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Abstract

Many arithmetic geometric results have an arithmetic dynamic analogue. For in-

stance, Siegel's theorem, that an elliptic curve has only �nitely many integer points,

is analogous to the fact that any orbit under a rational function whose second iterate

has a non-constant denominator has only �nitely many distinct integer values.

A conjecture of Lang states that the number of integer points on a minimal Weier-

strass model of an elliptic curve is uniformly bounded. In order to translate this

conjecture, one needs a dynamic concept of minimality. We present two such notions,

a�ne minimality and full PGL2(Q)-minimality, and prove they are equivalent. We

also present an algorithm to test minimality.

Finally, we present the results of an exhaustive search for rational functions with

many integers in an orbit. These provide the best known minima for uniform bounds

on the number of integers in orbits.
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Chapter 1

Overview

Much attention has been given to the study of iterations of rational functions over

Q recently. Many fundamental questions from the study of elliptic curves have been

asked in an arithmetic dynamical setting. In particular, we are interested in the

analogue of a conjecture of Lang on the number of integral points that can be found

on certain elliptic curves ([4, page 140]). In our setting, we are interested in how

many integers can occur in orbits of rational maps over Q, where an orbit is the set

of all iterated images (i.e., for α ∈ Q, the orbit of α is the set {φn(α) : n ≥ 0},
where φn(α) = φ(φ(. . . φ(α)))︸ ︷︷ ︸

n

. Obviously, the orbit of an integer under a polynomial

with integer coe�cients consists entirely of integers. However, Silverman proved that

if φ(φ(z)) is not a polynomial, then any orbit of φ(z) contains only �nitely many

integers.

One may wonder if one can give a uniform bound on the number of integers that

can occur in an orbit of a rational map. In general the answer is negative, as the

following example shows. Take the map φ(z) = (z2 + z + 1)/(z + 1) and look at the

orbit of 0. The orbit is {0, 1, 3/2, . . .} and we have a denominator of two appearing,

so we consider the map ψ(z) = 2φ(z/2) and the corresponding orbit of 0 under φ.

We have {0, 2, 3, . . .} and we have scaled away the denominator! We can do this

repeatedly, and get arbitrarily many integers in an orbit. Note that the two functions

φ and ψ above have orbits {0 = z0, z1, z2, . . .} and {0 = z′0, z
′
1, z
′
2, . . .} respectively,

where z′i = 2zi for i = 0, 1, . . .. In this sense, φ and ψ represent the same map, up to

1



CHAPTER 1. OVERVIEW 2

a change of coordinates. We will de�ne a quantity, called the resultant of a rational

map, that can detect this scaling. We will see that Res(ψ) = 24 Res(φ).

We can consider all possible changes of coordinates z′ = az+b
cz+d

. The corresponding

changed functions are called PGL2(Q)-conjugates of φ. We say that φ is PGL2(Q)-

minimal if Res(φ) is minimal among its PGL2(Q)-conjugates.

In Chapter 3, we restrict ourselves to a�ne changes of coordinates, i.e., z′ = az+b.

This gives rise to the notion of a�ne minimal maps. We prove that the notion

coincides with full PGL2(Q)-minimality. We also develop an algorithm to test whether

a rational map is minimal, and if it is not, return a minimal representation of the

map.

In Chapter 4, we present results from two large searches. We search degree 2 and

3 rational maps to see how many integers we can get in a single orbit of a minimal

model. For the degree 2 case we searched through 160 billion rational maps and found

5 minimal, with 8 integer points in an orbit such as

φ(z) =
86z2 − 1068z − 338

z2 + 7z − 338
,

with the orbit {0, 1, 4, 11, 12, 7, 15,−374, 59183/652, . . .} of 0 under φ. We did not

�nd any orbits with 9 integer values. In the degree 3 case, we searched 640 000 000

rational maps. We found 56 minimal rational maps with 10 integer points in an orbit.

For example

ψ(z) =
115z3 + 558z2 + 257z − 90

−6z3 − 74z2 − 110z − 90
,

with orbit {0, 1,−3,−4,−1,−2,−6, 8,−11,−582,−3746989832/192970427, . . .} of 0

under ψ. We did not �nd any orbits with 11 integer values. Interestingly, in both

cases we were able to �nd degree d maps with 2d+ 4 integers.



Chapter 2

Background and Notation

2.1 Motivation

Most questions we consider for dynamical systems are analogous to questions and

results from the already well established �eld of arithmetic of elliptic curves. We

brie�y introduce some concepts in the arithmetic of elliptic curves. For a thorough

introduction, see [6]. Let K be a �eld. If K is a number �eld, let R be its ring of

integers. For our purposes, we consider a model of an elliptic curve over a �eld K,

the equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,where a1, a2, a3, a4, a6 ∈ K. (2.1)

We consider the points on E, the (x, y) ∈ K2 that satisfy the equation, together

with an extra point (the point `at in�nity') O. It is a requirement that the curve

described by (2.1) is non-singular. This can be detected by the discriminant of the

cubic equation (2.1). The general formula is a bit too bulky to reproduce here. When

a1 = a3 = a2 = 0 (a situation one can always reduce to if K is of characteristic

di�erent from 2, 3), the discriminant is given by

∆ = −16(4a3
4 + 27a2

6).

Equation (2.1) describes a non-singular curve if and only if the discriminant is non-

zero. We consider models isomorphic if they are related by transformations of the

form (x, y) 7→ (a2x + b, a3y + ca2x + d), where a, b, c, d ∈ K. We call the set of all

3



CHAPTER 2. BACKGROUND AND NOTATION 4

isomorphic models an elliptic curve. When confusion is unlikely, we use E to refer to

both the elliptic curve and to a representing model.

Let n ∈ Q, n 6= 0, and let p be a prime number. We can always �nd unique

integers v,N,D with N > 0, D 6= 0 and p - N,D such that n = pv N
D
.

De�nition 2.1.1. We de�ne the valuation of n 6= 0 at p, the exponent v described

above, and denote it by ordp(n). We also de�ne the p-adic absolute value, |n|p = p−v.

It is easy to show that the p-adic absolute value is actually a metric on Q.

De�nition 2.1.2. Let p be a prime. We de�ne the p-adic numbers, Qp, to be the

completion of Q with respect to the p-adic absolute value. We also de�ne the p-adic

integers, Zp, as the completion of Z under the p-adic absolute value.

The most striking di�erence between p-adic absolute values and the ordinary one,

is the non-Archimedean triangle inequality. For any two elements, a, b ∈ Qp, we have

|a+ b|p ≤ max(|a|p, |b|p) or

ordp(a+ b) ≥ min(ordp(a), ordp(b))

where equality holds if |a|p 6= |b|p (or ordp(a) 6= ordp(b)). For a thorough introduction

to p-adic numbers, see [3].

If we let K = Qp for some prime p we can see that the change of coordinates of

models of elliptic curve may change the discriminant. In particular, the valuation of

the discriminant, ordp(∆), may change, and we measure a representation using the

valuation of the discriminant.

De�nition 2.1.3. Let E be an elliptic curve over Q. An equation of the form (2.1)

is called a minimal equation at p for E if ordp(∆) is minimal among all the equations

describing E, subject to the condition that a1, a2, a3, a4, a6 ∈ Z.

We also have a global version.

De�nition 2.1.4. Let E be an elliptic curve over Q. An equation as above is called

a minimal equation for E if ordp(∆) is minimized in the isomorphism class E for all

primes p, subject to the condition that a1, a2, a3, a4, a6 ∈ Z.
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These concepts for minimal equations of elliptic curves can be generalized to

local �elds. It is known that every elliptic curve over Q has a minimal equation.

More generally, we have that every elliptic curve over Qp has a minimal equation [6,

Proposition 1.3(a) of Chapter VII] and an algorithm of Tate [7, Chapter IV Section

9] can take an equation for an elliptic curve and test whether it is minimal at p or

not, and if not return a minimal representation at p.

We say a point, (x, y), on a model of an elliptic curve is an integral point if

x, y ∈ Z. This notion is dependent on the equation chosen to represent E. There is

a nice theorem due to Siegel on the number of integral points that can occur on an

elliptic curve over Q.

Theorem 2.1.5 (Siegel. Theorem 4.3 in [6]). Let f(x) ∈ Q[x] be a cubic polynomial

with distinct roots. Then the equation

y2 = f(x)

has only �nitely many solutions such that x, y ∈ Z.

Given this, one can ask how many integral points can appear on a particular

model for an elliptic curve. The answer is arbitrarily many (see [9]), due to a nice

scaling trick. For example, consider the elliptic curve given by y2 = x3 + c for c ∈ Z.
If we have a rational solution (p, q), then we have q2 = p3 + c. For any r ∈ Q we

then have rq2 = rp3 + rc, so if we choose r a 6-th power of an integer, say r = s6,

we have (s3q)2 = (s2p)3 + s6c. Thus if we let s be the lowest common multiple of

the denominators of p and q, the rational point (p, q) on y2 = x3 + c corresponds

to the integral point (s2p, s3q) on ỹ2 = x̃3 + cs6. Further, notice any integral point

on y2 = x3 + c will also correspond to an integral point on ỹ2 = x̃3 + cs6, so every

time we apply a scaling, we increase the number of integral points satisfying the

equation. If we have a model of an elliptic curve with in�nitely many rational points,

we could scale them one by one, to get elliptic curves with an arbitrarily large number

of integral points. As an example, y2 = x3 − 2 is such a curve [6, Chapter IX].

However this scaling of the equation to get more integral points has an e�ect

on the discriminant. The curve y2 = x3 + c has discriminant −432c2 whereas the

discriminant of ỹ2 = x̃3 + cs6 is −432c2s12, with s ≥ 1. The model with more integral
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points has a larger discriminant, so we may ask the question: How many integral

points can appear on a minimal model of an elliptic curve? A conjecture of Lang ([4,

page 140]) says the number of integral points that can occur on a minimal model of

an elliptic curve over Q is uniformly bounded.

2.2 Dynamics

Given the questions studied on elliptic curves, we would like to investigate their ana-

logues in the dynamical setting, where we study rational maps. We develop notions

for changes of coordinates for rational maps which preserve the dynamics. We then

study the e�ect of these changes, and construct an object similar to the discriminant,

to put a notion of size on each rational map. From here we de�ne our minimal rational

maps, and ask integrality question about the orbits of minimal maps.

De�nition 2.2.1. A dynamical system is a set S together with a map φ : S → S.

De�nition 2.2.2. We call the forward orbit of a point α ∈ S the set

Oφ(α) = {φn(α) : n ≥ 0}

where φn(α) = φ(φ(. . . φ(α))).

We distinguish points in S by their orbits as follows

De�nition 2.2.3. (a) If the forward orbit of a point α ∈ S is �nite, we call α

preperiodic.

(b) As a special case for preperiodic points, we call a point α periodic if there exists

a positive integer n with φn(α) = α. The smallest such n is called the period of

α.

(c) If the orbit of α is in�nite, α is called a wandering point.

A homogeneous polynomial is a polynomial whose monomials with non-zero co-

e�cients all have the same total degree. For any polynomial P ∈ Q[z] of degree at

most d, we call the d-form homogenization, the polynomial

h(z, z′) = (z′)dP
( z
z′

)
.
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As a special case, if the degree of P is d, we simply call h(z, z′) the homogenization

of P . All the monomials of h with non-zero coe�cients have the same total degree,

hence h is a homogeneous polynomial. We call a homogeneous polynomial with each

monomial having total degree d, a d-form.

We are ultimately interested in studying the dynamics of rational functions over

Q. However, rational functions are not de�ned at points where their denominators

vanish, so we must extend the domain to the projective line P1, in particular, P1(Q).

De�nition 2.2.4. The projective line of a �eld K is the set P1(K) = {(a, b) : a, b ∈
K and (a, b) 6= (0, 0)}/ ∼ where (z, y) ∼ (λz, λy) for all non-zero λ ∈ K

Now set K = Q. We write (a : b) ∈ P1(Q) for the equivalence class of (a, b). If

F,G ∈ Q[z, y] are homogeneous polynomials of equal degree d, then

(F (λa, λb) : G(λa, λb)) = (λdF (a, b) : λdG(a, b)).

Hence

φ : P1(Q)→ P1(Q)

(a : b) 7→ (F (a, b) : G(a, b))

is well-de�ned outside common zeros of F,G. We call this a rational map. If we

have three homogeneous polynomials F,G and H in Q[z, y], we note (FH : GH) and

(F : G) agree where they are both de�ned, since if they are de�ned at a point (a, b)

we have (F (a, b)H(a, b) : G(a, b)H(a, b)) = (λF (a, b) : λG(a, b)) with λ = H(a, b).

We wish to show, for polynomials F,G ∈ Q[z, y], we can always �nd R ∈ Q[z, y] such

that F = RF̃ and G = RG̃ where F̃ and G̃ have no complex roots in common. To

this end, we have

Lemma 2.2.5. Let F,R ∈ Q[z, y] be irreducible homogeneous polynomials with

deg(R) ≤ deg(F ) and F 6= λR for any λ ∈ Q. There are no (a, b) ∈ C2, not (0, 0)

such that F (a, b) = R(a, b) = 0.

Proof. We use a proof by contradiction. Assume we have (a, b) 6= (0, 0) such that

F (a, b) = R(a, b) = 0 and suppose b 6= 0 (otherwise, exchange the roles of z and

y). Write Fd(z) = F (z, 1) and Rd(z) = R(z, 1). As F and R are irreducible, this
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implies Fd and Rd are irreducible, and must be relatively prime, so there exist two

polynomials P,Q ∈ Q[z] such that Fd(z)P (z) + Rd(z)Q(z) = 1. Plugging in a/b

shows 0 = 1, which is not possible. Hence Rd divides Fd, and R divides F , our

desired contradiction.

Given this lemma, for any pair of polynomials F,G ∈ Q[z, y] we may write F =

RF ′ and G = RG′, where R is the product of all the common factors of F and G,

and gcd(F ′, G′) = 1. Hence any rational map can be extended to all of P1(Q). When

dealing with a rational map, unless stated otherwise, we will always be referring to a

map that exists on all of P1(Q).

If F (z, y) = az + by and G(z, y) = cz + dy, with a, b, c, d ∈ Q, then

A : P1(Q)→ P1(Q)

(x : y) 7→ (ax+ by : cx+ dy)

is bijective if and only if ad−bc 6= 0, i.e., if the matrix

(
a b

c d

)
is invertible. Indeed,

the inverse of A is

A−1 : P1(Q)→ P1(Q)

(x : y) 7→ (dx− by : −cx+ ay)

where 1
ad−bc

(
d −b
−c a

)
is the inverse matrix of

(
a b

c d

)
. We call these rational

maps fractional linear transformations. It is straightforward to check that two ma-

trices A,B ∈ GL2(Q) give rise to the same fractional linear transformation if and

only if A = λB for some λ ∈ Q. Thus, we see that fractional linear transformations

are in bijection with PGL2(Q) = GL2(Q)/

{(
λ 0

0 λ

)
: λ ∈ Q∗

}
. One can check

that composition of fractional linear transformations corresponds to matrix multipli-

cation so the bijection is a group isomorphism. Any fractional linear transformation

A ∈ PGL2(Q) is an automorphism of P1(Q), and it turns out these are the only

automorphisms, as proved in [2, Example 7.1.1]. We will also have use for the group

PGL2(Z) = GL2(Z)/

{(
λ 0

0 λ

)
: λ ∈ {−1, 1}

}
.
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Remark. We may consider PGL2(Z) a subgroup of PGL2(Q). Since{(
λ 0

0 λ

)
: λ ∈ Q∗

}
∩GL2(Z) =

{(
λ 0

0 λ

)
: λ ∈ Z∗

}

we do indeed have that the natural map from GL2(Z) to GL2(Q) descends to a well-

de�ned injection of PGL2(Z) into PGL2(Q).

Now �x

Q→ P1(Q)

a 7→ (a : 1)

and notice that any rational map φ ∈ Q(z), say φ = F/G, with gcd(F,G) = 1 and

d = max(deg(F ), deg(G)) corresponds to the rational map

φ : P1(Q)→ P1(Q)

(a : 1) 7→ (hF (a, 1) : hG(a, 1)),

where hF and hG are the respective d-form homogenizations of F and G. Hence, we

may do all our work in P1(Q) just by working with our map φ ∈ Q(z) as long as the

denominator of φ does not vanish. We de�ne the degree of a rational function F/G

to be the maximum of the degrees of F and G, when gcd(F,G) = 1.

We can ask how many integers we can have occur in a single orbit for a dynamical

system. We notice a polynomial map, such as φ(z) = z2 + 2 can certainly admit an

in�nite number of integers. For example, we may look at the forward orbit of zero.

Oφ(0) = {0, 2, 6, 38, . . .}. Even a non-polynomial rational map can have in�nitely

many distinct integral points in an orbit, as φ(z) = 1/z2 shows. Notice φ(φ(z)) = z4

so every second point in a forward orbit of an integer will be an integer. If an iterate of

a rational map is a polynomial it may be possible to have an orbit with in�nitely many

distinct integer values. Note that if a polynomial has non-integral coe�cients, then

an orbit of an integer does not need to consist of integers. Silverman characterized

when a rational map has a polynomial iterate by studying the rami�cation of the

iterates, and uses Riemann-Hurwitz to bound the possible rami�cation types. We

state the result here, but the proof is beyond the scope of this thesis.
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Theorem 2.2.6 (Theorem 1.7 in [8]). Let φ : P1(Q) → P1(Q) be a rational map of

degree d ≥ 2, and suppose that φn is a polynomial map for some n ≥ 1. Then already

φ2 is a polynomial map. Furthermore, if φ itself is not a polynomial map, then there

exists an f ∈ PGL2(Q) such that f−1 ◦ φ ◦ f is the function 1/zd.

This characterizes the rational maps that can trivially have in�nitely many integers

in an orbit, so we can ask what happens when we have a rational map φ ∈ Q(z) such

that φ2 /∈ Q[z]. In fact, Siegel has a corresponding theorem for any rational map

with at least 3 poles, that uses some Diophantine approximation results of Roth and

Thue.

Theorem 2.2.7 (Theorem 3.36 in [8]). Let φ ∈ Q(z) be a rational function with at

least three distinct poles in P1(C). Then

{α ∈ Q : φ(α) ∈ Z}

is a �nite set.

This answers our question of how many integers can appear in a single orbit, for

all rational maps with at least three distinct poles.

Corollary 2.2.8. Let φ ∈ Q(z) be a rational function with at least three distinct poles

in P1(C). Then any orbit under φ contains only �nitely many distinct integers.

Proof. As above, we have the set {α ∈ Q : φ(α) ∈ Z} contains only �nitely many

integers. Let β ∈ Q and consider the orbit of β under φ. This is the set Oφ(β) =

{β, φ(β), φ(φ(β)), . . .}, so any integers in Oφ(β) must occur in {β}∪ {α ∈ Q : φ(α) ∈
Z}, hence the orbit can only contain �nitely many distinct integers.

We would like to remove the requirement of three distinct poles, but this is not

quite elementary, as Theorem 2.2.7 is sharp in the sense that a rational function over

Q with only two poles can indeed have in�nitely many integral values. Consider

φ(z) =
F (z)

(z2 −D)d

where D > 1 is a square free integer, and F ∈ Z[z] is a polynomial of degree 2d. The

Pell equation u2 − Dv2 = 1, has in�nitely many solutions (u, v) ∈ Z2. These give
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in�nitely many values u
v
∈ Q such that φ(u

v
) = v2dF (u

v
) is an integer. However, with

a little extra work, Theorem 2.2.7 can still provide a result on integer points in orbits

of rational functions with less than 3 poles.

In fact, with careful analysis of the preimages of ∞, one can appeal to the

Riemann-Hurwitz formula once more to �nd that any rational map φ ∈ Q(z), of

degree at least 2, with φ2 /∈ Q[z] has has a fourth iterate (φ4(z)) with at least 3 poles.

One can then appeal to Theorem 2.2.7 and �nd that φ2 /∈ Q[z] is enough to guarantee

every orbit of φ can have only �nitely many integers. Again the proof is beyond the

scope of the thesis, but we state the result.

Theorem 2.2.9 (Theorem 3.43 in [8]). Let φ ∈ Q(z) be a rational map of degree

d ≥ 2 with the property that φ2 /∈ Q[z]. Let α ∈ Q be a wandering point for φ. Then

the orbit Oφ(α) contains only �nitely many integers.

If we try to determine how many integer points can occur in an orbit, we �nd our-

selves in a situation similar to the one for elliptic curves, where we can get arbitrarily

many.

Example 2.2.10. Let φ(z) = (z2 +z+1)/(z2−z+1) and consider the forward orbit

of 0. We have Oφ(0) = {0, 1, 3, 13/7, . . .}. Consider the map ψ(z) = 7φ(z/7) and the

corresponding orbit of 0. We have Oψ(0) = {0, 7, 21, 13, . . .} and we have scaled away

the denominator of 7.

By applying this trick repeatedly we can have arbitrarily many integer points in

a single orbit. We consider this cheating, as with the trick for elliptic curves. and

we wish to �nd conditions on rational maps to prevent this. We start with some

de�nitions to introduce a quantity that can detect when scaling occurs.

De�nition 2.2.11. Let φ ∈ Q(z) be a rational map. We call a pair of polynomials

[F,G] a representation of φ if φ = F/G. We call a representation normalized if

F,G ∈ Z[z], no prime divides all the coe�cients of F and G and F,G have no

complex roots in common.

We de�ne the p-adic valuation of a polynomial over Q, to be the minimum valu-
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ation of its coe�cients.

ordp

(∑
i

fiz
i

)
= min

i
(ordp(fi)).

De�nition 2.2.12. We say a representation is normalized at p if F,G ∈ Q[z], F and

G have no complex roots in common, and min(ordp(F ), ordp(G)) = 0.

Proposition 2.2.13. Let φ ∈ Q(z) be a rational map and let [F,G] be a representa-

tion of φ. This representation is normalized if and only if it is normalized at p for

every prime p.

Proof. First, suppose [F,G] is a normalized representation of φ. Hence, F,G ∈ Z[z].

Let p be a prime. Since the representation is normalized, p does not divide all the

coe�cients, hence there is a coe�cient c, of F or G, such that ordp(c) = 0. Therefore

the representation is normalized at p for every prime p. Conversely, suppose [F,G]

is a normalized representation at p for every prime p. For every prime there is a

coe�cient, c, of F or G with ordp(c) = 0, and no coe�cients have negative valuation.

This means, for every prime p there exists a coe�cient not divisible by p, and no

coe�cients have a prime in their denominator, which is precisely the de�nition of

being normalized. Hence a representation is normalized if and only if it is normalized

at every prime.

Lemma 2.2.14. Every non-constant rational map φ ∈ Q(z) has a normalized rep-

resentation. We shall denote the normalized representation by [Fφ, Gφ]. In order

to ensure the representation is well de�ned, we always ask that the leading non-zero

coe�cient of Fφ be positive.

Proof. Naively, if we have a rational map φ(z) = F (z)/G(z) = (anz
n + an+1z

n+1 +

. . . + a1z + a0)/(bnz
n + bn+1z

n+1 + . . . + b1z + b0) where ai, bi ∈ Q for all i, 1 ≤
i ≤ n and n > 0 we can take the product of all the denominators of the ai and

bi and call it c. Multiplying the numerator and denominator by c then gives us

an integral representation φ = cF/cG = Fc/Gc with Fc, Gc ∈ Z[z]. Taking the

greatest common divisor of the coe�cients of Fc and Gc and calling it g, we have

that φ = [(c/g)F, (c/g)G] is the normalized representation of φ if the leading non-

zero coe�cient of F is positive, otherwise φ = [(−c/g)F, (−c/g)G] is the normalized

representation of φ.



CHAPTER 2. BACKGROUND AND NOTATION 13

Write F (z) = amz
m+am−1z

m−1+. . . a1z+a0 and G(z) = bnz
n+bn−1z

n−1+. . . b1z+

b0. We de�ne the (m,n)-Sylvester matrix for F and G as the square (m+n)×(m+n)

matrix

Sylm,n(F,G) =



am am−1 . . . a1 a0

am am−1 . . . a1 a0

. . . . . . . . . . . .

am am−1 . . . a1 a0

am am−1 . . . a1 a0

bn bn−1 . . . b1 b0

bn bn−1 . . . b1 b0

. . . . . . . . . . . .

bn bn−1 . . . b1 b0

bn bn−1 . . . b1 b0


where there are n rows with coe�cients ai and m rows with coe�cients bj.

De�nition 2.2.15. Let F,G ∈ Q[z]. We de�ne the polynomial resultant of F and G

to be

res(F,G) = det(Sylm,n(F,G))

where m = deg(F ) and n = deg(G).

We also have another nice characterization of the polynomial resultant.

Lemma 2.2.16. Write F = am
∏m

i (z − αi) and G = bn
∏n

j (z − βj). Then the

polynomial resultant of F and G is res(F,G) = anmb
m
n

∏
i,j(αi − βj).

The fact that these are equivalent can be found in, for example, Section 3.3.2 of

[1].

De�nition 2.2.17. Let d be a positive integer. The d-form resultant of a pair of

d-forms F,G ∈ Q[z, y] is

Resd(F,G) = | det(Syld,d(F (z, 1), G(z, 1)))|.
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For univariate polynomials F,G of degree less than or equal to d (with at least one

being degree d) we also write

Resd(F,G) = | det Syld,d(F,G)|

We call the resultant of a rational map φ = F/G the d-form resultant of the normal-

ized representation for φ. Namely,

Res(φ) = | det(Syld,d(Fφ, Gφ))|.

We shall require the following facts in Chapter 3,

Proposition 2.2.18. Let φ = F/G ∈ Q(z) be a rational map of degree d and

gcd(F,G) = 1. Then

(a) Resd(F − λG,G) = Resd(F,G) for λ ∈ Q

(b) Resd(F,G) = Resd(G,F ).

(c) Write F (z) = anz
n + . . .+ a1z+ a0 and G(z) = bdz

d + . . .+ b1z+ b0, with n ≤ d

and anbd 6= 0. Then Resd(F,G) = |bd−nd res(F,G)|.

For the next two parts, assume further that F,G ∈ Z[z].

(d) There exist polynomials A,B ∈ Z[z] of degree at most d− 1 such that

F (z)A(z) +G(z)B(z) = z2d−1Resd(F,G)

(e) There exist polynomials C,D ∈ Z[z] of degree at most d− 1 such that

F (z)C(z) +G(z)D(z) = Resd(F,G)

Proof. (a) Notice from the de�nition of the resultant, that Resd(F − λG,G) is the

determinant of a Sylvester matrix which can be obtained from Syld,d(F,G) via

d row operations. Hence Resd(F − λG,G) = Resd(F,G).
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(b) If we require r row swaps to transform the matrix Syld,d(F,G) into Syld,d(G,F ),

the e�ect on the determinant is

det(Syld,d(F,G)) = (−1)r deg(Syld,d(G,F )).

Since the d-form resultants are de�ned to be the absolute values of these, we

have

Resd(F,G) = Resd(G,F ).

(c) This is clear from writing out the Sylvester matrix Syld,d(F,G).

(d) See [8, Proposition 2.13]

(e) See [8, Proposition 2.13]

Remark. Part (b) of Proposition 2.2.18 tells us that if we are in a situation similar to

part (c), with polynomials F (z) = a0+a1z+. . .+adz
d and G(z) = b0+b1z+. . .+bmz

m

with m ≤ d, then we have

Resd(F,G) = |ad−nd res(G,F )|.

Recall we are interested in an object in the dynamical setting that is analogous

to the discriminant of an elliptic curve. We want an object that can tell us when

this scaling has occurred, and we are ultimately interested in using the object to �nd

maps where with no scaling. Let us investigate what happened to the resultant of

the rational map in Example 2.2.10, where we scaled the entire orbit by 7. Recall we

had

φ(z) =
z2 + z + 1

z2 − z + 1
, and

ψ(z) = 7φ
(z

7

)
.
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Thus in order to consider the resultants Res(φ) and Res(ψ) we must ensure we have

normalized representations of both maps. We can see Fφ(z) = z2 +z+1 and Gφ(z) =

z2 − z + 1, but we must actually do a little work to �nd Fψ and Gψ. We have

ψ(z) =
7(
(
z
7

)2
+ z

7
+ 1)(

z
7

)2
+ z

7
+ 1

=
49 · 7(

(
z
7

)2
+ z

7
+ 1)

49(
(
z
7

)2
+ z

7
+ 1)

=
7z2 + 49z + 343

z2 + 7z + 49
.

Hence

Res(φ) = Res2(z2 + z + 1, z2 − z + 1) = 22, and

Res(ψ) = Res2(7z2 + 49z + 343, z2 − 7z + 49) = 22 · 76.

The resultant picked up the denominator we scaled out of the orbit! Applying a

change in choice of coordinates corresponds to conjugating by A ∈ PGL2(Q). Hence,

in dynamics, the natural action of PGL2(Q) on rational maps is via conjugation.

Write

φA = A−1 ◦ φ ◦ A.

From

(φA)n = (A−1 ◦ φ ◦ A) ◦ · · · ◦ (A−1 ◦ φ ◦ A) = A−1 ◦ φn ◦ A

it follows that, up to choice of coordinates, the dynamics of φ and φA are the same. We

also consider conjugating only by a�ne linear transformations, and we are interested

in maps with minimal resultant in their a�ne conjugacy classes. To be precise, let

T =

{(
a b

0 c

)
∈ GL2(Q)

}
⊂ GL2(Q)

and de�ne Aff2(Q) ⊂ PGL2(Q) to be the image of T under GL2 → PGL2. Then any

element of Aff2(Q) can be represented in the form

(
a b

0 1

)
, and these are precisely

the transformations we wish to allow for conjugation.
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De�nition 2.2.19. Let φ ∈ Q(z) be a rational map and let p be a prime. We call φ

minimal at p (or PGL2(Q)-minimal at p) if

ordp(Res(φ)) = min
A∈PGL2(Q)

ordp(Res(φA)).

We say φ is a�ne minimal at p if

ordp(Res(φ)) = min
A∈Aff2(Q)

ordp(Res(φA))

We also de�ne global versions:

De�nition 2.2.20. Let φ ∈ Q(z) be a rational map. We call φ minimal or PGL2(Q)-

minimal if

Res(φ) = min
A∈PGL2(Q)

Res(φA)

and we call φ a�ne minimal if

Res(φ) = min
A∈Aff2(Q)

Res(φA).

We will show in Chapter 3 that a rational map is a�ne minimal if and only if

it is a�ne minimal at p for every prime p. It is obvious from De�nitions 2.2.19 and

2.2.20, that minimality implies a�ne minimality. In Theorem 3.1.3 we will show that

we also have the converse.

We ask how many integer points can occur in a forward orbit of a point of an

a�ne minimal function. Similar to Lang's conjecture on the number of integer points

on elliptic curves, Silverman conjectures that the number of integers in any orbit of

an a�ne minimal rational map is uniformly bounded.

Conjecture 2.2.21 (Silverman, Conjecture 3.47 in [8]). Let φ ∈ Q(z) be a rational

map of degree d ≥ 2 with φ2 /∈ Q[z], and let α ∈ P1(Q) be a wandering point for

φ. Assume further that φ is a�ne minimal. Then there is a constant C = C(d)

depending only on the degree of φ such that

#(Oφ(α) ∩ Z) ≤ C.

In Chapter 3 we investigate what a�ne minimality of a rational map requires

and develop an algorithm to compute a�ne minimal rational maps. We investigate

�nding rational maps with many integer points in a single orbit in Chapter 4.



Chapter 3

Minimality

3.1 Equivalence of A�ne Minimality and PGL2(Q)-

Minimality

We study some of the preliminaries of conjugation by PGL2(Q) transformations and

PGL2(Z) transformations, then prove that a�ne minimality guarantees PGL2(Q)-

minimality.

From the de�nition, any map φ ∈ Q(z) of degree d, such that Res(φ) = 1 must

be minimal. However, at this point, even if we have Res(φ) = 2, we cannot conclude

φ is minimal. We investigate the e�ects of conjugation on the resultant a little more

in depth.

Let φ = F/G ∈ Q(z) be a rational map of degree d, and consider a transformation

A : z 7→ rz+s
tz+u
∈ PGL2(Q) with ru− st 6= 0. We write φA to mean conjugation of φ by

A, namely A−1 ◦ φ ◦ A. Thus we have

A =

(
r s

t u

)

and

A−1 =
1

ru− st

(
u −s
−t r

)

18
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so

(A−1 ◦ φ ◦ A)(z) =
1

ru− st
·
uF ( rz+s

tz+u
)− sG( rz+s

tz+u
)

−tF ( rz+s
tz+u

) + rG( rz+s
tz+u

)
.

Hence, if [F,G] is a normalized representation of φ, we have new polynomials FA, GA ∈
Q[z] given by

FA(z) = uF

((
rz + s

tz + u

))
− sG

((
rz + s

tz + u

))
and

GA(z) = −tF
((

rz + s

tz + u

))
+ rG

((
rz + s

tz + u

))
such that φA = FA/GA. We may compute the d-form resultant,

Resd(FA, GA)

= Resd

(
uF

(
rz + s

tz + u

)
− sG

(
rz + s

tz + u

)
, rG

(
rz + s

tz + u

)
− tF

(
rz + s

tz + u

))
= (sr)dResd

(
u

s
F

(
rz + s

tz + u

)
−G

(
rz + s

tz + u

)
, G

(
rz + s

tz + u

)
− t

r
F

(
rz + s

tz + u

))
= (sr)dResd

((
u

s
− t

r

)
F

(
rz + s

tz + u

)
, G

(
rz + s

tz + u

)
− t

r
F

(
rz + s

tz + u

))
= Resd

(
(ur − ts)F

(
rz + s

tz + u

)
, G

(
rz + s

tz + u

)
− t

r
F

(
rz + s

tz + u

))
= (ur − ts)dResd

(
F

(
rz + s

tz + u

)
, G

(
rz + s

tz + u

)
− t

r
F

(
rz + s

tz + u

))
= (ur − ts)dResd

(
F

(
rz + s

tz + u

)
, G

(
rz + s

tz + u

))
, (3.1)

where we repeatedly used part (a) of Proposition 2.2.18. To simplify this even further,

if we have a root of F ( rz+s
tz+u

), say h1, and a root of G( rz+s
tz+u

), say h2, we have

h2r + s

h2t+ u
− h1r + s

h1t+ u
= (h2r + s)(h1t+ u)− (h1r + s)(h2t+ u)

= h1h2rt+ h2ru+ h1st+ su− h1h2rt− h1ru− h2st− su

= (h2 − h1)ru+ (h1 − h2)st

= (h2 − h1)(ru− st).
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Using Proposition 2.2.18 part (c) combined with Lemma 2.2.16, this implies

Resd

(
F

(
rz + s

tz + u

)
, G

(
rz + s

tz + u

))
= (ru− st)d2Resd(F (z), G(z))

so combining this with (3.1) gives

Resd(FA, GA) = (ru− st)d2+dResd(F (z), G(z)). (3.2)

Note that FA and GA may not form a normalized representation of φA. In order to

compute Res(φA) we need to study the e�ect of normalization.

Proposition 3.1.1 (Proposition 4.95 in [8]). Let φ = F/G ∈ Q(z) be a rational map

of degree d with [F,G] a normalized representation, and let A ∈ PGL2(Q). Then

ordp(Res(φA)) = (d2 + d)ordp(detA)− 2dmin(ordp(FA), ordp(GA)) + ordp(Res(φ))

Proof. Note that if λ ∈ Q and F ∈ Q[z] then ordp(λF ) = ordp(λ) + ordp(F ). Recall

from De�nition 2.2.12 that if [F,G] is a normalized representation of φ at p, then

min(ordp(F ), ordp(G)) = 0. Therefore if we de�ne

λ = λ(FA, GA) = p−min(ordp(FA),ordp(GA)),

we have that, [λFA, λGA] is a normalized representation of φA at p. Hence

ordp(Res(φA)) = ordp(Resd(λFA, λGA))

= ordp(λ
2dResd(FA, GA))

= −2dmin(ordp(FA), ordp(GA)) + ordp(Resd(FA, GA)).

Thus from (3.2) we have

ordp(Res(φA)) = (d2 + d)ordp(detA)− 2dmin(ordp(FA), ordp(GA)) + ordp(Res(φ)),

as required.

We ask what happens to the resultant when conjugating with a transformation in

PGL2(Z). We have the following,
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Theorem 3.1.2. Let [F,G] be a normalized representation of a rational map φ ∈ Q(z)

of degree d, and let A ∈ PGL2(Z). Then Res(φA) = Res(φ).

Proof. If A ∈ PGL2(Z) then we can represent A =

(
r s

t u

)
with r, s, t, u ∈ Z and

ru−st = ±1, so A−1 = ±

(
u −s
−t r

)
. For F (z) =

∑d
i=0 fiz

i and G(z) =
∑d

i=0 giz
i,

we have

FA(z) = uF (z0)− sG(z0)

GA(z) = −tF (z0) + rG(z0)

where z0 = v
w
with (

v

w

)
= A

(
z

1

)
=

(
rz + s

tz + u

)
.

Write

F (z, y) = ydF

(
z

y

)
=
∑

fiz
iyd−i

G(z, y) = ydG

(
z

y

)
=
∑

giz
iyd−i.

We have φ
(
z
y

)
= F (z,y)

G(z,y)
and φA

(
z
y

)
= FA(z,y)

GA(z,y)
where

FA(z, y) = ydFA

(
z

y

)
= uF (z′, y′)− sG(z′, y′)

GA(z, y) = ydGA

(
z

y

)
= −tF (z′, y′) + uG(z′, y′)

with (
z′

y′

)
= A

(
z

y

)
=

(
rz + sy

tz + uy

)
.

Conversely,

F (z′, y′) = rFA(z, y) + sGA(z, y)

G(z′, y′) = tFA(z, y) + uGA(z, y).
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If we let (
z′′

y′′

)
= A−1

(
z

y

)
= ±

(
uz − sy
−tz + ry

)
.

We �nd (
F (z, y)

G(z, y)

)
= A

(
FA(z′′, y′′)

GA(z′′, y′′)

)
.

If all the coe�cients of FA and GA are divisible by some prime p, then so are the coef-

�cients of F and G. However, we assumed that [F,G] is a normalized representation,

so no such p exists. Hence from Proposition 3.1.1 we have

ordp(Res(φA)) = (d2 + d)ordp(ru− st)− 2dmin(ordp(FA), ordp(GA)) + ordp(Res(φ))

= −2dmin(ordp(FA), ordp(GA)) + ordp(Res(φ))

= ordp(Res(φ))

for all primes, and hence Res(φA) = Res(φ).

Remark. Note that the proof of Theorem 3.1.2 yields a bit more. If we have a linear

transformation A ∈ PGL2(Q) represented by a matrix A =

(
r s

t u

)
such that

ordq(r), . . . , ordq(u) ≥ 0 and ordq(ru−st) = 0 for some prime q, then ordq(Res(φA)) =

ordq(Res(φ)).

We are now able to show that a�ne minimality implies PGL2(Q)-minimality.

Theorem 3.1.3. Let φ ∈ Q(z) be a rational map. If φ is a�ne minimal, then φ is

PGL2(Q)-minimal.

Proof. Our strategy is as follows. We claim that for any B ∈ PGL2(Q) there exists

A ∈ Aff2(Q) and C ∈ PGL2(Z) such that A = BC. Next we see if ψ = φB then

ψC = φBC = φA. By Theorem 3.1.2, we know that Res(ψ) = Res(ψC), so any change

in resultant by B ∈ PGL2(Q) can also be made by an appropriate A ∈ Aff2(Q). This

establishes the theorem. We now prove our claim. Let B =

(
a b

c d

)
∈ PGL2(Q).
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Write

A =

(
f g

0 1

)

C =

(
r s

t u

)
where f, g ∈ Q, r, s, t, u ∈ Z and ru − st = ±1. We want to have A = BC. To this

end, we compute the product BC,

BC =

(
a b

c d

)(
r s

t u

)

=

(
ar + bt as+ bu

cr + dt cs+ du

)
.

If we want A = BC, we must have cr + dt = 0. We know, for some λ ∈ Q, we have
that c′ = c

λ
, d′ = d

λ
are integers with gcd(c′, d′) = 1. Pick r = −d′ and t = c′ so that

BC =

(
a b

c d

)(
−d′ s

c′ u

)

=

(
−ad′ + bc′ as+ bu

−cd′ + dc′ cs+ du

)

=

(
−ad′ + bc′ as+ bu
−cd+dc

λ
cs+ du

)

=

(
−ad′ + bc′ as+ bu

0 cs+ du

)
We need to ensure ru − st = ±1 since we want C ∈ PGL2(Z). Fortunately, this

is not too di�cult. As gcd(c′, d′) = 1, we know there are integers v, w such that

vc′ + wd′ = 1, so if we take s = v and u = w then

C =

(
−d′ v

c′ w

)
satis�es A = BC. Since detC = −d′w − cv = −1, we have C ∈ PGL2(Z), which

proves the claim.
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Given this, we disregard the word a�ne when showing a map has minimal resultant

among its a�ne conjugates. We simply say it is minimal. Given the two concepts are

equivalent, with the goal of building an algorithm to compute minimal representations

of rational maps, we wish to use only a�ne transformations, as the computations will

be far simpler. In particular, if A : z 7→ az + b ∈ Aff2(Q), we have the following

simpli�cations,

FA = F (az + b)− bG(az + b)

GA = aG(az + b)

where φA = FA/GA and

Res(φA) = (d2 + d)ordp(a)− 2dmin(ordp(FA), ord(GA)) + Res(φ).

With these in hand, we now wish to study minimality in depth.

3.2 Minimality

In order to test Silverman's conjecture we need to be able to recognize when a function

is minimal. This is not completely straightforward. Consider the following three

maps,

φ1(z) =
245z2 − 540z − 299

3z2 + 98z − 299
,

φ2(z) =
367z2 − 15104z + 143325

12z2 − 469z − 4095
, and

φ3(z) =
86z2 − 1068z − 338

z2 + 7z − 338
.

In order to check minimality for any of these maps straight from the de�nition, one

would need to compute the resultants for all a�ne conjugates and see if any are

smaller. This is not a �nite procedure.

We need to develop more theory for minimality and the e�ects of conjugation. As

a start, we prove that being minimal at p for all primes p minimality. The converse

is also true, however we will need some theory from Section 3.3 to show this. We

relegate the proof to Proposition 3.3.7.



CHAPTER 3. MINIMALITY 25

Proposition 3.2.1. Let φ ∈ Q(z) be a rational map. Then φ is minimal only if it is

minimal at p for every prime p.

Proof. Assume φ is minimal at p for every prime p. If φ were not minimal, there

would be some a�ne transformation A : z 7→ az+b with a, b ∈ Q such that Res(φA) <

Res(φ). Then there must be some prime p so that

ordp(Res(φA)) < ordp(Res(φ)).

But this implies φ is not minimal at p, a contradiction. Hence a rational map is

minimal if and only if it is minimal at every prime.

It is worth re�ecting a little more on Proposition 3.1.1, since it allows us to

conclude minimality for many rational maps. For example, let F (z) = z2 + 1 and

G(z) = z2 + z and consider the map ψ = F/G, where [F,G] is certainly a normalized

representation. We can compute the resultant to �nd Res(ψ) = 2. Before Proposition

3.1.1 we mentioned the de�nition did not immediately suggest a �nite approach to

showing this map to be minimal or not. Let us investigate what Proposition 3.1.1

tells us. For any a�ne transformation B : z 7→ az + b, with a, b ∈ Q and a 6= 0, we

have

ord2(Res(ψB)) = −2dmin(ord2(FB), ord2(GB)) + (d2 + d)ord2(a) + ord2(Res(ψ)).

We know d = 2 as well, hence as ord2(Res(ψ)) = 1, we have

ord2(Res(ψB)) = −4λ+ 6ord2(a) + 1.

for some integer λ. Any resultant of a rational map must be a positive integer, so the

order of the resultant of ψB at 2 can not be less than 1. If B reduces the resultant

of ψ we would have a solution to the equation −4λ + 6ordp(a) = −1, of which none

exist. Hence as ψ is minimal at every other prime, we have that ψ is minimal. In a

similar manner, consider the rational map

τ(z) =
z2 + 1

z2 − 13z
,

with resultant Res(τ) = 2 · 85. The map τ is minimal at 2 as well, and at 85, so as

above, we know τ is minimal at every prime, and so τ is minimal. In general we have

the following.
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Theorem 3.2.2. Let φ ∈ Q(z) be a rational map with degree d ≥ 2. Furthermore,

let g = d if d is even and g = 2d if d is odd. If the resultant Res(φ) is g-th power

free, then φ is minimal.

Proof. Suppose the resultant is g-th power free and factors into the product of distinct

prime powers

Res(φ) = pn1
1 · pn2

2 · · · pnr
r . For each i, 1 ≤ i ≤ r we know from Proposition 3.1.1, if a

transformation A : z 7→ az + b ∈ Q[z], with ordp(a) = k reduces the resultant of φ,

then we have a solution to the Diophantine equation

−2dλ+ (d2 + d)k = c, (3.3)

where λ is an integer and c is a negative integer of magnitude at most g, since Res(φ)

is g-th power free. Note that g = gcd(d2 + d, 2d) = d gcd(d + 1, 2). If d is even, we

can write d = 2m for some integer m, and we have

d gcd(2m+ 1, 2) = d.

If d is odd, we write d = 2m+ 1 so that

d gcd(2m+ 2, 2) = 2d gcd(m+ 1, 1)

= 2d.

Thus with our choice of g, we can see no such solution exists for (3.3), and hence no

choice of k and b can make ordpi(Res(φA)) < ordpi(Res(φ)). Thus φ is minimal.

From Proposition 3.1.1, in order for A : z 7→ az+ b ∈ Aff2(Q) to be a transforma-

tion that reduces the valuation of the resultant of φ at some prime p, we require

−2dmin(ordp(FA), ordp(GA)) + (d2 + d)ordp(a) < 0.

In other words, if A reduces the valuation of the resultant, we have

min(ordp(FA), ordp(GA)) >
d+ 1

2
ordp(a). (3.4)

Recall the valuation of a polynomial is the minimal valuation of its coe�cients, and we

know the coe�cients of FA and GA, in terms of the coe�cients of Fφ and Gφ. We focus
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�rst on GA then FA. Denote the degree of Gφ by dG and write Gφ(z) =
∑dG

i=0 giz
i.

Furthermore, we set gdG+1 = . . . = gd = 0. Writing

GA(z) = aGφ(az + b) =

dG∑
i=0

hiz
i,

we have

hj = aj+1

dG∑
i=j

(
i

j

)
gib

i−j. (3.5)

In particular, we have

h0 = aGφ(b)

h1 = a2G′φ(b)

hdG = adG+1gdG

and if (3.4) is satis�ed, we must have

ordp(a) + ordp(Gφ(b)) >
d+ 1

2
ordp(a),

2ordp(a) + ordp(G
′
φ(b)) >

d+ 1

2
ordp(a),

...

(dG + 1)ordp(a) + ordp(gdG) >
d+ 1

2
ordp(a). (3.6)

Focusing on the numerator, we let Fφ(z) =
∑d

i=0 fiz
d where if the degree of Fφ is less

than d we let the respective coe�cients be 0. Writing

FA(z) = Fφ(az + b)− bGφ(az + b) =
d∑
i=0

riz
i

we have

rj = aj
d∑
i=j

(
i

j

)
(fib

i−j − gibi−j+1) (3.7)
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and again, if (3.4) holds we must have

ordp(Fφ(b)− bGφ(b)) >
d+ 1

2
ordp(a),

ordp(a) + ordp(F
′
φ(b)− bG′φ(b)) >

d+ 1

2
ordp(a),

...

d ordp(a) + ordp(fd − bgd) >
d+ 1

2
ordp(a), (3.8)

where at most one of fd and gd can be zero (as φ has degree d). These inequalities,

which we shall refer to as the coe�cient inequalities, are necessary and su�cient

conditions for the transformation A to reduce the resultant of φ at p. If no choices of

a and b can satisfy the inequalities, then φ is minimal at p. With these in hand, we

are now able to develop our algorithm.

3.3 Algorithm

Given a rational map φ ∈ Q(z), we would like to know if it is minimal. If not, we

would like a rational map ψ ∈ Q(z) such that ψ is minimal and there exists some

a�ne transformation A ∈ Aff2(Q) with ψA = φ. We develop an algorithm to do this

in this section, with the following main steps.

- Note that Res(φ) has only �nitely many prime divisors. If p - Res(φ), then φ is

automatically minimal at p.

- Let a, b ∈ Q, a 6= 0 and let p be a prime. We observe that if conjugating by

z 7→ az+b reduces the resultant of φ, with ordp(a) = k, then so does conjugating

by z 7→ pkz + b. We �nd �nite bounds for values of k that can possibly reduce

Res(φ).

- For each possible k, we determine b satisfying (3.6) and (3.8) or prove that none

exists.

The rest of this section explains the approach in detail and proves it valid. First, we

�x some notation for the rest of the section. Let [F,G] be a normalized representation

of φ ∈ Q(z), a rational map of degree d ≥ 2. Further, let A ∈ Aff2(Q)
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Lemma 3.3.1. Let φ ∈ Q(z) be a rational function, let p be a prime and let a ∈
Q×, b ∈ Q with ordp(a) = k. Let A : z 7→ az + b and B : z 7→ pkz + b. Then

ordp(Res(φA)) = ordp(Res(φB)).

Proof. From Proposition 3.1.1 we have

ordp(Res(φA)) = −2dmin(ordp(FA), ordp(GA)) + (d2 + d)k + ordp(Res(φ))

ordp(Res(φB)) = −2dmin(ordp(FB), ordp(GB)) + (d2 + d)k + ordp(Res(φ))

so what we must show is, min(ordp(FA), ordp(GA)) = min(ordp(FB), ordp(GB)). This

comes straight from (3.5) and (3.7), where we can see the respective coe�cients of

GA and GB have the same order, as well as the respective coe�cients of FA and FB.

Hence ordp(Res(φA)) = ordp(Res(φB)).

Write F = f0 + f1z + . . . + fdz
d and G = g0 + g1z + . . . + gdGz

dG where dG ≤ d

is the degree of G. We are able to �nd bounds on the values of k that may lead to

ordp(Res(φA)) < ordp(Res(φ)).

Theorem 3.3.2. Suppose φ ∈ Q(z) and A ∈ Aff2(Q) such that ordp(Res(φA)) <

ordp(Res(φ)). If dG > (d + 1)/2 then k > − 2
2dG−d+1

ordp(gdG), otherwise if dG ≤
(d+ 1)/2 we have k > − 2

d+1
ordp(fd).

Proof. We have two cases to consider depending on the degree of G. If dG > (d+1)/2,

from the last coe�cient inequality in (3.6) we have

2dG − d+ 1

2
ordp(a) > −ordp(gdG),

and so

ordp(a) > − 2

2dG − d+ 1
ordp(gdG).

Otherwise, we must have that dG ≤ (d+ 1)/2, so in particular the coe�cient gd of G

must be 0. We appeal to the last coe�cient inequality in (3.8) to see

d− 1

2
ordp(a) > −ordp(fd),
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and rearranging gives

ordp(a) > − 2

d− 1
ordp(fd).

Notice in the respective cases, gdG and fd must be non-zero, so their respective orders

are always well de�ned �nite values.

We now look for an upper bound.

Theorem 3.3.3. Suppose φ ∈ Q(z) and A : z 7→ pkz + b ∈ Aff2(Q) such that

ordp(Res(φA)) < ordp(Res(φ)). Then there is an explicitly computable upper bound

for k, depending only on φ.

Proof. Recall the inequalities from (3.6) and (3.8) have the form

ordp(c(b)) > αk

for some polynomial c(b) and rational number α. We will select two of these inequal-

ities

ordp(c1(b)) > α1k

ordp(c2(b)) > α2k

such that Resm(c1, c2) 6= 0 where m = max(deg c1, deg c2). For instance, from the

inequalities (3.5) and (3.7), we can take

ordp(Fφ − bGφ) >
d+ 1

2
k

ordp(Gφ) >
d− 1

2
k

where Resm(c1, c2) 6= 0 follows from the fact that F,G are coprime by assumption and

hence F (b)− bG(b), G(b) are as well. If we can �nd an upper bound for ordp(c1(b)) or

ordp(c2(b)) we can �nd an upper bound for k. We have two cases to consider, since

the values we plug in to c1 and c2 may have positive or negative valuation. If we

plug in some value b0 ∈ Q with ordp(b0) < 0, we recall Proposition 2.2.18 part (d).

Namely, there exist polynomials R, S ∈ Z[b] such that

Rc1 + Sc2 = b2m−1
0 Resm(c1, c2).
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Write R(b) = R0 +R1b+ . . .+Rmb
m and S(b) = S0 + S1b+ . . .+ Smb

m. Taking the

valuation of both sides, we use the non-Archimedean triangle inequality to �nd

ordp(b
2m−1
0 Resm(c1, c2)) = ordp(R(b0)c1(b0) + S(b0)c2(b0))

= ordp

((
c1(b0)

∑
i

Rib
i
0

)
+

(
c2(b0)

∑
j

Sjb
j
0

))
≥ ordp(c1(b0)bm−1

0 + c2(b0)bm−1
0 )

≥ min(ordp(c1(b0)bm−1
0 ), ordp(c2(b0)bm−1

0 ))

≥ (m− 1)ordp(b0) + min(ordp(c1(b0)), ordp(c2(b0))).

We may write

min(ordp(c1(b0)), ordp(c2(b0))) ≤ m ordp(b0) + ordp(Resm(c1, c2))

and so,

k <
min(ordp(c1(b)), ordp(c2(b)))

min(α1, α2)

hence

k <
m ordp(b0) + ordp(Resm(c1, c2))

min(α1, α2)

<
ordp(Resm(c1, c2))

min(α1, α2)
,

as ordp(b0) < 0. On the other hand, if we plug in some value b1 ∈ Q with ordp(b1) ≥ 0,

we recall part (e) of Proposition 2.2.18 to �nd polynomials C,D ∈ Z[b], such that

Cc1 +Dc2 = Resm(c1, c2).

With the similar process, we take valuations and �nd

min(ordp(c1(b1)), ordp(c2(b1))) ≤ ordp(Resm(c1, c2))

and hence

k < ordp(Resm(c1, c2))/min(α1, α2).
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Thus if the algorithm searches values of k starting from the lower bound and

increments until the upper bound, we have searched all the necessary values of k.

Example 3.3.4. Recall φ3 from the beginning of Section 3.2,

φ3(z) =
86z2 − 1068z − 338

z2 + 7z − 338
.

For a �xed prime p, integer k and rational number b, we want to investigate the e�ect

of conjugating φ3 by the a�ne transformation A : z 7→ pkz + b. Conjugating φ3 by A

gives

φA3 (z) =
(−b+ 344)p2kz2 + (−2b2 + 165b− 1068)pkz − b3 + 79b2 − 730b− 338

p3kz2 + (2b+ 7)p2kz + pk(b2 + 7b− 338)
.

We can see Res(φ3) = 25 ·3 ·52 ·72 ·11 ·132. If we focus on the prime p = 2, Theorems

3.3.2 and 3.3.3 tell us we must have k < ordp(Resm(c1, c2))/max(α1, α2) where we

may pick

c1 = F ′(b)− bG′(b) = −2b2 + 165b− 1068

c2 = G(b) = b2 + 7b− 338

while α1 = α2 = 1/2 and m = 2. Hence with

res(c1, c2) = 2 · 5 · 29 · 1392

we have ord2(Res2(c1, c2)) = 1, and so 0 < k < 2.

Continuing with the development of our algorithm, with �xed values of k, we need

to see what e�ects b can have on the order of the coe�cients of φA at p. We will

proceed as follows,

- We will compute a lower bound, `, on the valuation of b, and consider b′ = p−`b

with b′ ∈ Zp.

- We prove that having b′ ∈ Z gives us a �nite procedure for determining if

ordp(Res(φA)) < ordp(Res(φ)) for some A ∈ Aff2(Q).
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Theorem 3.3.5. Let φ ∈ Q(z) be a rational map of degree d, and A : z 7→ az + b

an a�ne transformation. Write the coe�cients of φA (both FA and GA) as ci(b) =

ci,0 + ci,1b+ . . .+ ci,dib
di. If Res(φA) < Res(φ), then

ordp(b) ≥ max
ci

(
min

{
α− ordp(ci,di)

di
, min

0≤j<di

(
ordp(ci,j)− ordp(ci,di)

di − j

)})
,

where α = (d+ 1)ordp(a)/2.

Proof. Pick any coe�cient inequality. The inequality has the form

ordp(ci(b)) > α. (3.9)

With deg(ci) = di, we try bounding the valuation of b below, by observing that if

ordp(b) is su�ciently small, then ordp(ci(b)) = ordp(ci,dib
di) by the non-Archimedean

triangle inequality. Thus, assume ordp(b) is small enough so that ordp(ci,dib
di) <

ordp(ci,jb
j) for all j, 0 ≤ j < di. As ordp(ci,dib

di) < ordp(ci,jb
j), simply by expanding,

one gets

ord(ci,di) + diordp(b) < ordp(ci,j) + jordp(b).

Rearranging, we have

ordp(b) <
ordp(ci,j)− ordp(ci,di)

di − j
.

Going back to (3.9), we require ordp(ci(b)) > α. If ordp(ci,dib
di) ≤ α, by the non-

Archimedean triangle inequality, we would not be able to satisfy (3.9) and (3.10), so

our choice of b was too small, and any b must have

ordp(b) ≥
ordp(ci,j)− ordp(ci,di)

di − j

for some j, 0 ≤ j < d. On the other hand, if ordp(ci,dib
di) > α, the following inequality

holds:

ordp(b) >
α− ordp(ci,di)

di
.

Putting both together, and doing this for each coe�cient, ci, we must have

ordp(b) ≥ max
i

(
min

{
α− ordp(ci,di)

di
, min

0≤j<di

(
ordp(ci,j)− ordp(ci,di)

di − j

)})
.
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We may always �nd a lower bound on the valuation of possible solutions, b, to

the inequalities (3.6) and (3.8). Write the lower bound as `, then we may rewrite the

inequalities, using b′ = p−`b, so that we may always have ordp(b
′) ≥ 0. From here,

we simply need to �nd if there exists a b0 ∈ Q, that satis�es the inequalities. After

the following Lemma, we will see that we need only �nd such a b0 ∈ Z (or that none

exists.)

Lemma 3.3.6. Let f1, . . . , fr ∈ Zp[x] and let v1, . . . , vr ∈ R. For any β ∈ Zp, we can
determine if

β ∈ {b0 ∈ Zp : ordpfi(b0) > vi for each i}.

simply by considering the congruence class of β in Zp/peZp, where e is maxi(bvi+1c).

Proof. For notational purposes, write g for one of the fi, write

g(b) = g0 + g1x+ . . .+ ge−1x
e−1 + gex

e + . . .

and let β, ε ∈ Zp. Then we have

g(β + ε) = g0 + g1(β + ε) + g2(β + ε)2 + . . .

and

g(β) = g0 + g1β + g2β
2 + . . .

so that

g(β + ε)− g(β) = g1ε+ g2(2βε+ ε2) + . . .

= ε(g1 + g2(2β + ε) + . . .)

and hence

ordp(g(β + ε)− g(β)) ≥ ordp(ε).

Notice, if we have β′ ∈ Zp, then β and β′ have the same image in Zp/peZp if and only

if ordp(β
′ − β) ≥ e, in which case β′ = β + ε, with ordp(ε) ≥ e. Thus ordp(g(β′)) ≥ e

if and only if ordp(g(β)) ≥ e. As g was an arbitrary fi, we are done.
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Remark. If we have some map φ ∈ Q(z) that is not minimal at p, Lemma 3.3.6 states

we may �nd an a�ne transformation of the form A : z 7→ pkz+ plb′, for some k, l, b′ ∈
Z, such that ordp(Res(φA)) < ordp(Res(φ)). The transformation A corresponds to

the matrix (
pk plb′

0 1

)
,

hence from the remark after Theorem 3.1.2, the transformation A does not a�ect the

resultant at any prime q 6= p. Namely, we have ordq(Res(φA)) = ordq(Res(φ)) for all

primes q 6= p. Thus we may attempt to minimize a rational map, focusing on each

prime dividing the resultant, one at a time.

Given this, we may now show:

Proposition 3.3.7. A map φ ∈ Q(z) is minimal if and only if it is minimal at p for

all primes p.

Proof. We already have Proposition 3.2.1, so all we need to show is that φ being

minimal implies φ being minimal at p for all primes p. But this follows straight from

the remark. The remark tells us if we have a map that is not minimal at every prime

p, then it is not minimal.

For any particular p and k, there is obviously a �nite procedure to test whether

the set

{b0 ∈ Zp : ordpfi(b0) > vi for each i}

in Lemma 3.3.6 is non-empty: for each class of Zp/peZp, pick a representative b0 in

Zp and see if b0 is in the set. This is a �nite procedure, but ine�cient if pe gets large,

so we put in a little more work, taking more advantage of our p-adic setting.

We have an algorithm that, given c(b) ∈ Zp[b], and α ∈ R, either �nds a solution

b0 ∈ Zp such that ordp(b0) > α or proves such an element does not exist. The expected

runtime of this algorithm, as a function of p, is O(log p).

We wish to consider some value b′ ∈ Zp, say b′ = x0 + x1p+ x2p
2 + . . . with each

xi ∈ {0, 1, . . . , p − 1}. If b′ satis�es the inequalities, then certainly b0 = x0 + x1p +
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x2p
2 + . . . + xnp

n with n = bα + 1c satis�es the inequalities too, by Lemma 3.3.6.

Suppose we have some b0 ∈ Zp such that c(b0) ≡ 0(mod pn). Then b0 is congruent to

0 modulo any smaller powers of p. Writing this out we have,

c(x0 + x1p+ x2p
2 + . . .+ xn−1p

n−1 + xnp
n) ≡ 0(mod pn+1)

c(x0 + x1p+ x2p
2 + . . .+ xn−1p

n−1 + xnp
n) ≡ 0(mod pn)

...

c(x0 + x1p+ x2p
2 + . . .+ xn−1p

n−1 + xnp
n) ≡ 0(mod p3)

c(x0 + x1p+ x2p
2 + . . .+ xn−1p

n−1 + xnp
n) ≡ 0(mod p2)

c(x0 + x1p+ x2p
2 + . . .+ xn−1p

n−1 + xnp
n) ≡ 0(mod p).

Canceling the obvious powers of p on both sides gives,

c(x0 + x1p+ x2p
2 + . . .+ xn−1p

n−1 + xnp
n) ≡ 0(mod pn+1)

c(x0 + x1p+ x2p
2 + . . .+ xn−1p

n−1) ≡ 0(mod pn)

...

c(x0 + x1p+ x2p
2) ≡ 0(mod p3)

c(x0 + x1p) ≡ 0(mod p2)

c(x0) ≡ 0(mod p). (3.10)

Since c(x0) ≡ 0(mod p), writing c(x0 + x1p) = c(x0) + pc′, where c′ ∈ Z[b], we can

see as c(x0 + x1p) ≡ 0(mod p2),

c(x0 + x1p)

p
≡ 0(mod p).

More generally, we may rewrite the i-th congruence of (3.10) as

c(x0 + x1p+ . . .+ xi−1p
i−1) = c(x0 + x1p+ . . .+ xi−1p

i−2) + pi−1f

where f ∈ Zp[b] is some polynomial. The right summand, pi−1f is certainly divisible

by pi−1. If the left summand, c(x0 + x1p + . . . + xi−1p
i−2) is congruent to 0 modulo
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pi−1, and hence divisible by pi−1, we may rewrite the congruences as

c(x0 + x1p+ x2p
2 + . . .+ xn−1p

n−1 + xnp
n)/pn ≡ 0(mod p)

c(x0 + x1p+ x2p
2 + . . .+ xn−1p

n−1)/pn−1 ≡ 0(mod p)

...

c(x0 + x1p+ x2p
2)/p2 ≡ 0(mod p)

c(x0 + x1p)/p ≡ 0(mod p)

c(x0) ≡ 0(mod p).

Hence in trying to �nd a b0 that is a solution to the inequality, we write out all of

these congruences and search for each xi starting with x0, then x1 and going to xn.

We can come across a set {x0, x1, . . . , xm} with m < n that does not extend to a

solution and we must backtrack, and pick another choice of x0, . . . , xm to see if they

extend to a solution to the inequalities. Given each congruence has a polynomial of

�nite degree on the left hand side, if no solution exists, the backtracking will be �nite

and this process will terminate in a �nite amount of time.

Given the set of inequalities

{ordp(f1(b)) ≥ e1, . . . , ordp(fr(b)) ≥ er},

to decide whether the set is empty or not (i.e., to �nd a solution), using our algorithm,

we have the following main steps:

- Remove common factors of p in the coe�cients of each fi and reduce ei corre-

spondingly: O(
∑

i deg(fi)) ring operations.

- Determine reductions g1, . . . , gr of f1, . . . , fr mod p: O(1), we simply address the

polynomials as elements in Fp.

- Determine g = gcd(g1, . . . , gr): O(M(d + 1) log(d + 1)) ring operations, where

M(k) is the time is takes to multiply two degree k polynomials (Theorem 11.5

in [10]). Naively we can use classical polynomial multiplication to haveM(k) =

2k2 arithmetic ring operations. Then determining g is O(2(d + 1)2 log(d + 1))

ring operations.
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- Determine roots of g in Fp: O(deg(g)2mL(m)L(deg g) log p) ring operations,

where m = max ei, and L(k) = log k log log k (Pages 276-277 in[5]).

- For each root b0 of g, repeat the procedure for

{ordp(f1(b0 + pb)) ≥ e1, . . . , ordp(fr(b0 + pb)) ≥ er}.

This procedure needs to go at most max(ei) levels deep, so the number of times the

procedure gets executed is at most

1 + deg(g) + deg(g)2 + . . .+ deg(g)n

times. The run time on some simple small examples using this method may certainly

be larger, but we note deg(fi), d, deg(g) and ei are of bounded size for maps of a

bounded degree, whereas the primes dividing the resultant can grow arbitrarily. The

only complexity involving p in the algorithm being O(log p) instead of O(pe), and

the fact that the number of times the loop will run is independent of p, allows this

method to handle much larger primes, which will be very useful in Chapter 4.

Given this method, for a �xed k we would like to know if there exists a solution

to our inequalities (3.6) and (3.8),

ordp(p
kGφ(b)) >

d+ 1

2
k,

ordp(p
2kG′φ(b)) >

d+ 1

2
k,

...

ordp(p
(dG+1)kgdG) >

d+ 1

2
k

ordp(Fφ(b)− bGφ(b)) >
d+ 1

2
k,

ordp(p
k(F ′φ(b)− bG′φ(b))) >

d+ 1

2
k,

...

ordp(p
dk(fd − bgd)) >

d+ 1

2
k.

We do this by �rst seeing if the inequalities independent of b are satis�ed. If so, we

scale the inequalities, to ensure the coe�cients are integral, then reduce them modulo
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p and compute their greatest common divisor, g. We apply the above algorithm to

determine a b0 that satis�es ordp(g(b0)) > d+1
2
k if one exists, or determine no such b0

exists. If such a b0 is found, we conjugate the rational map and run the algorithm on

the new map, otherwise increment k.

If we try every possible choice of k and none of them leads to a solution, b0, then

our map is minimal at p. The resultant must strictly decrease after every conjugation

and is always a positive number, hence this process must terminate.

Example 3.3.8. Returning to the rational map in Example 3.3.4, φ3, suppose we

are interested in the case p = 2 and k = 1. Theorem 3.3.5 tells us ordp(b) ≥ 0 and

we do not need to scale, so our inequalities are

ord2(2(b2 + 7b− 338)) >
3

2

ord2(22(2b+ 7)) >
3

2

ord2(23) >
3

2

ord2(−b3 + 79b2 − 730b− 338) >
3

2

ord2(2(−2b2 + 165b− 1068)) >
3

2

ordp(2
2(−b+ 344)) >

3

2
.

As the third inequality is satis�ed, we look to the other �ve polynomials reduced

modulo p = 2. We have that the greatest common divisor of the reduced non-

constant polynomials is 1, and hence no value in Q can satisfy each inequality. With

every possible choice of p and k, we never �nd an a�ne transformation that reduces

the resultant, hence φ3 is minimal.

We present pseudo code for an algorithm to determine minimal representations of

rational functions in Appendix A.

3.4 Examples

First we show there are very simple minimal maps for any degree d at least 2.
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Example 3.4.1. Let d ≥ 2 and consider φ(z) = zd+1
z

. Then Res(φ) = 1, and hence

φ is minimal.

Also, we can have minimal maps with resultant c for any positive integer c.

Example 3.4.2. Consider the polynomials Fc(z) = z3 + c for some positive c ∈ Z
and G(z) = z. The rational map φc = Fc/G has normalized representation [Fc, G],

with resultant c. We will show that each of the φc are minimal, so in particular there

exist minimal rational maps of arbitrary resultant.

Proof. From the last coe�cient inequality in (3.6), in order for some a�ne transfor-

mation A : z 7→ az + b to reduce the resultant of φc, we must have

2ordp(a) > 2ordp(a)

which is certainly not possible.

There was no special importance to Example 3.4.2 being degree 3. The key to the

last example was the denominator being z.

Example 3.4.3 (Tom Boothby). The rational map

φ(z) =
F (z)

G(z)
=
zd + ad−1z

d−1 + . . .+ a1z + a0

z
∈ Q(z),

with d ≥ 3, is minimal.

Proof. As with the last example, we look to the last coe�cient inequality in (3.6).

For any a�ne transformation A : z 7→ az+b, if conjugating by A gives a rational map

with smaller resultant, we have

2ordp(a) >
d+ 1

2
ordp(a) ≥ 2ordp(a)

as d ≥ 3. This is again, not possible. Hence φ is minimal.

With a little work one can see that for d = 2 these maps do not have to be

minimal. E.g.,

φ(z) =
F (z)

G(z)
=
z2 + 24

z
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has resultant 24 = 23 · 3 , which can be reduced by conjugating with A : z 7→ 2z, to

6 = 2 · 3 as

φA(z) =
4z2 + 24

4z
=
z2 + 6

z
.

We can generalize this further, continuing with our examples having monic de-

nominator.

Example 3.4.4. If we write φ = F/G ∈ Q(z) with G monic, and deg(G) < 1
2

deg(F ).

Then φ(z) is minimal.

Proof. For some a�ne transformation A : z 7→ az + b, we again look to the last

inequality in (3.6). As deg(G) < 1
2

deg(F ), we see

(deg(G) + 1)ordp(a) >
d+ 1

2
ordp(a)

and hence, when ordp(a) 6= 0, in order to reduce the resultant of φ via conjugation

by A, we must have

deg(G) >
d− 1

2
=
d

2
− 1

2
<
d

2
< deg(G).

When ordp(a) = 0 in order to reduce the resultant by conjugation by A, we require

0 > 0, which certainly cannot occur, so φ is minimal.

This bound on the degree of G is sharp. If we have monic polynomials with

deg(G) ≥ 1
2

deg(F ), minimality is no longer guaranteed. One can take F (z) = z3 −
5z2 − 25z + 125 and G(z) = z2 − 5z − 25. Then [F,G] is a normalized rational map,

say ψ, with Res(ψ) = 15625 = 56. Letting A : z 7→ 5z we have

ψA(z) =
(5z)3 − 5(5z)2 − 25(5z) + 125

5((5z)2 − 5(5z)− 25)

=
z3 − z2 − z + 1

z2 − z − 1
,

which has the much smaller resultant 1.



Chapter 4

Integer Points in Orbits

4.1 Constructing a Rational Function with a Pre-

scribed Orbit

Suppose we want to construct a degree d rational map, with the orbit

{c1, c2, . . . , cm, . . .}

for c1, c2, . . . , cm ∈ Z. Writing the rational map

φ(z) = (adz
d + . . .+ a1z + a0)/(bdz

d + . . .+ b1z + b0)

with a0, a1, . . . , ad, b0, b1, . . . , bd ∈ Z we have the following equations

φ(c1) =
adc

d
1 + . . .+ a1c1 + a0

bdcd1 + . . .+ b1c1 + b0

= c2

φ(c2) =
adc

d
2 + . . .+ a1c2 + a0

bdcd2 + . . .+ b1c2 + b0

= c3

...

φ(cm−1) =
adc

d
m−1 + . . .+ a1cm−1 + a0

bdcdm−1 + . . .+ b1cm−1 + b0

= cm.

42
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By rearranging each equation to be some expression equal to zero, we have

(adc
d
1 + . . .+ a1c1 + a0)− (bdc

d
1 + . . .+ b1c1 + b0)c2 = 0

(adc
d
2 + . . .+ a1c2 + a0)− (bdc

d
2 + . . .+ b1c2 + b0)c3 = 0

...

(adc
d
m−1 + . . .+ a1cm−1 + a0)− (bdc

d
m−1 + . . .+ b1cm−1 + b0)cm = 0.

We obtain a homogeneous linear system in a0, . . . , ad, b0, . . . , bd, and we can see a

solution exists if there is a non-zero kernel to the following matrix

cd1 cd−1
1 . . . c1 1 −cd1c2 −cd−1

1 c2 . . . −c1c2 c2

cd2 cd−1
2 . . . c2 1 −cd2c3 −cd−1

2 c3 . . . −c2c3 c3

cd3 cd−1
3 . . . c3 1 −cd3c4 −cd−1

3 c4 . . . −c3c4 c4

...
...

. . .
...

...
...

...
. . .

...
...

cdm−1 cd−1
m−1 . . . cm−1 1 −cdm−1cm −cd−1

m−1cm . . . −cm−1cm cm


. (4.1)

In general, as we want a solution, we prescribe 2d+ 2 points for a degree d map,

and expect a one dimensional kernel as long as the points are distinct, and hence a

unique rational function with orbit {c1, c2, . . . , cm, . . .}.

Theorem 4.1.1. If {c1, c2, . . . , cm} are distinct points for some even integer m,

then there is a unique rational function of degree at most d = m−2
2

with the orbit

{c1, c2, . . . , cm, . . .}.

Proof. Assume we have two distinct rational functions, φ and ψ, of degree d and

orbit {c1, c2, . . . , cm, . . .}. Then the map (φ−ψ)(z) has m− 1 roots, just by plugging

in z = ci for 1 ≤ i < m. The numerator of (φ − ψ) has degree at most 2d, and

2d ≤ m − 2, so there are too many roots if the numerator is a non-zero polynomial,

hence we must have that φ−ψ = 0. Therefore φ = ψ and the map φ constructed from

the orbit {c1, . . . , cm, . . .} is unique. To show there is at least one rational function

with the orbit {c1, c2, . . . , cm, . . .} we note the matrix (4.1) has m − 1 rows and m

columns, hence will always have a non-zero kernel.

For example, to �nd a degree two rational map with the orbit {0, 1, 2, 3, 5, 7, . . .},
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we must �nd the kernel of the matrix
0 0 1 0 0 −1

1 1 1 −2 −2 −2

4 2 1 −12 −6 −3

9 3 1 −45 −15 −5

25 5 1 −175 −35 −7


which we can easily �nd, has basis [31,−53,−90, 1,−35, 90]. Our desired function is

31z2 − 53z − 90

−z2 + 35z − 90
.

The fact that this map has the orbit {0, 1, 2, 3, 5, 7, . . .} can easily be checked just by

plugging in each value. With this construction in mind, our search method will be

to prescribe orbits of the form {c1, . . . , c2d+2, . . .} and see whether the corresponding

rational maps are of the appropriate degree. If they are, we can check if the maps

have any more integers in their orbits, that the orbits are not preperiodic, and if so,

check to see if the maps are minimal.

4.2 Search Method

We outline our main search method, a naive exhaustive search. We also mention the

main obstruction in the method.

With the construction process outlined above, we would like to see how many

extra integers in the orbit we get for a minimal map. We may search all orbits from

(0,−c,−c, . . . ,−c, . . .) to (0, c, c, . . . , c, . . .) for some upper bound c. Notice the orbits

(0, c1, c2, . . . , cm, . . .) and (0,−c1,−c2, . . . ,−cm, . . .) would create rational maps F1/G1

and F2/G2 where F1(z)/G1(z) = −F2(−z)/G2(−z). Then if F1/G1 is minimal, F2/G2

is also minimal as they are PGL2(Z)-conjugate. Thus we need only search the orbits

(0, 1,−c, . . . ,−c, . . .) to (0, c, c, . . . , c, . . .).

We recall that Silverman conjectures (see Conjecture 2.2.21) the number of integer

points that can occur in a wandering orbit of an minimal rational map of degree d is

uniformly bounded by a constant in terms of d.
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The only part we have yet to explain, is how to determine if 0 is a preperiodic

point or a wandering point in each case. For any map φ ∈ Q(z) we will use related

maps, called the reduction of φ at p for some prime p. Let [F,G] be a normalized

representation of φ, and let p be a prime. We call the reduction of φ at p the map

φ̃ = F̃ /G̃ where F̃ and G̃ are the images of the polynomials F and G over the �nite

�eld with p elements, Fp. The reduction of any map ψ ∈ Q(z) is computed by �rst

getting a normalized representation [S, T ] and then ψ̃ = S̃/T̃ . Similarly, for P ∈ Q,
denote the reduction of P modulo p by P̃ , where P̃ =∞ if ordp(P ) < 0.

Suppose we have a rational map φ ∈ Q(z), with orbit O of 0. Our goal will be

to study the orbit of 0 under φ based on the orbits of the reductions of φ at some

primes.

Theorem 4.2.1 (Theorem 2.21 in [8]). Let φ : P1(Qp)→ P1(Qp) be a rational function

of degree d ≥ 2. Assume that φ and φ̃ have the same degree, let P ∈ P1(Qp) be a

periodic point of φ, and de�ne the following quantities:

n The period of P for the map φ.

m The period of P̃ for the map φ̃.

r The order of (φ̃m)′(P̃ ) in (Z/pZ)∗, or ∞ if (φ̃m)′(P̃ ) = 0.

Then n has one of the following forms:

n = m or n = mr or n = mrpe.

It is simple to see when 0 is preperiodic for a map, when the orbit of 0 contains only

integers. For a given map φ ∈ Q(z) with Oφ(0) containing some rational numbers,

our goal will be to use multiple primes and show this theorem implies there is no

possible integer n, such that a point P ∈ Oφ(0) satis�es φn(P ) = φ(P ). The strategy

to show 0 is not preperiodic under φ is as follows:

- Find a short list of primes of good reduction (i.e., primes that do not divide the

resultant)

- For each prime p in the list, compute the following



CHAPTER 4. INTEGER POINTS IN ORBITS 46

- The period of a point in the orbit of 0 under φ̃

- The order of (φ̃m)′(P̃ )

- For each prime p, write the list of possible period lengths n as Lp

- Take the intersection of all the Lp

If the intersection of the Lp, the lists of possible periods, is empty, no point in the

orbit of 0 under φ can be periodic, hence 0 is a wandering point. Continuing with

Example 3.3.4, we wish to show our rational map φ3 has 0 as a wandering point.

Example 4.2.2. We have Res(φ3) = 25 · 3 · 52 · 72 · 112 · 13, and so two primes of good

reduction are 17 and 19. Reducing φ3 at 17 we have

ψ17(z) =
z2 + 3z + 2

z2 + 7z + 2
∈ F17(z)

and at 19 we have

ψ19(z) =
10z2 + 15z + 4

z2 + 7z + 4
∈ F19(z).

Observing the forward orbit of 0 under each map, we see

Oψ17(0) = {0, 1, 4, 11, 12, 7, 15, 0, . . .}

Oψ19(0) = {0, 1, 4, 11, 12, 7, 15, 6, 6, . . .}.

At 17, our map has 0 as a periodic point with period length 7 whereas at 19 our map

has 6 as a periodic point of length 1. By the chain rule, we may compute

(ψ7
17)′(0) = ψ′17(0)ψ′17(1)ψ′17(4)ψ′17(11)ψ′17(12)ψ′17(7)ψ′17(15)

= 0.

Thus r17 = ∞. Similarly, one can �nd r19 = 18. Hence if 0 is preperiodic under φ3,

some point in the forward orbit of 0 is periodic with period length in

{7} ∩ {1, 18, 18 · 19e} = ∅.

Therefore under φ3, 0 must be a wandering point. Hence we have a minimal map

with 0 a wandering point and 8 integer points in the forward orbit of 0, as

Oφ3(0) = {0, 1, 4, 11, 12, 7, 15,−374, 59183/652, . . .}.
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We conducted exhaustive searches on degree two and three maps to investi-

gate the conjecture on a small scale. For the degree two case, we searched or-

bits {0, c1, c2, . . . , c6, . . .} with c1 ∈ {1, . . . , 100}, c2, . . . , c5 ∈ {−100, . . . , 100} and

c6 ∈ Z. For the degree 3 case, we searched for orbits {0, c1, c2, . . . , c8, . . .} with

c1 ∈ {1, . . . , 10}, c2, . . . , c7 ∈ {−100, . . . , 100} and c8 ∈ Z. The bounds are governed
by the hardware that we used, as described in the following sections.

4.3 Results

4.3.1 Degree Two Rational Maps

In the degree two search, we want our prescribed orbits to have length 2 · 2 + 2 = 6.

Our setting is an orbit (0, c1, c2, c3, c4, c5, . . .), with c1, . . . , c5 ∈ Z, corresponding to a

rational map φ(z) = (a2z
2 + a1z + a0)/(b2z

2 + b1z + b0). First we wish to determine

whether c6 = φ(c5) is an integer. We can determine the value of c6 using an elementary

method. To this end, we know plugging an orbit in to the rational map φ gives rise

to a number of equations, (4.1), so including φ(c5) = c6 we get the matrix

0 0 1 0 0 −c1

c2
1 c1 1 −c2

1c2 −c1c2 −c2

c2
2 c2 1 −c2

2c3 −c2c3 −c3

c2
3 c3 1 −c2

3c4 −c3c4 −c4

c2
4 c4 1 −c2

4c5 −c4c5 −c5

c2
5 c5 1 −c2

5c6 −c5c6 −c6


.

If there exists a rational function with the orbit {0, c1, c2, . . . , c6, . . .}, the determinant

of the matrix above must be 0. The determinant is linear in c6, so we get a rational

expression for c6 in terms of the previous integer points, c1, . . . , c5. The determinant

is D1c6 +D2 where,

D1 = −c2
1·c2

2·c3
3·c4+c1·c3

2·c3
3·c4+c2

1·c3
2·c3·c2

4−2·c1·c3
2·c2

3·c2
4+c2

1·c2·c3
3·c2

4−c2
1·c2

2·c3·c3
4+2·

c1·c2
2·c2

3·c3
4−c1·c2·c3

3·c3
4−c3

1·c3
2·c3·c5+2·c3

1·c2
2·c2

3·c5−c2
1·c2

2·c3
3·c5+c3

1·c3
2·c4·c5−c3

1·c2
2·c3·c4·

c5−c2
1·c3

2·c3·c4·c5−2·c3
1·c2·c2

3·c4·c5+3·c2
1·c2

2·c2
3·c4·c5+c2

1·c2·c3
3·c4·c5−c3

2·c3
3·c4·c5−c3

1·c2
2·c2

4·
c5−c2

1·c3
2·c2

4·c5+c3
1·c2·c3·c2

4·c5+2·c2
1·c2

2·c3·c2
4·c5+c1·c3

2·c3·c2
4·c5+c3

1·c2
3·c2

4·c5−3·c2
1·c2·c2

3·c2
4·
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c5−2·c1·c2
2·c2

3·c2
4·c5+2·c3

2·c2
3·c2

4·c5−c2
1·c3

3·c2
4·c5+c1·c2·c3

3·c2
4·c5+c2

1·c2
2·c3

4·c5+c2
1·c2·c3·c3

4·
c5−2·c1·c2

2·c3·c3
4·c5−c2

1·c2
3·c3

4·c5+c1·c2·c2
3·c3

4·c5−c2
2·c2

3·c3
4·c5+c1·c3

3·c3
4·c5+2·c2

1·c3
2·c3·c2

5−
c3

1·c2·c2
3·c2

5−3·c2
1·c2

2·c2
3·c2

5+c2
1·c2·c3

3·c2
5+c1·c2

2·c3
3·c2

5−c2
1·c3

2·c4·c2
5+2·c3

1·c2·c3·c4·c2
5−c2

1·c2
2·c3·

c4·c2
5+2·c2

1·c2·c2
3·c4·c2

5−c1·c2
2·c2

3·c4·c2
5−2·c1·c2·c3

3·c4·c2
5+c2

2·c3
3·c4·c2

5+c3
1·c2·c2

4·c2
5+c1·c3

2·c2
4·

c2
5−2·c3

1·c3·c2
4·c2

5−3·c2
1·c2·c3·c2

4·c2
5+2·c1·c2

2·c3·c2
4·c2

5−2·c3
2·c3·c2

4·c2
5+3·c2

1·c2
3·c2

4·c2
5+c1·c2·c2

3·
c2

4·c2
5−c1·c3

3·c2
4·c2

5−c2
1·c2·c3

4·c2
5+c2

1·c3·c3
4·c2

5+c2
2·c3·c3

4·c2
5−c1·c2

3·c3
4·c2

5−c1·c3
2·c3·c3

5+c2
1·c2·

c2
3·c3

5+c1·c2
2·c2

3·c3
5−c1·c2·c3

3·c3
5−c3

1·c2·c4·c3
5+c2

1·c2
2·c4·c3

5+c3
1·c3·c4·c3

5−c2
1·c2·c3·c4·c3

5+c3
2·

c3·c4·c3
5−2·c2

1·c2
3·c4·c3

5+c1·c2·c2
3·c4·c3

5−c2
2·c2

3·c4·c3
5+c1·c3

3·c4·c3
5+c2

1·c2·c2
4·c3

5−c1·c2
2·c2

4·c3
5

and

D2 = c3
1 ·c2

2 ·c3
3 ·c4−c2

1 ·c3
2 ·c3

3 ·c4−c3
1 ·c3

2 ·c3 ·c2
4+2·c2

1 ·c3
2 ·c2

3 ·c2
4−c3

1 ·c2 ·c3
3 ·c2

4+c3
1 ·c2

2 ·c3 ·c3
4−2·

c2
1 ·c2

2 ·c2
3 ·c3

4+c2
1 ·c2 ·c3

3 ·c3
4−c3

1 ·c2
2 ·c3

3 ·c5+c2
1 ·c3

2 ·c3
3 ·c5+2·c3

1 ·c3
2 ·c3 ·c4 ·c5−3·c3

1 ·c2
2 ·c2

3 ·c4 ·c5−
c2

1 ·c3
2 ·c2

3 ·c4 ·c5+c3
1 ·c2 ·c3

3 ·c4 ·c5+c2
1 ·c2

2 ·c3
3 ·c4 ·c5+c3

1 ·c2
2 ·c3 ·c2

4 ·c5−2·c2
1 ·c3

2 ·c3 ·c2
4 ·c5+2·c3

1 ·
c2 ·c2

3 ·c2
4 ·c5−c2

1 ·c2 ·c3
3 ·c2

4 ·c5−2·c3
1 ·c2 ·c3 ·c3

4 ·c5+c1 ·c3
2 ·c3 ·c3

4 ·c5+2·c2
1 ·c2 ·c2

3 ·c3
4 ·c5+c1 ·c2

2 ·
c2

3 ·c3
4 ·c5−c3

2 ·c2
3 ·c3

4 ·c5−2·c1 ·c2 ·c3
3 ·c3

4 ·c5+c2
2 ·c3

3 ·c3
4 ·c5+c3

1 ·c2
2 ·c2

3 ·c2
5−c2

1 ·c3
2 ·c2

3 ·c2
5+c2

1 ·c2
2 ·c3

3 ·
c2

5−c1 ·c3
2 ·c3

3 ·c2
5−c3

1 ·c3
2 ·c4 ·c2

5−c3
1 ·c2

2 ·c3 ·c4 ·c2
5+c3

1 ·c2 ·c2
3 ·c4 ·c2

5+3·c2
1 ·c2

2 ·c2
3 ·c4 ·c2

5+c1 ·c3
2 ·

c2
3 ·c4 ·c2

5−3·c2
1 ·c2 ·c3

3 ·c4 ·c2
5−c1 ·c2

2 ·c3
3 ·c4 ·c2

5+c3
2 ·c3

3 ·c4 ·c2
5+2·c2

1 ·c3
2 ·c2

4 ·c2
5−c1 ·c3

2 ·c3 ·c2
4 ·c2

5−
c3

1 ·c2
3 ·c2

4 ·c2
5−3·c2

1 ·c2 ·c2
3 ·c2

4 ·c2
5+c2

1 ·c3
3 ·c2

4 ·c2
5+4·c1 ·c2 ·c3

3 ·c2
4 ·c2

5−2·c2
2 ·c3

3 ·c2
4 ·c2

5−c1 ·c3
2 ·c3

4 ·
c2

5+c3
1 ·c3 ·c3

4 ·c2
5+c2

1 ·c2 ·c3 ·c3
4 ·c2

5−c1 ·c2
2 ·c3 ·c3

4 ·c2
5+c3

2 ·c3 ·c3
4 ·c2

5−c2
1 ·c2

3 ·c3
4 ·c2

5−c2
1 ·c2

2 ·c2
3 ·c3

5+

c1 ·c3
2 ·c2

3 ·c3
5+c3

1 ·c2
2 ·c4 ·c3

5−c3
1 ·c2 ·c3 ·c4 ·c3

5+c2
1 ·c2 ·c2

3 ·c4 ·c3
5−c1 ·c2

2 ·c2
3 ·c4 ·c3

5−c3
2 ·c2

3 ·c4 ·c3
5+

c1 ·c2 ·c3
3 ·c4 ·c3

5−2·c2
1 ·c2

2 ·c2
4 ·c3

5+2·c2
1 ·c2 ·c3 ·c2

4 ·c3
5+c1 ·c2

2 ·c3 ·c2
4 ·c3

5+c2
1 ·c2

3 ·c2
4 ·c3

5−3·c1 ·c2 ·
c2

3 ·c2
4 ·c3

5+2·c2
2 ·c2

3 ·c2
4 ·c3

5−c1 ·c3
3 ·c2

4 ·c3
5+c1 ·c2

2 ·c3
4 ·c3

5−c2
1 ·c3 ·c3

4 ·c3
5−c2

2 ·c3 ·c3
4 ·c3

5+c1 ·c2
3 ·c3

4 ·c3
5

so solving for c6 gives

c6 = −D2/D1.

Checking whether c6 ∈ Z now amounts to checking whether D1 divides D2. Hence

our search process is as follows:

- Enumerate tuples (c1, . . . , c5).

- Check, for each choice, if D1(c1, . . . , c5) divides D2(c1, . . . , c5). If so, store

(c1, . . . , c5,−D2

D1
) for later processing.
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We can execute this procedure quite quickly if we ensure that all integers we encounter

�t inside the natural word length of the computer we use. We worked on a 64-

bit computer. This means that integers in the range −263 + 1, . . . , 263 − 1 can be

represented and computed with very quickly.

We observe that D2 has total degree 9 and has 70 monomials and coe�cients of

absolute value at most 4. Hence, if we ensure that 70 · 4 · |c|9 < 263 we can compute

the value of D2 using system integers, without over�ow. This means we can take

ci ∈ {−68, . . . , 68}
In fact, D1 has total degree 8 and 76 monomials with coe�cients of absolute value

at most 3. This gives us a range ci ∈ {−119, . . . , 119}. The following observation

allows us to improve the range slightly. We only need to check the value of D2 modulo

D1. We can do this by evaluating each monomial of D2 separately, compute its

remainder modulo D1, add these, and check the remaining sum for divisibility by D1.

This way we only need each term ofD2 to individually �t inside a system integer. This

means we require that 4 · |c|9 < 263, giving c ∈ {−109, . . . , 109}. Using this approach,
we can search up to 100 while avoiding having to use computationally expensive

arbitrary precision libraries. On a 2.3GHz machine, this search was completed in

around 4 days.

We apply our minimality algorithm from Chapter 3. The minimality search took

around 3 days. We found the following results: For degree 2 rational maps with at

least 7 integer points in the orbit of 0,

Search space 160 000 000 000

Orbits with a 7-th integer point 2 112 933

Orbits corresponding to minimal maps 2 261

Preperiodic orbits 64

Polynomials 7

Non-polynomial, non-preperiodic orbits with at least 7 2 190

integer points in the orbit of 0

For the list of non-polynomial, non-preperiodic orbits with at least 7 integer points

in the orbit of 0, see http://www.cecm.sfu.ca/~nbruin/intorbits/ . We also
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searched for minimal rational maps with orbit

{0, c1, c2, c3, c4, c5,∞, c6, . . .}

where c1, . . . , c6 ∈ Z and −100 ≤ ci ≤ c5 for 1 ≤ i ≤ 5, but none exist.

One of the bene�ts of searching the orbits starting at 0 is we can check for points

that map to 0 by simply checking for integral roots of F . We can search for an eighth

integer point in the orbits by both checking for a point before 0 or a point after the

seventh. The following shows the results of the search for 8 integer points in the orbit

of 0,

Orbits with an integer before 0 4

Orbits with an 8-th point 5

Number of orbits in both cases that are PGL2(Z) conjugates 4

Number of minimal orbits with 8 integer points in the orbit of 0 5

For the orbits with an 8-th integer point, see Appendix B.

We found no examples with 9 integer points in the orbit of 0. It is interesting to

note the rational map

φ(z) =
12z2 − 29z − 35

z2 + 8z − 35

is the only map we found that has a �nite non-integral point in between the integer

points. Namely, the orbit of 0 is

Oφ(0) = {0, 1, 2, 3, 7, 5, 4, 41

13
,−40,

1355

83
, . . .}

4.3.2 Degree Three Rational Maps

In the degree three case, our prescribed orbits have length 2 ·3+2 = 8. Our setting is

an orbit (0, c1, c2, c3, c4, c5, c6, c7, . . .), with c1, . . . , c7 ∈ Z, corresponding to a rational

map φ(z) = (a3z
3 + a2z

2 + a1z + a0)/(b3z
3 + b2z

2 + b1z + b0). We wish to determine

whether c8 = φ(c7) is an integer. This time, including φ(c7) = c8, the equation (4.1)

gives rise to the matrix
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

0 0 0 1 0 0 0 −c1

c3
1 c2

1 c1 1 −c3
1c2 −c2

1c2 −c1c2 −c2

c3
2 c2

2 c2 1 −c3
2c3 −c2

2c3 −c2c3 −c3

c3
3 c2

3 c3 1 −c3
3c4 −c2

3c4 −c3c4 −c4

c3
4 c2

4 c4 1 −c3
4c5 −c2

4c5 −c4c5 −c5

c3
5 c2

5 c5 1 −c3
5c6 −c2

5c6 −c5c6 −c6

c3
6 c2

6 c6 1 −c3
6c7 −c2

6c7 −c6c7 −c7

c3
7 c2

7 c7 1 −c3
7c8 −c2

7c8 −c7c8 −c8


.

We may compute the determinant of this matrix, and it must again be 0. It is linear in

c8, thus gives a rational expression for c8 in the previous integer points, and it is easy

to check whether this is an integer or not. This determinant has 5656 monomials so

we omit writing it here. Also, if we write the determinant as D1c8 +D2 we have that

computing each monomial of D2 modulo D1 would be a signi�cant amount of work,

hence we restrict our intermediate steps in computing D2 module D1 to computing

polynomials with less than 100 monomials modulo D1, to increase our search bound.

As D1 has a total degree of 15, D2 has total degree 16 and the coe�cients of D2 have

magnitude at most 6, we have a bound of
(

263−1
6·100

)1/16

≈ 10.3. For our search, each

prescribed orbit point has absolute value at most 10. The initial search took around

31 hours, while the minimality sieve took around 90 minutes. The results from the

search were as follows, for degree 3 rational maps with at least 9 integer points in the

orbit of 0,

Search space 640 000 000

Orbits with a 9-th integer point 44 563

Orbits belonging to minimal maps 10 383

Orbits corresponding to non-degree 3 maps 806

Degree 3 polynomial orbits 0

Degree 3, preperiodic orbits 997

Degree 3 non-preperiodic, orbits with at least 9 8 580

integer points in the orbit of 0
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For the list of non-polynomial, non-preperiodic orbits of 0 with at least 9 integer

points, see http://www.cecm.sfu.ca/~nbruin/intorbits/. We also searched for

minimal rational maps with orbit

{0, c1, c2, c3, c4, c5, c6, c7,∞, c8, . . .}

where c1, . . . , c8 ∈ Z and −10 ≤ ci ≤ 10 for 1 ≤ i ≤ 7. We found 5, and they can be

found in Appendix B.

For degree 3 rational maps with 10 integer points in orbits containing 0,

Orbits with an integer before 0 35

Orbits with a 10-th integer point 34

Number of orbits in both cases that are PGL2(Q) conjugates 13

Number of minimal orbits with 10 integer points in the orbit of 0 56

For the orbits with a 10-th integer point, see Appendix B.

We did not �nd any maps with 11 integer points in the orbit of 0. As with the

degree two search, we �nd only one map with a �nite non-integral point in between

the integers in orbit. Namely,

φ(z) =
95z3 − 1863z2 + 11692z − 23520

16z3 − 300z2 + 1778z − 3360

has the forward orbit

Oφ(0) = {0, 7, 3, 9, 10, 5, 8, 4, 20,
28

5
,−160,

913973

153133
, . . .}.

4.3.3 Degree Four and Beyond

Unfortunately, our search method using the determinant of a matrix to see if orbits

have an additional integer point does not extend very well. For the degree 4 case,

this determinant has over 100 000 monomials. Given this, to stay in 64 bits with an

(small scale) exhaustive search, we need all our prescribed integer points to be in the

range {−5, . . . , 5}, which is much too small to have any reasonable search.
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Further Observations

From Proposition 3.1.1, one can see that for minimal rational maps, φ ∈ Q(z), of

degree at least two, and transformations A ∈ PGL2(Z), one has Res(φA) = Res(φ).

One could ask if the converse is possible. Namely, if we have a minimal rational

map φ ∈ Q(z) of degree at least two, and a transformation A ∈ PGL2(Q), then does

Res(φA) = Res(φ) imply that A ∈ PGL2(Z)?

Recall the map from Example 3.4.2, φ(z) = (z3 + c)/z with c ∈ Z, which is

minimal. Let A : z 7→ az+ b ∈ Aff2(Q) be an a�ne transformation. If we have φ and

φA both minimal, then we must have

2dmin(ordp(FA), ordP (GA)) = (d2 + d)ordp(a) (5.1)

which means we require

min(ordp(FA), ordP (GA)) = 2ordp(a).

If we pick A : z 7→ 2z we can write the conjugated rational map as FA = F (2z) =

23z + c and GA = 2G(2z) = 4z. As a = 2, ord2(a) = 1, so from (5.1), we require

the minimum order of FA and GA at the prime 2 to be 2. This is clear from the

denominator as long as c is chosen to be divisible by 4. Both φ and φA are minimal,

but A /∈ Aff2(Z). We can prove a more general result

Theorem 5.0.1. Let F (z) = zd + c with d ∈ Z odd and G(z) = zd0 with d0 = dd/2e
and c having valuation at least d0 at some prime p. Then there exists an a�ne

transformation A such that φ and φA are both minimal, and A /∈ Aff2(Z).

53
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Proof. We attempt a similar argument. Notice what helped us in the degree three

case in (5.1) was the fact that (d2+d)/2d was integral. This is true for any odd integer

d. Let d = 2m+ 1 for some integer m; then (d2 + d)/2d = (d+ 1)/2 = (2m+ 2)/2 =

m+ 1 = dd/2e. Thus from Proposition 3.1.1 we must have

min(ordp(FA), ordP (GA)) = dd/2eordp(a). (5.2)

We use the same approach that worked with the case when d = 3. Set A : z 7→
pz ∈ Aff2(Q). Then (5.2) must be true, and hence φ and φA are both minimal, with

A /∈ Aff2(Z).

For even d, we no longer have that (d2 + d)/2d is an integer, and hence, things

are more complicated.

Question 5.0.2. Suppose that φ ∈ Q(z) is of even degree and minimal. Does it

follow that if A ∈ PGL2(Q) and Res(φA) = Res(φ) then A ∈ PGL2(Z)?
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Appendix A

Algorithms

Main a�ne minimality procedure, A�neminimal(F,G):

Input: Co-prime polynomials F and G, at least one of degree at least 2.

Output: (true,F,G) if φ is a�ne minimal, (false,f, g) if not, where [f, g] is a normal-

ized representation of a minimal model of φ.

�ag := true; n := lcm(denominators of coe�cients of F and G)

F,G := nF, nG; d := max(degree(F ),degree(G)); Res := Resd(F,G)

m := max(deg(F − zG), deg(G)); ubRes := Resm(F − zG,G)

if d is even then

g = d

else

g = 2d

for p in prime divisors of Res do

if ordp(Res) < g then

n := true

else

repeat until n is true

n, F,G := Min(F,G, p, d,ubRes)

if n is false then

�ag := false

return (�ag,F,G)

56
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Local a�ne minimality loop, Min(F,G, p, d, ubRes):

Input: Two normalized polynomials F and G, a prime p, the degree, d, of F/G and

a positive integer ubRes.

Output: (true, F,G) if F/G is a�ne minimal at p, otherwise (false, Fnew, Gnew) where

Fnew/Gnew has resultant smaller than F/G.

dF := degree(F ); dG := degree(G)

if Gd > (d+ 1)/2 then

n := b−2(ordp(leading coe� of G))/(2Gd − d+ 1) + 1c
else

n := b(−2ordp(leading coe� of F )/(d+ 1) + 1)c
upperBound := ordp(2·ubRes)
while n <= upperBound do

Ft := F (pnz + b)− bG(pnz + b); Gt := pnG(pnz + b); v := (d+ 1)n/2

if constant coe�cients of Ft and Gt have valuation larger than v then

if b = 0 gives ordp(Ft) > v and ordp(Gt) > v then

F := Ft(z, 0); G := Gt(z, 0); F,G := normalize(F,G)

return(false,F,G)

vb := lower bound on ordp(b), as per Theorem 3.3.5

Set Ft(z, b) := Ft(z, bp
−vb) and Gt(z, b) := Gt(z, bp

−vb)

Scale Ft and Gt so that [Ft, Gt] is a normalized representation

Set v := v + s, where s is the maximum exponent used in normalizing

bound := bv + 1c
bool,s := solveb(normalized coe�cients of Ft, Gt,bound,p)

if bool then

sb := spvb

Ft, Gt := normalize(Ft(z, sb), Gt(z, sb))

return(false,Ft, Gt)

n := n+ 1

return(true,F,G)
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Procedure for determining a lower bound on b, bCheck(coe�,RHS,p,b):

Input: A polynomial c =
∑d

i=0 cib
i, a rational number RHS, and a prime p.

Output: Lower bound on the order of b so that ordp(c) > RHS.

d := degree(c)

lcoe� := cd

chk1 := [(ordp(c)− ordp(lcoe�))/(d - i) for non-zero coe�cients , ci of c, i < d]

chk2 := (RHS - ordp(lcoe�))/deg

bval := min(chk1,chk2)

return b bval + 1 c

Procedure to determine if there exists a solution to a system of inequalities

in one variable, solveb(LF ,L,p):

Input: A list of polynomials LF in b, an integer L and a prime p.

Output: (true,b) if there exists an integer b so that each polynomial F in LF satis�es

ordp(F (b)) > L, (false,0) otherwise.

keepScaledIneqs := [F in LF if F/pL /∈ Z[b]]

if keepScaledIneqs is an empty list then

return (true,1)

keptScaledIneqs := keepScaledIneqs reduced mod p

rts := roots of gcd of keptScaledIneqs

for r in rts do

newInput := r + pb

LG := [F (newInput) for F in LF ]

lift,c := solveb(LG, L, p)

if lift then

return (true,r + pc)

return(false,0)
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Orbits that lead to Minimal Rational

Maps

B.1 Degree Two Results

The following orbits correspond to minimal degree two maps with at least 8 integer

points in the orbit of 0,

[0, 1, 4, 11, 12, 7, 15,−374, . . .]

[0, 1, 4, 11, 12, 7, 41/13,−40, . . .]

[0, 7,−8,−21,−5,−33,−26,−1020, . . .]

[0, 9,−10, 2, 12,−5, 1, 10, . . .]

[0, 35, 27, 17, 18, 21, 26,−99, . . .]

59
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B.2 Degree Three Results

The following orbits correspond to minimal degree three maps with 10 consecutive

integer points in the forward orbit of 0,

[0, 1,−3,−4,−1,−2,−6, 8,−11,−582, . . .] [0, 1,−2,−5, 4,−4, 2,−3,−8, 187, . . .]

[0, 1,−1, 7,−5,−3,−8,−7,−2,−37, . . .] [0, 1, 2,−2,−10,−8,−7,−6,−4,−83, . . .]

[0, 1, 9,−3,−5,−9,−4,−6, 2, 18, . . .] [0, 2,−6, 6,−3, 3,−9, 5,−5, 8, . . .]

[0, 2,−6, 8,−2, 1,−1, 5, 15,−67, . . .] [0, 2,−5, 5,−1, 1,−7, 7, 25, 87, . . .]

[0, 2,−3, 1,−8,−2, 3,−1, 12, 80, . . .] [0, 2,−3, 3, 1,−9,−1, 6, 11, 321, . . .]

[0, 2,−2,−6,−5,−3, 3, 1, 9, 5, . . .] [0, 2,−1,−10, 5,−2,−7, 8,−4,−33, . . .]

[0, 2,−1, 3,−6,−5,−8,−2, 4, 244, . . .] [0, 2, 1, 4, 8, 7, 6,−1,−2,−13, . . .]

[0, 2, 4, 1, 3,−5, 7, 9, 6,−92, . . .] [0, 2, 6, 3, 10, 7,−5,−8,−18, 2735, . . .]

[0, 3,−10, 8,−7, 7,−1, 5, 13, 89, . . .] [0, 3,−6, 9, 4,−1,−2,−3, 2,−83, . . .]

[0, 3,−1, 2, 9, 4, 5, 8, 11,−8, . . .] [0, 3, 4, 1, 6,−8,−7,−2, 28,−195, . . .]

[0, 4,−3,−2, 3,−1, 9,−8,−12,−13, . . .] [0, 4,−2, 3, 1, 5,−4, 10,−7,−24, . . .]

[0, 4,−2, 3, 2,−1, 6,−4,−22,−13, . . .] [0, 4,−2, 6, 1, 3, 7,−1, 5,−421, . . .]

[0, 4, 10,−1, 5, 9,−5, 1, 3, 41, . . .] [0, 6,−2,−6,−4,−9,−3, 1, 3, 5, . . .]

[0, 6, 3,−1, 5,−4, 8, 2,−6,−5, . . .] [0, 7,−4, 5, 6, 10, 3, 4, 1,−180, . . .]

[0, 7, 4,−5, 2,−3, 9, 1,−2, 265, . . .] [0, 8,−5, 3,−2, 9,−4, 7,−6,−539, . . .]

[0, 8, 2, 3,−1, 5,−2, 7, 1, 6, . . .] [0, 9,−7, 5,−10,−1,−2,−9, 1,−969, . . .]

[0, 9, 3,−6,−1, 4,−3, 1, 39,−56, . . .] [0, 9, 6, 7, 4, 10,−2,−5, 40, 37, . . .]

Below are (the distinct PGL2(Z)-conjugates of) the maps found by search for roots
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of the numerator of the corresponding rational map

[0, 2,−5, 11, 3,−1, 1, 4,−4, 328, . . .] [0, 4, 14,−4, 2, 5,−1, 3, 7, 35, . . .]

[0, 5, 3, 6, 4, 13, 11, 12, 10,−3, . . .] [0, 5, 10, 9, 14, 7, 8, 4, 6, 11, . . .]

[0, 6, 1, 8, 2, 14,−1, 5, 11, 149, . . .] [0, 6, 11, 2, 5, 16, 7, 10, 9, 18, . . .]

[0, 7, 14, 5, 2, 4,−1, 6, 1,−34, . . .] [0, 8, 7, 3, 9, 11, 5, 6, 10, 2, . . .]

[0, 9, 6, 14, 18, 12, 3, 7, 13,−1148, . . .] [0, 9, 15, 10, 18, 6, 16, 8, 11, 20, . . .]

[0, 11, 3, 15, 21, 6, 12, 9, 16, 275, . . .] [0, 11, 10, 5, 14, 17, 12, 7, 6,−87, . . .]

[0, 12, 8, 16, 20, 10, 13, 6, 15,−12, . . .] [0, 12, 18, 4, 6, 3, 9, 11, 15,−33, . . .]

[0, 13, 15, 8, 10, 18, 14, 16, 9,−19, . . .] [0, 14, 7, 21, 18, 15, 9, 12, 6, 63, . . .]

[0, 17, 13, 19, 20, 14, 21, 15, 16,−15, . . .] [0, 20, 15, 17, 21, 14, 16, 18, 11,−255, . . .]

[0, 20, 18, 15, 12, 30, 21, 27, 22, 33, . . .] [0, 24, 27, 18, 30, 20, 21, 25, 19, 62, . . .]

[0, 24, 33, 23, 27, 15, 18, 22, 25,−361, . . .] [0, 28, 30, 33, 36, 18, 27, 21, 26, 15, . . .]

We also have the orbits corresponding to degree three minimal maps with at least 9

integers and a non-integral value between them,

[0, 1,−1,−9,−5,−4,−3, 3,∞,−6, . . .]

[0, 1, 8, 5, 4, 3, 2,−2,∞, 7, . . .]

[0, 2, 5,−3, 9,−2, 7, 1,∞,−24, . . .]

[0, 6, 1, 3, 7,−1, 8, 2,∞,−35, . . .]

[0, 7, 3, 9, 10, 5, 8, 4, 20, 28/5,−160, . . .]

[0, 9,−10,−4, 3, 8, 5, 10,∞,−157, . . .]


