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Abstract

Geometric silhouettes are arcs on a surface representation that separate front-facing regions

from back-facing regions with respect to a given viewpoint. These arcs are in general

significantly less complex than the surface itself, and carry a great deal of information

describing the surface. In this thesis, we take a plane view of geometric silhouettes, defining

them in terms of the tangential planes of the surfaces on which they are defined rather than

in terms of its local properties. We show that this perspective leads to efficient algorithms as

well as a novel characterization of silhouettes based on a silhouette-generating set, or SGS.

The low asymptotic complexity of mesh silhouettes, combined with their utility, justifies

the development of silhouette extraction algorithms that are sublinear in the size of the input

model. Many of these more efficient algorithms are based on tangential-plane representations

of the input model. We present a novel silhouette extraction and update algorithm based

on the 3D Hough transform, which combines the advantages of previous tangential-plane

representations. We begin by presenting this algorithm on triangle meshes, then extend it to

support point-set surfaces. In doing so, we generalize the double-wedge structure underlying

mesh-edge silhouettes to an SGS applicable to arbitrary primitives.

While our plane-based data representation allows us to identify silhouettes on distant

parts of the input model when their SGSes coincide, it is nonetheless a local approach in

3D Hough space. However, by aggregating tangential plane information over the entire

input mesh, we can perform a number of global optimizations effectively. We introduce

the tangential distance field (TDF), a scalar function based on the SGSes of all triangles

in a mesh. We develop a toolbox of weighting functions which embed different geometric

information in the TDF. Depending on the function chosen, we can find a set of optimized

origins for our silhouette extraction algorithm, a set of visually informative viewpoints

around a given model, or a similarly informative light position based on a given viewpoint.
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Chapter 1

Introduction

Silhouettes are a powerful perceptual cue and are deeply ingrained in our notion of shape;

thus, it is important to define precisely what we mean when we discuss silhouette problems in

computer graphics. We begin by presenting an intuitive view of the problem, and refine our

definitions in Chapter 2. Glisse and Lazard [32] present three different intuitive definitions

of the silhouette, as shown in Figure 1.1.

The intuitive notion of the silhouette is strongly connected to visibility. Figure 1.1(a)

depicts the visual hull of the object, which defines the region in the visual field occluded by

the object as a whole. Similarly, Figure 1.1(b) depicts the visible silhouette or visible rim of

the object, which extends the notion of occlusion to the object itself (self-occlusion). How-

ever, while these “silhouettes” correspond closely to our visual intuitions, their connection

with the global problem of visible-surface determination makes them difficult to analyze

and extract efficiently in a geometric framework. For that reason, in this thesis we confine

Figure 1.1: The silhouette of an object as (a) the outline of its shadow, (b) the visible rim
of an opaque object, and (c) the visible rim of a transparent object.

1



CHAPTER 1. INTRODUCTION 2

Figure 1.2: The silhouette of an object with respect to ps, viewed from an oblique angle.

ourselves to the geometric silhouette of an object, shown in Figure 1.1(c) and briefly defined

as the set of arcs separating front-facing from back-facing regions. (See Section 2.1 for a

more rigorous discussion of these concepts.)

Our intuitive conception of geometric silhouettes often leads to confusion when the sil-

houette is being computed from a point distant from the camera, as in Figure 1.2. For

clarity, we denote this point as the silhouette point ps, and emphasize that ps need not be

placed at the camera. If the silhouette point is placed at infinity, we are instead calcu-

lating the orthogonal silhouette from the silhouette vector vs. We present more detailed

descriptions of these concepts in Section 2.1.

In this thesis, we seek to first find and then exploit the silhouette set of a 3D object. We

will see that careful attention to the tangential planes of this object is invaluable. In the

remainder of this chapter, we give a brief overview of our contributions.

1.1 A plane view of object-space silhouettes

In the computer graphics community, the geometric silhouette of a model is generally con-

sidered in terms of the local geometry of the surface. For the purpose of computing the

silhouette, this is often the most convenient approach, and as part of a randomized algo-

rithm can be made reasonably efficient. The result, however, is a purely local algorithm that

risks neglecting many of the structural properties of the geometric silhouette’s propagation

across a surface as ps moves.
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The silhouette of a model has received attention in other communities, however, and

some of these have produced insights which promise to complement its use in geometry

processing. We begin by noting that silhouettes are defined in terms of a point ps and

either a normal vector (see Definition 2.1.2) or an edge (Definition 2.1.3). In either case we

see that geometric silhouettes are defined by a coplanarity relationship between ps and a

subset of points on the model. This thesis aims to exploit this coplanarity.

We can describe the tangential planes associated with a surface by constructing its pedal

surface, as done by Sethi et al. [76] in the context of shape recognition. The pedal surface

consists of the loci of points closest to the origin on each plane tangential to the model, and

is closely related to the 3D Hough transform described in Section 2.3.2. Of special note is

that the pedal curve unifies bitangent points on the surface; these points are important to

algorithms that seek to update a model’s silhouette under a moving ps and cannot easily be

obtained by a purely local formulation of the silhouette.

Furthermore, the identification of bitangents in a planar formulation of the silhouette

hints at the availability of further global information from structures such as pedal surfaces.

Lazebnik and Ponce [56] emphasize that “certain important properties of the visual world are

intrinsically projective”, including fundamental relationships such as visibility and occlusion.

While this thesis cannot claim to provide solutions to general visibility problems, we hope

that by strongly emphasizing the planar relationships involved in silhouette problems we

can provide tools to attack these issues.

1.2 Hough space silhouette extraction

Previous silhouette-extraction algorithms based on supporting plane representations have

followed the same general method: first, transform the mesh’s supporting planes into points

in an alternate space in which they are easily and efficiently organized; next, transform ps

into the same space; and finally, use intersection tests in an acceleration structure to identify

the (transformed) supporting planes crossed by the (transformed) ps. We follow the same

method, but use a transformation which addresses the limitations of the existing algorithms.

This transformation is the 3D Hough transform. It takes planes π : ax+ by+ cz− d = 0

(where a2 +b2 +c2 = 1) to points H(π) = (ad, bd, cd) – these correspond to the closest point

on π to the origin. The points produced by applying this transform to the supporting planes

of a mesh fall within a sphere containing the mesh and the origin; the same cannot be said of
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the similar geometric dual transform used by Pop et al. [69] (where D(π) = (a/d, b/d, c/d)).

Whereas the 3D Hough transform tends to produce relatively uniform and compact point

distributions, which in turn tend to produce balanced and shallow octrees as acceleration

structures, the geometric dual transform tends to cluster most of the transformed points

near the origin while scattering a small but significant number of points arbitrarily close to

infinity when d is small.

Two other transformations have been used for silhouette extraction. The first [8, 33]

simply represents each supporting plane by its normal as a point on the Gaussian sphere.

These methods are only able to perform silhouette extraction under orthographic projection.

The second is the four-component parameter transform [39], which requires more complex

data structures and more expensive intersection tests.

Unlike the geometric dual transform, which takes ps = (a, b, c) to the plane D(ps) :

ax+by+cz+1 = 0, the 3D Hough transform takes ps to the sphere with poles at ps and the

origin. This may be thought of as the loci of the 3D Hough transforms of every plane which

passes through ps. This sphere is our intersection primitive for determining the status of ps
within the half-spaces of our mesh’s supporting planes.

To accelerate these intersection tests, we build an augmented octree around the set of

points in Hough space. The cells of this octree contain bounding boxes for the data within

each cell, and for the neighbours of the faces whose transformed supporting planes fall within

the cell. The latter bounding box allows us to identify edges on the silhouette with respect

to a static point ps, something that the similar method of [69] cannot do. Like Pop et al.,

we find changes in the silhouette from frame t to t + 1 by identifying transformed points

between H(ps(t)) and H(ps(t + 1)). However, we add links from each node in the octree

to its adjacent neighbour nodes, allowing us to maintain an active front of low-level octree

cells and avoid the cost of starting each frame from the root.

1.3 Tangential distance fields and applications

Since we represent the supporting planes of a mesh’s triangles by some function of their

plane equations, the resulting point set in transform space depends upon the origin chosen.

A natural choice of origin is the mesh centroid, or the centre of the mesh’s bounding sphere;

however, these are far from optimal depending upon the mesh. We will present a method

for computing a more efficient set of origins and an algorithm for calculating the silhouette

when mesh faces are clustered around several local origins.
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The 3D Hough transform of a ray r is the circle which lies in a plane perpendicular to

r, passing through r and the origin. As with the 3D Hough transform of a single point, this

corresponds to the Hough transforms of all planes that include r. If we vary the origin, the

likelihood that the sphere H(ps) intersects H(r) does not change; however, in practice we

test H(ps) against an axis-aligned bounding box (AABB) containing H(r), not against H(r)

itself. These AABBs do vary significantly with the origin. In pathological cases they may

even contain the origin; such boxes are never rejected by intersection tests against H(ps).

We introduce the tangential distance field or TDF as a means of identifying points in

space that, if chosen as origins, will produce a transformed point distribution that itself

produces more efficient octrees. For each point pi in space (we consider a bounded region

surrounding the mesh), we accumulate votes from the supporting planes πi of each triangle

in the mesh. These votes are functions of the distance between pi and πi; for the Hough

space origin problem, we choose a bimodal function which weights points “close, but not

too close” most heavily. The point p1 with the highest summed weight is chosen as the

first origin, and the process is repeated. For subsequent origins p2..k, each face’s vote is

reduced by its highest previous vote; thus, planes that gave a strong vote to a previous

origin have little influence on subsequent origins. We find empirically that two to five

origins are sufficient to produce a two-fold to three-fold improvement in the performance of

our silhouette extraction and update method.

In addition to finding optimized origins for Hough-space silhouette methods, we apply

the TDF method to two other problems: finding a set of viewpoints that provide “best

views” of a given triangle mesh, and finding light positions that provide “best illumination”

of a mesh from a given viewpoint. In both cases we are able to achieve results comparable

to state-of-the-art specialized algorithms, suggesting that TDFs have significant utility for

general geometry processing.

1.4 Silhouette extraction on point clouds

The biggest problem facing silhouette extraction from point-set surfaces is the lack of con-

nectivity. Without connectivity information we do not have the notion of separation from

which we define silhouettes on triangle meshes – “edges that separate front- and back-facing

faces”. Furthermore, without connectivity information we must approximate neighbour rela-

tionships between nearby points, a task which often fails when two surfaces are geometrically

close or point samples are coarse or nonuniform.
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We begin by constructing a definition for the geometric silhouette of a point-set surface

P based only upon the provided samples. We consider each point p ∈ P to be a sample on

an underlying surface S. Under this interpretation, each point has an intrinsic Voronoi cell

on S, and the silhouette on S with respect to ps is the set of all points x ∈ S such that the

normal vector nx · vs(x) = 0 where vs(x) = x− ps. Then we say that p is on the silhouette

of P with respect to ps if some x ∈ S is within p’s intrinsic Voronoi cell.

More abstractly, a point p ∈ P represents all points on S within its intrinsic Voronoi

cell. Those points have normal vectors and define tangent planes. The silhouette-generating

set or SGS of p is the set of points contained by the tangent plane of at least one point on

S represented by p. When ps is within the SGS of p, p is on the geometric silhouette of P

with respect to ps.

We cannot construct the SGS of p directly, as we do not have access to S. However,

we can approximate p’s SGS by finding a set of meaningful neighbours Q = {qi} for p and

constructing an umbrella of triangles around p with vertices in Q. The supporting planes

of those triangles approximates the SGS of p.

Beginning with a small set (n = 16 gives good results) of Euclidean nearest neighbours,

we do this by considering the Gabriel triangle of p – the smallest triangle with an empty

circumcircle containing both p and its nearest neighbour – as an initial estimate of p’s tangent

plane, and building a locally Delaunay triangulation of its adjacent neighbours. Using two

independent parameters to describe the expected sampling characteristics and refining our

tangent-plane estimate as we acquire further information, we identify boundaries, sharp

edges, and Euclidean nearest-neighbours belonging to geodesically-distant surface sheets.

This approach is limited by the actual sampling conditions on the input, and therefore

does not always find an optimal umbrella around each point. Furthermore, it is an entirely

local approach, and will not provide a globally consistent triangulation. However, it is also

less expensive than a full surface reconstruction algorithm, and its local approximations are

quite suitable for our purpose. Silhouettes extracted from this algorithm are of high quality

and exhibit none of the characteristic artifacts of previous methods like normal thresholding.

Further, the one-rings we reconstruct are sufficiently consistent as to support a mesh-based

feature-identification algorithm with minimal modifications.

Our algorithm finds a point-set surface’s geometric silhouette in terms of the point

samples themselves. We would prefer to find a set of closed arcs, such as those available

on a closed triangle mesh; however, our lack of globally consistent connectivity makes this
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a daunting problem. We can provide an approximate solution by identifying consensus

silhouette edges: we say that pq is a consensus silhouette edge from ps if it is present and on

the silhouette from ps in the local umbrella of both p and q. This is sufficient to correctly

render almost all silhouette edges in most input models, but does not guarantee that the

resulting silhoeutte loops obey the properties identified in [1].

1.5 Discussion

The three individual contributions described above share a focus on the tangential planes

in the input model, whether they seek to exploit or approximate them. This focus allows

us to tackle a well-studied and fundamental problem from a perspective that often bears

unexpected fruit. In the next chapter we will see that silhouettes are often defined and

used in terms of these tangential planes, laying the foundation for and motivating the

contributions of later chapters.



Chapter 2

Background

In this thesis we discuss algorithms for computing, updating, and exploiting the object-

space silhouette of a 3D surface model as briefly defined in Chapter 1. Before we build on

the intuitions presented earlier to obtain a more principled understanding of the structures

involved, we must first define our terms. This is particularly important as the idea of

“silhouette” has a strong intuitive meaning to most observers; however, without precise

language this intuition often leads to confusion.

Once this foundation is established, we motivate further work in the field by presenting

theoretical lower bounds on the complexity of an object’s silhouette, arguing that its sublin-

ear size and coherent variation makes it a powerful shape descriptor for geometry processing.

We illustrate these properties by presenting existing methods, noting their strengths and

weaknesses, and identifying room for improvement. Next, we motivate the silhouette’s util-

ity for geometric computing by identifying a number of applications that take advantage of

silhouette information on a model or in a scene.

At the end of this chapter, we present a brief overview of the Hough transform in the

context of image processing. While this powerful conceptual tool is only glancingly related

to image-based silhouette extraction, it forms the core of the plane-based transform methods

used in the original work presented in chapters to come.

2.1 Silhouettes

Silhouettes on objects are always relative to a given point (under perspective projection)

or direction (under orthographic projection). Since silhouettes carry so much perceptual

8
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meaning, we generally describe them relative to the camera or viewpoint; however, for many

geometry-processing applications this need not be the case and may be misleading. We

instead use the term silhouette point to describe the generating point for a silhouette.

Definition 2.1.1 (Silhouette point, silhouette vector). The silhouette point ps is an arbi-

trary point in space from which the perspective silhouette of an object can be defined. The

silhouette vector vs is the constant equivalent of the silhouette point under orthographic

projection. We overload the notation as follows: Under pespective projection, relative to a

given point p, the silhouette vector vs(p) is p− ps.
When the silhouette point is in motion, we express its position at a given time t as ps(t).

On smooth surfaces without boundary, we define the silhouette as the set of points

separating front-facing regions from back-facing regions. This corresponds to the transparent

visible rim from Figure 1.1; the other “silhouettes” in that figure can be derived from this

definition. We can determine the facing of a point on the surface relative to ps by examining

the dot product of its normal with vs; front-facing points will have a positive dot product,

while back-facing points will have a negative dot product. It follows that points on the

silhouette will have a zero dot product.

Definition 2.1.2 (Silhouette of a continuous surface). The perspective silhouette of a

smooth surface model M with respect to a point ps is the set of all points p ∈M , each with

normal vector np, such that np · vs(p) = 0. In the orthographic case we omit ps and this

simplifies to the set of points with np · vs = 0.

Most silhouette algorithms operate on polygon meshes, which may be closed but are not

smooth. In particular, mesh silhouettes are sets of edges, and the normal vector of an edge

is not well defined. In this case we rely upon the separation property of silhouettes for a

definition:

Definition 2.1.3 (Silhouette of a polygon mesh). Let M be a polygon mesh such that each

edge e ∈M has adjacent faces fa and fb with normal vectors na and nb respectively. Then

the perspective silhouette of M with respect to ps is the set of all edges e ∈ M such that

(na · vs(pa))×(nb · vs(pb)) < 0 for arbitrarily-chosen points pa ∈ fa and pb ∈ fb. Equivalently

we may set πa (resp. πb) to be the supporting plane of fa (resp. fb) and say that edge e is

on the silhouette if ps is within the negative half-space of πa and the positive half-space of

πb, or vice versa.
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In the orthographic case we may omit pa and pb and say that edge e is on the silhouette

iff (na · vs)× (nb · vs) < 0.

Now that we have defined the silhouette of two types of closed surfaces, we can address

the other components of Figure 1.1.

Definition 2.1.4 (Visible silhouette and contour). Let S be the perspective silhouette of

a closed surface model M from a point ps. Then the visible silhouette of M is the set of

points p ∈ S such that for any other point q 6= p, q ∈ M on the ray (ps, vs(p)), we have

‖p− ps‖ < ‖q− ps‖, as shown in Figure 1.1(b). The contour of M is the set of points p ∈ S
such that p is the only point in M on this ray, as shown in Figure 1.1(a).

Rather than consider the silhouette as a set of points or edges on the model generated

by a given silhouette point, it can be instructive to consider the primitives themselves in

terms of the set of potential pss that would put them on the silhouette. We call this the

silhouette-generating set or SGS of that primitive:

Definition 2.1.5 (Silhouette-generating set). Let M be a closed smooth surface model.

The silhouette-generating set of a point p ∈M is the set of all points in p’s tangent plane.

Let M be a closed polygon mesh. The silhouette-generating set of an edge e ∈ M with

adjacent faces fa and fb (with supporting planes πa and πb) is the union of the set of all

points in the negative half-space of πa and the positive half-space of πb with the set of all

points in the negative half-space of πb and the positive half-space of πa.

2.1.1 Silhouette complexity

Before we begin to study silhouette algorithms, we should get at least an intuition of the

complexity of the silhouette. If the silhouette of a mesh with n faces is Θ(n), we should

forget about asymptotic efficiency in our algorithms and strive for other things, like proper

use of cache memory, to see gains in speed. If on the other hand the silhouette is often

much less complex than the mesh, an asymptotically efficient algorithm, even one with a

high constant, is far more appealing than even the leanest brute-force methods. Here we

consider silhouette complexity (or length) in terms of the number of edges involved; this

will often be related to the geometric length of the silhouette by constraints on edge length.

The silhouette of an arbitrary mesh from an arbitrary point of view is highly variable

and difficult to analyze. Most theoretical results are proven only on subsets of the sorts
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of models we’d like to work on, and more general results are based on empirical evidence

rather than theoretical guarantees. However, there is enough research available to give us

hope for the elegant asymptotic perspective.

The simplest case is a mesh approximating a sphere. Kettner and Welzl [49] show that

such a mesh with Hausdorff distance ε has Θ(1/ε) edges, and that its silhouette from a

random viewpoint at infinity (parallel projection) has Θ(1/
√
ε) edges.

When we broaden our focus from approximately spherical polyhedra to general (convex)

polyhedra, however, the picture becomes much gloomier. Now we find that it is easy to

construct a polyhedron with a linear-sized silhouette from some – even from many – viewing

angles, as described by Alt et al. [2]. All is not lost, however: Alt et al. also prove that

a certain class of polytopes – triangulated polytopes with low aspect ratios, bounded edge

lengths, and some ε such that all but O(
√
n) incident edges form an angle between ε and

π − ε have silhouettes of complexity O(
√
n), with a constant factor that depends on ε.

They also establish that if we remove the ε constraint and instead insist that the number

of almost-collinear edges is bounded, we can achieve silhouettes of complexity O(n2/3) in

the worst case under parallel projection. These bounds cover only convex polyhedra and

operate under constraints far more stringent than any we would like to consider, but they

do show that sublinear silhouettes are achievable.

If we consider the average silhouette length rather than the worst case, the outlook

brightens significantly. Glisse and Lazard [32] are able to show that the expected size of a

polyhedron’s silhouette is O(
√
n) under a much more general set of constraints than those

put forth by Alt et al.. Glisse and Lazard do not require convex polyhedra or bounds

on the polyhedron’s aspect ratio: instead, they require that the input mesh has edges of

bounded (i.e. not arbitrarily small) length, that its faces have low aspect ratios, and that

it approximates an underlying smooth surface in terms of positions and normals. This

excludes inputs such as Schwartz lanterns and certain algebraic surfaces, but encompasses

the vast majority of input models.

Where Glisse and Lazard consider arbitrary polyhedra conforming to a theoretical model,

McGuire [60] performs an empirical study on 897 triangle meshes downloaded from the in-

ternet. His data set contains models of man-made shapes with varying complexity, from

a simple tetrahedron to a million-triangle Buddha mesh, and includes a number of models

with small cracks or holes that do not satisfy the closed 2-manifold assumption normally

put forth. He computes the average silhouette size for these meshes by choosing a large
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number of pss at widely varying distances from the mesh, and computes an overall em-

pirical complexity estimate of O(n0.8). McGuire concludes that the self-similarity and fine

surface detail on these artificial subjects accounts for the added complexity (while Glisse

and Lazard blame sampling nonuniformity around sharp features), and points to the higher-

than-expected exponent as “evidence of a fractal nature for man-made objects”. While the

fractal dimension of a silhouette curve is of potential future interest, we are content to affirm

that silhouette complexity is sublinear in the size of the input surface.

Rather than calculate the full silhouette every frame, we would like to be able to simply

find the changes in the silhouette under smooth camera movement (that is, exploiting spatial

and temporal coherence). Here, the literature is less helpful. Efrat et al. [26] consider

this problem, though rather than a single polygon mesh they consider a scene of k convex

polyhedra with n edges total. They show that the silhouette arrangement – the arrangement

of all silhouette arcs projected onto the display plane – of such a scene involves Θ(kn)

segments, a bound that increases to Θ(k2n) when the viewpoint moves linearly and Θ(kn2)

when it moves along an algebraic curve. These bounds and the construction on which

they are based is somewhat removed from our consideration of silhouette update as a mesh-

geometry problem, but they give some insight into the difficulties behind visibility processing

and the connection between the visibility and silhouette problems.

2.1.2 Image-space silhouette methods

Image-space silhouette algorithms produce a set of pixels corresponding to the projection of

a mesh’s visible silhouette edges, rather than identifying edges on the mesh geometry itself.

In this way they are primarily suitable for non-photorealistic rendering problems, in which

only the visible rim of the object is desired. Image-space methods are also typically quite

fast, and some can easily be implemented as fragment shaders on the GPU. They are often

robust to errors or inconsistencies in the underlying surface representation: if the rendered

image is acceptable, image-space silhouette results will likely be acceptable as well. For

example, Deussen and Strothotte [20] perform pen-and-ink rendering of “primitive soup”

tree models using an image-space technique.

Pure image-space methods apply edge-detection algorithms such as the Sobel operator

to the depth buffer, as shown by Saito and Takahashi [73], or an auxiliary normal buffer

as shown by Hertzmann [38]. Local edge-detection methods are easier to implement as

fragment programs than global methods like the Hough transform. However, since the
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silhouette is only ever present as a collection of pixels in an image buffer, it is difficult

to extract silhouette geometry from an image-space method. Even for non-photorealistic

rendering applications, where only the pixels of the silhouette are of interest, it is difficult

to stylize the results of pure image-space methods.

Hybrid image-space algorithms provide an alternative to the above, with more user

control over the resulting rendered silhouettes at the cost of increased complexity. In these

methods, extra silhouette geometry is rendered along with the model itself, and depth or

stencil testing is used to eliminate any “silhouette pixels” that do not correspond to visible

silhouettes. For example, Raskar and Cohen [71] develop a method which first fills the

depth buffer with the z values of front-facing polygons, then enlarge back-facing polygons

and render them in the desired silhouette colour; the depth test culls away any silhouette

pixels which would be occluded by the mesh. By varying the scaling of back-facing polygons,

the thickness of resulting silhouette lines can be controlled.

Image-space silhouette algorithms are surveyed in more detail by Isenberg [45]. Since

they are poorly suited to most geometry processing applications, we direct the interested

reader to that work and cover object-space methods in more detail.

2.1.3 Object-space silhouette methods

Object-space silhouette algorithms operate on the geometry of the mesh itself, rather than

on a set of pixels corresponding to the projection of the visible part of the mesh. This

makes them inherently more precise than image-space methods, and exposes the global

structure of the silhouette rather than limiting the algorithm to the visible subset. However,

restricting object-space silhouette results to the visible subset of the silhouette requires either

an occlusion culling step or a hybrid algorithm.

The cost of an object-space algorithm depends on the number of operations being per-

formed (in asymptotic and absolute complexity) and the cost of each operation. In com-

putational terms this is dominated by viewpoint facing checks and, for more complex data

structures, intermediate bounding volume checks. These operations are similar in cost and

can be treated as equivalent. At runtime, memory architecture issues such as cache co-

herence may have a significant effect on performance; however, this issue has not been

emphasized in the existing literature.

The naive approach to silhouette extraction, which we call the brute force method,

simply iterates through all edges on the mesh and checks their adjacent faces, marking the



CHAPTER 2. BACKGROUND 14

edge as part of the silhouette iff it is adjacent to one front-facing and one back-facing face.

On a triangle mesh, this will test the facing of each triangle three times – once for each of

its edges.

Buchanan and Sousa [12] develop the edge buffer data structure. This consists of a

bitfield associated with each edge, and a set of pointers into the bitfield array on each face.

Rather than iterate through the mesh’s edges, the edge buffer algorithm iterates through

each face, tests its facing once, and sets all of its associated edge flags. A second pass

through the edge buffer, which can be done as part of a rendering step, identifies silhouette

edges as those with both front- and back-facing flags set. The edge buffer method shares

the brute-force method’s O(n) asymptotic complexity, but performs only one-third as many

facing checks and requires fewer random memory accesses.

Sander et al. [75] take a different approach. In this work, they approximate the fully

front- and back-facing regions of a mesh edge by a pair of anchored cones. They then build

a search tree by combining edges with similar cone pairs into interior nodes; each interior

node of the tree has a pair of anchored cones which approximates the intersection of its

children’s cones. This produces a conservative estimate of viewpoint positions for which no

edges in the subtree will be on the silhouette. At runtime, their algorithm simply culls away

subtrees whose cones contain the viewpoint; this step is shown empirically to be sublinear

in the size of the input mesh. However, they find that the preprocessing step is particularly

expensive.

Rather than build a precomputed data structure for silhouette extraction, Markosian

et al. [59] present a randomized algorithm. Their algorithm begins by selecting a random

subset of the mesh’s edges and checking their silhouette status. If any silhouette edges are

found, the algorithm checks their neighbours, following these recursively until a silhouette

loop has been constructed. They assign selection probabilities to edges in proportion to the

edge’s dihedral angle, so that sharp edges (which are more likely to be on the silhouette)

are more likely to be checked than shallow ones.

If the silhouette point’s movement is sufficiently smooth, Markosian et al. exploit the

silhouette’s spatial and temporal coherence by first checking every silhouette edge of the pre-

vious frame, and performing random local neighbourhood checks around previous silhouette

edges. These methods are very effective at detecting movement of existing silhouette arcs,

but have difficulty detecting new silhouette loops (which are likely to be small, and therefore

are unlikely to be found by random edge checks).
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Transform-based silhouette algorithms

One of the key challenges to performing silhouette extraction directly on the target mesh is

detecting topological changes in the silhouette. In particular, new silhouette loops created

by a small viewpoint change may be arbitrarily far from existing silhouette edges. This

problem can be addressed by performing silhouette extraction in a transform space, in

which primitives that indicate changes to the silhouette are clustered together regardless

of their position on the primal mesh. Such transform-based algorithms admit much more

straightforward acceleration structures than the dual-cone approximation tree from Sander

et al. [75].

Both Benichou and Elber [8] and Gooch et al. [33] perform orthographic silhouette

extraction on the Gaussian sphere. They represent the supporting plane of each polygon

in the mesh by its normal vector; thus, an edge is represented by a great-circle arc on the

Gaussian sphere between the normals of its adjacent faces, with length equal to its dihedral

angle. The silhouette vector is represented in the transform space by a plane passing through

the centre of the sphere with normal equal to the silhouette vector. Any edge arc which

intersects this plane corresponds to a silhouette edge. To avoid testing every arc against

the plane, Gooch et al. build a hierarchy of spherical triangles, while Benichou and Elber

project the Gaussian sphere onto a cube and decompose the cube’s sides into grids. Each

arc on the sphere is transformed into a set of line segments on the cube’s faces.

Perspective silhouettes present a challenge in that the view vector is not constant; thus,

faces’ supporting planes cannot be represented only by their normal vectors. Hertzmann

and Zorin [39] represent each supporting plane π = ax+by+cz+d = 0 by the homogeneous

point p = (a, b, c, d). They store these points in a set of eight octrees corresponding to the

faces of the four-dimensional hypercube. Rather than connect faces adjacent to each edge,

their algorithm links faces adjacent to shared vertices. Finally, they use the octree to find

the intersection of the dual plane π(x) = ps · x = 0 with this surface, where ps is expressed

in homogeneous form. This is essentially an extension of the Gaussian sphere method to

homogeneous coordinates.

Rather than focus on static silhouette extraction, Pop et al. [69] present an algorithm

for efficient silhouette updates. They apply the geometric dual transform, which takes a

plane π = ax + by + cz + d = 0 to a point p = (a/d, b/d, c/d), to the supporting planes of

every face in the mesh. When the silhouette point moves from frame t to frame t+ 1, they
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transform each point into a plane ps(t) ·~x+ 1 = 0 (resp. ps(t+ 1)). These two planes form a

double wedge in dual space; dual points in this wedge correspond to faces whose supporting

planes were crossed by the viewpoint. Edges which have joined or left the silhouette will

be found on one of these faces. Pop et al. do not develop a dual-space silhouette extraction

method; their algorithm must be initialized by a complete silhouette from another method.

2.1.4 Hardware-accelerated silhouette algorithms

One of the key challenges to the incorporation of silhouette-based geometry processing

techniques into real-time rendering systems is the fact that most of the rendering process is

performed on the GPU rather than in main memory. The overhead of maintaining parallel

sets of geometry in both main and GPU memory, computing silhouettes on the CPU, and

transferring silhouette geometry to the GPU for rendering is often considered unacceptable.

Thus, there has been significant interest in adapting the above algorithms to the GPU.

Isenberg et al. [45] note that image-space methods like the Sobel operator can easily be

implemented as fragment programs and incorporated into the rendering pipeline. If only

fragments on the visible silhouette of an object are required, this is an efficient and straight-

forward option; however, it is still subject to the disadvantages of image-space approaches.

Geometry processing on the GPU is characterized by streaming computation: in gen-

eral, vertices are processed separately and in parallel, making the connectivity information

required for silhouette extraction difficult to represent. Furthermore, mesh connectivity has

been fixed and immutable until the introduction of geometry shaders by the Shader Model

4 standard [62]; platforms that do not support geometry shaders must include all potential

silhouette geometry on the input mesh, incurring additional overhead. Nevertheless, several

GPU-based object-space algorithms have been presented.

Card and Mitchell [14] propose a scheme in where each edge in a mesh is represented by

an explicitly stored quad. Each vertex in the quad is augmented with normal information

for the corresponding edge’s adjacent faces. In a vertex shader program, the face normals

of these “edge” vertices are tested independently against vs. If the vertex’s edge is on the

silhouette, two of the quad’s vertices will be displaced along the bisecting normal to generate

a thin, visible quad. If the edge is not on the silhouette, those vertices are not displaced

and the “quad” (now degenerate) is culled by the depth test. A scalar parameter is used to

control the thickness of the resulting lines. The authors show that their algorithm produces

more consistent and controllable results than a comparable image-space method.
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Brabec and Seidel [10] use a similar approach to compute stencil shadow volumes on

the GPU. They augment the data representation with vertex-ordering information, and

compute silhouette data in a point-based rendering pass rather than a vertex program, but

the essential details of their method are similar. Again, their method generates a quad for

each edge and renders it as part of the shadow volume if its edge is found to be on the

silhouette.

With the addition of geometry shaders to Shader Model 4-capable GPUs, GPU-based

silhouette extraction no longer requires explicit geometry to be precomputed and stored

per-edge. However, some method of preserving connectivity information still needs to be

incorporated into any algorithm. Sander et al. [74] compute an optimized covering of a

triangle mesh by adjacency primitives in a way that minimizes vertex cache misses. This

allows them to generate shadow volume geometry in the geometry shader with significantly

less overhead than the DirectX 10 sample program [62]. They also adapt their method to

stylized rendering.

Since GPUs reward cache-coherent, easily parallelized streaming algorithms, little work

has been done to adapt the precomputed methods at the forefront of CPU-based silhouette

algorithms. However, work such as that by Greß et al. [34] shows that hierarchical data

structures and search algorithms can be implemented on GPUs and provide significant

performance improvements.

2.1.5 Silhouettes on non-mesh surfaces

While polygon meshes are at present the most common surface representation for geometry

processing, they are not the only option available. Silhouette algorithms for several other

surface representations have been presented in the literature, which we review below.

Smooth and free-form surfaces

Silhouette computation on free-form surfaces is generally done by selective subdivision and

refinement on a more tractable representation of the surface, rather than on the surface

itself. Rather than formulate the problem in terms of separation of front- and back-facing

surfaces, free-form silhouette algorithms typically define their target as the set of points

whose normal is orthogonal to the view vector, as in Definition 2.1.2. In this way we can

see these algorithms as level-set methods on the surface.
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Elber and Cohen [27] find silhouette curves on NURBS patches as part of a hidden curve

removal algorithm. They extract piecewise-linear approximations of the silhouette curves in

the parameter domain of the patch by adaptive subdivision following a quadtree-like scheme,

up to a given tolerance. The resulting curve is accurate at its vertices, and is subdivided

again by linear bisection in R3 until the tolerance is met at the midpoints.

Hertzmann and Zorin [39] also propose a method for finding silhouettes of subdivision

surfaces. They use a level-set method similar to that of Elber and Cohen to find curves whose

tangent planes contain vs; however, rather than perform this operation in the parameter

domain, they operate directly on the surface itself, subdividing where necessary. Note that

the silhouette curve generated by their method need not be constrained to the edges of the

surface’s final tesselation, but is again accurate at its own vertices.

Point-set surfaces

Point-set surfaces, or point clouds, are increasingly popular surface representations, par-

ticularly for data acquired from laser or photometric scanners. Finding the silhouette of a

point-set surface is therefore a compelling problem, but since these surfaces are not compact

it is difficult to apply the usual definitions to them.

Zakaria and Seidel [90] relax Definition 2.1.2 to find points corresponding to the silhou-

ette of a point-set surface. Rather than select points where np · vs(p) = 0, they normalize

vs(p) and select points where the dot product falls below a fixed threshold. They then

render the points with unique colour values to an image buffer, and use the set of visible

coloured fragments to identify a subset of points on the surface corresponding to a silhou-

ette arc. This method works well for their chosen application of stylized rendering, but has

difficulty identifying the full silhouette in regions of high curvature. Silhouette extraction

by thresholding the np-vs(p) dot product also has trouble with regions of low curvature,

within which a large set of spurious points may be identified. When ps is at the viewpoint,

as in stylized rendering, this is rarely noticeable. Figure 5.10 in Section 5.4 gives several

examples of the difficulties with normal thresholding.

Rather than adapt an existing geometric definition to point-set surfaces, Xu et al. [87]

exploit the adaptability of image-space methods. Their method is similar in principle to

the hybrid algorithm of Raskar and Cohen, in that they render oversized splats to produce

silhouette pixels, then use depth culling while rendering the point-set surface normally to
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overwrite interior fragments. The result is easily implemented and produces compelling

results, but shares the limitations of other image-space approaches.

While not strictly a silhouette algorithm, Katz et al. [48] describe an elegant method

for computing visibility on a point-set surface in based on the convex hull of a transformed

point cloud. They define a hidden point removal operator which inverts points in the cloud

about a sphere centred at ps and bounded by the point-set surface, and show that the convex

hull of this inverted point set, plus ps, contains the “visible” points. Thus, points on the

silhouette of this convex hull are on the contour of the input point set.

Implicit surfaces

While implicit surfaces are often used to model organic shapes, they are generally triangu-

lated before rendering; hence, standard object-space silhouette algorithms can be applied.

However, Tsai et al. [80] develop a visibility framework based on implicit ray tracing on a

global signed distance function represented on a multiresolution grid. Their method pro-

duces visible silhouettes in voxel form as a side effect, and can be modified to produce full

silhouette information.

Isosurfaces in volume data can be thought of as implicit surfaces. Burns et al. [13]

develop a method for extracting silhouettes along isosurfaces in medical volume data using

a zero-set method similar to that of Elber and Cohen, and exploiting spatial and temporal

coherence in much the same way as the randomized algorithm of Markosian et al. by looking

for new silhouette arcs near those of the previous frame. They argue that their method runs

in O(n) time on an n3 volume. However, they admit that due to its randomized rather than

exhaustive nature their algorithm cannot find all silhouette loops.

2.2 Silhouette applications

As silhouette loops incorporate a great deal of information about how the geometry of an

object relates to the silhouette point ps, they are vital for a number of applications in

rendering and geometry processing. We describe several classes of these applications below,

with particular emphasis on the use and modification of object-space silhouette methods.
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2.2.1 Stylized rendering

Stylized rendering is the classic motivating application for silhouette algorithms. Many

researchers, including Markosian et al. [59], Burns et al. [13], Hertzmann and Zorin [39], and

Zakaria and Seidel [90], have developed novel and important silhouette-extraction methods

as part of stylized rendering applications. These applications often seek to enhance visual

comprehension of a model by emphasizing or exaggerating perceptually important features,

as in Burns et al.. Others, such as Markosian et al., endeavour to recreate artistic rendering

styles on the computer.

Silhouettes – particularly visible silhouettes – are important for stylized rendering as

they offer powerful perceptual cues to shape and geometry. Koenderink [52] notes that the

human visual system often interprets complex spatial configurations correctly even when

the viewer holds primitive or incorrect conscious interpretations of the scene. He explains

that the visible silhouette provides the viewer with information regarding the curvature and

structure of the shape being observed. Silhouette arcs therefore belong to a larger set of

more generic feature lines, used in stylized rendering to convey shape and surface properties;

however, while silhouette computation is relatively efficient, the construction of many types

of more general feature lines depends on a deeper curvature analysis which is significantly

more expensive, as shown for example by Kalogerakis et al. [47].

As mentioned in Section 2.1, the primary benefit of object-space silhouette algorithms to

stylized rendering is the flexibility it grants for line rendering. While image-space algorithms

produce a set of pixels already in place in the image buffer, object-space algorithms produce

line strips which may be textured, extruded to different and varying thicknesses, jittered or

deformed, or otherwise postprocessed before rendering. However, the dependence of these

line strips upon the connectivity of the underlying mesh can make the mesh silhouettes

diverge unacceptably from the ideal silhouette arcs of a smooth surface being approximated.

Hertzmann and Zorin [39] demonstrate this phenomenon. They correct for it by computing

subpolygon silhouettes on the mesh using the same algorithm used for subdivision surfaces

and identifying cusps where the silhouette arc’s tangent vector intersects ps.

Rather than create new silhouette loops which are independent of an underlying mesh’s

connectivity, Brosz et al. [11] propose a method in which adds mesh edges near the silhouette

to a “silhouette complex”. These edges are weighted based on their stability, where edges

on the geometric silhouette and far from the silhouette are considered stable, but edges near
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the silhouette (which may join it under a small displacement of ps) are not. The second

group of edges are partially stylized based on their stability measure. This is a form of

edge-based antialiasing; it is coherent across movement of ps and smooth mesh animations.

Kirsanov et al. [51] identify the presence of extremely small silhouette loops and high-

frequency details as impediments to stylized rendering of silhouette arcs. they develop two

methods to produce “simple” silhouette loops on high-resolution meshes. In both cases they

identify detailed silhouette loops on a high-resolution mesh with the simpler topology and

geometry of corresponding loops on a coarse mesh of the same model. In the “loop picking”

method, they select loops from the fine mesh which have small geometric distance from the

coarse mesh’s silhouette. In the alternative “loop mapping” method, they map the edges

of the fine mesh onto the coarse mesh and pick a new loop on the former corresponding to

the silhouette extracted on the latter. This both retains all major features of the silhouette

and ensures spatial coherence.

2.2.2 Shadow rendering

Silhouettes are closely connected with volumetric shadow techniques. In fact, two major

methods for rendering shadows correspond closely to image-space and object-space silhou-

ette methods. Shadow maps, introduced by Williams [84], compute a depth image of the

scene from the perspective of the light source. This image is then projectively mapped onto

surfaces in the scene and each fragment’s distance to the light source is compared with

the projected value mapped onto them; fragments further from the light source than the

mapped value are in shadow. This method of checking for mismatches based on a depth

value is analogous to depth buffer-based image-space silhouette detection as described in

Section 2.1.2 in that shadow borders correspond to discontinuities in the shadow map.

As with image-space silhouette algorithms, shadow mapping is conceptually simple and

efficiently implemented in hardware. However, the limited resolution of shadow maps often

results in one shadow-map fragment being projected onto a large screen space, incurring

obtrusive aliasing artefacts. Much recent study of shadow mapping involves the application

of powerful statistical techniques to adaptively refine or antialias these border fragments;

see for example the work of Annen et al. [4] among many others.

Shadow volumes were first developed by Crow [18] and are analogous to object-space

silhouette extraction. In these methods, the shadow-casting object’s silhouette edges are

found with respect to the light source. Silhouette edges are then extruded to infinity along
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the plane containing the edge and ps; we say that silhouette loops are extruded into shadow

frusta. For static light sources and shadow casters this geometry may be integrated into the

scene, for example using the BSP tree approach described by Chin and Feiner [15] to clip

scene polygons against shadow geometry.

For real-time rendering of animated scenes, however, most practitioners use a hybrid

approach involving the stencil buffer. After scene geometry is rendered to the depth buffer,

polygons in the shadow frusta are rendered to the stencil buffer. Front-facing shadow

polygons increment the stencil value, while back-facing shadow polygons decrement it. This

leaves a nonzero value in stencil buffer fragments corresponding to shadowed geometry,

which can then be correctly lit in a fragment shader. This method was developed by

Heidmann [37] and refined by Hornus et al. [40]. Note that since the shadow borders

are represented geometrically they are as precise as the geometry from which they were

generated.

Shadow volume algorithms have two disadvantages compared to shadow maps for real-

time rendering. First, until recent work such as that by Sander et al. [74], shadow geometry

either had to be created on the CPU and transferred to the GPU on a frame-by-frame basis

or, as done by Brabec and Seidel [10], incorporated into the model itself at a significant space

penalty. Second, rendering shadow geometry to the stencil buffer imposes a substantial fill-

rate penalty even when little geometry is actually in shadow. Thus, while many games

have successfully implemented stencil shadow volumes, shadow mapping is the dominant

paradigm on the current generation of graphics hardware.

Both of the above methods have focused on point light sources, which generate hard-

edged shadows with no penumbra. Shadow volume methods are also adaptable to area

light sources, which feature a penumbral region that is shaded from some but not all of

the light source. Assarsson and Akenine-Möller [6] present a hybrid algorithm which uses

silhouette edges (from a single point ps placed at the centre of the light source) to calculate

stable penumbral wedges from an area light source, then renders these wedges to a visibility

mask used in a final shading step. This method is shown to be suitable for hardware

implementation, and is further refined by the authors in later work [7].

A more precise method suitable for offline rendering is developed by Laine et al. [54] and

refined by Lehtinen et al. [57]. These methods explicitly generate penumbral wedges from

light source borders and store them in an acceleration structure, greatly increasing the speed

of a soft shadow ray-tracing implementation. The authors note that their silhouette-based
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geometric shadow implementation can be used as a “black-box shadow solver” in any offline

renderer without incurring additional rendering passes.

2.2.3 Visibility determination

Visibility determination is closely related to shadow rendering; for example, the soft shadow

method of Lehtinen et al. described at the end of Section 2.2.2 can be recast as a from-region

visibility oracle without modification. Laine [53] notes that such a from-region visibility

solver is a prerequisite to building a more structured viewcell visibility graph. Visibility in

general is a broadly-defined problem with an extensive literature; see for example Bittner

and Wonka’s survey of the literature [9].

A subproblem of visibility determination known as hidden line removal is a significant

component of many stylized-rendering methods, such as that presented by Markosian et

al. [59]. In these circumstances it is usually the visibility of points on the silhouette that is

being determined, rather than the silhouette being used to aid in visibility determination;

however, Elber and Cohen [27] use silhouette arcs on restricted freeform surfaces to bound

line visibility and extend this method to building visibility maps in a later work [28].

Silhouettes are particularly significant to the construction of the aspect graph developed

by Gigus and Malik [31] and the 3D visibility complex of Durand et al. [23]. These methods

essentially compute a subdivision of space around a scene such that when ps moves only

within a region represented by a leaf node, the topology of the silhouette arrangement does

not change. These structures are generally prohibitively large, however, and are largely

restricted to theoretical study for complex scenes.

Silhouette information can also be used to accelerate less comprehensive visibility algo-

rithms. Given that discontinuities in the visible set occur at silhouette edges, sampling-based

algorithms can increase density near a scene’s silhouette arcs and save a great deal of ef-

fort. For example, Wonka et al. [85] describe a from-region visibility algorithm in which

distributes sample rays pseudorandomly in general but focuses on depth discontinuities –

namely, silhouettes. The from-region visibility problem is particularly well-suited to the

transform-based algorithms described in Section 2.1.3, as an incremental sweep of ps satis-

fies the spatial coherence assumptions of those algorithms and permits incremental update

rather than full recomputation of the silhouette.

In the 2.5D case of heightfield rendering, silhouettes become horizons and can be used

directly to perform occlusion culling. Archambault et al. [5] report complexity results and



CHAPTER 2. BACKGROUND 24

describe an output-sensitive query structure for computing the set of horizon edges of a

terrain from a fixed vs. This is essentially the hidden line removal problem in a somewhat

restricted domain. In the perspective case, Lloyd and Egbert [58] describe a straightforward

and effective method for occlusion culling in hierarchical terrains based on the horizons

of visible terrain cells. For their quadtree-based terrain renderer, the silhouette of each

rendered node is simplified to the silhouette of its highest enclosed plane; the arcs extracted

from these are then projected away from the viewer in much the same way as Crow’s shadow

volume frusta [18]. Potentially occluded nodes are then culled against these simple projected

frusta.

2.2.4 Model capture and registration

Model capture and registration are related problems in which one or more 2D images of

an object are brought into correspondence with a 3D surface model. In the model capture

problem, a series of images is used to create a synthetic model of the object being studied.

This is often done by silhouette carving, in which the contours of the objects are extracted

from each image and a model conforming to those contours is produced. Model registration,

on the other hand, begins with a 3D model of the object as well as 2D images, and transforms

the model to fit the position and orientation described in the images. The literature on this

topic is extensive; we will cover only a few representative and illuminating applications.

Pop et al. [69] describe a silhouette-based algorithm for image registration of medical

models onto X-ray images. They begin by finding edges in the input image, then use a

similarity measure based on the computed silhouette of the model to find a rigid-body

transform that aligns it with the X-ray image. Their incremental silhouette update method

is well-suited to incremental evaluation of this similarity measure as many transforms are at-

tempted. They note that edges in an X-ray image can be caused by density gradients within

structures as well as structural boundaries, so their silhouette-based alignment method is

used as a first approximation to present a slower method with a suitable starting point.

Plaenkers and Fua [66] develop a method for registering a metaball-based model against

images of humans. They match the silhouette of their 3D implicit model against the contour

of a stereo image provided as input, using both stereo data and silhouette fitting to produce

a model with high fidelity to the input by tuning the parameters of the metaballs.

More ambitiously, Vlasic et al. [83] develop a template-based method for animation

capture. They use a template mesh with an articulated skeleton and fit the vertices of the
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mesh to visible silhouette pixels from a set of multi-angle video streams. They sample the

visible silhouette on each frame of the videos and deform the template’s silhouette vertices

to match it. The template mesh allows them to capture geometry correctly in the case of

self-occlusion, particularly with loose clothing, where silhouette carving would fail.

Jones and Oakley [46] present a method for image-set registration in which is based

on the consistency of image-space contours of an object. They place a rigid object on

a turntable and capture a set of 2D contours as the turntable is rotated, then use the

geometry of these contours to estimate changes in the orientation and position of the object

between two images. In this setting no 3D model is created explicitly: the model’s geometry

is represented entirely in terms of the extracted contours. It can thus be seen as a step

between model registration and model capture, and elegantly demonstrates the surprising

amount of information that can be extracted even from an incomplete silhouette.

Among the silhouette carving literature, the development of projective visual hulls by

Lazebnik et al. [55] is particularly relevant. They characterize the surface of an object’s

visual hull as a generalized polyhedron whose faces are patches of the visual cone – a

construct which roughly corresponds to the volume between ps and the shadow frustum

of the object from ps. By assigning an orientation to the contour loops generated from

a set of input images they develop an algorithm for computing this visual hull with only

weak requirements for camera calibration. As with transform-based silhouette algorithms,

their method exploits spatial coherence, and their construction of visual hulls in terms of

intersection events between contours bears similarities to the development of aspect graphs

and the 3D visibility complex mentioned in Section 2.2.3.

Instead of capturing an existing model, Rivers et al. [72] synthesize new 3D geometry

from a set of 2D silhouettes. They generate relatively simple geometry by extruding silhou-

ettes in several orthogonal planes and performing CSG operations on the results, exploiting

silhouette information to develop a robust and precise 3D CSG algorithm based on the sup-

porting planes of shape features rather than shape volumes. A modified Laplacian smoothing

algorithm generates smooth shapes when required while preserving the projections of their

silhouettes on the orthogonal input planes.

2.2.5 Guided simplification

Since silhouettes carry so much perceptual information, it is natural to integrate them into

mesh simplification schemes. Pop et al. [69] describe a variation of progressive meshing



CHAPTER 2. BACKGROUND 26

based around their silhouette update method. They preserve detail near silhouette edges

while aggressively simplifying other regions of the mesh.

Sander et al. [75] take a more drastic approach to silhouette-based mesh decimation.

Rather than simplify a progressive mesh nonuniformly, they calculate the mesh’s silhouette

and render it as a mask to the stencil buffer. They then render a coarse hull of the mesh,

clipping it against the high-resolution silhouette in the stencil buffer and using a texture

lookup to produce correct normals at each pixel. The result is nearly indistinguishable from

a high-resolution mesh.

In a different context, Sillion et al. [77] use depth discontinuities to create long-lived

impostors. In an urban walkthrough application, they render distant geometry to the depth

buffer, then retriangulate the result into a simpler, view-dependent mesh. Their retriangu-

lation places extra detail on the original geometry’s silhouette edges to properly recreate

depth and contour details. The result is a three-dimensional impostor which remains valid

for much longer than traditional billboard impostors.

2.3 The Hough transform for geometry processing

Introduced by Hough [41] for machine analysis of photographs, the Hough transform maps

sample points in a primal space to a set of points in parameter space corresponding to the

Figure 2.1: Left: two edges in a

bitmap image. Right: vote counts in

Hough space summed over all black

image pixels. The two peaks cor-

respond to the parameters of the

two lines. Used under license from

Wikipedia Commons [65].

structures which they intersect. For example, a 2D

edge-detection method based on the Hough trans-

form would map each point in image space to the

set of lines passing through it in parameter space as

part of a voting scheme. Tuples in parameter space

with the most votes are then selected as support-

ing lines of edges in the image. Figure 2.1 gives an

example of this process.

For a more detailed treatment of the Hough

transform, its generalizations, and the relationship

between bin shapes, parameter domains, and cap-

tured geometry, see the excellent presentation by

Princen et al. [70].



CHAPTER 2. BACKGROUND 27

2.3.1 Geometric applications of the Hough transform

Where the Hough transform maps individual pixels into a parameter space where they vote

for a structure which globally best fits them, some mesh-processing applications do the

same with the vertices of a mesh. Décoret et al. [19] use such a voting scheme to create

billboard clouds, sets of textured planes which represent a much more complex static mesh.

Each vertex on the mesh casts votes for the planes which contain it; when every vertex has

voted, a number of peaks are selected and the high-resolution mesh is rendered onto them

to produce texture and transparency maps.

Wu and Kobbelt [86] use a similar scheme to build approximate signed distance fields

of high-resolution meshes. In this case, supporting planes in primal space are projected to

points in Hough space, which are used to define a set of undesirable splitting planes for a

BSP tree. The signed distance field is then defined on the nodes of the BSP tree, whose

splitting planes represent its zero set.

Finally, Zaharia and Prêteux [89] use the Hough transform of a mesh as a shape de-

scriptor for mesh retrieval. They discretize parameter space in the usual way, but allow a

set of flipping operators to aid alignment of corresponding meshes with different principal

component axes. The meshes’ Hough transforms, rather than their geometry, are compared

and a similarity measure computed.

2.3.2 Overview of the geometric Hough transform

Given a plane π : ax + by + cz − d = 0 with normal (a, b, c) having unit length, if π does

not pass through the origin, then its dual, denoted by D(π), is the 3D point (a/d, b/d, c/d);

Figure 2.2: 3D Hough transform H of

a triangle T and the v-sphere corre-

sponding to a silhouette point ps.

otherwise, D(π) is the point at infinity. Conversely,

given any 3D point (a′, b′, c′), its dual plane is given

by a′x + b′y + c′z = 1. The 3D Hough transform

H(π) of the plane π is the 3D point (ad, bd, cd) with

no constraints placed on any of the coefficients.

Geometrically, we construct the 3D Hough

transform of a triangle T by drawing a line from

the origin perpendicular to the supporting plane of

the triangle. The point of intersection H, between

the line and the supporting plane, is defined to be
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the 3D Hough transform of the triangle, as shown in Figure 2.2. Note that all triangles

sharing the same support plane, though with opposite orientations, are mapped to the same

point in Hough space.

An elegant way to relate the Hough transform to the dual transform is through the

notion of inversion with respect to the unit sphere centered at the origin. In general, points

P and P ′ are said to be inverses of each other with respect to a sphere of radius r and

centered at O, called the centre of inversion, if P ′ lies on the ray
−−→
OP and |OP | · |OP ′| = r2.

Note that the inverse of a plane not passing through the centre of inversion is a sphere

passing through the centre of inversion, and vice versa. It follows that the dual of a point

ps, which is a plane not through the origin, is mapped via inversion to a sphere passing

through the origin O in Hough space, as shown in Figure 2.2. When we consider the fact

that H(π) ∈ π alongside this inversion process, we see that D(π) can be arbitrarily close

to or far from the origin; thus, we can show that the Hough transform produces a point

distribution that is better suited to hierarchical acceleration structures.

Chapter 3 compares the dual and Hough transforms in more detail.

2.4 Discussion

We have seen that geometric definitions of the silhouette tend to be expressed in planar

terms, using tangent planes on smooth surfaces and double-wedges on meshes; and second

that most of the efficient algorithms for finding silhouettes depend upon an efficient orga-

nization of planes, rather than of vertices or edges. Even hybrid methods such as those of

Raskar and Cohen [71] and Zakaria and Seidel [90] rely upon normal information and thus

tangent planes. In Chapter 3 we show that improving the organization of planes in a trans-

form space leads to significantly improved silhouette extraction and update performance.

Later, in Chapter 5, we use the intuitive notion of silhouettes defined by a collection of planes

to drive a local reconstruction algorithm which leads to significantly improved point-cloud

silhouettes.

In examining applications of geometric silhouettes, it is therefore not surprising that

we find many applications whose essential nature is projective, planar, or both – shadow

rendering and visibility determination being notable among them. These algorithms, too,

often emphasize planes in their formulation and implementation, as for example in the 3D

visibility complex [23]. In Chapter 4, we take a more global view of the component planes

of a model, constructing scalar fields which allow us to address several nontrivial problems.
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Finally, we examine the Hough transform as a feature-extraction technique. We note that

its use in geometry processing shows it to be well-suited to describing simply-parameterized

objects like planes, and propose an adaptation called the 3D Hough transform for silhou-

ette problems. Next we will see that this particular transform is well-suited to silhouette

extraction and update.



Chapter 3

Hough space silhouette methods

As explained in Section 2.1.3, tracking disjoint silhouette loops as they appear on and vanish

from the surface is a key challenge of object-space silhouette extraction. Previous methods

using supporting-plane representations address this problem by computing silhouettes in a

transform space where silhouette changes are spatially coherent, but suffer from a number

of limitations mainly attributable to the plane transforms they employ.

We develop the 3D Hough transform, introduced in Section 2.3.2, to address these limi-

tations. This transformation is closely related to the classical dual transform used by Pop

et al. in [69], but produces data sets with better properties for efficient storage and traver-

sal. We detail the geometric attributes of this approach and its application to silhouette

extraction later in this chapter. From this transform, we present algorithms for silhouette

extraction and incremental update, showing significant improvement over previous methods.

3.1 Overview of data structure and algorithms

Our goal is to organize the elements of a triangle mesh into a data structure where silhouette

changes are spatially coherent and easily identified. To this end, we transform each triangle

into a point in 3D Hough space. The backbone of our search data structure is an octree built

upon these Hough-space points, which we use to identify planes crossed by ps by performing

intersection tests against the v-sphere shown in Figure 2.2.

To facilitate fast silhouette extraction, each octree node, in addition to storing a set

of Hough-space points spatially contained within the octree node, is augmented with two

bounding volumes.

30
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• The point bounding volume (PBV): The PBV is the tightest bounding volume

of the set of Hough-space points belonging to the octree node. It can be utilized for

more effective culling due to its tighter bounding of the set of Hough-space points in

the octree node.

• The edge bounding volume (EBV): The EBV is the tightest bounding volume of

the set of Hough-space points related to one or more Hough-space points in the octree

node by an edge on the input mesh that is not on the silhouette from the origin; these

SFO edges are treated separately as explained in Section 3.2.2. The EBVs facilitate

efficient acceptance and rejection of silhouette edges.

Recall that the 3D Hough transform maps the view point to a sphere, referred to as the

v-sphere, passing through the origin and the view point itself. The majority of silhouette

edges, with respect to the view point, correspond exactly to the set of Hough-space point

pairs, in which one point lies inside the v-sphere and the other lies outside. SFO edges

do not fall into this category, as demonstrated below. For initial silhouette extraction, we

apply a standard top-down, hierarchical octree-based culling scheme using the v-sphere. All

octree nodes outside the v-sphere can be immediately culled away. Any octree node whose

EBV is entirely contained in the v-sphere can also be culled. Recursion stops when the

size of the octree node reached, measured by the number of Hough-space points it contains,

is sufficiently small. At this point, mesh edges relevant to these points are tested to see

whether they are silhouette edges. In addition, all edges that are on the silhouette with

respect to the origin are also tested explicitly.

In many interactive applications, e.g. virtual walk-throughs and object tracking, the

ability to quickly update the silhouette is highly desirable. Pop et al. [69] keep track of the

difference between the silhouette sets at consecutive frames, in the dual space, and always

start the search at the root of the octree. We show a substantial increase in performance

with the same basic algorithm executed in Hough space. We improve performance further by

taking advantage of frame-to-frame coherence and conduct an incremental neighbour search

through the octree. A neighbour graph augments our octree and an appropriate selection

of search nodes allows us to keep track of silhouette changes efficiently. Specifically, we only

need to examine octree nodes that straddle or are contained in the active region defined by

the v-spheres at two consecutive frames.
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3.2 3D Hough transform for silhouette extraction

In this section, we provide some mathematical background on the 3D Hough transform and

show how it can be applied effectively for silhouette computation. We also relate the Hough

transform to the well-known dual-space transform and show the advantages offered by the

former. We refer the reader to Section 2.3.2 for a formulation of the 3D Hough transform.

3.2.1 3D Hough transform and dual-space transform

Recall that the 3D Hough transform of a plane π : ax+by+cz−d = 0 is H(π) = (ad, bd, cd),

while the dual transform of π is D(π) = (a/d, b/d, c/d). We can see that for any fixed π,

H(π) and D(π) are related by inversion about a sphere. This implies that both the dual and

the 3D Hough transform carry the same amount of information, and suggests that they are

equally suitable for geometry processing. However, we will see that the 3D Hough transform

has several advantages over the dual transform.

Advantages of the 3D Hough transform: It is easy to show that any bounding sphere S,

centered at the origin, of a set of triangles also bounds the Hough transforms of the triangles.

The tightest bounding sphere for the dual-space transforms however can be much larger than

S. Inversion causes dual-space points to exhibit a highly nonuniform distribution, typically

with severe clustering about the origin as well as points extremely far away from the origin;

see Figure 3.1 for an example. Besides the precision issues, which influence the numerical

stability of the algorithms, octrees constructed in dual space tend to have high and unevenly

distributed leaf depths due to the nonuniformity of dual-space point distribution. These

lead to poor performance in both initial and incremental silhouette extraction, compared

to the use of Hough transforms. Note that Hough-space transforms of mesh models also

often exhibit some level of clustering around the origin, as most meshes include faces whose

supporting planes approach or even intersect the origin. Empirically, however, Hough-space

silhouette extraction shows superior performance to its dual-space counterpart, with the

same data structure construction and search algorithm, e.g. as given in Pop et al. [69].

3.2.2 Silhouette computation in Hough space

We can restate Definition 2.1.5 for meshes by describing the SGS of an edge e as the volume

swept by the supporting plane of one adjacent face π1 as it is rotated onto the other plane π2

rather than as the symmetric difference of half-spaces. This is illustrated in Figure 3.2(a).
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Figure 3.1: Scattered point plots (top) and histogram plots of distances from the origin
(bottom) for the hand model shown in Figure 3.7. Left: dual space. Right: Hough space.
The origin is chosen as the centroid of the model. Point plot in dual space shown is obtained
after 10 levels of zooming in Matlab, while the Hough-space plot is shown as is. Some dual-
space points are extremely far from the origin and not visible in the figure. Evidently, point
distribution in Hough space is much more uniform (less clustering around the origin). This
example is representative of the general trend.

In Hough space, the rotating plane traces out a circular arc, whose end points are the Hough

transforms H1 = H(π1) and H2 = H(π2), as shown in Figure 3.2(b). The full circle, which

we call the Hough circle for e, is defined by a diameter whose end points are O, the origin,

and E, the intersection between the line extension of e and a plane passing through O and

perpendicular to e. We define the Hough transform of the mesh edge e to be this circular

arc traced out by the rotating plane. Clearly, the orientation of the triangles incident to

e determine whether the arc contains the origin; this is precisely related to whether e is a

silhouette edge when viewed from the origin O.
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Figure 3.2: The Hough transform of an edge. (a) Plane rotation hits view point. (b) Plane
rotation traces out a circular arc (thickened arc between H1 and H2), defined as the Hough
transform of the edge e incident to triangles T1 and T2.

Theorem 3.2.1. : The Hough transform of an edge e contains the origin O if and only if

e is a silhouette edge, viewed from O.

Theorem 3.2.2. : Assume that no edges or their line extensions pass through the origin.

Then an edge e is a silhouette edge with respect to a silhouette point ps if and only if the

Hough transform of e is tangent to the v-sphere defined by ps or it intersects the v-sphere

through a point other than the origin.

Figure 3.3: Figure for proof

of theorems 3.2.1 and 3.2.2.

Proof: Refer to Figure 3.3. First assume that e is a sil-

houette edge with respect to ps = V , with Hough transform

H(e) = E. Then as the supporting plane π2 rotates about e

towards π1 it will intersect V . Let π be the plane through e

containing V and H = H(π), which lies along H(e). O is the

origin. Then the Hough circle of e passes through O and H.

It follows that OH ⊥ EH. As the supporting plane ρ of the

Hough circle is perpendicular to π, we have OH ⊥ π. Thus

OH ⊥ HV and H must lie on the v-sphere determined by

V . Conversely, if the v-sphere intersects H(e) at H, we have

OH ⊥ EH and OH ⊥ HV . It follows that OH ⊥ π and thus ρ ⊥ π. Hence the plane

π passes through e. Since H is on H(e), π is an intermediate rotating plane that hits V ,

implying that e is on the silhouette with respect to V . Finally, we can see that the tangency

case in the theorem occurs when π passes through O (dashed line).
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Theorems 3.2.1 and 3.2.2 are the Hough-space equivalents of Theorems 1 and 2 from

Pop et al. [69]. Figure 3.4 depicts the different cases, in an orthographically projected view

with projectors parallel to the edge in question, as an illustration for Theorem 3.2.1. The

assumption in Theorem 3.2.2 can be ensured through perturbation in preprocessing.

Figure 3.4: The Hough transform (thickened arc) of an edge, projected to E, contains the
origin O if and only if it is a silhouette edge, viewed from O; arrows depict plane normals.

Corollary 1: If e is not a silhouette edge, viewed from the origin, then it is a silhouette

edge with respect to a view point V if and only if H1 and H2, the Hough transform of faces

incident to e, lie on opposite sides of the v-sphere associated with V . If e is a silhouette

edge, viewed from the origin, then it is a silhouette edge with respect to V if and only if H1

and H2 lie on the same side of the v-sphere.

This corollary allows us to speed up initial silhouette extraction, since the majority of

the edges are typically not on the silhouette [49] when viewed from the origin. To extract

the silhouette from this set of edges, with respect to a v-sphere, one only needs to examine

octree nodes inside or intersecting the v-sphere – details are given in Section 4.4.

The situation for incremental silhouette updates is simpler, as we are interested only in

the change in the silhouette set. From frame t to frame t+ 1, the membership of an edge in

the silhouette set changes if and only if the front- or back-facing status of one of its incident

faces changes with respect to ps. Thus it is sufficient to examine octree nodes inside or

intersecting the active region between the v-sphere at the two frames.

3.3 Augmented octree in Hough space

We use a bounded augmented octree, built on top of the set of Hough-space points corre-

sponding to a set of triangles in a scene, for silhouette extraction. The root of the octree

represents the tightest, axis-aligned bounding box of the whole point set. Each node in the

octree stores the following:
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• Eight pointers to its children.

• Six pointers to its neighbour nodes, explained in detail in Section 3.3.1.

• Three axis-aligned bounding boxes. In addition to the octant bounding box, or OBV,

which bounds the full octant associated with the node, we also store

– PBV: the tightest bounding box of all the Hough-space points enclosed by the

node; for now we us denote this set by W . Note that PBV is enclosed by OBV.

– EBV: the tightest bounding box of the set of Hough-space points related to a

point in W . Specifically, a Hough-space point H is related to H ′ ∈W if H = H ′

or the triangles corresponding to H and H ′ share an edge and this edge is not

on the silhouette when viewed from the origin. The EBV is utilized for static

silhouette extraction, as explained in Sections 3.1 and 4.4.

• Extra data to indicate whether the node makes a good candidate for the active

set . The active-set candidates determine where in the octree we perform neighbour

traversal; this is described in details in Section 3.4.3.

In our current implementation, octree nodes are recursively subdivided until each non-

empty leaf node has precisely one Hough-space point. In general, one can stop the subdivi-

sion when the number of Hough-space points in a node falls below a user-defined threshold.

3.3.1 The neighbour graph

During incremental silhouette update, we walk from properly selected octree nodes to their

neighbours rather than always searching from the tree’s root, as in [69]. We build a directed

neighbour graph whose vertices are the octree nodes and whose edges connect a node to its

neighbours. A node may have up to six neighbours, one across each face of its OBV. Nodes

on the boundary of the octree do not have neighbours along those boundary faces.

Since our octrees are not fully populated in general, it is not always immediately obvious

which nodes are neighbours of a given octree node. To determine a node’s neighbour in a

given direction ~u (there are six such directions as given above), where ~u is of unit length,

we first find a neighbour point . Consider an octree node whose OBV is centered at point

C with extent or half-width e along the direction of ~u. The node’s neighbour point N with

respect to ~u is C + 2e~u, as shown in the upper-left diagram of Figure 3.5(a).
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We define the neighbour node of an octree node R, in a given direction, as the deepest

node in the tree, no deeper than R, that contains R’s neighbour point in that direction.

Typically, R’s neighbour would be at the same depth as R, as shown in the lower-left diagram

of Figure 3.5(a). But this is not guaranteed if the octree is not full. For example, a node’s

neighbour may be its parent, as shown on the right side of Figure 3.5(a). It is also worth

noting that the neighbour relation is not symmetric in general, as shown in Figure 3.5(b).

Symmetry is ensured only between two neighbouring nodes that are at the same depth.

(a) (b)

Figure 3.5: 2D illustrations of the neighbour relations. (a) Upper-left: an octree node
centered at C with its east neighbour point N . Lower-left: two neighbouring nodes at the
same depth. Right: the east neighbour of a node is its parent. (b) Asymmetry of the
neighbour relation: the north neighbour of the blue node is the red node, whose south
neighbour is the green node (parent of the blue node).

3.3.2 Edge list

In addition to the augmented octree, we maintain an edge list to store relevant information

for each edge: the position of each vertex on the edge, and facing (front or back with respect

to the current view point) flags for each face adjacent to the edge. We can therefore easily

determine whether an edge is on the silhouette or not by checking the facing flags of its

incident faces, as done for edge buffers [12].

3.4 Silhouette extraction algorithms

In Section 4.4, we describe our initial silhouette extraction scheme. Subsequently, we offer

two options for identifying changes to the silhouette on a frame-by-frame basis. One involves

a full traversal of the Hough-space octree from the root at every frame; the other maintains
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a list of active octree nodes near the silhouette and proceeds incrementally. Both algorithms

work on the same principle. We are only concerned with faces that have passed from front-

facing to back-facing, or vice versa. A face changes its facing status when it crosses the

v-sphere (defined in Section 3.1). Thus any Hough-space point that has changed its facing

status must lie within the symmetric difference between the v-spheres at the current and

the previous frames; we refer to this symmetric set difference as the active region.

We maintain two v-spheres, one for the current frame and one for the previous frame,

during view point changes. At each frame, we consider octree nodes whose associated PBVs

intersect the active region. Once we have identified all the faces whose facing status relative

to the view point has changed, we change the edge flags associated with these faces, retest

those edges affected for silhouette status, and add or remove them from the silhouette set.

3.4.1 Initial silhouette extraction

In preprocessing, we determine the set S+(O) of edges that are on the silhouette with respect

to the origin O. Denote the remaining set of edges by S−(O). Given a silhouette point ps,

all edges in S+(O) will simply be tested explicitly against ps to determine their silhouette

status with respect to ps. Note that |S+(O)| is expected to be small and comparable to

the size of the silhouette set with respect to the silhouette point ps. Thus the cost of these

explicit tests is expected to be roughly the same as the size of the extracted silhouette.

To extract silhouette edges with respect to ps from the set S−(O), we traverse the octree

from its root. We can ignore subtrees whose EBVs are entirely contained within the v-sphere

and, more aggressively, whose PBVs are entirely outside the v-sphere.

To initiate incremental silhouette search, to be described in Section 3.4.3, we add ap-

propriate octree nodes that intersect the v-sphere at the first time frame to its active set .

Details on active sets are given in Sections 3.4.3 and 3.4.4.

3.4.2 Full-traversal silhouette update

For full traversal, we start at the root of the Hough-space octree at each frame, analogous to

Pop et al. [69], and descend into nodes whose PBVs intersect the active region. Recursion

stops when the number of Hough-space points in a node is sufficiently small; these points

are tested for facing to decide the silhouette status of their adjacent edges. If a node’s PBV

is contained by the active region, all the Hough-space points therein also undergo the facing
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test. At leaf nodes, we check the facing of every point in the leaf node if the number of

points is sufficiently small. Otherwise, we consider the node’s PBV and check its points

only if the PBV intersects the active region.

3.4.3 Incremental silhouette update

Between consecutive time frames t and t+1, our incremental silhouette search aims at quickly

identifying all Hough-space points lying within the active region; mesh faces corresponding to

Figure 3.6: A partial example of incremen-

tal search. The red (respectively, blue) arc

is part of the boundary of the v-sphere at

frame t (resp., frame t+1), and the red (resp.,

blue) nodes are from the active set for that

frame. Breadth-first search proceeds from the

red nodes, through the gray nodes (and their

parents), and ends at the blue nodes.

these Hough-space points are tested to up-

date the silhouette. Rather than searching

from the root, as for full traversal, we walk

along nodes deep in the octree to avoid com-

putations on interior nodes close to the root.

Our search starts with a set of octree

nodes in the active set for frame t. Each

node in this active set must intersect the

v-sphere for frame t and be an active-set

candidate. Note that not all octree nodes

are deemed to be active-set candidates. A

judicious choice of the set of active-set can-

didates plays an important role in speeding

up incremental silhouette updates; this is

described in details in the next section.

For silhouette update at frame t + 1, we perform a breadth-first search through the

neighbour graph (see Figure 3.6), starting with nodes in the active set for frame t. During

the search, we recurse into octree nodes partially contained in the active region, performing

intersection tests between bounding volumes and the active region. For a node completely

contained in the active region, all the Hough-space points therein undergo the simpler facing

test against the view point.

3.4.4 Selection of active-set candidates (ASCs)

If we allow incremental search to proceed along leaf nodes of the octree, we may end up

processing a large number of nodes during traversal of the active region. Ideally, we wish to
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cross the active region in few steps to avoid the overhead of many bounding box checks and

queue updates. To this end, nodes at higher levels in the tree are preferred. On the other

hand, if an octree node is completely contained in the active region, we need not check any

of its children’s bounding boxes — we can simply report all of the faces contained in its

subtrees as changed. We are therefore interested in identifying nodes which are above leaves

in the tree, but are still sufficiently low-level to avoid searching a large number of interior

nodes. We call these nodes active-set candidates or ASC s, as we will add only these nodes

to the active set at any time. We must be careful to ensure that every leaf node has an ASC

above it in the octree.

A simple and reasonably effective way to choose ASCs would be to select the so-called

twig nodes — nodes that contain a leaf child. However, twig nodes may vary in depth

considerably across an unbalanced octree and may still be too small for a large mesh with a

deep Hough-space octree. We thus resort to a different heuristic to produce a more suitable

set of ASCs. Intuitively, we select nodes whose subtrees are well balanced, so as to take

maximal advantage of hierarchical octree culling when the node intersects the active region,

and whose neighbours are at the same or similar depths. We first define an ASC cost for

each node in the octree,

ASC-cost(node) {

subtree_cost = node->depth / node->num_kids

nbr_cost = 0.0

for (n in node->neighbours)

nbr_cost += abs(node->depth - n->depth)

nbr_cost /= node->num_nbrs

return w1 * subtree_cost + w2 * nbr_cost

}

where w1 and w2 are set by experimentation to be 2.0 and 0.25, respectively.

We identify the set of ASCs in an octree in preprocessing by first computing the ASC

cost of each node. To ensure that the candidate set stays near the leaves, we will only make

a node an ASC if its children are either leaf nodes or ASCs themselves. If the ASC cost of

a node is less than the average ASC cost of its ASC children, we remove the child nodes

from the set of ASCs and insert the current node. We iterate this process until no changes

to the set of ASCs are made.
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Figure 3.7: Test models (from left to right and top-down): Hand (face count: 12K); Horse
(40K); Bone (65K); Bunny (70K); Igea (268K); Dragon (300K).

3.5 Experimental results

We have tested our methods, as well as a simple dual-space silhouette extraction algorithm

similar to that of Pop et al.[69], on a PC running Linux 2.6.8 with an Intel Xeon 2.80GHz

processor, 2GB of memory, and an NVidia GeForce 6800 GT. We used six test models, shown

in Figure 3.7, with face counts ranging from 12K to 300K. The primary performance measure

is the number of bounding box checks (against v-spheres for intersection tests) executed, as

this is the most significant elementary operation used in the silhouette algorithms.

3.5.1 Static silhouette extraction

We have tested our static (initial) silhouette extraction algorithm on the test models with

varying numbers of polygons, choosing 10 random silhouette points for each resolution and

averaging the results. We see in Figure 3.8 that the average number of bounding box tests

increases sublinearly to the model size, the same behaviour we expect from the silhouette.

While several other papers, e.g. [39, 75], have presented static silhouette extraction methods

which experimentally scale linearly with the size of the silhouette, none of them supports

incremental silhouette extraction on the same data structure.

3.5.2 Incremental silhouette extraction

We have tested our incremental silhouette extraction algorithms by moving a silhouette

point along a fixed circular path on the xz plane around the test models. Figure 3.9 shows

the number of bounding box checks for three methods: full-traversal (always traversing from

the root, as explained in Section 3.4.2) and incremental Hough-space methods and a simple

full-traversal dual-space algorithm [69].

Silhouette extraction in Hough space significantly outperforms its counterpart in dual

space. Incremental search through nodes near the leaves provides a noticeable and consistent
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Figure 3.8: This plot experimentally shows output sensitivity of our static silhouette ex-
traction. Horizontal axis gives average silhouette size (computed for 10 random silhouette
points). Plotted in red is the model size and in blue the number of bounding-box checks
(exhibiting a roughly linear behavior).

improvement over the full-traversal approach, though not as great a gain as that achieved

by moving from dual space to Hough space. Dual-space search has to cull away far more

interior nodes than either Hough-space algorithm, and in Hough space, full-traversal search

must cull more nodes than incremental update. It is also worth noting that Hough-space

algorithms exhibit much more stable behavior from frame to frame, compared to the dual-

space algorithm, as the octrees built around Hough-space points are more evenly balanced

than those in dual space.

The three algorithms are more evenly matched in terms of the number of face checks

(sidedness test against vs) performed, as shown in Figure 3.10 for two of the test models.

Further, bounding-box checks are far more expensive than face checks, with roughly twice

the number of floating-point operations and five times the number of conditional branches.

Therefore, while the number of face checks performed by a silhouette extraction algorithm is

important, the improved performance of our algorithms is best seen by examining bounding-

box tests, as in Figure 3.9.
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Figure 3.9: Number of bounding box checks under incremental silhouette extraction for our
test models. Results for the full-traversal Hough-space algorithm are given in green; results
for incremental tree search in Hough space are given in blue; results for full-traversal in dual
space are given in red. The vertical axes denote the number of checks; the horizontal axes
denote the position of the silhouette point, given by an angle in the xz plane measured from
the +x direction.

Figure 3.10: Number of face checks under incremental silhouette extraction for two test
models. Colours and axes used are the same as for Figure 3.9.

3.5.3 Histogram of leaf node depths

The performance of Hough-space algorithms relative to their dual-space counterparts may

be explained by certain characteristics of the octrees generated for the respective point sets.
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Figure 3.11 shows histograms of leaf node depths for Hough-space and dual-space octrees.

Specifically, we plot the number of leaf nodes at various tree depth levels. Hough-space

octrees for all test models are consistently and considerably shallower, which leads to fewer

interior nodes, fewer bounding box checks, and more efficient subtree culling.

Figure 3.11: Histogram plots for the depths of leaves in an octree. Red: dual space. Blue:
Hough-space.

3.6 Conclusions

We have developed a complete framework for both initial extraction and incremental update

of geometric silhouettes, taking advantage of a thorough understanding of the supporting

planes at each face and their 3D Hough transforms. By focusing on the behaviour of the 3D

Hough transforms for a given edge and within a given neighbourhood in transform space,

we are able to develop a unified method for the two problems and identify options for

performance improvements.

However, two areas for improvement remain unaddressed in this chapter. First, while we

have identified the importance of the origin for the behaviour of the 3D Hough transform, we

have chosen only the centroid of the model as our origin. Second, while we have noted that

the global characteristics of the 3D Hough transform’s point distribution make it superior

to the dual transform, we treat each transformed point independently. In the next chapter

we take a global view of tangential planes, and in so doing are able to obtain a significant

performance improvement in silhouette extraction.



Chapter 4

Tangential distance fields

In Chapter 2.3.2 we describe the 3D Hough transform in terms of a plane π and an origin,

and in Chapter 3.2.1 we see that the 3D Hough transform outperforms the geometric dual

transform specifically due to its behaviour around the origin. It naturally follows that we

would like to choose an origin – or, put differently, translate our input – to maximize the

advantages brought on by the 3D Hough transform’s more uniform point distribution. Since

the Hough transform of a plane varies with the distance from that plane to the origin, we

must examine all candidate origins – all points in space – based on their distances to all

supporting planes in the input. We must also develop a metric to evaluate candidate origins

based on their aggregate distance from these planes.

The result is a structure called the tangential distance field, or TDF, which encapsulates

as a scalar field some measure of the supporting planes on the input mesh. In this chapter,

we describe the TDF and the functions used to generate it, and show that by careful

construction of these functions we can apply the TDF framework to a number of geometric

problems related to silhouette structure, such as viewpoint selection, camera path planning,

and light placement.

4.1 Tangential distance fields

Consider a smooth surface S embedded in R3. At any point p on S, we compute a tangent

plane π(p) of S. The set of tangent planes T (S) = {π(p) : p ∈ S} is called the tangent-

space representation of S; in fact, T (S) forms a surface in 4-D space. In the reminder of this

chapter, we shall only consider tangent-space representations of triangle meshes and their

45
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derived constructs. Naturally, the tangent planes are now replaced by supporting planes

of the mesh faces (triangles). The mapping from mesh faces to supporting planes is not

injective in general: many faces can share the same tangent plane. This is in fact one of

the strengths of the tangent-space representation for geometry processing. For example, it

allows us to identify points on the same silhouette, even when they are arbitrarily distant

on the surface.

This reinforces the connection between mesh silhouettes and supporting planes. Recall

that the silhouette status of a mesh edge changes precisely when the viewpoint crosses one

of the supporting planes of its adjacent faces. It is therefore not surprising that constructs

derived from the supporting planes, e.g. the 3D Hough transform, are often used for silhou-

ette analysis. Here we step away from formulations of the silhouette based on a given ps

and examine supporting-plane representations in more general terms.

We define a scalar field in which every point in space is given a value as a weighted dis-

tance to the supporting planes. We call this a tangential distance field or TDF. Specifically,

let M be a triangle mesh whose set of supporting planes is given by T (M), then for p ∈ R3,

the TDF value at p is

D(p, T (M)) =
|T (M)|∑
i=1

fTD

(
dist(πi, p)

)
, (4.1)

where πi ∈ T (M), fTD is a weight function which we refer to as the tangential distance

function, and dist(πi, p) is the signed point-to-plane distance between p and πi. The function

fTD is critical to the meaning of the TDF. It specifies the voting scheme and should be

chosen on an application-specific basis. Once we have defined the TDF, we can use it to

select points of interest around a mesh.

4.2 Point selection scheme

In this section we describe the use of the TDF for selecting single and multiple points

of interest. Depending upon the application, these points could be camera positions for

generating thumbnails of an object, origins for an optimized partition of a mesh’s Hough

transform, or points of other types. This should be encoded in the support distance function

and the search domain, which we cover in Section 4.3.
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(a) A cat contour. (b) A single supporting line. (c) TDF based on single line.

(d) TDF based on all lines.
(e) TDF based on single line,
after discounting first peak.

(f) TDF based on all lines,
after discounting first peak.

Figure 4.1: A 2D example of TDF construction and point selection. (a): A cat contour
composed of line segments, analogous to a mesh composed of triangles. (b): One support-
ing line (in red), analogous to a mesh supporting plane. (c): Plot of TDF based on the
supporting line shown in (b); the fTD for Hough-space silhouettes (see Figure 4.8) is used.
(d): TDF plot based on all supporting lines. The highest peak is indicated by the white
cross. (e): TDF based on the same supporting line in (b), discounted by the score it gave
to the first peak. (f): TDF based on all supporting lines, after discounting contributions
made to the first peak.

4.2.1 Selecting a single or first point

Selecting a single, best point amounts to finding the peak value in the TDF. This is il-

lustrated using a simple 2D example shown in Figure 4.1; see (a)-(d). We have chosen a

particularly simple peak selection scheme by coarsely sampling the field’s domain, and then

recursively subsampling and searching around the highest-valued sample until a quality cri-

terion is met, e.g. until the difference between consecutively detected peaks falls below a

user-specified threshold. More sophisticated schemes can certainly be applied as well.

To ensure good results via sampling, the sampled scalar field should be sufficiently

smooth and slow-varying or pre-filtered to be so. Smoothness of fTD is ensured by our choice

in the applications; Section 4.3 provides the details. As the TDF is a sum of instances of

fTD, it is smooth itself. In practice, we have found that the functions we use are generally

sufficiently well-behaved so that a relatively coarse initial sampling works sufficiently. We
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use a 173 initial sampling grid throughout. Since the smoothness of the TDF depends upon

the smoothness of the summed functions, rather than characteristics of the input mesh,

sampling resolution can be kept constant for a given application. However, more abrupt

fTD changes than those encountered in this paper may generate steeper gradients in the

TDF and will require a denser sampling pattern. An additional smoothing step may also

be applied prior to sampling and peak detection.

In our experiments, we have not observed any meshes which produced multiple equal-

valued maxima; however, it is possible that meshes with rotational or reflective symmetry

may do so. In such a case, any of these maxima can be chosen as the first candidate.

Any other maxima which are optimal for planes not contributing to the chosen point will be

chosen later according to the weighting scheme described in Section 4.2.2. If these symmetric

maxima are unsuitable for the given problem, an asymmetric fTD can be used to slightly

penalize points across symmetry axes or planes; Section 4.5 provides an example.

4.2.2 Selecting the next point

Having selected the peak value from the initial TDF, we may wish to find the next-highest

peak, and the next, and so on. Each selected point will benefit some planes more than others.

Depending on the application, this might mean placing some faces far from the silhouette, or

maximizing the perceptual contribution of those faces. When selecting subsequent points,

we would like to give priority to planes that have not yet contributed to a selected point,

but we should not ignore planes that have already done so.

To provide a better intuition, let us use the voting analogy to describe our approach.

Each plane assigns a vote to each point in space, weighted by fTD. The sum of these

weighted votes over all planes is the initial TDF. To select subsequent points, we bias the

votes cast by each plane when selecting point k by the preference that plane has for the first

k − 1 points. Exactly how this is to be accomplished depends upon the application, but in

general we wish to find the plane’s highest weighted vote among the already-selected points

and compare that to the plane’s vote for the point currently under consideration:

wprev(π) = max
i∈1..k−1

fTD(dist(L[i], π)),

where π is the plane casting its vote and L is the list of previously-selected points of interest.
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Now, when finding the weight for π’s vote on a point P , we calculate w = fTD(dist(P, π))

as usual, but cast a vote with weight

wk(π) =

 0 if w < wprev(π)

w − wprev(π) otherwise.

Thus planes which have not yet elected a point which they favour cast heavily weighted votes,

while planes which have already elected a suitable point of interest can still contribute to

an even better point while not overwhelming the others. Figures 4.1 (e) and (f) give an

example of this process.

4.2.3 Complexity considerations

Whenever we sample the TDF, we must compute the influence of each of the n triangles in

the mesh, an O(n) operation. Any performance improvements over the brute-force solution

must therefore come from efficiency in the sampling. These improvements are a result of

tradeoffs between the precision with which an application-dependent fTD represents the

features we need and the sampling density required to find peaks in the TDFs generated by

the functions. Model Size (tris) Origins Time

Hand 12379 2 1m30.88s

Horse 39699 3 8m52.12s

Bone 65001 2 7m26.82s

Bunny 69452 3 16m49.0s

Igea 268686 4 76m32.32s

Dragon 200000 3 43m12.57s

Table 4.1: Timing results for Hough space

origin optimization (see Section 4.4). These

times show that our method is presently un-

suitable for real-time processing, but quite

practical as a preprocessing step.

A more detailed analysis of the rela-

tionship between the properties of each fTD

and the number of samples required to find

peaks in the TDF to a given accuracy may

provide some insight into the structure of

the method. However, we have obtained

consistently good results by subsampling

around peaks using a 173 lattice of increas-

ing resolution, needing no more than three

subsampling iterations.

Due to the linear complexity of evaluat-

ing the TDF and the not insignificant num-

ber of samples required to find a peak, our method is not at the moment suitable for

real-time application. It is, however, quite practical as a preprocessing tool, and all of the

applications given in this paper fit this role. As an illustration, we provide timing results

for the Hough space optimization problem (our first application, described in Section 4.4)

in Table 4.1.
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4.3 A voting scheme cookbook

In every case we assume that the input mesh has been normalized to fit within the unit

sphere. For the given applications, we assume that the mesh is largely smooth; however,

since the voting scheme acts as a filter over the whole mesh, a small number of local irreg-

ularities, boundaries, and even non-manifold edges are easily tolerated.

4.3.1 Domain restrictions

In many cases, the application itself will restrict the domain of the TDF. In the viewpoint

selection problem, for example, it makes sense to place cameras within a spherical shell

centered around the mesh, maximizing the size of the model in the rendered image while

not allowing the view frustum to clip the mesh. However, we must understand how different

restricted domains affect the interpretation of fTDs.

Unbounded domain

We first consider an unbounded domain to illustrate the importance of bounding the domain

of fTD. Given a domain that extends to infinity, we cannot infer anything new from the

distance of a point to a plane. In such a domain, therefore, the fTD will only tell us whether

a point is close to, or far from, the plane in question. However, when addressing problems

involving the dual or 3D Hough transforms, this may be sufficient: these transforms are

defined in terms of distances from the chosen origin to a set of planes.

Bounded domain

Most domains will be bounded, if for no other reason than that it is inconvenient to sample

an infinite structure at a fixed resolution. When the domain is bounded on the outside, the

maximum widths of the silhouette wedges of each edge on the mesh are likewise bounded.

These wedges are the regions defined by the supporting planes of the wedge’s adjacent

triangles from which the edge is on the silhouette; see Figure 4.6 and previous chapters for

more details.

If we know (or assume) the mesh to be smooth, we can infer silhouette information from

point-plane distance: any ps a certain distance away from a given plane is unlikely to be

within the SGS of any edges on that plane. The converse is not necessarily true: near an
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Figure 4.2: Tangential distance functions to identify front-facing planes (left), point-plane
distance (centre), and silhouettes (right). The far-left function is discontinuous, and cannot
be used as an fTD. The function to its right is an acceptable substitute.

edge, a ps may be arbitrarily close to a supporting plane on that edge but still outside its

SGS. Summing over every plane in the mesh, we can identify pss with small silhouettes; if

we have reason to prefer pss far from mesh edges, we can identify pss with large silhouettes

as well.

Spherical shell domain

If the domain of the TDF can be restricted to a spherical shell around the mesh, we can

infer further information from the fTD. Since we can guarantee a minimum distance from

each edge on the mesh, we can reliably identify pss which see large silhouettes, or which

place certain edges on the silhouette.

We can also infer the viewing angle from a point to the triangle that generated a given

supporting plane. Since we are restricted to a spherical shell some distance from the mesh

itself, we can interpret the point-plane distance as roughly representative of the sine of the

viewing angle. We should take care not to expect great precision from this interpretation

– however, since our fTDs must be smooth, we can identify viewpoints with “small” and

“large” average viewing angles with some confidence. Note that this can be seen as a

generalization of silhouette identification.

4.3.2 Tangential distance functions (fTDs)

To maintain the desirable sampling properties of the TDF, we must avoid abrupt changes in

the fTD. Any function that steps smoothly from 0 to 1 with zero derivatives at each extreme

will be suitable. In our work, we have chosen the cubic function f(x) = 3x2− 2x3, x ∈ [0, 1]

for efficiency, which when scaled produces a result similar to Figure 4.2 (second from left).

Note that we can invert the meaning of f by taking g = 1− f .
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Triangle facing

The input argument to the fTD is the signed point-plane distance. This allows us to account

for plane orientation (and therefore triangle facing) in our functions. We must maintain

smoothness. We cannot, for example, select for all front-facing triangles with a step function.

We must instead insert a smooth step at the origin, even though this gives a small weight

to back-facing triangles (see Figure 4.2).

Point-plane distance

It is straightforward to build a fTD that votes for near or far points; see Figure 4.2 (centre).

As with the plane-orientation function shown in Figure 4.2, we cannot select exactly those

points closer or further than a set distance d; we accept a certain imprecision in our fTDs

to maintain its desirable sampling properties.

Silhouette identification

Figure 4.3: fTDs combining several of the ba-

sic properties described earlier. The left-hand

function votes for points far in front of each

plane; the right-hand function votes for points

near, but still in front of, each plane.

As discussed above, with a restricted do-

main it is possible to identify viewpoints

which see large (or small) silhouettes by

their aggregate distance from the mesh’s

supporting planes. We can generally assume

a smooth mesh and restrict the TDF do-

main to the near vicinity of the mesh, thus

identifying viewpoints with large (or small)

silhouettes with respect to a given plane usually amounts to voting for (or against) points

that are very close to the plane; see Figure 4.2.

Viewing angles

By further restricting the domain, we can treat distance as roughly indicative of the sine

of the viewing angle, as mentioned in Section 4.3.1. The relationships between point-plane

distances and approximate viewing angles (with appropriate fTDs) are shown in Figure 4.4.
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Figure 4.4: fTDs for viewing angles. From left to right: fTDs selecting small (near zero),
moderate (near π/6), and large (near π/2) viewing angles. The bottom row shows the effect
of the function above on a slice through a restricted-spherical domain.

Combining fTDs

Most applications will require more detailed fTDs than the single-feature functions given

above. Hough space origin optimization, for example, combines the off-silhouette function

in Figure 4.2 with an inverted far-from-plane function from Figure 4.2; see Section 4.4.

When combining fTDs, we select the features we need from each of the source functions.

For example, to build a function that votes for points far from, and in front of, each plane,

we can take the far-from-plane function from Figure 4.2 and remove the negative (left-hand)

lobe. However, to build a function that votes for points near and in front of each plane, we

combine the smooth step up at the origin from the front-facing function in Figure 4.2 and

the smooth step down at an appropriate distance from the near-plane function in Figure

4.2. See Figure 4.3 for an illustration.

Choosing function scales

The above examples of fTDs are given without scales. In general, the output of the function

ranges between 0 and 1, although some applications may wish to weight these values, e.g.

by the area of the triangle generating the supporting plane. The width of the function is

more variable, and should be determined on an application-specific basis. We consider this

problem in more detail in each of the following sections.
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4.4 Hough-space origin optimization

To date, none of the dual-space or Hough-space representations used for silhouette compu-

tations [39, 69, 64] has been optimized. We have observed that the location of the origin

for Hough transform can drastically influence the resulting point distribution, which in turn

can strongly affect algorithm performance. Furthermore, the use of multiple origins and an

appropriate grouping of mesh data can lead to additional performance gains.

In this section, we describe a method to find these optimized origins using the voting

approach described in the previous section. Substantial performance gains can be obtained

for static silhouette extraction without degrading the performance of silhouette updates

in any way. Note that while quick silhouette updates is crucial in an interactive setting,

frame-to-frame coherence can be taken advantage of at the same time. In this sense, the

initial extraction of silhouettes might offer more of a computational challenge. When the

viewpoint is teleported or snapshots of a scene are taken, e.g. for object recognition, one

needs to extract mesh silhouettes from scratch efficiently.

Please refer to Section for details of the Hough-space silhouette extraction algorithm.

The crucial point to recall is that more uniform point distributions in Hough space lead to

more balanced search tree data structures, which in turn result in performance gains. Thus

we select multiple Hough-space origins with this goal in mind.

Recall also that we must check every face adjacent to an edge on the silhouette from the

origin (hereafter SFO edges) explicitly when performing initial silhouette extraction. By

selecting an appropriate set of origins we can substantially reduce the number of SFO edges

in the mesh. If the mesh is smooth, that is, if most dihedral angles between adjacent faces

are close to π, eliminating SFO edges has the additional and significant benefit of reducing

the number of spurious EBV intersections, as we show below.

4.4.1 Optimizing for initial silhouette extraction

Silhouette extraction incurs most of its cost in bounding-box checks; we must check against

both PBVs and EBVs. Direct optimization for origin count and positions should measure

these operation counts in silhouette computation. However, modeling that problem is un-

realistic as it is difficult, if not impossible, to mathematically relate operation counts with

mesh geometry. We thus resort to a heuristic, which is based on an observation that there is

a correlation between the number of SFO edges and the number of unnecessary EBV checks,
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(a) Top view. (b) Front view. (c) Hough points. (d) Face grouping.

Figure 4.5: A horse model (39,698 triangles) and three Hough-space origins (coloured mark-
ers) selected by our algorithm are shown in two views in (a) and (b). The origins and their
respective Hough-space points are shown in (c). Grouping of the mesh faces based on the
origins is visualized in (d) via color coding. Extraction of the horse silhouettes takes about 2
milliseconds, compared to close to 5 milliseconds using an unoptimized single-origin Hough
transform, as done in the original Hough-space silhouette extraction algorithm [64].

and between the average distance of Hough points to their origins and general performance.

These issues are elaborated in the next section and the discussion motivates the use of the

TDF and our voting scheme.

It follows from the definition of the Hough transform that we can change the Hough

transform of a set of planes by changing the origin. We can substantially increase initial

silhouette extraction performance if we select a small set of origins and assign each triangle

on a mesh to an appropriate origin. These performance gains come from minimizing the

number of extraneous bounding-box checks incurred.

Some visual results from our approach are shown in Figure 4.5. As we can see, good

origins can be some distance away from the mesh and the corresponding grouping of the

mesh faces generally do not resemble results from known mesh segmentation algorithms.

Naively placing origins at the centroids of different parts of an object generally leads to

poor performance for silhouette extraction.

4.4.2 Reducing SFO edges and use of TDF

Recall that the Hough transform of a face is a scalar multiple of its unit normal vector,

with the scalar being the distance from the origin to the supporting plane of the face. It

follows that if the dihedral angle between two adjacent faces f1 and f2 is θ, the angle formed

by their Hough points must be either θ or π − θ (see Figure 4.6). This angle is strongly
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Figure 4.6: An edge e, its neighboring faces f1 and f2, and two candidate origins a and b.
The edge is on the silhouette with respect to origin a, but not with respect to b. Note the
angles formed by the Hough transforms of f1 and f2 from origins a and b — the smaller
angle generated from b is preferred.

correlated with the probability that a v-sphere will intersect an EBV containing f1 and f2,

whether the edge between the two faces is on the silhouette or not.

The probability that an EBV will intersect a v-sphere is not solely determined by its

volume: since all v-spheres must pass through the origin, the geometry of a v-sphere depends

strongly upon the orientation of the viewpoint it represents. By minimizing the angle

between two Hough points, which we subsequently refer to as their angular extent, we

reduce the angular extent of the EBVs they generate in their octree. This in turn reduces

the likelihood that a randomly-chosen viewpoint’s v-sphere will intersect those EBVs.

In the worst case, a poor choice of origin for f1 and f2 may result in an EBV that contains

the origin; see Figure 4.7(a). This EBV will never be discarded by an octree traversal, as

all v-spheres pass through the origin. Suppose, however, that we have a sharp edge — that

the dihedral angle between two faces is close to zero; see Figure 4.7(b). In this situation,

we may easily obtain a worst-case EBV if we try to eliminate the sharp edge from the SFO

set. Using the methods of Section 4.3, we can choose origins which discourage both of

these worst-case scenarios within the framework of our voting scheme by choosing a support

distance function that penalizes candidate origins too close to supporting planes.

However, assigning a plane to its most distant origin does not by itself guarantee that

the angular extent of its edges will be minimized. Furthermore, excessively distant origins

tend to produce highly non-uniform point distributions in Hough space. Uniformity of point

distribution is one of the greatest advantages of Hough transform for silhouette extraction.

We therefore seek to keep our origins as close to the mesh as possible – but no closer.

We choose these origins by the peak-finding method introduced in Section 4.2. The fTD

shown in Figure 4.8 selects those points where, on average, each edge has a small likelihood
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Figure 4.7: Two worst-case scenarios involving poorly-chosen origins. (a) The EBV gen-
erated by two adjacent faces includes the origin and will never be discarded. (b) A sharp
edge induces a large angle between the Hough transforms of its incident faces, when it is
not forced onto the SFO.

of lying on the silhouette from one of the selected origins, but is not located so far away as

to unbalance any origin’s resulting octree, as shown in Figure 4.5(c).

4.4.3 Domain restriction and voting scheme

We have found that restricting the domain of the voting field to a sphere of radius 3 around

the normalized mesh produces excellent results. This restricted domain gives us the prop-

erties discussed in Section 4.3.1, but large enough to fully contain the peaks of the TDF.

Figure 4.8: The fTD for Hough space origin

optimization.

We use the fTD shown in Figure 4.8.

Note that this function is parameterized by

a scalar α and has range [0, 1]. An optimal

value of α will capture not only the math-

ematically tractable property of minimizing

silhouette size on a smooth mesh, but also

the decidedly untidy property of generating

a Hough transform whose points produce a well-balanced octree. However, experimentally,

we have found that for the rather diverse set of mesh models in our test, an α value of about

1.72 generally produced the best performance. Figure 4.9 shows the effect of changing α

on the number of bounding box checks for the hand mesh with two origins. This reveals a

general trend that the algorithm performance does not vary much with α, as long as it is

not too small.
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4.4.4 Origin selection and face grouping

In our current implementation, we select a user-specified number k of origins based on the

TDF defined above. The origins are selected one at a time in a greedy fashion. After one

origin is selected, the scalar field is updated to remove its influence. An obvious question that

Figure 4.9: Number of bounding box (bbox)

checks (green: PBV; blue: EBV; red: total)

vs. α for the hand mesh with two origins.

arises is how large k should be. Indeed,

multiple origins (k > 1) tend to improve

performance but only to a certain extent.

A large value of k tends to reduce the SFO

set, and consequently reduces the number of

unnecessary leaf-level EBV checks, but in-

creasing the number of octrees increases the

overhead of bounding-box checks near the

roots of the trees. We find that values of k

between 2 and 4 work well for most meshes.

Automatically choosing an optimal k is

a nontrivial undertaking; this problem bears

similar characteristics to choosing the right

k in k-means clustering. Given sufficient processing time, one can always test a sequence of

values for k and for each k perform the origin selection heuristic and rely on performance

measurements to choose an appropriate k. In fact, this has been a well-practiced heuristic

for choosing the number of clusters in clustering analysis [29].

The origin selection algorithm above is concerned only with distances from origin to face

supporting planes, or equivalently, distances from origin to Hough points. As previously

noted, such distances alone offer no guarantee that we can minimize the angular extent of

Hough point pairs contributing to EBVs. Rather than assigning faces to the origins with

which they score the highest, we first consider whether each origin would put any edges with

low dihedral angle on that face on its silhouette, then use face distance as a tiebreaker.

We define the SFO count of a face f with respect to an origin o as the number of edges

of f that are on the silhouette from o, not on the mesh boundary, and have dihedral angle

less than π/2. Naturally, the dihedral angle at an edge is formed by its two adjacent faces.

If f has a nonzero SFO count with respect to o, we expect that at least one of the edges on

f will incur an EBV with a large angular extent from o. We therefore assign f to the origin
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that minimizes its SFO count. In the event that f has the same (minimal) SFO count with

respect to more than one origin, we assign f to the origin from which it is most distant.

4.4.5 Multi-origin silhouette extraction

Having found a set of k origins, we can now construct an augmented octree for each origin

and its associated group of faces. However, for each group C, we must take care to account

for faces that are not present in C but are adjacent to faces that are in C. If we were to

ignore these faces during octree construction for C, we would not create the proper EBVs,

and would risk not identifying these “group-crossing” edges during the initial silhouette

extraction step. To account for these faces, we create “ghost points” corresponding to them

while creating the EBVs for C. These ghost points are not present in the octree for C and

do not contribute to its PBVs, but they do affect EBVs.

To find the static mesh silhouette with respect to a viewpoint v, we must first check

each SFO edge, as before. We are only obliged to do so if it is on the silhouette from all

the origins of the groups to which its adjacent faces have been assigned. This eliminates the

vast majority of explicit SFO edge checks. We can now traverse the octree for each group

independently, as in Chapter 3. Before doing so, we must transform the global viewpoint

into the space of each cluster in order to calculate the correct v-sphere. Since a change of

origin can be interpreted as a translation, this is a simple matter of subtracting the cluster

origin from the viewpoint.

4.4.6 Experimental results

We tested our algorithms on a PC running Linux 2.6.18 with four Intel Xeon 3GHz processors

and an NVidia GeForce 6800 Ultra graphics card. Six models, listed in Table 4.2, were used,

with face counts ranging from 12K to 268K. Note that these same models were also used in

the experiments of Chapter 3. In addition to reporting the number of bounding box checks,

seen as the atomic operations of the algorithm, we also give timing for silhouette extraction.

One should keep in mind however that our code had not been optimized and such timing

results are only meant to provide a general impression of the speed of our algorithms.

We tested initial silhouette extraction performance for optimized Hough spaces by se-

lecting 3,865 viewpoints evenly distributed over three spheres, all centered about the mesh

centroid and having varying radii from 1 to 3. Recall that we have scaled the test meshes
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Unoptimized Optimized; multi-origin

Model No. faces Avg. Sil. Bbox
checks

Time
(ms) Origins Bbox

checks
Time
(ms)

Time
speed-up

Hand 12,378 639 5,691 1.45 2 1,818 0.44 3.29
Horse 39,698 2,511 16,049 4.85 3 6,884 1.96 2.47
Bone 65,001 4,724 30,825 10.70 2 11,816 3.78 2.83
Bunny 69,452 3,498 20,376 5.55 3 9,073 2.46 2.25
Dragon 200,000 13,666 72,472 17.20 3 27,767 7.04 2.44
Igea 268,686 7,191 36,757 16.60 4 20,268 7.36 2.25

Table 4.2: Performance statistics for our Hough-space origin optimization algorithm (α =
1.72). Both the total number of bounding box (Bbox) checks and average silhouette extrac-
tion times (in milliseconds) are given. We also list the optimal number of origins, found by
the heuristic described in Section 4.4.4.

to fit within the unit sphere. Results and comparison with extraction using single-origin

Hough transform [64], where the origin is chosen as the mesh centroid, are summarized in

Table 4.2. The relatively high cost for the bone and dragon meshes is due to the higher

complexity of their silhouettes.

Our program requires anywhere between two minutes (for the hand) and seventy-five

minutes (for the Igea) to find a set of optimal origins, depending on the size of the mesh

and the number of origins required. Naturally we would like to improve upon this, but for

a preprocessing step this is still acceptable and it measures up favorably against the cost

of other optimization approaches, such as that of Sander et al. [75]. The best choice for

the ideal distance α is likely model-dependent. We choose α = 1.72 throughout this set of

experiments, as discussed in Section 4.4.3. The optimal number of origins k varies across

the test models, but remains relatively small.

4.5 Viewpoint selection

We approach the viewpoint selection problem from an essentially perceptual point of view:

we wish to select a small set of k viewpoints — perhaps three or four — which together

provide as complete a visual description as possible of the target mesh. This is important

for users browsing large mesh databases, where a small number of low-resolution thumbnail

images may be generated for each entry and should allow the user to identify the mesh.
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4.5.1 Previous Work

The viewpoint selection problem has applications ranging from image-based modelling [82]

to object recognition [88] and is also studied in robotics as the sensor placement problem [79].

Most approaches define a view quality metric and evaluate it over a set of candidate view-

points, essentially via an exhaustive search, choosing the candidate with the highest score as

the best view. An overview of these approaches is provided by Polonsky et al. [68]. Recently,

reflective symmetry information has been used to select single high-quality viewpoints [67].

Our approach using TDFs provides comparable or better quality viewpoints and at reduced

costs, as a TDF allows for more efficient viewpoint search.

Camera-path planning is a related problem. It has been studied in the context of motion

planning and path finding [3], as well as in digital cinematography [16]. We consider camera-

path planning in the same context as viewpoint selection – selecting a camera path which

conveys as much information as possible about a given model based again on silhouettes.

Our approach also leads to a straightforward method for planning such a camera path.

4.5.2 Selection criteria

Silhouettes are important perceptual cues in object recognition [52]. When humans sketch

objects, they tend to define features by their silhouettes. Therefore, we seek to maximize

the perceptual information provided by a set of viewpoints by choosing those viewpoints

to maximize the length of the mesh’s silhouette from each. This problem is difficult to

formulate in terms of supporting planes. However, most large meshes are composed of

triangles of similar size. We assume that the lengths of the input mesh’s edges are consistent

and close to uniform – if this is the case, we can reduce the problem of measuring silhouette

length to the problem of counting silhouette edges. This problem can be formulated in the

framework we have described.

In addition, we follow an observation of Vazquez et al. [82] that faces seen at orthogonal

or nearly orthogonal viewing angles contribute greatly to view entropy, their measure of

viewpoint quality. With this in mind, we also wish to select viewpoints that can see a large

number of faces at large viewing angles. Again, this is simple to integrate with silhouette

selection in our voting framework.

In general, we are not concerned with back-facing triangles in the viewpoint selection

problem. The silhouette selection function from Section 4.3 will inevitably give heavily-

weighted votes to back-facing planes near the silhouette, but as this reinforces points that
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Figure 4.10: The fTD used for viewpoint selection. The peak in the centre favours planes
near the silhouette, while the plateau at +x favours front-facing planes with orthogonal
viewing angles. The shallower plateau at −x slightly favours back-facing orthogonal planes,
encouraging the use of symmetry without overwhelming the other factors.

generate a large silhouette it is not undesirable. However, a large number of back-facing

planes orthogonal to the viewing direction, when combined with a similar number of front-

facing orthogonal planes, tend to indicate a reflective symmetry plane. Podolak et al. [67]

point out that symmetry information is perceptually useful for viewpoint selection. We

therefore give a small weight to back-facing planes with orthogonal viewing angles, to take

advantage of reflective symmetry in the input without overwhelming the above constraints.

4.5.3 Domain selection and voting scheme

We select viewpoints within a spherical shell around the mesh, with inner radius
√

3 and

outer radius 2. This is sufficient to fit the whole mesh within our view frustum while not

placing the camera too far away. As silhouette size can vary with distance, we search over a

thick shell rather than a set of points at constant radius like most other methods. Our final

fTD is shown in Figure 4.10. We have set the α parameter to 1, half of the outer radius.

This ensures angle-selecting behaviour as shown in Figure 4.4.

We have found experimentally that on most “object” meshes, points that maximize total

silhouette size also have large visible silhouettes. However, we can easily account for any

discrepancies introduced here by further weighting the fTD by the ratio of visible silhouette

pixels to total silhouette pixels. At each point, we render the silhouette to a buffer, first

with the depth test enabled to find the visible silhouette, then with the depth test disabled

to find the total silhouette. We calculate the total votes cast for the point in question as

usual, and scale the number by the ratio of visible to total silhouette pixels. This does not

drastically change the positions of the selected viewpoints, but does bias them slightly to

make more features visible. See Figures 4.11 and 4.12.
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Figure 4.11: Four highest-scoring views for the bunny and igea meshes. As the results for
the bunny demonstrate, our method produces good views even for meshes with holes or
borders.

Figure 4.12: Four views selected for the horse mesh with (left) and without (right) weighting
by the visible silhouette ratio. Note that the results are similar to those shown in Figure
4.11; however, in the third and fourth views, one leg is occluded.

4.5.4 Experimental results

The object views shown in Figure 4.11 show several improvements over the methods sum-

marized in [68]. For example, the results presented here show each model from a variety

of well-separated viewing angles, rather than selecting a number of spatially similar view-

points. This is similar to the result achieved by [88], but does not require graph partitioning

as in that work. Our method also avoids viewpoints positioned opposite each other across

the model’s planes of symmetry, correcting a flaw noticeable in the purely silhouette-based

algorithms detailed in [68].

Figure 4.13 shows views generated for simplified versions of the horse shown in Figure

4.12. These views are nearly identical to those produced for the full-resolution horse; the

only visually apparent difference is the fourth view chosen for the lowest-resolution mesh.

This suggests that we can use the smoothing nature of the TDF to generate views for

high-resolution models from a simplified input.

Figure 4.14 shows a wolf model in two different poses. Note that the views generated dif-

fer significantly between the poses and from the structurally similar horse mesh, highlighting

the differences between the meshes.

Finally, Figure 4.15 shows the output of our algorithm on a CAD-type mesh, in this case
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Figure 4.13: Four viewpoints selected for simplified horse meshes with 10k (left) and 20k
(right) faces. The results are nearly indistinguishable from the viewpoints found for the full
resolution mesh with over 39k faces.

Figure 4.14: Four views selected for two poses of the wolf mesh. Views differ between the
poses as the visually significant parts of the mesh change.

a marching-cubes reconstruction of the fan blade. The large flat bottom of the fan blade

Figure 4.15: Four views for the fan blade

mesh, from first choice to fourth from left to

right. The mesh is readily identifiable even

though the first view is dominated by a large

flat region.

dominates the TDF for the first viewpoint,

producing a view that by itself is insuffi-

cient to capture the whole shape. However,

as the faces on the flat bottom are penal-

ized in subsequent iterations, the silhouette

length criterion takes on increasing impor-

tance. The chosen set of four views shows all

sides of the mesh from well-separated view-

ing angles.

While our method chooses well-separated

and informative viewpoints, it does not com-

pute a natural orientation for the camera. This is an interesting and difficult problem in its

own right which is beginning to be addressed, for example by Fu et al. [30].

4.5.5 Camera path planning

Certain applications will benefit from an automatically-generated camera path, providing a

view of the whole model while focusing on the most visually significant parts. Generating
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Figure 4.16: Generating an intermediate path

node between two viewpoints vi and vj . We

start with (1) the point between vi and vj ,

then (2) project it into the TDF’s restricted

domain, and (3) move it to a nearby peak.

such a path from our viewpoint selection

TDF is efficient and straightforward. We

construct a path that interpolates all of the

selected viewpoints in a way that seeks to

maximize the significance of intermediate

viewpoints.

We first discuss intermediate path nodes.

These nodes serve two purposes: they keep

the camera path between viewpoints from

intersecting the bounding sphere of the

viewed model, and they guide the path to

local maxima or ridges in the TDF, repre-

senting points with interesting views. To

find the intermediate path node pij between

two viewpoints vi and vj , we simply take the

midpoint of the line segment vivj , extend it to the middle circumference of the TDF domain,

and move it to the peak TDF value within a small neighbourhood, as shown in Figure 4.16.

Figure 4.17: Camera path generated for the

horse mesh based on the four viewpoints cho-

sen by our viewpoint selection algorithm, as

shown in Figure 4.11. Viewpoints are shown

in blue, intermediate path nodes in green.

Note that we use the initial TDF to com-

pute intermediate point positions, rather

than the modified TDF used to compute the

second and subsequent viewpoints. The ini-

tial, unbiased TDF provides an overall met-

ric for the significance of every viewpoint

around the mesh, while the later, modi-

fied TDFs reduce the contributions of planes

that are satisfied by previous viewpoints.

We can now compute a camera path as

a sequence of alternating viewpoints and in-

termediate path nodes. Starting at the first

viewpoint v1, we select the destination view-

point vd that maximizes the value of the TDF at the intermediate node p1d. We add p1d

and vd to the camera path, remove v1 from consideration, and repeat the process from vd.

When we have visited all viewpoints, we return to v1, closing the path. When following
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the path, we interpolate between the path nodes using cubic Bézier curves. By applying

the methods from Chapter 4 of [78] – namely, by ensuring that control points across an

endpoint are collinear and symmetric – we can ensure a smooth path between viewpoints.

4.6 Placement of single light source

Like silhouette arcs, lighting information is a powerful perceptual cue that can add significant

visual information to a scene. The cues provided by a light source depend upon the location

of the viewpoint and the properties of the mesh. Given a viewpoint (perhaps chosen by our

algorithm from Section 4.5), we would like to place a directional light source to provide as

much visual information as possible.

4.6.1 Previous work

Light source placement is generally studied alongside the viewpoint selection problem, and

has applications ranging from edge-based object recognition [17] to perceptual scene en-

hancement [35]. As with the viewpoint selection problem, light source placement algorithms

generally define a quality metric and evaluate it over a set of candidate positions. Quality

metrics can be quite similar to those for viewpoint selection. For example, [35] and [81]

use an entropy measure similar to [82]. Unlike viewpoint selection, however, the amount

of information conveyed by a given light source placement can be affected by the light’s

illumination parameters (diffuse and specular values, and shininess exponent), and placing

multiple light sources can give drastically different results from each light taken alone.

4.6.2 Placement criteria and fTD

Figure 4.18: The fTD for single light source

placement.

We wish to light the surface facing the

viewer with as much variation in intensity

as possible to highlight even small changes

in angle. Within the Phong lighting model,

this involves minimizing the angle of inci-

dence from the light source to each of the

planes facing the viewpoint. We wish to avoid large lighting angles, which will wash out

the small features we wish to highlight. However, we must also minimize the size of the
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silhouette from the light source: silhouette loops enclose back-facing regions, which will not

be lit (except by the light’s ambient component) and thus give no information by lighting.

This is almost exactly the opposite of our viewpoint selection criteria. We thus use the fTD

in Figure 4.18 on the same restricted domain used for viewpoint selection.

Note that the fTD chosen for light source placement attempts to model the information

provided by the light shining on a surface, and is thus tied to the parameters of the light. In

this case we have chosen a matte material and a light with strong diffuse and weak specular

components, in order to maximize the information conveyed by shading and minimize the

saturating effects of specular highlights. See Figure 4.19 and compare to the other renderings

in this thesis. It may be possible to generate a light-placement fTD automatically from a

set of material and light parameters; this is a direction for future research.

There are two major differences from the basic algorithm outlined in Section 4.2 in our

approach to light source placement. First, rather than considering every supporting plane

in the mesh, we operate only upon planes that face towards the viewpoint. Second, we are

forced to discard the greedy next-best-point selection algorithm. In the other applications,

once a plane has selected a point in which it has a high interest, it is unaffected by the

selection of subsequent points. In this case, however, we may inadvertently select a new light

position which washes out the contrasts which we have emphasized with our first. Hence,

we are only able to place a single light source. Adapting our method for robust multiple

light source placement, including control over intensity, is a topic for future research.

4.6.3 Experimental results

We show light placement results for the horse mesh in Figure 4.19, compared to an arbitrary

light source placement from Section 4.5. We placed light sources for each of the four best

viewpoints chosen by our algorithm.

Consider the regions highlighted by circles in Figure 4.19. First note the near-total lack

of shadowed (ambiently lit) regions in the bottom row of images. By comparison, the top

row of horse images show a great deal of shadowing. This obscures detail of the horse’s left

hind leg in the second view, and much of the horse’s sides in the third and fourth views. In

all views, the musculature of the horse is more apparent, particularly on the neck, forelegs,

and hindquarters, in the bottom row of images. Finally, in the fourth view, the unoptimized

light source washes out detail on the side of the horse’s face and neck, whereas the optimized

light position shows this detail clearly.
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Figure 4.19: Light source placement results for the horse (bottom) compared to an
arbitrarily-placed light source (top). Colored circles indicate corresponding highlighted re-
gions where we can observe differences made by our algorithm.

4.7 Conclusions

In this chapter we have stepped back from the geometric silhouette of a model to consider

the information that can be obtained by examining its supporting planes in a global, rather

than local, sense. We have constructed a tangential distance field and shown that it serves

as a unified framework for approaching point-selection problems based on planarity- and

silhouette-related characteristics of a mesh. This emphasizes the utility of supporting-plane

representations for global as well as local geometry analysis.

One factor that must be considered is that the methods developed so far operate only

on mesh data. Surface models obtained from video capture techniques such as shape from

motion, or from increasingly ubiquitous laser range scanners, must be reconstructed into

meshes before these techniques can be applied. In the next chapter we construct local SGSes

for samples in point clouds and use them to extract silhouettes without global reconstruction.



Chapter 5

Point-set silhouette extraction

As laser scanners proliferate, geometry processing algorithms can no longer depend upon

receiving a complete mesh as input. While a wide variety of full remeshing schemes exist to

convert noisy and incomplete scanned data into clean meshes suitable for traditional algo-

rithms, not all problems merit so powerful and expensive a technique. Silhouette extraction

and processing in particular can benefit from a fast and approximate local reconstruction

method which nevertheless provides sufficient geometry and connectivity to obtain an accu-

rate result. In this chapter we derive such an algorithm from an intuitive definition of the

silhouette of a point-set surface and show that its results surpass those available from exist-

ing techniques; see Figures 5.1 and 5.2. We also demonstrate that the local reconstruction

produced by our method is suitable for applying other traditionally mesh-based algorithms

to point clouds.

5.1 Silhouettes and silhouette-generating sets

While silhouette sets are well-defined on polygon meshes and smooth surfaces as structures

that separate front- and back-facing regions, as formulated in Definitions 2.1.2 and 2.1.3,

it is difficult to extend these definitions to point clouds. Instead, we extend the SGS of

Definition 2.1.5 to point clouds. Recall that on smooth surfaces, the SGS definition of the

silhouette is identical to the others, and we will see that it can readily be extended to both

meshes and point clouds.

We have seen that the SGS of a mesh edge is identical to the double-wedge volume

defined by its adjacent triangles. For a mesh vertex the SGS is defined similarly, using the

69
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Figure 5.1: Surface features in unprocessed point clouds are difficult to visualize, even with
visibility resolved (left). By rendering silhouettes (middle) and especially detected sharp
features (right), some geometric details of the underlying shapes are better revealed.

planes of its umbrella triangles. A mesh vertex is on the silhouette only when at least one

of its adjacent edges is on the silhouette; thus, the SGS of the vertex is the union of the

SGSes of its adjacent edges.

Intuitively, to define the SGS of a point in a cloud we want to construct a local umbrella

around it which approximates the underlying surface on which it was sampled. More for-

mally, in order to define the SGS of a point p in a point cloud P , we consider its relationship

to the underlying surface S. We assume that all points in P are on S; this in turn induces

an intrinsic Voronoi diagram on S from the point samples. This gives us an intuition for

point-cloud silhouettes: a point p ∈ P should be on the silhouette when the silhouette curve

on S passes through p’s Voronoi cell; see Figure 5.3. Therefore, the exact SGS of p is the

union of all planes tangent to points on S within p’s Voronoi cell. Note that we do not

need the Voronoi cell itself. As it is impractical to construct the exact SGS of p based



CHAPTER 5. POINT-SET SILHOUETTE EXTRACTION 71

Figure 5.2: Normal thresholding (left) can over- and under-detect point set silhouettes.
Results using our method (middle) based on SGS and local reconstruction show visible
improvement on silhouette accuracy. The model is also shown from ps (right).

Figure 5.3: Finding point samples on a surface’s silhouette. (a): Point samples on an
underlying smooth surface S and their intrinsic Voronoi cells. (b): A silhouette curve on S.
The points whose Voronoi cells are crossed by the curve (highlighted) are on the silhouette.

on this definition, we next present an approximate construction and show that it leads to

high-quality silhouette extraction.

5.2 Local neighbourhood construction

To approximate the SGS of a point p in a point cloud P according to the definition presented

in Section 5.1, we build an intrinsic Delaunay triangulation [25] from a subset of p’s k-nearest

neighbours Qk(p). We need not compute a full triangulation; any points in Qk(p) not in

p’s Delaunay one-ring will not affect the SGS of p in the local reconstruction and can be

ignored. The supporting planes of these triangles approximate the tangent planes of the

intrinsic Voronoi cell on the underlying piecewise-smooth surface S containing p, and thus

describe p’s SGS.
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Our local triangulations are constructed in a series of four steps, each taking advantage

of information obtained from the previous steps to produce a more accurate umbrella around

p. We perform the following operations:

1. Normal estimation and neighbour filtering

2. Initial umbrella creation and boundary identification

3. Neighbour-based multi-umbrella creation

4. Boundary consistency enforcement

Next we describe each of these steps in detail.

5.2.1 Normal estimation and neighbour filtering

Figure 5.4: Angle bounds for neigh-

bour filtering. Members of Qk(p) that

fall within the wedge with half-angle

ωt are considered marginal, and must

satisfy a distance constraint to be se-

lected in the first pass.

In the simplest case, p lies within a smooth region of

S and the intrinsic Delaunay umbrella of Qk(p) will

produce an appropriate local reconstruction. How-

ever, when some members of Qk(p) are not in the

same region of S – if they lie across a sharp feature

edge, or on a close-by surface sheet – we must ex-

clude them from our triangulation. Our first tool to

achieve this is local normal estimation.

We consider first this simple case, with p in a

smooth region of S, relatively far from any feature

curves. Let t be a triangle on p with normal nt,

and let np be the normal to S at p. The acute

angle between the lines generated by nt and np is bounded by O(rt/ρf (p)), where rt is the

circumradius of t, and ρf (p) is the local feature size at p: that is, the distance to the medial

axis of S [22, Lemma 3.5].

We say that a smooth region U ⊂ S is well sampled if any point x ∈ U is closer than

ερf (x) to the nearest sample point, where ε is an appropriately small constant. The function

ρ(x) = ερf (x) is the sampling radius.

To estimate the local normal at p, we find the triangle with the smallest circumradius

amongst those that have both the point p and its nearest neighbour as vertices. This triangle,
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which we denote tG(p), is necessarily a Gabriel triangle; its smallest open circumball is empty

of sample points [24, Lemma 4.12]. Since this canonical Gabriel triangle is the only one of

interest to us, we take the liberty of referring to it as the Gabriel triangle. If q is the nearest

neighbour to p, Mederos et al. [61] identify tG as the triangle [p, q, u] that has the largest

Figure 5.5: Filtering on the Gabriel normal

at a point p (green) on a sharp edge may (a)

include points on the opposing surface which

pass the ω-test; also, (b) the Gabriel triangle

itself may cross the edge.

(necessarily acute) angle at u. Appendix A

of [63] shows that this triangle provides a

good approximate normal in a well sampled

smooth surface patch.

If p lies in the interior of a well-sampled

smooth surface patch, all samples in an um-

brella on p should lie close to the tangent

plane of p. The sampling radius ensures that

‖p− q‖ = O(ε)ρf (p) for any neighbour q of

p. The angle between pq and the tangent

plane to p is O(ε), and does not vary with

the local feature size [22, Lemma 3.4]. Sim-

ilarly, the angle between the tangent plane and the plane of tG is O(ε). This motivates

our use of a constant angle threshold, ω, to filter the points in Qk(p) which are candidates

for being neighbours on the same surface patch. This angle threshold reflects the implicit

parameter ε governing the sampling radius.

Given the canonical Gabriel triangle, we discard all edges that form an angle greater

than ω with the triangle’s plane. In smooth areas of the surface this filtering discards most

unrelated samples, such as those coming from close-by surface sheets.

When Qk(p) lies in a well-sampled region, filtering by ω produces a high-quality set

of neighbours and is sufficient by itself. However, when Qk(p) does not conform to our

assumed sampling density, we may inadvertently select points which are barely within the

cone described by ω but geodesically distant. Further, if the surface curvature is high, we

may also reject desirable neighbours which are barely outside of the ω cone. To address

these cases, we introduce another parameter ωt < ω to describe marginal edges where our

confidence in the ω criterion is weaker. If the angle between an edge pq and the plane of

tG(p) falls within [ω − ωt, ω + ωt], we accept q only when |pq| is sufficiently small; we find

that the condition |pq| < γrtG(p) works well in all of our examples, where γ is introduced in

Section 5.2.3 to bound the circumradii of triangles in an umbrella.
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Figure 5.6: Boundary detection in the initial triangulation. Most initial triangulations have
no boundaries (a). When the distribution of Qk(p) is severely biased, fold-overs may occur
(b); these create convex boundaries (orange). Even if fold-overs do not occur, concave
boundaries are created (c) when a triangle’s angle on p exceeds ϕ. Dashed red lines are
removed from the umbrella.

Filtering is even more challenging in the presence of sharp feature edges, as shown in

Figure 5.5; these edges can be seen as an extreme case of undersampling. First, even filtering

by both ω and ωt may keep points on surfaces across sharp (approximately right-angle)

edges, requiring an extra filtering step (Section 5.2.2). Second, the Gabriel triangle itself

may include samples on both sides of the edge. In the latter case, only a small proportion

of neighbours will pass the Gabriel normal filter; such points are dealt with in the second

phase of our algorithm, described in Section 5.2.4. If we trust tG(p), we sort the remaining

points by angle in its supporting plane and proceed as below.

5.2.2 Initial umbrella creation

At this stage we have an estimate of the relevant neighbours in Qk(p). The process of

constructing an umbrella for p also drives our boundary detection. We work with the radial

edges from p to its neigbours. We sort them in counterclockwise order according to their

projection on the plane defined by tG, thus defining an umbrella at p. See Figures 5.6

and 5.7(a) for examples.

We must account for the possibility that p itself lies on a boundary between surface

patches. In this case our initial umbrella will be a partial umbrella on the patch containing

the Gabriel normal. The construction of the remaining surface patch(es) is described in Sec-

tion 5.2.4. Some boundaries are identified in the initial triangulation; we describe boundary

detection in Section 5.2.3.
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Figure 5.7: Umbrella creation near (left) and at (right) a feature line. We perform (a)
triangle removal, (b) boundary detection, (c) Delaunay edge flipping, and (d) boundary
expansion. See text for details.

This in turn lets us make a second, more aggressive pass on the remaining neighbours,

as shown in Figure 5.7(a): we discard any edges whose adjacent triangles’ normals form an

angle greater than ω with the Gabriel normal. However, we do not remove an edge if the

resulting triangle would also fail this criterion. (Removing an edge is akin to an edge flip,

but we only preserve triangles incident to p.) We also avoid removing boundary edges, as

defined in Section 5.2.3. This process eliminates most samples remaining on other surface

patches, as well as distant neighbours on smooth surfaces with relatively high curvature.

Next we apply the extrinsic Delaunay edge-flipping algorithm from [25], removing edges

adjacent to p which are not locally Delaunay, shown in Figure 5.7(c). At each step, we ex-

amine p’s one-ring for newly-created concave boundaries; boundary edges are never flipped.

5.2.3 Boundary detection

Our boundary detection is based upon an additional sampling assumption. A local unifor-

mity constraint is some criterion that limits the number of samples that can appear in a

small region. Any algorithm that attempts to create an umbrella on p using only points

from Qk(p) is at least implicitly assuming some local uniformity constraint. Otherwise, all

k nearest neighbours could be confined to a tiny disk close to p such that no reasonable

umbrella could be constructed.

We express our local uniformity assumption as a bound on the minimum distance be-

tween sample points. We assume ‖eG‖ > δερf (p), where eG is a Gabriel edge as defined

in [63], 0 < δ < 1, and ε governs the sampling radius, as above.

A good triangle t on p has its circumradius bounded by O(ερf (p)), and by a straight-

forward geometic argument (as shown by Kil and Amenta [50], for example), the largest
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angle in t is bounded above by α = π − O(δ) Thus the largest angle in any triangle is

governed by a constant parameter that is independent of the local feature size. We call this

parameter ϕ.

Before performing Delaunay edge flipping, we first check for boundaries (Figure 5.6).

Concave boundaries are identified with triangles whose angles on p exceed ϕ. Convex

boundaries are defined by triangles whose angle in the counter clockwise ordering around p

exceeds π, as in Figure 5.6(b). We mark these explicitly here to ensure correct behaviour

from the edge-flipping algorithm in later steps.

We also use excessively large triangle circumradii as indicators of the presence of a

boundary. We should have rt < O(1
δ )‖eG‖, where ‖eG‖ is the distance to the nearest

neighbour of p. However, we have found this particular method of detecting boundaries

to be too sensitive to variations in the sampling uniformity. Instead, we have had better

success requiring rt < γrtG , where γ is another constant parameter whose value reflects an

expectation on the local uniformity of the sampling.

Finally, if any boundary edges have been detected, we attempt to enlarge them by

examining the circumradii of the associated triangles, as in Figure 5.7(d). If a triangle t on

a boundary edge has rt > γrtG , we disregard the sample on that edge, and make the other

edge of t incident to p a boundary edge.

5.2.4 Alternate normals and supplemental umbrellas

We now have an estimate of the local surface around each point with a trustworthy Gabriel

triangle. If that point is on a smooth surface patch, we expect it to have a triangulation

without boundary. However, if p is on a boundary between smooth surface patches, the

umbrella we have just constructed will only inform us about a single patch, and we must

build umbrellas on its other adjacent patches using information from neighbouring points.

Furthermore, if the Gabriel triangle, tG(p) is untrustworthy, we must obtain an estimate of

p’s normal from one of its neighbours. We decide that tG(p) is untrustworthy if fewer than

half of the points in Qk(p) make an angle smaller than ω with the plane of tG.

We address both problems in a second pass over the input, this time considering both

points whose umbrellas have a boundary and points with untrustworthy Gabriel triangles.

In either case we proceed as before, with the following modifications.

Rather than obtain a normal estimate from tG(p), we instead choose the computed

normal from a trustworthy neighbour of p. This is a point in Qk(p) that has a single
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umbrella without boundary. The closest trustworthy neighbour to p gives us a trusted

normal even when tG(p) is not reliable.

Filtering Qk(p) on this normal is more restrictive when p already has a partial umbrella.

We reject points that would be admissible in an already-constructed umbrella, unless they

lie on that umbrella’s boundary (indicating that they too lie on feature edges). However,

if a point lies on the boundaries of two partial umbrellas, it cannot lie on a third if S is

manifold, and therefore it must be rejected.

We build partial umbrellas using the algorithm of Section 5.2.2 with these additional

criteria until all boundary points have been included in a partial umbrella or no more

trusted neighbours remain in Qk(p). In some cases, one of the new umbrellas will not have

a boundary; this occasionally happens in areas of high curvature and sparse sampling, where

tG(p) might be misleading because the sampling assumptions do not hold. In these cases,

we simply discard the complete umbrella when it contains the fewest vertices of all of p’s

umbrellas, and accept it (discarding the others) otherwise.

5.2.5 Enforcing boundary consistency

We have now constructed a local umbrella around each point p which is consistent with

our characterization of the underlying surface (based on ω and γ) and incorporates our

estimates of boundary and feature curves passing through p. However, aside from normal

information in the cases of boundary points and untrustworthy Gabriel triangles, we have

not incorporated any information contained in p’s neighbours into its triangulation. For a

well-sampled smooth surface this is generally sufficient; however, when the actual structure

of our input point cloud does not satisfy our local uniformity assumptions this may lead to

visual artifacts such as inconsistent or even spurious boundary detection where the input

sampling breaks down.

Rather than attempting to enforce umbrella consistency across the whole point set as

in the work of Kil and Amenta [50], we instead perform a third high-level pass over the

input, identifying and correcting obvious inconsistencies near detected boundaries. This

simple step significantly increases quality with minimal performance cost. Again, we are

able to ignore most points in the input, instead focusing on points with boundaries that are

incompatible with their neighbours’ umbrellas. This may occur when a point’s neighbour

across a boundary edge does not itself have a boundary, or when two neighbours have

boundary edges but do not agree on which edges those should be.
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Figure 5.8: When a point p (green dot) has an inconsistent concave (a) or convex (b)
boundary, we search Qk(p) for points that lie in the indicated area and contain reciprocal
edges. Sparse sampling of boundaries may lead to point umbrellas with non-reciprocal edges
on geodesically-distant sheets (c), or adjacent boundary vertices which do not agree with
each other (d). Our method is able to address both problems by enforcing boundary edge
reciprocity.

The first case may not indicate a problem at all; particularly in machine parts, when a

fillet joins a smooth surface, a sharp edge will terminate rather than meet another feature

curve. In this case, the sharp edge represents a crease in an otherwise smooth surface patch

rather than a boundary between two distinct smooth patches. Thus, if p has multiple partial

umbrellas which share all their boundary edges, we simply accept it.

Otherwise, we identify points in Qk(p) whose umbrellas contain p, and consider those

edges when rebuilding p’s umbrella. We call these reciprocal edges, and our general strategy

in the third pass is to add missing reciprocal edges and remove spurious reciprocal edges

when necessary to ensure consistency between adjacent boundary points.

We identify and address two cases: points with no boundary edges but at least two

incoming boundary edges, and points with non-reciprocal boundary edges. The first case

often occurs when a surface boundary approaches another sheet of the surface: points on

the boundary may erroneously include points on the sheet in their umbrellas. In this case,

we mark incoming boundary edges and search between them for onering neighbours without

reciprocal edges. We remove these neighbours and construct a boundary consistent with

the incoming boundary edges. See Figure 5.8(c).

The second case, where one or more of a point’s open boundary edges connect to neigh-

bours without reciprocal boundary edges, often occurs at a sparsely sampled boundary.

Here we wish to correct the boundary, taking neighbour information into account. If the

point has incoming boundary edges, we update its boundary to contain those edges, adding

reciprocal edges as needed.

However, most of these points occur in regions of high curvature and low sample density,
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where our ϕ assumption does not hold, and spurious and isolated boundaries are often

detected. For these points, we find reciprocal edges in Qk(p) to fill the boundary, as shown

in Figure 5.8(d).

5.3 Point set silhouette and feature extraction

We first describe our method for calculating the silhouette set of a point cloud and con-

structing local silhouette arcs. Then we present our preliminary attempt at point set feature

extraction from the local umbrellas.

Silhouette extraction and silhouette arcs We slightly modify the Hough-space silhou-

ette algorithm of Chapter 3 to handle the SGS-approximating umbrellas created in Section

5.2. Here we describe only the necessary modifications.

To take advantage of the spatially and temporally coherent nature of Hough-space sil-

houette extraction and update, we store the Hough transforms of each SGS face in an

augmented octree as described in Chapter 3. Rather than consider every edge in p’s um-

brella, we store all faces associated with p together and test them as a group. This increases

the complexity of testing the octree’s edge bounding volumes against the v-sphere in initial

silhouette extraction, but only by a constant factor.

Once we have identified a set of silhouette points, drawing silhouette edges between them

is straightforward. Silhouette edges in each one-ring are easily identified but form a superset

of the silhouette we wish to draw. Borrowing language from [50], we cull these edges into

a more conservative set by drawing only consensus silhouette edges: We render a silhouette

edge pq if and only if it exists and is a silhouette edge in the umbrellas of both p and q.

Note that we draw only local silhouette arcs, not full silhouette loops. The latter depend

on global properties of point connectivity and must meet certain topological criteria [1] which

we cannot guarantee from purely local constructions. It may be possible to augment our

SGS construction with extra information and build consistent silhouette loops; we address

this in our discussion of future work. For now we consider our silhouette arcs to be a first

step towards a geometric solution.

Feature detection and emphasis To aid visualization of point clouds, we adapt the

feature classification method of Hubeli and Gross [44] to our local reconstruction. While

the original method is used to classify the feature strength of edges, we instead apply their

ESOD operator to point samples. For each edge pq in p’s umbrella, we use the umbrellas
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of q’s neighbours in p to evaluate cos (|〈ni, nj〉|)−1, then divide by π/2. The absolute value

term is required as our computed normals are not oriented, and thus are not guaranteed to

be consistent between neighbouring umbrellas. To determine the weight of each point we

simply take the maximum computed weight among its edges.

Rather than implement hysteresis and patch skeletonization, we find it sufficient for vi-

sualization simply to treat the normalized weight of each point as its alpha value during

rendering. This conveys curvature information in a view-independent way without compet-

ing with the silhouette for emphasis; see Figures 5.1 and 5.10.

5.4 Results

Figure 5.9: Point rendering using oriented

splats on the hand mesh (left) to compare

normal estimation: (centre) using our local

reconstruction and (right) using PCA, where

the same k for initial Qk() is used. The PCA-

estimated normals between adjacent fingers

are inconsistent with their neighbours, while

ours are coherent.

Some results of our point set silhouette and

feature extraction algorithm for quick point

cloud visualization are shown in Figures 5.1,

5.2, and 5.10. In all the cases, we chose

Qk(p) to be the 16 nearest neighbours, our

sampling density parameter ω = π/6, and

our local uniformity parameters ϕ = π − ω
and γ = 2. Small changes to these parame-

ters tend to produce small changes in the re-

sults, and the values chosen here reflect the

fact that all of our raw point cloud data were

processed with WLOP [43]. Inputs with dif-

ferent sampling characteristics will require

changes to the parameters that reflect those differences in sampling.

Our SGS-building algorithm is a preprocessing step while silhouette and feature extrac-

tions are interactive. We performed our experiments on a workstation running Linux 2.6.18

with two Intel Xeon 3.2GHz processors, 4.0GB of RAM, and an NVidia GeForce 9800 GX2

card. The preprocessing step took between 5 seconds (hand model, 6,191 points) and 40

seconds (oil pump model, 54,220 points). Framerates for incremental silhouette updates

varied with silhouette size, but never dropped below 190 frames per second.

Qualitatively, comparisons to the display of only visible points [48], as shown in Fig-

ure 5.1, reveal the ability of silhouettes and detected feature points to emphasize underlying
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shapes especially near surface features and fine-scale details. It is also worth pointing out

that as the point cloud becomes more sparse, pure point rendering (left of Figure 5.1) be-

comes less effective in revealing geometric details while the usefulness of the characteristic

curves is increased.

While normal estimation is not a key contribution of our work, our method’s ability to

reconstruct correct umbrellas in the presence of close-by surface sheets is demonstrated by

Figure 5.9. Here, we show the robustness of normal estimation using our local umbrella

construction and patch filtering algorithm, in comparison to principal component analysis

(PCA). While our umbrella construction starts with Qk(), as in PCA, the optimization can

identify the correct local neighborhood which does not straddle between the nearby sheets;

this results in more accurate normal estimates.

In Figures 5.2 and 5.10, we compare to the use of normal thresholding for point set

silhouette extraction, where features are included for a better depiction of the shapes. Fo-

cusing on just the silhouettes, it is quite evident that using our local reconstruction and the

SGS-based extraction scheme effectively avoids both under- and over-detection of silhou-

ettes, which occur simultaneously under normal thresholding even on models derived from

triangle meshes. Specifically, in regions with low curvature (either due to dense sampling

or the geometry of the underlying surface), we produce a set of silhouette points with far

more consistent thickness than the thresholding method. This is particularly evident on

the fandisk and oil-pump models. In regions with high curvature, we are able to identify

silhouette points where thresholding fails, both on sharp edges such as on the fandisk and

over smooth regions of high curvature such as the fingers of the hand. Even on the fertility

model, which is best suited to normal thresholding, we are able to identify more silhouette

points on the higher-curvature arms and avoid overselection on the flat base.

Finally, in Table 5.1 and Figure 5.11 we show the results of our boundary estimation

on a number of datasets with boundaries. In order to evaluate our results we chose input

data from triangle meshes with connectivity removed, and used the mesh boundaries as

ground truth for the statistics in Table 5.1; while this may not be an ideal metric, it is at

least an objective external standard. Each input surface contains one or more boundaries

and includes sampling features that make boundary estimation nontrivial. Note that our

method identifies more spurious boundary vertices than it fails to detect. Mesh connectivity

is not restricted by vertex position or density, and in areas with extremely acute or obtuse

triangles our method is likely to find small boundary loops.
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Figure 5.10: Comparison between normal thresholding (left figure of each pair) and our
method (right). Insets show the models from the silhouette viewpoint. Red boxes highlight
details discussed in the text.

We also compare our results to those of the excellent Peel algorithm described in [21]

by Dey et al.. This sophisticated method produces a provably-isotopic and globally consis-

tent Delaunay mesh, even on non-orientable point clouds with boundaries. Note that only

Model Bdry
Vertices Percentage

Missed Extra Missed Extra

Saddle 256 0 0 0 0

Pig 544 16 38 2.9 6.9

Face-HY 338 13 23 3.8 6.8

Table 5.1: Quantitative comparison of our method to

the base mesh used as ground truth. For each model

in Figure 5.11, we show the number of boundary ver-

tices on the mesh, and the number and percentage of

missed and extra (spurious) boundary vertices.

default parameters were used with

Peel. All three models gener-

ally satisfy Peel’s assumption of

sufficiently uniform sampling, but

its output mesh organization makes

quantitative comparison difficult.

The saddle model is a simple

synthetic rendering of the neigh-

bourhood of a saddle point. Of note

is the fact that this model was com-

puted as a single octant and stitched

together with significant point over-

lap at octant boundaries; our method finds spurious features on some of these overlaps,

though these are not marked as boundary vertices, while Peel detects spurious potential

boundaries. The inset shows our local umbrellas along an octant boundary near the centre

of the model; note the abrupt changes in sample density.



CHAPTER 5. POINT-SET SILHOUETTE EXTRACTION 83

Figure 5.11: Comparison of our boundary detection results (white/brown) with those of
Peel (grey/green) on the saddle, pig, and face-HY models. Insets show features described
in the text. Despite its local support, our method produces results comparable to Peel.

Similarly, the pig model exhibits sharp and narrow linear features, particularly at the

ears (shown in the inset). These features are by their nature undersampled, and neither our

local reconstruction nor Peel’s more global method can perfectly reconstruct these regions.

Also notable is that our method finds boundaries at the eyes, while Peel triangulates

them; this is due to our assumption that the local surface can be characterized by the

Gabriel triangle radius.

Finally, the face-HY model is constructed from a single raw point scan, and exhibits

typical scanner errors near the eyelashes, nostril, and lips. Both our method and Peel

misidentify internal points as boundaries where this occurs, but our ability to construct

multiple partial umbrellas where sharp features occur allows us to produce fewer spurious

boundaries at the eyes and mouth.

5.5 Conclusions

In this chapter, we generalize the SGSes described in Definition 2.1.5 to point clouds, use

them to develop a purely local reconstruction algorithm, and demonstrate their utility for

both silhouette extraction and simple feature detection. By exploiting successively more

refined estimates of a point’s SGS, we are able to cope with open boundaries, sharp feature

edges, and close-by surfaces without the often-substantial processing required by global

surface reconstruction techniques.

While the one-rings generated by our algorithm are not perfectly consistent with their

neighbours, we are able to enforce a significant degree of consistency along boundaries, with
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boundary-detection results comparable to those of more sophisticated techniques. In general

we find a strong degree of consistency between nearby one-rings, and expect our SGS-based

construction to be applicable to a wide variety of geometry processing algorithms beyond

the feature-extraction algorithm described above.



Chapter 6

Conclusions

We have exploited the connection between object-space silhouettes and the tangent and

supporting planes with which they interact to develop a number of novel tools for silhouette-

based geometry processing.

6.1 Silhouette extraction using the 3D Hough transform

While transform-based silhouette extraction is not new (see Chapter 2.1.3), the efficiency

of these methods depends heavily upon the distribution of points in transform space. In

Chapter 3, we develop the 3D Hough transform as an alternative to the plane-parameter

transform of Hertzmann and Zorin [39] and the dual transform used by Pop et al. [69].

This transform exhibits a number of desirable properties when applied to the supporting

planes of mesh faces; in particular, the distribution of points in transform space is far more

uniform than that produced by the dual transform without the extra dimension of the plane-

parameter transform. This allows us to produce data structures that are significantly more

efficient, and easier to traverse at a low level, than those on point sets from other transforms.

Examination of the properties of 3D Hough space has uncovered efficient methods for

from-scratch silhouette extraction from a given ps and silhouette update with respect to

spatially-coherent changes in ps, features which had not been combined in previous works.

Furthermore, we have discovered that the 3D Hough transform’s advantages can be further

exploited by careful selection of a small set of local origins, and in Section 4.4 have developed

an algorithm for silhouette extraction based on these partitions. We note performance

improvements of between two and three hundred percent using this method.

85
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6.2 Silhouette aggregation for geometry analysis

In order to obtain the local origins used to achieve this performance improvement, we must

consider a continuous domain of points in relation to every supporting plane on the mesh. We

do this by constructing a tangential distance field, as shown in Chapter 4, which aggregates

information from every plane at every point in our search space. Choosing an appropriate

weight function, parameterized by the point’s distance from the plane in question, lets us

construct a voting scheme to select optimized origins, and weighting subsequent points by

the weight of votes on earlier points produces a simple assignment of mesh faces to origins.

This method is suitable for a number of problems which consider global silhouette proper-

ties aggregated over the whole mesh, such as viewpoint selection and light source placement,

when appropriate weight functions are selected. We show several examples based on the

TDF which produce results comparable to the current state of the art, and present a number

of primitives which can be combined to construct appropriate functions.

6.3 Local reconstruction of point clouds

By approaching the silhouette extraction problem in terms of supporting planes and contain-

ment of ps rather than a separating curve, we develop an intuition for defining the silhouette

of a point cloud based on Voronoi cells induced on the underlying surface. From this intu-

ition we build a local reconstruction algorithm for point clouds with sufficient connectivity

information to allow silhouette extraction and update. These local one-rings are rich enough

to support other mesh-based algorithms on point clouds, without the complexity of a full

reconstruction step.

While our local reconstruction is not intended to deal with noise in the sampling, it is

able to detect and process sharp features in the data, which are by their nature chronically

undersampled, by inferring the shape of smooth components from the plane of the Gabriel

triangle. The same method allows us to detect boundaries in the input with accuracy

roughly comparable to state-of-the-art global techniques such as Peel [21]. The local nature

of our method’s computations and small region of support lend themselves to a GPU-based

implementation in the vein of [50].
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6.4 Future work

A major theme of Chapters 4 and 5 is that, while geometric silhouettes are themselves

useful for geometry processing as discussed in Chapter 2, extending the scope of silhouette-

based geometry analysis with SGSes and TDFs results in a number of even more broadly

applicable tools. We feel that the potential scope of this work far exceeds what has so far

been achieved. Thus, while a number of limitations remain to be addressed in the work

presented in this thesis, there is also significant opportunity to apply these methods to new

geometric-computation problems.

In particular, the extension of Definition 2.1.5 in Chapter 5 underscores the flexibility of

the silhouette-generating set. Armed with this concept, it is straightforward to define SGSes

on polygons or regions in meshes, patches in displacement maps, voxels containing level-set

surfaces, or any other primitive or assembly of primitives with a well-defined silhouette. We

present some opportunities to exploit this flexibility below.

6.4.1 Hough-space silhouette extraction

The major flaw of precomputation-based silhouette extraction algorithms is their inability

to cope with animated or deforming models. Silhouettes on these models must instead

be found using brute-force or randomized algorithms, such as those in [12] and [59]. One

possibility to bridge the gap between our methods and theirs is to follow the example of

the real-time raytracing community and use a simpler data structure that can be quickly

recomputed each frame; however, the recomputation cost of such a structure would have to

be extremely low for the whole algorithm’s performance to exceed the methods cited.

Another possible approach to the problem of dynamic meshes is to use the 3D Hough

transform to guide a randomized algorithm. Since transformed points in Hough space

make all silhouette changes spatially coherent, we may be able to address the tendency of

randomized algorithms to miss new silhouette arcs by shifting random edge selection into

a domain where new silhouettes are clustered with old ones. In order to make such an

algorithm worthwhile, however, care would have to be taken to reduce the cost of each

transformation and predicate well below the cost of a simple silhouette test. Clustering

faces and operating on their SGSes may be the best way to achieve this cost reduction on

average, if a sufficiently stable clustering scheme can be achieved. This latter problem is

well-studied in the real-time raytracing community, as for example in Günther et al. [36].
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Furthermore, when the silhouette of a model is used for geometry processing or rendering

effects, multiresolution structures built around surface-based error metrics may prove to be

suboptimal and silhouette extraction methods based on static connectivity are unlikely to

function efficiently. A multiresolution silhouette extraction and update method combined

with a specialized multiresolution mesh data structure would fill this gap, and the spatially-

coherent nature of silhouettes in Hough space make it a natural tool for building such a

combination. Recent work such as that of Hu et al. [42] shows that a significant amount of

fine-grained geometry processing can be efficiently performed on the GPU; similar techniques

may enable applications such as those mentioned above.

On a more theoretical level, none of the existing efficient silhouette algorithms has been

proven to be output-sensitive – that is, to have time complexity that is linear in the size of the

output set. These algorithms, including the one presented in Chapter 3, have been verified

by experiment to grow more slowly than the input (see, for example, Figure 3.8), but a

rigorous proof would contribute significantly to the understanding of silhouette complexity in

general. The discrepancy between the theoretical bounds achieved in [32] and the empirical

statistics obtained in [60] underlines the amount of work that remains to be done in analytic

descriptions of silhouette complexity.

Finally, while this thesis emphasizes the geometric information available from the full sil-

houette, most rendering applications prefer only the visible silhouette shown in Figure 1.1(b),

and many geometry processing algorithms can benefit from the occlusion information this

structure contains. However, extracting the visible silhouette in object space is a difficult

problem to solve efficiently, though the problem has been attacked in works such as [59].

Rather than address the problem purely geometrically, it may be possible to exploit the com-

binatorial structure of the complete silhouette to extract the visible rim more efficiently.

6.4.2 Tangential distance fields

As a conceptual tool, the tangential distance field is still in the early stages of its develop-

ment. More sophisticated support distance functions – for example, those that weight the

result by the size of the generating polygon, by the distance between that polygon’s centroid

and the point under consideration, or by the distance from the point to the bounding planes

of the polygon’s SGS – would no doubt improve the method’s results in certain applications

and allow the fTDs to incorporate more precise information in their votes. This in turn may
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permit a broader and more complete examination of fTDs and their composition, which in

turn may open more problems to TDF-based solutions.

More specifically, it is difficult to ignore the similarities between the TDF as a spatial

function determined by a model’s supporting planes and the aspect graph or visibility com-

plex as a spatial partition determined by a model’s supporting planes. While the visibility

complex presents difficulties due to the inherent discontinuities in the visibility function, we

take special care to ensure that the TDF is a sum of smooth functions. It may therefore be

possible to construct a TDF that assists in the construction of the visibility complex.

Since we generate a small number of features – the points selected by the voting scheme

– from aggregate mesh geometry using what can be seen as a low-pass filter, we expect our

method to be robust to changes in connectivity and, to a certain extent, even geometry.

We may therefore be able to use our framework to produce a compact mesh descriptor

for rigid models. Understanding the insensitivity of our fTDs to high-frequency detail also

helps explain their stability as the source model is simplified, as shown in Figure 4.13, and

may lead to performance enhancements later on as well as insights into the multiresolution

silhouette structure described above.

6.4.3 Local point-cloud reconstruction

The local reconstruction technique we develop in Chapter 5 will naturally be compared

to fully globally-consistent algorithms. Therefore, the obvious next step in this work is

to compare the performance, in terms of both quality and efficiency, of our method to

the state of the art in surface reconstruction. This should be done on a full range of

filtered, noisy, and incomplete data sets, with an emphasis on determining the parameters

and applications where one method is superior to another. Part of this comparison will

include the implementation of our method on the GPU, for which it is particularly well-

adapted. The work of Kil and Amenta in [50] demonstrates the potential of a locally-

operating reconstruction algorithm on graphics hardware.

Despite their purely local construction, our umbrellas are surprisingly consistent with

their neighbours. This leads us to two observations: first, that a more globally-consistent

reconstruction algorithm may only be a short step away; and second, that the presence of

inconsistency between neighbours may signal interesting properties of the underlying data.

Both of these indicate future courses of research which merit further consideration.
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Finally, the successful implementation of Hubeli and Gross’s feature detection algorithm

from [44] on our independent one-rings demands a more complete investigation of the appli-

cation of mesh algorithms to our reconstruction. Algorithms with small regions of support,

such as the calculation of graph Laplacians, seem likely to succeed, while most subdivision

methods are unlikely to prove easy to adapt and the suitability of path-based algorithms

like geodesic-distance approximations is unclear. Nonetheless, further research into mesh

algorithms will broaden the impact of the local reconstruction and suggest avenues for its

improvement.
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