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Abstract

In this project we examine different sampling plans as part of reliability control procedures
in manufacturing. The systematic sampling conventionally used by many companies can be re-
placed by a skip-lot sampling plan which provides the same level of protection against defective
products while requiring fewer resources. In this project we investigate skip-lot sampling pro-
cedure and its statistical properties. We will also compare the medium rank regression method
of fitting Weibull distribution parameters with the maximum likelihood method. Finally, we
conduct a simulation study to empirically investigate the performance of the proposed method
and its properties. This project considers a wide range of reliability sampling procedures and
makes extensive use of simulation methods.

Keywords: Reliability testing, Skip-lot sampling, Weibull analysis.
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Chapter 1

Introduction

In recent years the popularity and usage of reliability tests and analysis have significantly
grown. Many companies outsource the production process of product components or even
the whole product to second party companies. In order to stay competitive on the market
these companies require procedures to control the quality and reliability of outsourced prod-
ucts. Even if the manufacturing line at the outsourcing company is automated, there are still
variations in the characteristics of outgoing items due to the material used, line operators,
transportation and other controllable and non-controllable factors.

The terms “reliability” and “quality” are often used interchangeably. In fact, these terms
have different meanings: reliability is concerned with the performance of a product through
some desired period (product lifetime), whereas quality is concerned with the performance of
a product at a particular point in time. Therefore, reliability tests are usually more complex
procedures than quality tests. Nevertheless, quality testing and reliability testing both measure
the “goodness” of a product and product reliability depends on the initial product quality.
Most reliability tests are designed to answer one or both of the following questions:

1. Does the product comply with the reliability criteria set by the company?

2. Is one version of the product better than the other one?

If the product has different failure types and each tested item needs to be checked after
every time unit of the test, the reliability testing could be very expensive. Therefore, companies
often try to optimize the cost of reliability. As a result of this, it is common practice to test
only a sample of the produced items and design an efficient test procedure.

This thesis is specially focused on the sampling procedure used to select items from a
population of produced items. The theoretical and simulation study results show that the

1



CHAPTER 1. INTRODUCTION 2

proposed sampling procedure is more efficient than typical procedure currently used in the
industry. Besides the sampling scheme, we review methods to fit the Weibull distribution to
the data. Therefore this thesis examines the complete procedure of reliability testing. The
skip-lot sampling scheme that is used in the proposed method was developed by Dodge and
studied by Perry (1971) in his PhD thesis. Stephens (2000) notes that although skip-lot
sampling procedures were developed years ago, their potential for widespread application in
industry have not been fully realized yet. Nevertheless a lot of standards have been formulated
base on skip-lot sampling—for example, ANSI/ASQC Standard S1-1996.



Chapter 2

Reliability Testing

Many manufactures use reliability testing to meet and exceed customer demand for high
quality and reliable products. As defined by the Advisory Group on Reliability of Electronic
Equipment (AGREE), reliability is the “probability of performing without failure a specified
function under given conditions for a specified period of time.” Therefore reliability testing
usually involves simulation of conditions under which the item will be used during its lifespan.
Reliability does not compare the product to some predefined specifications, such as the case
with quality assurance, but rather investigates the performance over a predefined period of
time. For example, smartphone devices can undergo an accelerated life test. In this test,
devices are exposed to events that simulate real life situations that happen to smartphones
like drops, spills, or excessive heating. The goal of this test is to find out whether the produced
items meet the specified minimum reliability requirement.

To reduce the cost of reliability testing, manufacturers employ sampling schemes to select
items that represent all produced devices. As in any sampling, it is assumed that we can
make appropriate inference about the true population characteristics based on appropriately
selected samples.

Reliability sampling can be formulated in terms of testing a statistical hypothesis:

Ho: µ (mean life) is greater or equal to 20 hours

H1: µ is less than 20 hours

The concept of producer’s risks and consumer’s risks are similar to Type I and Type II
errors:

3



CHAPTER 2. RELIABILITY TESTING 4

Producer’s Risks (a): the probability of failing satisfactory items—the probability of re-
jecting Ho when it holds. It is associated with the level of reliability which has a high
probability of acceptance, and, therefore, low fraction of non-conforming units.

Consumer’s Risk (b): the probability of passing flawed items—the probability of accepting
Ho when it is false.

It is possible to minimize those risks by taking a larger sample size, but in practice reliability
engineers usually set tolerable a and b to reduce costs associated with testing large numbers
of items.

When developing a sampling plan and a procedure for reliability sampling, the following
questions should be answered:

1. Is the testing procedure representative of real life events?

2. Does the criteria to pass/fail comply with consumer and producer risks?

3. What sample size should be drawn?

Besides that, it is important to decide a priori what constitutes a failure, what units of
measurement will be used, and when the test will be terminated.

Often, produced items are naturally combined in lots. Therefore, a reliability engineer
can develop a sampling scheme that will first sample lots as primary units and then, in each
chosen lot, sample devices as secondary units. Then the sampling scheme should consist of
two sampling plans: one for primary units and one for secondary units. A sampling plan for
secondary units is often referred to in the literature as a “reference sampling plan”.

In Chapter 4 we examine a sampling scheme called Skip-lot Sampling Plan 2 with Double
Sampling as a reference plan (SkSP-2DSP). Here primary units (lots) will be selected by
skip-lot sampling procedure. As its name suggests, skip-lot procedure allows skipping some
lots from inspection. It can be viewed as a type of adaptive sampling, where a sample size
depends on the value of interest. SKSP-2DSP samples more from manufacturing lines with
poor quality or reliability of produced devices and samples less from manufacturing lines that
produce devices and lots that have historically passed quality and reliability inspections.

Secondary units are sampled by a Double Sampling Plan (DSP). A DSP provides better
discrimination between acceptable and non-acceptable lots. Besides that, ANSI ASQC Z1.4-
1993 specify that DSPs require less units than single sampling plans (SSPs) but more units
than a multiple plan. Sometimes a SSP with a criteria for pass/fail set to zero non-conformative
units favors the customer while a setting to one non-conformative unit favors the producer
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(Vijayaraghavan 1998). This conflict of interest can be overcome with a DSP that evokes
a second sample if one non-conformative unit was found in the first sample. Therefore a
DSP that allows one non-conformative unit during first sampling and zero non-conformative
units during second sampling is a compromise between the SSP settings that allow only one
non-conformative unit or only zero non-conformity units.

Reliability test criteria can be specified in units of time or failures. In time-terminated
tests the items are tested for a certain amount of time, whereas in failure-terminated tests the
items are tested until a certain number of failures. It is not uncommon in time-terminated
tests to have many survived units when the test is finished. Special methods are developed
and used to take into account of censored failure times. For example, in fitting the Weibull
distribution in Chapter 3, we have adjusted the ranks for failed items to account for the number
of censored items.

There are two methods of measurement in reliability testing. ANSI ISO ASQC A3534 2
1993 defines them as follows:

Method of attributes: Noting the presence (or absence) of some characteristic or attribute
in each of the items in the group under consideration and counting how many items do
(or do not) possess the attribute, or how many such events occur in the item, group, or
area.

Method of variables: Measuring and recording the numerical magnitude of a characteristic
for each of the items in the group under consideration; this involves reference to a
continuous scale of some kind.

When using the method of attributes, a reliability engineer can specify the maximum
number of non-conforming units that are allowable in the sample. It should be noted that the
manufacturer should not knowingly produce any number of defective products and it is always
better to have zero non-conforming items.

Variables sampling plans are more often used for reliability sampling. Time to failure
often can be described by Weibull or Exponential distribution. The test specification may be
written in terms of:

1. Mean life µ

2. Hazard rate at t (number of items failing at time t)

3. Reliable life (some point of time beyond which predefined proportion of items will sur-
vive)
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The following formulas allow the transition from one specification to another:

Weibull:f(t) =
(
β
η

) (
t
η

)β−1
exp

(
t
η

)β
Life Characteristic Notation Formula

Proportion failing before time t F (t) F (t) = 1− e−
(
t
η

)β
Reliability ρr = 1− F (t) ρr = e

−
(
t
η

)β
Mean life µ µ = ηΓ

(
1 + 1

β

)
Hazard rate h(t) h(t) = β

η

(
t
η

)β−1

Cumulative hazard H(t) H(t) =
(
t
η

)β
Table 2.1: Life Characteristics for Weibull distribution

There are two misconceptions in reliability testing that are worth reviewing. First, it is
common to assume that sample size should depend on a lot size or be a certain percentage of
it. In most cases this is not true, because a sample size depends only on the variability of a
given statistic from a random sample, which usually is not dependent on population size.

Second, many engineers believe that setting the number of non-conformative items for lot
acceptance to zero will provide the best customer protection. We will see in the simulation
chapter that customer risk depends on several factors. For example, plans with larger sample
sizes have a lower probability of acceptance for a given number of non-conformative units.



Chapter 3

Parameter Estimation

3.3 Estimating parameters of Weibull distribution

The main challenge of fitting distributions to reliability data is finding the type of dis-
tribution and the values of the parameters that give the highest probability of producing the
observed data. One of the most common probability density functions used in industry is
the Weibull Distribution. It was invented by W. Weibull in 1937, who found it to be so
flexible that it effectively worked on a very wide range of problems. In this chapter, we will
discuss the family of Weibull distributions, various methods of estimating parameters, and the
goodness-of-fit for Weibull distributions.

3.3.1 Weibull Distribution

There are numerous distributions that can model failure data, such as Normal, Exponen-
tial, Rayleigh, Weibull, Gamma, Lognormal, and others. The relationships between various
distributions are shown in Figure 3.1, where the direction of each arrow represents a step from
the general to a special case.

7



CHAPTER 3. PARAMETER ESTIMATION 8

Figure 3.1: General and special case distributions

Weibull distribution can be applied to a large number of situations. The main advantage
of using this distribution is its ability to handle small samples of failure data and its flexibility
in fitting different failure modes. Small samples are common in reliability testing where tests
are often destructive in nature and require costly resources.

Weibull can be fitted in two ways: (i) two-parameter or (ii) three-parameter distributions.
The complete Weibull equation includes three parameters:

f(t) = β

η

(
t− γ
η

)β−1
e
−
(
t−γ
η

)β
, (3.1)

where

β (beta) – slope or shape parameter,

γ (gamma) – location parameter,

η (eta) – scale parameter or characteristic life (time when 63.2% of the units will fail),
and

f(t) ≥ 0, T ≥ max(0, γ), β > 0, η > 0,−∞ < γ <∞. (3.2)

Three-parameter fit is less common in reliability where majority of failures have non-zero
probability from the beginning of the lifecycle. Also, support of three-parameter Weibull
distribution depends on the location parameter which complicates maximum likelihood esti-
mation. Most common workaround for this problem is using profile likelihood for search for γ
(see [8]).

Two-parameter fit (assuming γ=0) is more common in reliability testing and more efficient
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with the same sample size. Furthermore, in some situations β—the slope parameter—can also
be assumed to be known, reducing fit to one parameter. This method is referred to in some
literature as Weibayes method. The method can be useful when 2 conditions are met:

1. Two-parameter Weibull fit produce unsatisfactory wide confidence intervals for estima-
tors.

2. Prior knowledge in point estimation form of β is available.

Abernathy (1996) recommendedWeibayes as best practice for all small samples, 20 failures
or less, if a reasonable point estimate of β is available. Using Weibayes method, β̃ can be
assumed from some historical data or prior knowledge, leaving η̃ as the single parameter,
which can be estimated using maximum likelihood as:

η̃ =
[
ΣN
i=1( ti

β

r
)

1
β

]
, (3.3)

where

t− time units,

r− number of failed units +1,

N− total number of failures plus suspensions,

β− point estimate of slope.

On the one hand the assumption improves the method by shrinking the confidence interval
for obtained estimates, while on the other hand it produces inaccurate results if the assumption
about β was wrong.

The Weibull-Bayesian model (which is actually a true “WeiBayes”) offers an alternative
to one-parameter Weibull, by including the variation and uncertainty that might have been
observed in the past on the shape parameter (β). Assuming prior distributions of β and η are
independent, we obtain the following posterior pdf:

f(β, η|Data) = L(β, η)f(β)f(η)∫∞
0
∫∞
0 L(β, η)f(β)f(η)dηdβ , (3.4)

where

f(η)− prior distribution of η
(
Jeffrey’s prior f(η) = 1

η

)
,

f(β)− prior distribution of β (usually normal, lognormal, exponential or uniform).

The slope parameter β determines the shape of the Weibull curve (See Figure 3.2).
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Figure 3.2: Weibull curves for different values of β

This effect of β can be translated into various modes of failures, as given in Table 3.1.

β value type of failure meaning

β < 1 infant mortality high probability of failing at early stages
β = 1 random failures failures are independent of time
1 < β < 4 early wear out can be due to generic failure modes, such as corrosion
β > 4 rapid wear out steep curve with fast wear out at some point

Table 3.1: Types of failures corresponding to β values

Figure 3.3 shows the width of distribution peaks for various values of η.
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Figure 3.3: Weibull curves for different values of η

3.3.2 Weibull Parameter Estimation

There are several different methods of estimating Weibull parameters, such as: Maxi-
mum Likelihood, MLE with Reduced Bias Adjustment (RBA), and median rank regression.
Olteanu and Freeman (2010) have investigated the performance of MLE and MRR methods
and concluded that the median rank regression method is the best combination of accuracy
and ease of interpretation when the sample size and number of suspensions are small. This
method is popular in industry because fitting can be easily visualized.

First, we will examine the fitting of two-parameter Weibull using median rank regression
method. Median rank regression determines the best-fit straight line by least squares regression
curve fitting. This method proceeds as follows:

1. Obtain failure data

2. Consider the following equation representing Weibull CDF:

F (T ) = 1− e−
(
T
η

)β
(3.5)
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This equation can be linearized by taking logs:

ln
(
1− F (T )

)
= −

(
T

η

)β
(3.6)

ln(T ) = ln(η) + 1
β

ln
(

ln
( 1

1− F (T )

))
(3.7)

Putting it in form of

Y = mx+ c (3.8)

we get

Y = ln
(

ln
( 1

1− F (T )

))
(3.9)

m = β (3.10)

x = ln(T ) (3.11)

c = β ln(η) (3.12)

3. Calculate median ranks: Rank failure times in ascending order. Mean ranks y = Ri
n+1

are less accurate for the skewed Weibull distribution, therefore median ranks are prefer-
able [9]. Median ranks can be calculated from equation (3.13):

N∑
k=i

(
N

k

)
(MR)k(1−MR)N−k = 0.50 = 50% (3.13)

Bernard used an approximation of it as follows:

MR = i− 0.3
N + 0.4 , (3.14)

where

i – failure order number,

N – total sample size.

Rank adjustments are used when failure times are censored for some items. Censored
items cannot be excluded from the analysis. In reliability censored items are sometimes
referred to as suspended or suspensions. The formula in equation (3.15) gives the ranks
adjusted for the presence of suspensions. It is used for every failure and requires an
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additional calculation for reverse ranks (items ranked in descending order).

Adjusted Rank = (Reverse Rank) ∗ (Previous Adjusted Rank) + (n+ 1)
Reverse Rank + 1 (3.15)

4. Fitting the line: The best fit line in MRR is defined here as the one that minimizes
the sum of squared differences between the true and estimated values. There are other
approaches to measure the accuracy of fit besides least squares. Narula et al. (1999)
has described approaches that minimizes the sum of absolute errors and sum of relative
errors (compared with actual value). The conclusion of this study was that least squares
performs better when errors are distributed normally without outliers. Least squares can
be minimized either in x-direction or y-direction. Experiments by Weibull found that
life data errors in the x-direction are generally higher than in the y-direction. Therefore
an estimate obtained by minimizing x-errors would be preferable.

Suppose we have a set of points (x1, y1), (x2, y2). . . obtained by linearization of life data.
We can use the ordinary least squares to estimate the slope (b̂) and the intercept (â) of
the straight line defined by the equation y = b̂x+ â, as follows:

b̂ =
Σn
i=1xiyi −

Σni=1xiΣ
n
i=1yi

N

Σn
i=1x

2
i −

(Σni=1xi)2

N

(3.16)

â = Σn
i=1yi
N

− b̂Σn
i=1xi
N

= ȳ − b̂x̄ (3.17)

Another popular method for Weibull parameter estimation is Maximum Likelihood Es-
timation (MLE). It aims to find the combination of parameters β and η that maximize
the probability of the observed data.

MLE method produces best estimates with large sample sizes. MLE estimates tend
to be optimistic (predict longer life) with small samples [9]. Joint density function
n∏
i=1

(
β

η

)(
ti
η

)β−1
exp

(
− ti
η

)β
would describe the likelihood function for Weibull param-

eters for n failed items. To account for the k suspended items, a factor
(
1−F (T )

)
should

be multiplied, where F (T ) = 1− exp (−t/η)β. So, the complete likelihood function (L)
becomes:

L =
n∏
i=1

(
β

η

)(
ti
η

)β−1
exp

(
− ti
η

)β k∏
j=1

exp
(
− ti
η

)β
. (3.18)

To find the maximum of this function with respect to β and η, we should differentiate



CHAPTER 3. PARAMETER ESTIMATION 14

logarithm of the likelihhod with the corresponding parameter. Maximum likelihood
estimators for β and η does not have short form and are usually found by software.

After estimating β̃ its value can be used to compute η̃ by the following expression:

η̃ =

∑n
i=1 t

β̃
i

r

 1
β̃

, (3.19)

where

r – number of failed items +1.

Similar to Bernard’s rank correction in MRR, we use a ‘Reduced Bias Adjustment’ (RBA)
for improvement of accuracy in the MLE method. This adjustment aims to improve β̃ by
minimizing median bias. For small samples most of the uncertainty is in β̃. Abernathy
used an adjustment factor C4 defined as:

C4 =
√

2
n− 1

(
n−2

2

)
!(

n−3
2

)
!
, (3.20)

where

n – number of complete failures.

He suggested that the value of β̃ gets affected to (7/2)th power of C4. So, the new β̃

would be defined as follows:

β̃RBA = β̃(C4)3.5 (3.21)

Correction factors improve estimates of β̃. New η̃ can be calculated from new β̃. For
alternative method of reducing bias of MLE estimator based on idea of Jacknife see
Quenoulle [7].

Some comparisons between MLE and MRR estimates will be performed in Section 3.3.4.

3.3.3 Goodness of fit

There are different statistical measures of goodness-of-fit such as Chi-Square,
Kolmogoroff-Smirnoff, likelihood-ratio test, Anderson-Darling, etc. MRR can produce a plot
so that a reliability engineer can see how close the least squares line is to the data (Figure 3.4).
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Figure 3.4: Median rank regression method on Weibull paper.

One of the simple measures of how close the model is to the true data is correlation
coefficient between median ranks and the data. Although very popular in industry, it is not
very indicative because it uses median ranks for plotting y on x, which artificially increases
the observed correlation. Abernathy introduces a critical correlation coefficient (CCC) i.e.,
tenth percentile of simulated correlation coefficients as a threshold between satisfactory and
unsatisfactory fits. CCC is estimated by the following procedure:

1. Simulate 1000 correlation coefficients by Monte Carlo trials using median ranks.

2. Choose the 100th value (10th percent of all values).

Therefore, fit is assumed acceptable if the obtained correlation coefficient is greater than that
of the 10th percentile of simulated coefficients. Simulation is intended to approximate the
distribution of the coefficient.
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3.3.4 Case study

In this section we illustrate the theory provided previously in this chapter with a case
study. We will fit the parameters of Weibull distribution and perform goodness of fit analysis.

1. Generate 20 values from Weibull (β = 3, η = 20).

2. Sort and rank them from lowest to highest.

3. Apply Bernard’s approximation (without suspensions) to compute new ranks.

4. Linearize the equation using equation (3.13).

5. Fit least squares linear regression to get the slope (m) and intercept (c) estimates.

6. Simulate 1000 experiments fitting MRR to Weibull data. Then select the highest cor-
relation value of the lowest 100 values of correlation coefficient. In our case it was
CCC = 0.965.

Table 3.2 shows calculation of median rank regression method. Correlation coefficient of
actual data is equal to 0.974. We conclude that it is higher than the CCC and, therefore, the
fit is acceptable.
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Rank Failure Bernard’s X Y Calculated Y Residuals Standard
time rank Residuals

1 9.60 0.03 2.26 −3.51 −2.89 −0.62 −2.18
2 10.64 0.08 2.36 −2.50 −2.49 −0.01 −0.04
3 13.32 0.13 2.59 −1.99 −1.62 −0.37 −1.32
4 13.75 0.18 2.62 −1.64 −1.50 −0.14 −0.51
5 13.77 0.23 2.62 −1.36 −1.49 0.13 0.44
6 13.95 0.27 2.64 −1.14 −1.44 0.30 1.07
7 14.00 0.32 2.64 −0.94 −1.43 0.49 1.72
8 15.55 0.37 2.74 −0.76 −1.02 0.25 0.89
9 15.68 0.42 2.75 −0.60 −0.98 0.38 1.35
10 19.01 0.47 2.94 −0.45 −0.24 −0.22 −0.77
11 19.55 0.52 2.97 −0.31 −0.13 −0.18 −0.65
12 19.67 0.57 2.98 −0.17 −0.10 −0.07 −0.25
13 19.78 0.62 2.98 −0.04 −0.08 0.04 0.15
14 19.80 0.67 2.99 0.09 −0.08 0.17 0.60
15 20.39 0.72 3.02 0.23 0.04 0.19 0.68
16 21.45 0.76 3.07 0.37 0.23 0.13 0.47
17 23.73 0.81 3.17 0.52 0.63 −0.11 −0.38
18 23.82 0.86 3.17 0.69 0.64 0.04 0.15
19 24.83 0.91 3.21 0.89 0.80 0.08 0.29
20 30.96 0.96 3.43 1.18 1.66 −0.49 −1.72

Table 3.2: Intermediate values obtained from an experimental set

Now we can compare the maximum likelihood estimates against median regression esti-
mates. Table 3.3 shows values for both methods along with true values.

MRR MLE TRUE

beta 3.89 3.74 3
eta 20.19 20.1 20

Table 3.3: Comparison between MRR and MLE methods

Appendix A provides results from comparison of two methods by simulation study. MLE
and MRR methods been used to fit Weibull parameters to 10000 series, each contained 20
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randomly generated values from Weibull distribution (β = 3, η = 20). We can see that both
estimators are biased but MLE produces lower MSE for both parameters.

Bias Var MSE

beta eta beta eta beta eta
MLE 0.22 −0.07 0.38 2.46 0.4284 2.4649
MRR −0.12 0.19 0.42 2.63 0.4344 2.6661

Table 3.4: Simulation study results

A recent study by Genschel and Meeker [14] that aimed to compare the two methods of
estimation concluded that for the majority of cases MLE method showed significantly better
results. The reason MRR is still used in industry is its simple methodology and ability to
visualize the fit. Also, a serious drawback for using MLE is its "optimism", overestimating
lifecycle of the item, for small samples which is not desirable in many industry applications.

As will be shown below MRR method could be significantly inaccurate if:

(i) dataset contains a large number of suspensions,

(ii) the graph between failure time and number of failures is highly skewed, as shown in
Table 3.5.

Failure Number State (F/S) Life (Case 1) Life (Case 2)

1 F 10 10
2 S 11 97
3 S 12 98
4 S 13 99
5 F 100 100

Table 3.5: Input set for analysis of differences between MLE and MRR methods

MRR method does not differentiate between the two situations on the basis of failure
time, as long as the number of failures and the total time are the same, and provides the same
result for (β, η) = (0.81, 113.96). The corresponding values for MLE were different for the
two cases—(1.33, 69.2) for Case 1, and (0.93,213.43) for Case 2. This illustrates that (i) MLE
is more accurate than MRR for skewed failure times (ii) MRR underestimates β values in
comparison to MLE ([14]).
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In conclusion, it can be said that the number of Weibull parameters to fit and fitting
method should be chosen based on the data and purpose of the analysis. For example, if there
are small datasets with no suspensions, we can use two-parameter Weibull fitted by Median
Rank Regression method. If sample size is large and there are suspensions, MLE method will
provides parameter estimation with the smallest MSE.



Chapter 4

Sampling units for reliability
analysis

The purpose of this chapter is to examine different sampling plans for monitoring relia-
bility of the production process. In this chapter we will introduce comparison methodology
for two sampling plans and show the current method used in industry. Also we will investi-
gate properties of the proposed sampling plan and mathematical derivations for its operating
characteristics.

4.1 Comparison

Different sampling schemes can be compared on the basis of their operating characteristics,
which show the probability of acceptance as a function of a proportion defective. Operating
characteristic can be plotted as an OC curve. Two plans will be considered identical if their
OC curves are the same (see figure 4.1).

20
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Figure 4.1: Example of Operating Characteristic Curve: OR=9

Operating ratio (OR) is another important measure for comparison. It is defined as
the value of fraction defective (p) at probability of lot acceptance Pa = 0.1 divided by p at
Pa = 0.95. As the OC curve become steeper, the operating ratio becomes smaller. Accordingly,
small values of OR indicates ability of the plan to detect changes in product quality or reliability
with high statistical power. An ideal operating characteristic function is one that accepts lots
with probability one if the reliability is equal or greater than the specification and rejects lots
with probability one if the reliability is less than a predetermined level (see figure 4.2).

Figure 4.2: Ideal OC Curve (defective acceptance proportion=0.4): OR=1
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In developing a sampling plan, a reliability team usually decides the probability of con-
sumer and producer risks that is tolerable. After that, a sampling plan with a specific OC
should be constructed to meet these goals. This process includes choosing a sampling design,
setting the values of sample size, and choosing the number of nonconformitive items that are
tolerable.

4.2 Current Method

One of the practices for assuring the quality or reliability of products in the smartphone
industry is acceptance sampling. An acceptance sampling plan is a set of rules that specify
sampling procedures and criteria for accepting or rejecting a lot based on observed information
from the sample. Criteria can be based on a number of non-conforming items (attribute-based)
or observed variables (variable-based). For example, acceptance of a lot with 3 or less defective
items in the sample will be an attribute-based criterion, whereas acceptance of a lot with the
mean life of sampled units greater than or equal to 20 days will be a variable-based criteria.

Currently one of the common methods to draw a sample for the smartphone reliability
test is using a systematic sampling design for primary units (smartphone lots) and simple
random sampling for secondary units (devices). The lot is rejected if any device in the sample
fails before a certain number of time units. For example, a company produces 2000 devices
per week, which represents one lot. Suppose that reliability specifications for device life during
extreme heating is set to 20 hours. To monitor reliability of the produced devices from each
production line, every fourth week 20 devices are sampled and exposed to extreme heating for
70 hours (see figure 4.3). Every 4 hours devices are inspected and all functionality is tested.
If life of any sampled devices is less than 20 hours then the manufacturing line stops and a
product investigation is launched. The main disadvantages of the sampling design used in this
procedure is that it does not differentiate production lines base on their reliability history, and
it is not the most powerful design for the given sample size. It is desirable to sample less from
production lines with a good reliability history and test more devices from production lines
where reliability of devices has historically been low.
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Figure 4.3: Algorithm of the current method

4.3 Proposed Method

The proposed method is similar to skip-lot sampling inspection with double-sampling as
the reference plan (SkSP-2DSP) initially proposed by Perry and elaborated by Vijayaraghavan
and Soundararajan (1998).

4.3.1 Skip-lot Sampling Plan with Double Sampling as the Reference Plan

SKSP-2DSP has several advantages compared to other sampling schemes. It is generally
has more power when the sample size is small. Therefore it is especially beneficial for situations
with destructive testing that are frequently encountered in reliability. This sampling plan
consists of 2 stages: sampling for primary units using SKSP-2 methodology and sampling for
secondary units using double sampling plan (DSP).

Sampling for primary units (lots) proceeds in several steps (see figure 4.4):
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Figure 4.4: Algorithm of the proposed method

1. Perform sampling on every lot from the process.

2. When i consecutive lots are accepted, switch to skipping inspection, perform sampling
for a fraction of lots.

3. If one of the lots has been rejected, switch to inspection of every lot.

Skipping inspection shold be performed in such a way that every lot has a probability
of being selected. For example, if we want to test 30% of lots we can use the Bernoulli
random number generator with p = 0.3. Therefore every lot will be a candidate for this test
procedure. This procedure will assure that unacceptable lots are not submitted intentionally
during a skipped step as can be done during systematic design.

Some properties of Pa(f, i) where f – frequency of lot sampling during skipping inspection,
i – number of consecutively accepted lots that triggers a skipping inspection which are readily
proven, and P – probability of accepting a lot according to the [12] plan, are:

• For fixed i and given reference plan, and f1 > f2

Pa (f1, i) ≤ Pa (f2, i)
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• For fixed f and given reference plan and integers i > j

Pa (f, i) ≤ Pa (f, j)

• For fixed f and i

Pa (f, i) ≥ P

These properties will be further examined during simulation study in chapter 5.

The sampling for secondary units proceeds as follows:

1. Draw a sample of n1 units from a lot using simple random sampling without replacement.

2. Count number of non-conforming items d1 or calculate variable value:

(a) If d1 non-conforming units in the sample is less than or equal to c1, then the lot is
accepted without further inspection.

(b) If d1 is in the interval from c1 to c2, then a second sample n2 is drawn from the lot
using SRSWR.

(c) If d1 + d2 exceeds c2, then the lot is rejected. If the lot is rejected, manufacturing
process should be stopped and qualitative analysis should be launched.

After this analysis all devices that are below specification should be replaced with items
from accepted lots. The OC function Pa(p) of the SkSP-2DSP plan at reliability level p can
be derived using either Power Series or Markov Chain approaches.

4.3.2 Power Series Approach

This section shows how to calculate Pa for SkSP-2DSP. This derivation is analogous to
the derivation by Perry (1970) but has been extended on several occasions ( [10], [12]). As
mentioned above, the plan has two levels of inspection:

1. Normal inspection, where each lot is sampled.

2. Skipping inspection, where only a fraction f of the lots are sampled.

Therefore, to calculate probability of acceptance (Pa), we need to obtain both Pa for
normal inspection and Pa for skipping inspection.
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Inspection Level

Normal Inspection Skipping Inspection

Lot Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Reliability B G G G B G G G G G G - G - G - G - B

interval value(i)

interval value(U) interval value(V)

Table 4.1: Example of inspection

where

B − “bad lot”-sample with lots that have reliability below specifications,

G− “good lot”- sample with lots that have reliability above specifications,

“-”− skipped lot,

U − expected number of lots during normal inspection,

V − expected number of lots during skipping inspection,

i− number of accepted lots that triggers skipping inspection,

U + V − represents the expected number of lots in a complete cycle of normal and skipping.

Sequence Number of lots Probability

B 1 Q

GB 2 PQ

GGB 3 P 2Q

GGGB 4 P 3Q

etc. etc. etc.

Table 4.2: Sequence of lot samples

where

P − probability of lot acceptance,

Q− probability of lot been rejected.

Perry notes that table 4.2 represents a probability distribution since the probability terms
sums to one, i.e., Q(1 +P +P2 + . . . ) = 1. Therefore, the sum of first i probability terms from
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the distribution is:

i−1∑
j=0

QP j = 1− P i (4.1)

Equation (4.1) represents the probability of a failure sequence with length i or less lots.
It is the probability of not accepting all the next i lots. To derive U and V we note that U
consist of i consecutive lots accepted just before the start of skipping inspection plus all lots
from failure sequences. We will use the following notation:

Z − expected number of failure sequences before having i consecutively accepted lots,

h− expected number of lots in each of these failure sequences.

According to definition of i, h should be smaller than or equal to i. Therefore, U is equal
to:

U = Zh+ i (4.2)

The value of h is the average of the distribution of the first i terms in table 4.2

h = 1Q
1− P i + 2PQ

1− P i + · · ·+ iP i−1Q

1− P i (4.3)

that simplifies to

h = 1− P i(1 +Qi)
Q(1− P i) (4.4)

We can find Z, the expected number of failure sequences before the start of skipping
inspection, from the distribution of all the possible number of failure sequences (see table 4.3).

Number of Failure Sequences
Before i Lots Accepted Probability

0 P i

1 P i
(
1− P i

)
2 P i

(
1− P i

)2
3 P i

(
1− P i

)3
etc. etc.

Table 4.3: Distribution of Failure Sequences
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Therefore:

Z = 0P i + 1(1− P i)P i + 2(1− P i)2P i + . . .

= P i(1− P i)[1 + 2(1− P i) + 3(1− P i)2 + . . . ] (4.5)

Using the formula for infinite series sum
∑∞
n=0 (n+ 1) zn = 1

(1−z)2 for all z ≤ 1, we obtain:

Z = 1− P i

P i
(4.6)

Now, putting all formulas together, we get:

U = Zh+ i

= [1− P i(1 +Qi)](1− P i)
Q(1− P i)P i + i (4.7)

To derive V , the expected number of lots during the skipping period in terms of f, i, and
P , Perry notes that V is equal to 1

f times the number of lots inspected in such periods.

We denote H as an expected number of lots inspected in the skipping period. Therefore,
H is equal to the average number of lots in a terminal-reject sequence, that can be found from
the distribution in table 4.1:

H = 1×Q+ 2× P ×Q+ 3× P 2 ×Q+ . . . (4.8)

Therefore, using the same formula as in (4.6), we obtain:

H = Q(1 + 2P + 3P 2 + . . . )

= Q

(1− P )2

= 1
1− P (4.9)

so V can be shown as:
V = 1

f(1− P ) (4.10)

Now we can obtain the probability of acceptance Pa for the skip-lot plan. First we will
derive the probability of being rejected Pr = 1−Pa, the proportion of lots which are rejected:
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Pr = expected number of lots rejected
expected number of lots submitted

= Z + 1
U + V

The numerator consists of expected number of lots rejected during a normal inspection
period plus 1 lot rejected during a skipping period.

Substituting all previous derivations we have:

Pr =
1−P i
P i

+ 1
1−P i
QP i

+ 1
fQ

= f(1− P )
(1− f)P i + f

(4.11)

Now, Pa = 1− Pr or

Pa = 1− f(1− P )
(1− f)P i + f

= (1− f)P i + fP

(1− f)P i + f
(4.12)

Now we can construct the OC curve as a function of the skipping parameters f , i, and
also P the probability of accepting a lot under DSP, given by:

P = R(c1,m1) +
c2∑

r=c1+1
q(r;m1)R(c2 − r;m2), (4.13)

m1 = n1p, m2 = n2p, q(r,m) = exp(−m)mr/r! (4.14)

and

R(c1;m) =
c1∑
r=0

q(r;m) (4.15)

We have used proportion of defective (p) for the above calculations. In reliability testing
variable-based criterias are more common then attribute-based criterias. Technical Report
TR3 (1961) provide sampling plans and procedures for transition from variable plan to at-
tribute plan. The lifetime of the product is considered to be Weibull-distributed random
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variable Y with unknown parameter η (eta) and β (beta). Since p is the proportion of prod-
uct failing before time t, it can be used as “percent defective” in any attributes plan. The
relationship is illustrated below:

P = F (t) = 1− e−(t/η)β (4.16)

This can be shown by the following example.

n1 = 20

n2 = 20

c1 = 0

c2 = 1

i = 3

f = 0.25

P = 0.1 (from fitting Weibull to the data and finding the cdf)

Pa(p) = [fP + (1− f)P i]
[f + (1− f)P i] = 0.25P + 0.75P 3

0.25 + 0.75P 3

P = R(c1,m1) +
c2∑

r=c1+1
q(r;m1)R(c2 − r;m2)

m1 = n1p = 20× 0.1 = 2

m2 = n2p = 20× 0.1 = 2

R(c1,m1) =
c1∑
r=0

q(r;m1) = exp(−m1)mr
1

r! = exp(−2)20

0! = exp(−2)

c2∑
r=c1+1

q(r;m1)R(c2 − r;m2) = q(1; 2)R(0; 2) = exp(−2)21

1!
exp(−2)20

0! = 2 exp(−4)

P = exp(−2) + 2 exp(−4) = 0.172

Pa(p) = 0.043
0.542 = 0.169.

4.4 Markov Chain Approach to Determine Pa

In this section we will derive probability of acceptance using Markov Chain methods. The
SKSP-2 sampling plan is a Markov Chain because the probability of accepting the present lot
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is dependent only upon the outcome of testing the preceding lot. We define states for the
chain and determine a one-step transition probability matrix.

A trial for the sampling plan corresponds to sampling from a lot which is under consid-
eration. Outcomes of these trials will be the states of the chain. Using the double sampling
plan, all tested lots will be either accepted or rejected even if the immediate result of the sam-
pling can be accepted, rejected, or unable to reach decision (in which case another sampling
is performed from the same lot).

Therefore we can categorize all states of Markov Chain into two main groups: normal
inspection states and skipping inspection states. We will use N to denote states of the chain
where normal inspection is used and S to represent skipping inspection. For the normal
inspection we add an integer that shows the number of preceding consecutive accepted lots,
e.g., N0, N1, N2 . . . , Ni. For the skipping inspection we will use only three states to specify all
outcomes:

SA–lot sampled and accepted during skipping inspection,

SR–lot rejected during skipping inspection,

SN–lot skipped during skipping inspection.

Therefore, there are i + 4 states in this Markov Chain. The transition probability matrix is
shown in table 4.4.

To this state
No N1 N2 . . . Ni SA SR SN

Fr
om

th
is

st
at
e

NO Q P - - - - -
N1 Q - P - - - -
. . .
Ni−1 Q - - P - - -
Ni - - - - fP fQ 1-f
SA - - - - fP fQ 1-f
SR Q P - - - - -
SN - - - - fP fQ 1-f

Table 4.4: Transition Matrix

Now to derive the probability of acceptance we need to sum the limiting or long run
probabilities of all states where a lot has been accepted, which are N1, N2, . . . , Ni, SA, and
SN . From the transition matrix in table 4.4 we can see that there are i + 4 states in this
Markov Chain and therefore it is finite. Besides that, every state can be reached from another
in a finite number of steps; therefore, the chain is recurrent and irreducible. Perry also noted
that N0, SA, and SN steps can recur in exactly one transition, therefore the chain is aperiodic.
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Therefore, Markov Chain representing the sampling plan is finite, recurrent, irreducible, and
aperiodic. Now we will derive the limiting distribution–long run probabilities of the chain
occupying each of its states. Markov Chain ergodic theorem corollary states that when a
chain possesses the aforementioned properties, the limiting distribution will be the same as
the unique stationary distribution. This stationary distribution for each state πi can be derived
from following equations:

πi =
∑
all j

πjPji (4.17)

∑
all i

πi = 1 (4.18)

where

Pij – is the one-step transition probability of going from state i to state j.

i, j – states of the chain.

As in the previous section we will first derive Pr:

Pr = 1− Pa

= πN0 + πSR (4.19)

πN0 and πSR can be found from the following equations:

πN0 = Q
(
πN0 + πN1 + · · ·+ πNi−1 + πSR

)
, (4.20)

πN1 = P (πN0 + πSR) , (4.21)

πNj = P j−1πN1 for j = 2, 3, . . . , i, (4.22)

πSN = (1− f) (πNi + πSN + πSA) , (4.23)

πSA = fP (πNi + πSN + πSA) , (4.24)

πSR = fQ (πNi + πSN + πSA) . (4.25)

and the fact that

πN0 + πN1 + · · ·+ πNi + πSN + πSA + πSR = 1 (4.26)
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Note that πNi = P i−1πN1 and

πN1 + · · ·+ πNi = πN1 + πN1P + · · ·+ πN1P
i−1

= πN1

(
1 + P + · · ·+ P i−1

)
=
(
1− P i

)
Q

πN1 (4.27)

From the same logic

πN1 + · · ·+ πNi−1 =
(
1− P i−1)

Q
πN1 (4.28)

Now we can rewrite equation (4.26) as

πN0 +
(
1− P i

)
Q

πNi + πSN + πSA + πSR = 1 (4.29)

then by substituting πN1 + · · ·+ πNi−1 by (1−P i−1)
Q πN1 in the equation (4.20)

PπN0 =
(
1− P i−1

)
πN1 +QπSR (4.30)

or using equation (4.21)

PπN0 = πN1 − PπSR (4.31)

From equation (4.23) we have

fπSN = (1− f)P i−1πN1 + (1− f)πSA (4.32)

From equation (4.24) we have

(1− fP )πSA = fP iπN1 + fPπSN

Now if we multiply both parts of equation (4.32) by P and add to the above equation we
obtain

πSA = P i

Q
πN1 (4.33)

Then Perry suggests multiplying equation (4.32) by (1−fP ) and equation for (1−fP )πSA
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by (1− f) and then adding the resulting equations:

πSN = (1− f)P i−1

fQ
πN1 (4.34)

Now we can put the above results in equation (4.29) to obtain:

πN0 +
(
f + P i−1 − fP i−1)

fQ
πN1 + πSR = 1 (4.35)

If we subtract equation (4.31) from equation (4.30) the following will be evident:

πSR = P i−1πN1 (4.36)

Now by subtracting these into equation (4.35), multiplying by P and then subtracting
equation (4.30) πN1 is equal to:

πN1 = fQP

f + (1− f)P i (4.37)

Then we can rewrite equation (4.33) and (4.34) as:

πSN = P i (1− f)
f + (1− f)P i (4.38)

πSR = fQP i

f + (1− f)P i (4.39)

πSA = fP i+1

f + (1− f)P i (4.40)

Finally, we can rewrite equation (4.35) as:

πN0 = fQ
(
1− P i

)
f + (1− f)P i (4.41)

Therefore,

Pr = πN0 + πSR

= fQ
(
1− P i

)
f + (1− f)P i + fQP i

f + (1− f)P i

= f (1− P )
f + (1− f)P i (4.42)
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and

Pa = 1− Pr

= f + P i (1− f)− fQ
f + (1− f)P i

= fP + (1− f)P i

f + (1− f)P i (4.43)

which matches equation (4.12) obtained through the power series approach.



Chapter 5

Simulation

In this chapter the properties of the proposed sampling method will be examined through
theory and simulation. In particular the relationships between P (a) and its parameters: f , i,
fraction defective and p will be investigated and compared to the OC curve for SkSP-2DSP
and systematic sampling plans.

During simulation, failure times were generated for the 1000 lots with 100 devices in
each lot. Failure times were generated from Weibull distributions with three different sets
of parameters. The first type of parameter distribution values were supposed to produce
failure times that would satisfy the reliability requirements so that a lot would be accepted.
Distributions from the second type of parameter values were supposed to produce failure times
that would generate “defective” lots. Distributions from the third type of parameter values
were supposed to produce failure times that would generate “doubtful” lots that would require
a second sampling as per the SKSP-2DSP procedure. After that the median rank regression
method was used to fit Weibull parameters to all the devices in a lot (100) and all lots (1000)
to obtain population values for the comparison.
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5.1 Frequency (f)

To reveal the dependence between P (a) and f Equation 4.12 will be transformed as
follows:

Pa = (1− f)P i + fP

(1− f)P i + f
, assuming f > 0

= P i − fP i + fP

P i − fP i + f

= 1− f − fP
P i − fP i + f

= 1− 1− P
P i

f − P i + 1
(5.1)

It can be seen from Equation (5.1) that as f increases the ratio P i/f decreases and overall
P (a) decreases, assuming other parameters are fixed; in other words, the more primary units
are sampled, the lower the probability that the lot will be accepted. Figure 5.1 shows the
relationship between f and P i obtained through the simulation.

Figure 5.1: OC curve for sampling plan (n1 = 20, n2 = 20, f1 = 1, f2 = 3, c1 = 1, c2 = 0, i = 5)
and (n1 = 20, n2 = 20, f1 = 2, f2 = 5, c1 = 1, c2 = 0, i = 5)

It can be seen from the OC curve for the sampling scheme that samples taken every second
lot during normal inspection and every fifth lot when skipping inspections has a slightly bigger
P (a) value than the sampling scheme that samples every lot during normal inspection and
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every third when skipping inspections. It is also worth noting that when f = 1 the probability
of acceptance will be equal to P—probability of acceptance in the reference sampling plan.

5.2 Number of accepted lots that triggers skipping inspec-
tion (i)

Now P (a) will be considered as a function of i only. As with frequency, Equation 4.12
can be rewritten as:

Pa = (1− f)P i + fP

(1− f)P i + f

= 1− f − fP
P i(1− f) + f

(5.2)

Now as i increases the denominator decreases (P is less than 1), and therefore P (a) also
decreases. It is logical that when the number that triggers skipping inspection is increased
there will be a bigger probability for the lot to fail, because more lots will be subject to
inspection. When lots are skipped it is assumed that they have been accepted. Figure 5.2
shows the result from simulation, assuming P and f are fixed.

Figure 5.2: OC curve for sampling plan (n1 = 20, n2 = 20, f1 = 1, f2 = 3, c1 = 1, c2 = 0, i = 5)
and (n1 = 20, n2 = 20, f1 = 1, f2 = 3, c1 = 1, c2 = 0, i = 15)

It is hard to see the difference between the two lines but when the proportion of defective
lots is less than 30%, the sampling scheme with i = 5 has lower values than when using the
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sampling scheme with i = 15 for 90% of the time. When the proportion of defective lots is
bigger than 70%, the values are very similar because skipping inspection can not be triggered
in either case.

5.3 Probability of lot acceptance (P)

The dependency between P (a) and probability of lot acceptance P will be examined. P
itself is a function of the proportion of defective lots, sample size and acceptance threshold.
Equation 4.12 can be rewritten as follows:

Pa = (1− f)P i + fP

(1− f)P i + f

= 1− f(1− P )
P i(1− f) + f

(5.3)

It can be seen that as P increases, the numerator in Equation (5.3) decreases, the denominator
increases and overall P (a) increases. Figure 5.3 shows the result from the simulation study.

Figure 5.3: OC curve for sampling plan (n1 = 20, n2 = 20, f1 = 1, f2 = 3, c1 = 1, c2 = 0, i = 5)
and (n1 = 40, n2 = 20, f1 = 1, f2 = 3, c1 = 1, c2 = 0, i = 5)

In this case two different sample sizes, 20 and 40, were tried. The differences between the
two OC curves can be seen: the OC curve for the sampling scheme with n = 20 generally has
a higher P (a) than the OC curve for the sampling scheme with n = 40.
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Now the skip-lot plan that has approximately the same OC curve as the plan with sys-
tematic sampling, will be shown.

Figure 5.4 presents the OC curves for the method with systematic sampling for primary
units and simple random sampling for secondary units.

Figure 5.4: OC curve for SkSP-2DSP sampling plan (n1 = 20, n2 = 20, f1 = 2, f2 = 4, c1 = 1,
c2 = 0, i = 5) and systematic sampling (f = 3, n = 20, c = 0)

It can be seen that the line for SkSP-2DSP is steeper than the systematic sampling curve;
it also more efficient in terms of sample size. When the proportion of defective lots is less that
20% and skipping inspection was triggered, the sample size was on average 266 lots which is
20% lower than with systematic sampling (333 lots).



Chapter 6

Conclusions

There are numerous applications for control-based sampling in industry. Control of reli-
ability based on population sampling often requires expensive resources and does not always
produce better results than control based on sampling [10]. Therefore, a statistically powerful
sampling scheme can be used to ensure that production meets predefined levels of reliabil-
ity. When a control engineer tests products from several different manufacturing lines it is
often the case that some lines, overtime, produce items that constantly pass reliability tests
while other lines require more control. Therefore, it is a natural idea to develop a sampling
scheme that will sample less from manufacturing lines with historically satisfactory reliability.
Skip-lot sampling allows this differentiation and therefore often reduces the frequency (and
cost) of control.RB1983

The skip-lot sampling scheme that is used in the proposed method was developed by
Dodge and studied by Perry (1971) [11]. SkSP-2 compared with SkSP-1 has an additional
reference sampling plan: a special plan for sampling units in the lot. Although the methodol-
ogy was developed several decades ago, the SkSP-2 plan still has great potential to be more
widespread in industry.

Weibull distribution is the most commonly used distribution to approximate life data in
reliability testing. It is a very flexible distribution that can mimic the characteristics of many
other distributions, based on the value of the shape parameter, β. Besides β, there are two
other parameters that determine Weibull pdf. It is common in reliability testing to assume
that the location parameter, γ, is to be fixed at 0, therefore reducing the fit to two parameters.
In Weibayes method, the β parameter could also be assumed to be fixed at some historical
value. In Bayesian setup for Weibull analysis it is common to use non-informative distribution
for η and normal, exponential or uniform distribution for β.
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In chapter 3 two methods for fitting parameters to the Weibull distribution were examined.
The median rank regression method was seen to be less preferable than the maximum likelihood
method for the majority of situations. The MLE-RBA method helps to reduce further bias in
maximum likelihood estimators.

SkSP-2DSP plan can be defined fully by the following parameters:

f1 and f2—frequency of sampling during normal and skipping inspections,

n1 and n2—sample size during normal and skipping inspections,

c1 and c2—criteria for acceptance during normal and skipping inspections.

An advantage of using the SkSP-2DSP plan is that it has a lower frequency of sampling
than systematic sampling when the tests are consistently being passed. This encourages the
manufacturer to improve the production process. The reduction in sampling does not affect the
ability of the scheme to differentiate between satisfactory and non-satisfactory lots. A double
sampling plan used as a reference plan was chosen because its operating characteristics are
superior to simple random sampling and it also benefits manufactures with reliable production.

Sampling schemes for SkSP-2DSP and systematic sampling have been compared on the
basis of their operating characteristics,which show the probability of acceptance as a function
of a proportion of defective items. Operating characteristic can be plotted as an OC curve.
It was seen that the SkSP-2DSP plan provided a similar OC curve to systematic sampling,
given a smaller sample size (266 lots versus 333 lots for systematic sampling when proportion
of defective lots is 20%). Therefore, SkSP-2DSP plan can be recommended as an efficient
sampling scheme for reliability testing.

Probability of acceptance can be derived either with Markov Chain’s approach or a power
series approach. In both cases the final result is:

Pa = (1− f)P i + fP

(1− f)P i + f

where

f − frequency of sampling during skipping inspection,

i− number of accepted lots that triggers skipping inspection,

P − probability of lot acceptance.
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During simulation the relationship between parameters of SkSP-2DSP and probability of
acceptance were examined. Simulation and theoretical results showed that for increasing i –
probability of acceptance decreasing, for increasing f – probability of acceptance decreasing,
and for increasing P – probability of acceptance also increasing.

In future work the criteria for passing a lot can be improved. As seen in chapter 2 it is
possible to set criteria for the Weibull mean. It can be advantageous to use a medium value
for Weibull because reliability data is usually skewed. Also it will be interesting to test the
SkSP-2DSP plan with several levels of sampling frequency or even make sampling frequency
a function of reliability for previously tested lots.



Appendix A

Simulation Study for Estimating
β and η

Figure A.1: Simulation study for estimating β using MLE
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Figure A.2: Simulation study for estimating η using MLE

Figure A.3: Simulation study for estimating β using MRR
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Figure A.4: Simulation study for estimating η using MRR



Appendix B

Partial R Code for the Simulation
Study

B.1 Main Code

source ("label_matrix.R")
source ("cdf_combo.R")
# 3 classes of lots according to failure time
# (i) fully defective
# (ii) fully good
# (iii) partially defective
# User-defined conditions : frequency, sample size, criteria, i-number that triggers skipping
inspection
# (1) systematic, (2) SKSP first draw and (3) SKSP second draw
# total 9 variables (f1,n1,c1,f2,n2,c2,f3,n3,c3)
library(mixdist)
#input variables from csv file
lot=1000 #number of lots
item=100 #number of items in the lot
perdef=0.25 #share of defective lots
pergood=0.5 #share of acceptable lots
perdoub=1-(perdef+pergood) #share of doubtful
i<- read.csv(file="input.csv",header=FALSE,sep=",")
input = i$V1 # this matrix contains values f1,n1,c1,f2,n2,c2,f3,n3,c3 respectively f1 = input

47



APPENDIX B. PARTIAL R CODE FOR THE SIMULATION STUDY 48

[1]
n1 = input [2]
c1 = input [3]
f2 = input [4]
n2 = input [5]
c2 = input [6]
f3 = input [7]
n3 = input [8]
c3 = input [9] # creation of matrix
i<-matrix (runif(lot*item),nrow=lot)
items_matrix<- label_matrix (i)
write.csv(items_matrix,"data.csv",append=F)
# SHUFFLING AND SIMULTANEOUS ALLOCTION PROCESS
# lets shuffle the lots and take first as defective (dlot),
# next as good(glot), and last as doubtful (rlot)
# sls : shuffled lot sequence
sls<- sample.int(lot,lot) #sample 0-n, number
dlot<- matrix (1:(lot*perdef*item),nrow=lot*perdef)
for (i in 1:lot*perdef)
dlot [i,] = rweibull (item,2,60)
write.csv(dlot,"dlot.csv",append=F)
#allocation of values ’dlot’ in items_matrix on the positions described by sls
for (i in 1:lot*perdef)
for (j in 1:item)
items_matrix[sls[i],j] = dlot[i,j];
# similarly, do the same for glot and rlot
glot<- matrix (1:(lot*pergood*item),nrow=lot*pergood)
for (i in 1:(lot*pergood))
glot [i,] = rweibull (item,2,300)
write.csv(glot,"glot.csv",append=F)
for (i in 1:(lot*pergood))
for (j in 1:item)
items_matrix[sls[i+lot*perdef],j] = glot[i,j];
rlot<- matrix (1:(lot*perdoub*item),nrow=lot*perdoub)
for (i in 1:(lot*perdoub))
rlot [i,] = rweibull (item,2,105.95)
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write.csv(rlot,"rlot.csv",append=F)
for (i in 1:(lot*perdoub))
for (j in 1:item)
items_matrix[sls[i+(lot*pergood+lot*perdef)],j] = rlot[i,j];
write.csv(items_matrix,"items_matrix_shuffled.csv",append=F)
# since elemnts in the lot are randomly generated we could
#just take first 20 values which will be the same as SRS
# TRUE VALUE COMPUTATION FOR SYSTEMATIC AND SKIP-LOT
cdf_t<- NULL
count_systematic_t = 0
count_skiplot_t = 0
n4 = n2+n3
c4 = c2+c3
true_count<- NULL
for (i in 1:lot)
{
cdf_t [i] = cdf_combo (items_matrix[i,],20)
q = cdf_t [i]
if ((q*n1)<c1)
{
count_systematic_t = count_systematic_t + 1
} # cdfcombo is a function that has output as a weibull cdf at particular point-neither pweibull
or survreg worked for this if ((q*n4)<c4)
{
count_skiplot_t = count_skiplot_t + 1
} # end if - skiplot } # end for
count_systematic_t
count_skiplot_t
true_count = c(count_systematic_t,count_skiplot_t)
write.csv(cdf_t,"true_values.csv",append=F)
write.csv(true_count,"true_count.csv",append=F)
cat (paste("actual number of good units expected from systematic sampling = ",count_systematic_t,’\n’))

cat (paste("actual number of good units expected from skip-lot sampling = ",count_skiplot_t,’\n’))

# APPROACH 1 : systematic sampling
# S1 contains the values of the randomly selected cells.
S1_row = lot/f1
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S1_row
S1_n = S1_row*n1
#out of x lots, only s1_row will get selected, and n1 items from each lot
S1_0 = items_matrix [,c(1:n1)]
S1 = S1_0 [c(1:S1_row),]
write.csv(S1,"S1.csv",append=F)
# matrix extraction completed
passed<-NULL
failed<-NULL
# cdf test for lots in S1 (rows)
for (i in 1:S1_row)
{
x = cdf_combo(S1[i,],20)
if ( x*n1 > c1)
{
failed<-c(failed,x)
cat (paste(i,x,"failed",’\n’))
} else
{
passed<-c(passed,x)
cat(paste(i,x,"passed",’\n’))
}
write.csv(passed,"passed.csv",append=F)
write.csv(failed,"failed.csv",append=F)
}
# APPROACH 2 : Skip-lot: In this approach, we will have 3 groups: "rejected", "selected",
"doubtful"
# c2<c3. For E(lot)<c2 -> select. for E(lot)>c3 - reject. Else add n3, check skip lot for c3
# finally, either "rejected" or "selected".
# S2 would be similar to S1
S2_row = lot/f2
S2_n = S2_row*n2
S2_0 = items_matrix [,c(1:n2)]
S2 = S2_0 [c(1:S2_row),]
write.csv(S2,"S2.csv",append=F)
# However, S3 will contain columns starting from n2+1 -> n2+n3
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S3 = items_matrix [,c(n2+1:n3)]
write.csv(S3,"S3.csv",append=F)
selected<- NULL
rejected<- NULL
doubtful<- NULL
cs = 0 # count for skip
nlots_2 = 0 # count for selected samples
# cdf test for lots in S1 (rows)
i1 = 0
while (i1<S2_row)
{
i1 = i1+1
x = cdf_combo (S2[i1,],20)
if ( x*n2 < c2)
{
selected<-c(selected,x)
cs=cs+1
nlots_2 = nlots_2+1
cat (paste(i1,x,"selected",cs,’\n’))
} # end condition E(n) <c2
else
if ( x*n2 > c3)
{
rejected<- c(rejected,x)
cat (paste(i1,x,"rejected",’\n’))
cs = 0
} # end condition E(n)>c3
else
{
doubtful<-c(doubtful,x)
cat (paste(i1,x,"doubtful",’\n’))
# tie breaker
y = cdf_combo (S3[i1,],20)
if (y*n3 <c3)
{
selected<-c(selected,x)
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cat (paste(i1,y,"selected",’\n’))
cs = cs+1
nlots_2 = nlots_2 + 1
}
else
{
rejected<- c(rejected,x)
cat (paste(i1,y,"rejected",’\n’))
cs = 0
}
} # end of tie
if (cs>5) # SKIPPING VALUE (i)
{
nlots_2 = min (nlots_2+f3, nlots_2 + (S2_row - i1))
i1 = i1 +f3
}
} #end for
# FINAL RESULTS:
# Quantity of lots
nlots_1 = length (passed) *f1
# Quality of lots
good_1 = length (passed)
bad_1 = length(failed)
good_2 = length (selected)
bad_2 = length (rejected)
p_a_bad_syst<-(1-(bad_1/(bad_1+good_1)))
cat (paste("p(a) systematic = ",p_a_bad_syst,’\n’)) prop_bad_syst<-(lot-count_systematic_t)/lot
cat (paste("true proportion of bad lots systematic = ",prop_bad_syst,’\n’))
p_a_bad_skip<-(1-(bad_2/(bad_2+good_2)))
cat (paste("p(a) skip = ",p_a_bad_skip,’\n’))
prop_bad_skip<-(lot-count_skiplot_t)/lot
cat (paste("true proportion of bad lots skip = ",prop_bad_skip,’\n’))
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B.2 CDF fitting

# This function generates best fit alpha, beta for a given dataset
# uses it to get cdf, test the cdf at any desired value
# returns point value for cdf (t)
# custom function for specific situation
cdf_combo<- function (x,t)
{
n = length (x) # number of points
# converting weibull to linear and applying least squares
y1 = c(1:n)
for (i in 1:n)
{
q = (i-0.3)/(n+0.4)
y1[i] = log(log(1/(1-q)))
}
x0 = sort (x)
x1 = log(x) # sorting before applying regression
z = lm (y1 ˜ x1)
beta = z$coeff["x1"]
eta1 = z$coeff["(Intercept)"]
eta = exp (-(eta1/beta))
cdf = 1 - exp (-((20/eta)̂beta)) # ficing x=20 for cdf
return (cdf );
} Simulation study:
be = matrix (runif(40000),nrow=10000)
be[,]=0
betaeta_matrix = label_matrix_method (be)
# Loop initiation
for (i in 1:10000)
{
random_num= rweibull (20,3,20)
sorted_num = sort (random_num)
p_mle = parameters_mle(sorted_num)
p_mrr = parameters_mrr(sorted_num)
# store values in original matrix
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betaeta_matrix [i,] = c (p_mle,p_mrr)
}
hist(betaeta_matrix[,1], breaks=50, col="grey", border="pink", main =
"MLE estimator for beta",xlab="Beta",xlim=c(0,6) )
abline(v = 3, col = "red", lty="dotdash")



Bibliography

[1] Gelman A., John B. Carlin, Hal S. Stern, and Rubin Donald B. Bayesian Data Analysis.
Chapman & Hall/CRC, 2nd edition, 2004.

[2] Liu C.-C. A Comparison Between the Weibull and Lognormal Models Used to Analyze
Reliability Data. PhD thesis, University of Nottingham, 1997.

[3] Olteanu D.A. and Freeman L.J. The evaluation of median rank regression and maxi-
mum likelihood estimation techniques for a two-parameter weibull distribution. Quality
Engineering, 2010.

[4] Hirosi H. Bias correction for maximum likelihood estimates in the two parameter weibull
distribution. IEEE Transactions on Dielectrics and Electrical Insulation, 6:66–68, 1996.

[5] Martz H.F. and Waller R.A. Bayesian Reliability Analysis. John Wiley & Sons, Inc., New
York, 1982.

[6] Dimitri Kececioglu. Reliability Engineering Handbook, volume 1. Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1991.

[7] Quenouille M.H. Notes on bias in estimation. Biometrika, 61:353–360, 1956.

[8] Lockhart R.A. and Stephens M.A. Estimation and tests of fit for the three-parameter
weibull distribution. Society, 56(3):491–500, 2011.

[9] Abernethy R.B. The New Weibull Handbook. Robert B. Abernethy, 536 Oyster Road,
North Palm Beach, 5th edition, 2006. FL 33408–4328.

[10] Abernethy R.B., Breneman J.E., Medlin C.H., and Reinman G.L. Weibull analysis hand-
book. Technical report, Air Force Wright Aeronautical Laboratories Technical Report
AFWAL-TR-83-2079, 1983. Available at http://handle.dtic.mil/100.2/ADA143100.

[11] Perry R.L. A System of Skip-Lot Sampling Plans for Lot Inspection. PhD thesis, Rutgers
University, New Brunswick, New Jersey, 1971. p. 95.

[12] Brugger R.M. A simplification of the Markov Chain approach to continuous sampling
plan formulation. QEM 21-230-12, March 1972. Ammunition Procurementand Supply
Agency.

[13] Thompson S.K. Sampling. Wiley, New York, 2nd edition, 2002.

[14] Genschel U. and Meeker W.Q. A comparison of maximum likelihood and median rank
regression for weibull estimation. Quality Engineering, 22:236–255, 2010.

55



BIBLIOGRAPHY 56

[15] Wallodi Weibull. A statistical distribution function of wide applicability. Journal of
Applied Mechanics, 18:293–297, 1951.

[16] Meeker W.Q. and Escobar L.A. Statistical Methods for Reliability Data. John Wiley &
Sons, Inc., New York, 1998.




