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Abstract

Parkinson’s Disease (PD) affects approximately 1% of the population above the age of

65.The morphological changes in PD are typically not obvious, even to the trained eyes.

Thus computational methods are needed to determine the existence and potential signifi-

cance of robust changes in brain morphometry in PD. In this thesis we present a number of

novel signal and image processing methods, that when applied to different Magnetic Reso-

nance Imaging (MRI) techniques, can be used for the diagnosis and monitoring of PD. We

first motivate the research by measuring the extent of residual anatomical variability (RAV)

after spatial normalization (Chapter 1). In Chapter 2, we present a novel brain morphome-

try method, based on the analysis of the deformation field required to map template regions

of interest (ROIs) to the corresponding ROIs in the individual brains images to be assessed.

Chapter 3 summarizes the development of an algorithm to improve registration of the mid-

brain region, the primary site of pathology in PD. We also propose a novel method for joint

analysis of structural images and diffusion tensor images (DTI) using the Fukunaga-Koontz

Transform (FKT), which jointly transforms anatomical and DTI data into the same spatial

components, but with complementary loadings (Chapter 4). This allows selection of linear

subspaces which are heavily weighted on DTI changes relatively insensitive to residual mor-

phological differences, and vice versa. All the proposed methods have been validated with

clinic MRI data of both PD subjects and age-matched normal control subjects. To com-

plement the above studies, we further designed a module-based work flow to extract time

courses from function MRI (fMRI) signals, using automated segmentation of structural MRI

data as masks (Appendix A). This has facilitated the analysis of fMRI studies in PD, such

as examining the compensatory changes seen in PD.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Parkinson’s disease

Parkinson’s disease is the one of the most common neurodegenerative diseases in Canada,

which affects approximately 1% of the population above the age of 65 1. The symptoms

of PD are caused by direct and indirect effects of unexplained premature degeneration of

dopamine-producing cells in the midbrain. The original descriptions emphasized changes in

the motor system, such as tremor, bradykinesia (slowness of movement) and rigidity, how-

ever, it is becoming increasing apparent that other symptoms like dementia may also appear

in the advanced stages of PD 2. Despite numerous attempts, it is still unclear whether any

treatments actually modify the inexorable progression of the disease as opposed to merely

treating the symptoms, making quantitative measurements of disease severity in PD vital.

However, diagnosis of PD is still based on clinical criteria, and attempts to obtain quanti-

tative markers of disease progression to assess the effects of potentially disease-modifying

therapy have been disappointing because 1) they cannot dissociate the beneficial effects of

symptomatic treatment from disease progression, 2) they are expensive or use technology

that is only available in specialized centers, and 3) despite being quantitative, they corre-

late poorly with overall disability, possibly because disease progression and compensatory

1Parkinson Society Canada http://www.parkinson.ca/site/c.kgLNIWODKpF/b.5184077/

k.CDD1/What is Parkinsons.htm
2Wikipedia http://en.wikipedia.org/wiki/Parkinson’s disease

1



CHAPTER 1. INTRODUCTION 2

mechanisms are confounded. In this thesis, we present novel analysis methods applied to

Magnetic Resonance Imaging (MRI) scans that attempts to address the above concerns.

1.1.2 Brain morphometry

Brain morphometry analysis is concerned with the quantification of anatomical features de-

rived from brain imaging procedures, such as MRI. Parkinson’s Disease is an ideal condition

for quantitative morphometric analysis, as unlike Alzheimer’s disease, the morphological

changes in PD are typically not obvious, even to the trained eye. Thus quantifiable meth-

ods are required to determine if robust changes in brain structure exist in PD.

Brain morphometry studies are usually based on brain image segmentation, which is

the process of assigning a label to a set of different anatomical structures on brain images.

Commonly-used brain image segmentation methods can be categorized into three general

types. The first type is knowledge-based, in which label assignment is based on implicit

or explicit anatomical knowledge, such as training sets and anatomical constraints (Pitiot

et al.[80]), shape and positional information (Xia et al.[103]) and landmarks (Chupin et

al.[29]). The second type is template-based, whereby a pre-labeled template brain image

is used to propagate labels to target brain images by a registration process between the

template and the volume to be labeled. Previous attempts using this approach include

Hierarchical Attribute Matching Mechanism for elastic registration (HAMMER) [88], and

the Mindboggle method which utilized manually labeled brains as templates [63]. The

third type is probabilistic-based, and estimates label assignment based on maximization of

a posteriori probability of classification under certain constraints. Such methods have been

proposed by Gouttard et al., who used a segmentatoion method via a deformable registration

of an unbiased atlas with probabilistic spatial priors [48]. Fischl et al. presented a set of

brain MR image reconstruction tools called FreeSurfer(FS) [40], which transforms target

brain scans into Talairach space and performs both cortical percolation and subcortical

segmentation. Khan et al. [62] developed the fully automated FS+LDDMM method that

combines the probabilistic-based FS method with Large Deformation Diffeomorphic Metric

Mapping (LDDMM) based label propagation [8]. The FS+LDDMM method computes

the deformation between the ROIs of template and target images, then uses the same

deformation to map the known anatomy information (manual labels) from the template

brain onto target brains, thus generating the segmentation, as is shown in Figure 1.1.
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Figure 1.1: Mechanism of FS+LDDMM method. Note that the inverse deformation is
used to find out the template-brain coordinates where each voxel of the segmentation result
originates. Usually the coordinates point to non-grid locations in the template brain(s) and
interpolation is required. Using the deformation directly cannot guarantee each voxel in the
template brain can be mapped to a grid location in target brain.

We tested the segmentation accuracy of FS+LDDMM and FS-alone with six ROIs in-

cluding the caudate, thalamus, and putamen (both left and right) from 26 clinical T1 scans

(14 PD subjects and 12 age-matched control subjects without neurologic disease) that had

also been manually segmented by a trained neuroscientist [24].

We used several comparison metrics to quantify the segmentation accuracy, as shown

in Equation 1.1 - 1.6. The L1 error is defined in Equation 1.1, where we denote a manual

segmentation by M and an automatic segmentation by A. The Dice Similarity Coefficient

(DSC) is defined in Equation 1.2, with V (A) representing the volume of the segmented image

A. It is assumed A and B are binary segmentations. With this formulation, perfect spatial

correspondence between the two binary images would result in DSC = 1, and no spatial

correspondence would result in DSC = 0. We also computed the Symmetrized Hausdorff

Distance and the Symmetrized Mean Surface Distance. The Directed Hausdorff Distance
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is defined in Equation 1.3 , where d(a, b) is the distance between points on two different

surfaces. To symmetrize this metric, we use Equation 1.4. The Hausdorff Distance gives

an upper bound on the mismatch between the contours of segmentations. Directed mean

surface distance is defined in 1.5, and is symmetrized similarly as Equation 1.6.

ErrorL1 =
∥A−M∥L1
∥M∥L1

=

∑
x∈Ω ∥A(x)−M(x)∥∑

x∈Ω ∥M(x)∥
(1.1)

DSC(A,B) =
2V (A ∩B)

V (A) + V (B)
(1.2)

h(A,B) = max
a∈A

min
b∈B

d(a, b) (1.3)

H(A,B) = max{h(A,B), h(B,A)} (1.4)

sd(A,B) =
1

NA

∑
a∈A

min
b∈B

d(a, b) (1.5)

SD(A,B) = max{sd(A,B), sd(B,A)} (1.6)

A typical set of segmentation results are compared in Figure 1.2. Table 1.1 shows the

overlap percentages (DSC and L1 error) for the FS+LDDMM, FS and manual segmenta-

tions. We assumed that the manual segmentation represents the “gold standard”. For all

ROIs, decreases in L1 error can be found in FS+LDDMM segmentations compared FS. For

the majority of ROIs, improvement of the DSC can be found in the FS+LDDMM segmenta-

tions compared to the FS labels, which suggests that the FS+LDDMM segmentations have

more similarity to manual segmentations than FS segmentations. Table 1.2 contains surface

distances (the Hausdorff distance and mean surface distance) between both FS+LDDMM

and FS segmentations to manual segmentations. For all ROIs, FS+LDDMM segmentations

have smaller surface distances to manual segmentations over FS, which again is suggestive

of improvement of segmentation accuracy.

1.1.3 Anatomical variability

One of the biggest challenges for brain morphometry methods in evaluating disease popu-

lations such as PD is to differentiate the PD-related group differences from the expected
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Figure 1.2: Surface visualization of segmentation results including manual segmentation left
column, FS segmentation middle column and LDDMM segmentation right column. The first
row is the original brain MRI slices overlapped with segmenting results (Transverse view).
The second to fifth rows are the 3D volumes for the three Basal Ganglia structures (Sagittal
view). The second row is three structures posed in respective positions. The third row to
fifth rows contain the caudate, putamen and thalamus segmentations respectively.
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Table 1.1: Average DSC’s and L1 errors of FS-segmented structures and LDDMM-
segmented structures using manually segmented structures as references

Structure/Manual volume Method Volume DSC L1 error

Left Caudate/ FS 3818± 556.12 0.68± 0.08 0.38± 0.16
3177± 999.36 FS+LDDMM 2899± 443.94 0.75± 0.07 0.24± 0.07

Left Putamen/ FS 5246± 751.23 0.65± 0.11 0.51± 0.26
3330± 1254.47 FS+LDDMM 2077± 517.83 0.67± 0.11 0.27± 0.06

Left Thalamus/ FS 7186± 838.22 0.73± 0.08 0.37± 0.21
4840± 1131.67 FS+LDDMM 4410± 514.89 0.74± 0.06 0.26± 0.10

Right Caudate/ FS 3586± 523.71 0.68± 0.06 0.34± 0.12
3282± 978.63 FS+LDDMM 3176± 432.14 0.71± 0.06 0.29± 0.08

Right Putamen/ FS 4803± 786.12 0.69± 0.09 0.40± 0.21
3439± 1278.78 FS+LDDMM 3388± 648.38 0.71± 0.06 0.30± 0.09

Right Thalamus/ FS 6942± 668.06 0.74± 0.07 0.33± 0.18
5175± 1193.04 FS+LDDMM 5005± 523.20 0.72± 0.08 0.29± 0.12

within-group, inter-subject anatomical variability. Conventional methods typically involve

normalization i.e. spatially transforming different brain scans to a standard space for pur-

poses of atlas alignment, inter-subject averaging, or characterization of anatomical struc-

tures. In fMRI analyses, time series from different subjects are concatenated together under

the assumption that there is a perfect correspondence at the voxel level across subjects

after normalization. Often data are spatially smoothed to make this assumption less rigid,

but this degrades the spatial resolution. Standard low dimensional methods for spatial nor-

malization can result in significant misregistration, particularly for smaller structures such

as those of the basal ganglia, which constitute a significant proportion of the ROIs in PD

studies.

To rigorously assess the residual anatomical variability in basal ganglia structures after

standard spatial normalization, we studied the extent of RAV in 6 basal ganglia structures

from 27 brain scans after spatial normalization by Freesurfer [40], Statistical Parametric

Mapping (SPM)[6], and Large Deformation Diffeomorphic Metric Mapping [8]. In our study

[23], we used the extended DSC to measure the overlap percentage of normalized ROIs under

template space. The extended DSC is defined as:

DSC(S, n) = n× V (
∩
i

Si)/
n∑

i=1

V (Si) (1.7)

where Si, (i = 1, 2 . . . n) are ROIs from subject i in this paper. V (Si) is the number of
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Table 1.2: Average Hausdorff distances and mean surface distances of FS-segmented struc-
tures and FS+LDDMM-segmented structures using manually segmented structures as ref-
erence

Structure Method sym hausdorff sym 95% hausdorff sym mean surf dist

Left Caudate FS 16.85± 5.86 12.01± 5.94 2.92± 1.59

FS+LDDMM 6.68± 3.27 4.41± 2.64 1.38± 0.63

Left Putamen FS 11.93± 3.49 8.76± 3.26 2.90± 1.29

FS+LDDMM 8.36± 3.93 5.85± 3.17 1.95± 0.97

Left Thalamus FS 7.44± 1.59 5.27± 1.51 2.11± 0.67

FS+LDDMM 5.86± 1.54 4.35± 1.21 1.65± 0.40

Right Caudate FS 16.26± 5.41 10.63± 4.98 2.57± 1.21

FS+LDDMM 6.98± 3.71 4.44± 2.65 1.52± 0.66

Right Putamen FS 10.84± 3.72 8.16± 3.52 2.46± 1.18

FS+LDDMM 7.56± 2.64 5.23± 2.02 1.76± 0.55

Right Thalamus FS 7.33± 2.17 4.93± 1.82 1.98± 0.67

FS+LDDMM 6.71± 1.56 4.72± 1.46 1.88± 0.53

non-zero voxels of of Si (i.e. the volume of ROI Si), and n is the number of subjects to

overlay, which we will refer to as the group size. When n = 2, the extended DSC becomes the

standard DSC defined in Equation 1.2. For complete overlap between two segmentations,

DSC = 1, and for no overlap, DSC = 0. We computed the average DSC of normalized

ROIs using Nieto-Castanon’s scheme [77]. Average DSCs were computed over all possible

subject combinations.

The average DSCs of ROIs after three different spatial normalization methods are shown

in Figure 1.3. As expected, smaller ROIs such as the globus pallidus had increased RAV

when computed over all subject pairs with different group sizes and registration methods.

The LDDMM method had the lowest RAV of the three methods, but was the most computa-

tionally intensive. For low dimensional registration methods such as the affine registration

implemented in Freesurfer and SPM, RAV becomes a problem particularly as the group

sizes increases. This result also has major implications for group fMRI studies that utilize

spatial normalization as a standard pre-processing method, and supports the use of fMRI

ROI analysis methods that compute significance in each subject’s native space, especially

when basal ganglia structures are involved.
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Figure 1.3: Average DSCs of registered ROIs. The rows correspond to different registration
methods, from up to down is Freesurfer, SPM, LDDMM. The left column is control subjects
and right column is PD subjects. For all ROIs, DSC decreases as group size grows. But the
decrease is slower for high dimensional registration method LDDMM than low dimensional
affine method used in Freesurfer and SPM.
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In this thesis we present methods to 1) implement more accurate registration methods

to reduce anatomical variability, 2) provide ways to both isolate anatomical variability

from other information (e.g. Diffusion Tensor Data) and 3) analyze residual anatomical

variability.

1.2 Thesis structure

The rest of thesis is organized as follows: Chapter 2 is focused on the analysis of on struc-

tural MRI analysis, including the FS-LDDMM automated brain segmentation algorithm

and initial momentum analysis as a potential biomarker for Parkinson’s disease. Chapter 3

describes a multi-structure registration algorithm, and applies it to susceptibility weighted

imaging (SWI). Chapter 4 describes diffusion tensor image (DTI) analysis, including the

implementation of Fukunaga-Koontz Transformation on co-registered DTI and MRI im-

ages. In Chapter 5 we summarize our research and give directions to future work. Finally

in Appendix A we introduce fPipe, the automated toolbox for fMRI signal preprocessing,

which includes the FS+LDDMM brain image segmentation method.

1.3 Thesis contributions

This thesis includes the following innovative contributions:

• Proposed and validated a method, based on analysis of the initial momentum of sub-

cortical deformation to a template, as a potential biomarker in PD (Chapter 2).

• Developed a novel ICA approach for multi-structure initial momentum biomarker

(Chapter 2).

• Developed a new method of multi-structure LDDMM registration and analysis of SWI

data (Chapter 3).

• Developed a new method for separating DTI changes due to mis-registration and

disease effects based on the Fukunaga-Koontz Transform (Chapter 4).

• Developed a fully-automated computational tool for fMRI data processing: fPipe

(Appendix A).



Chapter 2

Structural MRI Image Analysis

2.1 Introduction

The commonly used brain morphometry methods to assess progression of disease, such as

Parkinson’s disease, can be categorized into three general types: voxel-based, surface-based,

and deformation-based. By far, the majority of morphometry studies to date have been

based on voxel-based morphometry (VBM), whereby subject brain images are registered

to a common template image, and statistical analyses are performed on a voxel-by-voxel

basis on the registered subject brain image. This technique has demonstrated cortical loss

in some brain areas in PD [17][74] and in other diseases that may mimic PD [79][16][97].

Nevertheless there is greater recognition of the limitations of VBM, and a trend toward

methods that attempt to analyze brain regions in their original shape (e.g. [38]), as we

describe in this chapter. Imperfect registration to a template, as we demonstrated in Chapter

1 and in [24], results in questionable interpretations from VBM[14]. Also, VBM tends to

be biased to find focal changes as opposed to more spatially distributed changes [35], and

may be insensitive to subtle morphological alterations [12]. We show in this chapter that

morphological changes tend to be distributed across many portions within an ROI, and

across several ROIs simultaneously.

One way to mitigate the problems associated with VBM is to utilize surface-based mor-

phometry (SBM). In SBM, a surface representation of structural boundaries is used instead

of a one-to-one registration, which makes it more robust to subtle misregistration. Using

such a method, Apostolova found PD related shape and volume changes correspondingly by

SBM [5]. Similarly, McKeown et al. used a novel spherical harmonic based representation

10
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of manually-segmented structures to demonstrate significant shape (although not volume)

changes in PD [72].

Deformation-based morphometry (DBM) is an alternative way to avoid losing potentially

important information during the registration process, but requires one-to-one, highly non-

linear registrations to get sufficient accuracy. In DBM, instead of analyzing the registered

subject brain images directly, the deformation fields, or the initial momentum field of the

registration process are analyzed. Duchesne proposed a DBM method based on a volume of

interest (VOI) that encompassed the hindbrain [37]. However, because multiple structures

were partially or entirely included in the VOI, it’s difficult to locate the shape changes

of each individual structure, making biological interpretation difficult. In this chapter, we

present a DBM method that uses anatomically-defined regions of interest (ROI) instead of

a non-biologically defined VOI which may contain many types of structures.

2.2 Methods

The proposed method consists of the sequential application of a number of steps, which

are briefly summarized below and subsequently expanded in the following sections. Regions

of interest (ROIs), corresponding to known anatomical regions, are first segmented from

anatomical images. While this could be done automatically, here we use manually seg-

mented ROIs to avoid inducing unwanted sources of variability in the results. A “typical”

control subject is chosen from amongst the subjects to act as a template. Large Defor-

mation Diffeomorphic Metric Mapping (LDDMM) is then used to register the ROIs from

this template to all other subjects’ ROIs. The initial momentum of the deformation field

is then used as a morphological feature. We concentrate on the voxels on the surface of

the binary mask marking the ROIs, which tend to have the greatest variability in deforma-

tion, to reduce dimensionality. The (x,y,z) coordinates of the deformation field from the

surface are then concatenated into a single row vector. Row vectors from different subjects

are then collected into a matrix. Independent Component Analysis (ICA) is then applied

to determine the independent deformation fields that are distributed in various amounts

across subjects. The loading across subjects of the independent deformation fields are then

assessed for their discriminative value and/or their correspondence with clinical attributes.

These individual steps are expanded below.
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2.2.1 Data acquisition and segmentation

We acquired 42 T1-weighted whole-brain MR images from a 3 Tesla scanner (Philips Achieva

3.0T; Philips Medical Systems, Netherlands), (3-D SPGR, TR = 14 ms, TE = 7.7 ms, flip

angle = 25◦), with voxel dimensions 1.0 x 1.0 x 1.0 mm, 176 x 256 voxels, 170 slices axially

parallel to the AC-PC plane. The subject cohort consisted of two groups: 19 subjects with

a clinical diagnosis of Parkinson’s Disease (PD), and 23 age-matched control subjects with

no known neurological or psychiatric conditions.

Four basal ganglia ROIs (putamen, caudate, thalamus, globus pallidus) in each hemi-

sphere were outlined manually by a trained research assistant using anatomical atlases and

Amira software (Amira 3D Visualization and Volume Modeling V.3.1.1.) as shown in Fig-

ure 2.1. The research assistant was blinded to the diagnosis. To test the consistency of the

manual segmentation, we required the research assistant to segment one control subject 5

times independently. The overlap percentage of same ROI segmented in different session is

very high (DSC> 90%), indicating high consistency of manual segmentation.

2.2.2 Template selection

The segmented ROIs are registered with Large Deformation Diffeomorphic Metric Mapping

(LDDMM) [8]. The LDDMM requires a template and other ROIs to be registered. We

employed the following method to choose a “representative” subject. All ROIs from this

representative subject ROIs were then used as templates. For each subject, we computed

the following quantity:

Ci =

N∑
j=1

[
(Vi(j)− V j)

V j
]2; (2.1)

where N is the number of ROIs, V j
i is the volume of ROI j in subject i, and V j is

the median volume size of ROI j in the whole subject group. Cj therefore represents the

normalized distance of subject i to the group median volume, averaged over all ROIs. The

subject with the minimum C value was then chosen as the representative subject. Figure 2.2

shows the subject with smallest C (0.15). It can be seen from the figure the volumes of all

8 ROIs of this subject are very close to median volumes in the histogram. While the goal of

this template selection method is to provide maximum discriminating power of deformation

field and initial momentum, a more sophisticated method is to compute a group average
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Figure 2.1: Visualization of the ROI network of a typical normal control subject. A 3x3
slice array is displayed for each of the Sagittal (upper left), Coronal (upper right) and Axial
(lower left) view. The colored 3D surfaces of ROIs are shown at lower right, caudate is
red, putamen is blue, thalamus is green and pallidus (most part covered by putamen) is
magenta.
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template [61] as introduced in Chapter 4.

Figure 2.2: Volume histogram of 8 ROIs. The dash dot line indicates where the ROI volumes
of the representative subject is located on the histograms of whole group.

2.2.3 Feature extraction

In the framework of computational anatomy (CA) [49], images can be defined as a function

I : Ω → R, where Ω ∈ R3 is the domain of the voxel in 3D volume. Let the operator Ψ

represent the process of segmentation of an image that yields a labeling Ψ : Ω → Z, mapping

each voxel of the image with an integer label for the subcortical structure to which the voxel

belongs. LDDMM [8] finds the geometric transformation φj : Ω → Ω such that each target

image Ij , j = 1 · · ·N is registered accurately to the template I0; i.e. I0◦φ−1
j ≈ Ij minimizing

an appropriate metric such as ∥I0 ◦ φ−1
j − Ij∥L2 , where ∥∥̇L2 is the L2 norm in the space of

functions I.

Given the segmentation of a particular structure in the template I0, the corresponding

structure in target space can be computed by transforming the manual template segmenta-

tion, Ψman (I0) ◦ φ−1
j .

Miller proved [73] that the LDDMM geodesic follows the property of conservation of
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momentum, which takes the form of

(L†L)vt = |Dϕt,0|(Dϕt,0)
t(L†L)v0 ◦ ϕt,0 (2.2)

where (L†L)vt denotes the momentum of the evolving template transformation at time

t. The knowledge of the initial momentum (L†L)v0 with which the template coordinates

evolve completely specifies the full geodesic connecting the given template and target images.

Hence, the initial momentum encodes the shape and form of the target. In particular,

this allows linear techniques such as ICA to be applied to statistical analysis of the initial

momentum that encodes the target shape. Instead of performing ICA analysis under the

L2 metric, we performed it with respect to the metric in space used for the estimation of

the flow [101], i.e. the quantity Lv0.

In this paper we performed LDDMM using flows discretized to 20 time-steps, parallelized

on 8-processors for each ROI to compute the diffeomophism and initial momentum of each

individual structure.

2.2.4 Dimension reduction

Empirically, we observed that volumetric vector field of initial momentum was sparse, with

only the vectors near the boundary of the ROIs having significant non-zero entries. We

therefore utilized an isosurface mask to reduce the dimension of the initial momentum feature

vectors. We create a mask based on the template ROI isosurface, defined as Mask(V ) =

Dilation(V )− Erosion(V ), where V is a binary image of ROI.

2.2.5 Independent component analysis

ICA is a decomposition method to model mixed signals as the linear superposition of in-

dependent components. Let X be the masked initial momentum matrix with the rows

representing the deformation for each subject. ICA decomposes the matrix X into a mixing

matrix A and independent components s so that X = As, and the rows of matrix s are

maximally linearly independent. Because of the stochastic nature of the learning process,

the computed ICs can vary slightly from different session to session, particularly if they

represent a small amount of the original variance. One approach to deal with this problem

is to perform repeated analysis on the same data set, and check for the consistency of the
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extracted components. We used the ICASSO package for Matlab to [51] compute stable

ICs.

The columns of A represent the loadings i.e., the contribution of each independent

deformation pattern (represented as rows of s) to each subject’s overall deformation pattern.

To assess the clinical significance of the independent deformation patterns, we can assess

whether or not the loadings correlate with clinical indices, such as measures of disease

progression, age, amount of drug necessary to treat symptoms, etc.

The correlation coefficient of loadings on the ICs and clinical indices can thus be com-

puted as:

r(a, c) =
Cov(a, c)√

Cov(a, a)Cov(c, c)
(2.3)

where a is a single column of the unmixing matrix A, and c is a clinical indices vector,

and Cov() is the covariance function.

The t-statistic and level of significance (p-value) are computed as:

t = r ∗
√

n− 2

1− r2
(2.4)

p = 2(1− tcdf(|t| | n− 2)) (2.5)

where R is the correlation coefficient from equation 2.3, n is the number of subjects, and

tcdf is the Student’s t cumulative distribution function.

To correct the threshold of significant level we use a rough False Discovery Rate (RFDR)

[10]:

p∗ =
α(m+ 1)

2m
(2.6)

where α = 0.05 is the level of significance for single test, and m is the number of

independent tests.

To assess the clinical significance of the computed ICs of the deformation field, we exam-

ined the subject-by-subject loading on the different ICs and compared it to each subject’s

subscores in the Unified Parkinson’s Disease Rating Scale (UPDRS). UPDRS is a scale

of disease severity based on clinical examination 1, which includes scores on a number of

1National Parkinson’s Foundation http://www.parkinson.org/Professionals/Professional-

Resources/Screening-Instruments
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domains including mentation, behavior, and mood, activities of daily living, and clinician-

scored motor evaluation. In our study, we focused on the clinician-scored motor evaluation

of rigidity and tremor over five body parts – head, left and right arm, left and right leg.

Since the UPDRS of control subjects is 0 in all fields, to avoid bias, we only computed

correlation coefficients for PD subjects’ IC loadings and their UPDRS.

2.2.6 ROI network VS. separated ROIs

In order to jointly examine the feature vectors of all ROIs (caudate, putamen, thalamus and

pallidus), we first concatenated the feature vectors from the individual ROIs to form a ROI

network feature vector, and then performed ICA on combined feature vectors.

While this has the benefit of looking for changes across ROIs – of particular biological

interest – it assumes that relative changes seen between ROIs will be consistent for all

subjects. An alternative approach, which relaxes this assumption, but still allows statements

to be made about consistent morphological changes across ROIs, is to perform ICA on each

ROI feature vector separately, and then determine if there are similar subject loadings across

the ROIs. Again, we used the ICASSO approach to determine the number of ICs reliably

extracted for each ROI. Using a standard cutoff for the quality of the extracted components

(iq > 0.85), we ascertained that each ROI had 2 stable ICs. The subject loadings on these

ICs were collected, to create a 42 × 16 (2 ICs × 8 ROIs) matrix, Aall. Thus for each ROI,

an ICA decomposition was performed: X = As; where rows of s are the independent vector

fields and columns of A are the weighting on each subject. then: Aall = [A1
1, A

2
1, ..., A

1
8, A

2
8],

where Aj
i is the j− th column of mixing matrix A for ROI i. In order to find the ROIs that

had similar loadings across subjects, we utilized the replicator dynamics equation [76]:

xi(t+ 1) = xi(t)
(Cx(t))i

x(t)TCx(t)
(2.7)

where C is the covariance matrix of Aall with diagonal entries set to zero.

We start with a uniform distribution of membership, and the stable membership after

300 iterations is shown in Table 2.2. From the table we can see the ICs of left putamen

(L PUT), left thalamus (L THA), right caudate (R CAU) and right putamen (R PUT)

became dominant, i.e. the membership portion is larger than initial value (1/16) and stayed

stable. Therefore the ICs of these four ROIs are co-varying. To assess the stability of these

results, we performed a leave-one-out procedure (Figure 2.7) and re-ran the analysis until
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it converged.

2.3 Results

2.3.1 Group differences on feature vectors

We initially assessed the feature vectors themselves to determine if they had discriminatory

power. A voxelwise two-sample t-test was performed on the dot products of initial mo-

mentum and isonormals of ROI surface (i.e. the signed projection of initial momentum on

isonormals) at same voxel. RFDR defined in equation 2.6 was used for the p value thresh-

old to correct multiple comparisons. In this case m equals to number of voxels masked by

ROI isosurface, which ranged between 348 and 2098, depending upon the ROI. As result

p∗ ≈ 0.025. Voxels of significant between-group differences (p < p∗) were detected in all

ROIs. The mean t-statistic for significantly different voxels and the fraction of voxels within

each ROI that demonstrated significant between-group differences is shown in Table 2.1.

ROI L CAU L PUT L THA L GLP R CAU R PUT R THA R GLP

T-statistic 2.47 2.42 2.38 2.49 2.43 2.41 2.36 2.35

Fraction 3.21% 1.38% 2.23% 1.85% 2.96% 2.64% 1.79% 2.30%

Table 2.1: The magnitude and fraction of significant between-group differences (in percent-
age).

From the table we can see the between-group difference in the left hemispheric ROIs are

roughly equivalent to the homologous regions in right hemisphere in terms of magnitude

and fraction of voxels that demonstrated significant group differences. To visualize the

deformation pattern of ROIs that characterized the PD group, we color-coded the ROI

isosurfaces where significant between-group differences (p < p∗) were detected. To emphasize

small p values, we color-mapped the value of −log(p). The display value is sign(A)(−log(p))

where A is 1 for voxels exhibiting hypertrophy in PD subjects vs controls (i.e. the dot

product of the isonormal and the mean deformation for PD subjects was positive compared

to controls) and -1 for the voxels indicating local atrophy (Figure 2.3). The t-statistics of

voxel-wise group differences is also shown in Figure 2.4.



CHAPTER 2. STRUCTURAL MRI IMAGE ANALYSIS 19

Figure 2.3: Colormap of deformation score representing significant between-group differences
on ROI surfaces. The left column contains the left hemisphere ROIs, the right column
contains the right hemisphere ROIs. Rows from top to bottom correspond to: caudate,
putamen, thalamus and pallidus.
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Figure 2.4: Colormap of T-statistics representing significant between-group differences on
ROI surfaces. The left column contains the left hemisphere ROIs, the right column contains
the right hemisphere ROIs. Rows from top to bottom correspond to: caudate, putamen,
thalamus and pallidus.
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2.3.2 Independent component analysis

We used the ICASSO package to decompose the initial momentum feature vectors into ICs

[51]. ICs from a typical ROI (the left caudate) deformation are shown in Figure 2.5. By

design, the ICs tend to have highly kurtotic distributions (i.e., probability distributions with

narrow central peaks and large tails). For visualization purposes, we therefore restricted

ourselves to voxels where the IC was more than three standard deviations from the mean.

Note that in some ICs, many of those vectors with significant magnitude are located where

significant between-group differences of ROI occurred using simple t-tests. In IC14, 15, 26

and 33, the clustered vectors on the left tip of this ROI overlap with a significant between-

group difference area, which is on the back of ROI volume and therefore not shown on Figure

2.5.

The IC-UPDRS pairs with significant correlation are shown in Figure 2.6. For example,

IC14 of all ROI concatenated initial momentum had a significant correlation (p=0.0211) to

the head-rigidity term of subjects’ UPDRS. Once we found the ICs correlated to the clinical

indices, we mapped the ICs back to the original initial momentum coordinates, and then

overlaid the vector field on the ROI surfaces, as shown in Figure 2.5.

When the replicator dynamics were performed to look for common subject loadings seen

across more than one ROIs, the same ICs (corresponding to ICs derived from ROIs: L PUT,

L THA, R CAU and R PUT) were found to covary across all subjects. By cross checking

Figure 2.6 and Table 2.2 we can see that one of the co-varying ICs, IC1 of left thalamus,

when examined individually, has significant correlation with UPDRS: tremor right leg in

the PD subjects.

IC No. L CAU L PUT L THA L GLP R CAU R PUT R THA R GLP

1 0 0.3585 0.1129 0 0.2222 0 0 0
2 0 0 0 0 0 0.3064 0 0

Table 2.2: Stable membership distribution of replicator dynamics

As a post hoc analysis, in order to determine the ability of ICA to extract clinically-

meaningful deformation patterns, we compared ICA to other methods of decomposition of

the feature factors. We repeated the analysis using Principal Component Analysis (PCA)
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Figure 2.5: Independent components of initial momentum vector field, overlay on isosurface
of left caudate. The size of arrows represents the vectors’ magnitude.
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Figure 2.6: P-values of IC-loadings with correlation to clinical indices. Note only the p
values of significant correlations are listed, the p values of insignificant correlations are left
blank.
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Figure 2.7: Leave-one-out replicator dynamics tests. Each colorful trail represents one
test with one subject left out. The overlapping trails indicate the stability of converged
membership.
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as opposed to ICA and determined the correlation between the PC loadings and clinical in-

dices. Since correlations are bounded, we performed Fisher’s Z transform to the correlation

between IC/PC loadings and UPDRS subscores to make their distribution approximately

Gaussian, and then performed t-test to see if there were significant differences. The PC were

found less well correlated to UPDRS than the IC loadings (p < 0.05) indicating higher corre-

lation coefficients between IC loadings and UPDRS sub-scores, compared to the correlations

between PC loadings and UPDRS subscores.

Because the clinical indices may not be independent of one another, we also determined

the best linear combination of clinical indices that correlated with each component loading,

and did this for both PCA an ICA loadings. After using a Fisher-Z transform, we then

tested the null hypothesis that the correlation coefficients from PCA loadings vs clinical

indices and ICA loadings vs clinical indices were equal. The correlations coefficients from

the ICA loadings were significant greater (p=0.039).

2.4 Discussion

A biomarker can be defined as characteristic that is objectively measured and evaluated as

an indicator of normal biological processes, pathogenic process or pharmacological response

to a therapeutic intervention. PD is in desperate need for accurate biomarkers [7]: PD

subjects typically become symptomatic when more than 50% of dopaminergic neurons are

lost, suggesting a prolonged presymptomatic period [105]. Early in the disease course, it

can be difficult to differentiate PD from other conditions such as Essential Tremor (ET),

multisystem atrophy (MSA), and progressive supranuclear palsy (PSP). Even if the correct

diagnosis has been made, PD subtypes are associated with wide variability in disease course

and rate of progression, so an objective marker would be helpful.

A number of biomarkers have been proposed for PD, including motor performance

tests such as finger tapping, oculomotor measures, olfaction, electrophysiological measures,

neuroimaging (MRI, PET, SPECT), transcranial sonography, cardiac MIBG scintigraphy,

metabolomic measures, biochemical tests, and microarrays (for an extensive review see,

[4]). However, clinical scales such as UPDRS may suffer from floor and ceiling effects and

other non-linear relationships between disease severity and scores, and are unhelpful in the

presymptomatic stage. The effects of L-dopa medication may confound interpretation of

motor scores, and oculomotor measures such as saccades [54]. Olfaction is impaired in PD,
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and may help differentiate between PD and other parkinsonian syndromes but is indepen-

dent of disease severity and duration [91]. Postural responses to neck stimulation do not

significantly differ between moderately affected PD subjects and controls [100]. Transcranial

sonography may be a sensitive tool, but hyperechogenicity does not vary during the course

of PD [11], is operator dependent, and is seen in 16% of subjects with ET (compared to

75% of PD subjects) [92].

There are many advantages to structural MRI as a potential marker for a range of

deficits seen in PD. Structural MRI may assess brain systems associated with motor and

non-motor deficits, providing a unified framework to assess the multiple and often disparate

factors that may contribute to overall disability. Although several dozen case-control studies

have focused on the structural MRI changes in PD, the results have been inconsistent. For

example, there has been inconsistency in reported putamen atrophy (e.g.,[70][64][46] vs [47],

[87]), caudate volume (e.g [70] vs [2][46][47][87]), and ventricular size (e.g. [90] vs [55]). As

validation, we also measured the volume of the 8 ROIs in our study. The histograms of ROI

volumes in Control and PD subjects are shown in Figure 2.8. The histograms of Control

and PD largely overlap with each other, indicating low group difference of volume. We

also performed group difference tests on ROI volumes between PD and control group. No

significant difference (p < 0.05) was detected, as expected.

A key factor for the conflicting results of morphological changes in PD is that the rela-

tively insensitive measure of overall volume has been used to assess changes in specific brain

structures. As previously shown, the thalami in PD undergo statistically highly significant

shape changes, even when there may be no significant differences in volume [72]. The reason

that shape may change but not the volume is likely due to the fact that particular nuclei

(e.g centre median-parafascicular complex in Parkinson’s disease [50]) are involved, and

thus, at the typical resolution of MRI, this does not result in significant changes in overall

volume. Alternately, thalamic volume may actually increase as a compensatory mechanism

when cortical regions are damaged [81] which may minimize overall volume changes, but

still result in distinct shape changes.

Another important benefit of exploring shape changes as opposed to scalar volume

changes is that it provides a multidimensional measurement, making it easier to disen-

tangle the multiple factors that may influence morphology. Here we modeled each subjects

ROI as a linear combination of basis deformations that were computed with the ICA algo-

rithm. Since the loadings on some ICs correlated with clinical indices, but other ICs did
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Figure 2.8: The normal fits of ROI volume histograms in Control and PD subjects. The
histograms of Control and PD subjects largely overlap with each other, indicating low group
difference of volume. The left column contains the left hemisphere ROIs, the right column
contains the right hemisphere ROIs. Rows from top to bottom correspond to: caudate,
putamen, thalamus and pallidus.
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not, the proposed approach has the potential to decouple different sorts of shape variability

(normal inter-subject variability, effects of normal aging, etc) from the effects of disease

process itself. Currently most structural studies of disease states are longitudinal as look-

ing at structural changes are one way to deal with the inherent inter-subject variability in

ROI shapes. The current approach may allow the use of cross-sectional studies to assess

disease-related morphological changes.

The current method is most similar to the method proposed by Wang et al.[101], whereby

they applied principal component analysis (PCA) on the initial momentum features for

Alzheimer’s Disease and normal control subjects, and detected significant between-group

difference on left hippocampus (p=0.0074), but no significant difference for right hippocam-

pus (p=0.07). While we do not know the “ground truth” to directly compare the PCA and

ICA techniques on the initial momentum fields, there are a number of reasons to suspect

that ICA may be superior. We found a higher correlation between IC loadings and clinical

indices compared to PC loadings and clinical indices suggesting that the ICs may have more

biological significance. PCA assumes that the data are jointly Gaussian. In contrast, ICA

will tend to find components that are highly non-Gaussian. Since we expect there to be

focal changes in morphology, rather than broad overall changes (that could potentially be

captured by volume calculations) we suggest that ICA is more appropriate for these types

of data.

Similar to the current study, the recent morphometry analysis by Apostolova et al.

also detected changes in basal ganglia structures between PD subjects with and without

dementia[5]. Apostolova’s method focused on volume, where the radial distance - an intuitive

measure of the ROI thickness - was used as morphometric feature. In contrast, our proposed

method focused on shape, where initial momentum - a measure of surface deformation

pattern - was used as a morphometric feature. While a full comparison between methods is

beyond the scope of this paper, we note that the magnitude of group differences we detected

(Table 2.3) compare favorably with approximately 20− 30% for caudate and approximately

5− 20% for ventricles reported by Apostolova’s et al. Possibly these differences are because

the current method, by using ICA, can simultaneously isolate superimposed sources of

structural variability. If some of these sources of variability relate to normal inter-subject

variability and some to PD-specific changes, then dissociating these sources of variability

will enhance discriminatory power.
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ROI L CAU L PUT L THA L GLP R CAU R PUT R THA R GLP

Magnitude 53.84% 52.07% 66.32% 74.56% 51.72% 56.91% 66.09% 33.92%

Table 2.3: The magnitude of significant between-group differences (in percentage).

2.5 Summary of contributions

We proposed a potential biomarker for PD. The marker is based on assessing the initial mo-

mentum of a diffeomorphic metric mapping from a template ROI to a given ROI. Using the

initial momentum vector field as a feature, we found significant group different between PD

and control subjects in basal ganglia ROIs. We also utilized ICA methods to decompose the

initial momentum vector field seen across many subjects (Chapter 2), resulting in clinically

meaningful components. Perhaps the greatest implication of this work is that it may be

possible to perform cross-sectional studies on morphology. Usually the large inter-subject

variability in anatomical structures makes it necessary to perform longitudinal studies and

look for differences in morphology over time. With the current method, inter-subject vari-

ability is modeled as different loadings on fundamental deformation patterns – the ICs.

Given that loading on many of the ICs had clinical significance, it may be possible to derive

meaningful morphological information in a cross-sectional fashion.

To further validate this biomarker, it would be desirable to test the individual classifi-

cation accuracy using initial momentum as a feature. The data will then be divided into

training and testing groups, and classification accuracy will be tested over the permuta-

tion of training/testing assignment. As the initial momentum biomarker showed significant

group differences, and significant correlations to the clinic scores, its classification accuracy

is expected to be high. However, because the number of subjects whose data have been

collected so far is limited, we leave this part for future work.



Chapter 3

Structural and SWI Image Joint

Analysis

3.1 Background

Iron deposition in certain structures of the midbrain such as the substantia nigra (SN)

and the red nucleus (RN), which can be imaged using the recently-developed susceptibility

weighted imaging (SWI), is a potential biomarker for PD [71]. Because current registra-

tion methods which rely on whole-brain alignment do not provide good registration of the

midbrain (e.g. see Chapter 1), studies investigating SWI of midbrain structures use man-

ually segmented regions, and the mean voxel value within the ROI is then estimated and

compared across subjects. However, studies have shown that degenerative changes in the

SN in PD are not random, but rather follow a distinct spatial pattern so that cell loss is

maximal in the caudal and mediolateral parts [34]. There are therefore benefits to accurate

registration of midbrain structures.

The main challenge is accurate registration of SWI images to a template image, which

then allows assessment of common spatial patterns of iron deposition. Traditional T1-

weighted MR images alone are usually not sufficient for registration of midbrain structures

due to its low intrinsic contrast, while SWI images do not offer adequate anatomical con-

trast except for possibly a few structures such as RN. Since neither T1 nor SWI images

alone provide are suitable for mid-brain registration, we propose a hybrid “multi-structure”

approach that jointly incorporates T1 images and manual binary segmentations of midbrain

30
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structures in the SWI images concurrently into a non-rigid registration framework.

3.2 Methods

3.2.1 Data acquisition

The T1 and SWI images in this study are obtained on a 3 Tesla scanner equipped with

a head-coil (3DT1TFE CLEAR, TR = 7.716ms, TE = 3.56ms, flip angle = 8, FOV =

256×170×200mm). 19 PD subjects (15 male, 4 female, 17 right-handed, mean age=64 years,

SD=9), and 18 age-matched normal control subjects are obtained. The RN (left and right)

and midbrain areas are then manually segmented respectively on SWI images (magnitude

maps) and T1 images by two trained raters using Amira 3D Visualization software (V.3.1.1.).

The left and right ventral diencephalon (VDC) areas are segmented on original T1 images

by Freesurfer [40] (shown together in Figure 3.1).

Figure 3.1: Outlines of midbrain areas (blue), left and right red nucleus (red and pink), left
and right VDC areas (green and cyan) on T1 structural image. The 3x3 image array at
left is Transverse view, the array in the upper right is Saggital view, and the lower right is
Coronal view.

3.2.2 Registration algorithms

The registration algorithms contains three general steps. First, whole brain T1 structural

images are registered to midbrain SWI images of same subjects with FLIRT (FMRIB’s
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Linear Image Registration Tool V.5.5). The 3D affine registration was applied to initially

align the midbrain areas on T1 and SWI images, using Mutual Information [30][102] for the

cost function. The same transformation is then applied on the binary segmentation of VDC

and RN (both left and right) to align them to the SWI midbrain images.

Second, a 3D boundary box of 138 × 126 × 30 voxels is cropped on the SWI images,

including midbrain, RN and VDC areas. The size of the boundary box is chosen to include

the ROIs in images of all subjects. The location of the boundary box in each SWI image

depends on the location of midbrain. The size of the boundary box is set to include all

the ROIs to be used as structures in the LDDMM. By performing the next step – the

multi-structure registration – on the cropped SWI images, the computation expense can be

significantly reduced.

Finally, we used a multi-structure diffeomorphic registration algorithm to register the

SWI images (both magnitude and phase maps) within the boundary box to a common

template. Diffeomorphic registration ensures the resulting transformations are one to one,

invertible and smooth, and preserves the topological properties of the underlying anatomy

[26]. Khan et al. [61] extended the existing single channel LDDMM [8] cost toward a multi-

structure cost by inducing extra terms in the cost function for the mismatch of labeled

ROIs.

Let the diffeomorphic transformation from target image A to template image B be

φ : Ω → Ω such that A ◦ φ−1 ≈ B. The transformation φ is based on the flow of smooth

time-dependent velocity vector field vt ∈ V, t ∈ [0, 1] where V is a Hilbert space of smooth,

compactly supported vector fields on Ω. The evolution function of a curve ϕ0,t, t ∈ [0, 1] is

defined by ϕ̇0,t = vt(ϕ0,t) such that the end point ϕ0,1 of the curve ϕ at time t = 1 is the

particular transformation φ = ϕ0,1 that is sought for registration. Let ϕs,t : Ω → Ω denote

the composition ϕs,t = ϕt ◦ (ϕs)
−1 with the interpretation that ϕs,t(y) is the position at time

t of a particle that is at position y at time s. Hence, the transformed image A is given by

A ◦ φ−1 = A ◦ ϕ1,0 ≈ B and the transformed target image is B ◦ ϕ0,1. The cost function for

single channel LDDMM can be written as:

E(v) =

∫ 1

0
∥vt∥2V dt+ λ∥A ◦ ϕ1,0 −B∥2L2 (3.1)

Now let ASeg,i, i ∈ [1, . . . , N ] and BSeg,i, i ∈ [1, . . . , N ] be the N binary segmentations on

image A andB respectively. The sum of squares error terms in the cost function above can be
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extended to simultaneously accommodate several structures contributing to the registration:

E(v) =

∫ 1

0
∥vt∥2V dt+ λ∥A ◦ ϕ1,0 −B∥2L2 +

N∑
i=1

λSeg,i∥ASeg,i ◦ ϕ1,0 −BSeg,i∥2L2 (3.2)

In our study, the manual binary segmentation of midbrain, RN and VDC (left and right)

are used as structure-channels (i.e. ASeg,i and BSeg,i), as illustrated in Figure 3.2.

Figure 3.2: Illustration of the mechanism of multi-structure LDDMM. As binary segmenta-
tions of multiple structures are included, the optimal transformation can provide accurate
mapping not only between whole brain images, but also between local structures.

3.3 Results

The results of the proposed multi-structure LDDMM method for registration with different

structures are shown in Figure 3.3. The alignment improvement of RN and VDC areas can

be seen after they are included as channels for the LDDMM registration.

Registration results of 5 PD and 5 control subjects, with both T1 images and binary
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Figure 3.3: Compare of traditional and multi-structure LDDMM registration. Outlines
of registered midbrain (green), RN (green), VDC areas (blue) overlaying corresponding
template areas (red and pink) on a T1 structural image. The left side is multi-structure
LDDMM registration, using the T1 structural image and binary segmentation of midbrain,
RN, and VDC areas as structures. The 3x3 image array the Transverse view. The right
side is single channel LDDMM registration results using only the T1 images alone. The
difference is most obvious in the middle slice, where the yellow arrows point at.

segmentation of midbrain areas included as channels are shown in Figure 3.3. For compar-

ison to a typical processing approach, the affine registration of T1 images is also used to

compute a transformation which is then used to map midbrain areas onto the template.

The registered midbrain areas of the 5 PD and 5 control subjects are shown in Figure 3.3.

To quantify the registration accuracy, the group mean DSC, defined in Equation 1.2 in

Chapter 1, is computed for the registration results of both LDDMM (using only T1 and

midbrain structure) and affine methods. The mean DSCs are shown in Figure 3.6. For the

midbrain using the proposed multi-structure registration mean DSC is 0.89 for PD subjects

and 0.88 for control subjects. In contrast, using the standard affine MR registration, mean

DSC is 0.76 for PD subjects and 0.73 for control subjects.

To test the gain of additional structures in multi-structure LDDMM algorithm, we com-

puted the DSC of 5 different ROIs registered by LDDMM with following configurations:

0-structure: only T1 images are used.

1-structure: T1 images and binary segmentation of midbrain are used.

4-structure: T1 images and binary segmentation of midbrain and RN (left and right)
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Figure 3.4: Alignment of 5 midbrains registered by multi-structure LDDMM. Outlines of
midbrain areas registered by multi-structure LDDMM. In the left 3x3 image array the 5
outlines with different color represents 5 registered normal control midbrain areas (Saggital
view). On the right are 5 registered PD midbrain areas. Note the right below slice is the
bottom of midbrain that is not always parallel with slicing direction after registration, hence
the low overlap.
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Figure 3.5: Alignment of 5 midbrains by affine registration. Outlines of midbrain areas
registered by affine registration. In the left 3x3 image array the 5 outlines with different
color represents 5 registered normal control midbrain areas (Saggital view). On the right
are 5 registered PD midbrain areas. Note the right below slice is the bottom of midbrain
that is not always parallel with slicing direction after registration, hence the low overlap.

are used.

6-structure: T1 images and binary segmentation of midbrain, RN and VDC (left and

right) are used.

The average DSCs of registration results under above configurations are shown in Table

3.1. From the table we can see the matching of the corresponding structures is improved

with multi-structure registration as they are included. Specifically, using the manual mid-

brain binary segmentation concurrently with T1 weighted MR image adds errors in midbrain

matching to the error term directly, and thus provides better overall midbrain matching.

Adding the mismatch of the binary segmentations of the red nucleus into the error term

further refines the non-linear transformation. One important aspect to note is that unlike

binary-segmentation matching only, the concurrent use of T1 MR images also provides tex-

ture information inside the segmentations thereby providing better anatomical registration

within the ROI. This is important for registration within multi-compartment and anatomi-

cally complex areas such as the midbrain.
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Figure 3.6: Average DSCs for LDDMM and Affine registration results.

Table 3.1: Average DSCs of registered ROIs with different multi-structure configurations.
Structure No. Midbrain Left RN Right RN Left VDC Right VDC

0 0.79 0.58 0.56 0.59 0.60
1 0.87 0.71 0.73 0.77 0.79
4 0.91 0.83 0.85 0.83 0.86
6 0.91 0.84 0.85 0.86 0.87
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To interpret the anatomical meaning of the outputs of our proposed methods, we com-

puted the optimized transformation with multi-structure LDDMM (4-structure configura-

tion), and applied on SWI images (magnitude maps). We then measured the voxel-wise

group difference between PD and control subjects on the registered SWI images. A two-

sample T-test function in Matlab (Oct 20, 2005: v1.22) was implemented. We use RFDR

(defined by Equation 2.6 in Chapter 2) to correct the p-values threshold for multiple com-

pare. The significant p-values (p<RFDR) on the template T1 background are shown in

Figure 3.7. Clusters of voxels with significant group difference can be seen on the figure. A

closer look of one particular cluster is shown in Figure 3.8.

Figure 3.7: Cluster of significant group difference on registered SWI images. 9 slices of SWI
magnitude maps (Axial view) are displayed. The red area represents the location where
significant group difference of iron content is detected.
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Figure 3.8: Closer look of one particular cluster of significant group difference on registered
SWI images, located by the red cross lines. Up left is Coronal view, up right is Sagittal
view, and down left is Axial view.
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3.4 Summary of Contributions

We developed a new method of multi-structure LDDMM registration and analysis of SWI

data. The proposed method uses multiple concurrent streams of anatomical information for

the registration of complex brain areas such as the mid-brain. Experiments demonstrate

that, for both PD and control subjects, the multi-structure LDDMM method, by incor-

porating binary segmentations of areas such as the RN and VDC, improved alignment of

structures on, within, and near midbrain areas, thus providing more reliable registration of

SWI images for localizing group difference of midbrain iron content.



Chapter 4

Structural and DTI Image Joint

Analysis

4.1 Background

Brain morphometry, i.e. quantification of gross anatomical features often derived from

non-invasive medical imaging procedures, is increasingly important in the assessment of

brain disease. Traditionally, trained radiologists have scrutinized brain images (e.g. CT,

MRI) for pathological processes such as stroke, tumor, abscess, etc., with little regard for

morphological changes. In some neurodegenerative conditions such as Alzheimer’s disease,

there can be sufficient widespread atrophy that it is apparent by gross inspection. However,

in diseases such as Parkinson’s Disease (PD), the second most common neurodegenerative

disorder after Alzheimer’s disease (affecting approximately 1% of the population above the

age of 65), morphological changes are typically not obvious, even to the trained eye. Thus

quantifiable methods are required to determine if robust changes in structure exist in PD.

Voxel-based brain morphometry (VBM) is the most common brain morphometry anal-

ysis method. In VBM, subject brain images are typically registered to a common template

image, and statistical analysis is performed on a voxel-by-voxel basis on the registered sub-

ject brain images. Previous VBM studies on gray matter structures have reported significant

changes in PD subjects [18] [58] [75]. However, VBM depends heavily on accurate regis-

tration [14], which is problematic in disease populations as focal atrophy of some brain

41
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structures may lead to spatially specific misregistration despite optimization of a cost func-

tion that encompasses whole-brain alignment (Chapter 1).

Besides structural T1-weighted images, other MRI techniques have been proposed for

exploring microstructural changes, particularly in the white matter. One such technique

is diffusion tensor imaging (DTI), where linearly-varied pulsed field gradients are used to

estimate water diffusivity in different directions to provide a tensor of estimated diffusivity at

each voxel position. While it is difficult to provide a direct mapping between the diffusivity

results and the underlying pathology, the mean diffusivity increases with extracellular fluid

accumulation, and the fractional anisotropy provides information on the microstructural

integrity of highly oriented microstructures such as white matter tracts [1]. Both mean

diffusivity and fractional anisotropy are highly influenced by physiological aging [25]. FA

changes have been frequently described in PD. Reduced FA values in the substantia nigra

(SN), the site of primary neurodegeneration in PD, have been demonstrated in a cross-

sectional study of 73 PD patients and 78 age matched controls [21], and in a smaller study

of 14 untreated PD and 14 age- and gender-matched controls [99]. However, decreased FA

values in PD have been reported in a number of other brain regions, including the frontal

lobes [59], the genu of the corpus callosum [45] and in the superior longitudinal fasciculus [45]

and near the gyrus rectus [57]. Furthermore PD subjects with associated depression have

reduced FA values in the medial dorsal thalamus, with the changes correlating negatively

with the severity of depression [69].

Since VBM results are critically dependent upon proper registration [14], it reasonable

to assume that significant DTI changes reported in disease states [86] [15] – which also in-

clude registration as part of the processing steps – may also be significantly dependent upon

accurate registration. This may be particularly relevant in the assessment of neurodegen-

erative diseases, such as Alzheimer’s or PD.A quick inspection of the voxel-wise intensity

variance of registered T1 and ADC maps, as shown in Figure 4.1, suggests that qualita-

tively they are very similar, raising the question as to how much of previously-reported DTI

variability may be on the basis of subtle misregistration, as opposed to actual changes in

DTI parameters. In fact, misregistrations are often spatially-dependent, as shown in Figure

4.1, which means some locations are better registered than others just by the morphology of

the neighborhood. Hence, any registration method that is employed to register anatomical

structures and transform DTI data will likely transform non-homologous voxels on top of

each other and lead to interpretation errors in DTI changes due to disease.
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Figure 4.1: Voxel-wise intensity variance of co-registered T1 images and ADC maps com-
puted from the same subjects DTI data. The same Axial view slice of both image modal
are displayed, T1 on the left and ADC on the right. The bright yellow color represents high
variance, and the dark blue color represents low variance.

Analyzing DTI data based on the assumption that the underlying anatomical data are

perfectly registered may therefore be problematic. DTI data are usually assessed by exam-

ining the mean value of voxel parameters in certain regions, or by tractography. In tractog-

raphy, the fractional anisotropic or FA values from a voxel and its neighbours are used to

try and infer the dominant direction of white matter tracts, but this requires a number of

assumptions especially when dealing with the potential of white matter tracts that may be

intersecting [9]. One way to incorporate anatomical information and other imaging infor-

mation from same subject is to simply concatenate the different modalities, thus forming

a higher dimensional feature vector for each subject, as has been suggested for anatomical

and fMRI data [19]. However, the physical meaning of the combined features is unclear

in this method, especially after dimension reduction. Here we propose jointly examining

anatomical and DTI data that have been registered to a common template and then using

the Fukunaga-Koontz Transform [44] to jointly transform DTI maps and the associated

T1-weighted images into common spatial components – albeit with complementary load-

ings. This allows selection of linear subspaces that are more sensitive to residual anatomical

variation while being insensitive to DTI changes, and vice versa. We demonstrate that even
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when a highly accurate registration method is used, such as Large Deformation Diffeomor-

phic Metric Mapping (LDDMM), significant changes in DTI maps previously reported in

PD may in fact be largely on the basis of subtle differences in anatomical variability.

4.2 Methods

While fully elucidated below, in brief, DTI and T1 scans were collected from both PD and

controls subjects and then co-registered to a group average template using a combination

of affine registration and LDDMM registration. The FKT was then performed to compute

a joint space of anatomical and DTI data from the co-registered scans. Linear subspaces

emphasizing variability in anatomy (i.e. T1) or variability in DTI were selected. Finally

Independent Component Analysis (ICA) was applied to extract spatial patterns in the

different subspaces. The loadings of the independent components (ICs) across subjects

were then examined to assess their ability to discriminate between PD and normal subjects.

4.2.1 Data acquisition

Data were collected from 16 PD subjects and 21 age-matched controls. Subjects were

scanned using a Philips Achieva 3.0 T scanner (Philips, Best, The Netherlands), with an

8-channel head coil. A “memory foam” pillow was used to minimize head motion. For

collection of the DWI images the following parameters were used: 60 axial slices, repetition

time 6000-7000 ms, echo time 69 ms, flip angle 90 degrees, FOV 212× 212 mm, acquisition

matrix size 96×95, pixel size 0.8281×0.8281×2.200 mm with no gap. Thirty-two indepen-

dent directions, with a b-value of 700 s/mm2, scan duration 200-250 sec. A reference image

with no diffusion weighting was also obtained. Three separate DWI scans with identical

parameters were performed and results averaged to increase the signal-to-noise ratio.

We also obtained T1 weighted images with the following parameters: 170 axial slices,

repetition time = 7.7 ms, echo time = 3.6 ms, flip angle 8 degrees, field of view 256 × 200

mm, acquired matrix size 256× 200, and pixel size 1× 1× 1 mm.

The initial .PAR/.REC files were first converted to Analyze format using the freeware

program dcm2nii [13] [78]. The images from the three separate acquisitions were then

averaged. Gradient tables were extracted using the freeware program “DTI gradient table

creator” [65] [28] with the following parameter settings “didREG - n”; “grad choice - yes-

ovp-high”; “fat hift - P”; “sort images - y”. For “release” we used either “Rel 2.1” or “Rel
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2.5” depending upon the date of scan acquisition.

4.2.2 Co-registration

The DTI and T1 scans were registered to a common template (described below) using a

combination of affine registration and high dimensional non-linear registration. First the FA

and ADC maps were co-registered to the T1 scans using the within-subject co-registration

module of Statistical Parametric Mapping [6], which uses a 12-parameter affine transfor-

mation matrix with a normalised mutual information cost function [93]. For the non-rigid

registration inter-subject registration, we used a multi-structure diffeomorphic registration

algorithm, employing corresponding structure labels (both subcortical and cortical) to guide

and constrain the high-dimensional registration [61].

The open source Freesurfer image analysis suite [40] was used to the generate subcortical

segmentations and cortical parcellations making up the multi-structure image set, resulting

in the cost function shown in Equation 3.2 (Chapter 3). We used the following 8 subcortical

structures (both left and right) to guide the registration: lateral ventricles, caudate nucleus,

putamen, pallidum, nucleus accumbens, thalamus, hippocampus, and amygdala.

For cortical structures, we used the following 34 labels (both left and right): banks

around the superior temporal sulcus, caudal anterior cingulate, caudal middle frontal, corpus

callosum, cuneus, entorhinal, fusiform, inferior parietal, inferior temporal, isthmus cingu-

late, lateral occipital, lateral orbito-frontal, lingual, medial orbito-frontal, middle temporal,

parahippocampal, paracentral, pars opercularis, pars orbitalis, pars triangularis, perical-

carine, postcentral, posterior cingulate, precentral, rostral anterior cingulate, rostral middle

frontal, superior frontal, superior parietal, superior temporal, supramarginal, frontal pole,

temporal pole, and transverse temporal. Including the MRI as the first structure, we there-

fore have 43 structure-channels for each hemisphere making up the multi-structure set. For

the sake of efficiency the implementation used a locally-optimal solution to the variational

problem, as described in [27].

The choice of common template can affect registration accuracy and introduce bias. We

therefore selected a ”typical” scan from the pool of available scans to act as the template.

The ”typical” scan was selected by iteratively generating a groupwise average by 1) esti-

mating the average using a voxel-wise average of the registered subjects, and 2) computing

pairwise registration of each subject to the newly estimated average [60]. The initial tem-

plate was one of the control subjects and the initial registration used a low-dimensional
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affine registration. A multi-scale smoothing schedule was also used with initial iterations of

the diffeomorphic registration constrained to a high degree of smoothness, then decreased

for successive iterations (4 total iterations). Groupwise registration of the entire dataset (37

subjects) took 52 hours using a 400-core computing cluster, with each pairwise registration

running in approximately 2 hours on a single core.

As a comparison, we also applied the commonly-used Statistical Parametric Mapping

method (SPM5, by Wellcome Dept. of Imaging Neuroscience, 2005)) for T1-to-T1 regis-

tration. The spatial normalization module with default setting was used to register the T1

scans to the same group average template that was used with the LDDMM registration

program. Each SPM pairwise registration runs in approximately 10 minutes for on a single

core.

Once the T1-to-T1 transformation was computed for each subject, the DTI scans which

had previously been co-registered to the T1 scans were further transformed to the template

space using the same transformation parameters computed from the T1-to-T1 registrations.

Data from all subjects (16 PD and 21 age-matched 21 Controls) were all registered to the

same template for subsequent analysis.

4.2.3 Fukunaga-Koontz Transform

The Fukunaga-Koontz Transform (FKT) is a classic feature selection method invented in

1970 for image analysis [44]. The basic assumption of FKT is similar to Quadratic Discrimi-

nant Analysis (QDA), where the distributions of two classes are multivariate normal. In fact,

under certain condition, FKT is the “optimal” low-rank approximation to the QDA [66].

The advantage of FKT over Linear Discriminant Analysis (LDA) (or the Fisher analysis) is

it has no assumption of equal variance/covariance matrices for the two classes. Therefore it

can still be effective to those data LDA fails to classify.

The FKT can be jointly applied to the DTI and anatomical data as follows. Let xi ∈ X

denote the set of anatomical T1 images, and yi ∈ Y denote the set of DTI images. We first

place the voxel values of each 3D image into a long column vector. Because the anatomical

and functional images are co-registered and the images are all of the same resolution, the

vectors are of same length. Without ambiguity, let xi and yi denote the set of vectors

of anatomical and functional images respectively, with group mean subtracted. Let Σx =

E(xixi
′) and Σy = E(yiyi

′), Σx + Σy is then positive semi-definite and can be decomposed

as Σx +Σy = ΦDΦ′, where Φ is the matrix of eigenvectors of Σx +Σy, and D is a diagonal
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matrix of eigenvalues. Let P = ΦD−1/2, and x̃i = P ′xi, ỹi = P ′yi, then we have

P ′(Σx +Σy)P = I (4.1)

The covariance matrices for the transformed data x̃i and ỹi are Cx̃ = P ′ΣxP and Cỹ =

P ′ΣyP . From Equation 4.1 we have Cx̃ + Cỹ = I. This means the covariance matrices of

the transformed data x̃i and ỹi have the same eigenvectors, and the sum of their eigenvalues

associated with the same eigenvector is always equal to 1. To prove this, let z be an

eigenvector of Cx̃, associated with eigenvalue λ, i.e. Cx̃z = λz. Then we have (Cx̃ +Cỹ)z =

Cx̃z+Cỹz = λz+Cỹz. On the other hand since Cx̃+Cỹ = I, we have (Cx̃+Cỹ)z = I×z = z

Therefore λz + Cỹz = z, and Cỹz = (1 − λ)z, which means z is also an eigenvector of Cỹ,

associated with eigenvalue 1− λ.

Because of the above property, the “dominant eigenvectors” of Cx̃, which have large

eigenvalues of Cx̃, will have small eigenvalues of Cỹ, which makes them the “weak eigenvec-

tors” of Cỹ. Therefore, the projection of original image vectors on the first several dominant

eigenvectors represent maximal anatomical variability (information), and minimal DTI vari-

ability (information), and vice versa. This property of the FKT allows us to select linear

subspaces that are relatively anatomical-prominent or DTI-prominent.

In our study, as the dimension of image vector is extremely high (over 10 million),

computing the covariance matrices of Σx = E(xixi
′) and Σy = E(yiyi

′) and eigen-decompose

them can be very expensive in computation. However the number of image vectors is

relatively small (less than 40). Therefore one way to reduce computational complexity of

FKT is to eigen-decompose Σx′ = E(xi
′xi) instead of Σx = E(xixi

′). Let v be an eigenvector

of Σx′ , and u be an eigenvector of Σx, we can compute u by u = Xv.

4.2.4 Selection of linear subspaces

Let S = [s1s2...sn] be the matrix formed by the eigenvectors of Cy, ranked in the descending

order of associated eigenvalues. The si can be regarded as a basis emphasizing the DTI vari-

ability in yi. By choosing a subset containing the first m eigenvectors, Sm = [s1s2...sm], we

can project yi onto a subspace most representing the DTI variability and least representing

the anatomical variability at the same time. Note that since the column vectors xi and yi

correspond to the same subjects, the projected vectors ŷi = Smyi also correspond to the

same subjects.
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The eigenspectrum for covariance matrices Cy (also for Cx because of equation 4.1) is

shown in Figure 4.2 (see Results). Since it was noted that the anatomical variation was

restricted to the last 3 eigenvectors and DTI variation was largely restricted to the first 7

eigenvectors, we chose following linear subspaces to test the dependency of DTI variability

on anatomical difference:

1. Total subspace: S1 = [s1s2...sn] = S. All eigenvectors are selected. The subspace is

equal to the whole space. Therefore no concentration on DTI or anatomical variability are

applied, and this is the typical scenario.

2. T1-weighted subspace: S2 = [s8s9...sn]. The 7 eigenvectors representing largely DTI

variability are removed. The subspace spanned by the rest of the eigenvectors represents

approximately 80% variability on DTI data that is MORE dependent on anatomical differ-

ence.

3. DTI-weighted subspace: S3 = [s1s2...sn−3]. The 3 eigenvectors representing largely

T1 variability are removed. The subspace spanned by the rest of the eigenvectors represents

approximately 90% variability on DTI data that is LESS dependent on anatomical difference.

4. DTI-concentrated subspace: S4 = [s1s2...s7]. Only the 7 eigenvectors representing

most DTI variability are kept. This subspace concentrates on DTI variability while con-

tain approximately 20% variability on DTI data that is most independent on anatomical

difference.

4.2.5 Independent Component Analysis (ICA) on linear subspaces

We used ICA to find linear independent spatial patterns within the subspaces defined above.

ICA decomposes the ŷi into a mixing matrix A and independent components c so that

Ŷ = Ac, where the rows of Ŷ corresponds to ŷi
′ and the rows of matrix c are maximally

linearly independent. Because of the stochastic nature of the learning process, the computed

ICs can vary slightly from different session to session, particularly if they represent a small

amount of the original variance. One approach to deal with this problem is to perform

repeated analysis on the same data set with different initiation values, and check for the

consistency of the extracted components. We used the ICASSO package for Matlab (Oct

20, 2005: v1.22) to concentrate on ICs that were robust to changes in initial conditions. We

only examined ICs whose “estimated stability index” from the ICASSO exceeded 0.8.

Separate ICA analyses were performed on the different subspaces and DTI maps (i.e.

three subspaces × two maps = six analyses). The columns of A represent the loadings of
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Figure 4.2: Eigenspectrum of the covariance matrices for Fukunaga-Koontz transformed
FA and ADC data. Both LDDMM-registered and SPM-registered data are displayed. The
eigenvalues are arranged in descending order. The eigenvectors of covariance matrix of
the transformed LDDMM-registered data have higher eigenvalues than the SPM-registered
data in general, and for the LDDMM-registered data the eigenvalues decrease slower than
the SPM-registered as the eigenvectors become more and more concentrated on anatomical
variability.
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the corresponding spatial pattern given in c. In order to assess if the spatial pattern ci was

expressed differently between PD and controls, we performed a t-test on loading between PD

subjects and normal controls on the corresponding column of A. We corrected for multiple

comparisons by using the False Discovery Rate approach.

4.3 Results

We computed T-statistic of significant group difference with the Matlab toolbox SurfStat

(Keith J. Worsley 2008). For each subspace the numbers of voxel with significant group

difference (normalized by the percentage of variability represented in each subspace) are

shown in Figure 4.3. For both FA and ADC data, there is progressive reduction in group

differences as the subspace concentrated more on DTI variability from T1 variability. SPM

generally detected more voxels with significant group difference than LDDMM. This is likely

because is a higher dimensional registration approach is implemented in LDDMM, resulting

in less anatomical variability in the registered data.

For the six ICA analyses (Total, T1-weighted and DTI-weighted subspaces for SPM and

LDDMM registered data), we performed the two sample t-test on the IC loadings for each

analysis. Figure 4.4 demonstrates the number of ICs in each analysis whose loadings are

significantly different between PD and control subjects (denoted as “significant ICs”). The

lowest p-values (representing the most significant group difference on IC loadings) of three

analyses on LDDMM-registered data are listed in Table 4.1. Similar to the voxel results,

significant ICs were found in both SPM-registered data than the LDDMM-registered data.

However as the subspace became more DTI-weighted, the number of significant ICs become

more similar between SPM and LDDMM. The IC with lowest p-values in DTI-weighted and

T1-weighted subspaces are shown in Figure 4.5 and 4.6. The spatial patterns are different

for those two ICs, with the DTI-weighted IC corresponding to the white matter deep to the

surface of the primary motor cortex. In contrast, the T1-weighted significant IC was closer

to the cortical surface.

In order to assess the potential discriminating benefit of isolating different subspaces,

we first found the IC in the DTI-weighted subspace that had the highest discriminint value

on its loadings (t = 2.9855, p=0.0051) and then determined the IC in the total subspace

that best matched (by correlation) the DT-weighted subspace IC (r = 0.0887, p≈0, note

the length/dimension of IC is 1611899, therefore the highest correlation coefficient r is still
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Figure 4.3: Number of voxels with significant group difference detected from ADC and FA
maps within FKT-generated linear subspaces.
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very low in absolute value). We then interrogated the loading of the total subspace IC to

assess its dicriminability and noticed that it was less discriminating than the DTI-weighted

IC (t=2.3024, p=0.0274).
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Figure 4.4: Number of ICs with significant different loadings between PD and control sub-
jects detected from ADC and FA maps within FKT-generated linear subspaces.

4.4 Discussion

We have used the FKT to isolate differences in morphology from DTI changes in PD subjects

with respect to normal controls. Our results suggest that subtle differences in morphology

after registration tend to dominate, rather than changes in DTI parameters themselves 4.2.
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Figure 4.5: IC patterns of FA maps that loaded significantly differently between PD and
control subjects, on the DTI-weighted subspace. Left slice is Coronal view, and right slice
is Sagittal view.

Figure 4.6: IC patterns of FA maps that loaded significantly differently between PD and
control subjects, on the T1-weighted subspace. Left slice is Coronal view, and right slice is
Sagittal view. Different slices are shown for the DTI-weighted and T1-weighted subspaces
because the different location of the respective IC patterns.
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Table 4.1: P-values of two sample T-tests on IC loadings
Total T1-Weighted DTI-Weighted

ADC 0.0237 0.0118 0.0071
FA 0.0244 0.0196 0.0051

The eigenspectrum shows the eigenvectors of covariance matrix of the transformed LDDMM-

registered data have higher eigenvalues than the SPM-registered data in general, and for

the LDDMM-registered data the eigenvalues decrease slower than the SPM-registered as

the eigenvectors become more and more concentrated on anatomical variability. This may

indicate that LDDMM registered data contains less anatomical variability and more DTI

variability, as would be expected with a higher-dimension registration process.

Changes in morphology have been previously described in PD, although they tend to

be subtle. Studies that have looked at the overall volume of structures have tended not to

show significant changes [2]. However, newer analytical methods that allow assessment of

the shape have demonstrated shape changes in the thalamus are apparent in non-demented

PD subjects, even when the overall volume of the thalami was not significantly different

between PD subjects and controls [72]. While the morphological changes detected here may

ultimately prove diagnostically and/or prognostically useful, the results must be interpreted

with caution. The ICA model, when applied to the anatomically weighted subspaces, as-

sumes that the images can be accurately modelled as a linear superposition of (spatially)

independent patterns. The spatially independent patterns are assumed stationary and non-

deformable. So a pattern that differentiates PD from normal subjects will tend to load

heavily on voxels to create spatial patterns around structures such as the ventricle and the

sulci (as shown in Figure 4.7). Similar to VBM, such a pattern does not automatically infer

atrophy of say, peri-ventricular structures, as it may represent changes in overall ventricular

volume or other medial structures but when superimposed, the changes in peri-ventricular

structures are most apparent. We note that asymmetric ventricular enlargement has been

previously described in PD [68].

Our results further suggest that previously reported DTI changes in PD (and in many

other situations as well) that assume perfect anatomical registration may need to be in-

terpreted with caution. It is possible that the differences we observed were due to the

registration process we used. However, we used a highly accurate multi-channel registration

process that has been previously been shown to be accurate in PD [22] which would mitigate
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Figure 4.7: A typical PD-related independent component (IC) shown as spatial pattern in
native brain space. An Axial view slice is displayed. Bright color represents higher values
in IC coefficients. The ring-like spatial patterns around the ventricle are marked with red
circles, showing this pattern loads heavily on voxels around structural boundary.
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such effects. Uses of simpler less accurate registration methods would presumably be more

susceptible to the effects of misregistration described here. The use of the FKT may be

used to isolate changes in morphology from DTI changes.

4.5 Summary of contributions

We proposed a complementary method to assessing DTI data – namely that of examining

common spatial patterns in FA or ADC using both the FKT and ICA. The use of ICA on

FA and/or ADC values requires fewer and less stringent assumptions than tractography, but

still requires that some conditions are met. It assumes that the data are perfectly registered

(although this can be mitigated by utilizing the FKT and subspace selection outlined in

this paper), and it assumes that the ADC/FA values in a given subject can be modelled

as a linear superposition of spatially independent patterns. Because each voxel is treated

independently with this approach, the emergent spatial patterns will be less likely affected by

some of the situations which may cause difficulty for tractography algorithms, e.g. crossing

fibres. We suggest that the combined FKT-ICA approach provides a novel way to assess

DTI data in-between the simple approach of simply averaging values within a given region,

and tractography which requires stringent assumptions.



Chapter 5

Conclusion

In this thesis we presented novel methods to analyze multi-modal brain image data such

as MRI, SWI, DTI, and to extract brain morphometric features related to Parkinson’s Dis-

ease. Our algorithms were tested on clinical data acquired from both PD subjects and age-

matched normal control subjects. Our results demonstrate that inter-subject anatomical

variability caused by misregistration is common after low-dimensional registration methods,

and is often mis-interpreted to represent disease-related patterns in many voxel-based mor-

phometry studies. High dimensional registration methods such as LDDMM can significantly

improve the registration accuracy. However, these methods usually require large amounts

of computation, and subtle residual misregistration still exists. To avoid mis-interpretation

of anatomical variability, we proposed a deformation-based morphometry method that ana-

lyzed the initial momentum of deformation field, rather than the voxel values from the brain

images directly. Compared to other morphometry methods, this method has the advantages

of: 1) allowing joint analysis of a group of ROIs rather than single ROIs individually and

2) allowing analysis of local deformation patterns on the surfaces of ROIs to assess both

atrophy and hypertrophy.

We demonstrated how use of the Fukunaga-Koontz Transform can be used to transform

registered T1 and DTI images to a common space with complementary loadings so that

linear subspaces emphasizing T1 variability or DTI variability can be selected. While we

concentrated on T1 and DTI images, we note that the same approach can be applied to

images of other modalities. In assessing the selected linear subspaces, we choose Independent

Component Analysis as a decomposition method because 1) ICA can reduce the dimension

of features from the number of voxels to the number of ICs, thus significantly reduces
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the number of multiple compares in group difference tests; 2) ICs are of same dimension

with the original images, which means they can be overlaid on a structural image directly

and allow anatomical interpretation of the significant spatial patterns and 3) the higher

correspondence between ICs loadings and clinical indices compared to other decomposition

methods (such as PCA) implies that ICs have greater biological significance.

5.1 Future directions

1. Clinic interpretations of the PD-related patterns detected. In this thesis, we developed a

brain morphometry method that can extract features that show significant correlation with

subjects’ clinical scores. The scores that we examined emphasized motor features. How-

ever, there may be other correspondences between the extracted morphological changes and

cognitive aspects (e.g. memory). We note that the extracted features are in the same dimen-

sion of the original brain images, and therefore can be overlaid on a structural brain image,

potentially allowing clinic experts to examine these patterns for biological interpretation.

2. Joint analysis of T1 and SWI image data using Fukunaga-Koontz transform. In

Chapter 3 we have improved the registration of SWI maps by using multi-structure LDDMM

algorithm. The next step would be to implement the FKT algorithms in Chapter 4 to extract

the anatomical variability from registered SWI maps and use ICA to find PD-related ICs

on the SWI-weighted linear subspace.
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Appendix A

Automated fMRI Signal Processing

Tool: fPipe

A.1 Introduction

Functional magnetic resonance imaging is a specialized MRI method. In fMRI data, the

contast of blood-oxygen-level dependence (BOLD) is used to measure the changes in blood

flow and blood oxygenation in the brain, which are both closely related to neural activity

[84].

The traditional fMRI study usually involves extracting the voxel values (i.e. BOLD

signals) within certain ROI over time, known as time courses. The study usually contains a

combined procedure including slicing timing correction, motion correction, structural seg-

mentation, spatial normalization, time course extraction and statistical analysis. These

user-defined procedures usually involves more than one tools such as SPM, Amira and MRI-

Cro. Using multiple software reduced the efficiency of data processing and organization, as

these each software has its own protocol of file naming and parameter set up. Misunder-

standing happens when different researchers working on the same data pass around middle

results. To improved the efficiency and reduce the manual labor for the users, we developed

a Matlab toolbox “fPipe” that can automatically run the whole customer defined procedure

one step after another, with all the steps configured within one graphic user interface. The

middle results are stored in unified formats, so that the procedure can easily be re-run from

any step given results of one step before.

68
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A.2 Previous methods

The routine fMRI processing method involves user interaction with several different software.

The middle results are named and stored manually. The extraction and analysis of time

courses from fMRI data usually contains the following steps.

A.2.1 Pre-processing with Brain Voyager

Raw data are in Philips PAR format. Each subject has a head file (.par) with scanning

parameters and an actual data file (.rec). Brain Voyager was used to create a .fmr file that

contains the parameters of the functional data set and links to a single .stc file for each

slice. For the first-time analysis subjects pre-processing including 3D motion correction and

slicing timing correction were also applied. The pre-processed data were then exported as

image files of Analyze 7.5 format.

A.2.2 Skull stripping with BET

For all scans (structural and functional), the skull was removed using the Brain Extraction

Tool (BET), which is implemented in the software MRICro. For more details refer to

“www.fmrib.ox.ac.ukfsl”. Prefix “SS ” was added automatically to the skull-stripped image

files.

A.2.3 Co-registration and segmentation with Amira

Amira is used to co-register the anatomical and functional scans, and to draw the ROIs

on each brain. There are 3 scripts that are used for this purpose: pre-segmentation.scro,

postsegmentation.scro, and alreadysegmented.scro. These can be found in the AmiraTest

folder on Petshare.

At this stage for each participant there should be a set of functional scans in Analyze

format which are all aligned to the first volume of the first functional run. For patients

who are scanned off and on med, the scans will be aligned to the first functional volume of

each session. There should also be a skull-stripped anatomical scan in Analyze format and

a skull-stripped version of the first volume of every run.

We typically draw 9 ROIs in each hemisphere. The hemisphere visible on the left side of

the screen is the RIGHT hemisphere. ROIs were drawn in the following order and labeled
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as follows:

• Right putamen R PUT

• Left putamen L PUT

• Right caudate R CAU

• Left caudate L CAU

• Right globus pallidus R GLP

• Left globus pallidus L GLP

• Right thalamus R THA

• Left thalamus L THA

• Right cerebellum R CER

• Left cerebellum L CER

• Right primary motor cortex R M1

• Left primary motor cortex L M1

• Right supplementary motor area R SMA

• Left supplementary motor area L SMA

• Right anterior cingulate cortex R ACC

• Left anterior cingulate cortex L ACC

• Right prefrontal cortex R PFC

• Left prefrontal cortex L PFC

A.2.4 Time course analysis with Matlab

Finally the time courses were extracted using manually drawn ROIs as masks. Any analysis

after this was conducted in Matlab.
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A.3 Proposed methods

We developed a Matlab toolbox called fPipe. It has all the functions of routine method. It

also has the following features:

• Single platform: All the tasks are now completed under Matlab, which can be run

from both Windows and Linux system. Middle results are stored with uniformed file

names and folder structures.

• Fully automated: Once the parameters are set, all the tasks can be performed in

sequence without any user interaction.

• User friendly: Graphic User Interface (GUI) is available for parameters setup.

• Modulated sub-functions: like the traditional method, the whole procedure consists of

a series of tasks. We made each task into an independent module, so that the user can

start from, skip, or re-run any of these modules easily with the GUI shown in Figure

A.2.

The workflow of the whole fPipe is shown in Figure A.1.

A.3.1 Raw data import

The purpose of this module is to covert raw data from Philips PARREC format into Analyze

7.5 format for initial visualization and pre-processing. We implemented a Philips PARREC

reader (Bennett Landman, 2005) to import both structural and functional raw data into

Matlab. The fMRI images were then saved as a group of separated file in Analyze 7.5

format, each file corresponding to one time point.

A.3.2 Slicing timing correction

The purpose of this module is to correct the time difference among slices of the same time

point. During fMRI scan, slices of the brain volume are usually acquired one after another,

therefore there is a time difference between slices. However, a single fMRI brain volume is

usually treated as a time point, therefore temporal interpolation is needed to compute the

slices at same time point. In fPipe we implemented the slicing time correction module of

SPM to complete this step.
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Figure A.1: The workflow of fMRI data processing in fPipe.
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A.3.3 Isotropic reslicing

The purpose of this module is to make the voxel size isotropic in all three dimension.

For fMRI scans the number of slices is usually smaller than the length or width (also in

voxel numbers) of each slice, making the voxel ”‘longer”’ in the scanning direction. Spacial

interpolation is needed to reslice the brain volume so that the voxels have cubic sizes. This

will improve accuracy in the later co-registration. In fPipe we implemented an in-house

developed Matalb function (Martin McKeown, 2004) to complete this task.

A.3.4 Motion correction

The purpose of this module is to correct the shift of brain on fMRI images cause by the head

movement of subjects during fMRI scan. In fPipe we used a combination of SPM Realign

module [3] and MCICA algorithm [85] to complete this task.

A.3.5 Skull strip

The purpose of this module is to remove the skull on structural image. In the traditional

method skull strip was believed to improve the co-registration between structural and func-

tional images. However, recent study [52] showed that skull stripping may reduce accuracy

of co-registration, which was confirmed during our tests with fPipe. Therefore this step

is skipped by default in fPipe. However, the module still exists and can be added to the

procedure by user.

A.3.6 Structural image segmentation

The purpose of this module is to perform automated segmentation on structural images,

which can be used as masks in time course extraction module. In fPipe, we use a combined

method of Freesurfer [40] and FS+LDDMM [62] for structural image segmentation.

FS+LDDMM method is a segmentation-by-registration method. The method contains

the following steps.

First, FreeSurfer establishes initial labels of the target structures, which mainly contains

five stages: an affine registration with Talairach space, an initial volumetric labeling, bias

field correction, non-linear alignment to the Talairach space, and a final labeling of the

volume.
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Second, based on the FS labels, regions of interest (ROI) containing all target structures,

linearly aligned, are cropped from the original images, to reduce the computational intensity

and avoid trapping in local minima during LDDMM.

At last, LDDMM computes the deformation from the ROI of template image to ROI of

each target image, then uses that deformation to map the manual labels, on template image,

to automatic labels (i.e. segmentations) on target images. The LDDMM optimization uses

a three stage procedure, starting with Cerebrospinal Fluid (CSF) labels (i.e. the portion

of the ventricles in ROI), followed by Gaussian smoothed ROIs, and finally the original

ROIs. Each step initializes with the optimal map computed at the previous stage, to avoid

potential local minima.

We used FS+LDDMM for subcortical ROIs segmentation, and Freesurfer for cortical

ROIs (including Brodmann areas) segmentation.

A.3.7 Co-registration

The purpose of this module is to reslice the structural image into the same resolution as the

functional image of that same subject, and to align the segmentations of ROIs on structural

images with the functional images. We implemented the spacial normalization module in

SPM to complete this task, with normalized mutual-information as cost function. The fMRI

image used in the co-registration is the first time point of the reference points for the motion

correction.

A.3.8 Time course extraction

The purpose of this module is to co-register structural ROIs to fMRI image as mask and

extract the fMRI time courses. The structural ROIs were generated with FS-LDDMM. The

same transformations computed from the co-registration step were applied on the structural

ROIs to propagate functional ROIs. The fMRI signals were then masked by these ROIs and

saved separately.

A.3.9 Output

The output of fPipe is a structure variable with following fields:

ROI - ROI name

label value - label value in lookup table
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pointer - index of non-zero voxels in the mask

hdr - analyze image info for restoration purpose

data - 2D matrix, each row is a time point of masked functional data

A.3.10 Graphic user interface (GUI)

The GUI of fPipe is shown in Figure A.2. The user can choose structural and functional

images and corresponding ROIs from the GUI, as well as decide which step to run the

pipeline from and which ROIs to extract time courses for.

Figure A.2: GUI of fPipe.
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A.4 Running on cluster server

A.4.1 Automation assumptions

Several assumptions are currently being made by the automation script (fpipecluster) which

users must be aware of. The assumptions are:

• User can generate the parms.matfile locally on their own Matlab instance and also

create a text (ASCII) version of that file for fpipeclusterto parse.

• Input data must be placed located on “meddata” folder, a network drive, so that

fpipecluster can automatically copy data to scratch disk for processing.

• The “parms” files must be located on “meddata” folder so that fpipecluster on dis-

covery server can be run using them as input.

• Users must have software ssh installed and login to cluster using a central “fmri”

account and launch single command: fpipecluster (with appropriate arguments).

• On the computer where the “parms” file is generated, “meddata” folder must be

mapped to X: and Xfer must be mapped to Z:. If this is not the case, fpipeclusterwill

fail.

• The binary (.mat) and text (.txt) versions of the parms files must be located in the

same directory and must be named identically except for the extensions which must

be .matand .txt. Logging in to Discovery

All authorized fMRI users who require cluster access to run jobs are allowed to login to

the cluster. The current login model is a single account for all fMRI users, named “fmri“.

All access to discovery is done remotely with SSH. Users will require an SSH client on

their computer to access the cluster. Currently, there is no direct external access to the

cluster. To access the cluster remotely from the “outside world” (that is, while you’re not

on the PETfMRI network) you must first login to your respective external login host.

For fMRI, this host is wernicke.fmri.ubc.ca. Direct login from Windows workstations on

the PET/fMRI network is allowed.

For Microsoft Windows systems, a popular free SSH client is putty. For Linux or Mac

OS X, an SSH client is available by default. Windows users may also use the SSH client

from “www.ssh.com”.
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A.4.2 Using fpipecluster

The following usage information is displayed if fpipeclusters is called incorrectly or the “-h”

flag is used:

usage: fpipecluster <-p parms.txt> [-s StartFrom] [-e email] [-h]

<-p parms.txt> Required, ASCII text version of parms.mat

[-s StartFrom] Optional, where to start processing

[-e email] Optional, for job notification emails

[-h] Help, display this message

For general use, the only important argument is “-p”. This argument tells fpipecluster

where to find the text (ASCII) version of the parms file for a specific job. It is the only

required argument. The “-e” argument can be used to specify an email address where

you would like the cluster to contact you when the job ends (either through failure or

completion). This argument is not required and you may omit it if you do not desired to

be notified.




