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Abstract

Recently there has been tremendous growth in the use and interest of longitudinal data,
particularly because of the development of large scale investigations which are conducted
to study different aspects of the dynamics of a population over time (for instance, the Cana-
dian National Longitudinal Study of Children and Youth (Statistics Canada, 1996)). Re-
current event data are a type of longitudinal data which occur in many fields. Such data
arise when an event repeats over time, and are common especially in medicine and reliabil-
ity. Sometimes, in addition to the occurrence of the event, there is also information which
reflects the severity of the event; this is called a mark. In this thesis, we develop efficient
designs for longitudinal recurrent event studies, and we also develop methods to model
recurrent events with marks.

In longitudinal recurrent event studies, sometimes partial information on the counting
process, such as the number of events occurring in specific intervals, called panel data,
provides nearly the same precision for estimation of treatment effects as full information
based on data from continuous observation of the process. We compare the efficiency of
the analysis of such panel data with respect to the analysis of data recorded as times of
recurrences, and we articulate conditions for efficient panel designs where the focus is on
estimation of a treatment effect when adjusting for other covariates. We model the recurrent
intensity through the common proportional intensity framework, with the treatment effect
modeled flexibly as piecewise constant over panels, or groups of panels. We provide some
important considerations for the design of efficient panel studies.
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ABSTRACT iv

The thesis also develops methods for situations where marks, denoting a measure of
prognostic factors or severity of the event, are also recorded. Often, there is an associ-
ation between the recurring processes of events and their marks. We model these out-
comes jointly through the use of shared or linking random effects, and investigate biases
resulting in analyses of the outcomes when they are not modeled jointly. This analysis of
joint outcomes is motivated by a study of healthy menstruating women prior to hysterec-
tomy/ovariectomy for benign disease.
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Chapter 1

Introduction

Recurrent event data arise in many fields where an event may repeat over time, perhaps
especially in applications in medicine and reliability. The methods commonly used to
model these are based on point processes. Many times, information on the process is only
recorded at certain points in time, giving rise to what is termed here panel data. In this
thesis we develop efficient designs for recurrent event studies giving rise to panel data, and
we develop methods to model recurrent events where additional outcome data pertaining to
the events are available in the form of marks. For example, marks may refer to the severity
of the events.

There has been tremendous growth in the use of longitudinal panel studies for monitor-
ing processes over time, and this has been accompanied by rapid developments in method-
ological tools for handling panel data. However, little attention has been devoted to the
design aspects of such studies. A goal of this thesis is to fill that gap. In particular, we de-
termine conditions for efficient estimation of a treatment effect from the analysis of panel
data with respect to an analysis using continuous followup of individuals.

As well, we address methods for the joint analysis of counting processes and their
marks and discuss issues related to such analyses.

1.1 Recurrent Event Panel and Continuous Data

With recurrent event panel studies each individual is observed at specific points in time and
the number of occurrences of an event of interest between these followup times is recorded.

1



CHAPTER 1. INTRODUCTION 2

For individual i, let the total observation period be [Ti,o,Ti,ei] and the panel followup times,
the times at which individuals are examined for recurrences, be Ti,o < Ti,1 < Ti,2 . . . < Ti,ei .
Let M denote the sample size of the study, so i ranges from 1 to M. Panel p refers to
the interval (Ti,p−1,Ti,p], p= 1, . . . ,ei, so ei is the number of followup times for individual
i. An alternative to panel data studies of recurrent events is continuous followup, where
the time of occurrence of each event is recorded; we denote these times, in relation to the
panels of followup mentioned above, as ωipl , where p denotes the panel in which the event
occurred and l indexes the event within panel p, p = 1, . . . ,ei, l = 1, . . . ,nip, nip being the
number of events observed within panel p for individual i.

In the study of counting processes, an important consideration is an appropriate time
scale. This is often calendar time, particularly in medical studies, but different scales may
be appropriate in other applications; for example, the number cycles a particular machinery
part is in use, or the mileage of a car. The time of origin is another important consideration;
in medical studies this is often the beginning of treatment or the time of diagnosis. In this
thesis, we will use calendar time with Ti,o = 0.

1.2 Poisson Process Models

Methodology for recurrent events can be found in several key references, including Ross
(1996), Cox and Isham (1980), Andersen et al. (1993), andmore recently Cook and Lawless
(2007) and Aalen et al. (2008), with developments using a variety of approaches including
Markov and semi-Markov approaches (Dabrowska et al., 1994), the analysis of gap times
between events (Gail et al., 1980), and Poisson processes (Lawless, 1987). In this thesis
we will focus on Poisson and related processes.

A Poisson process is a stochastic process with events occurring randomly over time.
Let N(t) be the number of events that occur in [0, t]. The corresponding counting process
{N(t), t ≥ 0} records the cumulative number of events. More generally, let N(s, t) denote
the number of events over the interval (s, t]. A counting process is said to be a nonhomo-
geneous Poisson process with intensity λ(t) if and only if:

1. N(0) = 0,

2. Pr{N(t)−N(t−h) = 1|H(t−h)}= λ(t)h+o(h)
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3. Pr{N(t)−N(t−h)> 1|H(t−h)}= o(h)

for small h and t > 0, and where o(h) is such that o(h) = limh→0o(h)/h= 0. The history
of the process, H(t), denotes the record of all the events to t, H(t) = {N(u) : 0 ≤ u ≤ t}.
One of the key properties of the Poisson process is that the number of events in a window
of time has a Poisson distribution, i.e.

Pr{N(t)−N(t−h) = n}=
{∫ t

t−hλ(u)du
}n exp

{

−
∫ t
t−hλ(u)du

}

n!
. (1.1)

Thus N(t) has a Poisson distribution with mean Λ(t), where

Λ(t) =
∫ t

0
λ(u)du (1.2)

is termed the cumulative intensity function or the cumulativemean function. The likelihood
based on n event times 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ τ occurring during the time [0,τ] for
fixed τ is

L=

[

n

∏
j=1

λ(t j)exp
(

−
∫ t j

t j−1
λ(u)du

)

]

exp
(

−
∫ τ

tn
λ(u)du

)

=

[

n

∏
j=1

λ(t j)

]

exp
(

−
∫ τ

0
λ(u)du

)

.

Methods for recurrent events are specified through the intensity function λ(t), i.e. the
instantaneous probability of recurrence. Another way to conceptualize recurrent event data
is as a generalization of survival data (Lawless, 2003). Recall survival data models may be
specified through the hazard function, i.e. the instantaneous probability of death. Models
for hazard functions for survival data may often be usefully employed for the intensity
function for Poisson processes.

Sometimes, in addition to the counting process there is a variable describing the event
which reflects perhaps the severity of the event or some other outcome related to the event.
This type of process is known as a marked point process, and is discussed in depth in
Andersen et al. (1993) and Martinussen and Scheike (2006).
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1.3 Bayesian Methods

Sometimes there is a need for accommodating complex correlation structures for several
parameters; for instance, when observing two or more processes that are correlated, and
each of the processes are also correlated over time. A computationally effective approach
for such investigations is the use of Markov chain Monte Carlo techniques in a Bayesian
framework of analysis. Bayesian methods combine prior belief with data information to
obtain what is termed posterior distributions of the parameters; such posterior distribu-
tions are used to interpret effects and test hypotheses. There are several key references on
Bayesian methodology; from a theoretical perspective (for example, Bernardo and Smith
(1994)) to practical considerations (for example, Gelman and Rubin (2004); Carlin and
Louis (1996)), as well as on computational approaches (for example, Ntzoufras (2009)).

1.4 Outline

This thesis contains three main research contributions as discussed in the following subsec-
tions.

1.4.1 Efficient Designs for Recurrent Event Studies

In longitudinal recurrent event studies, sometimes partial information on the counting pro-
cess, such as the number of events occurring in specific intervals, i.e. panel data, provides
nearly the same precision for estimation of treatment effects as full information based on
data from continuous observation of the process. In Chapter 2, we compare the efficiency
of the analysis of such panel data with respect to the analysis of data recorded as times of
recurrences, and we articulate conditions for efficient panel designs where the focus is on
estimation of a treatment effect when adjusting for other covariates. We model the inten-
sity for the recurrent event process through the common proportional intensity framework,
with the treatment effect modeled flexibly as piecewise constant over panels, or groups of
panels. We provide some important considerations for the design of efficient panel studies.
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1.4.2 Illustration of Efficient Designs and Power Considerations

In Chapter 3 we conduct an analysis of the recurrence of tumors in patients with bladder
cancer (Andrews and Herzberg, 2000). We discuss the required sample size such that a
panel design will achieve the same power in detecting a treatment effect as continuous
followup. In addition, we describe the use of diagnostic measures which provide insight
into the efficiency expected from a panel design.

1.4.3 Joint Analysis of Recurrent Events and Severities

Chapter 4 develops methods for situations where, in addition to the counts of events, we
also record a mark, denoting a measure of prognostic factors or severity of the event. In
many situations there is an association between the recurring processes and their marks.
This occurs in the motivating example for this work, a study of the effects of two treatments
in reducing vasomotor symptoms in a hormone therapy study including healthy menstru-
ating women prior to hysterectomy/ovariectomy for benign disease. We model the event
counts and their severities jointly through the use of shared or linking random effects, and
investigate biases resulting in analyses where the outcomes are not modeled jointly.

1.4.4 Future Work

This thesis closes with a discussion of future work emerging from extensions of the meth-
ods considered as well as new topics of interest in the study of recurrent events.



Chapter 2

Efficient Designs for Longitudinal
Recurrent Event Studies with Missing
Data

2.1 Introduction

Considerable attention has been devoted to the analysis of recurrent event data, that is, data
arising from counting processes governing the repeated occurrence of events over time.
Much of this literature assumes continuous followup of individuals (Cook and Lawless,
2007), with developments related to Poisson processes (Lawless, 1987), the analysis of gap
times between events (Gail et al., 1980), and a variety of Markov and semi-Markov ap-
proaches (Dabrowska et al., 1994). Additionally, there has been a rise in interest in panel
data, that is, data arising as counts of events over time intervals, or panels. Panel data
are common in clinical studies where for ethical or practical reasons only the number of
episodes in an interval of time are recorded, as, for example, in the study of treatments
for epilepsy (Thall and Vail, 1990). They are also conveniently adopted for national longi-
tudinal surveys such as the Canadian National Longitudinal Study of Children and Youth
(Statistics Canada, 1996), and the U.S. National Longitudinal Surveys on Labour Statis-
tics (U.S. Department of Labor, Bureau of Labor Statistics, 2005). Sun et al. (2009) remark
that panel data have considerable potential for understanding the underpinnings of complex

6
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models.
Due to the widespread availability of longitudinal data, there has been a corresponding

increase in the development of methods for handling such data; however, there are few
studies emphasizing design effects and optimal design strategies, especially relating to the
use of panel data in lieu of data from continuous followup. Such strategies are fundamental
to better utilization of funds, especially in times of fiscal constraints, when national agen-
cies implementing long-term longitudinal studies are required to justify their merit. Dean
and Balshaw (1997) studied the efficiency of the analysis of counts versus the analysis of
event times, as would occur through continuous followup. Their focus was on the analysis
of aggregated counts over the full followup period in a simple k-sample study with a fixed
treatment effect. Here we extend this substantially to examine how design effects influence
efficiency of the analysis of panel event counts relative to the analysis of actual event times.
We derive conditions which yield high efficiency of the estimator of a treatment effect in a
k-sample study, while adjusting for other covariates. We permit the treatment effect to vary
over panels, or groups of panels, and adopt a proportional intensity model where the treat-
ment effect is piecewise constant over panel segments. Our principal aim is identification
of conditions for full efficiency of the treatment effect but we also consider efficiencies of
other model parameter estimates. Additionally, we illustrate efficiency losses for a variety
of designs to demonstrate how sharply efficiencies change with different design conditions.

In Section 2.2, we derive the asymptotic relative efficiency of estimates of treatment
effects. We provide efficiencies for several designs in Section 2.3, and provide, in Section
2.4, a summary and discussion of the methods presented. Section 2.5 contains a proof of
the main theorem used in the discussions in Sections 2.2 and 2.3. For convenience, we note
here that a list of the notation used in this chapter is assembled in Section 2.6 (see page
36). We have included these latter two sections at the end of the chapter so as to preserve
the flow of the main ideas and concepts through the earlier sections.
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2.2 Asymptotic Relative Efficiency of Panel Studies

2.2.1 Efficiency Comparisons for Mixed Non-homogeneous Poisson
Processes with Piecewise Constant Treatment Effects

The proportional intensity model is widely used in part because of its tractability (Andersen
and Gill, 1982). Sometimes, however, the need for a more flexible form of incorporation of
a covariate effect arises, for instance, when treatment effects change over time (Sun et al.,
2008). This might be the case when the benefit of the treatment is thought to be delayed
until a certain period of exposure has been achieved. We consider a generalization of the
usual proportional intensity model with a fixed treatment effect that allows the treatment
effect to vary over groups of panels, so the treatment effect is piece-wise constant over spe-
cific time segments. We assume these segments are predefined, and each of them contains
at least one panel.

Consider a comparison of k treatments, where mj individuals are given treatment j, and
let M = ∑kj=1mj, the total sample size of the study. Let {Ni(t), t ≥ 0} denote the counting
process monitoring the occurrence of events for subject i, i = 1, . . . ,M. The total observa-
tion period for all individuals is divided into S segments, defined by T 1,T 2, . . . ,TS, over
which the treatment effects are expected to be piecewise constant. Segment s is (Ts−1,Ts],
s = 1, . . . ,S; these might indicate periods over which changes in efficacy or response to
the treatment are expected. As such, they are defined by important panel followup times
at which the design requires all individuals to be seen, unless they have been lost to fol-
lowup or censored. Individuals are expected to be seen more frequently than only at these
times, following some suggested planned pattern of followups; these might be individual-
specific. Data may also be aggregated over two or more consecutive panels; in this case
we simply redefine the planned followup times to match what actually occurred. Missing
panel counts are also possible. All these situations are accommodated by the likelihood
development herein.

Each individual is observed up to time Tei referred to as the termination time for individ-
ual i. Let the observation process {Yi(t), t ≥ 0} be 1 if individual i is under study at t and 0
otherwise, and assume that {Yi(t), t≥ 0} is independent of the counting process Ni(t). Thus
the observed counting process may be defined as N̄i(t) =

∫ t
0Yi(u)dNi(u), t ≥ 0, t ∈ (0,Tei]
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for individual i, i = 1, . . . ,M. Individual-specific panel followup times in segment s are
denoted (Tsi,1,Tsi,2, . . . ,Tsi,esi ), where, if individual i has not been lost to followup, T

s
i,esi

= Ts.
Panel counts in segment s for individual i are denoted as nsip = N̄i(Tsi,p)− N̄i(Tsi,p−1), p =
1,2 . . . ,esi ,s= 1,2, . . . ,S, with the total aggregated count for individual i in segment s being
nsi+ = ∑

esi
p=1n

s
ip.

We focus here on creating efficient study designs for estimation of a treatment effect.
We define the covariate xi as a k×1 treatment indicator vector for the i-th individual, such
that xi1 = 1 represents an intercept term, and xi j = 1 if individual i received treatment j, or
0 otherwise, j = 2, . . . ,k. The dz×1 vector zi contains remaining covariates which are to
be adjusted for in the analysis.

The counting process Ni(t) is modeled as a Poisson process with intensity function

λi(t) = νiρ(t;α)exp

{

x′i

[

S

∑
s=1

βsI(Ts−1,Ts](t)

]

+ z′iγ
}

, (2.1)

given νi, an individual-specific random effect accounting for the common phenomenon of
overdispersion; the function I(Ts−1,Ts](t) is an indicator function for t ∈ (Ts−1,Ts]; and ρ
is a twice differentiable baseline intensity function depending on the parameter α with di-
mension dα. The parameters βs= (βs1,β

s
2, . . . ,β

s
k)

′ and γ correspond to the treatment effects
in segment s, and the parameters governing the effects of the covariates to be adjusted for
in the analysis, s = 1, . . . ,S, respectively. We have parameterized the β’s so that treatment
effects are measured relative to treatment 1. Hence, βs1 reflects the overall baseline level of
the intensity function λi(t) in segment s, when the zi’s are centered, whereas α measures
the shape of the intensity function ρ(t,α). Additionally, we may take E(νi) = 1 without
loss of generality; let var(νi) = τ. If we denote the mean of the total aggregated counts to
be µsi+ = E(nsi+) in segment s, then its variance is of the form µsi+(1+ τµsi+). Writing the
cumulative baseline intensity function in each segment s as Rsi =

∫ Ts
T s−1Yi(t)ρ(t;α)dt, then

µsi+ = Rsi exp(x
′
iβ
s+ z′iγ). Similarly, defining the cumulative baseline intensity function in

panel period p as Rsip =
∫ Tsi,p
T si,p−1

Yi(t)ρ(t;α)dt, we have µsip = E(nsip) = Rsip exp(x
′
iβ
s+ z′iγ).

Our objective is to investigate the efficiency of panel studies with respect to continuous
followup, focusing on the estimation of the treatment effect β while adjusting for other
covariates. A popular inferential technique, and the one used in this chapter, is quasi-
likelihood analysis, where the mean and variance specification is sufficient to formulate
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estimating equations for the parameters, and also to obtain the asymptotic variance of the
estimators of β,γ and α.

To motivate the use of specific estimating equations, which reduce to common forms
in the absence of overdispersion, we describe the likelihood for both panel and continuous
data. The likelihood over all the segments, based on either the full data or the panel data, has
the form ∏S

s=1Ls where Ls corresponds to the likelihood in segment s, s = 1, . . . ,S. In the
discussion below, for the purpose of simplicity in the derivation of the theorem regarding
efficiency, we focus on one segment, and drop the superscript s; however, we provide the
theorem in its more general form based on several segments.

Let θ = (β′,γ′,α′,τ)′, and let ωipl be the time of the l-th event, from the start of the
study, for the i-th individual in panel period p, i= 1, . . . ,M, p= 1, . . . ,ei, l = 1, . . . ,nip. The
likelihood based on either the full data (subscripted by d = f ) or the panel data (subscripted
by d = p) factorizes as:

Ld(θ) = Lα,d(α)L(θ), d ∈ { f , p} (2.2)

where

Lα, f (α) =
M

∏
i=1

ei
∏
p=1

nip

∏
l=1

ρ(ωipl;α)
Ri

, (2.3)

and

Lα,p(α) =
M

∏
i=1

[(

ni+
ni1, ...,niei

)

ei
∏
p=1

(

Rip
Ri

)nip
]

; (2.4)

L(θ) =
M

∏
i=1

∫ ∞

0
(νiµi+)ni+e−νiµi+(ni+!)−1p(νi)dνi (2.5)

is the likelihood for a mixed Poisson model based on the total counts observed for indi-
vidual i. For example, if νi is gamma distributed, L(θ) becomes the negative binomial
likelihood. Notice that if there is a single panel, Lp(θ) (see 2.2) will reduce to a simple
mixed Poisson kernel, L(θ).

The factorization of λi(t) into two components, one a function of α, the other a function
of β, γ, α and τ is the key to the factorization of the likelihood in (2.2). We exploit this in
deriving estimators, and in computing the asymptotic efficiency of the estimator of β, (and
α) derived from Lp, with respect to the corresponding estimators derived from Lf .
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The procedure we suggest for robust estimation is a type of quasi-likelihood (Wed-
derburn, 1974), which consists of replacing the contribution from L(θ) in the estimating
equations by suitable estimating functions. Let gd denote the full set of estimating equa-
tions for the panel (d= p) or the full (d= f ) data. The estimating equation for the covariate
effect η1 = (β′,γ′)′ for the panel or the full data is

gη 1 =V ′U1U−1
o (n−µ) = 0 (2.6)

where U1 = diag{µi+, i = 1, . . . ,M}, Uo = diag{µi+(1+ τµi+), i = 1, . . . ,M}, n =

(n1+, . . . ,nM+)′ is a vector of counts, and µ = (µ1+, . . . ,µM+)′ is the vector of their ex-
pected values; V = (X Z) combines the treatment indicators in X with the covariates in Z.
Equation (2.6) arises from the usual quasi-likelihood function (∂µ/∂η1)′var(n)−1(n−µ).

We obtain an estimating equation for α by combining ∂ logLα,d/∂α, d = f , p, with
quasi-likelihood estimation, yielding

gα,d =
∂ logLα,d(α)

∂α
+W ′U1U−1

o (n−µ) = 0, (2.7)

whereW is a matrix with entries

wia =
∂ logRi
∂αa

, i= 1, . . . ,M, and a= 1, . . . ,dα. (2.8)

There are several choices for the estimating equation of the overdispersion parameter
τ, and our results concerning efficiency and design remarks in this chapter are not tied to
the use of any specific estimator for τ. In our examples, we use the pseudo-likelihood
estimator, which has been popular since its introduction by Davidian and Carroll (1987). It
has performed well in simulation studies and has documented optimality properties (Nelder
and Lee, 1992). The pseudo-likelihood estimating equation for τ is

gτ =
M

∑
i=1

(ni+−µi+)2− (1−hi)µi+(1+ τµi+)
(1+ τµi+)2

= 0, (2.9)

where hi = diag(U
1/2
1 V1′(V1′U1V1)−1V1′U

1/2
1 ),V1 = ( X Z W ); hi is the diagonal of the

hat matrix and represents a correction to reduce small sample bias in this simple second
moment equation.

Hence, when we have full data we solve g f = (g′η 1
;g′

α, f ,gτ)′ = 0 to yield an estimator
of θ denoted by θ̂, and, when we use a panel design, the estimating equation becomes
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gp = (g′η 1
;g′

α,p,gτ)′ = 0 yielding the estimator θ̃. In the following, estimators obtained
from g f are notated with a hat (e.g. α̂) while those obtained from gp are notated with a
tilde (α̃).

For η = (β′,γ′,α′)′, we find that the information matrix concerning these parameters
has the partitioned form (2.10) for d = f and d = p, respectively:

Id =

(

V ′UV V ′UW
W ′UV W ′UW +Hd

)

, (2.10)

with
U =U1U−1

o U1 = diag
{

ui =
µi+

1+ τµi+
, i= 1, . . . ,M

}

, (2.11)

and where the terms Hf and Hp are segment-specific functions, and are defined in (2.12)
and (2.13) when we return to a consideration of multiple segments.

Theorem 1 provides the asymptotic relative efficiency of the panel treatment estimates
in each segment, β̃s, and α̃, relative to the estimators from the full data, β̂s and α̂. It is
sometimes of interest to evaluate the overall effect of a treatment over the study period,
and Theorem 1 also provides the asymptotic relative efficiency of the estimate of the time-
weighted mean effect of treatment j, δ̃ j =∑Ss=1Δ

sβ̃sj, where Δs = (Ts−1−Ts)/TS. We first
present the theorem and subsequently discuss interpretation in great depth. The theorem
is notationally cumbersome; we focus on structures which represent the efficiencies so
that the main elements stand out, and for clarity, we present results for scalar α and a
single covariate Z. We provide, in Section 2.5, a proof of the case where α is an arbitrary
vector, and covariate Z has a general structure, for a one-segment study. The derivation of
the theorem for a study utilizing multiple segments follows in a straightforward manner.
Additionally, to simplify the discussions herein, we adopt the following two conventions:
(1) Because α is scalar, we denote the value wsi1 (see 2.8) simply as wsi . (2) We let Gsj
be the set indexing individuals in treatment group j observed in segment s, j = 1, . . . ,k,
s = 1, . . . ,S, and let [u]sj+ = ∑i∈Gsj u

s
i (see 2.11), [uw]sj+ = ∑i∈Gsj u

s
iwsi , [uz]sj+ = ∑i∈Gsj u

s
i zi.

Similarly, the total number of events observed for all individuals receiving treatment j in
segment s, ∑i∈Gsj n

s
i+, is represented by [n]sj+.



CHAPTER 2. EFFICIENT DESIGNS FOR RECURRENT EVENT STUDIES 13

The expressions for Hf and Hp in (2.10) are

Hf =
S

∑
s=1

M

∑
i=1

esi
∑
p=1

E







nsip

∑
l=1

−
∂2 log[ρ(ωsipl;α)/R

s
i ]

∂α∂α′







; (2.12)

Hp =
S

∑
s=1

M

∑
i=1

E

{ esi
∑
p=1

−nsip
∂2 log[Rsip/Rsi ]

∂α∂α′

}

. (2.13)

Theorem 1

a) The asymptotic relative efficiency (ARE) of α̃ relative to α̂ is

ARE(α̃) = 1−
(

1−
Hp
Hf

)(

1+ E
Hf

)−1
, (2.14)

where

E = φw,w

(

1−
φ2z,w

φz,zφw,w

)

, (2.15)

φz,w = ∑Ss=1∑
k
j=1∑i∈Gsj u

s
i

(

zi− [uz]sj+/[u]sj+
)(

wsi − [uw]sj+/[u]sj+
)

; and φz,z and φw,w are
correspondingly defined. These quantities are sums of segment- and group-specific weighted
variation and covariation of zi and wsi , with weights usi depending on the size of the mean
term µsi , s= 1, . . . ,S.

b) The asymptotic relative efficiency of β̃sj relative to β̂sj is

ARE(β̃sj) = 1−















(lsj)2
(

lso, j+
(lsz, j)2
φz,z

)

(E+Hp)+(lsj)2















(

1−
Hp
Hf

)(

1+ E
Hf

)−1
, (2.16)

lsj =
√

φw,w

{

lsw, j
√

φw,w
−

lsz, j
√

φz,z
rz,w

}

, j = 1, . . . ,k, (2.17)

where, for the baseline group, j = 1, lso,1 = 1/[u]s1+, lsa,1 = [ua]s1+/[u]
s
1+, a= w,z. For the

treatment groups, j = 2, . . . ,k, lso, j = 1/[u]s1++1/[u]sj+, lsa, j = [ua]sj+/[u]sj+− [ua]s1+/[u]
s
1+,

a= w,z; rz,w = φz,w/
√

φw,wφz,z.

c) The asymptotic relative efficiency of δ̃ j relative to δ̂ j is
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ARE(δ̃ j) = 1− (2.18)


















l2j
(

∑Ss=1(Δ
s)2lso, j+

(∑Ss=1Δslsz, j)
2

φz,z

)

(E+Hp)+ l2j



















(

1−
Hp
Hf

)(

1+ E
Hf

)−1
,

where l j = ∑Ss=1Δ
slsj, j = 1, . . . ,k.

2.1.1 Insight into Conditions for High Efficiency
Consider first the special case of a single segment, S=1, and no overdispersion, τ = 0.

The parameter estimates of β from the full data likelihood, Lf (see 2.2), satisfy

eβ̂ j =
[n] j+

eβ̂1 [R(Te; α̂)ez
′γ̂ ] j+

=

∑
i∈Gj

ni+

eβ̂1 ∑
i∈Gj

Ri(Tei; α̂)e
z′iγ̂

, (2.19)

j = 2, . . . ,k, and exp(β̂1) = [n]1+/[R(Te; α̂)exp(z′γ̂)]1+. Similarly, the estimates based
on the panel data likelihood satisfy exp(β̃1) = [n]1+/ [R(Te; α̃)exp(z′γ̃)]1+ and exp(β̃ j) =
[n] j+/(exp(β̃1)[R(Te; α̃)exp(z′γ̃)] j+), j = 2, . . . ,k. An important simple result is that if the
set of termination times Te’s for each covariate stratum for individuals on treatment 1 are
identical to those on treatment j, then the estimates of β j from the full and panel analyses
are identical,

eβ̂ j = eβ̃ j =
[n] j+
[n]1+

, j = 2, . . . ,k. (2.20)

In this situation, the asymptotic variances of β̂ j and β̃ j would also be identical, so analysis
of the panel counts when the design uses any number of panels is fully efficient for estima-
tion of β j, j= 2, . . . ,k. Such a design is illustrated in Figure 2.3 a) (and discussed in Section
2.3.1; see also Tables 2.1 and 2.2 in that section for more details). There are two strata in
each of the baseline and treatment groups, representing males and females, for illustrative
purposes. Adjusting for gender in this analysis, the estimate of the treatment effect from
this panel design is fully efficient. Even though there are more male dropouts earlier in the
study, this does not affect the efficiency of the treatment effect; we will illustrate later that
other types of imbalance will affect this efficiency.



CHAPTER 2. EFFICIENT DESIGNS FOR RECURRENT EVENT STUDIES 15

More generally, calculation of (2.16) for a proposed design using a range of values for
true treatment effects would, of course, give an indication of efficiencies. Here we describe
conditions yielding fully efficient estimators, i.e. an ARE of unity. An important point
throughout this discussion is that the form of the dependence of the counting process on α
is left arbitrary, so these results hold for semiparametric models of the form (2.1).

1. Joint balance. If lsj = 0 (see 2.17), then the panel estimator β̃sj, j= 2, . . . ,k, s= 1, . . . ,S is
fully efficient. We refer to this condition as joint balance between the wsi ’s (or termination
times Tei’s) and the covariates z. Consider the simple example illustrated in Figure 2.3
a), where the design has equal sample sizes, there is a single covariate, gender, and no
overdispersion, τ = 0. The gender-specific set of termination times are identical for the
baseline and treatment groups. When τ = 0 and there is no missing data, the simplest
case in which joint balance is achieved for all segments occurs when termination times for
each value of the covariate are identical for the baseline and treatment groups. It is also
achieved, when τ = 0, when there are r times as many individuals in the treatment group
as in the baseline, and the termination times for each value of the covariate is an r-replicate
in the treatment group of the corresponding values for the baseline group. In Figure 2.3
a), any panel design (for example, with panel followup times at 16, 32, 48, and 64 months
and with two segments over 0-32 months and 32-64 months) will lead to a fully efficient
estimator of the treatment effects βs2, in all segments s, after adjusting for gender. When
there are missing data, joint balance requires that the observation period for individuals
of each gender (or, more generally, for each value of the covariate vector) be identical (or
r-replicates) in the treatment group as for the baseline group.

As suggested above, we use lsj, s = 1, . . . ,S as our principal measure of balance for
estimation of treatment effects; additionally, we partition lsj into components lsw, j, which
reflects imbalance in termination times, lsz, j, which reflects imbalance in covariates, and
rz,w (see 2.17), which modulates the effect of imbalance in the covariates on the ARE.

2. Balance. A weaker form of balance refers to having the same relative frequency of
the termination times in each of the treatment and the baseline groups, without regard
for how these are allocated over the covariate; this is denoted balance in the termina-
tion times. We will also consider the usual concept of balance in the covariates, where
there are the same number of individuals in each covariate stratum, for example, the same
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number of males and females, in this case without regard to any differences in how the
termination times by treatment are distributed over gender. We remark here immediately
that balance in the termination times is more important than balance in the covariates for
achieving a high ARE of the estimate of the treatment effect; this is because of the modu-
lating effect of rz,w in (2.17).

3. Overdispersion. With overdispersion, τ > 0, the panel estimator of the treatment effect
is fully efficient only when βsj = 0. However, we will illustrate later, that as long as joint
balance holds, (in fact, even quite approximately) the estimator of βsj retains very high
efficiency even if τ and βsj are far from zero.

4. Effect of Hp. The AREs also depend on the ratio Hp/Hf , and this component plays a key
role when the design is not balanced. The ratio increases rather quickly to 1 as the number
of panels increases. We will illustrate this for some examples in Section 2.3. Another key
remark is that the placement of the panel followup times affects the ARE through Hp; note
the influential role of Hp/Hf in determining the efficiency of the shape parameter of the
baseline function (see 2.14). Examination of this term can suggest optimal placement of
the panel followup times. For example, considering 1 segment (S=1) and with 3 panels, for
the Weibull intensity, we have Hp = ∑Mi=1∑

ei
p=1µipT

α
i,pTαi,p−1(logTi,p− logTi,p−1)2/(Tαi,p−

Tαi,p−1)
2 and Hf = ∑Mi=1∑

ei
p=1µip/α

2. Figure 2.1 illustrates the ratio Hp/Hf for a 3-panel
design for varying values of T1 and T2; the Weibull baseline is also displayed in this figure.
An optimal choice of followup times, yielding large values of Hp/Hf is achieved here,
for instance, for T1 = 6 and T2 = 25. Choosing values of T1 which are quite large, well
beyond the early sharp changes in the intensity, for example, greater than 30, yields lower
efficiencies no matter the choice of T2 > T1.

For some common parametric forms of the baseline intensity ρ(t),Hf can be written as

Hf =
S

∑
s=1

M

∑
i=1

ei
∑
p=1

µsipψsf (Tsi,p−1,Tsi,p;α) (2.21)

where ψsf (Tsi,p−1,Tsi,p;α) is a function of the Tsi,p’s and α only; Hp also has the same struc-
ture with ψsf on the right hand side replaced with ψsp. This form for Hf is possible, for
example, when ρ(t) is Weibull (αtα) or exponential (exp(αt)). When (2.21) holds, further
observations regarding the AREs can be made as discussed in the following two remarks.
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Figure 2.1: Exploration of the ratio Hp/Hf for a Weibull intensity function (αtα−1) with
shape parameter α = 1.3 (shown in a)). The ratio Hp/Hf as a function of the two panel
followup times T1 and T2 (T2 > T1) is displayed in b). An efficient choice of T1 and T2 is
suggested by the large values of Hp/Hf achieved near T1 = 6 and T2 = 25.
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5. Size of the treatment effects. When Hf has the form (2.21) and τ = 0, the ARE of β̃sj
becomes large as |βsj| increases, j = 2, . . . ,k. If there is a single segment, S = 1, the ARE
of β̃sj does not depend on βs1.

6. Baseline intensity estimators. The ARE of α̃ will be high when Hp/Hf is large, and
ARE(β̃s1) will be high when the difference in the weighted means of the w

s
i ’s and zi’s is

small. If (2.21) holds, τ = 0 and S = 1, these AREs do not depend on βs1, the overall
level of the mean count. Under conditions for joint balance, the ARE of β̃s1 increases with
increasing values of ∑kj=2 exp(βsj) and the ARE of α̃ does not depend on βs.

7. Effect of E. The ARE of α̃ (2.14) will also be large when E (2.15) is large. The term
E denotes the weighted variation of wsi ’s rescaled by a measure of the association between
the wsi ’s (a function of the termination times) and zi’s. If the weighted variation of wsi ’s
is large or the measure of association is small then E becomes large and so too the ARE
of α̃. Intuitively, when event times are not available and panel counts are used, the more
variation there exists in the termination times, the more information there will be regarding
the shape of the baseline intensity (parametrized by α).

8. Time-weighted mean. When there is joint balance, the estimator of the time-weighted
mean, δ̃ j, will be fully efficient. Intuitively, under imbalanced scenarios, imbalance in
one segment may be compensated by different imbalances in another segment, so that the
overall estimator may become less affected by imbalance.

2.3 Efficiency under imbalanced designs

In Subsections 2.3.1 and 2.3.1, we consider imbalanced designs to ascertain how sensitive
efficiencies may be to departures from the condition of joint balance when considering 1
and 2 segments.

Consider a study with two treatment groups, and a single covariate, gender, with 2,
4 and 8 equally spaced scheduled panel followup times (Figure 2.2) over a period of 64
months. Imbalance in the data could be interpreted conceptually as individuals abandon-
ing the study before the 64 months, as displayed in Figure 2.2, or, by staggered entry of
individuals; at the scheduled panel followup times and at the end of followup, we record
information on events observed between followup visits. We assume a Weibull hazard for
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the baseline intensity function.
In this section we numerically study the efficiency of estimators of treatment effects

under imbalanced designs, i.e. designs for which joint balance does not hold.

2.3.1 Efficiency under imbalanced designs: 1-segment

Although the primary interest here is the efficiency of the estimator of the treatment effect,
we also comment on the efficiency of estimates of α and β1, which describe the shape and
the overall level of the intensity function.

Table 2.1 below, and Table 2.2 list six contrasting designs (labelled Bt*z, Btz, Bt, Bza,
Bzb, B), where the nomenclature reflects whether balance is achieved over the treatment
and control groups in the covariates (z) or the termination times Tei’s (t). Figure 2.3 il-
lustrates all these designs. The event times displayed by + signs in Figure 2.3 are one
realization of the random generating process. Table 2.1 provides a description of the de-
signs, while Table 2.2 provides details on the numbers of individuals observed and their
panel followup times. In Table 2.2, two designs achieve balance in the covariates (Bz)
with different levels of imbalance in the termination times: these are denoted Bza and Bzb.
All designs spread the dropouts equally at 16, 24, 32, 40, 48, and 56 months. For example,
for the design with joint balance, Bt*z, where 10% of females and 60% of males drop out
in each of the control and treatment groups, the loss to followup occurs as one female and
six male dropouts at each of 16, 24, 32, 40, 48 and 56 months in each of these groups. For
clarity, Figure 2.2 illustrates the loss to followup for the control or treatment groups and
the 2, 4, and 8 equally spaced panel followup times for the design Bt*z.
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Figure 2.2: Illustration of panel designs for the treatment group in the scenario Bt*z (See Tables 2.2 and 2.1). Females are
represented in the lighter colour (salmon), and males in the darker colour (blue).
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Table 2.1: Scenarios considered for illustration of AREs. The name of the scenario reflects
the variable for which there is balance, and ‘*’ denotes joint balance.

Design Description

Bt*z Reflects the situation of joint balance whereby for each stratum of the
covariate, the set of termination times are identical in the treatment and
control groups. This yields a fully efficient estimator of the treatment
effect when τ= 0.

Btz Refers to a situation where both (i) the termination times in each of
the treatment and control groups are identical, but not within covariate
strata (see Bt below), and (ii) the number of individuals within each
covariate stratum are equal, (see Bz below).

Bt Refers to a situation where joint balance does not occur, but the termi-
nation times are identical in the two treatment groups. The proportion
of individuals with each termination time, ignoring covariate stratum,
in the control and treatment groups are the same. In the example, most
males are assigned to the control and most females to the treatment
group.

Bza Reflects the situation where there are equal numbers of individuals in
each covariate stratum over the treatment groups, but the termination
times are not balanced over treatment groups. In the example, the ter-
mination times are longer in the control group.

Bzb Reflects a more extreme situation of imbalance than Bza.
B Neither joint nor any marginal balance.
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Table 2.2: Scenarios considered for illustration of AREs. The name of the scenario reflects the variable for which there is
balance; ‘*’ denotes joint balance. A description of the scenarios is provided in Table 2.1.

Number of individuals (Female |Male) Dropout (%) Balance Joint
Design Group 16 24 32 40 48 56 64 16 24 32 40 48 56 64 Female Male Tei Z Balance
Bt*z Control 1 1 1 1 1 1 54 6 6 6 6 6 6 24 10 60

√ √ √

Treat 1 1 1 1 1 1 54 6 6 6 6 6 6 24 10 60
Btz Control 1 1 1 1 1 1 54 6 6 6 6 6 6 24 10 60

√ √
×

Treat 6 6 6 6 6 6 24 1 1 1 1 1 1 54 60 10
Bt Control 1 1 1 1 1 1 14 3 3 3 3 3 3 142 30 11

√
× ×

Treat 1 1 1 1 1 1 154 3 3 3 3 3 3 2 3 90
Bza Control 1 1 1 1 1 1 54 1 1 1 1 1 1 54 10 10 ×

√
×

Treat 6 6 6 6 6 6 24 6 6 6 6 6 6 24 60 60
Bzb Control 1 1 1 1 1 1 54 1 1 1 1 1 1 54 10 10 ×

√
×

Treat 9 9 9 9 9 9 6 9 9 9 9 9 9 6 90 90
B Control 1 1 1 1 1 1 14 3 3 3 3 3 3 142 30 11 × × ×

Treat 24 24 24 24 24 24 16 3 3 3 3 3 3 2 90 90
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Figure 2.3: Design scenarios for exploration of ARES. Females are represented in the
lighter colour (salmon), and males in the darker colour (blue). Table 2.1 contains a detailed
description of these scenarios, and Table 2.2 provides the definition of the design.
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b) Design Btz: marginal balance
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c) Design Bt: imbalance in Z
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d) Design Bza: imbalance in Tei
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e) Design Bzb: more severe imbalance in Tei
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f) Design B: imbalance in both Tei and Z
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Thoughwe investigated several parameter values, we present here results corresponding
to values which are close to estimates from the analysis of the bladder cancer data discussed
in the next chapter: α = 1, α being the shape parameter of the Weibull distribution; β1 =
−3.5, and β2=−0.5 for the baseline and treatment effects, respectively; τ ranging between
0 and 2, reflecting no, and quite severe, overdispersion; and γ varying between -4 and 4
reflecting a very wide range of values of the covariate effect.

Figure 2.4 illustrates the asymptotic relative efficiency of the estimate of the treatment
effect, β̃2, for all the imbalanced designs listed in Table 2.2 and for a range of values of
τ and γ. Generally, all the designs yield fairly high efficiencies (greater than .96). Recall
that the design Bt*z yields full efficiency for β̃2 when τ = 0; for all parameter settings
when τ> 0, efficiencies were greater than 0.99, and so are not displayed here. Design Btz,
with marginal balance for both Tei’s and the covariates, also yields very high efficiencies
of at least 0.98 for β̃2. The same is true for design Bt, even with its high imbalance in the
covariates. The design Bza, with marginal balance for the covariates and imbalance for
the Tei’s also yields efficiencies of at least 0.98. Designs Bzb and B yield slightly lower
efficiencies; the most extreme case of imbalance over Tei’s, occurring in design Bzb, yields
efficiencies of 0.96 for the 2-panel study.

Figures 2.5 and 2.6 present the efficiencies of the estimators of the parameters for the
overall mean process, i.e. the parameters α and β1. Generally AREs for these parameters
are much lower than those for the treatment estimator. The overall mean level of the inten-
sity function, reflected in β1, seems to be reasonably well estimated when there are at least
4 panels, whereas at least 8 panels are required to estimate the intensity shape parameter.

In summary, the efficiency of the estimate of the treatment effect is generally very high.
Especially if there is balance in the Tei’s, even with extreme imbalance in the covariates,
the efficiency will remain very high. Estimating the mean can be reasonably well achieved
with 4 panel followup times; but estimating the shape parameter of the intensity function
requires a greater number of panel followup times; we recommend at least 8.
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Figure 2.4: AREs of the estimate of the treatment effect, β̃2, for different designs with
2, 4, or 8 panels, varying values of the covariate effect, γ (x-axis), and the overdispersion
parameter, τ (y-axis).
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Figure 2.5: AREs of the estimator of α, the shape parameter of the baseline intensity
function, for different designs with 2, 4, and 8 panels, varying values of the covariate
effect, γ (x-axis), and of the overdispersion parameter, τ (y-axis).
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Figure 2.6: AREs of the estimator of β1, the overall mean baseline treatment effect, for
different designs with 2, 4, and 8 panels, varying values of the covariate effect (x-axis), γ,
and of the overdispersion parameter, τ (y-axis).
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2.3.2 Efficiency under imbalanced designs: 2-segments

We consider the designs discussed in Section 2.3.1 under three different situations where
the segments are induced by a cut point at 16, 24 and 32 months, and where there are 1
and 2 panels per segment; we present the AREs of the estimates of the segment-specific
and time-weighted mean treatment effects in Figures 2.7, 2.8, and 2.9. Recall that for
the design with joint balance, Bt*z, the efficiency is 1 when τ = 0; even in the presence
of overdispersion, this design provides nearly fully efficient estimators of the treatment
effect. The values of the segment-specific treatment effects, used to obtain the AREs when
segment cutpoints are changed, correspond to within-segment mean values of these effects
from assumed continuous time-varying functional forms which are decreasing/increasing
over time for β12/β22.

Regarding imbalanced designs, efficiencies of the estimators of the treatment effects in
segment 1 are high (>0.90) since the termination times in segment 1 are almost balanced
(Figure 2.7). Efficiencies of the treatment estimators in segment 2, on the other hand, are
lower than those in segment 1, with values as low as 0.65, but they increase as the cut point
for the segment is shifted closer to the end of the study (Figure 2.8). With such a shift,
the imbalance in the termination times is shared over the two segments, rather than being
concentrated in segment 2; as well, the efficiency of the estimator of the treatment effect in
segment 1 decreases only slightly.

The efficiency of the estimator of the time-weighted mean treatment effect is mostly
driven by the level of balance in segment 2 because the estimator of the treatment effect in
segment 1 tends to have high efficiency no matter the placement of the cut point defining
the segments (Figure 2.9). Efficiencies of the estimators of segment-specific effects and
time-weighted means increase as the number of panels increases.
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Figure 2.7: AREs of β̃12 for the 2-segment model for different designs with 1 and 2 panels per segment. Parameter values
are α = 1.1, β1 = −3.5 for the baseline intensity function; β12 = 0.2,0.075,−0.050 when the segment cut point is at 16,
24, and 32 months, respectively; β22 = −0.8,−0.925,−1.050 when the segment cut point is at 16, 24, and 32 months,
respectively.
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Figure 2.8: AREs of β̃22 for the 2-segment model for different designs with 1 and 2 panels per segment. Parameter values
are α = 1.1, β1 = −3.5 for the baseline intensity function; β12 = 0.2,0.075,−0.050 when the segment cut point is at 16,
24, and 32 months, respectively; β22 = −0.8,−0.925,−1.050 when the segment cut point is at 16, 24, and 32 months,
respectively.
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Figure 2.9: AREs of the estimate of the time-weighted mean treatment effect, δ̃2, based the 2-segment model for different
designs with 1 and 2 panels per segment. Parameter values are α = 1.1, β1 = −3.5 for the baseline intensity function;
β12 = 0.2,0.075,−0.050 when the segment cut point is at 16, 24, and 32 months, respectively; β22 =−0.8,−0.925,−1.050
when the segment cut point is at 16, 24, and 32 months, respectively.
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2.4 Discussion

In this investigation of the efficiency of panel designs relative to continuous followup for
the study of recurrent events, we have focused on the estimation of a treatment effect in a
semiparametric proportional intensity model. We have provided specific conditions for full
efficiency, which relate principally to joint balance in the distribution of the termination
times and covariates in the baseline and treatment groups. We note that imbalance in the
distribution of the covariates over treatment is less detrimental in terms of sharply reducing
efficiencies than imbalance in the termination times. With panel designs of at least 2 panels,
the efficiency of the estimator of the treatment effect is high, and those with 4 to 8 panels
give reasonable estimation of the shape of the baseline intensity function.

Detailed conditions for efficient study designs are provided as remarks in Section 2.2.
The investigation of these conditions provides a basis for understanding the utility of panel
studies; further, the measures of balance offer direction on how to design panel studies so
that they are most effective.

These efficiencies may also be utilized in straightforward ways when considering sam-
ple size of panel studies, as will be illustrated later in Section 3.3.

Finally, we close with the observation that even though we have considered extreme
imbalance for investigative purposes, any marked difference in the distribution of termina-
tion times must be carefully investigated for signs of dependency between the observation
process and the recurrent event process.

2.5 Proof of Theorem 1

Under standard conditions for the application of asymptotic results to estimating equations,
√
M(θ̂−θ) is asymptotically normal with asymptotic covariance

E
(

− lim
M→∞

∂g f
∂θ

)−1
E{ lim

M→∞
g f g′f }

{

E
(

− lim
M→∞

∂g f
∂θ

)−1
}′

. (2.22)

The asymptotic variance of
√
M(η̂− η), η = (β′,γ′,α′)′, from the full data analy-

sis is (limM→∞
1
MIf )

−1, where I f has the form (2.10), because of three sets of identities:
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(i)E(−∂gη 1/∂τ) = 0, (ii)E(−∂gα, f /∂τ) = 0, and (iii) the {k+dz+dα}×{k+dz+dα} up-
per left submatrix of E(g f g′f ) is the same as the corresponding submatrix of E(−∂g f /∂θ).

Finite sample variance estimates are obtained by substituting θ̂ for θ and omitting the
expressions limM→∞. In this case there are two usual options for approximating the expec-
tation of the terms in (2.22). The first is a model-based approach, which requires specifica-
tion of 3rd and 4th moments and is used here to derive the results of Theorem 1. The second
option, the one we have employed in the illustration, is an empirical approach, which sub-
stitutes E{∑Mi=1 gi f g′i f } by {∑Mi=1gi f g′i f }; where gi f denotes the contribution to the score
equation from individual i.
Note

E{−
∂g f
∂θ

}=

(

I f 0
b′ b0

)

,

and

E{g f g′f }=

(

I f c
c′ c0

)

.

Here I f is given in (2.10), 0, b, and c are of dimension (k+dz+dα)×1 vectors, 0 is a
vector of zeros, b and c have elements

br =
M

∑
i=1

(1+2τµi)yir
(1+ τµi)

, r = 1, . . . ,k+dz+dα,

cr =
M

∑
i=1

γ3iyir
(1+ τµi)3

, γ3i = E(Yi−µi)3, r = 1, . . . ,k+dz+dα,

and

b0 =
M

∑
i=1

µ2i
(1+ τµi)2

,

c0 =
M

∑
i=1

γ4i−µ2i (1+ τµi)2

(1+ τµi)4
, γ4i = E(Yi−µi)4.

The asymptotic variance of θ̂ is then estimated as
(

I−1f
1
b0 I

−1
f c−b

1
b0 c−b

′I−1f
1
b20
(c0−2c′I−1f b+b′I

−1
f b)

)

,
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replacing θ by θ̂.
The asymptotic model-based variance of θ̃ is estimated as above, replacing I f with Ip

and θ with θ̃.
If we assume 3th and 4th moments as for the negative binomial distribution, γ3i =

µi(1+ τµi)(1+2τµi), γ4i = 6τµ2i (1+ τµi)2+µi(1+ τµi)(1+3µi+3τµ2i ), and c= b. In this
case, the estimators of η = (β′,γ′,α′)′ and τ from either the full or panel data analysis are
asymptotically independent. Note that only mean and variance assumptions are required
for consistency of the asymptotic variance of η̂ or η̃.

To obtain the asymptotic variances of β̃ and β̂, Asvar(β̃) and Asvar(β̂), respectively,
we consider the partition of the information matrix (2.10) into blocks related to X , Z, and
W , and obtain the inverse; these expressions are given by (2.23) and (2.24) below:

Asvar(β̃) = (2.23)

(X ′UX)−1+(X ′UX)−1X ′UZφ−1z,z Z′UX(X ′UX)−1+LJ(E+Hp)
−1LJ;

Asvar(β̂) = (2.24)

(X ′UX)−1+(X ′UX)−1X ′UZφ−1z,z Z′UX(X ′UX)−1+LJ(E+Hf )
−1LJ;

where
φz,z = Z′UZ−Z′UX(X ′UX)−1X ′UZ,

E = φw,w−φ′z,wφ
−1
z,z φz,w,

φw,w =W ′UW −W ′UX(X ′UX)−1X ′UW,

φz,w = Z′UW −Z′UX(X ′UX)−1X ′UW , and

LJ = (X ′UX)−1X ′UW − (X ′UX)−1X ′UZφ−1z,z φz,w. (2.25)

The group-specific weighted covariation φz,w is given explicitly in (2.26):

φz,w(p,s) =
k

∑
j=1
∑
i∈Gj

ui

(

zip−

[

uzp
]

j+
[

u
]

j+

)(

wis−

[

uws
]

j+
[

u
]

j+

)

, (2.26)
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where p= 1,2, . . . ,dz and s= 1,2, . . . ,dα.
The elements of (X ′UX)−1X ′UZ are:













[

uz
]

1+/
[

u
]

1+
[

uz
]

2+/
[

u
]

2+−
[

uz
]

1+/
[

u
]

1+...
[

uz
]

k+/
[

u
]

k+−
[

uz
]

1+/
[

u
]

1+













, (2.27)

and do not depend on the β j’s; they are function of the Tei’s and α and γ. Similar expressions
may be obtained for (X ′UX)−1X ′UW .

When α is a scalar, LJ simplifies to a k×1 vector (2.28):

LJ = (l1, l2, . . . , lk)′ = (lw,1, lw,2, . . . , lw,k)
′
− (2.28)

(lz,1, lz,2, . . . , lz,k)
′ φz,w
φz,z

where
(lw,1, lw,2, . . . , lw,k)

′
= (X ′UX)−1X ′UW, and

(lz,1, lz,2, . . . , lz,k)
′
= (X ′UX)−1X ′UZ.

Hence the asymptotic variances of the estimators β̃ and α̃ are

Asvar(β̃1) = [u]−11++ l2z,1φ−1z,z + l21(Hp+E)−1,

Asvar(β̃ j) = [u]−1j+ +[u]−11++ l2z, jφ−1z,z + l2j (Hp+E)−1, j = 2,3, . . . ,k,

and

Asvar(α̃) = (Hp+E)−1.

The inverse of I f , the information matrix based on the full data, can be similarly com-
puted to obtain Asvar(β̂ j), j = 1, . . . ,k, and Asvar(α̂). These are calculated using identical
formulae as above, except Hp is replaced with Hf . Thus, Theorem 1 follows from com-
puting the ratio of these asymptotic variances, and the precise formulation stated offers
emphasis on the important elements regarding efficiency.
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2.6 Notation

i: indexes individuals

t: indexes time

k: number of treatments under test

s: indexes segments; s= 1, . . . ,S

mj: number of individuals on treatment j, j = 1, . . . ,k

M: sample size of the study;M = ∑kj=1mj

Yi(t): observation process for individual i

Ni(t): counting process for individual i

N̄i(t): observed counting process for individual i; N̄i(t) =
∫ t
0Yi(u)dNi(u)

xi: vector of treatment indicators for individual i

zi: covariates for individual i

νi: individual-specific random effect i= 1, . . . ,M

α: parameters determining the baseline intensity function

β: treatment effects

γ: covariate effects

η1: regression parameters; η1 = (β′,γ′)′

η: regression parameters including parameters in the baseline intensity; η = (β′,γ′,α′)′

τ: overdispersion parameter

θ: full set of parameters; θ = (β′,γ′,α′,τ)′

(Ts−1,Ts]: time period of segment s; T 0 = 0
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I(Ts−1,Ts](t): indicator of whether individual i is observed at time t

λi(t): counting process intensity function

• 1-segment: λi(t) = νiρ(t;α)ex
′
iβ+z′iγ

• S segments: λi(t) = νiρ(t;α)exp
{

x′i
[

∑Ss=1β
sI(Ts−1,Ts](t)

]

+ z′iγ
}

ρ(t;α): baseline intensity function

dα: dimension of α

dz: dimension of γ

a: indexes parameters in the baseline intensity; a= 1, . . . ,dα

nip: number of events observed in panel p for individual i, p= 1, . . . ,ei

ni+: total number of events observed for individual i; ni+ = ∑eip=1 nip

(Ti,p−1,Ti,p]: pth panel period observed for individual i (for the 1-segment study)

Tei: termination for individual i (for the 1-segment study)

Rip: cumulative baseline intensity function over panel period p for individual i (for the
1-segment study); Ri =

∫ Ti,p
Ti,p−1Yi(t)ρ(t;α)dt

Ri: cumulative baseline intensity function over the entire observation period for individual
i; Ri =

∫ ∞
0 Yi(t)ρ(t;α)dt

µip: expected mean number of events for individual i in panel p (for the 1-segment study);
µip = Rip exp{x

′
iβ+ z

′
iγ}

µi+: total expected mean number of events for individual i; µi+ = Ri exp{x
′
iβ+ z

′
iγ}

Lp: likelihood based on panel data

Lf : likelihood based on full data, i.e. continuous followup; Lf = Lα, f L

wia = ∂ logLα, f (α)/∂αa: a function of the termination time for individual i
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ωipl: time of the lth event from start time (t = 0) for individual i in panel period p

gp: estimating equations for panel data analysis

g f : estimating equations for full data analysis

gη1: estimating equations for (β′,γ′)′

gα,d: estimating equations for α

gτ: estimating equation for τ

hi: correction term to reduce small sample bias;
hi = diag(U

1/2
1 V1′(V1′U1V1)−1V1′U

1/2
1 )

V : treatment and other covariates V = ( X Z )

W : matrix with entries wia

V1: covariates includingW ; V1 = ( X Z W )

ui = µi+/(1+ τµi+): function of the expected number of events and the overdispersion
parameter for individual i

Ti,p: pth panel followup time for individual i, i= 1, . . . ,M, p= 1, . . . ,ei

Tei: termination time for individual i; also denoted as Ti,ei

Ip, I f : information matrix based on likelihoods for the panel and full data, respectively

α̃, β̃, γ̃, τ̃: estimators obtained from an analysis of panel data

α̂, β̂, γ̂, τ̂: estimators obtained from an analysis of the full data

Gj: set of individuals who receive treatment j

[n] j+: total number of events observed for all individuals receiving treatment j, [n] j+ =

∑i∈Gj ni+

[u] j+: function of the expected number of events for all individuals receiving treatment j,
[u] j+ = ∑i∈Gj ui
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[uz] j+: function of the expected number of events and the covariates for all individuals
receiving treatment j, [uz] j+ = ∑i∈Gj uizi

[uw] j+: function of the expected number of events and the termination times for all indi-
viduals receiving treatment j, [uw] j+ = ∑i∈Gj uiwi

E: corrected variation of the wi’s, E = φw,w(1−φ2z,w/φz,zφw,w)

φz,w: weighted covariation of zi’s and wi’s,
φz,w = ∑kj=1∑i∈Gj ui

(

zi− [uz] j+/[u] j+
)(

wi− [uw] j+/[u] j+
)

φz,z: weighted variation of zi’s, φz,z = ∑kj=1∑i∈Gj ui
(

zi− [uz] j+/[u] j+
)2

φw,w: weighted variation of wi’s, φw,w = ∑kj=1∑i∈Gj ui
(

wi− [uw] j+/[u] j+
)2

rz,w = φz,w/(φz,zφw,w): ratio of weighted covariation between zi and wi; weights are ui.

l1: measure of balance relating to β1, l1 = [uw]1+/[u]1+− [uz]1+/[u]1+×φz,w/φz,z,

l j: measure of balance relating to β j, j ≥ 2;
l j =

√

φw,w
{

lw, j/
√

φw,w− lz, j/
√

φz,zrz,w
}

lz, j: measure of balance relating to β j, and with respect to covariates; lz, j = [uz] j+/[u] j+−
[uz]1+/[u]1+

lw, j: measure of balance relating to β j, and with respect to termination times; lw, j =
[uw] j+/[u] j+− [uw]1+/[u]1+

nsip: number of observed events for individual i in panel p in segment s, nsip = N̄i(Tsi,p)−
N̄i(Tsi,p−1)

µsip: expected number of events for individual i in panel p in segment s, µsip = E(nsip) =

Rsipex
′
iβ

s
+z′iγ

Rsip: cumulative baseline function for individual i in panel p in segment s,

Rsip = Rsip(T
s−1
i,p−1,T

s
i,p;α) =

∫ Tsi,p
T s−1i,p−1

ρ(u;α)Yi(u)du
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µsi+: expected number of events for individual i in segment s,
µsi+ = ∑

esi
p=1µ

s
ip = ∑

esi
p=1R

s
i ex

′
iβ

s
+z′iγ

Rsi : cumulative baseline function for individual i in segment s, Rsi = ∑
esi
p=1R

s
ip

usi : usi = µsi+/(1+ τµsi+)

wsi : function of the Tei’s for individual i in segment s, wsi = ∂ logRsi/∂α

βs: treatment effects in segment s; βsj: effect of the jth treatment in segment s

lsz, j, lsw, j, lsj: segment-specific measures of balance with respect to covariates, termination
times, and overall, respectively.

[u]sj+: function of the expected number of events for all individuals receiving treatment j
in segment s, [u]sj+ = ∑i∈Gj u

s
i

[uz]sj+: function of the expected number of events and the covariates for all individuals
receiving treatment j in segment s, [uz]sj+ = ∑i∈Gj u

s
i zi

[uw]sj+: function of the expected number of events and the termination times for all indi-
viduals receiving treatment j in segment s, [uw]sj+ = ∑i∈Gj u

s
iwsi



Chapter 3

Illustration of Efficient Designs and
Power Considerations

3.1 Introduction

In this chapter we illustrate the methods from Chapter 2 in an analysis of the recurrence
of tumors in patients with bladder cancer (Andrews and Herzberg, 2000), and we present
alternative uses of the methods developed which are helpful for power analysis and sample
size calculations.

3.2 Bladder Cancer Data

A clinical trial, conducted by the Veterans Administrative Co-operative Urological Re-
search Group (Byar et al., 1977), studied the effects of placebo pills, pyridoxine pills, and
periodic instillation of thiotepa into the bladder on the frequency of recurrence of bladder
cancer. The data appear in Andrews and Herzberg (2000). All 116 patients had bladder
cancer when they entered the study; the tumors were removed and the patients were ran-
domly assigned to one of the three treatments. We consider two covariates which may
reflect cancer severity at baseline: the number of tumors and the size, in centimetres, of
the largest tumor. Here we consider estimation of the treatment effect under a design with
continuous followup and in artificial designs, for illustrative purposes, with 2, 4, and 8

41
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equally spaced scheduled followup visits over 64 months; for the panel designs, we record
information on event counts at the scheduled followup times and at termination times.

3.3 Measures of Balance

Because the balance in the covariates and the termination times Teis play an important role
in the efficiency of the estimator of the treatment effect, we provide a brief analysis of such
balance before presenting the results of the analyses. We consider a modified version of
the bladder cancer dataset in which we have truncated some termination times to achieve
imbalance so as to assess its impact on estimation of the treatment effects. To create the
modified data, 80% of the individuals in the placebo group with termination times over 24
months were randomly assigned new termination times generated from a Uniform(6,24)
distribution. Figure 3.1 displays both datasets: original (left panel) and modified (right
panel). Note that the rate of occurrence of events seems to be slightly lower in the thiotepa
group. The more detailed comparisons of these data displayed in Figure 3.2 shows that in
the original data the three treatment groups are very similar in terms of the distributions of
the termination times, the number of tumors, and the size of the largest tumor at baseline.
We thus expect the efficiency of the treatment effect estimator to be high in the analysis of
the original data. On the other hand, in the modified dataset, because of shorter termination
times in the placebo group, we expect somewhat lower efficiency of the estimator of the
treatment effect (Figure 3.1 and Figure 3.2).

In addition to visual presentations of balance, we provide in Table 3.1 two types of
measures of balance, (1) derived from estimates of parameters obtained by fitting the full
data assuming continuous followup, model based measures, lw, j, lz, j, and rz,w (see Theo-
rem 1 from Chapter 2), and (2) summary measures, l∗j and l∗∗j . The measure l∗∗j is a raw
measure of balance in the termination times. It compares the proportions of individuals
with termination times 0-8, 8-16, 16-24, 24-32, 32-40, 40-48, 48-56, and 56-64 months in
the placebo group with those in the treatment group j. Specifically, it is calculated as the
sum of squared differences between these proportions for treatment group j and placebo
group. Similarly, l∗j is a raw summary of joint balance between the termination times and
the number of tumors. It is computed as a sum of squared differences between the propor-
tions of individuals in the placebo group and treatment group j falling into 16 categories
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defined by their termination times (8 groups; as for l∗∗j ) and number of tumors (2 groups:
0 or 1 tumor, and 2 or more tumors). For our illustrative purposes we do not show here
joint balance measures related to the size of the largest tumor as this covariate is not signif-
icant. The greater the imbalance, the larger all measures will be. Note that, for the original
data, although lz, j is large, l j, l∗j and l∗∗j are all small, indicating high balance in the data.
Measures are larger for the modified data.

Table 3.1 presents the ratios Hp/Hf , which play a key role in the AREs of the esti-
mates of the baseline intensity parameters. This ratio increases with the number of panels
more steeply using the original, than using the modified, design. Table 3.1 also provides
the corresponding measures of balance for the model where the treatment effect is piece-
wise constant over two equally spaced segments. Measures reveal that the overall mean
treatment effects are expected to be less efficient in the analysis of the modified data since
the ratio of the segment specific expected number of events is almost the same for the two
datasets (original and modified), but l j is considerably lower in the original dataset. Similar
raw measures of balance as l∗j , and l∗∗j computed for the 2-segment model (not shown here)
also indicate large differences in balance between the original and modified data. We also
note that the modified data appears quite balanced over segment one and imbalanced over
segment 2, and this difference will be reflected in standard error estimates corresponding
to these segments (illustrated in Section 3.4).
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Figure 3.1: Bladder cancer data: the plot displays the termination times for the original data (a), and modified data (b).
For the display of the covariates and individual-specific rates, the length of the lines are proportional to the size of the
largest tumor, the number of tumors, and the rate of events, respectively; additionally, lighter colors are used to highlight
large values of these variables.
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b) Modified Data with Artificial Termination Times
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Figure 3.2: Distributions of variables in the bladder cancer data: original data (a), and modified data (b). The smooth line
corresponds to a smoother based on a Gaussian kernel. The mean and the median are displayed on the plots.
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Table 3.1: Measures of balance in the bladder cancer data. The weighted differences of
the wi’s, lw, j, the weighted differences of zi’s, lz, j, and the overall measure of balance l j cor-
respond to model-based measures; l∗∗j and l∗j correspond to the sum of squared differences
of proportions of individuals per strata in the two treatment groups. For the 2-segments
case, l1j and l2j correspond to measures of balance in segment 1 and 2, respectively; l j cor-
responds to the measure of balance for the time-weighted overall mean treatment effect.
Note that rz,w and the ratios Hp/Hf do not vary by treatment group, so they are displayed
only once; 2p, 4p, and 8p denote 2, 4, and 8 panels, respectively.

Model-based measures Raw measures Hp/Hf

1-segment Measures
lw, j lz, j l j rz,w l∗∗j l∗j 2p 4p 8p

Original Data
Pyridoxine 0.004 -0.130 -0.001 -0.110 0.083 0.068 0.175 0.513 0.717
Thiotepa -0.010 0.668 0.013 0.028 0.029

Modified Data
Pyridoxine 0.464 -0.287 0.459 -0.059 0.297 0.167 0.164 0.454 0.668
Thiotepa 0.453 0.516 0.463 0.175 0.104

2-segment Measures
l1j l2j l j 2p 4p 8p

Original Data
Pyridoxine 0.394 -1.170 -0.388 0.000 0.393 0.645
Thiotepa 0.367 -1.176 -0.405

Modified Data
Pyridoxine -0.128 -1.722 -0.925 0.000 0.339 0.595
Thiotepa -0.147 -1.712 -0.929
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3.4 Analysis of Bladder Cancer Data

Table 3.2 reports parameter estimates and their standard errors based on the modified data
under a 2-panel, a 4-panel, and an 8-panel design, as well as an analysis of the full data;
Table 3.3 reports results from corresponding analyses for the original data. Both tables
present results from two analyses: one that considers 1 segment, so the treatment effects
are fixed, and another that considers 2 segments, with treatment effects being piecewise
constant over segments of 32 months. Since the estimated coefficient corresponding to the
size of the largest tumor at baseline is not significant, this variable has been excluded in
the subsequent discussion. Because there is close to joint balance in the original data, the
treatment estimators from the three panel designs are almost fully efficient compared to the
analysis of the full data (Table 3.3). On the other hand, in the imbalanced data, the treat-
ment estimators from the 2-panel design have slightly higher standard errors than those
obtained from the full data; the efficiency is quickly recovered by the 4-panel design. The
thiotepa treatment, β3=-0.485 (Std. Error =0.281), may have a protective effect on recur-
rences relative to placebo, while the pyridoxine treatment effect is non-significant. Note
that for the model where we consider 2 segments, the effect of thiotepa is more protective
in the second segment. The estimates of the time-weighted mean treatment effects in the
2-segment model, δ̃2 and δ̃3, have standard errors which are slightly higher in the 2-panel
design than in the 8-panel and full data designs. There is substantial overdispersion in the
data, and the estimate of the Weibull shape parameter α is quite close to unity. The estimate
of the standard error of α̃ is considerably higher in the 2-panel design, but much closer in
the 8-panel design, than that of the corresponding estimate from the full data analysis.

3.5 Simulation: Power Considerations

Consider the construction of a 1-segment panel design generating current status data in a
recurrent event study intended to estimate a treatment effect. Current status data are com-
monly encountered in epidemiological studies where information on the number of events
is only available at the end of the study (Sun and Kalbfleisch, 1993); the data structure
also arises in carcinogenicity experiments where the number of tumors is only known at
sacrifice of the experimental animals. To quantify the differences in precision, we define
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Table 3.2: Parameter estimates and their standard errors, resulting from the quasi-likelihood
fit to the modified bladder cancer data when modeling the treatment effects as piecewise
constant with 1 and 2 segments.

Quasi-Likelihood Analyses: Estimate (Est) and Standard Error (Std.Error)
2-Panel Data 4-Panel Data 8-Panel Data Full Data

1-segment
Est Std. Error Est Std. Error Est Std. Error Est Std. Error

β1 -3.367 0.464 -3.325 0.371 -3.173 0.321 -3.519 0.287
β2 0.181 0.312 0.186 0.308 0.201 0.308 0.165 0.309
β3 -0.485 0.281 -0.481 0.267 -0.466 0.271 -0.501 0.274
γ 0.245 0.057 0.245 0.057 0.244 0.057 0.246 0.058
α 0.976 0.132 0.963 0.089 0.915 0.074 1.025 0.062
τ 0.884 0.212 0.884 0.212 0.887 0.213 0.883 0.212

2-segments: 0-32 months, and 32-64 months
Est Std. Error Est Std. Error Est Std. Error Est Std. Error

β11 -3.139 0.739 -3.300 0.256 -3.134 0.230 -3.588 0.230
β12 0.127 0.339 0.119 0.322 0.127 0.321 0.103 0.320
β13 -0.483 0.308 -0.494 0.294 -0.482 0.294 -0.515 0.293
β21 -2.955 1.282 -3.214 0.488 -2.948 0.442 -3.668 0.436
β22 0.382 0.537 0.387 0.536 0.382 0.536 0.396 0.535
β23 -0.747 0.553 -0.744 0.553 -0.747 0.553 -0.739 0.552
γ 0.283 0.056 0.285 0.057 0.283 0.057 0.288 0.057
α 0.881 0.253 0.934 0.055 0.880 0.030 1.028 0.027
τ 0.887 0.217 0.882 0.214 0.887 0.215 0.876 0.214
δ2 0.254 0.364 0.253 0.361 0.254 0.362 0.250 0.360
δ3 -0.615 0.330 -0.619 0.327 -0.615 0.327 -0.627 0.326
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Table 3.3: Parameter estimates and their standard errors, resulting from the quasi-likelihood
fit to the original bladder cancer data when modeling the treatment effects as piecewise
constant with 1 and 2 segments.

Quasi-Likelihood Analyses: Estimate (Est) and Standard Error (Std.Error)
2-Panel Data 4-Panel Data 8-Panel Data Full Data

1-segment
Est Std. Error Est Std. Error Est Std. Error Est Std. Error

β1 -2.947 0.477 -3.192 0.356 -3.099 0.299 -3.428 0.275
β2 0.108 0.301 0.113 0.301 0.111 0.301 0.118 0.302
β3 -0.551 0.263 -0.545 0.263 -0.547 0.263 -0.540 0.264
γ 0.236 0.056 0.238 0.056 0.237 0.056 0.240 0.057
α 0.880 0.117 0.949 0.077 0.923 0.064 1.015 0.055
τ 0.846 0.193 0.845 0.193 0.845 0.194 0.848 0.193

2-segments: 0-32 months, and 32-64 months
Est Std. Error Est Std. Error Est Std. Error Est Std. Error

β11 -2.558 0.709 -3.313 0.241 -3.160 0.216 -3.566 0.215
β12 -0.044 0.309 -0.014 0.308 -0.020 0.309 -0.006 0.309
β13 -0.652 0.284 -0.640 0.284 -0.642 0.284 -0.636 0.285
β21 -2.628 1.097 -3.750 0.384 -3.529 0.355 -4.113 0.351
β22 0.699 0.485 0.720 0.484 0.716 0.484 0.728 0.484
β23 -0.443 0.505 -0.435 0.504 -0.436 0.505 -0.432 0.504
γ 0.289 0.055 0.298 0.055 0.296 0.055 0.301 0.055
α 0.747 0.212 0.972 0.043 0.927 0.025 1.047 0.023
τ 0.853 0.197 0.843 0.194 0.844 0.194 0.843 0.194
δ2 0.328 0.346 0.353 0.343 0.348 0.344 0.361 0.343
δ3 -0.548 0.311 -0.537 0.309 -0.539 0.309 -0.534 0.308
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the design effect (DEFF) for a panel design as the factor by which the sample size must be
increased in the panel study so as to achieve equal precision for the estimation of a treat-
ment effect based on the corresponding continuous followup study. Table 3.4 presents the
DEFFs corresponding to the six scenarios discussed in Section 2.3 (see Figure 2.3) for 1
and 2 panel designs under the assumption of parameter values close to those obtained in the
analysis of the bladder cancer dataset (Weibull parameters α= 1 and β1 =−3.5; treatment
effect β2 = −0.5; gender effect γ = 0; overdispersion parameter τ = .9). For the 2-panel
designs that do not achieve joint balance, the DEFF is on the order of 1.3% or less, so a
panel study with sample size only 3% larger than M will yield treatment effect estimators
with the same precision as from an analysis of continuous followup with M individuals.
However, for some designs with current status data (single panel design), design effects
up to 50% can be observed. The power curve corresponding to design Bzb is illustrated in
Figure 3.3. Recall that design Bzb reflects an extreme case of imbalance.

Table 3.4: Design effects for different designs for a similar scenario as the bladder cancer
dataset (α= 1; β1 =−3.5; β2 =−0.5; γ= 0; τ= 0.9) .

Design Bt*z Btz Bt Bza Bzb B
1-panel 1.00 1.01 1.04 1.16 1.50 1.15
2-panels 1.00 1.00 1.00 1.01 1.02 1.01

3.6 Discussion

An alternative use of the methods presented in this thesis relates to optimal assignment
and followup of individuals when augmenting a study with new recruits over time. The
methods suggest how judicious adjustments to allocation of subjects to treatment groups
may help correct for the loss of efficiency due to differential dropout over treatment strata.
For example, in a 4-panel study with considerable dropout in one group in the first two
panels, the measures of balance presented here could be used to guide the assignment of
new individuals so as to achieve higher efficiency for specific parameters.
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Figure 3.3: Power of the test that β2 = 0 for design Bzb with parameters α= 1, β1 =−3.5,
γ= 0, τ= 0. The different curves denote the power for different sample sizes and designs;
power with a sample size of 480*1.5 and 12000*1.03 are shown in a) and b), respectively.
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Chapter 4

Bayesian Joint Modeling of Zero-inflated
Panel Count and Severity Outcomes

4.1 Introduction

Longitudinal count data with marks occur in many scenarios. For example, earthquake data
commonly consist of spatio-temporal locations of earthquakes, as well as continuous data
on their magnitudes; insurance data may consider recurrences of accidents in a portfolio,
as well as insurance costs associated with each event, or with the portfolio. In the med-
ical field, such joint data are less commonly modeled, though count data with marks are
certainly not rare. For example, our motivating study considers recurrences of hot flushes
following premenopausal ovariectomy and, associated with these, measures of severity of
the events. The data arise from a randomized, double-blind trial whose major goal is a
comparison of the effectiveness of two treatments in controlling hot flush symptoms.

There has recently been a substantial interest in joint modeling of varieties of discrete
and continuous outcomes. In a landmark publication, Dunson (2000) provided a framework
for the joint analysis of different types of responses, for example, count and continuous
variables. This has been enormously useful, especially for the joint analysis of question-
naire outcomes in sociological and psychological contexts, where several questions in a
survey are fundamentally related and measure highly correlated responses. However, this
framework is broadly useful in many contexts.

52
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Here, we consider the analysis of panel count data. Panel counts refer to counts ac-
cumulated over a particular interval and are the usual outcome recorded in diary studies.
In the motivating randomized trial, we collect daily information on whether hot flushes
occurred, the number of hot flushes experienced, and whether the experience was rated as
high severity, over a period of a year. Patients are randomized to one of two treatment
arms. The severity measures for a given day are binary variables indicating a low or high
severity experience, and represent an average mark of severity of the hot flushes for the
day. The data exhibit several features which need to be accommodated in our analysis. In
general, it may be expected that the data are serially correlated with respect to all outcomes
measured. Additionally, there is substantial heterogeneity in the outcomes across individ-
uals, and the data are subject to missingness. Importantly, the count data are zero-heavy in
both treatment arms, and we expect correlation across the outcomes of counts and severity
measures.

In the medical field, when modelingmarked point processes, investigators usually focus
on one of the two outcomes; for recurrent event processes, counting process methods may
be employed, and for modeling the marks, repeated measures approaches are commonly
utilized. French and Heagerty (2009) developed GEE methods by assuming that the asso-
ciation between the recurring process and the marks can be explained through an exposure
covariate which is measured over time. Cai et al. (2010) proposed an estimating equations
approach based on a proportional means model for the marks; they first obtain estimates
regarding the recurrent events process, and then substitute these into a model for the marks
to estimate the parameters governing that process and to link the processes. With both ap-
proaches there is no direct way of testing the association between the two processes. Our
approach allows testing for the existence of such association, and consists in a straightfor-
ward modeling of both the recurrent event process and the marks through linking random
effects.

In Section 4.2, we describe the diary data which motivated this project. In Section
4.3 we develop models for the joint analysis of zero-heavy counts and severities as arising
from such diary data. We consider models which use shared frailties to induce correlations
across the two outcomes. In Section 4.4 we illustrate our methods through an analysis of
the diary data. Section 4.5 describes the results of a simulation study which investigates
the bias arising from estimation using separate rather than joint models in situations where
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outcomes are linked by shared frailties. The chapter closes with a discussion in Section
4.6.

4.2 Hormone Therapy Study

Counts of the number of hot flushes in a day over a period of one year, along with their
severities, were recorded in a clinical trial that compared oestrogen therapy (conjugated
equine oestrogen: denoted as CEE), the gold standard for the treatment of hot flushes, with
medroxyprogesterone acetate (referred to as MPA). The participants were healthy men-
struating women prior to hysterectomy/ovariectomy for benign disease (Prior et al., 2007)
between the ages of 32 and 53 years who were randomly assigned to one of the two treat-
ment groups. There were 20 women in the MPA group and 18 in the CEE group; one of the
women from the MPA group was eliminated because of the extreme number of hot flushes
reported. The severity random variable reflects the intensity of the hot flush experience in
a day, and is an indicator for high intensity. Note that it has been suggested (personal com-
munication, J. Prior) that this variable may reflect the maximum severity associated with
each of the hot flushes experienced (instead of an average value) in a day. In addition to
the information on counts and severities, we also have the potential prognostic factors: age
and BMI of the individual; BMI ranges between 17.69 and 32.62 units.

Figure 4.1 displays the daily data for the number of counts and the severity experience
(high/low) over the 364 day period. Red and darker colors correspond to larger counts and
high severities in a day. A great deal of heterogeneity is evident in the data. Counts of zeros
are represented by gray dots, while gaps indicate missing data. There are fewer events over
time for the MPA group, as well as lower severities.
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Figure 4.1: Hot flush episodes showing the count level (upper graph) and the severity level
per day (lower). A dark shade of red indicates larger counts and high severities. Time is
given in days.
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4.3 Three-component Joint Model for Zero Heavy Counts
and Severities

We describe below a three-component model which distinguishes between the mechanisms
that affect the presence of events and the number of events, and relates the severities with
the number of events, when events are present. The counts of events are zero-heavy, and
we model them using a hurdle model (Ridout et al., 1998; Ainsworth, 2007), which al-
lows flexibility in accounting for a large number of zeros, and, as we will show later, also
provides straightforward mechanisms for relating counts to severities.

For individual i, on day d of week t, let Y1itd be an indicator variable for the presence
of events, and, if events are present, we also have available responses Y2itd , which records
the number of events, as well as Y3itd , an indicator for a high severity day, i= 1, . . . ,M, d =
1, . . . ,7, and t = 1, . . . ,52. We set the model parameters as constant over any day of a week;
this provides sufficient flexibility for the analysis conducted here. Hence, conditioning on
random, time-dependent, individual-specific frailtiesW1i(t),W2i(t), andW3i(t) operating on
these responses, we specify E(Y1itd) = pit , and given event occurrence,Y2itd is distributed as
truncated (at zero) Poisson (µit), while E(Y3itd) = πit . The random effectsWki(t) k= 1,2,3,
provide the mechanism by which we link the responses, and various forms for these will be
described more fully below. Given the random effects, and given Y1itd > 0, then Y2itd and
Y3itd are assumed independent. Conditional onW1i(t),W2i(t), andW3i(t), and for the case
of no missing data, the likelihood kernel simplifies to

L= ∏i,t(1− pit)7−Y1it+ p
Y1it+
it ×∏i,t

[(

1
1−e−µit

)

e−µit
]Y1it+

[

µ
Y2it+
it

∏d Y2itd!

]

(4.1)

×∏i,t

[

(1−πit)Y1it+−Y3it+π
Y3it+
it

]

, (4.2)

where Ykit+ = ∑7d=1Y1itd , k = 1,2,3. For constructing the likelihood note that Y2it+ =

∑7d=1Y2itdY1itd and Y3it+ = ∑7d=1Y3itdY1itd . When data are missing at random, the condi-
tional likelihood is obtained in a straightforward manner analogous to the above by omit-
ting the contributions for the terms corresponding to days for which data are missing.

We model the parameters as varying smoothly over time and link them through the
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random errors as:

logit(pit) = S1i(t)+W1i(t), (4.3)

log(µit) = S2i(t)+W2i(t),and (4.4)

logit(πit) = S3i(t)+W3i(t), (4.5)

where Ski(t) are smoothers which depend on treatment; for example, B-splines are used in
the application, with

Ski(t) =
Lk
∑
l=1

dklφkl(t)+ xi×
Lk
∑
l=1

bklφkl(t),

where φkl are the B-spline basis functions (see, for example, MacNab and Dean (2001));
dkl and bkl are the spline coefficients, k = 1,2,3 and l = 1, . . . ,Lk. The treatment indicator
xi is 1 if individual i is in the MPA group and 0 otherwise.

Three forms of relationships are considered for the random error terms, as described
below.

1. M1: Shared Frailty: Wki(t) = ukit + γksit , where ukit ∼ N(0,σ2k), sit ∼ N(0,σ2s ), k =
1,2,3. Here sit is a shared random effect across all outcomes, and γk is the factor
loading of this shared effect on outcome k. The ukit’s represent additional hetero-
geneity beyond the shared random effect. Without loss of generality, we set γ1 to
1.

2. M2: Joint Multivariate Models: Wki(t) = ukit , where (u1it ,u2it ,u3it) ∼ MVN(0,Σ),
where all elements of Σ are unknown and estimated.

3. M3: Separate models:Wki(t) = ukit , where ukit ∼ N(0,σ2k) independently, k= 1,2,3.

Especially when daily data are considered, in addition to accommodating association
between responses, the random effects may also accommodate autocorrelation; for exam-
ple, withWki(t) = ρWki(t−1)+ εki(t), where εki(t) ∼ N(0,τ2k), and ρ denotes the autocor-
relation parameter.

Implementation of these methods may be carried out in SAS using Proc NLMIXED,
or through Bayesian MCMC methods (OpenBUGS; Thomas et al. (2006)). Here we utilize
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a Bayesian approach, using conventional and independent choices for vague prior distri-
butions and their hyper-parameters. In particular, for all regression parameters we assign
N(0,10000) priors. We assign gamma priors to the inverse of the variance components,
1/σ2s or 1/σ2k ∼ Γ(r,m)whose kernel density ismrzr−1 exp(−mz)/γ(r), z> 0 with r= 0.01
and m = 0.01. For the inverse of the covariance matrix, Σ−1, we assign a Wishart prior
whose kernel density is |R|p/2|Z|(p−4)/2× exp(−1/2 ∗Trace(RZ)), Z symmetric and posi-
tive definite with p= 3, and R= diag{1/40,1 and 1/10}.

4.4 Analysis of Hormone Therapy Study

The fixed covariates BMI and age were not significant in any of the component models,
so we discuss here models without these covariates, thus permitting us to focus on the
treatment effect, which was of primary interest. After investigating several forms for the
spline components in the models, Ski(t), k = 1,2,3, we chose to use, because of their
simplicity and parsimony, cubic splines with 4 inner knots at 10, 20, 30, and 40 weeks for
pit and πit , and cubic splines with 3 inner knots at 10, 20, and 30 for µit . Autocorrelation
terms were insignificant for all component models and are not discussed here. Finally, we
note that models with only individual-specific random effects were also considered, i.e.
models for which ukit = uki and sit = si, but these provided poorer fits.
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Figure 4.2 (left panel) displays the estimated linear predictors for the three component
models ofM1: logit(pit), log(µit), logit(πit) for each treatment arm. The estimates fromM2

are visually indistinguishable from those of M1 and are not displayed here. The estimated
log odds of the presence of events decreases over time for the MPA group, and is generally
constant for the CEE arm. When events are observed, their estimated mean for the CEE
group seems constant, but decreasing over time for theMPA group, with a clearer difference
between these two arms observed from about week 30. The estimated log odds of high
severity events is similar for both groups. Figure 4.2 (right panel) also displays the fitted
linear predictors from M3, the separate models. Fits from M1 and M3 are quite similar,
except for the log odds of high severity. Scatter plots of the relationships between the
posterior means of the random effects obtained from M3 are displayed in Figure 4.3 and
indicate a strong positive association between W2it and W3it with other associations being
more weakly positive. Notice from the bottom panel of Figure 4.3 that low values of counts
tend to be aligned with very low severities.
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Figure 4.2: Estimated predictors from the fits of models M1 (left panel) and M3 (right
panel). Rows display estimates of logit(pit) (top), log(µit) (middle) and logit(πit) (bottom).
Estimates for the CEE group/ MPA group are displayed in green/brown solid lines with
green/brown dashed lines indicating 95% confidence intervals.
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Figure 4.3: Posterior means of the random effects for each individual obtained from the fit
ofM3. Only records with events are shown. The numbers in the figures denote the bimester
to which the random effect belongs; for instance, ‘1’ refers to the first two months.
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Figure 4.4 contrasts the fitted linear predictors from the three models at 4 time points:
12, 24, 36, and 50 weeks. There is general agreement on the direction of the treatment
effect for all components of all models, with agreements across the models being closest
for estimates of pit . A striking difference between the fitted predictors from the joint and
separate analyses is that the log odds of the probability of high severity events is estimated
as much lower from both joint models compared to the estimates fromM3. Table 4.1 (panel
labelled HT Study) lists these estimates at the four time points, as well as the difference
between estimates (labelled Bias?) obtained from M1 and M3. Also listed is the difference
between the estimated logit(πit) for the CEE group versus the MPA group (labelled Trt),
which, in contrast, is very similar for the two models.
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Figure 4.4: Estimated linear predictors at 12, 24, 36, and 50 weeks fromM1, M2, and M3.
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Table 4.1: Estimated linear predictors of logit(πit) at 12, 24, 36, and 50 weeks fromM1 and
M3 for the hormone therapy analysis, and the simulation investigation. The panel labelled
HT Study refers to the hormone therapy analysis, while that labelled Simulated Data refers
to the investigation described in Section 4.5

HT Study Simulated Data
Week M1 M3 Bias? M1 (True) M3 Bias

MPA 12 -5.14 -1.97 3.17 -5.17 -2.24 2.93
MPA 24 -4.81 -1.65 3.16 -5.08 -2.16 2.92
MPA 36 -3.14 -0.73 2.41 -3.27 0.05 3.32
MPA 50 -3.57 -1.04 2.53 -3.70 -0.41 3.29
CEE 12 -4.16 -1.13 3.03 -4.27 -1.13 3.14
CEE 24 -3.11 -0.06 3.05 -3.34 -0.35 2.99
CEE 36 -2.58 0.06 2.64 -2.60 0.26 2.86
CEE 50 -1.50 2.44 3.95 -1.79 1.74 3.53
Trt 12 0.98 0.84 -0.14 0.90 1.11 0.21
Trt 24 1.71 1.59 -0.11 1.74 1.81 0.07
Trt 36 0.56 0.79 0.23 0.68 0.21 -0.46
Trt 50 2.07 3.48 1.42 1.91 2.15 0.24

Table 4.2 presents estimates of the variance components and linking parameters for
the three models. The estimates of the linking parameters in M1 are significant providing
evidence of association between each pair of models. The correlation between the random
effects in the joint shared model may be calculated as

ρxy =
γxγyσ2s

√

(σ2x+ γ2xσ2s )(σ2y+ γ2yσ2s )
,

where x,y = 1,2,3. These pair-wise correlations, computed from the posterior means, are
reported in Table 4.3, and are very close to the ones obtained from the analysis using the
joint multivariate model M2. The three estimated pairwise correlations are all high, but
particularly that between Y2it and Y3it , in agreement with the evidence suggested from the
fit ofM1 displayed in Figure 4.3.

In Table 4.3, we also report the percentage of the heterogeneity explained by the shared
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Table 4.2: Estimates of variance components and linking parameters in all models. The
95% credible interval limits are displayed under CI lower and CI upper.
Parameter Estimate Std. Dev. CI lower CI upper

M1: Shared Frailty
γ2 0.21 0.03 0.16 0.28
γ3 0.92 0.15 0.68 1.26
σ21 28.87 5.53 19.42 41.04
σ22 0.05 0.04 0.01 0.16
σ23 1.06 0.95 0.01 3.26
σ2s 16.69 5.06 7.69 26.98

M2: Joint Multivariate
ρ12 0.67 0.09 0.48 0.82
ρ13 0.54 0.11 0.29 0.72
ρ23 0.89 0.04 0.79 0.94
σ21 44.87 5.68 35.42 57.55
σ22 0.90 0.20 0.58 1.36
σ23 13.12 3.03 7.76 19.70

M3: Separate
σ21 45.67 5.49 36.16 57.82
σ22 0.51 0.09 0.36 0.72
σ23 11.49 2.24 8.01 16.82
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latent variable sit in each component model: about one third in the model for the pres-
ence/absence of events pit , and almost all the variability in the other two components of
the model. Table 4.3 also presents the Deviance Criterion Information, referred as DIC,
(Spiegelhalter et al., 2002) for the different models indicating that both M1 and M2 are
comparable in their fit of all three model components and provide a better fit thanM3.

Table 4.3: Estimated correlations from joint models and model diagnostics.
Model Type ρ12 ρ13 ρ23 DICcount DICsev DICtotal
M1 0.59 0.58 0.93 10730 732.4 11462.4
M2 0.67 0.54 0.89 10730 725.7 11455.7
M3 10790 748.4 11538.4
% of Latent Variable 0.37 0.94 0.93

The results for all models were obtained using MCMC methods in OpenBUGS with
three parallel chains and a burn-in of 10000 samples; we retained the last 160000 itera-
tions of each chain with thinning set at 40, which yielded a sample of 12000 simulation
draws. Graphical monitoring of chains along with their sample autocorrelations were used
as diagnostics for convergence.

4.5 Investigation of Bias in Misspecified Shared Frailty
Models

The striking difference in estimates obtained fromM3 as seen in the bottom panel of Figure
4.4 and Table 4.1 prompts an investigation of the potential bias in the severity component
of the model when a joint model is true, but M3 is employed. We simulated 1000 datasets
from the joint model M1 with true parameters as the posterior means from the analysis of
the hormone therapy study, and with the design exactly as for that study.

Figure 4.5 a) displays the true spline mean for the linear predictor, and the median of
the estimates from the simulated datasets. Table 4.1 reports the corresponding information
at time points 12, 24, 36, and 50 weeks. The bias is about the same size as that seen in the
data analysis (reported also in Table 4.1) and is evident for the overall mean term rather
than the treatment effect (the difference between the two splines).
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Figure 4.5: a) Linear predictors of logit(πit): black lines correspond to true values, and
green (CEE) and brown (MPA) to the median of the estimated values from the fit of M3

over the 1000 simulations. b) Linear predictors of logit(πit): black lines correspond to
true values, and different shades of gray correspond to means of estimates from the fit of
the separate model over 250 simulations, where the pair-wise correlations between model
components are 0, 0.10, 0.50, and 0.90.



CHAPTER 4. JOINT ANALYSIS OF RECURRENT EVENTS AND SEVERITIES 68

We also simulated data from a simpler joint model with varying levels of correlation
between the random effects in order to assess the effect of the correlation on the bias of an
analysis using separate models. For this second investigation we model the predictors as

ηkit = dk1+dk2t+bk1xi+bk2xit+Wki(t) (4.6)

where η1it = logit(pit), η2it = log(µit), and η3it = logit(πit); xi = 1 if individual i is in
the treatment group and 0 otherwise. Here again, the sample size and the missing data
mechanisms are the same as for the hormone therapy study, and 250 runs were conducted.
The marginal variance (including the shared variance) of each of the three components
was set to values 44, 1, and 13, for pit , µit , and πit , respectively, and the values of the
linking parameters were set to γ1 = 1, γ2 = 0.15 and γ3 = 0.54; the values of the shared
variance component σ2s were specified according to the correlation required with each pair
of correlations set to the same values, for simplicity, of 0, 0.10, 0.50, or 0.90. Figure 4.5
b) displays the linear predictor for the true model, and the mean of the 250 estimates of
η3it from separate analyses with the four values of the correlation. Table 4.4 presents the
mean of the estimates of the linear predictors and the treatment effect at weeks 12, 24, 36,
and 50 for all correlation values, as well as the bias. The bias of the predictors increases
substantially as the correlation increases, whereas the estimated treatment effect has little
bias.

4.6 Summary

This chapter utilizes shared frailty modeling to link outcomes in an analysis of counts and
their marks, here termed severities, in a scenario where large numbers of zeros are present.
The methods directly enabled an investigation of associations and a determination of which
outcomes were most highly linked. In the hormone therapy study, the linked latent variable
may well represent the stress experienced by the individual that week; research has shown
that hot flushes are heavily associated with stress (Swartzman et al., 1990; Carmody et al.,
2006). As well, the methods have prompted an investigation of whether individuals tend
to report severe events if they are experiencing many events and whether better training of
participants is required in order to monitor these outcomes more effectively.



CHAPTER 4. JOINT ANALYSIS OF RECURRENT EVENTS AND SEVERITIES 69

Table 4.4: Estimates of linear predictors of logit(πit) at 12, 24, 36, and 50 weeks from the
fits of separate analyses when the true model includes a shared frailty term with different
degrees of correlation between each pair of random effects. Treatment is denoted as Trt.

True Correlations: Bias
Week logit(πit) 0 0.10 0.50 0.90 0 0.10 0.50 0.90

Trt 12 -1.56 -1.60 -1.33 -0.22 0.86 -0.04 0.23 1.34 2.42
Trt 24 -1.62 -1.65 -1.38 -0.23 0.93 -0.04 0.23 1.39 2.54
Trt 36 -1.68 -1.70 -1.43 -0.24 0.99 -0.03 0.24 1.44 2.67
Trt 50 -1.75 -1.77 -1.49 -0.25 1.07 -0.02 0.25 1.49 2.82
Control 12 -1.21 -1.16 -0.88 0.14 1.17 0.04 0.32 1.35 2.37
Control 24 -0.91 -0.90 -0.60 0.41 1.42 0.01 0.30 1.32 2.32
Control 36 -0.61 -0.63 -0.32 0.68 1.67 -0.03 0.29 1.28 2.28
Control 50 -0.26 -0.32 0.01 0.99 1.97 -0.07 0.27 1.25 2.22
Trt Effect 12 0.35 0.44 0.44 0.36 0.30 0.09 0.09 0.01 -0.05
Trt Effect 24 0.71 0.75 0.78 0.64 0.49 0.04 0.07 -0.07 -0.22
Trt Effect 36 1.07 1.07 1.12 0.92 0.68 0.00 0.05 -0.15 -0.39
Trt Effect 50 1.49 1.45 1.51 1.25 0.90 -0.04 0.02 -0.24 -0.59
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Generally, however, these sorts of models may be useful for a variety of settings and
it would be important to have a more detailed understanding of the errors which may be
incurred through model misspecification in complex analyses such as these. This requires a
wide and thorough investigation, both theoretically and by simulation. For practitioners, we
recommend simulation confirmation of properties of estimators when conducting related
studies using a variety of proposed joint outcome models. It is also conceivable that the
shared effects are different for the two treatment arms, and extensions of this nature may
also be considered. Further extensions of these type of models for multivariate marked
recurrent events may also be considered when recurrences of more than one outcome are
of interest. We discuss this in more detail in the context of a criminology application in the
next chapter (see Section 5.3).



Chapter 5

Future Work

5.1 Two-stage Designs for Recurrent Events

Several important questions regarding the design of recurrent event studies may be con-
sidered as direct extensions of the results provided in this thesis. One important extension
would consider adaptive balancing of trials, where methods developed in Chapters 2 and 3
would be utilized to obtain measures of balance in a study, with such measures of balance
utilized in deciding strategies for new recruitment in an adaptive, staged, recruitment plan.
Additionally, note that there is little discussion in the literature on simple problems as the
frequency and timing of followup. Cook (1995) has discussed length of study and sample
size based the assumptions of a homogeneous Poisson process with constant accrual rate
and exponential independent loss to followup. Matsui and Miyagishi (1999) built upon
Cook’s (1995) design for an osteoporisis trial where information at the followup times was
available only if at least one event had occurred; the rate of occurrence of events was as-
sumed to be piece-wise constant. Matsui (2005) provided sample size calculations for Pois-
son process models with overdispersion and time-varying treatment effects. Addressing
the current challenges of optimizing resources and generalizing assumptions, Cook et al.
(2009) proposed a two-stage design to address the issue of not having previous information
about expected number of events and the level of heterogeneity between individuals; data
from the first stage are used to provide initial estimates of means and heterogeneity to be
used for developing sample size calculations for the second stage. Methods developed in
this thesis may be used to investigate optimal placement of followup times and the effects

71
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of varying sample size. The focus here is on efficient estimation of the parameters modu-
lating the baseline intensity since these are the ones which are most affected by imbalance.
In this regard, we may use flexible semiparametric forms for modeling the intensity func-
tion as splines (Nielsen and Dean, 2008). The effect of misspecification of the form of the
intensity function could also be explored.

5.2 Assessment of the Use of ScoringApproaches for Anal-
ysis of Counts and their Severities

In hot flush studies it is quite common to record the frequency and severity of the symptoms
and to evaluate treatments using a single composite measure of both outcomes; this is
usually a score constructed as the sum of the number of hot flushes weighted by their
severities. Such an approach is also related to analysing joint outcomes as the number
of car accidents in a portfolio as well as marks representing the claim amount for each
accident through an analysis of the total claim amounts. As well, many other types of health
studies have used this type of composite score, with different sorts of ad hoc approaches
for weights. See, e.g. Toulis et al. (2009), in which a comparison of the frequency of hot
flushes and the composite score was conducted; as well as related work by Nelson et al.
(2006), Kaszkin-Bettag et al. (2009), Huang et al. (2006). Because this composite score of
frequency and severities of hot flushes is widely used, it would be useful to contrast this
approach with the joint analysis and to assess the performance of the use of the composite
score in identifying treatment effects. Particularly since the use of the composite score
is straightforward and an analysis of such outcomes easy to conduct, researchers working
in this field would appreciate guidelines which provide some reassurance of the sorts of
situations when such approaches are satisfactory.
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5.3 MultivariateMarkedRecurrent Events with Exposure

Sometimes, in addition to the presence of marks associated with a point process, there is an
exposure variable which needs to be taken into account when describing the occurrence of
the events and the development of marks over time. A study which motivates this research
is the Pathways to Desistance Study (http://www.pathwaysstudy.pitt.edu/);
collaborations with the principal investigators of this study have recently been initiated.

In the Pathways to Desistance Study, 1,354 adolescent offenders (between 14 and 18
years old) in two counties of the U.S. were recruited after being found guilty of a seri-
ous offense (for example, felonies, sexual abuse, weapons offenses), and were followed
for 7 years. The responses are collected at a monthly level on the recurrence of 24 types
of crime, as for example, being in a fight, shooting at someone, and robbery, as well as
the number of times the crime was committed and a variety of marks associated with the
crimes. In addition, there is information on how many days an individual was housed in
secured, closed facilities (psychiatric hospital, drug/alcohol treatment unit) where the en-
gagement in crime is less likely. Also available are potential prognostic factors which are
classified into the following domains: (1) indicators of individual functioning: e.g. work
and school status and performance, substance abuse, mental disorder, antisocial behavior;
(2) psychosocial development and attitudes: e.g., impulse control, susceptibility to peer
influence, perceptions of opportunity, perceptions of procedural justice, moral disengage-
ment; (3) family context: e.g., household composition, quality of family relationships; (4)
personal relationships: e.g., quality of romantic relationships and friendships, peer delin-
quency, contacts with caring adults; (5) community context: e.g., neighborhood conditions,
personal capital, social ties, and community involvement, and (6) life-events: education, in-
come generating activities, living situation, sanctions and interventions, involvement with
legal system. The main objectives of this study are identification of clusters of trajectories
of recurrence and the characteristics of the different groups of trajectories, as well as how
these are explained by social context and developmental changes, and an assessment of
the effect of legal intervention (being housed in a secure facility) in promoting changes in
trajectories.

It is of particular interest in this study to model and assess the effects of the number of
days an individual spent in a secured facility since rates of events are expected to differ over
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such periods, especially for specific types of crimes. The study presents several challenges
such as the need for methods for joint analysis of a variety of possibly related recurrent
event processes, large numbers of zeros, the requirement for the development of methods
for clustering recurrent event trajectories, and the presence of marks. Development of mod-
els which address these issues would be useful, particularly for determining factors which
are associated with crime desistance while adjusting for the exposure to crime. Note that
with regard to methods for bi-variate recurrent events, Cook and Lawless (2007) mention
three approaches 1) based on time-dependent covariates which may be used to express the
dependency between two types of recurrent events 2) based on conditional independence
between the types of events, and 3) based on marginal rate or mean models. In this study,
there are more than two recurrent event processes to consider, making the setting more
complex. We plan to build upon the methods developed in Chapter 4, and explore the use
of conditional independence models in which it is assumed there is a latent variable that
makes an individual more prone to different events in certain time periods. Further research
would also include the development of specific tests for whether the time spent in a secure
facility has an effect on the recurrence of crime.
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