReleaseBuffer(); 
packet.Empty(); 
AddRecievedData(""); 
if (morePckt == true) 
{ 

AddRecievedData("Packet sent"); 
for(i=O; i<64; i++) 
{ 

_itoa( coeffArray[curUnit-1 ](64 *pcktNum+4+i), cell, 10); 
packet = packet + cell; 
packet = packet + ","; 

} 
AddRecievedData(packet); 
packet.ReleaseBuffer(); 
packet. Empty(); 
for(i=64*pcktNum+4; i<64*pcktNum+68; i++) 
{ 

packet = packet + static_cast<char>(coeffArray[curUnit-1](i)); 
} 
outArray = packet.GetBuffer(packet.GetLength()); 
DYNCALL(writeData)«UCHAR*)outArray); 
packet.ReleaseBuffer(); 
packet. Empty(); 
pcktNum++; 

} 
CDialog::OnTimer(nIDEvent); 
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} 
/* 
FUNCTION: OnFwUpgrade 
PURPOSE: Call when Firmware Upgrade Button is pressed. 

This function set the deivce in Firmware upgarde mode using startBootLoader 
Once bootloader mode as been sent, the device is close properly. 
You have the to lauch Flip to load a new firmeare 

COMMENTS: Original code for programming purpose 
-----------------------------*/ 
void CUsbHidDemoCodeDlg: :OnFwUpgrade() 
{ 

if(lsConnected) {/lif our device is attached 
UCHAR* outputReport = new UCHAR[DYNCALL(getFeatureReportLength())): 
outputReport[O)=Ox55: 
outputReport[1 )=OxAA: 
outputReport[2)=Ox55: 
outputReport[3)=OxAA: 
if(!DYNCALL(setFeature(outputReport))) { 

II Fail to run bootLoader 
AfxMessageBox( "Can not start Device in Boot Loader mode", 

MB_ICONSTOP,O): 
} 
DisableButton(): 
DYNCALL(closeDevice()):lIclose a" handles 

} 
} 
/*----------,-----, 
FUNCTION: OnCancel 
PURPOSE: On one cancel if device is connected, this one is disconnected. 

the application is Unregister from the device notification table using 
hidUnregisterDeviceNotification(m_hWnd) 

COMMENTS: Original code 
-----------------------------------*/ 
void CUsbHidDemoCodeDlg: :OnCancel() 
{ 

if(lsConnected) lIif our device is attached 
{ 

DYNCALL(closeDevice()):lIclose a" handles 
CDialog::KiIITimer(1):lIclose the timer 

} 
DYNCALL(hidUnregisterDeviceNotification(m_hWnd»: 
FreeLibrary(hLib ): 
CDialog::OnCancel(): 

} 
/*---------------------------
FUNCTION: OnButtonVidPid 
PURPOSE: When clic on button Vld PID 

Vendor 10 en Product 10 is taken from edit Box and new value 
are change. 

COMMENTS: Original code 
-----------------------------*/ 
void CUsbHidDemoCodeDlg::OnButtonVidPid() 
{ 

UpdateData(): 
II Try To Convert in Hex 
char VidToConvert[10): 
char PidToConvert[10): 
char * pEnd: 
long newVid: 
long newPid: 
II Get New Vid 
strcpy(VidToConvert, "Ox"): 
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} 

strcat(VidToConvert,m_ VID. GetBuffer(m_ VID.GetLengthO)); 
newVid = strtol (VidToConvert,&pEnd,O); 
m_ VID.Format("%X",newVid); 
II Get New Pid 
strcpy(PidToConvert, "Ox"); 
strcat(PidToConvert,m_PID.GetBuffer(m_PID.GetLengthO)); 
newPid = strtol (PidToConvert,&pEnd,O); 
m_PID.Format("%X",newPid); 
II Upadte 
SetDlgltemText(IDC_ VID , m_ VID.GetBuffer(m_ VID.GetLength())); 
SetDlgltemText(IDC_PID , m_PID.GetBuffer(m_PID.GetLength())); 
if((newVidl=Vid)l!(newPidl=Pid)) { 

Vid=newVid; 
Pid=newPid; 
if(lsConnected) { 

} 

II Close Connection only once 
DisableButtonO; 
DYNCALL( closeDeviceO); 

ConnectDeviceO; 

lIThe following code is still under construction. Jeff. 2010Jun17 
/*-------
FUNCTION: OnCheck 
PURPOSE: Executed when a new channel is selected 

Also displays the data of the channel and issues the corresponding MUX sel signal 
COMMENTS: Created for Phantom project 

--*1 
void CUsbHidDemoCodeDlg::OnCheckO 
{ 

UpdateDataO; 
char *outArray = 0; 
CString packet = ""; 
char Display[220] = ""; 
char cell[S]; 
short i,k; 
II TODO: Add your control notification handler code here 
if((m_UNIT < 9)&&(m_UNIT > O)&&(Unit 1= m_UNIT)){ 

Unit = m_UNIT; 
IIDisplay the channel selected message 
strcat(Display,"Selected Channel "); 
itoa(Unit, cell, 10); IIConvert the integer to the corresponding string, ex. 13 -> "13" 
strcat(Display, cell); 
AddRecievedData(Display); 
Display[O] = '\0'; 
IIDisplay all the coefficients of the channel 
strcat(DisplaY,"Channel "); 
itoa(Unit, cell, 10); IIConvert the integer to the corresponding string, ex. 13 -> "13" 
strcat(Display, cell); 
m_ Channel.SetWindowText(Display); 
strcat(Display, " (Freq = "); 
_itoa(coeffArray[Unit-1][0], cell, 10); 
strcat(Display, cell); 
strcat(Display, ", maxV = "); 
_itoa(coeffArray[Unit-1][1], cell, 10); 
strcat(Display, cell); 
strcat(Display, "): "); 
_itoa(32*coeffArray[Unit-1][3], cell, 10); 
strcat(Display, cell); 
strcat(Display, " data points, "); 
_itoa(S*coeffArray[Unit-1][2], cell, 10); 
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II 
II 

} 

} 
else{ 

} 

strcat(Display, "Output filter cutoff frequency = "); 
strcat(Display, cell); 
strcat(Display, "Hz"); 
AddRecievedData(Display); 
Display[O] = '\0'; 
for (k=O; k<8; k++) 
{ 

for(i=k*32+4; i<k*32+36; i++) 
{ 

jtoa(coeffArray[Unit-1][i], cell, 10); 
strcat(Display,cell); 
strcat(Display,", "); 

} 
AddRecievedData(Display); 
Display[O] = '\0'; 

} 
AddRecievedData(Display); 
Display[O] = '\0'; 
IIAcknowledge AT90USB that a new channel is selected 
packet = static_cast<char>(Unit); 
packet = packet + static_cast<char>(5); 
outArray = packet.GetBuffer(packet.GetLength()); 
DYNCALL(writeData)«UCHAR*)outArray); 
packet.EmptyO; 

strcat(Display,"Channel entered does not exist'''); 
AddRecievedData(Display); 

/*----------------------------------
FUNCTION: OnStart 
PURPOSE: Executed when Start button is pushed 
COMMENTS: Created for Phantom project 
------------------------------------------*' 
void CUsbHidDemoCodeDlg::OnStartO 
{ 

IIUpdateDataO; 
DeactivateButtonO; 
char *outArray = 0; 
CString packet = .... ; 
char Display[20] = .... ; 
char cell[3]; 
if«m_UNIT < 9)&&(m_UNIT > O»{ 

Unit = m_UNIT; 
strcat(DisplaY,"Start Channel "); 
itoa(Unit, cell, 10); IIConvert the integer to the corresponding string, ex. 13 -> "13" 

} 
} 

strcat(Display, cell); 
AddRecievedData(Display); 
packet = static_cast<char>(Unit); 
packet = packet + static_cast<char>(3); 
outArray = packet.GetBuffer(packet.GetLength()); 
DYNCALL(writeData)«UCHAR*)outArray); 
packet.EmptyO; 

'*-----------------------
FUNCTION: On Stop 
PURPOSE: Executed when Stop button is pushed 
COMMENTS: Created for Phantom project 
--------------------------------*' 
void CUsbHidDemoCodeDlg::OnStopO 
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} 

IIUpdateDataO; 
DeactivateButtonO; 
char *outArray = 0; 
CString packet = ""; 
char Display[20) = ''''; 
char cell[3); 
if«m_UNIT < 9)&&(m_UNIT > O»){ 

Unit = m_UNIT; 
strcat(Display,"Stop Channel "); 
itoa(Unit, cell, 10); IIConvert the integer to the corresponding string, ex. 13 -> "13" 
strcat(Display, cell); 
AddRecievedData(Display); 
packet = static_cast<char>(Unit); 
packet = packet + static_cast<char>(4); 
outArray = packet.GetBuffer(packet.GetLength()); 
DYNCALL(writeData)«UCHAR*)outArray); 
packet.EmptyO; 

/*------------------------------
FUNCTION: OnReload 
PURPOSE: Executed when Reload Data button is pushed 
COMMENTS: Created for Phantom project 

void CUsbHidDemoCodeDlg::OnReloadO 
{ 

CFile inputFile; 

*/ 

inputFile.Open( "C:\\MATLAB7\\work\\testData2_ Coeff.dat", CFile::modeRead); 
char totlnput[totNumPoints); 
CString Element = ""; 
char Display[220) = ""; 
char temp[5); 
short i,j; 
short a = 0; 
short b = 0; 
short c = 0; 
bool flag = 0; 
long filePointer = 0; 
long fileSize = inputFile.GetLengthO; 
UINT IBytesRead; 
while(filePointer < (fileSize/totNumPoints)+1) 
{ 

_ttoi(Element); 

IBytesRead = inputFile.Read (totinput,totNumPoints); 
for(i=O; i<totNumPoints; i++) 
{ 

if (a<8) 
{ 

if(!(totlnput[i) == ',') && !(totlnput[i) == '.') && !(totlnput[i) == '\n'»){ 
Element = Element + totlnput[i); 

} 
else{ 

if(totlnput[i) == ','){ 
if (flag == 1) 
{ 

flag = 0; 
coeffArray[a][b) = coeffArray[a][b) + 

}else{ 
coeffArray[a][b) = _ttoi(Element); 

IIConvert the string to the corresponding integer, ex. "45" -> 45 
} 
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} 

} 
} 

} 
filePointer = filePointer++; 

} 

Element = .... ; 
b++; 

}else if(totlnput[i] == '.') 
{ 

}else{ 

coeffArray[a][b] = _ttoi(Element)*1 0; 
Element = .... ; 
flag = 1; 

coeffArray[a][b] = _ttoi(Element); 
Element = .... ; 
a++; 
b = 0; 

inputFile.Close(); 
totinput[O) = '\0'; 
AddRecievedData( .... ); 
forO=O; j<8; j++) 
{ 

strcat(Display,"Channel "); 
itoaO+1, temp, 10); IIConvert the integer to the corresponding string, ex. 13 -> "13" 
strcat(Display, temp); 
strcat(Display, .. (Freq = "); 
_itoa(coeffArrayU][O), temp, 10); IIchar *jtoa(int value, char * string, int radix) 
strcat(Display, temp); 
strcat(Display, ", maxV = "); 
jtoa((coeffArrayU][1]/10), temp, 10); 
strcat(Display, temp); 
strcat(Display, "."); 
IIjtoa((coeffArrayU][1)-((coeffArrayU][1)/1 0)*1 0», temp, 10); 
_itoa((coeffArrayU][1] % 10), temp, 10); 
strcat(Display, temp); 
strcat(Display, "): "); 
_itoa(32*coeffArrayU][3), temp, 10); 
strcat(Display, temp); 
strcat(Display, " data points, "); 
_itoa(5*coeffArrayU][2), temp, 10); 
strcat(Display, "Output filter cutoff frequency = "); 
strcat(Display, temp); 
strcat(Display, "Hz"); 
AddRecievedData(Display); 
Display[O) = '\0'; 

} 
AddRecievedData(""); 

/*------
FUNCTION: OnSetFreq 
PURPOSE: Executed when Set Frequency button is pushed 
COMMENTS: Created for Phantom project 
---------------------------------*1 
void CUsbHidDemoCodeDlg: :OnSetFreq() 
{ 

II TODO: Add your control notification handler code here 
IIUpdateData(); 
DeactivateButton(); 
char *outArray = 0; 
CString packet = ""; 
char Display[40] = ""; 
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} 

char cell[3]; 

if«m_UNIT < 9)&&(m_UNIT > O»{ 
Unit = m_UNIT; 
strcat(Display,"Set Frequency for Channel "); 
itoa(Unit, cell, 10); IIConvert the integer to the corresponding string, ex. 13 -> "13" 
strcat(Display, cell); 
strcat(Display, " - "); 
itoa(coeffArray[Unit-1][0], cell, 10); 
strcat(Display, cell); 
strcat(Display, " Hz"); 
AddRecievedData(Display); 
IIDisplay[O] = '\0'; 
packet = static_cast<char>(Unit); 
packet = packet + static_cast<char>(2); 
packet = packet + static_cast<char>(coeffArray[Unit-1][0]); 
IIpacket = packet + static_cast<char>(coeffArray[Unit-1][1]); 
packet = packet + static_cast<char>(coeffArray[Unit-1][2]); 
outArray = packet.GetBuffer(packet.GetLength()); 
DYNCALL(writeData)( (UCHAR*)outArray); 
packet. EmptyO; 

101 



Appendix D: C++ Code for AT90USB1287 Microcontroller 
Firmware 

Note: The following source code should be saved as hid_task.c to replace the file 
with the same name in the USBKEY _STK525-series6-hidio project provided by 
Atmel®. The compilation results in USBKEY _STK525-series6-hidio.hex file to be 
loaded on AT90USB1287 microcontroller. 

I*This file has been prepared for Doxygen automatic documentation generation.*/ 
III \file *************.*************************.*****.*.********************* 
//! 
II! \brief This file manages the generic HID IN/OUT task. 
//! 
II! - Compiler: IAR EWAVR and GNU GCC for AVR 
//! - Supported devices: AT90USB1287, AT90USB1286, AT90USB647, AT90USB646 
//! 
//! \author Atmel Corporation: http://www.atmel.com \n 
//! Support and FAQ: http://support.atmel.no/ 
//! 
II! **************.******************.*.*********.*****.*.********************. 

1* Copyright (c) 2007, Atmel Corporation All rights reserved. 
* 
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions are met: 
* 
* 1. Redistributions of source code must retain the above copyright notice, 
* this list of conditions and the following disclaimer. 
* 
* 2. Redistributions in binary form must reproduce the above copyright notice, 
* this list of conditions and the following disclaimer in the documentation 
* and/or other materials provided with the distribution. 
* 
* 3. The name of ATMEl may not be used to endorse or promote products derived 
* from this software without specific prior written permission. 
* 
* THIS SOFTWARE IS PROVIDED BY ATMEl "AS IS" AND ANY EXPRESS OR IMPLIED 
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY AND 
* SPECIFICAllY DISCLAIMED. IN NO EVENT SHAll ATMEl BE LIABLE FOR ANY DIRECT, 
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
* lOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
*/ 

II This code has been modified by Jeff for the implementation of Phantom project 
" __ INC l U D E S __________________ _ 

#include "config.h" 
#include "conCusb.h" 
#include "hid_task.h" 
#include "Iib_mcu/usb/usb_drv.h" 
#incfude "usb_descriptors.h" 
#include "moduleslusb/device_chap9/usb_standard_request.h" 
#include "usb_specific_request.h" 
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#include "lib_mcu/utillstart_boot.h" 
#include "modules/usb/usb_task.h" 
II MACROS 
II 0 E FIN IT I·-,:O::-N:-:-:::S-------------------
" __ 0 E C LA RAT ION S ________________ _ 
volatile US cpt_sof=O; 
extern US jump_bootloader; 

US g_last.,joy = 0; 
US inBuf[64]= 

{O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
O,O,O,O,O,O,O}; 

US coeff[51S] = 
{O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,O,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 
O,O,O}; IIAdded by Jeff 
bool fJag1; 
bool pcktNew; 
US packetNum; 
short totPcktNum; 
short totCoeffNum; 
bool morePckt; 
US attempt; 

void hid_report_out(void); 
void hid_report_in(void); 
void hid_shift(void); 
void hid_decode_command(void); 
void usb_delaLms(US ms); 
11========================================================================== 
II! @brief This function initializes the target board ressources. 
void hid_task_init(void) 
{ 

} 

DORA = OxFF; 
PORTA = OxOO; IIFor testing Port A 
DDRD = OxDD; 
PORTO = (0«PD7)1(0«PD6)1(1 «PD4 )1(0«PD3)1(0«PD2)1(0«PDO); 
fJag1 = false; 
pcktNew = false; 
morePckt = false; 
packetNum = 0; 

11========================================================================== 
II! @brief Entry point of the HID generic communication task 
II! This function manages IN/OUT repport management. 
void hid_task(void) 
{ 

} 

if(lIs_device_enumerated()) II Check USB HID is enumerated 
return; 

hid_report_ outO; 
IIhid_reportJnO; 

hid_shiftO; 
hid_decode_commandO; 
hid_reportJnO; 

11========================================================================== 
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II! @brief Get data report from Host 
void hid_report_out(void) 
{ 

Usb_select_endpoint(EP _HID_OUT); 
if(ls_usb_receive_outO) 
{ 

} 

/fThe attempt to use loop for Usb_read_byteO here didn't result in expected functionality 
inBuf[O] = Usb_read_byteO; 
inBuf[1] = Usb_read_byteO; 

lIinBuf[2] to inBuf[62] omitted 

inBuf[63] = Usb_read_byteO; 
USb_ack_receive_outO; 
flag1 = true; 
pcktNew = true; 

II·· Check if we received DFU mode command from host 
ifGump_bootloader) 
{ 

U32 volatile tempo; 
Leds_offO; 
Usb_detachO; II Detach actual generic HID application 
for(tempo=0;tempo<70000;tempo++); II Wait some time before 
start_bootO; II Jumping to booltoader 

} 
} 
11========================================================================== 
II! @brief Send data report to Host 
void hid_report_in(void) 
{ 

} 

Usb_selecCendpoint(EP _HID_IN); 
if(!ls_usb_write_enabledO) 

return; II Not ready to send report 
if (flag 1 == false) 

return; 
Usb_write_byte(coeff[O]); 
Usb_write_byte(coeff[1]); 

II Usb_write_byte(coeff[2]) to Usb_write_byte(coeff[62]) omitted 

Usb_write_byte(inBuf[63]); 
Usb_ackJn_readyO; 
flag1 = false; 

II Send data over the USB 

11========================================================================== 
II The following code is for taking care of multiple packets transmitted 
II for a single channel by determining the total number of packets 
void hid_shift(void) 
{ 

U8 i; 
if (pcktNew == true) 
{ 

if ((packetNum == 0) && (inBuf[1] == Ox05) && (morePckt == false)) 
{ 

coeff[O] = inBuf[O]; 
coeff[1] = inBuf[1]; 

}else if ((packetNum == 0) && (inBuf[1] != Ox05) && (morePckt == false)) 
{ 

i = 0; 
while (i < 6) 
{ 
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} 

coeff[i] = inBuf[i]; 
i++; 

} 
if (coeff[1] == Ox01) 
{ 

} 

morePckt = true; 
totPcktNum = coeff[5]*32/64; 

}else if (morePckt == true) 
{ 

i =0; 
while (i < 64) 
{ 

coeff[64*packetNum+i+6] = inBuf[i]; 
i++ o , 

} 
packetNum++; 
if (packetNum == totPcktNum) 
{ 

morePckt = false; 
packetNum = 0; 

H========================================================================== 
H The following code is for decoding for the channel selected from the 
H packet received and issue the corresponding signal to the MUXlDeMUX 
H circuit 
H Depending on the command code in the packet, it also issue a sequence of 
H signal change on the corresponding ports on AT90USB 1287 controller 
void hid_decode_command(void) 
{ 

attempt = 0; 
U8 com-'ine = 0; 
short i; 
if ((pcktNew == true) && (morePckt == false» 
{ 

if (coeff[1] == Ox05) 
{ 

if (coeff[O] == Ox01) 
{ 

PORTe = OxOO; 
}else if (coeff[O] == Ox02) 
{ 

PORTe = Ox01; 
}else if (coeff[O] == Ox03) 
{ 

PORTe = Ox02; 
}else if( coeff[O] == Ox04) 
{ 

PORTe = Ox03; 
}else if (coeff[O] == Ox05) 
{ 

PORTe = Ox04; 
}else if (coeff[O] == Ox06) 
{ 

PORTe = Ox05; 
}else if (coeff[O] == Ox07) 
{ 

PORTe = Ox06; 
}else if (coeff[O] == Ox08) 
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} 

}else 
{ 

PORTC = Ox07; 

i=O; 
PORTD = (1 «PD4)1(0«PD2)1(0«PDO); 
while((i==O) && (attempt<100)) 
{ 

com_line = PIND; 
com_line = comJine & Ob00100000; 
if (com_line == 0) 
{ 

PORTD = (1«PD4)1(1«PD2)1(0«PDO); 
PORTD = (1«PD4)1(1«PD2)1(0«PDO); 
PORTD = (1 «PD4)1(1«PD2)1(0«PDO); 
PORTD = (1 «PD4)1(0«PD2)1(0«PDO); 
attempt++; 

} else if (com_line == 32) 
{ 

i++; 
} 

if ((pcktNew == true) && (morePckt == false) && (attempt < 100)) 
{ 

if (coeff[1] == Ox01) 
{ 

i = 0; 
while(i < 3) 
{ 

} 

comJine = PIND; 
com line = com line & Ob00000011; 
if (com_line == 6) 
{ 

PORTA = coeff[i]; 
PORTD = (1 «PD4)1(0«PD2)1(1«PDO); 

} else if (com_line == 3) 
{ 

PORTD = (1 «PD4)1(0«PD2)1(0«PDO); 
i++; 

} 

PORTD = (1 «PD4)1(0«PD2)1(0«PDO); 

i =4; 
totCoeffNum = coeff[5]*32; 
while(i < (totCoeffNum+6)) 
{ 

} 

com_line = PIND; 
com_line = com_line & Ob00000011 ; 
if (com_line == 0) 
{ 

PORTA = coeff[i]; 
PORTD = (1 «PD4)1(0«PD2)1(1«PDO); 

} else if (comJine == 3) 
{ 

} 

PORTD = (1«PD4)1(0«PD2)1(0«PDO); 
i++; 

106 



} 

} 
i =0; 

PORTD = (1«PD4)1(0«PD2)1(0«PDO); 
}else if ((coeff[1] == Ox02)II(coeff[1] == Ox03)II(coeff[1] == Ox04)) 
{ 

} 

i = 0; 
while(i < 4) 
{ 

} 

com_line = PIND; 
com_line = comJine & Ob00000011 ; 
if (comJine == 0) 
{ 

PORTA = coeff[i]; 
PORTD = (1 «PD4)1(0«PD2)1(1«PDO); 

} else if (com_line == 3) 
{ 

PORTD = (1 «PD4)1(0«PD2)1(0«PDO); 
i++; 

} 

PORTD = (1«PD4)1(0«PD2)1(0«PDO); 

if (attempt == 100) 
{ 

} 

while (i < 64) 
{ 

inBuf[i] = 0; 
i++; 

pcktNew = false; 

~========================================================================== 
~! @brief This function increments the cPCsof counter each times 
II! the USB Start Of Frame interrupt subroutine is executed (1 ms) 
II! Usefull to manage time delays 
II! 
void soCactionO 
{ 

cpt_sof++; 
} 

void delaLms(U8 ms) 
{ 

U8 delaLusb; 
for(;ms;ms--) 
{ 

for( delaLusb=0;delaLusb<FOSC/16;delaLusb++); 
} 

} 
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Appendix E: Assembly Code for Programming ATMega32 
Microcontroller 

Note: The following code is to be compiled using AVR Studio developed by 
Atmel® and loaded to ATMega32 microcontroller. 

;Code for ATmega32 microcontrolier for the implementation of Phantom project 
;See ATmega32.pdf and AVR_lnsruction_Set.pdf for reference 

.NOLIST ;turn listfile generation off 
;Include files 
.INCLUDE "C:\Program Files\Atmel\AVR Tools\AvrAssembler2\Appnotes\m32def.inc" 
.L1ST ;turn Iistfile generation on 
.EQU Status=Ox0060 
.EQU Waveform=Ox0061 
.EQU Input_Amp=Ox0062 
.EQU InputJreq=Ox0063 
.EQU ChanneUn=Ox0064 
.EQU Current Instr=Ox0065 
.EQU Dump1;-Ox0066 
.EQU Cut_Count=Ox0067 
.EQU HW_lnterrupt=Ox0068 
.EQU TotCoeffln=Ox0069 
.EQU TotCoeffNumH=Ox006A 
.EQU TotCoeffNumL=Ox006B 
.EQU CutF=Ox006C 

.EQU Input_Val=10 

.EQU Channel=8 
;about 100Hz 

; Definitions: 
; Registers 

;Every unit should have a unique channel number 

.DEF rmp = r16 ;used as multi-purpose register 

.DEF rNI = rO; 

.DEF rNh = r1; 

.DEF rNu = r2; 

.DEF rD = r3; 

.DEF rRI = r4; 

.DEF rRh = r5; 

;Start of main program 
.CSEG;code segment 
.ORG $0000 

JMP MAIN 
JMP SWITCH_3 
JMP SWITCH_ 4 

MAIN: 
LDI r16,lnpuCVal 
STS Input_Amp,r16 
STS Input_Freq,r16 
LDI r16,0 
STS TotCoeffNumH,r16 
LDI r16,32 
STS TotCoeffNumL,r16 
LDI r16,1 
STS TotCoeffln,r16 

;Switch 3 IRQ Handler 
;Switch 4 IRQ Handler 
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;Set up the stack pointer at the end of program memory 
LDI r16,high(RAMEND) 
OUT SPH,r16 
LDI r16,low(RAMEND) 
OUT SPL,r16 
IN r16,MCUCSR 
ORI r16,Ob10000000 
OUT MCUCSR,r16 
OUT MCUCSR,r16 
the desired value 
LDI r16,$00 
STS Status,r16 
pressed initially 
STS HW _lnterrupt,r16 
LDI r16,$00 
OUT DDRA,r16 
;LDI r16,$22 
LDI r16,$E2 
mode 
OUT DDRD,r16 
LDI r16,$FF 
OUT DDRB,r16 
OUT DDRC,r16 
IN r16,MCUCR 
ORI r16,Ob00001111 
OUT MCUCR,r16 
IN r16,GICR 
ORI r16,Ob11000000 
OUT GICR,r16 

;MCR Control and Status Register 
;Disable JTAG by setting JTD bit (bit 7) of the MCUCSR register 

;The JTD bit must be written twice within 4 cycles to change to 

;Load $00 to SwitchStatus cell in SRAM to indicate Switch 3 not 

;Set all bits in Port A to input mode 

;Set Bits 1,5,6,7 of Port D to output mode and the rest to input 

;Set all bits in Port B to output mode 
;Set all bits in Port C to output mode 
;MCR Control Register 
;The rising edge generates an interrupt request for INTO and INT1 

;General Interrupt Control Register 
;Activate both INTO and INT1 

LDI r16,75 ;The larger the number loaded in OCR2, the longer each 
countdown period, which results in a smaller frequency of the output clock signal 
OUT OCR2,r16 ;Load Output Compare Register 2 with the desired number to be 
counted down from 
LDI r16,Ob00011010 ;Clear Timer on Compare match (CTC) mode.Toggle Output Compare 
pin on compare match.clkT2S/8 (From prescaler) 
OUT TCCR2,r16 ;Time/Counter Control Register 2 
0=======================" , , 
; PortA - 8-bit Data-in from AT90USB1287 
;PortB - 8-bit Control-out, B(3 .. 0) currently used to control DAC 
;PortC - 8-bit Data-out to DAC 
;PortD - 8-bit Control-in from AT90USB1287 

PortB: 

PortD: 

Bit 0 - Inv(RESET) to DAC 
Bit 1 - Inv(LDAC:Load DAC) to DAC 
Bit 2 -lnv(WR:Write) to DAC 
Bit 3 - Inv(CS:Chip select) to DAC 
Bit 4 to 7 - Unused 

Bit 0 - Communication line from AT90USB1287 
Bit 1 - Communication line to AT90USB1287 
Bit 2 - Interrupt signal from AT90USB1287 
Bit 3 - Interrupt signal from AT90USB1287/Externai 
Bit 4 - Reserved bit for prevent mis-sensing interrupt 
Bit 5 - Interrupt acknowledge bit to AT90USB1287 
Bit 6 - Unused 
Bit 7 - Clock signal for the output switching-capacitor filter 

LDI r16,(0«PD5) 
OUT PORTD,r16 ;Reset the interrupt acknowlege signal 
SEI; ;Enable all interrupts 

LDI r16,OxOO 
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OUT PORTC,r16 
READ_Amp: 

------, 
;For testing the EEPROM ReadlWrite 
;Load the waveform coefficients from the Flash memory and store in the EEPROM 
CLI 
LDI r16,32 ;to detect end of a sinusoid period 
LDI ZH,HIGH(mod_sine«1 );Ioad high address byte 
LDI ZL,LOW(mod_sine«1 );Ioad low address byte 
LDI r19,OxOO 
LDI r18,OxOO 
LOAD: 
SBIC EECR,EEWE 
RJMPLOAD 
OUT EEARH,r19 
OUT EEARL,r18 
LPM r17, Z 
OUT EEDR,r17 
SBI EECR,EEMWE 
SBI EECR,EEWE 
INC r18 ;index the next cell in the EEPROM 
INC ZL ;index the next cell in the Flash memory 
DEC r16 ;countdown to end of a sinusoid period 
BRNELOAD 
SEI 
-------------------------, 
SINUSOID_CHECK: 
; The following for checking if the present unit is selected 
IN r16,PIND 
ANDI r16,Ob00010000 
CPI r16,O 
BREQ CHECK_BUnON 

STATUS_CHECK: 
LOS r16,Status 
CPI r16,OxOO ;If Switch 3 pressed, then all bits in Switch Status are toggled to 1. If not, keep checking 
BRNE CHANNEL_CHECK 
NOP 
NOP 
NOP 
NOP 
CHECK_BUnON: 
LOS r16,HW_lnterrupt 
CPI r16,OxOO 
BREQ SINUSOID_CHECK 
RJMP DELAY_CALC 
-----------, 

IIRJMP SINUSOID_CHECK 
----------------------------------, 
;Code to decode the execution command 
CHANNEL_CHECK: 
LDI r16,(O«PD5) 
OUT PORTD,r16 ;Reset the interrupt acknowlege signal 
LDI r16,(O«PD1) 
OUT PORTD,r16 ;Reset the communication lines 
LDI r16,OxOO 
STS Status,r16 
WAIT1a: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox01 
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BRNE WAIT1a 

CHANNEL_READ: 
NOP 
NOP 
IN r17,PINA 
LDI r16,(1«PD1) 
OUT PORTD,r16 ;Signal AT90USB1287 that the data have be received 
STS ChanneUn,r17 
WAIT1b: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox02 
BRNE WAIT1b 
LDI r16,(O«PD1) 
OUT PORTD,r16 ;Reset the communication lines 
-------, 
WAIT2a: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox01 
BRNEWAIT2a 
-------, 
COMMAND_DECODE: 
NOP 
NOP 
IN r17,PINA 
LDI r16,(1«PD1) 
OUT PORTD,r16 ;Signaling AT90USB1287 that the data have be received 
STS CurrenUnstr,r17 
WAIT2b: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox02 
BRNEWAIT2b 
LDI r16,(O«PD1) 
OUT PORTD,r16 ;Reset the communication lines 
--------, 
FREQUENCY_READ: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox01 
BRNEFREQUENCY_READ 
NOP 
NOP 
IN r17,PINA 
LDI r16,(1«PD1) 
OUT PORTD,r16 ;Signaling AT90USB1287 that the data have be received 
STS Dump1,r17 
WAIT3: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox02 
BRNEWAIT3 
LDI r16,(O«PD1) 
OUT PORTD,r16 ;Reset the communication lines 
---------, 
CutFreq_READ: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox01 
BRNE CutFreq_READ 
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NOP 
NOP 
IN r17,PINA 
LDI r16,(1«PD1) 
OUT PORTD,r16 ;Signaling AT90USB1287 that the data have be received 
STS CutF,r17 
WAIT4: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox02 
BRNEWAIT4 
LDI r16,(0«PD1) 
OUT PORTD,r16 ;Reset the communication lines 
------, 
LDS r17,ChanneUn 
CPI r17,Channei ;Check if the unit intended by the data packet matches with the channel number 
of the present unit 
BREQ DECODE_SEQ 
RJMP SINUSOID_CHECK 

DECODE_SEQ: 
LDS r17,CurrenUnstr 
CPI r17,Ox01 
BREQ NUM_SAMPLE_READ 
CPI r17,Ox02 
BREQ FREQ_DUMP 
CPI r17,Ox03 
BREQ START_JMP 
CPI r17,Ox04 
BREQ STOP _JMP 
RJMP SINUSOID_CHECK 

START_JMP: 
RJMP DELAY_CALC 
STOP_JMP: 
RJMP CLEAR_OUTPUT 

FREQ_DUMP: 
LDS r16,Dump1 
STS InpuCFreq,r16 
LDS r16,CutF 

;Code to output sinusoid 
CutF_CONV: 
;Implements the frequency from 1 to 100 Hz 
;Multiply 100 by 50 and store the result in R1 :RO 
LDI rmp,200 
LDI r17,5 
MUL rmp,r17 ;result stored in R1 :RO 
LDS rD,CutF 

;Divide rNh(R1):rNI(RO) by rD(R3) 
Div8CON: 
CLR rNu ;clear interim register 
CLR rRh ;clear result (the result registers are also used to count to 16 for the division steps) 
CLR rRI 
INC rRI 

;Division loop starts 
Div8CONa: 
CLC ;clear carry-bit 
ROL rNI ;rotate the next-upper bit of the number to the interim register (multiply by 2) 
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ROL rNh 
ROL rNu 
BRCS Div8CONb ;if the bit is a 1, then subtract. 
CP rNu,rD ;division result 1 or O? 
BRCS Div8CONc ;if smaller, then ignore subtraction step 

;If the intermediate value dividable 
Div8CONb: 
SUB rNu,rD ;subtract number to divide with 
SEC ;set carry-bit,result is a 1 
RJMP Div8CONd ;jump to shift of the result bit 

;If the intermediate value not dividable 
Div8CONc: 
CLC ;clear carry-bit,resulting bit is a 0 

Div8CONd: 
ROL rRI ;rotate carry-bit into result registers 
ROL rRh 
BRCC Div8CONa ;Zero rotating out of the result register: Division not done 

STS Cut_Count,rRI 

OUT OCR2,rRI 
counted down from 

RJMP SINUSOID_CHECK 

NUM_SAMPLE_READ: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox01 
BRNE NUM_SAMPLE_READ 

NOP 
NOP 
IN r17,PINA 
LDI r16,(1«PD1) 

;Load Output Compare Register 2 with the desired number to be 

OUT PORTD,r16 ;Signaling AT90USB1287 that the data have be received 
STS TotCoeffNumL,r17 
STS TotCoeffln,r17 

WAIT5: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox02 
BRNEWAIT5 
LDI r16,(0«PD1) 
OUT PORTD,r16 ;Reset the communication lines 

CLR r19 
LSL r17 
ROL r19 
LSL r17 
ROL r19 
LSL r17 
ROL r19 
LSL r17 
ROL r19 
LSL r17 
ROL r19 
STS TotCoeffNumL,r17 
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STS TotCoeffNumH,r19 

INIT_EEPROM: 
CLI 
LDS r2S, TotCoeffNumH ;Set R2S:R24 to the counts of waveform coefficients to be read in 
LDS r24,TotCoeffNumL 
LDI r27,OxOO 
LDI r26,OxOO 
OUT EEARH,r27 
OUT EEARL,r26 

DATA_IN: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox01 
BRNE DATA_IN 

NOP 
NOP 
IN r17,PINA 
LDI r16,(1«PD1) 
OUT PORTD,r16 ;Signaling AT90USB1287 that the data have be received 

WAIT6: 
IN r16,PIND 
ANDI r16,Ox03 
CPI r16,Ox02 
BRNEWAIT6 
LDI r16,(0«PD1) 
OUT PORTD,r16 ;Reset the communication lines 

LOAD2: 
SBIC EECR,EEWE 
RJMP LOAD2 

OUT EEARH,r27 
OUT EEARL,r26 
OUT EEDR,r17 
SBI EECR,EEMWE 
SBI EECR,EEWE 

ADIW r27:r26,1 

COUNT _DOWN1: 
SBIW r2S:r24,1 
BRNE DATA_IN 
SEI 
RJMP SINUSOID_CHECK 

TEMP1: 
LDI r21,Ox06 
RJMP SINUSOID_CHECK 

,-------------------------------
;Code to output sinusoid 
DELAY_CALC: 
;Implements the frequency from 1 to 100 Hz 
;Multiply 100 by SO and store the result in R1:RO 
LDI rmp,200 
LDI r17,SO 
MUL rmp,r17 ;result stored in R1:RO 
LDS rD,lnputJreq 
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;Divide rNh(R1 ):rNI(RO) by rD(R3) 
Div8: 
CLR rNu ;clear interim register 
CLR rRh ;clear result (the result registers are also used to count to 16 for the division steps) 
CLR rRI 
INC rRI 

;Division loop starts 
Div8a: 
CLC ;clear carry-bit 
ROL rNI ;rotate the next-upper bit of the number to the interim register (multiply by 2) 
ROL rNh 

;if the bit is a 1, then subtract. 
;division result 1 or O? 

ROL rNu 
BRCS Div8b 
CP rNu,rD 
BRCS Div8c ;if smaller, then ignore subtraction step 

;If the intermediate value dividable 
Div8b: 
SUB rNu,rD 
SEC 
RJMP Div8d 

;subtract number to divide with 
;set carry-bit,result is a 1 

;jump to shift of the result bit 

;If the intermediate value not dividable 
Div8c: 
CLC ;clear carry-bit,resulting bit is a 0 

Div8d: 
ROL rRI 
ROL rRh 
BRCC Div8a 

;rotate carry-bit into result registers 

;Zero rotating out of the result register: Division not done 

;Code for adjusting for different numbers of sample points 
DELAY_ADJUST: 
;Implements the frequency from 1 to 100 Hz 
;Multiply 100 by 50 and store the result in R1 :RO 
MOVrNI,rRI 
MOVrNh,rRh 
;Now using 4MHz system clock. Multiply the counter by 4 before dividing it by the number of coefficient 
number. 
LSL rNI 
ROL rNh 
LSL rNI 
ROL rNh 

LDS rD,TotCoeffln 

;Divide rNh(R1):rNI(RO) by rD(R3) 
Div8M: 
CLR rNu ;clear interim register 
CLR rRh ;clear result (the result registers are also used to count to 16 for the division steps) 
CLR rRI 
INC rRI 

;Division loop starts 
Div8Ma: 
CLC ;clear carry-bit 
ROL rNI ;rotate the next-upper bit of the number to the interim register (multiply by 2) 
ROL rNh 
ROL rNu 
BRCS Div8Mb ;if the bit is a 1, then subtract. 
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CP rNu,rD ;division result 1 or O? 
SRCS DivSMc ;if smaller, then ignore subtraction step 

;If the intermediate value dividable 
DivSMb: 
SUS rNu,rD 
SEC 
RJMP DivSMd 

;subtract number to divide with 
;set carry-bit,result is a 1 

;jump to shift of the result bit 

;Ifthe intermediate value not dividable 
DivSMc: 
CLC ;clear carry-bit,resulting bit is a 0 

DivSMd: 
ROL rRI ;rotate carry-bit into result registers 
ROL rRh 
SRCC DivSMa ;Zero rotating out of the result register: Division not done 
;End of the division 
;-----------------------
;Start the waveform by sending a pulse with a duration greater than 50 ms 
START_PULSE: 
; Load PORTC with 0 
LDI r16,OxOO; 
OUT PORTC, r16 ;write to DAC inputs; 
;CALL outpuUoad; output DAC load routine 
;tell output DAC to load. MUST HAVE 5 us for each transition! 
LDI r17, Ob00000011 ;input register transparent 
;LDI r17, Ob0011 0011 
OUT PORTS, r17 
NOP 
NOP 
LDI r17, Ob00000111 ;input register latched 
OUT PORTS, r17 
NOP 
NOP 
LDI r17, Ob00001 001 ;DAC register transparent 
OUT PORTS, r17 
NOP 
NOP 
LDI r17' Ob000011 01 ;DAC register latched 
OUT PORTS, r17 
NOP 
NOP 
LDI r22,100 
PULSE_DELA Y1_ OUT: 
LDI r21,255 ;Ioop counter 
PULSE_DELAYUN: 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
DEC r21 ;1 cycle 

;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 

SRNE PULSE_DELAY1_IN 
DEC r22 

; 1 cycle if false, 2 cycles if true 

SRNE PULSE_DELAY1_0UT 
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; Load PORTC with the maximum voltage coefficient 
LDI r16,OxFF; 
OUT PORTC, r16;write to DAC inputs; 
;CALL outpuUoad; output DAC load routine 
;tell output DAC to load. MUST HAVE 5 us for each transition! 
LDI r17, Ob00000011 ;input register transparent 
OUT PORTB, r17 
NOP 
NOP 
LDI r17, Ob00000111 ;input register latched 
OUT PORTB, r17 
NOP 
NOP 
LDI r17, Ob00001001 ;DAC register transparent 
OUT PORTB, r17 
NOP 
NOP 
LDI r17, Ob000011 01 ;DAC register latched 
OUT PORTB, r17 
NOP 
NOP 
LDI r22,100 
PULSE_DELA Y2_ OUT: 
LDI r21,255 ;Ioop counter 
PULSE_DELA Y2_IN: 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
DEC r21 ;1 cycle 

;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 

BRNE PULSE_DELAY2_IN 
DEC r22 

; 1 cycle if false, 2 cycles if true 

BRNE PULSE_DELAY2_0UT 

; Load PORTC with 0 
LDI r16,OxOO; 
OUT PORTC, r16 ;write to DAC inputs; 
;CALL outpuUoad; output DAC load routine 

;tell output DAC to load. MUST HAVE 5 us for each transition! 
LDI r17, Ob00000011 ;input register transparent 
OUT PORTB, r17 
NOP 
NOP 
LDI r17, Ob00000111 ;input register latched 
OUT PORTB, r17 
NOP 
NOP 
LDI r17, Ob00001001;DAC register transparent 
OUT PORTB, r17 
NOP 
NOP 
LDI r17, Ob000011 01 ;DAC register latched 
OUT PORTB, r17 
NOP 
NOP 

117 



LDI r22,100 
PULSE_DELA Y3_ OUT: 
LDI r21,255 ;Ioop counter 
PULSE_DELA Y3_IN: 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
NOP 
DEC r21 ;1 cycle 

;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 
;1 cycle 

BRNE PULSE_DELAY3_IN 
DEC r22 
BRNE PULSE_DELAY3_0UT 
;The end of initiation pulse 

;1 cycle if false, 2 cycles if true 

----------------------------, 
IN r16,PIND 
ANDI r16,Ob00010000 
CPI r16,O 
BREQ SINUSOID_BEGIN 
LDI r16,Ox01 
STS Status,r16 

SINUSOID_BEGIN: 
NOP 
NOP 
NOP 
NOP 
LDS r27,TotCoeffNumH 
LDS r26,TotCoeffNumL ;to detect end of a sinusoid period 
; Now loading from EEPROM 
LDI r19,OxOO 
OUT EEARH,r19 
LDI r18,OxOO 
OUT EEARL,r18 

EXIT_CHECK: 
;check if user wishes to stop the sinusoid 
LOS r16,Status 
CPI r16,Ox01 ;If there is a hardware interrupt, go check if it is the STOP command 
BREQ EXIT_CHECK_RETURN 
LDS r16,HW_lnterrupt 
CPI r16,OxFF 
BREQ EXIT_CHECK_RETURN 
RJMP CLEAR_OUTPUT 

EXIT _CHECK_RETURN: 
IILPM r16, Z ;Ioad value of DAC input into r16 from address in Z; 
SBI EECR,EERE 
IN r16,EEDR 
; Reading the next element in EEPROM 
OUT PORTC, r16;write to DAC inputs; 
;CALL outpuUoad; output DAC load routine 

OUTPUT_LOAD: 
;tell output DAC to load. MUST HAVE 5 us for each transition! 
LDI r17, Ob0001 0011 ;input register transparent 
OUT PORTB, r17 
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NOP 
NOP 
LDI r17, Ob00010111 ;input register latched 
OUT PORTB, r17 
NOP 
NOP 
LDI r17, Ob00011001 ;DAC register transparent 
OUT PORTB, r17 
NOP 
NOP 
LDI r17, Ob000111 01 ;DAC register latched 
OUT PORTB, r17 
NOP 
NOP 

MOV r25,rRh 
MOV r24,rRI 
; The following divide the duration of each coefficient by 2, due to that ATMega32 is currently running at 8 
MHz 
LSR r25 
ROR r24 
; outer loop counter 
LOOPY: 
SBIW r25:r24,1 
NOP 
BRNELOOPY 

DELAY_RETURN: 
SBIW r27:r26,1; countdown to end of a sinusoid period 
BREQ SINUSOID_BEGIN 
INC r18 
OUT EEARL,r18 
; Increasing the EEPROM address by 1 
BRNE COUNT_UP1 
INC r19 
OUT EEARH,r19 

COUNT_UP1: 
RJMP EXIT_CHECK 

CLEAR_OUTPUT: 
;reset output DAC 
LDI r16, $00 
LDI r17, Ob0001 OOOO;input register transparent 
OUT PORTB, r17 
RJMP SINUSOID_CHECK 

;=============================================================================== 
; Interrupt service subroutine wrapper 
SWITCH_3: ;ISR for Switch 3 
PUSH r16 
IN r16,SREG 
PUSH r16 
l!The following middle section of the ISR can be freely modified to meet the requirement of testing. 
IIOutside of this section of code is the routine for ISR housekeeping 
IN r16,PIND 
LDI r16,OxFF 
STS Status,r16 
LDI r16,OxOO 
STS HW_lnterrupt,r16 
----------------, 
;For testing 
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LDI r16,(1 «PD5) 
OUT PORTD,r16 ;Set the interrupt acknowlege signal 

,---,-----, 
/lEnd of section for free modification 
EXIT_SEQ: 
POP r16 
OUT SREG,r16 
POP r16 
RETI 

SWITCH_ 4: ;ISR for Switch 4 
PUSH r16 
IN r16,SREG 
PUSH r16 
lIThe following middle section of the ISR can be freely modified to meet the requirement of testing. 
/lOuts ide of this section of code is the routine for ISR housekeeping 
LOS r16,HW_lnterrupt 
COM r16 
STS HW_lnterrupt,r16 
LDI r16,OxOO 
STS Status,r16 
/lEnd of section for free modification 
POP r16 
OUT SREG,r16 
POP r16 
RETI 

;TABLES 
.CSEG 
;Lookup table for sinusoid generation (8 bit DAC, DT period of 32) 
;LUT: 
SINUSOID: 
.db128, 153, 178,200,220,236,247,254,255,251,242,228,211, 189, 166, 140, 115,89,66,44,27, 13, 
4,0,1,8,19,35,55,77,102,127 
TRIANGLE: 
.dbO, 15,31,47,63,79,95,111,127,143,159, 175, 191,207,223,239,255,239,223,207, 191, 175, 
159,143,127,111,95,79,63,47,31,15 
SQUARE: 
.dbO,O,O,O,O,O,O,O,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,0, 
0,0,0,0,0,0,0 
mod_sine: 
.db125, 142, 158, 172, 185, 196,204,208,210,208,204, 196, 185, 172, 158, 142, 125, 108,92,78,65, 
54,46,42,40,42,46,54,65,78,92,108 

;Value of amplitude 
AMPLITUDE: 
.db (5.0)/9.0*255.0; vary the value in the parenthesis from 0 to 9 only to vary reference voltage from 

; 0 to 9V 
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Appendix F: Simulated Magnetic Field Patterns 

I. Z-component with triangular coils of 5-mm base length and various leg 
lengths 

S-mm leg length 10-mm leg length 

2S-mm leg length SO-mm leg length 
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II. Y -component with triangular coils of 5-mm base length and various leg 
lengths 

,"',...-__ ..lL-_____ ----iIl...-__ -=:..,e 

S-mm leg length 10-mm leg length 

2S-mm leg length SO-mm leg length 
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III. Z-component with equilateral triangular coils of various side lengths 

10-mm side length 20-mm side length 

30-mm side length 40-mm side length 

123 



Appendix G: Inverse Analysis Results 

The following shows the resulting magnetic flux density distribution after TSVD 
(left), the resulting dipole locations after data clustering (middle), and the 
adjusted dipole locations after downhill simplex computation (right) of the 
sequential inverse analysis steps for test cases 1, 2, 3, 4, 6 and 10. 
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