
DEDEKIND NUMBERS

AND RELATED SEQUENCES

by

Timothy James Yusun

B.Sc. (Hons.), Ateneo de Manila University, 2008

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

Department of Mathematics

Faculty of Science

c© Timothy James Yusun 2011

SIMON FRASER UNIVERSITY

Fall 2011

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.

APPROVAL

Name: Timothy James Yusun

Degree: Master of Science

Title of Thesis: Dedekind Numbers and Related Sequences

Examining Committee: Dr. Abraham Punnen, Chair

Professor

Dr. Tamon Stephen, Senior Supervisor

Assistant Professor

Dr. Zhaosong Lu, Supervisor

Assistant Professor

Dr. Michael Monagan, External Examiner

Professor, Department of Mathematics

Simon Fraser University

Date Approved: December 6, 2011

ii

Partial Copyright Licence

Abstract

This thesis considers Dedekind numbers, where the nth Dedekind number D(n) is defined

as the number of monotone Boolean functions (MBFs) on n variables, and R(n), which

counts non-equivalent MBFs. The values of D(n) and R(n) are known for up to n = 8 and

n = 6, respectively; in this thesis we propose a strategy to compute R(7) by considering

profile vectors of monotone Boolean functions. The profile of an MBF is a vector that

encodes the number of minimal terms it has with 1,2, . . . ,n elements. The computation is

accomplished by first generating all profile vectors of 7-variable MBFs, and then counting

the functions that satisfy each one by building up from scratch and taking disjunctions

one by one. As a consequence of this result, we will be able to extend some sequences on

the Online Encyclopedia of Integer Sequences, notably R(n) up to n = 7, using only modest

computational resources.

iv

Acknowledgments

I would like to extend my gratitude to the people who have made this thesis possible:

To my supervisor Dr. Tamon Stephen, for constantly pushing me to better myself. It is with

no exaggeration that I say this thesis could not have been written and completed without

his guidance and for this I am enormously grateful.

To Dr. Michael Monagan for all the valuable insights and comments on my work.

To all my classmates at SFU for being in the same post-graduate boat; things are much

easier to do when others are doing it with you: Annie, Brad, Farzana, Krishna, Mehrnoush,

Nui, Sara, Sherry, Sylvia, Tanmay, and Yong.

To Wayne Heaslip at Health and Counselling for listening and helping me clear my mind.

To everyone at Gourmet Cup in Lansdowne Mall, for understanding when I needed to

disappear for a few weeks, especially my sister Jam who is the best at what she does.

To my friends back in the Philippines and everywhere else, for being my inspirations: Chris

L., Chris N., Enrique, Ian, Justin, Karol, Manny, Mathew and Nica, Oliver, Tim, and most

especially Garrick, wherever you are.

To my family who will always be there for me, even if I don’t answer my phone.

And finally, to Poch, for sticking it out with me while I was going crazy. You light up my

life; tayong dalawa.

v

Contents

Approval ii

Abstract iv

Acknowledgments v

Contents vi

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Setting Up . 3

1.2 Dedekind and Some History . 6

1.3 Dedekind Numbers in Other Forms . 8

1.3.1 Sperner Theory and Lattices . 8

1.3.2 Hypergraphs and Combinatorial Optimization 11

1.3.3 Other Applications . 12

2 A Survey of Algorithms Counting MBFs 13

2.1 Data Structures and Basic Operations . 13

2.1.1 Representation of MBFs . 13

2.1.2 List Data Structures . 15

vi

2.2 Counting D(n) . 17

2.2.1 Generating D(n) from D(n−1) . 17

2.2.2 Enumerating D(n) from D(n−2) . 19

2.2.3 Enumerating D(n) from D(n−2) and R(n−2) 23

2.2.4 Generating D(n) via Iterative Disjunctions of Minimal Terms 25

2.3 Counting R(n) . 27

3 Profile Generation and Counting R(7) 29

3.1 Profiles of Monotone Boolean Functions . 29

3.2 Profile Generation . 31

3.3 Using Profiles to Generate Functions . 36

4 Conclusion and Future Work 41

Bibliography 42

Appendix A R(7) Profile Values 45

A.1 Profiles (0,a2,0,0,0,0,0) and (0,0,a3,0,0,0,0) 45

A.2 Two-level profiles . 46

Appendix B Values of D(6) and R(6) for each Profile 52

vii

List of Tables

1.1 Known Values of D(n), A000372 . 4

1.2 Korshunov’s Asymptotics . 4

1.3 Known Values of R(n), A003182 . 6

1.4 Antichains on the power sets of {1,2} and {1,2,3}, from [29] 8

2.1 Truth table for the function f (x1,x2,x3) = x1∨ x2x3 13

2.2 Truth table for f ∨g . 21

2.3 D(2) classified by number of minimal terms 26

2.4 Computing a new truth table order under a permutation of the variables . . . 27

3.1 Number of profiles for each n, from n = 0 to n = 9. 36

3.2 Partial list of values of Rk(n) . 39

3.3 Number of nonequivalent five-variable MBFs by profile. 40

A.1 Values and times for second-level and third-level profile generation. 46

A.2 Middle-level profiles with a3 > 0,a4 = 1,2,3. 47

A.3 Partial results for middle-level profiles with a3 > 0,a4 = 4,5, . . . ,9. 48

A.4 Two-level profiles where a2 > 0 and a3 = 1,2, . . . ,12. 49

A.5 Two-level profiles where a2 > 0 and a3 = 13,14, . . . ,30. 50

A.6 Two-level profiles where a2,a4 > 0. 51

B.1 D(6) and R(6) by profile. 53

B.2 D(6) and R(6) by profile (continued). 54

viii

B.3 D(6) and R(6) by profile (continued). 55

ix

List of Figures

2.1 Illustration for Example 13: Two representations of an MBF in D(4) 21

x

Chapter 1

Introduction

The hostility towards lattice theory began when Dedekind published the

two fundamental papers that brought the theory to life well over one

hundred years ago. Kronecker in one of his letters accused Dedekind of

“losing his mind in abstractions,” or something to that effect.

For some years I did not come back to lattice theory. In 1963, when I

taught my first course in combinatorics, I was amazed to find that lattice

theory fit combinatorics like a shoe.

Gian-Carlo Rota, The Many Lives of Lattice Theory

Notices of the AMS, Vol. 44, No. 11, 1997

The end of the 19th century saw the two papers written by German mathematician

Dedekind, which are considered as the cornerstones on which the theory of lattices was

founded: the Über Zerlegungen von Zahlen durch ihre größten gemeinsamen Teiler and the

Über die von drei Moduln erzeugte Dualgruppe. The subject was left dormant for a few

decades, until in the 1930-1940’s when Birkhoff published a series of papers on Universal

Algebra, rediscovering Dedekind’s work, and eventually writing his famous Lattice Theory

treatise. In later years lattices have proven to be versatile in its translatability to varying

fields of mathematics both pure and applied. They can be found in digital image filtering

[26], universal algebra [3], formal concept analysis [14], and even counterterrorism [11].

This thesis is not about lattice theory per se, but rather about a number of curiosities

1

CHAPTER 1. INTRODUCTION 2

surrounding the Dedekind numbers and some related sequences, all of which have respective

formulations in the language of distributive lattices, but which are more commonly stated

using set theory, boolean logic, and combinatorial optimization. The Dedekind numbers,

as we will prove in a moment, describe the number of monotone Boolean functions on n

variables, the number of labeled Sperner hypergraphs on n vertices, and the number of

antichains in the partially-ordered set 2[n]. Only its values up to n = 8 are currently known.

Furthermore, we will be looking at the set of nonequivalent monotone Boolean func-

tions, where equivalent monotone Boolean functions can be obtained from one another via

a renaming of variables. This forms an equivalence class partition of all such functions.

Counting how many of these classes exist for a number n is an interesting question as well,

and this is known only up to n = 6. We deal with this towards the end of Chapter 2 and in

Chapter 3.

Monotone Boolean functions can also be classified using their minimal terms, that is,

those clauses that evaluate to 1, but whose subclauses all evaluate to 0. There are a few

known equations that will generate the number of functions with k terms, but their descrip-

tion becomes impractical for k > 10; see Chapter 1.

In Chapter 2 we discuss known algorithms that have been successfully used to count these

numbers. We are also in the process of computing the 7th Dedekind number for nonequiva-

lent monotone Boolean functions, using the techniques in Chapter 3. Our approach is novel

in that we consider classifying MBFs according to their profile vectors, where the profile of a

function is a vector that gives the number of minimal terms it has with 1,2,3, . . . ,n elements.

Our strategy is to generate all the possible profile vectors of MBFs on 7 variables, and then

count each one separately in succession, building up from scratch. As a result of this, we

are able to introduce new sequences to the Online Encyclopedia of Integer Sequences, that

count the number of nonequivalent n-variable monotone Boolean functions with k minimal

terms, for up to n = 7 [27].

CHAPTER 1. INTRODUCTION 3

1.1 Setting Up

A boolean function on n variables (BF) is a function f : {0,1}n→{0,1}, where the values 0

and 1 are often denoted by FALSE and TRUE, respectively. A monotone boolean function

(MBF) additionally satisfies the condition x≤ y⇒ f (x)≤ f (y), for any x,y ∈ {0,1}n. We say

that x ≤ y if xi ≤ yi for all i = 1,2, . . . ,n. As an example, the conjunction f (x1,x2) = x1∧ x2

is monotone, taking the value 1 if (x1,x2) = (1,1) and 0 otherwise. On the other hand, the

exclusive-or function f (x1,x2) = x1⊕ x2, which is true if and only if exactly one of x1 and

x2 is true, is not monotone, since f (0,1) = 1 and f (1,1) = 0. Indeed, a BF is monotone

if and only if it can be written as a combination of conjunctions and disjunctions only

(while the exclusive-or function cannot be written without a negation, for instance x1⊕x2 =

(x1∨ x2)∧ (x1∨ x2) is one representation).

The set {0,1}n is just the n-dimensional hypercube, denoted by Bn, while we define Bn
k

to be the collection of vectors in Bn which have exactly k ones. We say that the sets in

Bn
k are in the k-th level, or are of rank k. There are

(n
k

)
such sets/vectors. Another way

of representing Bn is to refer to each vector by the positions in which they have a 1. So

(1,1,0,0,1) will be 125, (1,0,0,1,0,1) is 146, etc.

Since each input state in Bn has two possible output states, there are a total of 22n

boolean functions on n variables. On the other hand, no exact closed form is known for the

number of monotone boolean functions on n variables. This number is usually denoted by

D(n), which is also called the nth Dedekind number. Finding D(n) for any n is known as

Dedekind’s Problem. The first few values are given in Table 1.1, taken from [27].

Currently, only values of D(n) up to n = 8 are known. Kisielewicz gives in [18] a logical

summation formula for D(n), however it does not offer any added value as performing the

computation using his summation has the same complexity as simply brute force enumera-

tion of D(n). (See [21], e.g.)

There are some asymptotic results concerning the behavior of D(n), one of the earliest

of which was a result of Kleitman in 1969, that log2 D(n) ∼
(n
bn/2c

)
[20]. So far, the most

accurate one is given by Korshunov in [21], given in Table 1.1.

CHAPTER 1. INTRODUCTION 4

n D(n) Source

0 2

Dedekind, 1897
1 3
2 6
3 20
4 168

5 7 581 Church, 1940 [5]

6 7 828 354 Ward, 1946 [28]

7 2 414 682 040 998
Church, 1965 [6]

(verified by Berman and Kohler, 1976 [2])

8 56 130 437 228 687 557 907 788 Wiedemann, 1991 [30]

Table 1.1: Known Values of D(n), A000372

D(n)∼ 2(n
n/2) · exp

[(n
n
2−1

)(
2−n/2 + n22−n−5−n2−n−4

)]
, for even n

D(n)∼ 2(n
(n−1)/2)+1 · exp

[(n
n−3

2

)(
2(−n−3)/2−n22−n−5−n2−n−3

)
+
(n

n−1
2

)(
2(−n−1)/2−n22−n−4

)]
, for odd n

Table 1.2: Korshunov’s Asymptotics

Define a minimal term of an MBF f to be an input x ∈ {0,1}n such that f (x) = 1

and f (y) = 0 if y < x. The minimal terms of a monotone Boolean function represent the

“smallest” sets where the function equals one – any input smaller than x evaluates to zero,

and everything above evaluates to one by virtue of monotonicity. For example, the function

f (x1,x2,x3) = x1∨x2x3 evaluates to one at (1,0,0) and (0,1,1), as well as at all vectors larger

than (1,0,0) and (0,1,1), and evaluates to 0 at all other vectors. Indeed, each MBF can

be written as a disjunction of clauses, each representing one of its minimal terms. The

MBF with minimal terms (0,0,1,0), (1,1,0,0), and (1,0,0,1), as another example, is just

f (x1,x2,x3,x4) = x3∨ x1x2∨ x1x4. For brevity we just write xi∧ x j as xix j.

CHAPTER 1. INTRODUCTION 5

MBFs can be classified according to the number of minimal terms they have. Call Dk(n)

the number of monotone Boolean functions on n variables with k minimal terms. Kilibarda

et al. have derived closed formulas to compute Dk(n) for fixed k = 4,5, . . . ,10, and these

sequences are in the Online Encyclopedia for Integer Sequences as A051112 to A051118

([17],[27]).

We define an MBF f to be equivalent to another MBF g if g can be obtained from f by

a renaming of the variables. For example, the function f (x1,x2,x3) = x1x2∨x2x3 is equivalent

to g(x1,x2,x3) = x1x2 ∨ x1x3, since the permutation
(

1 2 3
2 1 3

)
acting on the variables x1,x2,x3

sends f to g. We write this as f ∼ g.

We can prove that the notion of equivalence as defined above is an equivalence relation

on D(n), and hence forms an equivalence class partition of D(n).

Theorem 1. The relation “∼” is an equivalence relation.

Proof. Clearly, f is equivalent to itself via the identity permutation, so equivalence is re-

flexive.

Given f ∼ g, if π is the permutation on the variables that sends f to g, then π−1 sends

g to f . Hence equivalence is symmetric.

Moreover, if f ∼ g and g ∼ h for some MBFs f ,g,h, and if π and τ are the respective

permutations on the variable names, then the permutation π · τ, that is, the permutation

obtained by first applying π and then τ to the variable names, will send f to h, hence f ∼ h

and equivalence is transitive. Therefore, “∼” is an equivalence relation on D(n).

Let R(n) be the number of equivalence classes defined by “∼” among monotone Boolean

functions on n variables. As with D(n), no closed form is known to compute R(n), and in

fact only the values up to n = 6 are known, as we show in Table 1.3. The numbers Rk(n) are

defined in a similar manner.

Example 2. The five functions in R(2) are: f = 0, f = 1, f = x1, f = x1∨ x2, and f = x1x2.

The functions in D(2) are exactly these functions plus f = x2, which is equivalent to f = x1.

Clearly, we have R(n) ≥ D(n)

n!
since each equivalence class has at most n! elements.

CHAPTER 1. INTRODUCTION 6

n R(n)

0 2
1 3
2 5
3 10
4 30
5 210
6 16 353

Table 1.3: Known Values of R(n), A003182

Asymptotically, we expect R(n)∼ D(n)

n!
since for large values of n, most monotone Boolean

functions will have n! equivalent MBFs. In fact, D(n) and R(n) grow so fast that the factor

of n! disappears into the lower-order terms in Korshunov’s asymptotics.

Note that R(7)∼ D(7)

7!
= 4.79×108.

1.2 Dedekind and Some History

The German mathematician Dedekind introduced the Dedekind numbers in his Über Zer-

legungen von Zahlen durch ihre größten gemeinsamen Teiler, published in 1897 [8]. This

roughly transaltes to About breakdowns of numbers by their greatest common divisor, and

describes the lattice of divisors of an integer with the operations gcd and lcm, and the partial

order given by divisibility. A student of Gauss and close friend of Dirichlet, Dedekind made

very important contributions to the fields of abstract algebra, algebraic number theory, and

the foundations of real numbers and mathematics itself [23].

It took forty-three years after Dedekind’s paper to compute the fifth Dedekind number.

Church performed the calculation, and detailed his strategy in his paper entitled Numeri-

cal analysis of certain free distributive structures. The computation was done by counting

nonequivalent monotone boolean functions, and then multiplying by the number of equiv-

alence classes, for functions of the same rank. (This will be elaborated upon in the next

section.) Church successfully computed D(5) = 7581, which as a consequence disproved a

CHAPTER 1. INTRODUCTION 7

conjecture of Birkhoff’s that D(n) would always be divisible by (2n−1)(2n−2). After this,

Ward computed D(6) = 7828354 in 1946, which he announced as a note posted in the Bul-

letin of the American Mathematical Society. He does not describe the method he used, but

he verified Church’s earlier result for n = 5 as well.

It was the same Church who successfully computed D(7) = 2414682040998 first, while

it was independently computed by Berman and Köhler in 1976. D(8) was in turn first

computed by Wiedemann in 1991, using a similar tactic as Church [30]. It was then verified

by Fidytek, et al. [12]. It is interesting to note here the difference between enumerating and

generating these functions: in all of the papers mentioned, some properties of monotone

Boolean functions were used, together with an underlying symmetry, to obtain the correct

values for each n by performing a counting argument. These papers simply have the total

number, and do not describe the functions themselves. A common strategy is to count D(n)

by starting with a list of functions in D(n− 2), and this is indeed what Wiedemann and

Church do in their papers, while Fidytek et al. use D(n− 4) in theirs to count D(8) [12].

To count D(9), then, a list of the functions in D(7) would be useful - this was generated

by Shmulevich et al. in [26] in 1995, although D(9) has not been counted yet. D(8) on the

other hand is too large to even try to generate.

In recent years, there has been a surge of literature concerning the applications of mono-

tone Boolean functions. Numerous papers in biology, digital image processing, and comput-

ing science underscore the importance of knowing how these functions behave.

There is also interest in computing the duals of monotone Boolean functions. The

dual of an MBF f (x1,x2, . . . ,xn) is defined as f d = f (x1,x2, · · · ,xn), where the bar on top

of a variable signifies taking its negation. One reason why this is interesting is because

computing the dual of an MBF is identical to computing the transversal hypergraph (or the

blocking clutter) of the hypergraph defined by the MBF. This problem arises in many fields in

combinatorics, more specifically in combinatorial optimization, and also in game theory and

artificial intelligence [9]. Up to now the polynomial-time tractability of the decision version

of the problem of monotone dualization has not yet been determined, though Fredman and

CHAPTER 1. INTRODUCTION 8

Khachiyan have proven that it is solvable in quasipolynomial time, i.e. in time O(Npolylog(N)),

where N is the total number of clauses in the dual pair of functions [13].

1.3 Dedekind Numbers in Other Forms

1.3.1 Sperner Theory and Lattices

As we have mentioned, the Dedekind numbers are ubiquitous in the current literature. Aside

from describing the number of monotone Boolean functions in n variables, D(n) is also, for

instance, the number of antichains in the poset 2[n], or the power set of {1,2, . . . ,n} partially

ordered by inclusion. In order to see this, note that MBFs first of all can be formulated as

being a function f from 2[n] to {0,1}, where an input state x from Bn = {0,1}n corresponds

to the subset X of 2[n] containing the indices where the vector x is equal to one. In addition,

a set X is said to be a minimal term of an MBF f if f (X) = 1 and f (Y) = 0 whenever X

contains Y . The function f (x1,x2,x3) = x1x2∨ x3 is an MBF with minimal terms {1,2} and

{3}. These minimal terms are the smallest sets (with respect to inclusion) which evaluate to

1, and because of monotonicity, the set of minimal terms of an MBF completely determines

the function on all input sets - everything above evaluates to 1, and everything else evaluates

to 0.

By definition, if two sets are minimal terms of an MBF f , then one cannot be contained

in the other. Thus, the collection of minimal terms of any MBF must be an antichain,

that is, a family of pairwise-incomparable elements of a poset. To illustrate, we list all the

antichains of the posets 2[2] and 2[3] in Table 1.4.

n = 2 {}, {{}}, {{1}}, {{2}}, {{1},{2}}, {{1,2}}

n = 3

{}, {{}}, {{1}}, {{2}}, {{3}}, {{1},{2}}, {{1},{3}},
{{2},{3}}, {{1},{2},{3}}, {{1,2}}, {{1,3}}, {{2,3}}, {{1,2},{1,3}},
{{1,2},{2,3}}, {{1,3},{2,3}}, {{1,2},{1,3},{2,3}}, {{1},{2,3}},
{{2},{1,3}}, {{3},{1,2}}, {{1,2,3}}

Table 1.4: Antichains on the power sets of {1,2} and {1,2,3}, from [29]

CHAPTER 1. INTRODUCTION 9

Antichains are also known as Sperner families, named in honor of Emanuel Sperner who

proved the famous theorem that also bears his name. This theorem states that the size of

an antichain in 2[n] must be no larger than
(n
bn/2c

)
. There are many proofs of this fact; here

we give a simple proof due to Lubell [10].

Theorem 3 (Sperner’s Theorem). Any antichain on the n-set has at most
(n
bn/2c

)
elements.

Proof. Let A be an antichain on [n] = {1,2, . . . ,n}, and let Sn be the set of all permutations

on the same set. We will count the number of pairs N of (X ,π) such that X ∈ A , π ∈ Sn,

and X = {π(1),π(2), . . . ,π(|X |)} in two different ways. First, fix X ∈ A . Then a correspond-

ing permutation π must map {1,2, . . . , |X |} bijectively onto X and {|X |+ 1, |X |+ 2, . . . ,n}

bijectively onto [n]−X . There are |X |!(n−|X |)! such permutations, and so

N = ∑
X∈A
|X |!(n−|X |)!.

Now fix π ∈ Sn instead, and assume that we have at least two corresponding sets X ,Y ∈ A .

Without loss of generality, let |X | ≤ |Y |. Then X and Y must have the same elements for the

first |X | terms, i.e. {π(1),π(2), . . . ,π(|X |)} is contained in both X and Y . But this set is just

X , so we have X ⊆ Y , which cannot happen as A is an antichain. Hence we conclude that

for every fixed π, there is at most one corresponding set X ∈ A . This implies

N ≤ ∑
π∈Sn

1 = n!.

Combining the two relations, we get

∑
X∈A
|X |!(n−|X |)!≤ n!

⇒ ∑
X∈A

1(n
|X |
) ≤ 1 (dividing by n!)

Since
(n
bn/2c

)
≥
(n

k

)
for all k = 0,1, . . . ,n, we have

∑
X∈A

1(n
bn/2c

) ≤ ∑
X∈A

1(n
|X |
) ≤ 1,

implying that |A | ≤
(n
bn/2c

)
.

CHAPTER 1. INTRODUCTION 10

A consequence of this is that any monotone Boolean function on n variables can have at

most
(n
bn/2c

)
minimal terms. This is precisely the size of Bn

n/2, and in fact, this upper bound

on the number of minimal terms a monotone Boolean function can have is attained only by

functions which completely reside in the middle level (for odd n) or levels (for even n) of Bn.

Another interesting technique that is often employed is the use of symmetric chain

decompositions — in fact the above theorem is a corollary of the fact that there exists such

a decomposition in the poset 2[n]. The following theorems and proofs are taken from [10] as

well:

Definition 4 (Symmetric Chains). In the poset 2[n], a chain C is a collection of sets C =

(X0 lX1 l · · ·lXh) where X lY means X < Y and X < Y ′ ≤ Y ⇒ Y = Y ′. The chain is a

symmetric chain if furthermore |X0|+ |Xh|= n holds.

Theorem 5. There exists a symmetric chain partition of 2[n].

Proof. When n = 1, the statement is trivial as 2[1] itself is a symmetric chain. Assuming

the claim is true for n, we will prove that it is true for n + 1. Let C be a symmetric chain

partition of 2[n]. For each chain C = (X0 l · · ·lXh) ∈ C , construct new chains

C′ = (X0 l · · ·lXh lXh∪{n + 1})

C′′ = (X0∪{n + 1}l · · ·lXh−1∪{n + 1}).

Note that C′′ does not exist if h = 0, so we omit it in this case. We claim that all such chains

C′ and C′′ together make up a symmetric chain partition of 2[n+1].

First, it is easy to see that these chains are symmetric, since for C′,

|X0|+ |Xh∪{n + 1}|= |X0|+ |Xh|+ |{n + 1}|

= n + 1,

CHAPTER 1. INTRODUCTION 11

while for C′′,

|X0∪{n + 1}|+ |Xh−1∪{n + 1}|= |X0|+ |{n + 1}|+ |Xh−1|+ |{n + 1}|

= (|X0|+ |Xh−1|)+ 2

= (n−1)+ 2 = n + 1.

In both cases, we can separate the {n + 1} from inside the cardinality operation since it is

not in any of the X j’s.

To prove this is a partition, we show that each set in 2[n+1] is located in exactly one

of these chains. Let X ∈ 2[n+1] with n + 1 6∈ X . Then X ∈ 2[n], and it is located in the

corresponding C′ of its chain in C . If n+1 ∈ X , then if X−{n+1} is the largest in its chain

in C , X can be found in the corresponding C′, otherwise it is in C′′.

That the set X occurs in at most one chain follows from the fact that either X or

X−{n + 1} (either case) occurs in at most one chain in C .

Each symmetric chain in 2[n] contains exactly one element of size bn/2c. Hence, each

symmetric chain partition contains exactly
(n
bn/2c

)
chains. Given an antichain A , we know

that no two elements of A can be in the same chain. This implies that the number of

elements of A is at most the number of chains in a symmetric chain partition of 2[n], or that

|A | ≤
(n
bn/2c

)
, which is Sperner’s theorem.

1.3.2 Hypergraphs and Combinatorial Optimization

In graph theory, graphs are defined to be a pair G = (V,E) where V is a finite collection of

elements called vertices, and E is a (possibly empty) set of unordered pairs of distinct vertices

of G called edges [4]. Hypergraphs are an extension of this definition, where instead of being

a collection of unordered pairs on a fixed finite set, we take a collection (E1,E2, . . . ,Em)

of subsets of the vertex set V = {x1,x2, . . . ,xn} such that no E j is empty, and every xi is

contained in some edge in the collection [1]. Hypergraphs are also called set systems, since

a hypergraph is a collection of subsets of a ground set.

CHAPTER 1. INTRODUCTION 12

A hypergraph is said to have the Sperner property if its edges further satisfy Ei 6⊆ E j for

all i 6= j, that is, no edge contains another. By taking the vertex set to be 2[n] = {1,2, . . . ,n},

it can be seen that each Sperner hypergraph, being a collection of pairwise-incomparable

subsets of 2[n], is an antichain on 2[n]. The correspondence then follows from the relationship

between MBFs and antichains; each hyperedge in a Sperner hypergraph is a minimal term

in its corresponding monotone Boolean function.

Furthermore, computing the transversal hypergraph, or the blocking clutter of a Sperner

hypergraph is equivalent to computing the dual of the monotone Boolean function described

by the hypergraph. We shall talk about this in more detail in the next chapter.

1.3.3 Other Applications

In lattice theory, each n-variable monotone Boolean function corresponds to an element

in the free distributive lattice on n generators, while in nonlinear signal processing, these

functions each uniquely define a stack filter of window-width n [26]. In coding theory, 1-

semi-distance codes of length n correspond to monotone Boolean functions as well [16]. An

important issue in computational learning theory is studying the learnability of monotone

Boolean functions [25].

So-called n-player simple games in game theory are also monotone Boolean functions,

with minimal terms equivalent to the minimal winning forms [24].

Finally, there has been much interest in monotone Boolean functions, and specifically

monotone dualization, in computational biology. One example of a model where MBFs

feature are biochemical reaction networks, where each chemical state can be thought of as

a vertex, and where the smallest collections of states whose activation would disable the

reaction can be thought of as hyperedges ([19], [15]).

Chapter 2

A Survey of Algorithms Counting

MBFs

In this chapter, we discuss some known algorithms that have been used to count monotone

Boolean functions. However, before going into detail, we will describe how we are represent-

ing these functions in code, and what practicalities have to be considered when programming

with them.

2.1 Data Structures and Basic Operations

2.1.1 Representation of MBFs

A truth table for a Boolean function is a row of zeros and ones which encodes the outputs of

the function corresponding to every possible input state. To illustrate, the function on three

variables f (x1,x2,x3) = x1 ∨ x2x3 has minimal terms {{1},{2,3}}, and it has the following

truth table:

Input variables set to 1: x1,x2,x3 x2,x3 x1,x3 x3 x1,x2 x2 x1 none

Output states: 1 1 1 0 1 0 1 0

Table 2.1: Truth table for the function f (x1,x2,x3) = x1∨ x2x3

13

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 14

Note that the input states on the top row are arranged in a reverse colexicographic (or

colex) order on {0,1}3, defined as x < y if x 6= y and xk < yk where k = max{i : xi 6= yi}. Fixing

this order, we are able to represent the above in the succinct form 11101010. In general, any

Boolean function on n variables can be written as a 0-1 string of length 2n where each entry

corresponds to an input state; we use this convention throughout this paper. The choice

for the ordering might seem arbitrary, but it has the nice property that the first 2n−1 of its

entries all involve setting the variable xn to 1, and the second half has inputs with xn = 0.

The truth table form is one of the most compact ways to represent general Boolean

functions. For monotone Boolean functions, it may be more compact to just use the minimal

terms, but it is more practical to use the truth table form as it encodes useful data.

As another example, the functions in D(2), written in truth table form are {1111, 1110,

1100, 1010, 1000, 0000}. The colexicographic order for two variables is {1,2}> {2}> {1}>

{}.

For our computations, we decide to implement the algorithms on MATLAB, a high-

level technical computing language developed by MathWorks, Inc. We use MATLAB for

building a prototype because it is easy to get started, and it is built for handling large

vectors and matrices. It has many built-in functions that work well with the types of lists

we are generating, and if desired, further work can be transported over to other programming

languages. We expect that this code would be faster if translated to C.

In MATLAB, we represent MBFs as 1×2n row vectors. Many of the built-in functions in

MATLAB such as bitor, bitand, and find, offer a convenient way of performing operations

on these MBFs. For instance, to test whether two functions f and g satisfy f ≥ g, we

can either just type f ≥ g to obtain the indices of entries fulfilling this condition, or use

bitand(f ,g) == g, which should be true if and only if f ≥ g. Testing for equality is simple

in MATLAB as well.

The truth table form furthermore lends itself well to bit compression using 32-bit integers,

i.e. the uint32 data type in MATLAB, which encodes unsigned integers in the range of

[0,232−1]. To elaborate, given an MBF of length 2n, we partition the zeros and ones into

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 15

blocks of length 32, which we consider as a binary number (a0a1a2 . . .a31)2, and which we

then convert into decimal format, by computing ∑
31
k=0 ak2k. If n is smaller than 5 and hence

the truth table form has fewer than 32 entries, we just assume the rest of the entries to be

zeros. For this case and when n = 5, the result is just one number in the interval [0,232−1].

Example 6. The MBF f (x1,x2,x3,x4,x5) = x1x3x4 ∨ x2x3x4 ∨ x2x5 ∨ x4x5 has minimal terms

{1,3,4},{2,3,4},{2,5},{4,5}, and in truth table form is written as

f =11111111110011001100100000000000.

Conversion to a 32-bit integer gives 20 +21 + · · ·+210 +213 +214 +217 +218 +221, or 1258495.

Example 7. The six-variable MBF

f = 1111111011111110111111001000000011111010111010101111100000000000

has 64 entries, so it is divided into two blocks of 32:

11111110111111101111110010000000→ 20938623

11111010111010101111100000000000→ 2053983

hence the 32-bit integer representation of f is (20938623,2053983). Its minimal terms are {1,2,4},

{3,4}, {1,5}, {2,3,5}, {1,2,3,6}, {2,4,6}, {2,5,6}, and {3,5,6}.

In a similar way, it is not difficult to do the reverse operation of expanding these integers

back into their 0-1 truth table forms. We use both these representations in different parts

of the algorithms that follow.

2.1.2 List Data Structures

The algorithms in this thesis, particularly our profile generation approach, involve building

and frequently referencing a very long list of integers. Thus a good implementation of such

a list is crucial.

There are at least three standard ways to approach this. The first way is just to naively

use arrays and the MATLAB built-in find, plus its reindexing operations to insert. Lookup

can be done in O(logn) time, while insertions are done in O(n). The second way is to use a

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 16

balanced binary tree to lookup and insert values. A binary search tree is a tree where each

node represents a value, and all nodes to its left [right] have a corresponding value that is

smaller [larger] than the value at the parent node [7]. The efficiency of the operations done

on such trees depend directly on the height of the tree – if the tree had just one branch, for

example, then searching and insertion would take the same time as naively using an array.

We can construct these trees so as to minimize their height. For this case, lookups and

insertions can be done in O(logn) time [7]. The third way is to use hash tables to store and

retrieve data.

Hash tables allow us to do lookups more quickly. A hash table is a data structure that

assigns associated values called keys to input values that have to be sorted or looked up. A

hashing function is used to compute the key from the input value, which in this case are the

MBFs, and this will be the index in the output array of the code. What this accomplishes

is that whenever the output needs to be checked whether or not it contains a given MBF,

we can just evaluate the hashing function on the MBF to get its key – no need to search

the list.

There are some issues here, depending on the hashing function used. For example, there

could be a significant number of functions who share a key with another MBF. This is called

a collision in the computing science literature; a good hash function has very few collisions

on the input set. There is a way to work around this issue, by simply moving down one

row in the output list whenever a key is encountered again, but we still want to reduce the

number of collisions as this will reduce the time it will take to look an MBF up in the list.

Note that in the extreme case, the hash function which maps all inputs to one key would

just be a regular listing of all these functions, and lookups will take linear time. Typically,

hash table lookups and insertions take a constant time O(1) [7].

Hashing 5-variable Boolean functions (which only have one component in their 32-bit

representation) can be done by performing modular operations on the input, where the

divisor is some large prime number. To make sure that few collisions occur, we use a divisor

which is about double the total number items that we will generate in the list.

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 17

To hash 6- and 7-variable functions, we need additional operations in order to generate

keys. One way to do this is to start by taking the exclusive-ors of their component bits to

get a 32-bit integer. It may be helpful to shift or reverse the order of the bits to make the

code more robust.

For instance, given the function f = (218623,71167,196863,65791), if we take the exclusive-

ors of all four components, we obtain the key 16384. If we reverse the bits of the first and

the fourth entries before taking exclusive-ors, we obtain the number 4278282922. Choosing

a random large prime, say 15485867, we perform modular division and we obtain the key

4183630.

Because each of the four components are related to one another, it is much better to do

a shift or a reversing operation before taking exclusive-ors.

Another hash function that is effective in practice is the polynomial hash function,

which acts on the four integers (say b1, b2, b3, and b4) by repeatedly adding a number

α > 2 modulo a prime p, and multiplying by the next component. This can be written as

b1(α + b2(α + b3(α + b4))) where all operations are done modulo p.

In general, choosing which divisors to use for modular operations in a hash function is

crucial because this will determine the total number of keys that can be generated – and

hence the size of the lookup table that must be stored in memory while the program is

running.

In our computations, using hash tables for list handling instead of binary search led to

a speedup of a factor of 4 for lists of size 40000, and a factor of 8 for lists of size 1500000.

2.2 Counting D(n)

The following is a survey of known algorithms that compute D(n).

2.2.1 Generating D(n) from D(n−1)

This algorithm makes use of the fact that the n-hypercube is the Cartesian product of the

(n− 1)-hypercube and {0,1}. It follows almost directly from what is called the Shannon

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 18

decomposition of a monotone Boolean function f ([9], [12]):

Lemma 8 (Shannon decomposition). Every n-variable MBF f can be written uniquely as

f (x1,x2, . . . ,xn−1,xn) = xn f1(x1,x2, . . . ,xn−1)∨ f0(x1,x2, . . . ,xn−1)

where f1 = f (x1,x2, . . . ,xn−1,1), f0 = f (x1,x2, . . . ,xn−1,0), and both f0 and f1 are monotone.

Proof. Let f be a monotone Boolean function on n variables. Recall that any MBF can

be written as a disjunction of clauses, each one of which correponds to one of its minimal

terms. Let S1,S2, . . . ,Sk be the clauses in this description of f which contain xn, and denote

by T1,T2, . . . ,Tl the rest of the clauses. We therefore have

f (x1,x2, . . . ,xn) = (S1∨S2∨·· ·∨Sk)∨ (T1∨·· ·∨Tl)

= xn∧ (S′1∨S′2∨·· ·∨S′k)∨ (T1∨·· ·∨Tl)

where each S′i is just Si− xn. When xn = 1, we have f1 = f (x1, . . . ,xn−1,1) = (S′1 ∨ S′2 ∨ ·· · ∨

S′k)∨ (T1∨·· ·∨Tl), and when xn = 0, we have f0 = f (x1, . . . ,xn−1,0) = (T1∨·· ·∨Tl). Hence f0

is the function whose clauses are exactly all clauses in f that do not contain xn, while f1 is

the function whose clauses are exactly all the clauses in f minus xn.

One implication of this is that f0 and f1 are monotone as well, since they are just dis-

junctions of clauses, and they don’t involve negations. Furthermore, f0 and f1 are uniquely

determined – they are exactly the set of clauses described above.

Lemma 9. The functions f1 and f0 in the Shannon decomposition of f satisfy f0 ≤ f1.

Proof. For any fixed x1,x2, . . . ,xn−1, we must also have f (x1, . . . ,xn−1,0)≤ f (x1, . . . ,xn−1,1) by

the monotonicity assumption on f . Hence, f0 ≤ f1 for any values of the first n−1 variables,

implying f0 ≤ f1.

We can reverse the process by starting with two MBFs from D(n− 1), say f and g

such that f ≤ g. Then we obtain the function F = xng(x1, . . . ,xn−1)∨ f (x1, . . . ,xn−1), which

is in D(n). It becomes even easier if we use the binary 2n-tuple convention, since F can be

obtained by concatenating g and f (in that order).

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 19

Example 10. Let f be the function 1000 and g the function 1110. It is easy to see that both

are monotone. Also, f ≤ g since f (x)≤ g(x) for all possible truth inputs. Thus, F = xng∨ f

is also monotone, and it is the function F =11101000.

Therefore, to count D(n), it is sufficient to count the number of pairs of functions (f ,g)

from D(n−1) that satisfies f ≤ g. This gives us Algorithm 1.

Algorithm 1: Generating D(n) from D(n−1)

Input: D(n−1) in truth value form
Output: D(n) in truth value form
initialize D(n) ;
for f ∈ D(n−1) do

for g ∈ D(n−1) do
if f ≤ g then

F := concatenate(g, f);
add F to D(n);

end

end

end

2.2.2 Enumerating D(n) from D(n−2)

Another way to count D(n) starts from D(n− 2). The advantage of this is that we have a

smaller input to work with, however this method will not give us a list of elements from

D(n) but only the cardinality. Wiedemann first mentioned this algorithm in his paper [30]

and Fidytek et. al. details it in theirs [12].

Recall from the previous section that the Shannon decomposition of a function enabled

us to effectively generate D(n) by counting pairs in D(n− 1). This second algorithm goes

one step further and decomposes the child functions, working with 4-tuples in D(n−2).

Lemma 11. Every n-variable MBF f can be written as

f (x1, . . . ,xn−1,xn) = xn−1xn f11∨ xn−1 f10∨ xn f01∨ f00

where fab = f (x1, . . . ,xn−2,a,b), f11, f01, f10, f00 are monotone, f00 ≤ f01 ≤ f11 and f00 ≤ f10 ≤

f11. Moreover, this decomposition is unique [12].

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 20

Proof. We can apply Lemma 8 thrice to get:

f (x1,x2, . . . ,xn−1,xn) = xn f1∨ f0

= xn [xn−1 f11∨ f01]∨ [xn−1 f10∨ f00]

= xn−1xn f11∨ xn f01∨ xn−1 f10∨ f00

By the same lemma, all of f11, f01, f10, f00 are monotone and this decomposition is unique.

Also, from Lemma 9 we have the relations f00 ≤ f10 and f01 ≤ f00. If we decompose by xn−1

first instead of xn then we will get the same result, and the relations f00 ≤ f01 and f10 ≤ f11.

Combining these we get f00 ≤ f10 ≤ f11 and f00 ≤ f01 ≤ f11, as desired.

Therefore, to count D(n), it is sufficient to count 4-tuples of functions in D(n−2) that

satisfy the conditions above. We state this as a theorem and give an example.

Theorem 12. There is a one-to-one correspondence between D(n), the set of n-variable

MBFs, and the set
{

(f11, f01, f10, f00) ∈ [D(n−2)]4 : f00 ≤ f10 ≤ f11 and f00 ≤ f01 ≤ f11

}
[12].

Example 13. Let F = 1110101011000000 be an MBF in D(4). Note that F(X) = 1 when

X = {1,2,3,4},{2,3,4},{1,3,4},{1,2,4},{1,4},{1,2,3},{2,3}. Using the previous lemma, we

can decompose F into x3x4 f11∨ x4 f01∨ x3 f10∨ f00, where

f00 = 0000

f10 = 1100

f01 = 1010

f11 = 1110

Clearly we have f00 ≤ f01 ≤ f11 and f00 ≤ f10 ≤ f11. Also, they are all monotone.

To count D(n), we do not iterate through D(n−2) four times; instead, we fix two functions

to be f10 and f01, and then count the number of ways of choosing MBFs from D(n−2) for

the other two functions. To this end, we have Lemma 14, which is also in [12].

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 21

f11 = 1111

f10 = 1100f01 = 1010

f00 = 0000 ∈ D(n−2)

...

....................................

.................
................
................
................
................
................
................
................
................
............

...

....................................

.................
................
................
................
................
................
................
................
................
............

f11 f01 f10 f00 =

1111101011000000 = F ∈ D(n)⇐⇒

Figure 2.1: Illustration for Example 13: Two representations of an MBF in D(4)

Lemma 14. Given any three MBFs f , g, and h from D(n), we have

h≥ f and h≥ g if and only if h≥ (f ∨g)

and

h≤ f and h≤ g if and only if h≤ (f ∧g).

Proof. We will only show the first case; the second situation is dealt with via a similar

argument.

The truth table for the functions f , g, and f ∨ g for an input value x is given in Table

2.2. We can directly infer that h≥ (f ∨g) ⇐⇒ h≥ f and h≥ g by simply doing a case by

case comparison.

f (x) g(x) f (x)∨g(x)

0 0 0
0 1 1
1 0 1
1 1 1

Table 2.2: Truth table for f ∨g

This lemma implies that instead of counting the number of functions h ∈ D(n−2) that

satisfy h≤ f and h≤ g, it suffices to check for the condition h≤ (f ∧g). The same goes for

checking if h≥ (f ∨g).

We can also simplify things by using the dual of a BF.

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 22

Definition 15. Given a BF f = f (x1,x2, . . . ,xn), its dual is defined to be f d = f (x1,x2, . . . ,xn),

where x is the negation of x.

Lemma 16. The following are properties of a Boolean functions and their duals:

1. Given a formula for a BF f , its dual can be obtained by exchanging ∨ and ∧ as well

as constants 0 and 1.

2. Given a BF f in truth table form, its dual is obtained by taking its complement and

reading the string from right to left.

3. If f is an MBF, then the minimal terms of its dual f d are exactly the set of minimal

transversals of the minimal terms of f .

4. (f ∨g)d = f d ∧gd for any BFs f ,g.

5. If f ≥ g, then f d ≤ gd.

Proof. The first property follows from the definition of a dual MBF and de Morgan’s laws,

while the second property follows from the fact that the set in the ith position of the truth

table form is exactly the complement of the set in the (2n + 1− i)th position, in the reverse

colex order.

To see why the third property is true, let f be a monotone Boolean function whose

minimal terms are the clauses S1,S2, . . . ,Sk. Then we can write f as the disjunction of all

these clauses, f =
∨k

i=1 Si. By the first property, the dual of f is thus f d =
∧k

i=1 Ti, where Ti

contains exactly the same variables as Si does, but taking disjunctions instead of conjunctions

within each term. By distributivity of conjunctions over disjunctions, we can write f as the

disjunction of all possible clauses obtained by taking one element from each Ti and taking

their conjunctions.

After eliminating duplicates and terms which are already implied by another, we obtain

the minimal terms of the function f d . Two things characterize each of these clauses: first,

they should contain at least one element from each clause in the original f ; and secondly,

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 23

they should have no duplicates, nor be implied by another clause in f d . In other words,

each minimal term in f d should be a minimal transversal of the minimal terms of f .

The fourth property is also a corollary of the first, in that exchanging the operations ∨

and ∧ can be done in any order within the function formula.

Lastly, that f ≥ g implies f d ≤ gd follows immediately from the second property.

Example 17. Let f = x2 ∨ x1x3. Then in truth value form, f = 11101100. Also, f is

monotone, with minimal terms {{2},{1,3}}. By the first property, the dual of f is f d =

x2(x1∨x3) = x1x2∨x2x3, also f d = 11001000 in truth value form via the second property. The

minimal terms of f d are {{1,2},{2,3}}, which are the minimal transversals of the minimal

terms of f .

From the properties above, we can modify the method into counting the number of

functions h which are less than (f d ∧gd) instead of those which are greater than (f ∨g). For

brevity let µ(f) = |{g ∈ D(n) : g ≤ f}|. (The value of n should be clear from the context.)

This finally gives us Algorithm 2.

Algorithm 2: Enumerating D(n) from D(n−2)

Input: D(n−2) in truth value form
Output: |D(n)|
initialize result = 0;
for f ∈ D(n−2) do

for g ∈ D(n−2) do
result := result + µ(f ∧g)×µ(f d ∧gd) ;

end

end

Fidytek et al. also enumerated D(8) using an algorithm that computes D(n) from D(n−4),

but it is too complicated to discuss here.

2.2.3 Enumerating D(n) from D(n−2) and R(n−2)

So far, the algorithms presented have provided simple enough ways to compute the cardinal-

ity of D(n) for any n. However, they are also very limited in terms of efficiency. For instance,

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 24

the two for loops in Algorithm 2 slow it down considerably, especially when D(n−2) is large,

as is the case with going from n = 6 or n = 7 to n = 8 or n = 9, respectively. In fact, comput-

ing D(8) in this manner will take about 6× 1013 iterations. Note that computing µ(f) for

any f ∈ D(n) can be done as preprocessing, and will just involve a lookup operation in the

execution of Algorithm 2, though this can also take a bit of time depending on the method

used. The duals can also be precomputed as well.

The algorithm we present here is in Wiedemann’s paper, and he uses this to compute

D(8) [30]. It took him 200 hours on a Cray-2 processor to carry out the calculations.

One way to speed up implementation is to exploit the symmetries inherent in BFs -

recall that two BFs are equivalent, or f ∼ g, if one can be obtained from the other via a

permutation of the variables. Denote by R1,R2, . . . ,RR(n) the equivalence classes of MBFs

in D(n). So for n = 6, for instance, we would have the classes R1,R2, . . . ,R16353. Also, let

h1,h2, . . . ,hR(n) denote a set of fixed representatives for each class.

The key thing to notice is that µ(f) = µ(g) if f ∼ g. This is true because if π ∈ Sn is the

permutation that takes f to g, then for any other function h which is contained in f , the

function obtained by applying the same permutation π on h will be less than g. This is a

one-to-one correspondence, hence we have µ(f) = µ(g).

In addition, we also have (f ∧g)∼ (f ∧g)π = (f π∧gπ) for any two MBFs f ,g. Thus, given

any function f in the kth equivalence class, and any other function g, µ(f ∧g) = µ(hk ∧gπ),

where π is the permutation that takes f to hk. For the term involving duals, we only need to

use the fifth property in the previous subsection to see that (f d∧gd) = (f ∨g)d ∼ (hk∨gπ)d =

(hd
k ∧ (gπ)d).

These observations imply that instead of computing µ(f ∧g)∗µ(f d ∧gd) for all pairs in

[D(n− 2)]2, we can fix f to range over all hk’s, multiplying each product by an additional

term |Rk| (since the value of µ will be the same). This algorithm is given as Algorithm 3.

Note that this algorithm still has to perform the hash table lookup on D(n−2), but this is

still a significant improvement over Algorithm 2. Moreover, we still have to generate R(n−2)

to start, which will be discussed in Section 2.3. After preprocessing, Algorithm 3 performs

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 25

Algorithm 3: Enumerating D(n) from D(n−2) and R(n−2)

Input: D(n−2) and R(n−2) in truth value form
Output: |D(n)|
initialize result ;
for k = 1 to |R(n−2)| do

for g ∈ D(n−2) do
result := result + |Rk| ∗µ(hk∧g)∗µ(hd

k ∧gd) ;
end

end

O(R(n− 2) · [D(n− 2)]2) operations at worst, depending on how efficiently the lookups to

retrieve µ(f) are done. In contrast, Algorithm 2 performs O([D(n− 2)]3) operations at

worst.

We implemented Algorithms 1, 2, and 3 as a warm up, and though we were able

to successfully enumerate D(7) within 180 CPU seconds using Algorithm 3, it would still

require a nontrivial amount of computational resources to compute D(8).

2.2.4 Generating D(n) via Iterative Disjunctions of Minimal Terms

The three algorithms discussed thus far made use of an available list of MBFs in a smaller

number of variables to generate D(n). Shmulevich, et. al. in [26] use a different way of

generating D(n) by starting with the list of all possible minimal terms in n variables, and

then recursively taking disjunctions to build up all functions in D(n).

As an illustration, for n = 2 there are 4 MBFs with exactly one minimal term – one for

each set in 2[2] = {{},{1},{2},{1,2}}. Hence by the notation introduced in Chapter 1, we

can write D1(2) = 4. We then take disjunctions of these terms to get the members of D2(2),

which as it turns out is only x1 ∨ x2. Hence, we have all MBFs in two variables, shown in

Table 2.3.

In general, to produce the list of functions in Dk+1(n), we take the functions in Dk(n) and

form disjunctions with every function in D1(n). Note that not all functions resulting from

this operation will be a function with k+1 minimal terms, as subsumption might occur. This

happens when one function taken from Dk(n) has a minimal term that is comparable to the

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 26

k Dk(2)

0 0
1 1, x1, x2, x1x2
2 x1∨ x2

Table 2.3: D(2) classified by number of minimal terms

term taken from D1(n). For example, when going from D3(4) to D4(4), we might take the

disjunction of the function f (x1,x2,x3,x4) = x1x2∨ x2x3∨ x1x3x4 with g(x1,x2,x3,x4) = x1x2x3.

This will not produce a function with four minimal terms since the new term x1x2x3 is

implied by either of the first two terms in f .

To generate D(n), we run the recursion step for k = 1,2, . . . ,
(n
bn/2c

)
, checking for subsump-

tion along the way. To save space, the list Dk(n) can be discarded once Dk+1(n) has been

generated, if we were only concerned about enumeration. It is easy to generate D1(n) as it

is exactly 2[n]. We state the algorithm as Algorithm 4.

Algorithm 4: Generating D(n) via Iterative Disjunctions

Output: D(n)
initialize result ;
generate D1(n) ;
for k = 1 to

(n
bn/2c

)
do

for f ∈ Dk(n) and g ∈ D1(n) do
compute h = f ∨g ;
if no subsumption occurred then

Dk+1(n)← Dk+1(n)∪{h};
end

end

end

Shmulevich et. al. were able to use this algorithm to generate D(7), with the byproduct

Dk(7) for all k = 1 to k = 35. However, they do not mention any attempt to enumerate D(9)

using their lists for D(7).

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 27

2.3 Counting R(n)

So far, we have seen various algorithms that either generate or enumerate D(n). In compari-

son, there have not been many efforts to compute R(n). To obtain R(n), one could check each

function in the list against every other function for equivalence. However, as the number of

permutations is n! for an MBF on n variables, it becomes a challenge to be able to test for

equivalence using a reasonable amount of time and memory.

This problem is known in the literature as the Hypergraph Isomorphism Problem. While

the brute force method of testing for equivalence runs in O(n!) time, there are a number

of asymptotically faster algorithms, e.g. Luks proves in [22] that it is possible to test

isomorphism in O(cn) time. Since we are looking to perform the computations for small

values of n, the asymptotics of which algorithm we use will not be as significant.

To permute MBFs, we have to determine how the renaming of n variables translates into

a permutation on the 2n elements in the truth table form. This is simple to do in MATLAB.

To do this, we take the reverse lexicographic order discussed at the start of this chapter and

perform the re-indexing on its elements.

For instance, say we compute the equivalent form of the three-variable MBF f = 10101010

under the permutation π =
(

1 2 3
2 3 1

)
∈ S3. The reverse lexicographic order and the resulting

rearrangement of f can be found in Table 2.4.

Input variables of f set to 1: x1,x2,x3 x2,x3 x1,x3 x3 x1,x2 x2 x1 none
Outputs: 1 0 1 0 1 0 1 0

For π(f) where π = (123): x1,x2,x3 x1,x3 x1,x2 x1 x2,x3 x3 x2 none
Corresponding outputs: 1 1 1 1 0 0 0 0

Table 2.4: Computing a new truth table order under a permutation of the variables

If we index the 23 = 8 entries of the truth table form as a vector, then performing

the permutation
(

1 2 3
2 3 1

)
on any MBF f should be equivalent to applying the permuta-

tion
(

1 2 3 4 5 6 7 8
1 5 2 6 3 7 4 8

)
on the truth table form of f , regardless of the value of the outputs.

Consequently, we can preprocess each permutation in Sn to convert it into its truth table

CHAPTER 2. A SURVEY OF ALGORITHMS COUNTING MBFS 28

permutation in S2n . In this way, we are able to perform permutations by referring to this

table for re-indexing.

In terms of actually deciding whether two functions are equivalent, we can achieve what

the algorithm needs by generating the whole equivalence class for each function to be con-

sidered, and then taking the “least representative,” that is, the lexicographically (since the

32-bit integer representation will have more than one entry) smallest MBF that is equivalent

to it. In this manner we avoid having to compare functions to one another, instead just

having to do this calculation immediately after each function is generated and before it is

added to the final output.

Here is another example: Consider the four-variable function f = 1111110011001000.

To find its least representative, we generate all 4! = 24 functions in its equivalence class,

convert them to 32-bit integers, and take the smallest resulting integer. For f as given, which

is represented by the number 4927, the smallest integer obtained from these calculations is

895, or the function f ∗ = 11111111011000000. Via a routine hash lookup, we then check if

f ∗ is already in the output matrix. If it is, then we discard it, otherwise we insert it in the

correct position to preserve the sorted order of the matrix. Then we proceed to the next

iteration as usual.

To enumerate R(n) using any of the previously-discussed techniques, we just add a few

lines of code that do the above computation to the algorithm. There might be other ways

to remove duplicates that involve counting orbits of permutations, for example, but the

method we use is effective for a problem of this magnitude.

Chapter 3

Profile Generation and Counting

R(7)

3.1 Profiles of Monotone Boolean Functions

The algorithms in chapter 2 that compute D(n) use D(n−1), D(n−2), and R(n−2) to do

so. Furthermore, we explained how considering R(n− 2) lends some symmetry, and hence

makes the algorithm run faster. In this chapter, we focus on another way of classifying

and generating these MBFs, and use this to enumerate R(7). It is natural to refine the

classification of monotone Boolean functions by number of minimal terms, and consider how

many elements are contained in each of these terms. For instance, the functions 11111100

and 11111000 both have two minimal terms each, but the first function has two 1-sets as

minimal terms ({2},{3}) while the second has a 1-set and a 2-set ({1,2},{3}). We define

the notion of a profile formally as given in [10], and introduce some notation:

Definition 18 (Profile of an MBF). Given an n-variable MBF f where f 6≡ 1, the profile

of f is a vector of length n (a1,a2, . . . ,an), with the ith entry equal to the number of minimal

terms of f which are i-sets.

Example 19. The MBF 11111100 has profile (2,0,0) and the MBF 11111000 has profile

(1,1,0).

29

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 30

Definition 20. Given a profile vector (a1,a2, . . . ,an), define (a1,a2, . . . ,an)D to be the number

of monotone Boolean functions on n variables with profile vector (a1,a2, . . . ,an). Similarly

define (a1,a2, . . . ,an)R for nonequivalent monotone Boolean functions on n variables.

Note that the number of variables n is implicit in the profile vector - it is just the length

of the vector. There are a few other properties which we discovered, and we state and prove

these in Lemma 21.

Lemma 21. Assume that all profile vectors pertain to MBFs on n variables, unless otherwise

stated.

(A) (0,0, . . . ,ai, . . . ,0)D = (0,0, . . . ,
(n

i

)
−ai, . . . ,0)D.

(B) If a1 > 0, then an = 0 and (a1,a2, . . . ,an−1,an)D = (a1−1,a2, . . . ,an−1)Dn−1.

(C) (a1,a2, . . . ,an−2,an−1,an)D = (an−1,an−2, . . . ,a2,a1,an)D.

All these statements hold true when D is replaced by R.

Proof. The proof of each claim rests on the fact that there is a one-to-one correspondence

between functions of the first type and functions of the second type, for the purposes of

counting both D(n) and R(n).

For (A), given an MBF with exactly ai i-sets as minimal terms, we can derive another

MBF with minimal terms exactly the
(n

i

)
−ai i-sets which were not taken in the first MBF.

Furthermore, the images of any two equivalent functions under this correspondence will also

be equivalent, under the same permutation.

Part (B) follows from the Shannon decomposition of an MBF discussed in Section 1.

Given a function f with a profile that satisfies a1 > 0, it has a singleton set that is a

minimal term, say {n}. Decomposing over the variable xn, we get f = xn f1 ∨ f0. But f1 =

f (x1,x2, . . . ,xn−1,1) = 1 since {n} is a minimal term, so f = f0 = f (x1,x2, . . . ,xn−1,0), which is

an (n− 1)-variable MBF with profile (a1− 1,a2, . . . ,an−1). All minimal terms are retained,

and just the singelton set is removed.

For (C), if an = 1, then {1,2, . . . ,n} is the only minimal term. This implies that all the

other ai’s are zero, and hence the claim follows trivially.

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 31

If an = 0, assume that the minimal terms of a given MBF f are A1,A2, . . . ,Ak. We

know that none of the Ai’s are comparable, so it should follow that none of the sets [n]−

A1, [n]−A2, . . . , [n]−Ak must be comparable as well, making the collection {[n]−A j}1≤ j≤k an

antichain, i.e. an MBF g where the number of i-sets is equal to the number of (n−1)-sets

in f . This proves that the profile of g is (an−1,an−2, . . . ,a2,a1,an).

Lemma 21 will be very useful in reducing the amount of computation that needs to be

done to compute D(n) or R(n) since we can break the whole set of functions down into these

classifications.

For instance, when counting R(7), instead of counting all (0,0,k,0,0,0,0) for k = 1 to

35, we can just count the profiles up to k = 17. Part (B) enables us to refer back to R(6)

when considering profiles with a nonzero entry in the first position. The most flexible is

(C), which effectively cuts all computation time in half.

3.2 Profile Generation

Sequence A007695 on the OEIS gives the number of profile vectors for any n, and also

outlines an algorithm that can be used to compute this number [27]. The references in the

OEIS are unpublished and hard to follow; we present the algorithm as Algorithm 5 and

prove that it is correct. This algorithm uses a dynamic programming strategy, where the

matrix K(r,x) is built up from the previous values K(r−1,x).

Lemma 22. For 0 < r ≤ n and 0 < x≤
(n
bn/2c

)
, the (r,x)-th entry of the matrix K output by

Algorithm 5 encodes the smallest number of (r−1)-sets that can be comparable to any of x

number of r-sets.

Proof. Assume first that r = 1, or r−1 = 0. Since K(0,x) = 0 for any x > 0, Line 16 of the

algorithm gives

K(r,x) = K(0,x− k−1)+

(
k−1

0

)
K(r,x) = 1.

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 32

Algorithm 5: Generating all profiles of MBFs on n variables.

Input: n
Output: P(n), the list of profiles of MBFs on n variables

initialize C := zeros
(

n + 1,
(n
bn/2c

)
+ 1
)

;

K := C, C(0,0) = 1, C(0,1) = 1, s = 2 ;
initialize P(n) := zeros(n + 1,n) ;

set the first column of P(n) to the vector [0 1 2 · · · n]T ;
total := n + 1 ;
for r = 1 to n do

d← s, k← r, j← 0, s← 0 ;

xmax =
(n

r

)
;

for x = 0 to xmax do

10 if x≥
(k

r

)
then

k← k + 1 ;
end
if x = 0 then

K(r,x) = 0;
else

16 K(r,x) = K(r−1,x−
(k−1

r

)
)+
(k−1

r−1

)
;

end
18 while j < K(r,x) do

d← d−C(r−1, j) ;
j← j + 1 ;

end
C(r,x) = d;
s← s + d;

end
if r 6= 1 then

26 recent = last C(r,0)−C(r−1,0) rows of P(n) ;
for x = 1 to xmax do

28 candidates = rows of recent with (r−1)-st entry at least K(r,x). ;
Subtract K(r,x) from the (r−1)-st column of candidates ;
Add x to the r-th column of candidates ;
Append candidates to P(n) ;
Update total ← total +size(candidates). ;

end

end

end
Output P(n). ;

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 33

This is true since the empty set is comparable to any number of singleton sets, and there is

only one empty set.

Now assume that r > 1. Again, Line 16 of the algorithm gives the recursion step: K(r,x) =

K(r−1,x−
(k−1

r

)
) +
(k−1

r−1

)
. We consider two cases, one where the value of k was updated in

Line 11 and one where it was not.

Case 1: If k was updated in Line 10, then x is exactly equal to
(k

r

)
before k was incre-

mented by 1. This means, at Line 16, x is equal to
(k−1

r

)
, and hence K(r− 1,x−

(k−1
r

)
) =

K(r− 1,0) = 0. Now if we have the exact collection U =
({1,2,...,k−1}

r

)
, then the number

of (r− 1)-sets contained in our collection of x r-sets must be equal to
(k−1

r−1

)
, counting all

(r−1)-subsets of [k−1] = {1,2, . . . ,k−1}.

Since any other collection of x r-sets must contain at least k elements, then the number

we obtained when we considered U =
({1,2,...,k−1}

r

)
must have been the lower bound for any

such collection. Thus, K(r,x) = K(r− 1,x−
(k−1

r

)
) +
(k−1

r−1

)
must be the lower bound for the

number of (r−1)-sets contained in x r-sets.

Case 2: If k was not updated in Line 10, then
(k−1

r

)
< x <

(k
r

)
. Consider the family of

sets A = U∪V where U is the set of all r-subsets of [k−1], and V contains x−
(k−1

r

)
other

sets, all of which contain the element k.

The number of (r−1)-sets contained in U is just equal to
(k−1

r−1

)
, that is, all possibilities

of taking r−1 elements from [k−1].

As for V , since U already contains all (r− 1)-subsets of [k− 1], we will only count the

number of (r−1)-sets comparable to V which contain the element k. By removing k from all

of the sets in V , we can see that this number is bounded below by the number of (r−2)-sets

that must be contained in any collection of x−
(k−1

r

)
(r−1)-sets, or by induction, the value

K(r−1,
(k−1

r

)
).

Hence, the number of (r− 1)-sets that are necessarily contained in any collection of x

r-sets must be bounded below by K(r,x) = K(r−1,
(k−1

r

)
)+
(k−1

r−1

)
, completing the proof.

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 34

Theorem 23. The list P(n) in Algorithm 5 contains all profiles of monotone Boolean func-

tions on n variables.

Proof. We perform induction on the rightmost nonzero entry in a profile vector.

When P(n) is initialized, the empty profile and all profiles with a single nonzero entry

in the first position are included. This is just the collection of all MBFs with only 1-sets as

minimal terms, and there are n such profiles as there are n such sets in 2[n].

Now assume that P(n) contains all profiles with the rightmost nonzero entry in the r-th

position.

First of all, note that when x = 0, the conditional in Line 18 fails, and so C(r,0) = d,

which was most recently updated to the value of s, the running total of all profiles so far.

This means that C(r,0)−C(r− 1,0) is the number of new profiles added when iterating in

the (r−1)-st row. From Line 26, we can conclude that recent contains exactly the profiles

with rightmost nonzero entry in the (r−1)-st position.

The loop starting at Line 28 looks at K(r,x), which by the previous lemma tells us how

many (r−1)-sets are equivalent to x r-sets. Then all the profiles which have (r−1)-st entry

at least K(r,x) will be taken – this is candidates. The next few lines do a substitution,

replacing this number of (r−1)-sets by x in the r-th entry. This new set of profile vectors is

then appended into the existing list, and values are updated.

Note that we still have to prove the fact that the variable s keeps track of how many

profiles have been generated already. Since s is at each iteration incremented by d, which

is in turn C(r,x), we just have to prove that C(r,x) encodes the number of profiles such that

the rightmost nonzero entry is an x in the rth position. But this is apparent from the loop

starting at Line 18, since we are forcing j to be larger than K(r,x), so that from the previous

row, we are only looking at profiles where the (r−1)-st entry is at least K(r,x). This allows

us to make the substitution we describe above in the loop starting Line 28.

This algorithm does not generate the functions themselves, but only lists the possible

profile vectors an n-variable MBF may have. This is why we the “equivalences” discussed in

the previous proofs are not exact ones, but rather are thresholds above which it is possible

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 35

to perform such a comparison to obtain smaller-sized sets.

Example 24. Here is an example to show what the above algorithm does: Suppose we

wanted to generate all profiles of 5-variable monotone Boolean functions which have two

3-sets and no 4- or 5-sets. The fact that K(3,2) = 5 means that two 3-sets contains at least

five 2-sets.

For instance, the collection {1,2,3},{1,2,4} contains the sets {1,2},{1,3},{2,3},{1,4},{2,4},

a total of five, while the collection {1,2,3},{1,4,5} contains {1,2},{1,3},{1,4},{1,5},{2,3},{4,5},

a total of six.

The algorithm would then look at all profiles generated during the previous r-loop, which

in this case would be

(0,1,0,0,0) (1,2,0,0,0) (0,4,0,0,0) (1,6,0,0,0)

(1,1,0,0,0) (2,2,0,0,0) (1,4,0,0,0) (0,7,0,0,0)

(2,1,0,0,0) (0,3,0,0,0) (0,5,0,0,0) (0,8,0,0,0)

(3,1,0,0,0) (1,3,0,0,0) (1,5,0,0,0) (0,9,0,0,0)

(0,2,0,0,0) (2,3,0,0,0) (0,6,0,0,0) (0,10,0,0,0),

of which the underlined ones have the required minimum of five 2-sets. The last step would

be to subtract 5 from the second entry of these vectors, and to add 2 to the third entry,

resulting in the following profiles with exactly 2 3-sets:

(0,0,2,0,0) (0,2,2,0,0)

(1,0,2,0,0) (0,3,2,0,0)

(0,1,2,0,0) (0,4,2,0,0)

(1,1,2,0,0) (0,5,2,0,0).

Using the algorithm, we can compute the number of profiles of MBFs on n variables,

which is Sequence A007695 on the OEIS:

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 36

n Number of profiles n Number of profiles

0 2 5 96
1 3 6 553
2 5 7 5461
3 10 8 100709
4 26 9 3718354

Table 3.1: Number of profiles for each n, from n = 0 to n = 9.

3.3 Using Profiles to Generate Functions

Using the techniques in the previous section, we are able to generate functions in both

D(n) and R(n) using a strategy similar to the technique of Shmulevich et al. outlined in

Section 2.2.4.

Given a profile (a1,a2, . . . ,an), one way to compute (a1, . . . ,an)D is to take the ai entries

which are nonzero, then perform disjunctions one by one, making sure that subsumption

does not occur.

The main difference with Shmulevich’s technique is that we are breaking down the set

of MBFs into smaller classes by considering the 5461 profiles for n = 7 instead of just “all

MBFs with k minimal terms,” where k is at most 35. This further restricts the search space,

so we will generate many fewer redundant functions. This immediately presents a challenge

– finding the best way to work through the profiles one by one in order to use the available

computing time most efficiently.

Moreover, we still have to consider the process of eliminating equivalent functions in

order to obtain R(7), or at least the R-value of each profile. At present it appears difficult

to extend this technique to computing R(8). This is because it requires generating, rather

than merely counting, a nontrivial fraction of the profiles.

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 37

To explain the algorithm further, let us take the following sequence of profiles:

(0,0,0,0,0,0,0)

(0,0,1,0,0,0,0)

(0,0,2,0,0,0,0)

(0,0,2,1,0,0,0)

(0,0,2,2,0,0,0)

(0,1,2,2,0,0,0)

The algorithm starts at the zero profile, which has only the function f = 0, by our

convention. (We ignore the all-ones function since nothing can be added to it anymore.) To

compute the number of functions with the profile following it, (0,0,1,0,0,0,0)D, we consider

all three-sets which are not subsumed by f = 0. As this is just the set of all functions with

exactly one three-set as its minimal term, we add all
(7

3

)
= 35 of them to our list. Now,

as we are computing (0,0,1,0,0,0,0)R, we would have to do the additional computations of

finding the least representatives of each of these 35 functions, and eliminating duplicates.

By doing this, we are left with only the function with minimal term {3,4,5}, which has a

32-bit integer representation of (15,15,15,15), and hence we get (0,0,1,0,0,0,0)R = 1.

To proceed to (0,0,2,0,0,0,0)R, we now consider all three-sets which are not subsumed by

the set {3,4,5} – all the remaining 34 three-sets. Taking disjunctions, we get the 34 functions

with minimal terms {3,4,5} plus another 3-set, and after getting the least representatives

of each one and eliminating duplicates, we are left with three nonequivalent MBFs with the

profile (0,0,2,0,0,0,0):

(0,0,2,0,0,0,0)R contains (63,63,63,63)

(855,855,855,855)

(218455,196611,218455,196611)

They are the functions with minimal terms {{2,4,5},{3,4,5}}, {{2,3,5},{1,4,5}}, and

{{2,3,4} ,{1,5,6}}. Note that every other MBF which has two 3-sets as minimal terms is

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 38

equivalent to one of these three, which can be determined by the number of elements in the

intersection of the two sets (either two, one, or none).

Continuing the computations, we obtain:

(0,0,1,0,0,0,0)R = 1 (0,0,2,2,0,0,0)R = 94

(0,0,2,0,0,0,0)R = 3 (0,1,2,2,0,0,0)R = 437

(0,0,2,1,0,0,0)R = 14

With the goal of enumerating R(7), we use Lemma 21 to eliminate profiles we do not have

to compute, leaving us with a significantly smaller number of profiles which are “essential.”

However, we will have to compute some profiles more than once, as some profiles whose

R-value can be obtained by symmetry are essential as well.

Moreover, we also generate all MBFs which reside in exactly one level, i.e. uniform-rank

MBFs. This way, we do not have to start all over again from (0,0,0,0,0,0,0) whenever we

begin computation on a new branch. In fact, we try to generate as many lists as we can

in order to save computing time when going through profiles with a large number of terms.

We generate two-level profiles after we generate uniform-level profiles, and then branch off

to three-level profiles.

For instance, we first generated the list of NMBFs with profiles (0,0,a3,0,0,0,0), then

from each of these lists we are building up to all functions with profiles of the form (0,0,a3,a4,0,0,0),

then those with profiles (0,a2,a3,a4,0,0,0). So a typical computation would be, once we have

generated (0,0,5,0,0,0,0), is to generate all (0,0,5,a4,0,0,0) for a4 = 1 to a4 = 25. Then, we

pick the starting point (0,0,5,3,0,0,0) to count all functions in (0,a2,5,3,0,0,0) for a2 = 1

to a2 = 7.

It should be noted that the profiles which are solely contained in the third and fourth

levels are the most difficult to compute, as the presence of any 2-set or 5-set in the MBF

drastically reduces the number of 3-sets or 4-sets that can be added on as a minimal term

without being subsumed. Specifically, a 2-set is contained in five different 3-sets, and
(5

2

)
= 10

different 4-sets. On the other hand, the presence of a 3-set does not reduce the number of

4-sets we have to check for incomparability, as out of 35 4-sets, only four contain any given

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 39

3-set.

The largest profile for R(7) computed so far is that of (0,0,13,2,0,0,0)R = 3136686. As

an illustration, we give in Table 3.3 the list of 95 profiles in R(5) and the number of functions

in each one. Note the list does not include the all-ones function. We also give corresponding

values for D(6) and R(6) in Appendix B.

As a byproduct of the calculations done for R(7), we also extended the known values for

the sequences Rk(n), which we are submitting into the OEIS. The corresponding sequences

for Dk(n) are A051112 to A051118 [27]. We have the new values in Table 3.2 which we have

computed so far.

Out of the estimated D(7)/7!∼ 479 million equivalence classes in R(7), we have counted

over 200 million so far.

k Rk(5) Rk(6) Rk(7)

2 13 22 34
3 30 84 202
4 49 287 1321
5 48 787 8626
6 34 1661 50961
7 18 2630 253104
8 7 3164 1025322
9 2 2890 3365328
10 2 2159 9005678
11 X 1327 19850932

Table 3.2: Partial list of values Rk(n), where values in boldface are new results.

CHAPTER 3. PROFILE GENERATION AND COUNTING R(7) 40

Profile # Profile # Profile # Profile #

(0,0,0,0,0) 1 (0,9,0,0,0) 1 (1,0,3,0,0) 1 (0,2,0,1,0) 1
(1,0,0,0,0) 1 (0,10,0,0,0) 1 (0,1,3,0,0) 6 (0,3,0,1,0) 1
(2,0,0,0,0) 1 (0,0,1,0,0) 1 (0,2,3,0,0) 6 (0,4,0,1,0) 1
(3,0,0,0,0) 1 (1,0,1,0,0) 1 (0,3,3,0,0) 4 (0,0,1,1,0) 1
(4,0,0,0,0) 1 (2,0,1,0,0) 1 (0,4,3,0,0) 1 (0,1,1,1,0) 1
(5,0,0,0,0) 1 (0,1,1,0,0) 2 (0,0,4,0,0) 6 (0,2,1,1,0) 1
(0,1,0,0,0) 1 (1,1,1,0,0) 1 (1,0,4,0,0) 1 (0,0,2,1,0) 2
(1,1,0,0,0) 1 (0,2,1,0,0) 4 (0,1,4,0,0) 6 (0,1,2,1,0) 1
(2,1,0,0,0) 1 (1,2,1,0,0) 1 (0,2,4,0,0) 4 (0,0,3,1,0) 3
(3,1,0,0,0) 1 (0,3,1,0,0) 6 (0,3,4,0,0) 1 (0,1,3,1,0) 1
(0,2,0,0,0) 2 (1,3,1,0,0) 1 (0,4,4,0,0) 1 (0,0,4,1,0) 2
(1,2,0,0,0) 2 (0,4,1,0,0) 6 (0,0,5,0,0) 6 (0,0,5,1,0) 1
(2,2,0,0,0) 1 (0,5,1,0,0) 4 (0,1,5,0,0) 4 (0,0,6,1,0) 1
(0,3,0,0,0) 4 (0,6,1,0,0) 2 (0,2,5,0,0) 1 (0,0,0,2,0) 1
(1,3,0,0,0) 3 (0,7,1,0,0) 1 (0,0,6,0,0) 6 (0,1,0,2,0) 1
(2,3,0,0,0) 1 (0,0,2,0,0) 2 (0,1,6,0,0) 2 (0,0,1,2,0) 1
(0,4,0,0,0) 6 (1,0,2,0,0) 1 (0,0,7,0,0) 4 (0,0,2,2,0) 1
(1,4,0,0,0) 2 (0,1,2,0,0) 4 (0,1,7,0,0) 1 (0,0,3,2,0) 1
(0,5,0,0,0) 6 (1,1,2,0,0) 1 (0,0,8,0,0) 2 (0,0,0,3,0) 1
(1,5,0,0,0) 1 (0,2,2,0,0) 7 (0,0,9,0,0) 1 (0,0,1,3,0) 1
(0,6,0,0,0) 6 (0,3,2,0,0) 6 (0,0,10,0,0) 1 (0,0,0,4,0) 1
(1,6,0,0,0) 1 (0,4,2,0,0) 4 (0,0,0,1,0) 1 (0,0,0,5,0) 1
(0,7,0,0,0) 4 (0,5,2,0,0) 1 (1,0,0,1,0) 1 (0,0,0,0,1) 1
(0,8,0,0,0) 2 (0,0,3,0,0) 4 (0,1,0,1,0) 1 TOTAL 209

Table 3.3: Number of nonequivalent five-variable MBFs by profile.

Chapter 4

Conclusion and Future Work

This thesis looked at the Dedekind numbers and the various ways that they can be counted.

We mentioned that monotone Boolean functions play a significant role in many fields in

mathematics, especially in computational biology, image processing, and learning theory.

We propose a strategy for counting nonequivalent monotone Boolean functions by break-

ing the problem into parts based on the profiles of the functions. We described how to

generate all profiles of n-variable MBFs.

This computation of R(7) is still ongoing, however from partial results we have already

extended a series of sequences on The Online Encyclopedia of Integer Sequences [27]. Specif-

ically, we have computed the terms for n = 7 for the sequences of NMBFs which count Rk(n)

for k = 4,5, . . . ,11, and look to finish this for up to k = 35.

It is not clear if this calculation can be leveraged to help compute D(9). It is tempting to

try to combine a complete generation of R(7) with the enumeration strategy of Section 2.2.3,

but it is not clear how this would work.

41

Bibliography

[1] C. Berge. Hypergraphs - Combinatorics of Finite Sets, volume 45 of North Holland
Mathematical Library. Elsevier, 1989.

[2] J. Berman and P. Köhler. Cardinalities of finite distributive lattices. Mitt. Math. Sem.
Giessen, (Heft 121):103–124, 1976.

[3] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra. Springer-Verlag,
1981.

[4] G. Chartrand and L. Lesniak. Graphs and Digraphs. Chapman and Hall, fourth edition,
2004.

[5] R. Church. Numerical analysis of certain free distributive structures. Duke Mathemat-
ical Journal, 6(3):732–734, 1940.

[6] R. Church. Enumeration by rank of the free distributive lattice with 7 generators.
Notices of the American Mathematical Society, (11):724, 1965.

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms.
MIT Press, 3rd edition, 2009.

[8] R. Dedekind. Über Zerlegungen von Zahlen durch ihre grossten gemeinsamen Teiler.
In Ges. Werke, Vol. 2, pages 103–148, 1897.

[9] T. Eiter, K. Makino, and G. Gottlob. Computational aspects of monotone dualization:
A brief survey. Discrete Applied Mathematics, 156:2035–2049, 2008.

[10] K. Engel. Sperner Theory. Cambridge University Press, 1997.

[11] J.D. Farley. Breaking Al Qaeda cells: A mathematical analysis of counterterrorism
operations (A guide for risk assessment and decision making). Studies in Conflict and
Terrorism, 26:399–411, 2003.

[12] R. Fidytek, A. Mostowski, R. Somla, and A. Szepietowski. Algorithms counting mono-
tone boolean functions. Information Processing Letters, 79:203–209, 2001.

[13] M. Fredman and L. Khachiyan. On the complexity of dualization of monotone disjunc-
tive normal forms. J. Algorithms, 21:618–628, 1996.

42

BIBLIOGRAPHY 43

[14] B. Ganter and R. Wille. Applied lattice theory: Formal concept analy-
sis. http://wwwbib.mathematik.tu-darmstadt.de/Math-Net/Preprints/Listen/

pp97.html, 1997.

[15] U. Haus, S. Klamt, and T. Stephen. Computing knock-out strategies in metabolic
networks. J. Comput. Biol., 15(3):259–268, 2008.

[16] H. Ito, M. Kobayashi, and G. Nakamura. Semi-distance codes and steiner systems.
Graph. Comb., 23:283–290, February 2007.

[17] G. Kilibarda and V. Jovovic. On the number of monotone boolean functions with fixed
number of lower units (in Russian). Intellektualnye sistemy, 7(1-4):193–217, 2003.

[18] A. Kisielewicz. A solution of Dedekind’s problem on the number of isotone boolean
functions. J. Reine Angew. Math., 386:139–144, 1988.

[19] S. Klamt and E.D. Gilles. Minimal cut sets in biochemical reaction networks. Bioin-
formatics, 20(2):226–234, 2004.

[20] D. Kleitman. On Dedekind’s problem: The number of monotone boolean functions.
Proc. Amer. Math. Soc., 21:677–682, 1969.

[21] A. Korshunov. Monotone boolean functions. Russian Mathematical Surveys, 58(5):929–
1001, 2003.

[22] E. Luks. Hypergraph isomorphism and structural equivalence of boolean functions. In
Proceedings of the thirty-first annual ACM symposium on Theory of computing, STOC
’99, pages 652–658, New York, NY, USA, 1999. ACM.

[23] E. Reck. Dedekindś contributions to the foundations of mathematics. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philosophy. Fall 2011 edition, 2011.

[24] F. Riquelme and A. Polyméris. On the complexity of the decisive problem in simple
and weighted games. Electronic Notes in Discrete Mathematics, 37:21–26, 2011.

[25] I. Shmulevich. Computational learning theory. http://personal.systemsbiology.

net/ilya/LEARN.htm.

[26] I. Shmulevich, T. M. Sellke, M. Gabbouj, and E. J. Coyle. Stack filters and free
distributive lattices. In Proceedings of the 1995 IEEE Workshop on Nonlinear Signal
and Image Processing, pages 927–930, Halkidiki, Greece, 1995.

[27] N. J. A. Sloane. The online encyclopedia of integer sequences. http://oeis.org, 2011.

[28] M. Ward. Note on the order of free distributive lattices. Bulletin of the American
Mathematical Society, (52):423, 1946.

BIBLIOGRAPHY 44

[29] E. Weisstein. Mathworld - A Wolfram Web Resource. http://mathworld.wolfram.

com/Antichain. Antichain.

[30] D. Wiedemann. A computation of the eight Dedekind number. Order, 8(1):5–6, 1991.

Appendix A

R(7) Profile Values

In this appendix we list some of the profiles that have been computed, their respective values,

and the time it took to compute them. Specifically, we give the totals for each one-level

and two-level profile we have so far; we omit those profiles which have a nonzero entry in

the first or sixth position in the profile vector as these ones can be derived from the list of

profiles of R(6), and profile (0,0,0,0,0,0,1) which is trivial. Currently we have enumerated

over 90% of all 7-variable profiles.

Calculations were done primarily on the SFU-Surrey Optima Cluster, with a few others

on the IRMACS Computational Cluster, hence the CPU times specified here do not come

from a consistent source. Moreover, these calculations were also done using a version of the

code which used binary search to do lookups and insertions. We have since transitioned to

a new version of the code that implements the hash tables described in Section 2.1.2.

All times given are in CPU seconds.

A.1 Profiles (0,a2,0,0,0,0,0) and (0,0,a3,0,0,0,0)

Note that these are sequences A008406 and A092337 from [27]. The times given measure

how long it took to generate that particular (0,a2,0,0,0,0,0)R from the previous (0,a2−

1,0,0,0,0,0)R (as for (0,0,a3,0,0,0,0,0)). We can get the values for the “complementary

45

APPENDIX A. R(7) PROFILE VALUES 46

profiles” via Lemma 21, as well as the values for all the fourth-level and fifth-level profiles.

a2, 21−a2 # NMBFs Time

1, 20 1 0.9
2, 19 2 0.87
3, 18 5 1.61
4, 17 10 3.83
5, 16 21 7.21
6, 15 41 14.28
7, 14 65 26.11
8, 13 97 38.69
9, 12 131 53.44
10, 11 148 66.74

a3, 35−a3 # NMBFs Time

1, 34 1 1.47
2, 33 3 1.27
3, 32 10 3.68
4, 31 38 11.91
5, 30 137 44.26
6, 29 509 154.32
7, 28 1760 555.93
8, 27 5557 1856.04
9, 26 15709 5668.99
10, 25 39433 15584.74
11, 24 87659 38884.67
12, 23 172933 86818.52
13, 22 303277 175482.74
14, 21 473827 305039.96
15, 20 660950 461243.95
16, 19 824410 670002.13
17, 18 920446 972417.16

Table A.1: Values and times for second-level and third-level profile generation.

A.2 Two-level profiles

The hardest to compute are the profiles of the form (0,0,a3,a4,0,0,0). We have not yet

finished computing these profiles; here we list the ones that are done. Note that by symmetry,

we do not list those with a3 < a4.

We also list all two-level profiles of the form (0,a2,a3,0,0,0,0) and (0,a2,0,a4,0,0,0).

APPENDIX A. R(7) PROFILE VALUES 47

a 3
a 4

#
N
M
B
F
s

T
im

e

1
1

3
1
.2
2

2
1

1
4

3
.0
1

3
1

7
2

8
.4
5

4
1

3
4
7

2
9
.1
5

5
1

1
5
2
2

9
2
.9
1

6
1

5
9
4
5

3
4
7
.7

7
1

2
0
0
3
3

1
0
4
9
.3
2

8
1

5
8
1
8
4

2
3
8
6
.9

9
1

1
4
5
9
6
2

6
0
0
3
.2
5

1
0

1
3
1
7
5
2
5

2
3
7
4
3
.6
1

1
1

1
6
0
1
9
6
3

8
0
6
7
4
.8

1
2

1
9
9
8
9
2
6

2
4
2
7
8
6
.1
3

1
3

1
1
4
5
6
0
0
7

9
4
2
8
0
.6
6

1
4

1
1
8
6
9
0
1
1

5
0
1
5
4
4
.0
4

1
5

1
2
1
1
6
6
9
1

5
0
4
0
5
1
.8
1

1
6

1
2
1
1
6
6
9
1

5
2
0
7
0
5
.1

1
7

1
1
8
6
9
0
1
1

5
0
1
3
5
5

1
8

1
1
4
5
6
0
0
7

3
7
6
1
6
1
.8
2

1
9

1
9
9
8
9
2
6

1
8
8
4
8
1
.8
3

2
0

1
6
0
1
9
6
3

8
0
6
4
4
.9
7

2
1

1
3
1
7
5
2
5

1
9
6
7
2
.8
2

2
2

1
1
4
5
9
6
2

9
2
0
8
.9
4

2
3

1
5
8
1
8
4

1
4
2
7
3
4
.5
6

2
4

1
2
0
0
3
3

2
8
9
8
2
.8
8

2
5

1
5
9
4
5

6
2
7
8
.3
3

2
6

1
1
5
2
2

1
3
6
6
.8
8

2
7

1
3
4
7

2
8
3
.1
2

2
8

1
7
2

5
1
.0
5

2
9

1
1
4

7
.9
6

3
0

1
3

1
.0
6

3
1

1
1

0
.1
2

a 3
a 4

#
N
M
B
F
s

T
im

e

2
2

9
4

1
5
.1
8

3
2

5
4
1

1
0
2
.1
7

4
2

2
7
4
1

2
5
0
.6
1

5
2

1
1
6
3
7

9
6
6
.0
4

6
2

4
1
3
7
7

4
0
1
9
.3
9

7
2

1
2
3
1
8
4

1
3
5
5
6
.1
1

8
2

3
0
9
7
1
1

3
2
5
8
7
.9
1

9
2

6
6
2
7
5
0

9
5
6
3
5
.1

1
0

2
1
2
1
5
8
0
1

4
8
3
9
6
1
.3

1
1

2
1
9
2
3
3
1
8

1
1
9
5
4
7
7
.0
2

1
2

2
2
6
3
5
1
8
0

2
3
2
3
9
5
4
.5
4

1
3

2
3
1
3
6
6
8
6

2
8
1
4
6
4
.5
3

1
4

2
1
5

2
2
9
3
1
2
5
7

1
2
6
1
4
4
4
.5
8

1
6

2
1
7

2
1
8

2
9
2
6
8
6
8

2
0
8
5
5
3
.3
4

1
9

2
4
7
2
0
9
0

9
8
8
8
0
.6
3

2
0

2
2
0
6
2
6
3

7
0
0
1
1
.6
7

2
1

2
7
6
8
2
2

1
6
5
9
2
.8
1

2
2

2
2
4
2
3
8

3
5
8
5
.5
4

2
3

2
6
4
5
4

7
5
1
.7
2

2
4

2
1
4
5
6

1
5
5
9
.6
2

2
5

2
2
8
1

2
7
6
.7
2

2
6

2
4
8

3
9
.4

2
7

2
8

4
.4
8

2
8

2
1

0
.3
4

a 3
a 4

#
N
M
B
F
s

T
im

e

3
3

3
2
5
0

5
0
9
.3
9

4
3

1
5
6
5
9

2
9
5
1
.8
2

5
3

6
0
2
2
3

8
0
4
8
.2
8

6
3

1
8
7
9
6
7

2
6
8
6
4
.2
3

7
3

4
8
2
4
4
9

1
4
1
9
9
1
.3
9

8
3

1
0
3
1
7
4
1

5
5
4
4
0
2
.8
8

9
3

1
8
5
7
4
2
4

1
7
0
6
4
6
1
.3

1
0

3
1
1

3
1
2

3
1
3

3
1
4

3
1
5

3
1
6

3
1
7

3
1
8

3
3
1
0
9
3
7

6
9
4
2
8
.4
2

1
9

3
1
1
4
2
4
1

2
8
3
5
7
.8
3

2
0

3
3
5
1
2
6

7
8
5
8
.4
4

2
1

3
8
9
9
2

1
6
4
8
.5
6

2
2

3
1
9
2
5

3
1
4
.2
7

2
3

3
3
4
7

5
3
.7
5

2
4

3
5
6

4
2
.2
8

2
5

3
8

4
.5
3

2
6

3
1

0
.3
4

T
a
b
le

A
.2

:
M

id
d

le
-l

ev
el

p
ro

fi
le

s
w

it
h

a 3
>

0,
a 4

=
1,

2,
3.

APPENDIX A. R(7) PROFILE VALUES 48

a 3
a 4

#
N
M
B
F
s

T
im

e

4
4

6
7
8
7
1

1
2
2
6
1
.9
4

5
4

2
2
8
3
0
9

4
2
2
9
8
.7
2

6
4

6
1
2
3
4
2

4
3
8
4
1
8
.6
1

7
4

1
3
3
4
0
5
5

2
3
1
8
7
2
4
.1
3

1
8

4
6
4
4
6
0

1
6
6
1
5
.7
1

1
9

4
1
7
3
2
9

4
7
9
8
.1
2

2
0

4
3
9
3
4

8
1
0
.9
2

2
1

4
7
7
6

1
5
2
.2
1

2
2

4
1
3
6

2
4
.7
3

2
3

4
2
3

3
.8

2
4

4
4

2
.0
5

2
5

4
1

0
.2
2

a 3
a 4

#
N
M
B
F
s

T
im

e

5
5

6
5
9
9
9
7

3
7
5
9
2
0
.9

6
5

1
5
0
1
5
6
0

1
4
3
5
9
2
4
.0
8

1
8

5
1
0
5
1
3

3
4
7
0
.7
5

1
9

5
2
4
7
4

8
1
4
.0
8

2
0

5
5
6
1

1
2
2
.6

2
1

5
1
3
3

2
6
.0
6

2
2

5
3
0

5
.1
9

2
3

5
8

4
.0
3

2
4

5
2

0
.7
8

2
5

5
1

0
.1

a 3
a 4

#
N
M
B
F
s

T
im

e

1
8

6
1
4
4
5

5
6
6
.5
5

1
9

6
2
8
1

1
0
4
.2
4

2
0

6
4
7

1
1
.8

2
1

6
8

1
.7
8

2
2

6
1

0
.3
7

1
8

7
1
4
3

5
1
.2
2

1
9

7
1
9

6
.7
3

2
0

7
1

0
.2
8

1
8

8
1
5

5
.6

1
9

8
2

0
.5
8

1
8

9
4

0
.9

1
9

9
1

0
.1
5

T
a
b
le

A
.3

:
P

ar
ti

al
re

su
lt

s
fo

r
m

id
d

le
-l

ev
el

p
ro

fi
le

s
w

it
h

a 3
>

0,
a 4

=
4,

5,
..
.,

9.

APPENDIX A. R(7) PROFILE VALUES 49

a2 a3 # Time

1 1 2 2.18
2 1 7 3.93
3 1 21 8.16
4 1 53 15.29
5 1 115 28.6
6 1 219 51.53
7 1 341 84.06
8 1 449 128.86
9 1 494 185.85
10 1 449 249.96
11 1 341 312.82
12 1 219 369.18
13 1 115 413.23
14 1 53 443.48
15 1 21 461.08
16 1 7 470.82
17 1 2 475.15
18 1 1 477.03
1 2 10 4.71
2 2 38 11.53
3 2 118 27.11
4 2 299 55.21
5 2 604 99.68
6 2 989 159.96
7 2 1295 218.14
8 2 1367 266.87
9 2 1170 302.05
10 2 805 328.32
11 2 448 355.76
12 2 202 388.32
13 2 75 419.92
14 2 22 445.31
15 2 6 461.36
16 2 1 471.05
1 3 43 16.91
2 3 183 50.59
3 3 555 128.35
4 3 1272 266.35
5 3 2219 444.87
6 3 3004 609.19
7 3 3139 678.28
8 3 2572 638.93
9 3 1650 538.84
10 3 824 445.74
11 3 323 401.04
12 3 103 401.68
13 3 25 423.2
14 3 5 445.62
15 3 1 461.62

a2 a3 # Time

1 4 199 67.57
2 4 811 231.24
3 4 2210 580.83
4 4 4339 1111.24
5 4 6245 1624.58
6 4 6744 1864.5
7 4 5492 1689.72
8 4 3405 1261.46
9 4 1618 830.05
10 4 586 547.94
11 4 170 428.28
12 4 41 407.19
13 4 9 424.16
14 4 2 445.6
15 4 1 461.78
1 5 806 292.37
2 5 3020 993.44
3 5 7109 2287.24
4 5 11563 3843.98
5 5 13346 4707.73
6 5 11254 4449.96
7 5 6969 3287.9
8 5 3203 1990.27
9 5 1097 1076.36
10 5 287 609.68
11 5 57 440.18
12 5 10 408.94
13 5 1 424.3
1 6 2977 1166.13
2 6 9643 3706.46
3 6 18883 7503.01
4 6 24744 10631.99
5 6 22473 10844.22
6 6 14536 8410.99
7 6 6748 5080.26
8 6 2279 2591.7
9 6 581 1222.06
10 6 110 634.71
11 6 18 443.91
12 6 2 409.35
1 7 9510 4271.41
2 7 25843 12122.74
3 7 41176 20689.65
4 7 42740 24297.08
5 7 29977 20417.63
6 7 14640 13033.91
7 7 5028 6622.66
8 7 1259 2969.9
9 7 239 1289.12
10 7 36 643.87
11 7 7 445.37
12 7 1 409.57

a2 a3 # Time

1 8 26314 14044.81
2 8 58617 33554.36
3 8 74633 48217.86
4 8 60345 46500.62
5 8 32192 32148.14
6 8 11720 17211.42
7 8 2987 7670.79
8 8 558 3169.05
9 8 83 1314.82
10 8 10 646.38
11 8 2 445.99
1 9 62852 39626.24
2 9 112940 81732.29
3 9 113123 97845.45
4 9 70122 76078
5 9 28008 43956
6 9 7578 20694.93
7 9 1448 8341.99
8 9 212 3238.14
9 9 25 1347.24
10 9 3 669.1
11 9 1 460.15
1 10 130228 102687.9
2 10 185970 19046.2
3 10 144281 22167.04
4 10 67448 12736.89
5 10 19949 4619.75
6 10 4057 1075.31
7 10 615 183.2
8 10 74 23.01
9 10 9 2.26
10 10 2 0.4
11 10 1 0.1
1 11 234746 43095.31
2 11 262724 152259.26
3 11 155305 127955.06
4 11 53849 46662.01
5 11 11673 6491.5
6 11 1846 957.14
7 11 227 129.86
8 11 20 11.13
9 11 1 0.48
1 12 369736 22017.68
2 12 319639 39525.49
3 12 141496 23294.27
4 12 35745 7743.52
5 12 5719 1477.21
6 12 776 217.3
7 12 84 26.11
8 12 5 1.64

Table A.4: Two-level profiles where a2 > 0 and a3 = 1,2, . . . ,12.

APPENDIX A. R(7) PROFILE VALUES 50

a2 a3 # Time

1 13 510312 76763.32
2 13 335487 127572.36
3 13 109069 60686.65
4 13 19763 7423.41
5 13 2386 999.93
6 13 314 147.17
7 13 26 11.42
8 13 1 0.54
1 14 618609 157278.07
2 14 303972 111095.75
3 14 71043 26390.56
4 14 9099 1983.98
5 14 876 193.27
6 14 129 28.24
7 14 8 2.05
1 15 659478 52662.91
2 15 237654 27990.91
3 15 39009 6828.45
4 15 3515 822.52
5 15 290 78.82
6 15 50 11.75
7 15 2 0.75
1 16 618609 45764.57
2 16 160040 18548.9
3 16 18007 3320.16
4 16 1146 296.06
5 16 93 20.87
6 16 23 3.86
7 16 1 0.1
1 17 510312 587856.85
2 17 92532 10499.29
3 17 6948 1156.75
4 17 326 71.57
5 17 26 5.58
6 17 7 3.62
1 18 369736 40675.73
2 18 45759 8793.74
3 18 2253 713.13
4 18 80 30.7
5 18 7 3.18
6 18 3 0.91

a2 a3 # Time

1 19 234746 25688.81
2 19 19281 4836.84
3 19 618 361.61
4 19 19 14.22
5 19 2 0.64
6 19 1 0.26
1 20 130228 16284.07
2 20 6891 2328.13
3 20 146 153.22
4 20 4 2.31
5 20 1 0.1
6 20 1 0.06
1 21 62852 4170.92
2 21 2090 418.37
3 21 30 11.77
4 21 1 0.18
1 22 26314 2703.68
2 22 545 156.35
3 22 7 2.96
1 23 9510 1103.03
2 23 123 51.92
3 23 1 0.62
1 24 2977 414.28
2 24 25 11.9
1 25 806 213.89
2 25 5 4.13
1 26 199 79.27
2 26 1 0.96
1 27 43 21.12
1 28 10 4.64
1 29 2 0.73
1 30 1 0.08

Table A.5: Two-level profiles where a2 > 0 and a3 = 13,14, . . . ,30.

APPENDIX A. R(7) PROFILE VALUES 51

a2 a4 # Time

1 1 2 0.6
2 1 6 1.01
3 1 15 2.78
4 1 30 6.42
5 1 53 11.74
6 1 80 18.79
7 1 94 25.45
8 1 94 26.54
9 1 80 23.26
10 1 53 16.91
11 1 30 9.37
12 1 15 4.26
13 1 6 1.61
14 1 2 0.44
15 1 1 0.08
1 2 8 1.54
2 2 24 2.94
3 2 52 7.91
4 2 88 15.38
5 2 116 23.19
6 2 121 26.88
7 2 98 24.15
8 2 64 16.49
9 2 34 8.74
10 2 14 3.5
11 2 4 1.01
12 2 1 0.16
1 3 28 2.67
2 3 76 6.88
3 3 131 16.79
4 3 165 25.48
5 3 156 28.06
6 3 115 23.11
7 3 65 14.43
8 3 29 6.95
9 3 12 2.5
10 3 3 0.75
11 3 1 0.12
1 4 106 9.05
2 4 222 22.53
3 4 283 42.3
4 4 259 47.66
5 4 179 39.57
6 4 102 24.1
7 4 44 12.07
8 4 18 5.15
9 4 8 1.93
10 4 3 0.75
11 4 1 0.15

a2 a4 # Time

1 5 338 21.64
2 5 519 49.49
3 5 472 69.21
4 5 314 57.97
5 5 169 35.95
6 5 75 17.81
7 5 25 6.97
8 5 8 2.27
9 5 4 0.86
10 5 2 0.39
11 5 1 0.11
1 6 980 51.58
2 6 1034 308.35
3 6 658 187.83
4 6 328 88.55
5 6 142 40.03
6 6 51 13.98
7 6 9 2.21
8 6 1 0.24
1 7 2431 121.78
2 7 1710 930.84
3 7 756 346.89
4 7 299 132.06
5 7 125 49.64
6 7 38 15.65
7 7 4 1.11
1 8 5209 268.97
2 8 2374 1445.67
3 8 724 377.75
4 8 247 120.92
5 8 104 47.78
6 8 30 12.99
7 8 2 0.49
1 9 9520 386.91
2 9 2739 2147.48
3 9 585 337.88
4 9 177 96.09
5 9 79 38.98
6 9 23 10.43
7 9 1 0.13
1 10 14964 636.63
2 10 2658 2175.6
3 10 392 246.45
4 10 111 63.42
5 10 52 26.79
6 10 15 7.44

a2 a4 # Time

1 11 20179 923.6
2 11 2155 1947.76
3 11 222 146.35
4 11 58 34.37
5 11 29 15.28
6 11 9 4.43
1 12 23428 13683.82
2 12 1466 1366.36
3 12 105 69.91
4 12 25 14.79
5 12 13 6.87
6 12 5 2.16
1 13 23428 14124.69
2 13 829 848.36
3 13 42 27.08
4 13 9 4.8
5 13 5 2.33
6 13 2 0.89
1 14 20179 12751.55
2 14 396 405.34
3 14 13 8.06
4 14 3 1.17
5 14 2 0.62
6 14 1 0.25
1 15 14964 9764.05
2 15 158 165.28
3 15 4 1.73
4 15 1 0.2
5 15 1 0.13
6 15 1 0.07
1 16 9520 6306.94
2 16 53 53.57
3 16 1 0.3
1 17 5209 3469.36
2 17 15 13.3
1 18 2431 1603.3
2 18 4 2.59
1 19 980 637.02
2 19 1 0.38
1 20 338 216.36
1 21 106 62.11
1 22 28 15.64
1 23 8 3.11
1 24 2 0.6
1 25 1 0.08

Table A.6: Two-level profiles where a2,a4 > 0.

Appendix B

Values of D(6) and R(6) for each

Profile

We give here the table of values for D(6) and R(6) corresponding to each profile. Note that

we omit the a6 term since it is equal to 0 for all but one profile, which is (0,0,0,0,0,1). This

profile has 1 function for both D(6) and R(6). Note that we do get the correct totals of

D(6) = 7828354 and R(6) = 16353.

52

APPENDIX B. VALUES OF D(6) AND R(6) FOR EACH PROFILE 53

a1a2a3a4a5 D R
0 0 0 0 0 1 1
1 0 0 0 0 6 1
2 0 0 0 0 15 1
3 0 0 0 0 20 1
4 0 0 0 0 15 1
5 0 0 0 0 6 1
6 0 0 0 0 1 1
0 1 0 0 0 15 1
1 1 0 0 0 60 1
2 1 0 0 0 90 1
3 1 0 0 0 60 1
4 1 0 0 0 15 1
0 2 0 0 0 105 2
1 2 0 0 0 270 2
2 2 0 0 0 225 2
3 2 0 0 0 60 1
0 3 0 0 0 455 5
1 3 0 0 0 720 4
2 3 0 0 0 300 3
3 3 0 0 0 20 1
0 4 0 0 0 1365 9
1 4 0 0 0 1260 6
2 4 0 0 0 225 2
0 5 0 0 0 3003 15
1 5 0 0 0 1512 6
2 5 0 0 0 90 1
0 6 0 0 0 5005 21
1 6 0 0 0 1260 6
2 6 0 0 0 15 1
0 7 0 0 0 6435 24
1 7 0 0 0 720 4
0 8 0 0 0 6435 24
1 8 0 0 0 270 2
0 9 0 0 0 5005 21
1 9 0 0 0 60 1
0 10 0 0 0 3003 15
1 10 0 0 0 6 1
0 11 0 0 0 1365 9
0 12 0 0 0 455 5
0 13 0 0 0 105 2
0 14 0 0 0 15 1
0 15 0 0 0 1 1
0 0 1 0 0 20 1
1 0 1 0 0 60 1
2 0 1 0 0 60 1
3 0 1 0 0 20 1
0 1 1 0 0 240 2
1 1 1 0 0 420 2
2 1 1 0 0 180 1
0 2 1 0 0 1320 6
1 2 1 0 0 1260 4
2 2 1 0 0 180 1

a1a2a3a4a5 D R
0 3 1 0 0 4400 15
1 3 1 0 0 2100 6
2 3 1 0 0 60 1
0 4 1 0 0 9900 26
1 4 1 0 0 2100 6
0 5 1 0 0 15840 38
1 5 1 0 0 1260 4
0 6 1 0 0 18480 44
1 6 1 0 0 420 2
0 7 1 0 0 15840 38
1 7 1 0 0 60 1
0 8 1 0 0 9900 26
0 9 1 0 0 4400 15
0 10 1 0 0 1320 6
0 11 1 0 0 240 2
0 12 1 0 0 20 1
0 0 2 0 0 190 3
1 0 2 0 0 270 2
2 0 2 0 0 90 1
0 1 2 0 0 1800 8
1 1 2 0 0 1260 4
2 1 2 0 0 90 1
0 2 2 0 0 7650 23
1 2 2 0 0 2340 7
0 3 2 0 0 19200 48
1 3 2 0 0 2160 6
0 4 2 0 0 31500 72
1 4 2 0 0 990 4
0 5 2 0 0 35280 80
1 5 2 0 0 180 1
0 6 2 0 0 27300 64
0 7 2 0 0 14400 38
0 8 2 0 0 4950 17
0 9 2 0 0 1000 6
0 10 2 0 0 90 1
0 0 3 0 0 1140 7
1 0 3 0 0 720 4
2 0 3 0 0 60 1
0 1 3 0 0 8400 23
1 1 3 0 0 2100 6
0 2 3 0 0 27060 61
1 2 3 0 0 2160 6
0 3 3 0 0 49860 102
1 3 3 0 0 900 4
0 4 3 0 0 57660 115
1 4 3 0 0 120 1
0 5 3 0 0 43140 91
0 6 3 0 0 20700 48
0 7 3 0 0 6060 19
0 8 3 0 0 960 5
0 9 3 0 0 60 1
0 0 4 0 0 4845 21

a1a2a3a4a5 D R
1 0 4 0 0 1260 6
2 0 4 0 0 15 1
0 1 4 0 0 27300 62
1 1 4 0 0 2100 6
0 2 4 0 0 65175 133
1 2 4 0 0 990 4
0 3 4 0 0 85530 169
1 3 4 0 0 120 1
0 4 4 0 0 66900 137
1 4 4 0 0 30 1
0 5 4 0 0 31605 74
0 6 4 0 0 8745 28
0 7 4 0 0 1350 7
0 8 4 0 0 135 2
0 9 4 0 0 15 1
0 0 5 0 0 15504 43
1 0 5 0 0 1512 6
0 1 5 0 0 65520 124
1 1 5 0 0 1260 4
0 2 5 0 0 112860 208
1 2 5 0 0 180 1
0 3 5 0 0 101640 190
0 4 5 0 0 51120 103
0 5 5 0 0 14364 38
0 6 5 0 0 2220 8
0 7 5 0 0 180 1
0 0 6 0 0 38760 94
1 0 6 0 0 1260 6
0 1 6 0 0 120120 220
1 1 6 0 0 420 2
0 2 6 0 0 144540 266
0 3 6 0 0 85260 167
0 4 6 0 0 25950 63
0 5 6 0 0 4260 16
0 6 6 0 0 420 2
0 0 7 0 0 77520 161
1 0 7 0 0 720 4
0 1 7 0 0 171600 297
1 1 7 0 0 60 1
0 2 7 0 0 138600 252
0 3 7 0 0 50400 106
0 4 7 0 0 8700 25
0 5 7 0 0 1020 6
0 6 7 0 0 60 1
0 0 8 0 0 125970 249
1 0 8 0 0 270 2
0 1 8 0 0 193050 334
0 2 8 0 0 99495 191
0 3 8 0 0 20535 51
0 4 8 0 0 1935 8
0 5 8 0 0 270 2
0 0 9 0 0 167960 312

a1a2a3a4a5 D R
1 0 9 0 0 60 1
0 1 9 0 0 171600 297
0 2 9 0 0 52800 108
0 3 9 0 0 5480 18
0 4 9 0 0 300 2
0 5 9 0 0 60 1
0 0 10 0 0 184760 352
1 0 10 0 0 6 1
0 1 10 0 0 120120 220
0 2 10 0 0 20130 50
0 3 10 0 0 860 6
0 4 10 0 0 30 1
0 5 10 0 0 6 1
0 0 11 0 0 167960 312
0 1 11 0 0 65520 124
0 2 11 0 0 5220 16
0 3 11 0 0 60 1
0 0 12 0 0 125970 249
0 1 12 0 0 27300 62
0 2 12 0 0 825 5
0 0 13 0 0 77520 161
0 1 13 0 0 8400 23
0 2 13 0 0 60 1
0 0 14 0 0 38760 94
0 1 14 0 0 1800 8
0 0 15 0 0 15504 43
0 1 15 0 0 240 2
0 0 16 0 0 4845 21
0 1 16 0 0 15 1
0 0 17 0 0 1140 7
0 0 18 0 0 190 3
0 0 19 0 0 20 1
0 0 20 0 0 1 1
0 0 0 1 0 15 1
1 0 0 1 0 30 1
2 0 0 1 0 15 1
0 1 0 1 0 135 2
1 1 0 1 0 120 1
0 2 0 1 0 540 4
1 2 0 1 0 180 1
0 3 0 1 0 1260 6
1 3 0 1 0 120 1
0 4 0 1 0 1890 9
1 4 0 1 0 30 1
0 5 0 1 0 1890 9
0 6 0 1 0 1260 6
0 7 0 1 0 540 4
0 8 0 1 0 135 2
0 9 0 1 0 15 1
0 0 1 1 0 240 2
1 0 1 1 0 180 1

Table B.1: D(6) and R(6) by profile.

APPENDIX B. VALUES OF D(6) AND R(6) FOR EACH PROFILE 54

a1a2a3a4a5 D R
0 1 1 1 0 1620 5
1 1 1 1 0 360 1
0 2 1 1 0 4680 13
1 2 1 1 0 180 1
0 3 1 1 0 7500 18
0 4 1 1 0 7200 18
0 5 1 1 0 4140 11
0 6 1 1 0 1320 5
0 7 1 1 0 180 1
0 0 2 1 0 1800 8
1 0 2 1 0 450 2
0 1 2 1 0 8910 21
1 1 2 1 0 360 1
0 2 2 1 0 18000 40
0 3 2 1 0 18900 40
0 4 2 1 0 10800 25
0 5 2 1 0 3150 10
0 6 2 1 0 360 1
0 0 3 1 0 8400 23
1 0 3 1 0 600 3
0 1 3 1 0 29700 57
1 1 3 1 0 120 1
0 2 3 1 0 40320 80
0 3 3 1 0 26100 52
0 4 3 1 0 8160 22
0 5 3 1 0 1200 6
0 6 3 1 0 120 1
0 0 4 1 0 27300 62
1 0 4 1 0 450 2
0 1 4 1 0 66825 118
0 2 4 1 0 57960 109
0 3 4 1 0 21300 46
0 4 4 1 0 3420 10
0 5 4 1 0 450 2
0 0 5 1 0 65520 124
1 0 5 1 0 180 1
0 1 5 1 0 106920 176
0 2 5 1 0 55440 104
0 3 5 1 0 10260 23
0 4 5 1 0 900 3
0 5 5 1 0 180 1
0 0 6 1 0 120120 220
1 0 6 1 0 30 1
0 1 6 1 0 124740 212
0 2 6 1 0 35280 73
0 3 6 1 0 2700 10
0 4 6 1 0 150 2
0 5 6 1 0 30 1
0 0 7 1 0 171600 297
0 1 7 1 0 106920 176
0 2 7 1 0 14400 33
0 3 7 1 0 300 2

a1a2a3a4a5 D R
0 0 8 1 0 193050 334
0 1 8 1 0 66825 118
0 2 8 1 0 3420 11
0 0 9 1 0 171600 297
0 1 9 1 0 29700 57
0 2 9 1 0 360 3
0 0 10 1 0 120120 220
0 1 10 1 0 8910 21
0 0 11 1 0 65520 124
0 1 11 1 0 1620 5
0 0 12 1 0 27300 62
0 1 12 1 0 135 2
0 0 13 1 0 8400 23
0 0 14 1 0 1800 8
0 0 15 1 0 240 2
0 0 16 1 0 15 1
0 0 0 2 0 105 2
1 0 0 2 0 60 1
0 1 0 2 0 540 4
1 1 0 2 0 60 1
0 2 0 2 0 1170 7
0 3 0 2 0 1380 7
0 4 0 2 0 945 6
0 5 0 2 0 360 3
0 6 0 2 0 60 1
0 0 1 2 0 1320 6
1 0 1 2 0 180 1
0 1 1 2 0 4680 13
0 2 1 2 0 6480 17
0 3 1 2 0 4380 13
0 4 1 2 0 1440 5
0 5 1 2 0 180 1
0 0 2 2 0 7650 23
1 0 2 2 0 180 1
0 1 2 2 0 18000 40
0 2 2 2 0 14940 36
0 3 2 2 0 5220 15
0 4 2 2 0 900 3
0 5 2 2 0 180 1
0 0 3 2 0 27060 61
1 0 3 2 0 60 1
0 1 3 2 0 40320 80
0 2 3 2 0 18360 43
0 3 3 2 0 2820 10
0 4 3 2 0 300 2
0 5 3 2 0 60 1
0 0 4 2 0 65175 133
0 1 4 2 0 57960 109
0 2 4 2 0 12690 30
0 3 4 2 0 600 3
0 0 5 2 0 112860 208
0 1 5 2 0 55440 104

a1a2a3a4a5 D R
0 2 5 2 0 4680 14
0 0 6 2 0 144540 266
0 1 6 2 0 35280 73
0 2 6 2 0 720 4
0 0 7 2 0 138600 252
0 1 7 2 0 14400 33
0 0 8 2 0 99495 191
0 1 8 2 0 3420 11
0 0 9 2 0 52800 108
0 1 9 2 0 360 3
0 0 10 2 0 20130 50
0 0 11 2 0 5220 16
0 0 12 2 0 825 5
0 0 13 2 0 60 1
0 0 0 3 0 455 5
1 0 0 3 0 60 1
0 1 0 3 0 1260 6
0 2 0 3 0 1380 7
0 3 0 3 0 800 5
0 4 0 3 0 300 2
0 5 0 3 0 60 1
0 0 1 3 0 4400 15
1 0 1 3 0 60 1
0 1 1 3 0 7500 18
0 2 1 3 0 4380 13
0 3 1 3 0 1200 6
0 4 1 3 0 300 2
0 5 1 3 0 60 1
0 0 2 3 0 19200 48
0 1 2 3 0 18900 40
0 2 2 3 0 5220 15
0 3 2 3 0 600 3
0 0 3 3 0 49860 102
0 1 3 3 0 26100 52
0 2 3 3 0 2820 10
0 0 4 3 0 85530 169
0 1 4 3 0 21300 46
0 2 4 3 0 600 3
0 0 5 3 0 101640 190
0 1 5 3 0 10260 23
0 0 6 3 0 85260 167
0 1 6 3 0 2700 10
0 0 7 3 0 50400 106
0 1 7 3 0 300 2
0 0 8 3 0 20535 51
0 0 9 3 0 5480 18
0 0 10 3 0 860 6
0 0 11 3 0 60 1

Table B.2: D(6) and R(6) by profile (continued).

APPENDIX B. VALUES OF D(6) AND R(6) FOR EACH PROFILE 55

a1a2a3a4a5 D R
0 0 0 4 0 1365 9
1 0 0 4 0 30 1
0 1 0 4 0 1890 9
0 2 0 4 0 945 6
0 3 0 4 0 300 2
0 4 0 4 0 150 2
0 5 0 4 0 30 1
0 0 1 4 0 9900 26
0 1 1 4 0 7200 18
0 2 1 4 0 1440 5
0 3 1 4 0 300 2
0 0 2 4 0 31500 72
0 1 2 4 0 10800 25
0 2 2 4 0 900 3
0 0 3 4 0 57660 115
0 1 3 4 0 8160 22
0 2 3 4 0 300 2
0 0 4 4 0 66900 137
0 1 4 4 0 3420 10
0 0 5 4 0 51120 103
0 1 5 4 0 900 3
0 0 6 4 0 25950 63
0 1 6 4 0 150 2
0 0 7 4 0 8700 25
0 0 8 4 0 1935 8
0 0 9 4 0 300 2
0 0 10 4 0 30 1
0 0 0 5 0 3003 15
1 0 0 5 0 6 1
0 1 0 5 0 1890 9
0 2 0 5 0 360 3
0 3 0 5 0 60 1
0 4 0 5 0 30 1
0 5 0 5 0 6 1
0 0 1 5 0 15840 38
0 1 1 5 0 4140 11
0 2 1 5 0 180 1
0 3 1 5 0 60 1
0 0 2 5 0 35280 80
0 1 2 5 0 3150 10
0 2 2 5 0 180 1
0 0 3 5 0 43140 91
0 1 3 5 0 1200 6
0 2 3 5 0 60 1
0 0 4 5 0 31605 74
0 1 4 5 0 450 2
0 0 5 5 0 14364 38
0 1 5 5 0 180 1
0 0 6 5 0 4260 16
0 1 6 5 0 30 1
0 0 7 5 0 1020 6

a1a2a3a4a5 D R
0 0 8 5 0 270 2
0 0 9 5 0 60 1
0 0 10 5 0 6 1
0 0 0 6 0 5005 21
0 1 0 6 0 1260 6
0 2 0 6 0 60 1
0 0 1 6 0 18480 44
0 1 1 6 0 1320 5
0 0 2 6 0 27300 64
0 1 2 6 0 360 1
0 0 3 6 0 20700 48
0 1 3 6 0 120 1
0 0 4 6 0 8745 28
0 0 5 6 0 2220 8
0 0 6 6 0 420 2
0 0 7 6 0 60 1
0 0 0 7 0 6435 24
0 1 0 7 0 540 4
0 0 1 7 0 15840 38
0 1 1 7 0 180 1
0 0 2 7 0 14400 38
0 0 3 7 0 6060 19
0 0 4 7 0 1350 7
0 0 5 7 0 180 1
0 0 0 8 0 6435 24
0 1 0 8 0 135 2
0 0 1 8 0 9900 26
0 0 2 8 0 4950 17
0 0 3 8 0 960 5
0 0 4 8 0 135 2
0 0 0 9 0 5005 21
0 1 0 9 0 15 1
0 0 1 9 0 4400 15
0 0 2 9 0 1000 6
0 0 3 9 0 60 1
0 0 4 9 0 15 1
0 0 0 10 0 3003 15
0 0 1 10 0 1320 6
0 0 2 10 0 90 1
0 0 0 11 0 1365 9
0 0 1 11 0 240 2
0 0 0 12 0 455 5
0 0 1 12 0 20 1
0 0 0 13 0 105 2
0 0 0 14 0 15 1
0 0 0 15 0 1 1
0 0 0 0 1 6 1
1 0 0 0 1 6 1
0 1 0 0 1 30 1
0 2 0 0 1 60 1
0 3 0 0 1 60 1

a1a2a3a4a5 D R
0 4 0 0 1 30 1
0 5 0 0 1 6 1
0 0 1 0 1 60 1
0 1 1 0 1 180 1
0 2 1 0 1 180 1
0 3 1 0 1 60 1
0 0 2 0 1 270 2
0 1 2 0 1 450 2
0 2 2 0 1 180 1
0 0 3 0 1 720 4
0 1 3 0 1 600 3
0 2 3 0 1 60 1
0 0 4 0 1 1260 6
0 1 4 0 1 450 2
0 0 5 0 1 1512 6
0 1 5 0 1 180 1
0 0 6 0 1 1260 6
0 1 6 0 1 30 1
0 0 7 0 1 720 4
0 0 8 0 1 270 2
0 0 9 0 1 60 1
0 0 10 0 1 6 1
0 0 0 1 1 60 1
0 1 0 1 1 120 1
0 2 0 1 1 60 1
0 0 1 1 1 420 2
0 1 1 1 1 360 1
0 0 2 1 1 1260 4
0 1 2 1 1 360 1
0 0 3 1 1 2100 6
0 1 3 1 1 120 1
0 0 4 1 1 2100 6
0 0 5 1 1 1260 4
0 0 6 1 1 420 2
0 0 7 1 1 60 1
0 0 0 2 1 270 2
0 1 0 2 1 180 1
0 0 1 2 1 1260 4
0 1 1 2 1 180 1
0 0 2 2 1 2340 7
0 0 3 2 1 2160 6
0 0 4 2 1 990 4
0 0 5 2 1 180 1
0 0 0 3 1 720 4
0 1 0 3 1 120 1
0 0 1 3 1 2100 6
0 0 2 3 1 2160 6
0 0 3 3 1 900 4
0 0 4 3 1 120 1
0 0 0 4 1 1260 6

a1a2a3a4a5 D R
0 1 0 4 1 30 1
0 0 1 4 1 2100 6
0 0 2 4 1 990 4
0 0 3 4 1 120 1
0 0 4 4 1 30 1
0 0 0 5 1 1512 6
0 0 1 5 1 1260 4
0 0 2 5 1 180 1
0 0 0 6 1 1260 6
0 0 1 6 1 420 2
0 0 0 7 1 720 4
0 0 1 7 1 60 1
0 0 0 8 1 270 2
0 0 0 9 1 60 1
0 0 0 10 1 6 1
0 0 0 0 2 15 1
0 1 0 0 2 15 1
0 0 1 0 2 60 1
0 0 2 0 2 90 1
0 0 3 0 2 60 1
0 0 4 0 2 15 1
0 0 0 1 2 90 1
0 0 1 1 2 180 1
0 0 2 1 2 90 1
0 0 0 2 2 225 2
0 0 1 2 2 180 1
0 0 0 3 2 300 3
0 0 1 3 2 60 1
0 0 0 4 2 225 2
0 0 0 5 2 90 1
0 0 0 6 2 15 1
0 0 0 0 3 20 1
0 0 1 0 3 20 1
0 0 0 1 3 60 1
0 0 0 2 3 60 1
0 0 0 3 3 20 1
0 0 0 0 4 15 1
0 0 0 1 4 15 1
0 0 0 0 5 6 1
0 0 0 0 6 1 1

Table B.3: D(6) and R(6) by profile (continued).

