
QUADRATIC BALANCED OPTIMIZATION PROBLEMS

by

Sara Taghipour

B.Sc. (Mathematics), University of Tehran, 2009

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

In the Department of Mathematics

Faculty of Science

c© Sara Taghipour 2011

SIMON FRASER UNIVERSITY

Fall 2011

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.

APPROVAL

Name: Sara Taghipour

Degree: Master of Science

Title of Thesis: Quadratic Balanced Optimization Problems

Examining Committee: Dr. Zhaosang Lu

Chair

Dr. Abraham Punnen, Professor

Senior Supervisor

Dr. Tamon Stephen, Assistant Professor

Supervisor

Dr. Snezana Mitrovic-Minic, Adjunct Professor

SFU Examiner

Date Approved: December 6, 2011

ii

Partial Copyright Licence

Abstract

We introduce the Quadratic Balanced Optimization Problem (QBOP) and study its com-

plexity. QBOP is NP-hard even for very special cases such as Quadratic Balanced Knapsack

Problem (QBKP) and Quadratic Balanced Assignment Problem (QBAP). Several general

purpose algorithms are proposed and tested on the special cases of QBKP and QBAP.

Polynomial solvable special cases are also identified.

iii

To my parents for their endless love and support

iv

”The essence of mathematics is its freedom.”

George Cantor

v

Acknowledgments

My special thanks to my senior supervisor Dr. Abraham Punnen, for guiding me during

my graduate studies and specifically this thesis. I am really grateful for his endless support,

patience and useful advices. I should also thank Dr. Tamon Stephen and Dr. Zhaosong Lu

for the lessons I learned from them in Operations Research. Also, I would like to express

my gratitude to Dr. Randall Pyke for being perceptive and supportive as a TA coordinator

and a good friend during my graduate studies. A sincere thank you to Dr. Matt DeVos. I

was lucky to meet Matt as a brilliant teacher and an amazing friend.

I also appreciate kindness of Bishnu Bhattacharyya, Annie Zhang and my other friends

for their support during this thesis.

Last but not least a great thank you from the bottom of my heart to my parents,

Fereshteh Fareghi and Ebrahim Taghipour for their heart warming support during these

years.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables ix

1 Introduction 1

1.1 Combinatorial Optimization Problem . 1

1.2 Linear Bottleneck Problem . 2

1.2.1 The Threshold Algorithm . 4

1.3 Linear Balanced Optimization Problem . 5

1.3.1 The Feasibility Problem and The Double Threshold Algorithm 6

2 Quadratic Balanced Optimization Problem 9

2.1 Quadratic Bottleneck Problem . 9

2.2 The Double Threshold Algorithm for QBOP 11

2.2.1 Feasibility test . 13

2.2.2 The Improved Double Threshold Algorithm for QBOP 14

2.2.3 The Modified Double Threshold Algorithm for QBOP 14

vii

2.2.4 The Iterative bottleneck algorithm for QBOP 18

2.3 Polynomially solvable cases . 20

3 Quadratic Balanced Knapsack Problem(QBKP) 24

3.1 The Double Threshold Algorithm for QBKP 24

3.1.1 The Improved Double Threshold Algorithm for QBKP 27

3.1.2 The Modified Double Threshold Algorithm for QBKP 29

3.1.3 The Iterative bottleneck knapsack algorithm for QBKP 31

3.2 Polynomially solvable cases for Quadratic Balanced Knapsack Problem . . . 35

3.3 Solving QBKP by a heuristic . 38

3.4 Computational Results: . 39

4 Quadratic Balanced Assignment Problem(QBAP) 44

4.1 The Double Threshold Algorithm for QBAP 45

4.1.1 The Improved Double Threshold Algorithm for QBAP 47

4.1.2 The Modified Double Threshold Algorithm for Assignment Problem . 50

4.1.3 The Iterative bottleneck algorithm . 52

4.2 Polynomially solvable cases for Quadratic Balanced Assignment Problem . . 57

4.3 Computational Results . 58

5 Conclusion 63

Bibliography 64

viii

List of Tables

3.1 Table of small instances results . 40

3.2 Table of large instance for q ≤ 100 . 41

3.3 Table of large instance for q ≤ 300 . 42

3.4 Table of large instance for q ≤ 600 . 43

4.1 Results on complete graph . 59

4.2 Results on sparse graph for q ≤ 300 . 60

4.3 Results on sparse graph for q ≤ 400 . 61

4.4 Results on sparse graph for q ≤ 500 . 62

ix

Chapter 1

Introduction

1.1 Combinatorial Optimization Problem

Let E = {1, ...,m} be a finite set, F be a family of subsets of E, and f : F → R . Then, a

Combinatorial Optimization Problem (COP) is formulated as follows:

Minimize f(S)

Subject to S ∈ F.

Here f is called the objective function and elements of F are called feasible solutions.

Depending on the nature of f and the structure of E and F we obtain various special cases

of COP which are discussed extensively in the literature. In most cases of well studied COP,

a cost ce is prescribed for each e ∈ E and the objective function f often depends on ce.

When f(S) =
∑

e∈S ce, the resulting COP is called a min-sum problem. A closely related

objective function is f(S) =

∑
e∈S ce

|S|
. Here, f(S) indicates the average cost of an element in

S. If |S1| = |S2| for all S1, S2 ∈ F , the minsum problem and the average cost minimization

problem are equivalent. When f(S) =
∑

e∈S{max{ce : e ∈ S} − ce} the COP reduces to

the Minimum Deviation Problem [26] and when f(S) =
∑

e∈S

(
ce −

∑
ce
|S|

)2

it becomes the

Minimum Variance Problem [32]. All of the objective functions discussed above contains

‘
∑

’ in some form or other. There are objective functions for COP studied in the literature

that depend on the maximum value of elements of a feasible solution. The resulting problems

are called Bottleneck Problems [18]. Bottleneck problems are closely related to the objective

1

CHAPTER 1. INTRODUCTION 2

function we study in this thesis. Hence, first we give a brief literature review on bottleneck

problems.

1.2 Linear Bottleneck Problem

In COP, if we choose f(S) = maxe∈S ce, we get the Linear Bottleneck Problem (LBP).

Depending on the structure of F , special cases of LBP are known under various names. For

instance, if E is the edge set of a graph G and F is the family of all spanning trees of G

where ce is the prescribed cost for edge e ∈ E, LBP reduces to the Bottleneck Spanning

Tree Problem [11]. Camerini [11] presented an algorithm of complexity O(m) to solve the

bottleneck spanning tree problem. Punnen and Nair [49] proposed an algorithm to solve the

bottleneck spanning tree problem with an additional linear constraint on a graph with n

nodes and m edges. This algorithm runs in O(m+n log n) time. The best known algorithm

for solving the bottleneck spanning tree problem on an undirected graph is of complexity of

O(m) [21] whereas, for a directed graph the most efficient known algorithm has complexity

of O(min(m+n log n,m log∗ n)) where log∗ n is the iterative logarithm of n [21]. Geetha and

Nair [24] considered a generalized version of the spanning tree problem where edge costs are

random variables and the objective is to find a spectrum of optimal spanning trees satisfying

a certain chance constraint whose right-hand side is also treated as a decision variable. The

most efficient method suggested in this paper, makes use of the efficient extreme points of the

convex hull of the mappings of all the spanning trees in a bicriteria spanning tree problem.

Ishi and Shiode [29] considered a stochastic version of the bottleneck spanning tree problem

with edge costs considered as independent random variables, which is a generalization of

stochastic bottleneck spanning tree problem already introduced in [28]. They presented

a polynomial algorithm to find an optimal spanning tree. Hideki et al. [31] studied this

problem where each cost attached to the edge in a given graph is represented as a fuzzy

random variable. The goal in this case is to find an optimal spanning tree that maximizes

the degree of possibility or necessity under some chance constraint. After transforming the

problem into the deterministic form, they present a polynomial time algorithm.

When E = {1, ...,m}, w1, w2, ..., wm, c are given numbers and F = {S :
∑

j∈S wj ≥
c, S ⊆ E}, LBP reduces to the Bottleneck Knapsack Problem [27]. Shioura and Shigeno

[53] studied the tree center problems of finding a subtree minimizing the maximum distance

from any vertex. They showed that the problem is related to the bottleneck knapsack

CHAPTER 1. INTRODUCTION 3

problem and presented a linear-time algorithm for the tree center problem by using the

bottleneck knapsack problem solution. Further, they showed that the bottleneck knapsack

problem can be solved in linear time [27].

Let Pn be the family of all permutations of N = {1, ..., n}. If we choose F = {(i, π(i)) :

i ∈ N, π ∈ Pn}, E = {(i, j) ∈ N ×N} and cij be the cost of (i, j) ∈ E. LBP reduces to the

Bottleneck Assignment Problem [52]. Ravindran and Ramaswami [52] treated bottleneck

assignment problem as a class of permutation problems and solved it by defining neigh-

borhoods in the space of permutations and designed critical solutions in this space which

results in global solutions. The bottleneck assignment problem can be also described in

terms of perfect matching of a bipartite graph [48]. Derigs and Zimmermann [16] presented

an augmenting path method to solve bottleneck assignment problem. Garbow and Tarjan

[21] derived an algorithm with complexity of O(m
√
n log n) and, Punnen and Nair [48] de-

veloped an algorithm with complexity of O(n1.5√m) for solving the bottleneck assignment

problem. Here the underlying bipartite graph has O(n) nodes and m edges. Armstrong

and Jin solved bottleneck assignment problem by applying strong spanning trees [5]. For an

n× n linear bottleneck assignment Pferschy [43] obtained explicit upper and lower bounds

where n is fixed and the distribution of the edges is uniform. Later, Pferschy [57] presented

computational results on LBP. Yechiali [59] studied a stochastic version of the bottleneck

assignment problem. Spivey [54] developed a method to find all of the asymptotic moments

of a random bottleneck assignment problem where costs are chosen from a variety of contin-

uous distributions. Burkard et al. [6] presented a comprehensive survey on the bottleneck

assignment problem.

When G = (V,E) is a complete graph, F is the family of all hamiltonian cycles in G and

ce is the cost of each e ∈ E, LBP reduces to the Bottleneck Traveling Salesman Problem.

The bottleneck traveling salesman problem was introduced by Gilmore and Gomory [25].

Garfinkel and Gilbert [22] provided a branch-and-bound based exact algorithm to solve the

problem. Experimental results with this algorithm on a randomly generated data set with

size smaller than 100 vertices were also presented. Later, Carpento et al. [13] presented com-

putational results on a branch-and-bound algorithm on problems of size up to 200 vertices.

Philips et al. [44] showed that the bottleneck traveling salesman problem on a Halin graph

can be solved in linear time. Parker and Rardin [42] provided a 2-approximation algorithm

for the problem and showed this is the best possible performance bound a polynomial time

algorithm can achieve unless P=NP. Ramakrishnan et al. [51] , and LaRusic and Punnen

CHAPTER 1. INTRODUCTION 4

[35] reported experimental results on large scale problems with heuristic algorithms. Other

related works on bottleneck traveling salesman problem include [58, 30].

1.2.1 The Threshold Algorithm

Recall that ce is the cost of the element e ∈ E. Let z1 < z2 < ... < zp be an ascending

arrangement of distinct values of ce : e ∈ E. We call R(k) a restricted set and define it

as R(k) = {e ∈ E : ce > zk}. Let Sk = {S ∈ F : S ∩ R(k) = ∅}. Then, Sk includes

all feasible solutions of LBP with objective function value not greater than zk. Note that

S1 ⊆ S2 ⊆ ... ⊆ Sp and Sp = F

The following theorem is well known and is the basis of threshold algorithm for bottleneck

problems. See for example [18, 50].

Theorem 1. For 1 ≤ k < p, if k is the largest index such that Sk = ∅, then any S ∈ Sk+1

is an optimal solution to LBP whenever F 6= ∅. Also, if there exists q : Sq = ∅ then Sk = ∅
for all k ≤ q

Let us now discuss a general purpose algorithm for LBP, called the threshold algorithm.

This is based on a duality theorem introduced by Edmonds and Fulkerson [18]. The algo-

rithm solves a sequence of linear feasibility problems, (LFP(k)) described below:

“Given an index k , 1 ≤ k ≤ p, is Sk = ∅?”

Note that the optimal objective function value of LBP is one of the values z1, z2, ..., zp. The

threshold algorithm [18] performs a binary search over these candidate objective values by

using LFP(k). Depending on the answer of LFP(k) the size of the search space is reduced.

The algorithm terminates when the search space becomes singleton in which case the opti-

mal objective function value is identified. A formal description of the algorithm is given in

Algorithm 1.1.

Since the algorithm reduces the size of the search space by half in each iteration, the

algorithm terminates in O(logm) iterations. If O(φ(m)) is the complexity of LFP(k) (i.e.

complexity of testing if Sk = ∅ or not) then the complexity of the threshold algorithm is

O(φ(m) logm).

CHAPTER 1. INTRODUCTION 5

Algorithm 1.1: The Threshold Algorithm for LBP

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of ce : e ∈ E
l = 1; u = p;
while u− l > 0 do

k =

⌊
l + u

2

⌋
;

if Sk = ∅ then
l = k + 1;

else
u = k

end if
end while
Return zl and any S ∈ Sl

1.3 Linear Balanced Optimization Problem

Let ce be a prescribed cost associated with each element e of E. Define

f(S) = max
e∈S
{ce} −min

e∈S
{ce}

Then, COP reduces to the Linear Balanced Optimization Problem (LBOP). Consider the

example of a school which wants to distribute students of each grade in a certain number of

classes in a way that the students of the same class have the same level of GPA as much as

possible. In other words, the gap between maximum GPA and minimum GPA in a class is

minimized. Generally, balanced optimization model can be used in equitable distribution of

resources. For further applications of BOP and related problems we refer to [39] and [17].

The Linear Balanced Optimization Problem (LBOP) was introduced by Martello et al.

[39] and an application of the model in scheduling an international tour for a travel agency

was pointed out. They suggested a general algorithm, called the double threshold algorithm

to solve the problem. They also studied the special case of balanced assignment problem.

Duin and Volgenant[17] showed that LBOP can be solved as a sequence of bottleneck prob-

lems and obtained an improved algorithm. In fact the algorithm of [17] is more general and

could solve other related combinatorial problems. Punnen and Nair [49] studied LBOP with

an additional linear constraint and Punnen and Aneja [47] considered the lexicographic ver-

sion of the problem. Ahuja studied the balanced linear programming problem and solved it

by parametric simplex method [3]. A special case of balanced linear programming problem

CHAPTER 1. INTRODUCTION 6

was studied by Cappanera and Scutella [12]. Tigan et al. [56] investigated the monotone bal-

anced optimization problem. Other special cases of LBOP include Balanced Spanning Tree

Problem, Balanced Knapsack Problem, and Balanced Traveling Salesman Problem. Camerini

et al. [10] considered balanced spanning tree problem and proposed an O(m2) algorithm

where m is the number of edges in the underlying graph. Later, Galil and Schieber [20]

improved the algorithm presented in [10]. This algorithm is of complexity O(m log n) where

m is the number of edges and n is the number of vertices in the graph under consideration.

LaRusic and Punnen [35] studied balanced traveling salesman problem, which is NP-hard,

and provided efficient heuristic algorithms to solve the problem. The nozzle guide vane

assembly problem can be formulated as a balanced TSP [35]. LBOP in context of Resource

Allocation Problem was studied by Zeitlin [60]. Nemoto [41] presented an algorithm to min-

imize the gap between maximum and minimum weights in an ideal of size k in a partially

ordered set. Katoh and Iwano [33] and Dai et al. [14] developed efficient algorithms for

the set of feasible solutions forms all cuts in a graph G. Epstein found balanced cut which

minimizes the maximum range of edge lengths in time O(m+ n2 log n) [19].

1.3.1 The Feasibility Problem and The Double Threshold Algorithm

Let z1 < z2 < ... < zp be an ascending arrangement of ce for e ∈ E and S0 be an optimal

solution to LBOP. For any two real numbers γ and δ, where γ < δ consider R(γ,δ) = {e :

ce < γ or ce > δ} and F(γ,δ) = {S : S ∩R(γ,δ) = ∅}. Let the indices l and u be chosen such

that zu = max{ce : e ∈ S0} and zl = min{ce : e ∈ S0} where S0 is the optimal solution to

BOP. Hence, whenever δ − γ < zu − zl and S0 ∈ F(zl,zu), we have F(γ,β) = ∅
The feasibility problem considered here is closely related to LFP(k) considered for bottleneck

problem. Here, we want to test if F(γ,β) = ∅ or not. We represent feasibility problem as

FP(γ, δ) which is a ‘yes’ or ‘no’ question. The algorithm initially selects lower threshold

= upper threshold = z1. In the general step, if the answer to feasibility question is ‘No’,

then upper threshold is increased and if the answer is ‘Yes’, the lower threshold is increased.

The algorithm outputs the best solution generated in the search process. For details of

this algorithm we refer to [39]. Algorithm 1.2 gives the formal description of the double

threshold algorithm.

Theorem 2 ([39]). The double threshold algorithm solves the linear balanced optimization

CHAPTER 1. INTRODUCTION 7

Algorithm 1.2: The Double Threshold Algorithm (DT)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of ce : e ∈ E
l = 1; u = 1
Opt-Sol= ∅; Obj-Val=∞
while l ≤ p and u ≤ p do
if F(zl,zu) 6= ∅ then

Choose S ∈ F(zl,zu)

zr = min{ce : e ∈ S × S}
zt = max{ce : e ∈ S × S}
if zt − zr = 0 then

return S
end if
if zt − zr < Obj-Val then

Obj-Val= zt − zr
Opt-Sol= S

end if
l = r + 1

else
u = u+ 1

end if
end while
Return Opt-Sol and Obj-Val

CHAPTER 1. INTRODUCTION 8

problem in O(mφ(m)) time, where O(φ(m)) is the complexity of the feasibility problem

FP(γ, δ) .

The primary goal of this thesis is to study the quadratic version of Balanced Optimiza-

tion Problems which is defined as follows:

QBOP : Minimize { max
(i,j)∈S×S

qij − min
(i,j)∈S×S

qij}

Subject to S ∈ F.

where E = {1, 2, ...,m} and qij is the prescribed cost associated with the ordered pair

(i, j) ∈ E × E.

Subsequent chapters include our contribution to QBOP. We showed that

(1) Developed 4 general algorithms to solve QBOP.

(2) The algorithms developed can be used as exact algorithms or heuristics, depending on

the way an associated feasibility problem is solved.

(3) Some polynomially solvable special cases of QBOP are identified.

(4) Special cases of QBOP when feasible solutions satisfy a knapsack constraint and when

feasible solutions are perfect matchings of a bipartite graph are investigated.

(5) Experimental results with the algorithms developed are also included.

The thesis organized as follows: In Chapter 2, (QBOP) was introduced. Four exact

algorithms including Double Threshold Algorithm (DT), Improved Double Threshold Al-

gorithm (IDT), Modified Double Threshold Algorithm(MDT) and Iterative Bottleneck in

addition to two polynomially solvable cases of QBOP are presented.

Chapter 3 deals with Quadratic Balanced Knapsack Problem(QBKP) which is an in-

stance of QBOP. Polynomially solvable cases of QBKP are investigated. The algorithms

introduced in Chapter 2 were applied to QBKP. In addition to these exact algorithms, a

heuristic method was developed to solve this problem. The computational results of the

algorithms and the heuristic method were provided in 4 tables.

In Chapter 4, the Quadratic Balanced Assignment Problem(QBAP) was introduced.

We considered this problem on both complete and sparse bipartite graphs. All four exact

algorithms in Chapter 2 were used for this problem on a sparse bipartite graph case. Com-

putational results of the experiments on these algorithms are provided in 4 tables. Further,

polynomially solvable cases of QBAP are presented.

Conclusion remarks are given in Chapter 5.

Chapter 2

Quadratic Balanced Optimization

Problem

Recall that the Quadratic Balanced Optimization Problem(QBOP) is to:

Minimize { max
(i,j)∈S×S

qij − min
(i,j)∈S×S

qij}

Subject to S ∈ F.

where E = {1, 2, ...,m} and qij is the prescribed cost associated with the ordered pair

(i, j) ∈ E × E. QBOP is yet another example of a COP.

Depending on the structure of E and F , we get several special cases of QBOP. For

instance, if E is the edge set of a graph G and F is the family of all spanning trees of G, we

have the special case of Quadratic Balanced Spanning Tree Problem. Let a1, a2, ..., an, c be

given numbers and F = {S :
∑

j∈S aj ≥ c, S ⊆ E}. Then, QBOP reduces to the Quadratic

Balanced Knapsack Problem. Let Pn be the family of all permutations of N = {1, ..., n} and

F = {(i, π(i)) : i ∈ N : π ∈ Pn} and E = {(i, j) ∈ N ×N} we get the Quadratic Balanced

Assignment Problem. To the best of our knowledge, QBOP is not studied in literature. A

closely related problem, called quadratic bottleneck problem has been studied by various

researchers [55, 50]. Let us first discuss the quadratic bottleneck problem.

2.1 Quadratic Bottleneck Problem

QBOP is closely related to the quadratic bottleneck problems [50] given by two types.

9

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 10

A quadratic bottleneck problem of type 1 (QBP1) is defined as

QBP1 : Minimize max{qij : (i, j) ∈ S × S}

Subject to S ∈ F

and the quadratic bottleneck problem of type 2 (QBP2) is defined as:

QBP2 : Maximize min{qij : (i, j) ∈ S × S}

Subject to S ∈ F

The problem QBP1 was investigated by Punnen and Zhang [50] and they proposed

a general purpose algorithm to solve the problem. QBP2 can be modified to QBP1 by

converting its objective function to min{max−qij : (i, j) ∈ S × S}. Similarly QBP2 can

be formulated as QBP1. In this sense both QBP1 and QBP2 are equivalent. QBP1 is

known to be NP-hard [50]. Since it can be reduced to QBP2, QBP2 is also NP-hard and all

the algorithms for QBP1 in [50] can be modified to obtain algorithms for QBP2, without

reducing QBP2 to QBP1.

The Quadratic bottleneck assignment problem with feasible solutions as perfect match-

ings of a bipartite graph was introduced by Steinberg [55] to solve a backboard wiring

problem. Burkard and Fincke [7] studied asymptotic properties of the quadratic bottleneck

assignment problems. Kellerer and Wirsching [34] used the quadratic bottleneck assignment

model to solve bandwidth minimization problem of matrices and graphs. Zhang et al. [61]

studied a special case of quadratic bottleneck spanning tree problem and presented some

efficient algorithms to solve it. Punnen and Zhang [50] studied the general quadratic bot-

tleneck problem. They presented a weak duality theorem and general purpose algorithms

to solve it. The algorithm was illustrated using the special case of quadratic spanning trees.

Zhang and Punnen [62] studied the quadratic bottleneck knapsack problem.

Note that if qij ≥ 0 for all (i, j) ∈ E×E and qii = 0 for all i ∈ E then QBOP reduces to

QBP1. However, in general the QBOP is different from QBP1 and QBP2 and specialized

algorithms are required to solve QBOP.

To motivate the study of the QBOP model, consider an example of a construction

company that wants to build a residential complex in a certain distance from facilities.

The distance between building i and facility j is given by dij . Their goal is to build these

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 11

buildings of the complex in a way that all of the buildings have almost the same distance

from the facilities and the gap between the farthest and the closest distance from facilities

is minimized.

2.2 The Double Threshold Algorithm for QBOP

Recall that the linear balanced optimization problem can be solved by the double threshold

algorithm [39] as a sequence of feasibility problems. We use the same philosophy for solving

QBOP. However, the nature of the feasibility problem is quite different for QBOP. Punnen

and Zhang [50] considered the quadratic feasibility problem and used it to solve the quadratic

bottleneck problems. We use a variation of this quadratic feasibility problem to develop our

double threshold algorithm.

Let z1 < z2 < ... < zp be an ascending arrangement of distinct qij values. For any real

numbers α and β with α ≤ β define: E(α, β) = {(i, j) ∈ E × E : qij > α or qij < β} and

F (α, β) = {S : (S × S) ∩ E(α, β) = ∅}. Let S∗ be an optimal solution to QBOP and let

w1 = max{qij : (i, j) ∈ S∗×S∗} and w2 = min{qij : (i, j) ∈ S∗×S∗}. Then, F (α, β) = ∅ for

any α and β such that β − α < w1 − w2 and S∗ ∈ F (w2, w1). Furthermore, if F (α, β) = ∅
then F (γ, δ) = ∅ for α ≤ γ ≤ δ ≤ β.

The double threshold algorithm primarily uses a feasibility oracle that tests if F (zl, zu) 6=
∅ or not. For appropriate choices of l and u, if the answer is ‘No’ the upper threshold zu

is increased to zu+1. If the feasibility oracle answers ‘Yes’ then we have a feasible solution

S with QBOP objective function value ≤ zu − zl. Choose r and t such that zr = min{qij :

(i, j) ∈ S × S} and zt = max{qij : (i, j) ∈ S × S}. The lower threshold is updated to zr+1

and the best solution and the best objective function value so far is updated. Note that

although binary search takes less time than sequential search, since the objective function

of QBOP is not monotonic, we can not use binary search for finding the optimal solution of

QBOP.

A formal description of the double threshold algorithm is summarized in Algorithm

2.1. Note that p = O(m2). Let O(φ(m)) be the complexity of the feasibility oracle i.e.

to determine if F (α, β) 6= ∅ or not and if it is nonempty the oracle retrieves a solution

S ∈ F (α, β).

Theorem 3. The double threshold algorithm computes an optimal solution to QBOP in

O(m2φ(m)) time.

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 12

Algorithm 2.1: The Double Threshold Algorithm (DT)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qij : (i, j) ∈ E × E
l = 1; u = 1
Opt Sol = ∅; Obj Val =∞
while l ≤ p and u ≤ p do
if F(zl,zu) 6= ∅ then

Choose S ∈ F(zl,zu)

zr = min{qij : (i, j) ∈ S × S}
zt = max{qij : (i, j) ∈ S × S}
if zt − zr = 0 then

return S
end if
if zt − zr < Obj-Val then

Obj Val= zt − zr
Opt Sol = S

end if
l = r + 1

else
u = u+ 1

end if
end while
Return Opt Sol and Obj Val

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 13

Proof. The validity of the algorithm follows from discussions presented earlier. In each

iteration, the algorithm either increases the lower threshold or increases the upper thresh-

old. Thus, the total number of iterations is bounded above by 2p. Since the dominating

complexity in each iteration is O(φ(m)) and p = O(m2) the result follows.

2.2.1 Feasibility test

The crucial step in Algorithm 2.1 is the feasibility oracle to test if F (α, β) = ∅ or not and if

F (α, β) 6= ∅ produce an S ∈ F (α, β). This can be achieved in several ways by appropriate

modifications of the results given in [50] for the case of quadratic bottleneck problems.

Let D = (dij) be an m×m matrix given by

dij =

{
M if (i, j) ∈ E(α, β)

0 otherwise.

Consider the Quadratic Sum Problem(QSP):

Minimize
∑

(e,f)∈S×S

def

Subject to S ∈ F.

Then, F (α, β) 6= ∅ if and only if the optimal objective function value of QSP is zero.

Further, if F (α, β) 6= ∅ then an optimal solution to QSP belongs to F (α, β).

Another way to test if F (α, β) = ∅ or not is by using a linear combinatorial optimization

problem with conflict pairs (LCOPC) [61]:

The feasibility check in this case is simply to check if there is an S ∈ F that satisfies the

conflict pair constraints [61] where the conflict set is S(α, β) = {{i, j} : (i, j) ∈ E(α, β)}.
Let Conv(F) be the convex hull of incidence vectors of S ∈ F . Note that an n-vector

(x1, ..., xm) is an incidence vector of solution S if xj =

{
1 if i ∈ S
0 otherwise.

Then, the feasible solutions of the LCOPC with conflict set S(α, β) can be written as

[61],

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 14

x ∈ Conv(F)

xi + xj ≤ 1 if{i, j} ∈ E(α,β)

Depending on the structure of F , the feasibility version of this LCOPC can be solved

by different algorithms. We will discuss this in more details in the next two chapters. For

details on LCOPC and its various special cases, we refer to[61] and [15].

2.2.2 The Improved Double Threshold Algorithm for QBOP

The Improved Double Threshold (IDT) algorithm helps to restrict the search interval for

optimal solution. This algorithm first solves QBP1 and QBP2. For any feasible solution

S, let Z1(S) = max{qij : (i, j) ∈ S × S}, Z2(S) = min{qij : (i, j) ∈ S × S} and Z(S) =

Z1(S) − Z2(S). Let S1 be the optimal solution to QBP1 , U∗ be its optimal objective

function value and S2 be the optimal solution to QBP2 and L∗ be its optimal objective

function value.

Theorem 4. For any feasible solution S, Z2(S) ≤ L∗. Further, for any solution with

Z1(S) = U∗ , if Z2(S) < Z2(S1), then Z(S) > Z(S1)

Proof. The inequality Z2(S) ≤ L∗ follows from the definition of L∗. Also, for any feasible

solution S, Z1(S) ≥ Z1(S1). Thus, if Z2(S) < Z2(S1) we have Z(S) = Z1(S) − Z2(S) >

Z1(S1)− Z2(S1) = Z(S1) and the proof is complete.

Using Theorem 4, we can reset the starting lower threshold value as Z2(S1) and the

lower threshold is not required to increase beyond L∗. This could reduce the search interval

considerably. The double threshold algorithm incorporating this enhancement is called the

improved double threshold algorithm. A formal description of the algorithm is presented in

Algorithm 2.2.

2.2.3 The Modified Double Threshold Algorithm for QBOP

Let us now discuss how to improve the average performance of the double threshold algo-

rithm and the improved double threshold algorithm. The improvement is achieved using

1) sufficient condition for optimality and

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 15

Algorithm 2.2: The Improved Double Threshold Algorithm (IDT)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qij : (i, j) ∈ E × E
Let Opt Sol be the optimal solution to QBOP and Obj Val the optimal objective
function value to QBOP
Let S1 be the optimal solution to QBP1 and U∗ be the optimal objective function value
of that, l be such that zl = min{qij : (i, j) ∈ S1 × S1} . We set l and u be such that
(zu ← U∗)
Let L∗ be such that zL∗ be the optimal objective function value of QBP2
Opt Sol ← S1

Obj Val = zu − zl
l← l + 1
while (l ≤ u) and (l ≤ L∗) and (u ≤ p) do
if F(zl,zu) 6= ∅ then

Choose S ∈ F(zl,zu)

zr = min{qij : (i, j) ∈ S × S}
zt = max{qij : (i, j) ∈ S × S}
if zt − zr < Obj Val then

Obj-Val= zt − zr Opt Sol = S
end if
l = r + 1

else
u← u+ 1

end if
end while
Return Opt Sol and Obj Val

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 16

2) a sufficient condition that allows increments of upper and lower threshold values by larger

amounts.

The conditions however does not seem to affect the worst case complexity of the algo-

rithm.

Let F ∗ = {S1, S2, ..., Sp} be the set of all solutions generated by the double threshold

algorithm while completing the sequential search. We assume that Si is generated before

Sj for i < j. For 1 ≤ t ≤ p let, αt = max{qij : (i, j) ∈ St × St} and βt = min{qij : (i, j) ∈
St × St}. Thus, α1 < α2 < ... < αp and β1 < β2 < ... < βp. For k = 1, ..., p. Choose t(k)

such that αt(k) − βt(k) = min{αi − βi : 1 ≤ i ≤ k}.
Let F ∗k = {S1, S2, ..., Sk}. Note that St(p) is an optimal solution to QBOP since αt(p) −

βt(p) = min{αi − βi : 1 ≤ i ≤ p}. Now, let F 0 ⊂ F such that F 0 = {Si ∈ F ∗ : αi − βi =

αt(p) − βt(p)}. Thus, any S ∈ F 0 is an optimal solution to QBOP. Let β be a real number

such that β ≥ max{βi : Si ∈ F 0}. We choose β = min{qij : (i, j) ∈ S2 × S2} to obtain the

best possible bound.

Theorem 5. For any 1 ≤ k ≤ p if αt(k) − βt(k) + β ≤ αk then St(k) ∈ F 0.

Proof. Suppose St(k) /∈ F 0. Then there is an Si ∈ F 0 and i > k and, αi − βi < αt(k) − βt(k).

Then αi < βi + αt(k) − βt(k) ≤ β + αt(k) − βt(k) ≤ αk. This implies i ≤ k which is a

contradiction.

Theorem 5 provides a termination criterion that could reduce the number of iterations

for the double threshold algorithm.

Theorem 6. If St(k) does not belong to F 0 then there is an Sq ∈ F 0 for q > k such that

βq > αk − αt(k) + βt(k).

Proof. On contrary, suppose βq ≤ αk − αt(k) + βt(k) ≤ αq − αt(k) + βt(k) then αq − βq ≥
αt(k) + βt(k) then St(k) ∈ F 0 which is a contradiction.

Theorem 6 could be used to update the lower threshold by larger quantity whenever the

condition holds.

Results similar to Theorem 5 and 6 were used by Ahuja [2], Martins[40], Punnen [45] and

Punnen and Nair [49] in solving other combinatorial optimization problems. Incorporating

the conditions presented in Theorems 5 and 6 into the improved double threshold algorithm,

we get the modified double threshold algorithm to solve QBOP. A formal description of the

modified double threshold algorithm is given in Algorithm 2.3.

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 17

Algorithm 2.3: The Modified Double Threshold Algorithm (MDT)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qij : (i, j) ∈ E × E
Let Opt Sol be the optimal solution to QBOP and Obj Val the optimal objective
function value to QBOP
Let S1 be the optimal solution to QBP1 and U∗ be the optimal objective function value
of that, l be such that zl = min{qij : (i, j) ∈ S1 × S1} . We set l and u be such that
(zu ← U∗) and L∗ be such that zL∗ is the optimal objective function value of QBP2
Opt Sol ← S1

Obj Val = zu − zl
l← l + 1
while (l ≤ u) and (l ≤ L∗) and (u ≤ p) do
if F(zl,zu) 6= ∅ then

Choose S ∈ F(zl,zu)

zr = min{qij : (i, j) ∈ S × S}
zt = max{qij : (i, j) ∈ S × S}
if zt − zr < Obj-Val then

Obj Val = zt − zr
Opt Sol = S

end if
if Obj Val +L∗ ≤ zr then

return Obj Val and Opt Sol
end if
l = r + 1
choose smallest q ≥ l such that zq ≥ zu−Obj Val
l← q

else
u← u+ 1

end if
end while
Return Opt Sol and Obj Val

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 18

2.2.4 The Iterative bottleneck algorithm for QBOP

Let us now discuss two additional algorithms to solve QBOP. In both cases, we solve a se-

quence of quadratic bottleneck problems of the type QBP1 or QBP2 instead of a quadratic

feasibility problem. The worst case complexities of these algorithms, in general, are higher

than that of the DT algorithm and its variations, the average performance is expected to

be better. Recall that
QBP1 : Minimize max{qij : (i, j) ∈ S × S}

Subject to S ∈ F

QBP2 : Maximize min{qij : (i, j) ∈ S × S}

Subject to S ∈ F

Thus, QBP1 minimizes Z1(Q,S) while QBP2 maximizes Z2(Q,S). To develop our first

iterative bottleneck algorithm, we consider a generalization of QBOP where lower and upper

threshold restrictions are imposed on feasible solutions. Let α and β be real numbers such

that α ≤ β. Consider the problem

QBOP(Q,α, β):= Minimize Z1(Q,S)− Z2(Q,S)

Subject to S ∈ F

Z2(Q,S) ≥ α

Z1(Q,S) ≤ β

Consider the cost matrix Q′ defined by

q′ij =

M if qij < α or qij > β

qij otherwise.

where M is a large number.

Theorem 7. Let S0 be an optimal solution to QBP1 with cost matrix Q′ and q be the index

such that zq = Z2(Q,S0).

(i) If Z1(Q,S0) = M then QBOP(Q,α, β) is infeasible.

(ii) If Z1(Q,S0) < M and Z1(Q,S0) = Z2(Q,S0) then S0 is an optimal solution to

QBOP(Q,α, β).

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 19

(iii) If conditions (i) and (ii) above are not satisfied, then either S0 is an optimal solution

to QBOP(Q,α, β) or there exists an optimal solution to QBOP(Q,α, β) which is optimal to

QBOP(Q,γ, β) where γ = zq+1.

Proof. The proof of (i) and (ii) are straightforward. Let us now prove (iii).

Let F = {S ∈ F (α, β) : Z2(Q,S) ≤ Z2(Q,S0)}. By definition of F

Z2(Q,S0) ≥ Z2(Q,S) for all S ∈ F. (2.1)

By optimality of S0 to QBP1 with cost matrix Q′ and condition (i) of the theorem is not

satisfied, we have

Z1(Q,S0) ≤ Z1(Q,S) for all S ∈ F. (2.2)

Multiply inequality (2.1) by −1 and adding to inequality (2.2) we have QBOP(Q,S0) ≤
QBOP(Q,S) for all S ∈ F . Thus either S0 is an optimal solution to QBOP(Q,α, β) or

there exists an optimal solution S to QBOP(Q,α, β) satisfying Z2(Q,S) > Z2(Q,S0) and

the result follows.

In view of Theorem 7, we can solve QBOP as a sequence of QBP1 problems. In each iter-

ation, the algorithm maintains an upper threshold β and a lower threshold α and construct

a modified cost matrix Q′ which depends on the values of α and β. Then using an optimal

solution to QBP1 with cost matrix Q′, the lower threshold is updated until infeasibility

with respect to the threshold values is identified or optimality of an intermediate solution

is identified using condition (ii) of Theorem 7. The algorithm compares the solutions gen-

erated by the QBP1 solver and outputs the overall best solution with respect to the QBOP

objective function. The resulting algorithm is called the type 1 iterative bottleneck algorithm

(IB1-algorithm) and its formal description is given in Algorithm 2.4.

Recall that QBP2 can be reformulated as QBP1 or the algorithms for QBP1 [50] can be

modified to solve QBP2 directly. Consider the cost matrix Q̃ defined by

q̃ij =

−M if qij > β or qij < α

qij otherwise.

where M is a large number.

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 20

Theorem 8. Let S0 be an optimal solution to QBP2 with cost matrix Q̃ and r be the index

such that zr = Z1(Q,S0).

(i) If Z2(Q̃, S0) = −M then QBOP(Q,α, β) is infeasible.

(ii) If Z2(Q̃, S0) > −M and Z1(Q,S0) = Z2(Q,S0) then S0 is an optimal solution to

QBOP(Q,α, β).

(iii) If conditions (i) and (ii) are not satisfied, then either S0 is an optimal solution to

QBOP(Q,α, β) or there exists an optimal solution to QBOP(Q,α, β) which is also optimal

to QBOP(Q,α, γ) where γ = zr+1.

The proof of this theorem can be constructed by appropriate modifications in the proof

of Theorem 7 and hence is omitted. In view of Theorem 8, we can solve QBOP as a sequence

of QBP2 problems. In each iteration, the algorithm maintains a lower threshold α and an

upper threshold β and construct a modified cost matrix Q̃. Using an optimal solution to

QBP2 with cost matrix Q̃, the upper threshold is updated and the process is continued

until infeasibility with respect to the threshold values is identified. The algorithm compares

the solutions generated by the QBP2 solver in each iteration and outputs the overall best

solution. The resulting algorithm is called the type 2 iterative bottleneck algorithm (IB2-

algorithm) and its formal description is given in Algorithm 2.5.

Algorithms 2.4 and 2.5 can be viewed as extension of an algorithm by Duin and Volgenant

[17] for a generalization of the LBOP.

2.3 Polynomially solvable cases

Let us now consider some special cases of QBOP that can be solved in polynomial time.

Case 1: Sum Case

We first consider the decomposable cost matrix where qij = ai + bj for given ai ≥ 0 and

bj ≥ 0 where i, j ∈ E. Note that

Z(Q,S) = max{qij : (i, j) ∈ S × S} −min{qij : (i, j) ∈ S × S}

= max{ai + bj : (i, j) ∈ S × S} −min{ai + bj : (i, j) ∈ S × S}

= max{ai : i ∈ S}+ max{bi : i ∈ S} −min{ai : i ∈ S} −min{bi : i ∈ S} (2.3)

= max{ai : i ∈ S}+ max{−ai : i ∈ S}+ max{bi : i ∈ S} −min{bi : i ∈ S} (2.4)

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 21

Algorithm 2.4: The type1 Iterative Bottleneck Algorithm(IB1)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qij : (i, j) ∈ E × E
Let Q be the cost matrix , Opt Sol be the optimal solution of QBOP and Obj V al be
the objective function value of QBOP in each iteration.
Q′ ← Q ; Obj V al←∞ ; Opt Sol← ∅, M ← 1 + zp; Z0 = zp;
while (Obj V al 6= 0) and Z0 6= M do

Solve QBP1 with cost matrix Q′. Let S be the resulting solution.
Z0 ← max{q′ij : (i, j) ∈ S × S}
if Z0 < M then
Z1 ← max{qij : (i, j) ∈ S × S}
Z2 ← min{qij : (i, j) ∈ S × S}
if Z1 − Z2 < Obj − V al then
Opt Sol← S
Obj V al← Z1 − Z2

end if
Modify costs:

q′ij =

{
qij if Z2 < qij < zp
M Otherwise

end if
end while
Return Opt Sol and Obj Val

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 22

Algorithm 2.5: The type2 Iterative Bottleneck Algorithm(IB2)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qij : (i, j) ∈ E × E
Let Q be the cost matrix , Opt Sol be the optimal solution of QBOP and Obj V al be
the objective function value of QBOP in each iteration.
Q̃← Q ; Obj V al←∞ ; Opt Sol← ∅, M ← 1 + zp; Z0 = z1;
while (Obj V al 6= 0) and Z0 6= −M do

Solve QBP2 with cost matrix Q̃. Let S be the resulting solution.
Z0 ← min{q̃ij : (i, j) ∈ S × S}
if Z0 > −M then
Z1 ← max{qij : (i, j) ∈ S × S}
Z2 ← min{qij : (i, j) ∈ S × S}
if Z1 − Z2 < Obj − V al then
Opt Sol← S
Obj V al← Z1 − Z2

end if
Modify costs:

q̃ij =

{
qij if z1 < qij < Z1

−M Otherwise
end if

end while
Return Opt Sol and Obj Val

CHAPTER 2. QUADRATIC BALANCED OPTIMIZATION PROBLEM 23

Let wi be a prescribed weight of element i ∈ E and g : F → <. Duin and Volgenant [17]

showed that combinatorial optimization problems of the type

COP(g): Minimize max{wi : i ∈ S}+ g(S)

Subject to

S ∈ F.

can be solved in O(mζ(m)) where ζ(m) is the complexity of minimizing g(S) over F .

Note that

Z(Q,S) = max{ai : i ∈ S}+ g(S) (2.5)

where g(S) = max{−ai : i ∈ S} + g1(S) and g1(S) = max{bi : i ∈ S} − min{bi : i ∈ S}.
But minimizing g1(S) over F is precisely the LBOP [39]. Thus recursively applying the

results of Duin and Volgenant [17], BCOP with a decomposable cost matrix can be solved

in O(m2η(m)) time where η(m) is the complexity of an LBOP.

When ai = bi, then Z(Q,S) = 2[max{ai : i ∈ S} −min{ai : i ∈ S}]. Thus, the problem

reduces to LBOP.

Note that when feasible solutions are spanning trees of a graph on n nods and m edges,

LBOP can be solved in O(m log n) time [61] and hence the resulting QBOP with decom-

posable cost function can be solved in O(m3 log n) time.

Case 2: Product Case

In this case, we assume qij = ai.bj where ai ≥ 0 and bj ≥ 0 for any i ∈ S and for any j ∈ S.

Then, we have:

Z(Q,S) = max{qij : (i, j) ∈ S × S} −min{qij : (i, j) ∈ S × S}

= max{ai.bj : (i, j) ∈ S × S} −min{ai.bj : (i, j) ∈ S × S}

= max{ai : i ∈ S}.max{bi : i ∈ S} −min{ai : i ∈ S}.min{bi : i ∈ S} (2.6)

Let g(S) = maxi∈S ai.maxi∈S bi, by simple modification in the algorithm for solving

max+sum combinatorial optimization problem [17] to multiplicative combinatorial opti-

mization problem, g(S) can be solved as a series of bottleneck problems in polynomial time

and hence, QBOP with special structure of qij = ai.bj can be solved in polynomial time.

Chapter 3

Quadratic Balanced Knapsack

Problem(QBKP)

Let E = {1, ...,m} and F be a family of subsets of E. For any x = (x1, ..., xm) ∈ {0, 1}n let

S(x) = {j : xj = 1}. Then, QBKP can be defined as

Minimize { max
(i,j)∈S(x)×S(x)

qij − min
(i,j)∈S(x)×S(x)

qij}

Subject to
∑
i∈S(x)

aixi ≥ c

xi ∈ {0, 1} ∀i ∈ E

QBKP is NP-hard since if qij ≥ 0 for all (i, j) ∈ E × E and qii = 0 for all i ∈ E then

QBKP reduces to Quadratic Bottleneck Knapsack Problem which is known to be NP-hard

in [62].

Note that QBKP is a special case of QBOP discussed in the previous chapter. Thus, all

the results discussed in Chapter 2 are applied here. In particular, the algorithms developed

in Chapter 2 can be used to solve QBKP. The focus of this chapter is to explore how the

general algorithms can be simplified by exploiting the special structure of QBKP.

3.1 The Double Threshold Algorithm for QBKP

Let z1 < z2 < ... < zp be an ascending arrangement of distinct qij values. For any real

numbers α and β where z1 ≤ α ≤ β ≤ zp let E(α, β) = {(i, j) ∈ E ×E : qij > α or qij < β}

24

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 25

and F (α, β) = {S ∈ F : (S × S) ∩ E(α, β) = ∅}.
Consider the Maximum Weight Independent set Problem (MWIP)

Maximize
m∑
j=1

ajxj

Subject to xi + xj ≤ 1 ∀(i, j) ∈ E(α, β) (1)

xj ∈ {0, 1}

Let x∗ = (x∗1, x
∗
2,, x

∗
m) be an optimal solution to the MWIP and z∗ be its optimal

objective function value.

Theorem 9. F (α, β) 6= ∅ if and only if z∗ ≥ c.

Proof. If z∗ ≥ c then, x∗ is a feasible solution to QBKP and S(x∗) ∈ F (α, β).

Conversely, suppose F (α, β) 6= ∅. Choose S ∈ F (α, β) and let xs be the incidence vector

of s. Then xs satisfies constraint (1). Since S ∈ F ,
∑m

i=1 aix
s
i ≥ c. But z∗ ≥

∑m
i=1 aix

s
i .

Hence, z∗ ≥ c

Thus, if we can solve the MWIP in polynomial time, then the feasibility problem asso-

ciated with QBKP can be solved in polynomial time. Using the feasibility test discussed

above, let us restate our double threshold algorithm for QBKP.

Theorem 10. QBKP can be solved in O(m2ψ(m)) time, where ψ(m) is the complexity of

the MWIP.

The structure of the matrix Q is such that certain pairs (i, j) ∈ E × E are explicitly

prohibited. i.e. no feasible solution is allowed to have both i and j together for such

explicitly prohibited pairs. Consider the graph G = (V,A) with node set E and an edge

(i, j) ∈ A if and only if (i, j) is not explicitly prohibited. Then, if G is a bipartite graph,

the MWIP can be solved in polynomial time. Also, any subgraph of a bipartite graph is

also bipartite; Thus, the double threshold algorithm runs in polynomial time and hence this

special case of QBKP can be solved in polynomial time.

Let us now give an integer linear program formulation of QBKP.

Theorem 11. The following problem which is called QBKP-IP is equivalent to QBKP.

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 26

Algorithm 3.1: The Double Threshold Algorithm (DT)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qij : (i, j) ∈ E × E
Opt Sol = ∅
Obj Val =∞
l = u = 1
while l ≤ p and u ≤ p do

Solve Maximum Weight Independent set Problem(MWIP)
Let z∗ be the optimal objective value and x∗ the optimal solution for MWIP
if z∗ > c then
zr = min{qij : (i, j) ∈ S(x∗)× S(x∗)}
zt = max{qij : (i, j) ∈ S(x∗)× S(x∗)}
if zt − zr < Obj-Val then

Obj Val = zt − zr
Opt Sol = S(x∗)

end if
l = r + 1

else
u = u+ 1

end if
end while
Return Opt Sol and Obj Val

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 27

min y − z

Subject to
m∑
j=1

ajxj ≥ c (1)

qijαij ≤ y +M(1− xi) +M(1− xj) (2)

z ≤ qijαij +M(1− xi) +M(1− xj) (3)

αij ≤ xi (4)

αij ≤ xj (5)

xi + xj − 1 ≤ αij (6)

xi ∈ {0, 1}

αij ∈ {0, 1}

M ≥ 0

Proof. Let (α∗ij , x
∗
i , y
∗, z∗) be the optimal solution to QBKP-IP, y∗−z∗ be the corresponding

optimal objective function value and M be a large positive number. Constraints (4) ,

(5) and (6) force the value of αij to be equal to the value of xixj for the set: {(i, j) :

(i, j) ∈ S(x)× S(x)}. By constraint (1), x∗ is also feasible for QBKP. Constraint (2) forces

y = max{qij : (i, j) ∈ S(x) × S(x)} and constraint (3) forces z = min{qij : (i, j) ∈ S(x) ×
S(x)} . By feasibility of (α∗ij , x

∗
i , y
∗, z∗), we have y∗ − z∗ ≤ min{max(i,j)∈S(x∗)×S(x∗) qij −

min(i,j)∈S(x∗)×S(x∗) qij}.
Now, consider x0 to be the optimal solution and z(x0) to be the optimal objective

function value of QBKP. The knapsack constraint is common in both QBKP and QBKP-

IP, set y0 = max{qij : (i, j) ∈ S(x) × S(x)} and z0 = min{qij : (i, j) ∈ S(x) × S(x)}.
Constraints (2), (3) and (4) are also satisfied by x0 since the value of xixj results the value

of αij . Since x∗ is optimal to QBKP-IP, we have z(x0) = y0 − z0 ≤ y∗ − z∗ (i). Also,

z(x∗) = y∗ − z∗ ≤ z(x0) = y0 − z0 (ii) since x0 is optimal to QBKP. From (i) and (ii),

y∗ − z∗ = y0 − z0 and the result follows.

3.1.1 The Improved Double Threshold Algorithm for QBKP

The Improved Double Threshold (IDT) algorithm helps to bound the search interval for op-

timal solution. This algorithm first solves Quadratic Bottleneck Knapsack Problem (QKP1

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 28

and QKP2). QKP1 and QKP2 are the instances of QBP1 and QBP2 as introduced in

chapter 2.

QKP1 : Minimize { max
(i,j)∈S(x)×S(x)

qij}

Subject to
m∑
j

ajxj ≥ c

xj ∈ {0, 1}

QKP2 : Maximize { min
(i,j)∈S(x)×S(x)

qij}

Subject to
m∑
j

ajxj ≥ c

xj ∈ {0, 1}

The problem QKP1 was investigated by Zhang and Punnen [62] and they proposed exact

algorithms and heuristic methods to solve this problem. QKP2 can be modified to QKP1 by

converting its objective function to min{max−qij : (i, j) ∈ S(x)× S(x)}. Similarly, QKP2

can be formulated as QKP1. In this sense both QKP1 and QKP2 are equivalent. QKP1 is

known to be NP-hard[62] and since it can be converted to QKP2, QKP2 is also NP-hard.

QKP1 is solved by threshold algorithm much faster than QBKP. Since QKP1 has a

monotonic objective function, we can use binary search for solving it [62] while we have

to use linear search to solve QBKP by double threshold algorithm since QBKP objective

function is not monotonic.

For any feasible solution S(x), let Z1(S(x)) = max{qij : (i, j) ∈ S(x)×S(x)}, Z2(S(x)) =

min{qij : (i, j) ∈ S(x)×S(x)} and Z(S(x)) = Z1(S(x))−Z2(S(x)). Let S1(x) be the optimal

solution to QKP1 , U∗ be its optimal objective function value and S2(x) be the optimal

solution to QKP2 and L∗ be its optimal objective function value.

Theorem 12. For any feasible solution S(x), Z2(S(x)) ≤ L∗. Further, for any solution

with Z1(S(x)) = U∗ , if Z2(S(x)) < Z2(S1(x)), then Z(S(x)) > Z(S1(x))

Proof. The inequality Z2(S(x)) ≤ L∗ follows from the definition of L∗. Also, for any feasible

solution S(x), Z1(S(x)) ≥ Z1(S1(x)). Thus, if Z2(S(x)) < Z2(S1(x)) we have Z(S(x)) =

Z1(S(x))− Z2(S(x)) > Z1(S1(x))− Z2(S1(x)) = Z(S1(x)) and the proof is complete.

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 29

Using Theorem 12, we can reset the starting lower threshold value as Z2(S1(x)) and the

lower threshold is not required to increase beyond L∗. This could reduce the search interval

considerably. The double threshold algorithm incorporating this enhancement is called the

improved double threshold algorithm. A formal description of the algorithm is presented in

Algorithm 3.2.

Algorithm 3.2: The Improved Double Threshold Algorithm (IDT)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qij : (i, j) ∈ E × E
Let Opt Sol be the optimal solution to QBKP and Obj Val the optimal objective
function value to QBKP
Let S1(x) be the optimal solution to QKP1 and U∗ be the optimal objective function
value of that, l be such that zl = min{qij : (i, j) ∈ S1(x)× S1(x)} . We set l and u be
such that (zu ← U∗)
Let L∗ be such that zL∗ be the optimal objective function value of QKP2
Opt Sol ← S1(x)
Obj Val = zu − zl
l← l + 1
while (l ≤ u) and (l ≤ L∗) and (u ≤ p) do

Solve Maximum Weight Independent set Problem(MWIP)
Let z∗ be the optimal objective value and x∗ the optimal solution for MWIP
if z∗ > c then
zr = min{qij : (i, j) ∈ S(x∗)× S(x∗)}
zt = max{qij : (i, j) ∈ S(x∗)× S(x∗)}
if zt − zr < Obj-Val then

Obj Val= zt − zr
Opt Sol= S(x∗)

end if
l = r + 1

else
u← u+ 1

end if
end while
Return Opt Sol and Obj Val

3.1.2 The Modified Double Threshold Algorithm for QBKP

Let us now discuss how to improve the average performance of the double threshold algo-

rithm and the improved double threshold algorithm. The improvement is achieved using

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 30

1) sufficient condition for optimality and

2) a sufficient condition that allows increments of upper and lower threshold values by larger

amounts.

The conditions however does not seem to affect the worst case complexity of the algo-

rithm.

Let F ∗(x) = {S(x1), ..., S(xp)} be the set of all solutions generated by the double thresh-

old algorithm while completing the sequential search. We assume that S(xi) is generated

before S(xj) for i < j. For 1 ≤ t ≤ p let, αt = max{qij : (i, j) ∈ S(xt) × S(xt)} and

βt = min{qij : (i, j) ∈ S(xt)×S(xt)}. Thus, α1 < α2 < ... < αp and β1 < β2 < ... < βp. For

k = 1, ..., p. Choose t(k) such that αt(k) − βt(k) = min{αi − βi : 1 ≤ i ≤ k}.
Let F ∗k (x) = {S1(x), S2(x), ..., Sk(x)}. Note that St(p)(x) is an optimal solution to

QBKP since αt(p) − βt(p) = min{αi − βi : 1 ≤ i ≤ p}. Now, let F 0(x) ⊂ F (x) such that

F 0(x) = {Si(x) ∈ F ∗(x) : αi − βi = αt(p) − βt(p)}. Thus, any S(x) ∈ F 0 is an optimal

solution to QBKP. Let γ be a real number such that γ ≥ max{βi : Si(x) ∈ F 0(x)}. We

choose γ = min{qij : (i, j) ∈ S2(x)× S2(x)} to obtain the best possible bound.

Theorem 13. For any 1 ≤ k ≤ p if αt(k) − βt(k) + γ ≤ αk then S(xt(k)) ∈ F 0(x).

Proof. Suppose S(xt(k)) ∈ F 0(x) then there is an S(xi) ∈ F 0(x) and i > k such that

αi − βi < αt(k) − βt(k). Then αi < βi + αt(k) − βt(k) ≤ γ + αt(k) − βt(k) ≤ αk this implies

i ≤ k which is a contradiction.

Theorem 13 adds a termination criterion to IDT algorithm which reduces the number

of iterations.

Theorem 14. If S(x) does not belong to F 0(x) then there is an S(xq) ∈ F 0 for q > k such

that βq > αk − αt(k) + βt(k).

Proof. On contrary suppose βq ≤ αk − αt(k) + βt(k) ≤ αq − αt(k) + βt(k) then αq − βq ≥
αt(k) + βt(k) then S(xt(k)) ∈ F 0 which is a contradiction.

Theorem 14 could be used to update the lower threshold by larger quantity whenever

the condition holds.

Results similar to Theorem 13 and 14 were used by Ahuja [2], Martins[40], Punnen [45]

and Punnen and Nair [49] in solving other combinatorial optimization problems. Incorpo-

rating the conditions presented in Theorems 13 and 14 into the improved double threshold

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 31

algorithm, we get the modified double threshold algorithm to solve QBKP. A formal de-

scription of the modified double threshold algorithm is given in Algorithm 3.3.

3.1.3 The Iterative bottleneck knapsack algorithm for QBKP

Let us now discuss two additional algorithms to solve QBKP. In both cases, we solve a

sequence of quadratic bottleneck knapsack problems (QKP1 or QKP2) instead of MWIP

problem. The worst case complexities of these algorithms , in general, are higher than that

of the DT algorithm and its variations, the average performance is expected to be better.

Recall that

QKP1 : Minimize { max
(i,j)∈S(x)×S(x)

qij}

Subject to

m∑
j

ajxj ≥ c

xj ∈ {0, 1}

QKP2 : Maximize { min
(i,j)∈S(x)×S(x)

qij}

Subject to
m∑
j

ajxj ≥ c

xj ∈ {0, 1}

QKP1 minimizes Z1(Q,S(x)) while QKP2 maximizes Z2(Q,S(x)).

To develop our first iterative bottleneck knapsack algorithm, we consider a generalization

of QBKP where lower and upper threshold restrictions are imposed on feasible solutions.

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 32

Algorithm 3.3: The Modified Double Threshold Algorithm (MDT)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qij : (i, j) ∈ E × E
Let Opt Sol be the optimal solution to QBKP and Obj Val the optimal objective
function value to QBKP
Let S1(x) be the optimal solution to QKP1 and U∗ be the optimal objective function
value of that, l be such that zl = min{qij : (i, j) ∈ S1(x)× S1(x)} . We set l and u be
such that (zu ← U∗)
Let L∗ be such that zL∗ be the optimal objective function value of QKP2
Opt Sol ← S1(x)
Obj Val = zu − zl
l← l + 1
while (l ≤ u) and (l ≤ L∗) and (u ≤ p) do

Solve Maximum Weight Independent set Problem(MWIP)
Let z∗ be the optimal objective value and x∗ the optimal solution for MWIP
if z∗ > c then
zr = min{qij : (i, j) ∈ S(x∗)× S(x∗)}
zt = max{qij : (i, j) ∈ S(x∗)× S(x∗)}
if zt − zr < Obj-Val then

Obj Val= zt − zr
Opt Sol= S(x∗)

end if
if Obj Val +L∗ ≤ zr then

return Obj Val and Opt Sol
end if
l = r + 1
choose smallest q ≥ l such that zq ≥ zu− Obj val
l← q

else
u← u+ 1

end if
end while
Return Opt Sol and Obj Val

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 33

Let α and β be real numbers such that α ≤ β. Consider the problem

QBKP(Q,α, β):= Minimize Z1(Q,S(x))− Z2(Q,S(x))

Subject to
∑
i∈S(x)

aixi ≥ c

Z2(Q,S(x)) ≥ α

Z1(Q,S(x)) ≤ β

xi = 0, 1 ∀i ∈ E

Consider the cost matrix Q′ defined by

q′ij =

M if qij < α or qij > β

qij otherwise.

where M is a large number.

Theorem 15. Let S(x0) be an optimal solution to QKP1 with cost matrix Q′ and q be the

index such that zq = Z2(Q,S(x0)).

(i) If Z1(Q,S(x0)) = M then QBKP(Q,α, β) is infeasible.

(ii) If Z1(Q,S(x0)) < M and Z1(Q,S(x0)) = Z2(Q,S(x0)) then S(x0) is an optimal solution

to QBKP(Q,α, β).

(iii) If conditions (i) and (ii) above are not satisfied, then either S(x0) is an optimal solution

to QBKP(Q,α, β) or there exists an optimal solution to QBKP(Q,α, β) which is optimal to

QBKP(Q,γ, β) where γ = zq+1.

Proof. The proof of (i) and (ii) are straightforward. Let us now prove (iii).

Let F = {S(x) ∈ F (α, β) : Z2(Q,S(x)) ≤ Z2(Q,S(x0))}. By definition of F

Z2(Q,S(x0)) ≥ Z2(Q,S(x)) for all S(x) ∈ F. (3.1)

By optimality of S(x0) to QKP1 with cost matrix Q′ and condition (i) of the theorem is

not satisfied, we have

Z1(Q,S(x0)) ≤ Z1(Q,S(x)) for all S(x) ∈ F. (3.2)

Multiply inequality (3.1) by −1 and adding to inequality (3.2) we have QBKP(Q,S(x0)) ≤

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 34

QBKP(Q,S(x)) for all S(x) ∈ F . Thus either S(x0) is an optimal solution to QBKP(Q,α, β)

or there exists an optimal solution S(x) to QBKP(Q,α, β) satisfying Z2(Q,S(x)) > Z2(Q,S(x0))

and the result follows.

In view of Theorem 15, we can solve QBKP as a sequence of QKP1 problems. In each

iteration, the algorithm maintains an upper threshold β and a lower threshold α and con-

struct a modified cost matrix Q′ which depends on the values of α and β. Then using an

optimal solution to QBP1 with cost matrix Q′, the lower threshold is updated until infea-

sibility with respect to the threshold values is identified or optimality of an intermediate

solution is identified using condition (ii) of Theorem 15. The algorithm compares the solu-

tions generated by the QKP1 solver and outputs the overall best solution with respect to the

QBKP objective function. The resulting algorithm is called the type 1 iterative bottleneck

knapsack algorithm (IBK1-algorithm) and its formal description is given in Algorithm 3.4.

QKP2 can be reformulated as QKP1 or the algorithms for QKP1 can be modified to

solve QKP2 directly. Consider the cost matrix Q̃ defined by

q̃ij =

−M if qij > β or qij < α

qij otherwise.

where M is a large number.

Theorem 16. Let S(x0) be an optimal solution to QKP2 with cost matrix Q̃ and r be the

index such that zr = Z1(Q,S(x0)).

(i) If Z2(Q̃, S(x0)) = −M then QBKP(Q,α, β) is infeasible.

(ii) If Z2(Q̃, S(x0)) > −M and Z1(Q,S(x0)) = Z2(Q,S(x0)) then S(x0) is an optimal so-

lution to QBKP(Q,α, β).

(iii) If conditions (i) and (ii) are not satisfied, then either S(x0) is an optimal solution to

QBKP(Q,α, β) or there exists an optimal solution to QBKP(Q,α, β) which is also optimal

to QBKP(Q,α, γ) where γ = zr+1.

The proof of this theorem can be constructed by appropriate modifications in the proof

of Theorem 15 and hence is omitted. In view of Theorem 16, we can solve QBKP as a

sequence of QKP2 problems. In each iteration, the algorithm maintains a lower threshold α

and an upper threshold β and construct a modified cost matrix Q̃. Using an optimal solution

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 35

to QKP2 with cost matrix Q̃, the upper threshold is updated and the process is continued

until infeasibility with respect to the threshold values is identified. The algorithm compares

the solutions generated by the QKP2 solver in each iteration and outputs the overall best

solution. The resulting algorithm is called the type 2 iterative bottleneck knapsack algorithm

(IBK2-algorithm) and its formal description is given in Algorithm 3.5.

Algorithm 3.4: The type1 Iterative Bottleneck Knapsack Algorithm(IBK1)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qij : (i, j) ∈ E × E
Let Q be the cost matrix , Opt Sol be the optimal solution of QBKP and Obj V al be
the objective function value of QBKP in each iteration
Q′ ← Q ; Obj V al←∞ ; Opt Sol← ∅, M ← 1 + zp; Z0 = zp;
while (Obj V al 6= 0) and Z0 6= M do

Solve QKP2 with cost matrix Q′. Let S(x) be the resulting solution.
Z0 ← max{q′ij : (i, j) ∈ S(x)× S(x)}
if Z0 < M then
Z1 ← max{qij : (i, j) ∈ S(x)× S(x)}
Z2 ← min{qij : (i, j) ∈ S(x)× S(x)}
if Z1 − Z2 < Obj − V al then
Opt Sol← S(x)
Obj V al← Z1 − Z2

end if
Modify costs:

q′ij =

{
qij if Z2 < qij < zp
M Otherwise

end if
end while
Return Opt Sol and Obj Val

Algorithms 3.4 and 3.5 can be viewed as extension of an algorithm by Duin and Volgenant

[17] for a generalization of the LBOP.

3.2 Polynomially solvable cases for Quadratic Balanced Knap-

sack Problem

Let us now consider some special cases of QBKP that can be solved in polynomial time.

Case 1: Sum Case

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 36

Algorithm 3.5: The type2 Iterative Bottleneck Knapsack Algorithm(IBK2)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qij : (i, j) ∈ E × E
Let Q be the cost matrix , Opt Sol be the optimal solution of QBKP and Obj V al be
the objective function value of QBKP in each iteration
Q̃← Q ; Obj V al←∞ ; Opt Sol← ∅, M ← 1 + zp; Z0 = z1;
while (Obj V al 6= 0) and Z0 6= −M do

Solve QKP2 with cost matrix Q̃. Let S(x) be the resulting solution.
Z0 ← min{q̃ij : (i, j) ∈ S(x)× S(x)}
if Z0 > −M then
Z1 ← max{qij : (i, j) ∈ S(x)× S(x)}
Z2 ← min{qij : (i, j) ∈ S(x)× S(x)}
if Z1 − Z2 < Obj − V al then
Opt Sol← S(x)
Obj V al← Z1 − Z2

end if
Modify costs:

q̃ij =

{
qij if z1 < qij < Z1

−M Otherwise
end if

end while
Return Opt Sol and Obj Val

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 37

We first consider the decomposable cost matrix where qij = ei + fj for given ei ≥ 0 and

fj ≥ 0 where i, j ∈ E. Note that

Z(Q,S(x)) = max{qij : (i, j) ∈ S(x)× S(x)} −min{qij : (i, j) ∈ S(x)× S(x)}

= max{ei + fj : (i, j) ∈ S(x)× S(x)} −min{ei + fj : (i, j) ∈ S(x)× S(x)}

= max{ei : i ∈ S(x)}+ max{fi : i ∈ S(x)} −min{ei : i ∈ S(x)} −min{fi : i ∈ S(x)}
(3.3)

= max{ei : i ∈ S(x)}+ max{−ei : i ∈ S(x)}+ max{fi : i ∈ S(x)} −min{fi : i ∈ S(x)}
(3.4)

Recall from Chapter 2 that if wi be a prescribed weight of element i ∈ E and g : F → <.

Duin and Volgenant [17] showed that combinatorial optimization problems of the type

COP(g): Minimize max{wi : i ∈ S}+ g(S)

Subject to

S ∈ F.

can be solved in O(mζ(m)) where ζ(m) is the complexity of minimizing g(S) over F .

Note that Here, by considering the special case of knapsack problem we have Knapsack

COP (KCOP):

KCOP (g) Minimize max{wi : i ∈ S(x)}+ g(S(x))

Subject to
∑
i∈S(x)

aixi ≥ c

xi ∈ {0, 1} ∀i ∈ E

Let

Z(Q,S(x)) = max{ei : i ∈ S(x)}+ g(S(x)) (3.5)

where g(S(x)) = max{−ei : i ∈ S(x)} + g1(S(x)) and g1(S(x)) = max{fi : i ∈ S(x)} −
min{fi : i ∈ S(x)}. But minimizing g1(S(x)) over F is precisely the Linear Balanced

Knapsack Problem(LBKP) . Thus recursively applying the results of Duin and Volgenant

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 38

[17], BKCOP with a decomposable cost matrix can be solved in O(m2η(m)) time where

η(m) is the complexity of an LBKP.

When ei = fi, then Z(Q,S) = 2[max{ei : i ∈ S} −min{ei : i ∈ S}]. Thus, the problem

reduces to LBKP.

Case 2 : Product Case

In this case, we assume qij = ei.fj where ei ≥ 0 and fj ≥ 0 for any i ∈ S(x) and for any

j ∈ S(x). Then, we have:

Z(Q,S(x)) = max{qij : (i, j) ∈ S(x)× S(x)} −min{qij : (i, j) ∈ S(x)× S(x)}

= max{ei.fj : (i, j) ∈ S(x)× S(x)} −min{ei.fj : (i, j) ∈ S(x)× S(x)}

= max{ei : i ∈ S(x)}.max{fi : i ∈ S(x)} −min{ei : i ∈ S(x)}.min{fi : i ∈ S(x)}
(3.6)

Let g(S(x)) = maxi∈S(x) ei.maxi∈S(x) fi, Zhang and Punnen [62] proved that g(S(x))

can be solved in O(m2) and hence, QBKP with special structure of qij = ei.fj can be solved

in polynomial time.

3.3 Solving QBKP by a heuristic

In this section we formulate MWIP as an Unconstrained Quadratic Problem (UQP) and

solve it by the heuristic method presented in [38] UQP is formulated as follows:

max
m∑
i=1

m∑
j=1

qijxixj

xj ∈ {0, 1}

Let zl be the lower threshold and zu be the upper threshold in any of the algorithms for

QBKP in this chapter.We formulate MWIP as UQP by defining costs cij as follows:

cij =


aj if i = j and zl ≤ qij ≤ zu
−M if qij < zl or qij > zu

0 Otherwise

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 39

where M is a large positive number. If UQP with modified costs of cij has a solution with

objective function value of greater than or equal to c then, QBKP has a feasible solution.

3.4 Computational Results:

All the algorithms in Chapter 3 were coded in C++ and executed on a Linux workstation

with Intel Xeon E5410 CPU (2.33 GHz) and 8 GB RAM running Red Hat Enterprise Linux

(kernel 2.6.18).

The MWIP problem in all exact algorithms of this chapter were solved with CPLEX

12.1.0.

Since there is no benchmark problems for QBKP, all the experiment instances were

generated randomly with different ranges for costs and weights. There were two parameters

considered in generating these random instances, N and PCT, where N is the number of

variables (items) and PCT is the percentage of zero elements in cost matrix. PCT is 0 ,

25 and 50 for all instances, N = 10, ..., 90 in table 3.1 and N = 100, ..., 700 in table 3.2 ,

table 3.3 and table 3.4. The instances in second table are reasonably of large size since for

N = 700 and PCT = 0 there are 490000 qij values.

For each instance with size of N = 100, 200, 300, 400, 500, 600, 700 and PCT = 0, 25 and

50 three different random data sets were generated for the experiments on and the results

are reported in three tables.

In table 3.1, problem instances names are in the form of xx − y where xx presents N

and y = 1, 2, 3 correspondingly stands for PCT = 0, 25, 50 and in tables 3.2 , 3.3 and 3.4

names are presented in xxx − y form where xxx stands for the N and y indicates PCT as

in table 3.1.

Since all of the algorithms are exact, the optimal value column represents the optimal

value for all of the algorithms. Also, the CPU time for each algorithm is reported in the

tables.

In tables 3.2 , 3.3 and 3.4, since Cplex can not solve large instances, there is no column

for Cplex CPU time. Also, there is a heuristic algorithm in addition to exact algorithms.

Thus in addition to above mentioned information reported for the exact algorithms, the

optimal value of the heuristic method is also reported.

Considering table 3.1, Cplex can not(or it takes several days) solve instances with size

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 40

Table 3.1: Table of small instances results
Instance Optimal Value Cplex DT IDT MDT IBK2

40-1 98 70.74 0.79 0.04 0.06 0.04
40-2 85 1532.57 0.98 0.06 0.06 0.06
40-3 90 46.1 1.21 0.05 0.04 0.04
50-1 87 146108 1.31 0.39 0.37 0.14
50-2 87 13602.7 3.33 0.20 0.24 0.14
50-3 97 27.44 2.11 0.10 0.08 0.07
60-1 88 134388 6.46 1.49 1.48 0.19
60-2 91 122209 3.15 0.09 0.08 0.11
60-3 99 12.99 7.49 0.18 0.20 0.08
70-1 99 90363.6 4.75 0.36 0.40 0.57
70-2 77 16771 14.24 1.24 1.45 0.5
70-3 38 835.09 4.82 0.58 0.58 0.34
80-1 - - 9.66 4.76 4.31 0.59
80-2 - - 17.3 1.06 1.06 0.72
80-3 - - 16.86 0.95 0.94 0.25
90-1 - - 19.38 1.48 1.46 1.24
90-2 - - 14.96 0.89 0.91 0.93
90-3 - - 15.99 3.30 3.31 0.71

over 70. While other algorithms solve rather large size instances. Among all exact algorithms

in the first table, IBK2 algorithm is noticeably the fastest one. MDT is in most cases faster

than IDT and obviously DT is the slowest one. In tables 3.2, 3.3 and 3.4 DT, IDT , MDT

and IBK2 keep the same pattern as in table 3.1 but the heuristic method is dramatically

faster than any of other exact algorithms as the size of instances grow from 300 . In some

cases the optimal heuristic value is exact and in other cases it is reasonably close to exact

optimal value.

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 41

Table 3.2: Table of large instance for q ≤ 100
Instance Opt-Val H Opt-val DT IDT MDT IBK2 Heuristic

100-1 98 99 30.34 2.3 2.32 3.01 240.12
100-2 99 100 29 2.01 2.01 2.57 300.13
100-3 0 84 0.28 2.71 2.71 0.41 0.20
200-1 97 99 583.33 426.68 428.73 687.96 240.22
200-2 100 100 2275.84 193.28 193.09 45.25 300.21
200-3 0 84 2.53 67.72 66.35 2.92 0.39
300-1 99 99 11515.1 1803.66 1722.89 1717.77 300.39
300-2 97 100 16954.3 4052.19 4057.49 1231.31 300.4
300-3 100 100 22826.8 1794.75 1712.76 26.25 300.26
400-1 99 99 9206.65 1410.68 1412.65 1328.04 300.39
400-2 84 100 10034 1183.92 1109.95 664.14 300.27
400-3 100 100 18095.6 1599.73 1568.71 153.23 300.31
500-1 98 99 11274.4 2814.84 2670.13 1347.88 300.24
500-2 100 100 13316.1 1312.23 1225.66 1213.06 300.46
500-3 99 100 16082.2 1817.22 1783.84 1165.24 300.45
600-1 97 99 11979.6 2537.1 2189.64 1005.69 240.82
600-2 100 100 14617.4 1126.43 1193.95 1069.42 300.59
600-3 100 100 15844.7 1258.83 1285.19 546.78 300.55
700-1 99 99 11133.8 2771.43 1935 875.31 300.67
700-2 100 100 15417.1 1475.02 823.78 889.44 300.82
700-3 100 100 17780.2 1895.86 1769.42 1034.72 300.74

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 42

Table 3.3: Table of large instance for q ≤ 300
Instance Opt-Val H Opt-val DT IDT MDT IBK2 Heuristic

100-1 288 298 74.2 5.53 2.31 1.78 180.15

100-2 50 274 10.51 6.57 1.61 0.16 0.29
100-3 231 300 219.77 11.66 3.23 0.61 360.17
200-1 291 299 8507.96 760.46 358.16 121.92 180.31
200-2 300 300 12102.30 397.66 225.78 47.94 420.41
200-3 266 300 36412.20 853.70 851.40 20.50 420.7
300-1 288 299 37209.20 13969.9 6532.04 1294.16 180.45
300-2 300 300 37475.50 1620.29 853.13 432.11 420.34
300-3 262 300 36269.40 4214.20 1651.02 248.11 360.55
400-1 288 299 30573.10 10800.6 4743.8 974.34 180.66
400-2 275 300 29186.20 5213.18 921.19 510.74 360.49
400-3 291 300 49317.10 4564.46 1314.40 425.17 360.48
500-1 299 299 30004.8 12789.87 5876.26 1107.9 360.56
500-2 215 297 33707 9664.53 635.77 419.65 121.59
500-3 298 300 44528.60 1734.02 488.69 539.72 360.67
600-1 299 299 58127.67 15089.67 6781.33 1019.09 420.72
600-2 300 300 39933 1782.36 834.87 518.06 420.65
600-3 300 300 46720.60 1617.91 664 394.34 361.04
700-1 299 299 67376.33 17634.50 7787.91 876.55 420.62
700-2 299 300 45709.10 2115.11 838.55 935.51 361.08
700-3 290 300 47753.10 4076.11 1269.12 604.32 360.62

CHAPTER 3. QUADRATIC BALANCED KNAPSACK PROBLEM(QBKP) 43

Table 3.4: Table of large instance for q ≤ 600
Instance Opt-Val H Opt-val DT IDT MDT IBK2 Heuristic

100-1 583 599 202.1 4.9 2.8 1.7 120.2
100-2 596 600 295.8 4.5 3.1 1.5 420.2
100-3 598 600 417.6 2.8 2.3 0.2 420.2
200-1 598 599 13004.2 296.5 287.9 200.9 360.2
200-2 591 600 27098.8 550.5 542.7 47.9 420.4
200-3 557 600 36412.2 853.7 851.4 20.5 420.7
300-1 586 599 56959.5 12758.1 10037.8 652.1 181.6
300-2 596 600 76694 1295.4 1249 376.6 420.7
300-3 592 600 114.1 1332.1 1336.8 25.8 420.8
400-1 591 599 50695 7341.8 6875.8 616.7 181.8
400-2 460 595 555594.8 1115.2 868.3 287.9 3.6
400-3 599 600 88260.6 1004.2 904.2 169.9 421.6
500-1 593 599 52816.9 4553.8 3661 617.3 241.8
500-2 596 600 63626.9 1482.6 1493.9 420.5 422.6
500-3 549 600 75899.9 967.7 853.6 453.9 422
600-1 598 599 57675.9 4553.8 1285.6 716.6 301.1
600-2 599 600 81386.9 897.1 963.3 716.6 421.1
600-3 599 600 96542.5 857.6 852.9 430.8 420.9
700-1 587 599 72306.6 6745.2 5181.2 993.1 181.5
700-2 600 600 85109.7 2217.8 1178.9 484.7 421.1
700-3 566 600 97758.7 1734.9 1225 503.1 421.2

Chapter 4

Quadratic Balanced Assignment

Problem(QBAP)

Let G be a complete bipartite graph on the node set V = {1, ..., n}, E = {e1, ..., em} be the

set of edges and F be the family of all perfect matchings, M on E. Let

xe =

{
1 if edge e is picked in the assignment

0 Otherwise

QBAP is formulated on G as follows:

Minimize { max
(e,f)∈M×M

q(e,f) − min
(e,f)∈M×M

q(e,f)}

Subject to
∑
e∈∆(i)

xe = 1 ∀i ∈ V

xe ∈ {0, 1}

where ∆(i) = {e: e is an edge incident to node i }
QBAP is NP-hard since if qef ≥ 0 for all (e, f) ∈ E × E and qee = 0 for all e ∈ E

then QBAP reduces to Quadratic Bottleneck Assignment Problem which is well known to

be NP-hard in [8].

44

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 45

4.1 The Double Threshold Algorithm for QBAP

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of qef . For any real

numbers α and β where z1 ≤ α ≤ β ≤ zp let E(α, β) = {(e, f) ∈ E×E : qef > α or qef < β}
and F (α, β) = {M ∈ F : M ×M ∩ E(α, β) = ∅} . The following problem which we call

Assignment problem Feasibility Check (AFC) is used to check feasibility of QBAP:

max 0

Subject to
∑
e∈∆(i)

xe = 1 ∀j = 1, ..., n

xe + xf ≤ 1 ∀(e, f) ∈ E(α, β)

xe ∈ {0, 1}

If AFC problem has a feasible solution then, there is a feasible solution for QBAP with

α ≤ qef ≤ β (F (α, β) 6= ∅) .Choose indices l and u such that zu = max{qef : (e, f) ∈M×M}
and zl = min{qef : (e, f) ∈M ×M}. Then, for any α and β such that β−α < zu− zl there

is no feasible solution to the QBAP. Furthermore, if QBAP is infeasible then, for any γ and

δ such that α ≤ γ ≤ δ ≤ β QBAP is infeasible.

Thus, if we solve the AFC problem in polynomial time, then by calling Cplex in a systematic

sequential search to solve AFC problem, QBAP can be solved in polynomial time.

Theorem 17. QBAP can be solved in O(m2η(m)) time, where η(m) is the complexity of

the AFC problem.

Using the AFC problem as feasibility test, let us restate our double threshold algorithm

for QBAP.

By solving QBAP on a complete bipartite graph, Q matrix will consist of n4 elements.

Thus, per iteration Cplex deals with a huge number of conflict pairs constraints which

makes it to take unpredictable amount of time to solve the AFC problem or even it might

be impossible to solve AFC peoblem after a very long time. Thus, we are able to solve

QBAP just for small instances [see table 4.1]. To overcome this difficulty, in the following

section we solve the problem on a sparse graph which contains at least one random perfect

matching to guarantee a feasible solution.

Let us now give an integer linear formulation to QBAP.

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 46

Algorithm 4.1: Double Threshold (DT)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qef : (e, f) ∈M ×M where M is a perfect matching where M ∈ F
Opt-Sol = ∅
Obj-Val =∞
l = u = 1
while l ≤ p and u ≤ p do

Solve AFC problem
if there is a feasible solution to AFC problem such as x0 with M0 as its corresponding
perfect matching then
zr = min{qef : (e, f) ∈M ×M}
zt = max{qef : (e, f) ∈M ×M}
if zt − zr < Obj − V al then
Obj − V al = zt − zr
Opt− Sol = M0

end if
l = r + 1

else
u = u+ 1

end if
end while
Return Opt-Sol and Opt-Val

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 47

Theorem 18. The following problem which is called QBAP-IP is equivalent to QBAP.

QBAP − IP : min y − z

Subject to
∑
e∈∆(i)

xe = 1 (1)

qefαef ≤ y +H(1− xe) +H(1− xf) (2)

z ≤ qefαef +H(1− xe) +H(1− xf) (3)

αef ≤ xe (4)

αef ≤ xf (5)

xe + xf − 1 ≤ αef (6)

xe ∈ {0, 1}

αef ∈ {0, 1}

Proof. First we prove that the optimal solution of QBAP-IP is feasible for QBAP. Let

(α∗ij , x
∗
i , y
∗, z∗) be the optimal solution, M∗ be the corresponding optimal perfect matching

, y∗ − z∗ be the optimal objective function value to QBAP-IP and H be a large positive

number. Constraints (4) , (5) and (6) force the value of αef to be equal to the value of xexf

for the set: {(e, f) : (e, f) ∈M ×M}
By constraint (1), x∗ is also feasible for QBAP. Constraint (2) forces y = max{qef :

(e, f) ∈ M ×M} and constraint (3) forces z = min{qef : (e, f) ∈ M ×M} . By feasibility

of (α∗ij , x
∗
i , y
∗, z∗) , we have y∗ − z∗ ≤ min{max(e,f)∈M∗×M∗qef −min(e,f)∈M∗×M∗qef}.

Now, we prove that the optimal solution of QBAP is feasible for QBAP-IP. Consider x0

to be the optimal solution and z(x0) to be the optimal objective function value of QBAP.

Constraint (1) is common between QBAP and QBAP-IP, let y := max{qef : (e, f) ∈M×M}
and z := min{qef : (e, f) ∈ M ×M} then, constraints (2), (3) and (4) are satisfied by x0

since the value of xexf results the value of αef . Then, by optimality of x0, z(x0) ≤ y0 − z0

where y0− z0 is the optimal objective function value of QBAP-IP for x0. Hence, QBAP-IP

is equivalent to QBAP.

4.1.1 The Improved Double Threshold Algorithm for QBAP

The Improved Double Threshold (IDT) algorithm helps to bound the search interval for

optimal solution. This algorithm first solves Quadratic Bottleneck Assignment Problem

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 48

(QAP1 and QAP2). QAP1 and QAP2 are the instances of QBP1 and QBP2 as introduced

in chapter 2.

QAP1 : Minimize { max
(e,f)∈M×M

q(e,f)}

Subject to
∑
e∈∆(i)

xe = 1 ∀i ∈ V

xe ∈ {0, 1}

QAP2 : Maximize { min
(e,f)∈M×M

q(e,f)}

Subject to
∑
e∈∆(i)

xe = 1 ∀i ∈ V

xe ∈ {0, 1}

QAP2 can be modified to QAP1 by converting its objective function to min{max−qef :

(e, f) ∈ M ×M}. Similarly, QAP1 can be formulated as QAP2. In this sense both QAP1

and QAP2 are equivalent. QAP1 is known to be NP-hard[8] and since it can be converted

to QAP2, QAP2 is also NP-hard.

Since QAP1 has a monotonic objective function, we can use binary search to solve QAP1

while we have to use linear search to solve QBAP by double threshold algorithm since QBAP

objective function is not monotonic.

For any perfect matching M , let Z1(M) = max{qef : (e, f) ∈ M × M}, Z2(M) =

min{qef : (e, f) ∈M ×M} and Z(M) = Z1(M)− Z2(M). Let M̄ to be an optimal perfect

matching for QAP1 and U∗ be its optimal objective function value. Let M̂ be the optimal

perfect matching for QAP2 and L∗ be its optimal objective function value.

Theorem 19. For any feasible solution M , Z2(M) ≤ L∗. Further, for any solution with

Z1(M) = U∗ , if Z2(M) < Z2(M̄), then Z(M) > Z(M̄)

Proof. The inequality Z2(M) ≤ L∗ follows from the definition of L∗. Also, for any feasible

solution M , Z1(M) ≥ Z1(M̄). Thus, if Z2(M) < Z2(M̄) we have Z(M) = Z1(M)−Z2(M) >

Z1(M̄)− Z2(M̄) = Z(M̄) which completes the proof.

Using Theorem 19, we can reset the starting lower threshold value as Z2(M̄) and the

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 49

lower threshold is not required to increase beyond L∗. This could reduce the search interval

considerably. The double threshold algorithm incorporating this enhancement is called the

improved double threshold algorithm. A formal description of the algorithm is presented in

Algorithm 4.2.

Algorithm 4.2: The Improved Double Threshold Algorithm (IDT)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qef : (e, f) ∈ E × E
Let Opt-Sol be the optimal solution to QBAP and Obj-Val the optimal objective
function value to QBAP
Let M̄ be the optimal solution to QAP1 and U∗ be the optimal objective function value
of that, l be such that zl = min{qef : (e, f) ∈ M̄ × M̄} . We set u be such that (zu ← U∗)
Let L∗ be such that zL∗ is the optimal objective function value of QAP2
Opt-Sol ← M̄
Obj-Val= zu − zl
l← l + 1
while (l ≤ u) and (l ≤ L∗) and (u ≤ p) do

Solve AFC
if AFC is feasible then

Let x∗ be the feasible solution of AFC and M∗ be its corresponding perfect
matching
zr = min{qef : (e, f) ∈M∗ ×M∗}
zt = max{qef : (e, f) ∈M∗ ×M∗}
if zt − zr < Obj-Val then

Obj-Val= zt − zr
Opt-Sol= M∗

end if
l = r + 1

else
u← u+ 1

end if
end while
return Opt-Sol and Opt-Val

However, by using IDT the search interval is smaller than before but we can still add

some conditions to IDT to improve the average performance of this algorithm.

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 50

4.1.2 The Modified Double Threshold Algorithm for Assignment Problem

Let us now discuss how to improve the average performance of the double threshold algo-

rithm and the improved double threshold algorithm. The improvement is achieved using

1) sufficient condition for optimality and

2) a sufficient condition that allows increments of upper and lower threshold values by larger

amounts.

The conditions however does not seem to affect the worst case complexity of the algo-

rithm.

For any feasible solution, let M be the corresponding perfect matching and let F =

{M1,M2, ...,Mp} be the set of all solutions generated by the double threshold algorithm

while completing the sequential search, we assume that M i is generated before M j for i < j.

For 1 ≤ t ≤ p, let rt = max{qef : (e, f) ∈M t ×M t} and st = min{qef : (e, f) ∈M t ×M t}.
Thus,r1 < r2 < ... < rp and s1 < s2 < ... < sp. For k = 1, ..., p choose t(k) such that

rt(k) − st(k) = min{ri − si : 1 ≤ i ≤ k}
Let F k = {M1, ...,Mk}.

M t(p) is the best(least cost) solution for QBAP since rt(p)− st(p) = min{ri− si : 1 ≤ i ≤
p}. Now, let F 0 ⊂ F such that F 0 = {M i : ri − si = rt(p) − st(p)}. Let β be a real number

such that β ≥ max{Mi ∈ F : i ∈ F 0}. we set β = min{q(e,f) : (e, f) ∈ M̂ × M̂} to obtain

the best possible solution.

Theorem 20. For any 1 ≤ k ≤ p if rt(k) − st(k) + β ≤ rk then M t(k) ∈ F 0.

Proof. Suppose M t(k) ∈ F 0 then there is an M i ∈ F 0 and i > k such that ri − si <

rt(k) − st(k) then ri < si + rt(k) − st(k) ≤ β + rt(k) − st(k) ≤ rk. This implies i ≤ k which is a

contradiction.

Theorem 20 provides a termination criterion that could reduce the number of iterations

for the double threshold algorithm.

Theorem 21. If M does not belong to F 0 then there is an M q ∈ F 0 for q > k such that

sq > rk − rt(k) + st(k).

Proof. On contrary, suppose sq ≤ rk−rt(k)+st(k) ≤ rq−rt(k)+st(k) then rq−sq ≥ rt(k)+st(k)

then M t(k) ∈ F 0 which is a contradiction.

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 51

Theorem 21 could be used to update the lower threshold by larger quantity whenever

the condition holds.

Results similar to Theorem 20 and 21 were used by Ahuja [2], Martins[40], Punnen [45]

and Punnen and Nair [49] in solving other combinatorial optimization problems. Incorpo-

rating the conditions presented in Theorems 20 and 21 into the improved double threshold

algorithm, we get the modified double threshold algorithm to solve QBAP. A formal de-

scription of the modified double threshold algorithm is given in Algorithm 4.3.

Algorithm 4.3: The Modified Double Threshold Algorithm (MDT)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qef : (e, f) ∈ E × E
Let Opt-Sol be the optimal solution to QBAP and Obj-Val the optimal objective
function value to QBAP
Let M̄ be the optimal solution to QAP1 and U∗ be the optimal objective function value
of that, l be such that zl = min{qef : (e, f) ∈ M̄ × M̄} . We set u be such that (zu ← U∗)
Let L∗ be such that zL∗ is the optimal objective function value of QAP2
Opt-Sol ← M̄
Obj-Val= zu − zl
l← l + 1
while (l ≤ u) and (l ≤ L∗) and (u ≤ p) do

Solve AFC
if AFC is feasible then

Let x∗ be the feasible solution of AFC and M∗ be its corresponding perfect
matching
zr = min{qef : (e, f) ∈M∗ ×M∗}
zt = max{qef : (e, f) ∈M∗ ×M∗}
if zt − zr < Obj-Val then

Obj-Val= zt − zr
Opt-Sol= M∗

end if
if Obj-Val +L∗ ≤ zr then

return Obj-Val and Opt-Sol
end if
choose smallest q ≥ l such that zq ≥ zu −Obj − V al
l← q

else
u← u+ 1

end if
end while
return Opt-Sol and Opt-Val

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 52

4.1.3 The Iterative bottleneck algorithm

Let us now discuss two additional algorithms to solve QBAP. In both cases, we solve a

sequence of quadratic bottleneck assignment problems (QAP1 or QAP2) instead of AFC

problem. The worst case complexities of these algorithms, in general, are higher than that

of the DT algorithm and its variations, the average performance is expected to be better.

Recall that

QAP1 : Minimize { max
(e,f)∈M×M

q(e,f)}

Subject to
∑
e∈∆(i)

xe = 1 ∀i ∈ V

xe ∈ {0, 1}

QAP2 : Maximize { min
(e,f)∈M×M

q(e,f)}

Subject to
∑
e∈∆(i)

xe = 1 ∀i ∈ V

xe ∈ {0, 1}

QAP1 minimizes Z1(Q,M) while QAP2 maximizes Z2(Q,M).

To develop our first iterative bottleneck assignment algorithm, we consider a generaliza-

tion of QBAP where lower and upper thresholds restriction are imposed on feasible solutions.

Let α and β be real numbers such that α ≤ β. Consider the problem

QBAP(Q,α, β):= Minimize Z1(Q,M)− Z2(Q,M)

Subject to
∑
e∈∆(i)

xe = 1 ∀i ∈ V

Z2(Q,M) ≥ α

Z1(Q,M) ≤ β

xe = 0, 1 ∀i ∈ E

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 53

Consider the cost matrix Q′ defined by

q′ef =

H if qef < α or qef > β

qef otherwise.

where H is a large number.

Theorem 22. Let M0 be an optimal solution to QAP1 with cost matrix Q′ and q be the

index such that zq = Z2(Q,M0).

(i) If Z1(Q,M0) = H then QBAP(Q,α, β) is infeasible.

(ii) If Z1(Q,M0) < H and Z1(Q,M0) = Z2(Q,M0) then M0 is an optimal solution to

QBAP(Q,α, β).

(iii) If conditions (i) and (ii) above are not satisfied, then either M0 is an optimal solution

to QBAP(Q,α, β) or there exists an optimal solution to QBAP(Q,α, β) which is optimal to

QBAP(Q,γ, β) where γ = zq+1.

Proof. The proof of (i) and (ii) are straightforward. Let us now prove (iii).

Let F = {M ∈ F (α, β) : Z2(Q,M) ≤ Z2(Q,M0)}. By definition of F

Z2(Q,M0) ≥ Z2(Q,M) for all M ∈ F. (4.1)

By optimality of M0 to QAP1 with cost matrix Q′ and condition (i) of the theorem is not

satisfied, we have

Z1(Q,M0) ≤ Z1(Q,M) for all M ∈ F. (4.2)

Multiply inequality (4.1) by −1 and adding to inequality (4.2) we have QBAP(Q,M0) ≤
QBAP(Q,M) for all M ∈ F . Thus either M0 is an optimal solution to QBAP(Q,α, β) or

there exists an optimal solution M to QBAP(Q,α, β) satisfying Z2(Q,M) > Z2(Q,M0) and

the result follows.

In view of Theorem 22, we can solve QBAP as a sequence of QAP1 problems. Per iter-

ation, the algorithm maintains an upper threshold β and a lower threshold α and construct

a modified cost matrix Q′ which depends on the values of α and β. Then using an optimal

solution to QAP1 with cost matrix Q′, the lower threshold is updated until infeasibility with

respect to the threshold values is identified or optimality of an intermediate solution is iden-

tified using condition (ii) of Theorem 22. The algorithm compares the solutions generated

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 54

by the QAP1 solver and outputs the overall best solution with respect to the QBAP ob-

jective function. The resulting algorithm is called the type 1 iterative bottleneck assignment

algorithm (IBA1-algorithm) and its formal description is given in Algorithm 4.4.

QAP2 can be reformulated as QAP1 or the algorithms for QAP1 can be modified to

solve QAP2 directly. Consider the cost matrix Q̃ defined by

q̃ef =

−H if qef > β or qef < α

qij otherwise.

Theorem 23. Let M0 be an optimal solution to QAP2 with cost matrix Q̃ and r be the

index such that zr = Z1(Q,M0).

(i) If Z2(Q̃,M0) = −H then QBAP(Q,α, β) is infeasible.

(ii) If Z2(Q̃,M0) > −H and Z1(Q,M0) = Z2(Q,M0) then M0 is an optimal solution to

QBAP(Q,α, β).

(iii) If conditions (i) and (ii) are not satisfied, then either M0 is an optimal solution to

QBAP(Q,α, β) or there exists an optimal solution to QBAP(Q,α, β) which is also optimal

to QBAP(Q,α, γ) where γ = zr+1.

The proof of this theorem can be constructed by appropriate modifications in the proof of

Theorem 22 and hence is omitted. In view of Theorem 23, we can solve QBAP as a sequence

of QAP2 problems. Per iteration, the algorithm maintains a lower threshold α and an upper

threshold β and construct a modified cost matrix Q̃. Using an optimal solution to QAP2 with

cost matrix Q̃, the upper threshold is updated and the process is continued until infeasibility

with respect to the threshold values is identified. The algorithm compares the solutions

generated by the QKP2 solver in each iteration and outputs the overall best solution. The

resulting algorithm is called the type 2 iterative bottleneck assignment algorithm (IBA2-

algorithm) and its formal description is given in Algorithm 4.5.

Algorithms 4.4 and 4.5 can be viewed as extension of an algorithm by Duin and Volgenant

[17] for a generalization of the LBOP.

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 55

Algorithm 4.4: The type1 Iterative Bottleneck Assignment Algorithm(IBA1)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qef : (e, f) ∈ E × E
Let Q be the cost matrix , Opt Sol be the optimal solution of QBAP and Obj V al be
the objective function value of QBAP in each iteration
Q′ ← Q ; Obj V al←∞ ; Opt Sol← ∅, H ← 1 + zp; Z0 = zp;
while (Obj V al 6= 0) and Z0 6= M do

Solve QAP2 with cost matrix Q′. Let M be the resulting solution.
Z0 ← max{q′ef : (e, f) ∈M ×M}
if Z0 < H then
Z1 ← max{qef : (e, f) ∈M ×M}
Z2 ← min{qef : (e, f) ∈M ×M}
if Z1 − Z2 < Obj − V al then
Opt Sol←M
Obj V al← Z1 − Z2

end if
Modify costs:

q′ef =

{
qef if Z2 < qef < zp
H Otherwise

end if
end while
Return Opt Sol and Obj Val

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 56

Algorithm 4.5: The type2 Iterative Bottleneck Assignment Algorithm(IBA2)

Let z1 < z2 < ... < zp be an ascending arrangement of distinct values of
qef : (e, f) ∈ E × E
Let Q be the cost matrix , Opt Sol be the optimal solution of QBAP and Obj V al be
the objective function value of QBAP in each iteration
Q̃← Q ; Obj V al←∞ ; Opt Sol← ∅, H ← 1 + zp; Z0 = z1;
while (Obj V al 6= 0) and Z0 6= −H do

Solve QAP2 with cost matrix Q̃. Let M be the resulting solution.
Z0 ← min{q̃ef : (e, f) ∈M ×M}
if Z0 > −H then
Z1 ← max{qef : (e, f) ∈M ×M}
Z2 ← min{qe,f : (e, f) ∈M ×M}
if Z1 − Z2 < Obj − V al then
Opt Sol←M
Obj V al← Z1 − Z2

end if
Modify costs:

q̃ef =

{
qij if z1 < qef < Z1

−H Otherwise
end if

end while
Return Opt Sol and Obj Val

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 57

4.2 Polynomially solvable cases for Quadratic Balanced As-

signment Problem

Let us now consider some special cases of QBAP that can be solved in polynomial time.

Case 1: Sum Case

We first consider the decomposable cost matrix where qef = ae + bf for given ae ≥ 0 and

bf ≥ 0 where e, f ∈ E. Note that

Z(Q,M) = max{qef : (e, f) ∈M ×M} −min{qef : (e, f) ∈M ×M}

= max{ae + bf : (e, f) ∈M ×M} −min{ae + bf : (e, f) ∈M ×M}

= max{ae : e ∈M}+ max{be : e ∈M} −min{ae : e ∈M} −min{be : e ∈M}
(4.3)

= max{ae : e ∈M}+ max{−ae : e ∈<}+ max{be : e ∈M} −min{be : e ∈M}
(4.4)

Recall from Chapter 2 that if wi be a prescribed weight of element i ∈ E and g : F → <.

Duin and Volgenant [17] showed that combinatorial optimization problems of the type

COP(g): Minimize max{wi : i ∈ S}+ g(S)

Subject to

S ∈ F.

can be solved in O(mζ(m)) where ζ(m) is the complexity of minimizing g(S) over F .

Note that Here, by considering the special case of assignment problem we have Assignment

COP (ACOP):

ACOP (g) Minimize max{we : e ∈M}+ g(M)

Subject to
∑
e∈∆(i)

xe = 1 ∀i ∈ V

xe ∈ {0, 1} ∀e ∈ E

Let

Z(Q,M) = max{ae : e ∈M}+ g(M) (4.5)

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 58

where g(M) = max{−ae : e ∈M}+g1(M) and g1(M) = max{ae : e ∈M}−min{be : e ∈
M}. But minimizing g1(M) over F is precisely the Linear Balanced Assignment Problem

(LBAP) . Thus recursively applying the results of Duin and Volgenant [17], ACOP with a

decomposable cost matrix can be solved in O(m2η(m)) time where η(m) is the complexity

of an LBAP.

When ae = be, then Z(Q,M) = 2[max{ae : e ∈ M} − min{ae : e ∈ M}]. Thus, the

problem reduces to LBAP.

Case 2: Product Case

In this case, we assume qef = ae.bf where ae ≥ 0 and bf ≥ 0 for any e ∈ M and for any

f ∈M . Then, we have:

Z(Q,M) = max{qef : (e, f) ∈M ×M} −min{qef : (e, f) ∈M ×M}

= max{ae.bf : (e, f) ∈M ×M} −min{ae.bf : (e, f) ∈M ×M}

= max{ae : e ∈M}.max{be : e ∈M} −min{ae : e ∈M}.min{be : e ∈M} (4.6)

Let g(M) = maxe∈M ae.maxe∈M be, then by simple modifications in max+sum algorithm

in [17] we can solve g(M) and thus QBAP in polynomial time.

4.3 Computational Results

All the algorithms in this chapter were coded in C++, solved by calling Cplex 12.1.0 and

executed on the same system as Chapter 3.

There are no benchmark problems for QBAP. Then, we generated random instances for

QBAP. For the case of complete bipartite graph there are two parameters for generating

the instances, N and PCT where N is the number of vertices of the complete graph and

PCT is the percentage of zero elements of cost matrix. PCT is 0,25 and 50 for all instances

and N=5,6,7,10,12 since Cplex is unable to solve AFC for instances with N > 12. Table 4.1

shows the results for this case.

In the sparse graph case, each instance is including at least a random perfect matching

and some additional random edges to produce the sparse graph on which we find the optimal

solution to QBAP. There are three parameters for generating these instances. N, M and

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 59

PCT, where N is the number of vertices, M = logN is the number of additional random

edges and PCT is the percentage of zero elements in the cost matrix. There are three tables

indicating the results of all the algorithms in sparse graph case for different ranges of qij .

PCT is set to 0,25 and 50 for all instances and N=30,40,50,60,70,90,100,200.

The optimal value of all the algorithms and CPU time for each of them is reported in

all of the following tables.

Table 4.1: Results on complete graph
Instance Optimal Value Cplex DT IDT MDT IBA2

5-1 111 0.82 0.52 0.65 0.66 0.71
5-2 140 0.53 0.43 0.41 0.47 0.41
5-3 144 0.47 0.33 0.34 0.32 0.35
7-1 159 11.4 1.52 1.60 1.55 1.90
7-2 155 8.16 1.33 1.43 1.24 1.21
7-3 145 1.35 1.35 1.26 1.28 1.26
10-1 165 - 33.15 31.54 29.30 26.75
10-2 167 - 16.50 16.34 13.39 14.23
10-3 142 - 11.70 11.78 10.97 9.28
12-1 168 - 192.44 176.78 165.90 132.67
12-2 150 - 145.21 123.56 124.00 109.76
12-3 147 - 83.65 84.34 83.22 67.50

In summary, by comparing table 4.1 with table 4.2 , 4.3 and 4.4 it is indicated that we

can solve noticeably larger instances of QBAP on sparse graph rather than complete graph.

Note that for N = 12, Q matrix contains 124 = 20736 elements in complete graph case.

Tables 4.2, 4.3 and 4.4 show the results for three different random generated data sets with

ranges of 300,400 and 500 for qij . Here, Cplex could solve instances up to size N = 40

only, and other algorithms were tested on instances up to size N = 200. The computational

results in tables 4.2, 4.3 and 4.4 points out that DT performs as the slowest algorithm among

all of the algorithms while IDT performs gradually faster than DT. MDT is considerably

faster than DT and IDT whereas IBA2 algorithm outperforms other algorithms provided in

this chapter.

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 60

Table 4.2: Results on sparse graph for q ≤ 300
Instance Optimal Value Cplex DT IDT MDT IBA2

30-1 291 1.8 0.55 0.03 0.03 0.00
30-2 286 2.38 0.49 0.01 0.01 0.02
30-3 294 0.71 0.37 0.01 0.01 0.04
40-1 292 10.35 1.19 0.03 0.03 0.01
40-2 296 3.62 0.09 0.01 0.02 0.04
40-3 290 3.28 0.66 0.01 0.01 0.06
50-1 294 254.37 2.28 0.07 0.08 0.04
50-2 293 1.63 1.63 0.05 0.05 0.08
50-3 293 17.98 1.17 0.12 0.12 0.08
60-1 293 - 3.84 0.17 0.06 0.02
60-2 295 - 2.81 0.16 0.15 0.12
60-3 291 - 1.87 0.21 0.15 0.15
70-1 294 - 5.67 0.18 0.17 0.10
70-2 295 - 4.39 0.17 0.15 0.12
70-3 291 - 3.2 0.20 0.19 0.06
80-1 295 - 7.73 0.19 0.19 0.16
80-2 295 - 5.94 0.11 0.09 0.06
80-3 293 - 5.00 1.09 1.07 0.70
90-1 295 - 10.22 0.32 0.32 0.14
90-2 297 - 7.63 0.16 0.15 0.31
90-3 294 - 5.28 0.20 0.51 0.18
100-1 296 - 14.05 0.50 0.51 0.21
100-2 296 - 10.94 1.05 1.03 1.00
100-3 295 - 7.25 0.86 0.68 0.65
200-1 297 - 4026.50 3413.30 1336.87 464.62
200-2 298 - 102.58 54.70 53.55 33.61
200-3 297 - 347.71 291.77 290.52 290.98

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 61

Table 4.3: Results on sparse graph for q ≤ 400
Instance Optimal Value Cplex DT IDT MDT IBA2

30-1 382 12.88 0.91 0.08 0.07 0.01
30-2 389 1.81 0.67 0.02 0.01 0.01
30-3 380 1.71 0.64 0.02 0.02 0.03
40-1 386 41.31 1.71 0.09 0.07 0.02
40-2 394 7.86 1.41 0.04 0.04 0.06
40-3 390 4.60 0.91 0.02 0.01 0.07
50-1 391 - 3.21 0.11 0.08 0.04
50-2 387 - 2.53 0.04 0.04 0.09
50-3 389 - 1.76 0.05 0.05 0.07
60-1 391 - 5.32 0.14 0.12 0.06
60-2 390 - 4.06 0.08 0.08 0.13
60-3 385 - 2.89 0.07 0.06 0.11
70-1 394 - 8.42 0.24 0.23 0.10
70-2 393 - 6.37 0.14 0.14 0.12
70-3 387 - 4.42 0.08 0.08 0.03
80-1 394 - 12.65 1.67 1.61 0.63
80-2 393 - 9.36 0.67 0.35 0.34
80-3 389 - 6.55 0.98 0.59 0.56
90-1 394 - 18.43 3.33 4.12 0.14
90-2 393 - 11.58 0.35 0.34 0.34
90-3 394 - 7.96 0.29 0.27 0.42
100-1 394 - 20.16 1.36 1.08 0.98
100-2 394 - 17.24 1.05 1.03 0.20
100-3 398 - 9.31 0.10 0.10 0.46
200-1 397 - 1798.04 353.54 352.56 0.96
200-2 397 - 822.56 778.70 780.55 341.45
200-3 395 - 842.18 391.77 390.52 290.98

CHAPTER 4. QUADRATIC BALANCED ASSIGNMENT PROBLEM(QBAP) 62

Table 4.4: Results on sparse graph for q ≤ 500
Instance Optimal Value Cplex DT IDT MDT IBA2

30-1 469 4.62 1.03 0.02 0.02 0.01
30-2 472 0.36 0.79 0.02 0.01 0.02
30-3 464 3.37 0.95 0.04 0.03 0.03
40-1 488 9.43 1.93 0.06 0.06 0.02
40-2 486 10.28 1.55 0.04 0.02 0.05
40-3 474 5.04 1.14 0.02 0.02 0.07
50-1 489 - 3.75 0.12 0.12 0.04
50-2 488 - 3.08 0.05 0.05 0.09
50-3 484 - 2.24 0.06 0.06 0.13
60-1 492 - 7.29 0.35 0.25 0.22
60-2 489 - 5.94 0.17 0.18 0.17
60-3 483 - 4.01 0.18 0.16 0.15
70-1 492 - 11.12 0.51 0.52 0.25
70-2 494 - 8.15 0.39 0.33 0.21
70-3 499 - 4.43 0.19 0.10 0.14
80-1 491 - 13.93 1.39 1.21 0.23
80-2 494 - 10.99 0.62 0.29 0.20
80-3 489 - 7.04 0.23 0.23 0.19
90-1 492 - 19.80 1.83 1.74 0.28
90-2 494 - 14.36 0.79 0.29 0.39
90-3 492 - 9.76 0.21 0.22 0.29
100-1 494 - 45.39 1.76 1.72 0.39
100-2 493 - 34.52 0.94 0.94 0.54
100-3 490 - 19.37 0.55 0.53 0.48
200-1 496 - 16976.80 17800.10 6982.57 1924.36
200-2 497 - 1137.01 941.00 301.55 230.45
200-3 494 - 1798.19 1357.50 1190.23 1222.34

Chapter 5

Conclusion

In this thesis, we introduced a new class of combinatorial optimization problems called

”Quadratic Balanced Optimization Problems”. The problem is shown to be NP-hard even

if the family of feasible solution is restricted only by cardinality and the cost elements are

just 0/1 . Several general purpose algorithms are proposed. These algorithms also can be

used as an efficient heuristic. This is illustrated using the special cases of knapsack problem

as perfect matching problem in bipartite graphs. Computational results are also provided.

We also identify several polynomially solvable special cases. Improving the complexity of

these algorithms and identify new polynomially solvable cases are topics for future research.

63

Bibliography

[1] V. Aggarwal, V.G. Tikekar, and L.F. Fern Hsu. Bottleneck assignment problems under
categorization. Computers and Operations Research, 13(1):11–26, 1986.

[2] R.K. Ahuja. Minimum cost to reliability ratio problem. Computers and Operations
Research, 15(1):83–89, 1988.

[3] R.K. Ahuja. The balanced linear programming problem. European Journal of Opera-
tional Research, 101(1):29–38, 1997.

[4] H. Albrecher. A note on the asymptotic behaviour of bottleneck problems. Operations
Research Letters, 33(2):183–186, 2005.

[5] R.D. Armstrong and Z.Y. Jin. Solving linear bottleneck assignment problems via strong
spanning trees. Operations Research Letters, 12(3):179–180, 1992.

[6] R.E. Burkard, M. Dellamico, and S. Martello. Assignment Problems. Society for In-
dustrial and Applied Mathematics, Philadelphia, 2009.

[7] R.E. Burkard and U. Fincke. On random quadratic bottleneck assignment problems.
Mathematical Programming, 23(2):227–232, 1982.

[8] R.E. Burkard and R. Rissner. polynomially solvable special cases of the quadratic
bottleneck assignment problem. Journal of Combinatorial Optimization, 20(1):1–12,
2010.

[9] R.E. Burkard and W. Sandholzer. Efficiently solvable special cases of bottleneck trav-
eling salesman problems. Discrete Applied Mathematics, 32(1):61–76, 1991.

[10] M. Camerini, F. Maffioli, S. Martello, and P. Toth. Most and least uniform spanning
trees. Discrete Applied Mathematics, 15(2-3):181–187, 1986.

[11] P.M. Camerini. The min-max spanning tree problem and some extensions. Information
Processing Letters, 7(1):10–14, 1978.

[12] P. Cappanera and M.G. Scutella. Balanced paths in acyclic networks: Tractable cases
and related approaches. Networks, 45(2):104–111, 2005.

64

BIBLIOGRAPHY 65

[13] G. Carpaneto, S. Martello, and Toth. P. An algorithm for the bottleneck traveling
salesman problem. Operations Research, 32(2):380–389, 1984.

[14] Y. Dai, H. Imai, K. Iwano, N. Katoh, K. Ohtsuka, and N. Yoshimura. A new unifying
heuristic algorithm for the undirected minimum cut problem using minimum range cut
algorithms. Discrete Applied Mathematics, 65(1):167–190, 1996.

[15] A. Darmann, U. Pferschy, and J. Schauer. Minimal spanning trees with conflict graphs,
2009. http://www.optimization-online.org/DB_FILE/2009/01/2188.pdf/.

[16] U. Derigs and U. Zimmermann. An augmenting path method for solving linear bottle-
neck assignment problems. Computing, 19:285–295, 1978.

[17] C.W. Duin and A. Volgenant. Minimum deviation and balanced optimization: A unified
approach. Operations Research Letters, 10(1):43–48, 1991.

[18] J. Edmonds and D.R. Fulkerson. Bottleneck extrema. Journal of Combinatorial Theory,
8(3):299–306, 1970.

[19] D. Eppstein. Minimum range balanced cuts via dynamic subset sums. Journal of
Algorithms, 23(2):375–385, 1997.

[20] Z. Galil and B. Schieber. On finding most uniform spanning trees. Discrete Applied
Mathematics, 20(2):173–175, 1988.

[21] H.N. Garbow and R.E. Tarjan. Algorithms for two bottleneck optimization problems.
Journal of Algorithms, 9(3):411–417, 1988.

[22] R.S. Garfinkel and K.C. Gilbert. The bottleneck traveling salesman problem: Algo-
rithms and probabilistic analysis. Journal of the Association for Computing Machinery,
25(3):435–448, 1978.

[23] R.S. Garfinkel and M.R. Rao. The bottleneck transportation problem. Naval Research
Logistic Quarterly, 18:465–472, 1971.

[24] S. Geetha and K.P.K. Nair. On stochastic spanning tree problem. Networks, 23(8):675–
679, 1993.

[25] P.C Gilmore and R.E. Gomory. Sequencing a one state-variable machine: A solvable
case of the traveling salesman problem. Operations Research, 12(5):655–679, 1964.

[26] S.K. Gupta and A.P. Punnen. Minimum deviation problems. Operations Research
Letters, 7(4):201–204, 1988.

[27] S.K. Gupta and A.P. Punnen. Minmax linear knapsack problem with group variables
and gub constraints. Optimization, 28(1):85–94, 1993.

BIBLIOGRAPHY 66

[28] H. Ishii and T. Nishida. Stochastic bottleneck spanning tree problem. Networks,
13(3):443–449, 1983.

[29] H. Ishii and S. Shiode. Chance-constrained bottleneck spanning tree problem. Annals
of Operations Research, 56(1):177–187, 1995.

[30] M.Y. Kao and M. Sanghi. An approximation algorithm for a bottleneck traveling sales-
man problem, volume 3998 of Lecture notes in computer science. 2006.

[31] H. Katagiri, M. Sakawa, and H. Ishi. Fuzzy random bottleneck spanning tree problems
using possibility and necessity measures. European Journal of Operational Research,
152(1):88–95, 2004.

[32] N. Katoh. An epsilon-approximation scheme for combinatorial problems with variance
criterion. Discrete Applied Mathematics, 35(2):131–141, 1992.

[33] N. Katoh and K. Iwano. Efficient algorithms for minimum range cut problems. Net-
works, 24(7), 1994.

[34] H. Kellerer and G. Wirsching. Bottleneck quadratic assignment problems and the
bandwidth problem. Asia-Pacific Journal of Operations Research, 15:169–177, 1998.

[35] J. LaRusic and A.P. Punnen. The balanced traveling salesman problem. Computers
and Operations Research, 38(5):868–875, 2011.

[36] E.L. Lawler. The quadratic assignment problem. Management Science, 9:586–599,
1963.

[37] E.L Lawler, Rinehart Holt, and Winston. Networks and Matroids. Dover, 1976.

[38] Z. Lu, F. Glover, and J. Hao. A hybrid metaheuristic approach to solving the UBQP
problem. European Journal of Operational Research, 207(3):1254–1262, 2010.

[39] S. Martello, W.R. Pulleyblank, P. Toth, and D. de Werra. Balanced optimization
problems. Operations Research letters, 3(5):275–278, 1984.

[40] E.Q.V. Martins. An algorithm to determine a path with minimal cost/capacity ratio.
Discrete Applied Mathematics, 8(2):189–194, 1984.

[41] T. Nemoto. An efficient algorithm for the minimum range ideal problem. Journal of
the Operations Research Society of Japan, 42(1):88–97, 1999.

[42] R.G. Parker and R.L. Radring. Guaranteed performance heuristics for the bottleneck
traveling salesman problem. Operations Research Letters, 2(6):269–272, 1984.

[43] U. Pferschy. The random linear bottleneck assignment problem. Rairo-Recherche
Ooerationnelle-Operations Research, 30(2):127–142, 1996.

BIBLIOGRAPHY 67

[44] J.M. Phillips, A.P. Punnen, and S.N. Kabadi. A linear time algorithm for the bot-
tleneck traveling salesman problem on a halin graph. Information Processing Letters,
67(2):105–110, 1998.

[45] A.P. Punnen. On combined minmax-minsum optimization. Computers and Operations
Research, 21(6):707–716, 1994.

[46] A.P. Punnen. A fast algorithm for a class of bottleneck problems. Computing,
56(4):397–401, 1996.

[47] A.P. Punnen and Y.P. Aneja. Lexicographic balanced optimization problems. Opera-
tions Research Letters, 32(1):27–30, 2004.

[48] A.P. Punnen and K.P.K Nair. Improved complexity bound for the maximum cardinality
bottleneck bipartite matching problem. Discrete Applied Mathmatics, 55(1):91–93,
1994.

[49] A.P. Punnen and K.P.K Nair. An improved algorithm for the constrained bottleneck
spanning tree problem. INFORMS Journal on Computing, 8(1):41–44, 1996.

[50] A.P. Punnen and R. Zhang. Quadratic bottleneck problems. Naval Research Logistics,
58(2):153–164, 2011.

[51] R. Ramakrishnan, P. Sharma, and A.P. Punnen. An efficient heuristic algorithm for
the bottleneck traveling salesman problem. OPSEARCH, 46(3):275–288, 2009.

[52] A. Ravindran and V. Ramaswami. On the bottleneck assignment problem. Journal of
optimization theory and applications, 21(4):451–458, 1977.

[53] A. Shioura and M. Shigeno. The tree center problems and the relationship with the
bottleneck knapsack problems. Networks, 29(2):107–110, 1997.

[54] M.Z. Spivey. Asymptotic moments of the bottleneck assignment problem. Mathematics
of Operations Research, 36(2):205–226, 2011.

[55] L. Steinberg. The backboard wiring problem: A placement algorithm. SIAM Review,
3:37–50, 1961.

[56] S. Tigan, E. Iacob, and I.M. Stancu-Minasian. Monotonic balanced optimization prob-
lems. In Annals of the Tiberiu Popoviciu Itinerant Seminar of Functional Equations,
Approximation and Convexity, volume 3, pages 183–197, 2005.

[57] Pferschy. U. Solution methods and computational investigations for the linear bottle-
neck assignment problem. Computing, 59(3):237–258, 1997.

[58] G.L. Vairaktarakis. On gilmore-gomory’s open question for the bottleneck tsp. Opera-
tions Research Letters, 31(6):483–491, 2003.

BIBLIOGRAPHY 68

[59] U. Yechiali. Stochastic bottleneck assignment problem. Management Scince,
14(11):732–734, 1968.

[60] Z. Zeitlin. Minimization of maximum absolute deviation in integers. Discrete Applied
Mathematics, 3(3), 1981.

[61] R. Zhang, S.N. Kabadi, and A.P. Punnen. The minimum spanning tree problem with
conflict constraints and its variations. Discrete Optimization, 8(2):191–205, 2011.

[62] R. Zhang and A.P. Punnen. Quadratic bottleneck knapsack problem. Forthcomming
in Journal of Heuristics, 2011. DOI: 10.1007/s10732-011-9175-1.

