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Abstract

This thesis describes the application of terahertz (THz) spectroscopy to two physical systems, metal-

lic Cr1−xVx alloys and insulating cuprates. In the first system, we use time-domain THz spec-

troscopy (THz-TDS) to measure the low-frequency dynamical conductivity of Cr1−xVx thin films.

From the Drude model, we determine the plasma frequency of samples with x=0-0.08, as the system

undergoes a quantum phase transition at x∼ 0.035 from a spin-density-wave state to a paramagnetic

state. We compare these plasma frequency estimates to those inferred from the Hall resistance RH

on the same samples. We find that while both techniques reveal the opening of the spin-density-wave

gap, quantitative differences appear at low temperatures that we attribute to anisotropic scattering.

In the second system, we use THz pulses to probe the conductivity of photoexcited carriers in

insulating cuprates Sr2CuO2Cl2, YBa2Cu3O6, and La2CuO4. In all these compounds, photoconduc-

tivity appears promptly and decays non-exponentially in picoseconds. In the first few picoseconds

after photoexcitation, the decay is characterized by fast dynamics that is weakly dependent on ma-

terial, temperature, and concentration in the range of 0.2 to 1.5% holes per unit cell. Assuming a

quantum efficiency of unity, the estimated peak mobility for all three compounds falls in the range

0.1-0.5 cm2/V · s. This is lower than the Hall mobility in chemically doped systems with similar

carrier concentrations, but orders of magnitude larger than earlier static photoconductivity results,

leading us to identify it as the intrinsic mobility of photoexcited carriers in insulating cuprates. At

about 100 ps after photoexcitation, the conductivity develops a relatively strong temperature depen-

dence that indicates hopping transport.
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Chapter 1

Introduction

The terahertz (THz) regime is loosely defined to span the frequencies between 100 GHz and 10 THz.

In equivalent units,

1 THz⇔ 300 µm⇔ 33 cm−1 ⇔ 4.2 meV⇔ 48 K.

THz frequencies occupy a gap between conventional microwave and infrared spectroscopies, and

cannot be accessed effectively by standard techniques from either neighbouring frequency range.

Frequency (Hz)

10 10 10 10
9 12 15 18

X-rayMircowave

THz region

Visible
IR

Figure 1.1: THz region in the electromagnetic spectrum.

Advances in femtosecond mode-locked lasers in the 1980s were a major breakthrough in the

field. The next decade was followed by the development of various THz sources, including photo-

conductive switches [1] and electro-optic crystals [2], that have led to higher THz radiation intensity

and detection sensitivity. Unlike conventional optical spectroscopy, THz spectroscopy detects the

coherent field of THz radiation with sub-picosecond resolution.

In THz time-domain spectroscopy (THz-TDS), ultrafast optical pulses are used to generate THz

radiation either by inducing photocurrents in a photoconductive antenna or via optical rectification

in a nonlinear crystal. When combined with appropriate detectors, e.g., another photoconductive an-

tenna or an electro-optic material, these sources can be utilized for THz time-domain spectroscopy.

1



CHAPTER 1. INTRODUCTION 2

1.1 THz time-domain spectroscopy of Cr1−xVx alloys

THz-TDS is capable of studying the material properties in a part of the electromagnetic spectrum

that is of particular interest in material science. Interestingly, scattering rates of many metals, doped

semiconductors [3], and high temperature superconductors [4] fall in the THz region. The technique

is also capable of measuring the complex electromagnetic field amplitude, enabling simultaneous

extraction of the real and imaginary parts of the conductivity without requiring Kramers-Kronig

transformations. Using THz-TDS, we can simultaneously estimate the DC conductivity and scat-

tering life time in metals. From their product, we determine the plasma frequency, a fundamental

ground-state property of the Fermi surface. We applied this idea for studying the complex conductiv-

ity in Cr1−xVx over concentrations with x=0-0.08. We probed the changes in the plasma frequency

as the system undergoes a quantum phase transition from a spin wave density (SDW) state to a

paramagnetic state at x∼ 0.035.

1.2 Visible-pump, THz-probe spectroscopy of insulating cuprates

The time resolution of THz-TDS makes it ideal for visible-pump, THz-probe spectroscopy. The

basic idea is to optically create photocarriers in a sample and probe the non-equilibrium state using

THz pulses. In our visible-pump, THz-probe spectrometer, the THz generation is based on optical

rectification and detection is based on free-space electro-optic sampling. A regenerative amplifier is

employed to amplify ultrafast optical pulses to provide a high density of photoexcitations in samples.

The technique is a natural choice for investigating the decay dynamics and underlying processes in

insulating and semi-insulating materials. In this thesis, we applied the technique to study the time

evolution of photoconductivity in the insulating cuprates Sr2CuO2Cl2, YBa2Cu3O6, and La2CuO4.

At early times after photoexcitation, we find that the mobility of the photocarriers is limited by non-

equilibrium bosons, presumably consisting of both phonons and spin fluctuations. Approximately

100 ps after photoexcitation, these bosons have decayed, resulting in a reduction in mobility that

suggests polaronic hopping transport.



CHAPTER 1. INTRODUCTION 3

1.3 Structure of the thesis

This thesis is organized as follows. Chapter 2 is devoted to instrumentation and methods in time-

domain THz spectroscopy. I begin by explaining THz generation and detection using dipole anten-

nas. After a brief discussion of how the photoconductive antennas are fabricated at the SFU clean

room facility, I discuss the process for measuring the conductivity of a thin metal film on a substrate

and the models we use for analyzing the transmission amplitude data.

Chapter 3 is devoted to the study of itinerant carriers in Cr1−xVx thin films. We determine the

evolution of the plasma frequency as the system undergoes a quantum phase transition from a spin-

density-wave state to a paramagnetic state. We compare these to the plasma frequency inferred from

Hall measurements on the same samples. The project was started by Saeid Kamal, a former member

of our group, who performed the initial measurements on the first batch of samples. Eric Fullerton’s

group at the University of California at San Diego made the samples and performed the Hall mea-

surements. I completed the initial THz-TDS measurements and performed new measurements on a

second batch of samples, after identifying and reducing the limiting systematic uncertainties of the

measurement.

In Chapter 4, the theoretical and experimental principles of the visible-pump, THz-probe tech-

nique are highlighted. I explain THz generation and detection using optical rectification and electro-

optic sampling in nonlinear crystals. I discuss the layout of the apparatus and measurement process,

then demonstrate its application with a GaAs sample.

In Chapter 5, we report the transient photoconductivity of insulating cuprates as a function of

time, frequency, and temperature in the initial state after photoexcitation. The picosecond resolution

of the visible-pump, THz probe technique allows us to study the intrinsic properties of the photoin-

duced carriers. This project was initiated by Jesse Petersen, a former member of our group, who

performed the initial measurements on Sr2CuO2Cl2. After performing a full optimization of the

spectrometer and laser system, I improved the data quality and extended the work to YBa2Cu3O6

and La2CuO4.

In Chapter 6, I outline the future directions and possible ways to improve the quality of mea-

surements.



Chapter 2

THz time-domain spectroscopy

The work in this thesis relies on two distinct THz spectrometers that employ common principles

of operation with somewhat different technology. This chapter provides an overview of the general

principles of THz time-domain spectroscopy (THz-TDS) and a description of the THz spectrometer,

based on photoconductive antenna technology, that we used to characterize Cr1−xVx alloys. I begin

with an explanation of THz generation and detection using dipole antennas, and describe how we

implement this technology in our laboratory THz spectrometer. I then discuss the measurement

procedure and the models we use for data analysis. The basic principles described here are also used

in a separate visible-pump, THz-probe spectrometer but with a different technical implementation

that I describe in Ch. 4.

2.1 THz generation using a photoconductive antenna

Fig. 2.1(a) is a schematic of a typical photoconductive antenna used in our laboratory. The central

element is a simple metallic dipole antenna that is coupled to a voltage bias through a parallel-wire

transmission line and interrupted by a gap of a few microns at the center. The gap is filled by a pho-

toconductive material that serves as a picosecond switch when illuminated by a femtosecond laser

pulse. The bias field accelerates photocarriers to produce a transient photocurrent J(t). A typical

transient current and its time derivative are illustrated in Fig. 2.1(b). In the far-field approximation,

the emitted THz pulse is given by [5]

E =
µ0

4πr3
(P̈× r)× r, (2.1)

4
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Photocurrent

E(t)

J(t)

Time

Time

a) b)
Optical

 Pulse

E  (t)
THz

δJ 

δt

V

50 µm

10 µm

40 µm

PC Al

Figure 2.1: a) Schematic structure of a dipole antenna. It consists of two parallel-wire transmission

lines that is interrupted by a gap of a few microns at the center. A photoconductive (PC) material

bridges the gap when illuminated with ultrashort optical pulses. b) An electrical bias field accelerates

the photocarriers resulting in a transient photocurrent J(t). The far-field radiated field is proportional

to the time derivative of the photocurrent.

where P̈ is the second time derivative of the radiating dipole moment, r is the position vector mea-

sured from the dipole with magnitude r, and µ0 is the permeability of free space. This approximation

is valid when the emitted wavelength is much longer than the dipole length, which is 50 µm in our

antenna design. Note that P̈ is proportional to the time derivative of the photocurrent.

There are three time constants involved in the process of THz generation using photoconductive

antennas [6]. First, the laser pulse width sets a lower bound on the photocurrent rise time. In our

system, the laser pulse width (FWHM) is 30 fs, which in turn sets an upper limit of 33 THz on

the emitted radiation, well above our measured bandwidth. The second and most significant time

constant is the photocurrent decay time. To extend the bandwidth of the emitted field into the THz

region, the recombination time can be minimized by introducing defects that act as traps. This is

achieved either during the crystal growth, as with low-temperature grown GaAs, or via ion implan-

tation after the growth, as with oxygen irradiated silicon. In radiation-damaged silicon-on-sapphire

(SOS), the recombination time can be reduced to about 600 ps [7]. The third relevant time constant

is the carrier collision time that determines the mobility and consequently limits the photocurrent

rise time. Using the visible-pump, THz probe technique, Lui and Hegmann reported a mobility of

422 cm2/V · s in radiation-damaged SOS [8]. This results in a collision time of 48 fs using an effec-

tive mass of m∗ = 0.2m0. For 800 nm Ti:sapphire excitation pulses, radiation-damaged Si and GaAs
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Time

Sampling  Gate 

(photocurrent)

THz pulse

Figure 2.2: Schematic of the gated detection method. The photoconductive antenna measures a con-

volution of the incident field with the impulse response of the receiver antenna. The THz waveform

is mapped by varying the time delay between the optical pulse and THz waveform.

are widely used as photoconductive materials. These materials have high carrier mobility, an energy

gap below the excitation energy, and high dark resistivity.

2.2 THz detection using a photoconductive antenna

In our spectrometer, we use a photoconductive antenna to detect THz pulses. For coherent detection,

a second laser pulse is required to be synchronized with the generation laser pulse. We use a beam

splitter and an independent time delay to create what I call detection and generation pulses. The

detection pulse generates photocarriers across the gap in the detector antenna and the THz pulse acts

as a bias field to drive the photocurrent. When the detection pulse is incident, the detector is active

and measures the voltage associated with the THz amplitude within the duration of the photocurrent.

In our system, the receiver antenna is conducting for about 600 fs with a repetition rate of 100 MHz.

Thus, the detector is open for 600 fs and closed for the following 10 ns. By varying the time-delay

between the THz and detection gating pulses, the entire THz trace is mapped as a function of time

in a process known as gated detection. The detection scheme is demonstrated in Fig. 2.2.

This detection scheme has two main advantages. First, it yields a high SNR because it minimizes

the blackbody background noise. Secondly, it provides a measurement of the THz electric field as

a function of time. In the frequency domain, this enables the simultaneous measurement of the full

complex electromagnetic response of a sample.
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a) b) c)

Figure 2.3: An illustration of the antenna fabrication process: a) An SOS wafer with a barrier

layer of SiO2. b) The remaining arrays of silicon rectangles on the sapphire wafer. c) The etched

aluminum pattern on the wafer.

2.3 Antenna fabrication

We chose to work with silicon-on-sapphire (SOS) wafers because of the availability of wafers and

the capabilities of our fabrication facility. The SOS wafer is a 0.53-mm sapphire substrate with a

0.3 µm silicon layer with a resistivity greater than 100 Ω-m. A schematic of the fabrication process

is illustrated in Fig. 2.3. We begin by growing a barrier layer of SiO2 on the SOS wafer. This step

is necessary to protect the silicon layer from the tetramethylammoniumhydroxide (TMAH) etchant.

A 20-minute dry oxidation at 900◦C produces a 10 nm layer of SiO2. This is followed by patterning

the oxide layer using an ordinary photolithographic procedure. Immersing the wafer in 25% TMAH

yields arrays of 40 µm×60 µm silicon rectangles on the wafer. It is essential to perform an RCA

cleaning 1 procedure prior to aluminum deposition to remove organic contaminants and ensure good

contact between the silicon and aluminum layers. An electron beam evaporator is used to deposit a

1 µm aluminum layer. This deposition is then followed by a second photolithographic procedure, to

define a pattern that is etched into the aluminum at 50◦C with transene aluminum etchant. Finally,

the wafer is annealed at 475◦C for 30 minutes to improve the contact between the aluminum and

silicon. The wafer is then sent for oxygen ion implantation at CORE Systems.2 To ensure uniformity,

the ion implantation is performed in two steps: one at 100 keV and the other at 200 keV, both with

an areal density of 1015 cm2. This process reduces the carrier lifetime to ∼0.6 ps [7].

1RCA cleaning is a standard procedure for removing organic and ionic contaminants. This procedure also strips the

natural oxide layer. Werner Kern developed the basic procedure in 1965 while working for RCA, the Radio Corporation

of America.
2http://www.coresystems.com
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2.4 Spectrometer layout

The optical layout of the THZ-TDS setup is shown in Fig. 2.4. The spectrometer is driven by ultra-

short optical pulses from a mode-locked Ti:sapphire oscillator. The laser provides pulses of 30 fs

duration, centered at 800 nm with a 100 MHz repetition rate and an average power of 550 mW. We

are limited to using 50% of the total power, as the other half is used to seed a regenerative amplifier.

A 50-50 beam-splitter (BS) divides the remaining beam into two arms: one is used to generate THz

pulses and the other to detect them. Both laser beams are tightly focused onto the antenna gaps by

microscope objectives (MO). When the laser pulse strikes a biased emitter antenna, photocarriers are

induced and a THz pulse is generated. To allow lock-in detection, we apply a sinusoidal bias voltage

of 45 V with a modulation frequency of 5 KHz to the emitter antenna. By modulating the bias volt-

age and using a lock-in amplifier on the detection side, we reduce the 1/ f noise contribution. A pair

of 90◦ parabolic mirrors (Janos Tech, 4” diameter) collimate and focus the THz beam onto a sample

mounted on a sample holder in a continuous flow liquid helium cryostat (Janis Research Company).

Up to three samples can be mounted on the sample holder which has three fixed apertures. The sam-

ples are positioned in the path of the focused THz pulses by vertical adjustments of the sample stick.

Heaters and thermometers are mounted on the sample holder to control and measure the sample tem-

perature over a range of 5-300 K. After traveling through the cryostat, the THz pulses are collimated

and focused on a gated detector antenna by a second pair of 90◦ parabolic mirrors. By varying the

path length of the emitter arm with a delay stage (Newport, ESP-25cc controlled by an XPS motion

controller), the THz pulses are mapped in the time domain. The THz detector is followed by two

amplification stages: an ultra-low noise transimpedance amplifier (Femto, DLPCA-200) with a gain

of 5×107 V/A, and a lock-in amplifier (Signal Recovery, 7265) that is phase-locked to the bias of

the emitter antenna. We typically set the lock-in time constant (integration time) to 100 ms with

a waiting time of 500 ms between each measurement. The transimpedance amplifier is located in

close proximity to the antenna to minimize the effects of cable capacitance and electrical pickup.

A high-resistivity hyperhemispherical silicon lens with a radius of 5 mm is mounted against the

sapphire substrate of each antenna. These lenses provide efficient coupling between the THz pulses

and free space while improving collimation of the generated THz pulses. For the sapphire antenna

substrates, silicon lenses are ideal because of the low absorption and frequency-independent refrac-

tive index (n∼3.42) in the THz region [9]. A pair of linear polarizers (lithographically patterned on

mylar) is placed in the collimated THz paths to ensure the vertical polarization of THz pulses. The

polarizers are crucial for studying birefringent samples. The THz optics are placed in an enclosure
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Figure 2.4: Optical layout of the THz-TDS setup. An ultrafast laser beam is split into two arms at the

beamsplitter (BS). One arm goes to a motorized delay line before illuminating the emitter antenna,

and the other beam goes to a fixed delay before illuminating the detector antenna. Two microscope

objectives (MO) are employed to focus the laser spot onto the antenna gaps. Emitted THz radiation

is collected, collimated, transmitted through a sample, and focused onto a gated detector antenna by

the set of four parabolic mirrors. A pair of linear polarizers (P) are mounted in the collimated THz

paths to ensure that the polarization state remains vertical, along the antenna orientation. THz pulses

are mapped by varying the path length to the emitter. The detector photocurrent is sent through a

low-noise current preamplifier before it is measured by a lock-in amplifier.
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Figure 2.5: a) A typical time-domain THz pulse through nitrogen-flushed air b) Spectra of 100

pulses measured consecutively.

to reduce air fluctuations that can produce variations in THz path length. The enclosure is purged

with dry nitrogen to eliminate water rotational-vibrational absorption lines [10].

2.5 THz pulses

We sample THz pulses by varying the delay between the THz and optical pulses using a computer-

controlled delay stage. The mechanical precision of the stage is ∼ 0.1 µm, which corresponds to a

time jitter of 0.67 fs. However, the actual time resolution is limited by the thermal drift in the overall

optical alignment and is expected to be up to a few femtoseconds. This point is discussed in detail

in section 2.8. In our experiment, we typically sample the THz waveform with 256 points spaced by

0.1 ps. A typical THz time-trace in a nitrogen purged environment is shown in Fig. 2.5(a).

After subtracting the DC value and applying the tapered cosine window (Tukey function in Mat-

lab with taper ratio r = 0.5), we use a discrete Fourier transform (dFT) to determine the complex

field amplitudes in frequency domain. Fig. 2.5(b) shows the Fourier transform of 100 scans mea-

sured sequentially. The sampling time of 0.1 ps corresponds to a Nyquist frequency of 5 THz, well

beyond the measurement bandwidth of 0.1-1 THz. The frequency range of 3.1-5 THz is used to

determine the noise floor. The ratio of the maximum amplitude at 0.5 THz and the averaged noise

floor gives an SNR of about 1000. This is considerably smaller than the SNR obtained from the
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time-domain THz pulse by comparing the peak amplitude to the noise over the region where the

signal is close to zero. This shows that the noise in our system is not simply additive white noise.

We set the lock-in time constant to 100 ms as there is a trade-off between the noise reduction and the

thermal drift in the optical alignment. The longer integration time corresponds to a narrower noise

bandwidth and results in higher SNR. The waiting time is chosen to be several times longer than the

integration time to avoid smoothing the signal waveform that would filter out higher frequencies of

its spectrum.

A careful determination of the THz beam waist is crucial for spectroscopy of smaller samples

(< 10× 10 mm2). This measurement is performed by inserting a variable diameter iris at the THz

focal point and taking a series of scans at different iris diameters. The details of the measurement

process are described in Carl-Philippe Kübler’s thesis [11], and I only quote the current results. The

beam waist radius is 4.4 mm at 133 GHz and 2.6 mm at 187 GHz. These values are both within a

factor of two of the diffraction limited radii of 2.55 mm at 133 GHz and 1.8 mm at 187 GHz for a

numerical aperture of 0.28 for the system [12].

2.6 Measurement process

To determine the transfer function of an unknown sample, we require two separate measurements:

a reference pulse E1(t) and a sample pulse E2(t). In all of the measurements described in this

thesis, the reference pulse corresponds to a pulse transmitted through an insulating substrate and

the sample pulse refers to a pulse transmitted through a thin conducting film on a matched insulat-

ing substrate. For spectral analysis, a discrete Fourier transform yields the complex transmission

amplitudes, Ẽ1(ω) and Ẽ2(ω). Their ratio in the frequency domain is the complex transmittance

T̃2,1(ω) = Ẽ2(ω)/Ẽ1(ω), which is directly related to the conductivity of the thin film via the Tin-

kham formula [13]:

σ̃(ω) =
ns +1

Z0d f

[

1

T̃2,1(ω)
−1

]

. (2.2)

Here, ns is the refractive index of the substrate in the THz region, Z0 is the impedance of free

space, and d f is the film thickness. A detailed derivation of the Tinkham formula is provided in

Appendix A. The formula is valid when the two substrates have identical optical thicknesses. If not,

we should follow a procedure to account for the difference in the optical thicknesses. This point is

explained in section 2.7.1.
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2.7 Transfer function fits

The most common analysis method is to consider the quotient Ẽ2(ω)/Ẽ1(ω) as the transfer function

and extract the complex conductivity from the Tinkham formula. A parameterized conductivity

model can then be determined from a least-squares fit. However, since both the reference and sample

pulses contain noise, their ratio will have noise that is not Gaussian, which can lead to biased least-

squares parameter estimates. Consequently, we employ a maximum-likelihood (ML) method to

estimate the model parameters [14]. We define the transfer function by the ratio of two polynomials

of orders nb and na:

T̃2,1(s) =
b0 +b1s+b2s

2 + ...+bns
nb

a0 +a1s+a2s2 + ...+ansna
exp(−sη), (2.3)

where s = iω and η accounts for the possibility of mismatch in optical thicknesses between the

sample and reference substrates. The transfer functions are classified by the order of the polynomials

in the numerator and denominator, e.g., a (1,1) transfer function has na = 1 and nb = 1. We use the

(1,1) model to determine Drude parameters as discussed in section 2.7.2. In this model, we must fix

one of the parameters to an arbitrary constant, e.g., a0 = 1, to fix the overall parameter scale.

We assume that the raw spectra Ẽ2(ωi) and Ẽ1(ωi) are the sum of true spectra φ̃2(ωi) and φ̃1(ωi)

together with uncorrelated noise spectra ε̃2(ωi) and ε̃1(ωi), respectively.

Ẽ2(ωi) = T̃21(θ,ωi)φ̃1(ωi)+ ε̃2(ωi) (2.4)

Ẽ1(ωi) = φ̃1(ωi)+ ε̃1(ωi) (2.5)

Here, the transfer function T̃21 is parameterized by θ = [a0, ...,ana ,b0, ...,bnb ,η]. The parameter

vector θ is determined by minimizing the cost function which has the following form [15]:

C(θ) =
|Ẽ2(ωi)−T2,1(ωi,θ)Ẽ1(ωi)|2

σ2
2 + |T̃2,1(ωi,θ)|2σ2

1

, (2.6)

where σ2
2 and σ2

1 are noise variances that are estimated from Ẽ2(ω) and Ẽ1(ω) outside the signal

bandwidth (3.1-5 THz). In the absence of systematic uncertainties, we can use this method to

determine the goodness of the fits since the C(θ) should satisfy an F distribution [16]. When the

fit is good, the statistical uncertainty in the parameter θ is determined from the covariance matrix

U = (JTJ)−1, where J is the Jacobian matrix of C(θ). Our systematic uncertainties are discussed in

section 2.8.
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2.7.1 Substrate characterization

In general, the substrate mismatch η can be determined by minimizing the cost function. However,

there is a strong correlation between the scattering lifetime (τ) and substrate mismatch (η). We

characterized the substrates used in this thesis prior to film deposition. This type of characterization

requires two substrates from the same batch; one is reserved for the film deposition and one is kept

as the reference substrate. At each temperature, we measure η associated with the difference in the

optical thickness D = nsds between the two substrates. Here ns and ds denote the refractive index

in the THz region and the substrate thickness respectively. In an actual experiment, we measure the

transmission through the two substrates and form the complex transmittance T̃2,1(ω) from their ratio

in the frequency domain. Assuming ns(ω) = ns, the complex transmittance will have the following

form,

T̃2,1(ω) =
Ẽs(ω)

Ẽr(ω)
=

b0

a0
eηs, (2.7)

where we fix a0 = 1. This is referred to as a (0,0) model since na = nb = 0. In a typical experiment,

we determine the substrate mismatch η within 2 fs uncertainty, which corresponds to a thickness

mismatch (∆ds) of ∼0.3 µm for a substrate with a refractive index of 3.

2.7.2 Drude model

The Drude model is the simplest classical treatment for transport properties of charge carriers in

metals. The model is based on some crude assumptions, e.g. the frequency of electron-ion collisions

is described by a mean free path λ and a mean collision time τ that are independent of position and

momentum. Within these assumptions, an applied electric field Ẽ(t) = E0 e−iωt induces an average

electron drift with the following frequency-dependent conductivity [17]:

σ̃ =
σ0

1− iωτ
, (2.8)

where σ0 = nce
2τ/m∗ is the DC conductivity, nc is the carrier density, m∗ is the effective carrier mass,

e is the electric charge, and τ is the relaxation time. Despite its simplicity, over the THz bandwidth

the model provides a reasonable description of DC and AC conductivity in many metals, including

the chromium vanadium alloys studied in this thesis. For a Drude metal, the transfer function will

have the following form, with na = nb = 1:

T̃2,1(s) =
b0 +b1s

a0 +a1s
e−sη =

−1
τ + s

− (1+γ)
τ + s

, (2.9)
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where γ = σ0Z0d f /(ns + 1) and b1 = a1 = 1. This leaves b0 and a0 as free parameters to be deter-

mined from the maximum likelihood method described in section 2.7. This procedure enables us to

extract the DC resistivity (ρ0) and relaxation time (τ) from the (1,1) model:

τ =− 1

b0
,

ρ0 =
1

σ0
=

Z0d f

ns +1

(

a0

b0
−1

)−1

. (2.10)

2.8 Measurement uncertainties

Multiple sources of statistical and systematic uncertainty exist in our measurement process. These

uncertainties affect the quality of extracted parameter estimates and thus it is crucial to identify them

in the optimization process. The three major sources of uncertainty are as follows: time-base drift,

scattered THz radiation from sample apertures, and laser power fluctuations.

Time-domain fluctuations (time-base drift) mainly affect the measurement of the relaxation time.

To characterize the drift, it is advantageous to focus on zero-crossing events in the signal. These are

points at which the signal amplitude crosses zero with a large slope, so that any temporal drift

produces large amplitude fluctuations. We measure the drift by fixing the delay stage at the zero-

crossing and reading the lock-in voltage once per second with a lock-in time constant of 100 ms. We

then convert the lock-in voltage to a time delay using the slope of the THz pulse at the zero-crossing

point. Fig. 2.6 shows the correlation between the drift and laboratory temperature fluctuations over a

12-15 minute period. We suspected that the dominant contribution to the drift came from the thermal

deflection of the 6-inch long, 1-inch diameter posts that supported the parabolic THz mirrors. It is

not possible to reduce the height of the posts as we are restricted by the 6-inch height of cryostat

windows. However, we recently replaced the parabolic mirror posts with 4-inch-diameter aluminum

posts. This reduced the drift amplitude by a factor of 3.

Another source of uncertainty arises from THz radiation that is scattered from the sample edges

and mixes coherently with the main signal. We consider a sample pulse transmitted through a thin

film sample and a reference pulse transmitted through a phase-matched substrate in the time domain.

Using the transfer function associated with the Drude model, we estimate the optimum parameters

from the fit. With these parameters, the residuals are given by the difference between the predicted

pulse and the measured pulse. In our measurements, the residuals exhibit structure and therefore are

not statistically limited. Fig. 2.7(a) shows the time-domain residuals and the corresponding sample

pulse transmitted through a Cr thin film sample at 290 K.
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Figure 2.6: Simultaneous measurement of the time-base drift and laboratory temperature. The cor-

relation between the drift and laboratory temperature fluctuations is clearly observed.

At temperatures above 100 K, the thermal expansion coefficient of the sample stick increases,

producing a systematic uncertainty in the relative positions of the sample and the reference. The

thermal expansion coefficient of the sample stick is small below the Debye temperature but increases

linearly with increasing temperature. In our measurements, we account for the expansion of sample

stick with increasing temperature, but the measurements are still prone to the scattered THz radiation

from the apertures at high temperatures. Without accounting for the thermal expansion, the THz

pulses scatter off the edges of the apertures, as can be seen for example at t = 16 ps in the time-

domain residuals of Fig. B.2. This effect results in a systematic error in the relaxation time, of order

10 fs for every 100 K change in temperature.

We can use the maximum likelihood estimator C(θ) described in Chapter 2 to determine the

goodness of the fits. Monte Carlo simulations show that the distribution for C(θ) is approxi-

mated well by an F-distribution [18]. In the Cr1−xVx alloys studied in this thesis, most of the

low-temperature C(θ) values indicate good fits, in that they are within the 95% confidence interval

for the F distribution. As shown in Fig. 2.7(b), the residuals in the frequency-domain are heav-

ily weighted towards low frequencies. In our data analysis, we typically avoid the low frequency

regions below 500 GHz.

Another source of systematic uncertainty is associated with fluctuations in the mode-locked laser

power. As shown in Fig. 2.8, the THz peak amplitude increases with increasing laser power with

no sign of saturation. This means that fluctuations in the laser power appear directly as fluctuations
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Figure 2.7: a) Sample pulse transmitted through Cr (solid lines) at 290 K and residuals (dashed

lines) in the time domain. The time-domain residuals are scaled up by a factor of 20. b) Sample

pulse (solid lines) and residuals (dotted lines) in the frequency domain.
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Figure 2.8: Measurement of laser power and THz peak amplitude. THz peak amplitude increases

with increasing laser power without a sign of saturation.

in the THz amplitude. Ideally, THz antennas are operated in the saturated mode, where small laser

fluctuations do not result in THz amplitude fluctuations. However, we do not have sufficient laser

power to operate our antennas in the saturated mode. Currently, we observe about 1% variation

in both the THz peak amplitude and laser power. This contributes excess noise at large signal

amplitudes, well above the electronic noise in the detection system.



Chapter 3

THz time-domain spectroscopy of

Cr1−xVx films

3.1 Purpose of this study

Chromium alloys are of particular interest because of the variety of magnetic phases that they exhibit

over a wide range of compositions, temperatures, pressures, and magnetic fields. In pure chromium,

the Fermi surface geometry supports a spin-density-wave (SDW) ordered ground state that can be

rapidly suppressed by tuning an external parameter such as alloy composition. From a fundamental

point of view, chromium alloys are simple systems that are ideal for testing theoretical models con-

cerning Fermi surface nesting [19]. The possibility of accessing a quantum phase transition (QPT) in

a simple alloy motivated a large amount of theoretical and experimental work on these systems [19].

For example, the relationship between superconductivity and SDW order remains a key issue in

strongly correlated systems. The discovery of iron-based superconductors provides a recent exam-

ple. Both undoped LaFeAsO and BaFe2As2 exhibit a SDW ground state below 140 K [20, 21] and

superconductivity emerges upon doping with 5% – 8% electrons per unit cell [22].

In the Cr1−xVx system, Yeh et al. [23] performed Hall measurements and reported a sharp jump

in the Hall coefficient as a function of vanadium concentration. They interpreted the sharp jump as

an instability of the entire Fermi surface between the SDW phase and the paramagnetic state at the

QPT. From Hall coefficient measurements, they speculated that the density of free carriers dropped

discontinuously by a factor of two in the SDW state. Subsequent experiments that suppressed the

SDW ground state with hydrostatic pressure instead of alloy composition showed that the jump in

17
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the Hall effect was actually continuous across the transition, and was qualitatively explained by the

formation of the SDW gap over the large flat regions of Fermi surface [24, 25].

We have applied the Hall technique and THz-TDS to Cr1−xVx thin film samples and tracked the

loss of free carriers across the QPT. Both techniques reveal a factor of two change in the carrier

density as the material evolves from an SDW ground state to a paramagnetic ground state. However,

the thin film samples exhibited significantly higher disorder than in single crystals, broadening the

quantum phase transition so that neither technique revealed the sharp zero-temperature change in

carrier density observed in Hall effect measurements of single crystals. We compared the temper-

ature dependence of the plasma frequency inferred from the two techniques and found quantitative

differences at low temperatures that we tentatively attribute to anisotropic scattering.

THz-TDS measurements were performed in transmission mode, and therefore we are restricted

to use thin films instead of bulk single crystals. We worked with [100] Cr1−xVx epitaxial films on

15 × 15 × 1 mm MgO [100] substrates. Film thicknesses ranged from 30 to 40 nm and vanadium

concentration varied from 0 to 8%. The residual resistivity ratio of ρ(300K)/ρ(15K) ∼ 4 for a

typical film compares well with other epitaxial Cr1−xVx films [26] but is two orders of magnitude

smaller than the best values reported in bulk Cr1−xVx [23], indicating a relatively high degree of

disorder.

3.2 Background

The earliest speculation on the antiferromagnetic ordering in chromium was made by Louis Néel in

1936. Microscopic evidence was provided by Shull et al. through a neutron diffraction experiment

on powdered chromium in 1953 [27]. They found a magnetic (0,0,1) peak that is forbidden from

atomic cores in body-centered cubic chromium. The magnetic reflection peak disappeared at tem-

peratures above 475 K.1 In 1959, Bykov et al. and Corliss et al. independently reported magnetic

satellites at (0,0,1±δ) in addition to the antiferromagnetic peak of (0,0,1) [29, 30]. The satellite

peaks correspond to wave vectors Q± = 2π
a

(0,0,1±δ) with a deviation of δ∼ 0.035 just below the

Néel temperature (TN), where a denotes the lattice constant. In 1962, Shirane et al. proposed an

antiferromagnetic ordering with a sinusoidal modulation of magnetic moments [31]. They reported

a continuous increase in the modulation period from ∼21 unit cells at 78 K to ∼28 just below TN .

1This temperature is higher than the Néel temperature of 311 K in single crystals. It is currently known that internal

strain affects the transition temperature [28].
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From these experimental observations, the magnetic structure in chromium can be expressed as:

µ± = µ0 sin(Q±r), (3.1)

with µ0 ∼ 0.5 µB at 4.2 K. This magnetic structure is called the spin density wave (SDW). As shown

Q ~ 26 lattice constant
SDW

Cubic sites

Body center sites

Figure 3.1: Magnetic structure in chromium with a modulation period of∼ 26 lattice constants. The

solid lines show the magnitude of magnetic moments on the corner atoms, and the dashed lines show

the magnitude of magnetic moments on the body center atoms.

in Fig. 3.1 for δ = 0, the magnetic moments on the cubic lattice points corresponds to µ = +µ0

and the magnetic moments on the body-centered basis atoms at r=(1/2,1/2,1/2) corresponds to µ =

−µ0. The magnetic state in chromium is an incommensurate SDW (δ 6= 0) since the modulation

wavelength is not an integer multiple of the lattice constant. Lomer was the first to relate the shape

of the Fermi surface in chromium to its magnetic state [32]. He realized that the chromium Fermi

surface consists of parallel electron and hole surfaces that can be mapped into one another by the

wave vectors Q±, as shown in Fig. 3.2. This attribute is referred to as nesting. Electrons in these

regions of the Fermi surface are excited at the nesting wavevectors with a very low energy cost. This

leads to a large contribution in the magnetic susceptibility as described in Section 4.2.1. The Fermi

surface consists of an electron octahedron centered at Γ, slightly larger octahedra centered on the

H-points ( π
a
,0,0), hole ellipsoids centered at the N-points ( π

2a
, π
2a

,0), and small electron lenses along

the Γ-H lines, all shown in the (001) cross section of Fig. 3.2.

Overhauser argued that a three-dimensional free electron gas has a generic instability toward

SDW formation [34]. He calculated that the formation of electron-hole pairs lowers the energy of

the system and leads to an energy gap in the single-particle spectrum. The energy gap was ob-

served experimentally as a dip in the reflectivity spectrum at an energy of ∼0.13 eV in the magnetic
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Figure 3.2: A sketch of the (001) cross-section of the Fermi surface in paramagnetic chromium over

the first Brillouin zone. The electron octahedron centered at Γ and slightly larger hole octahedra

centered on the H-points have approximately parallel surfaces that are connected by the wavevectors

±Q. The electron lenses intersect the electron octahedron and touch the hole octahedron at high-

symmetry points where band degeneracies occur. Adapted from Ref. [33].

state [35], consistent with the Overhauser prediction [35, 34]. Soon afterwards, the gap was de-

tected in de Haas-van Alphen (dHvA) measurements of Graebner and Marcus [33]. More recently,

angle-resolved photoemission spectroscopy (ARPES) confirmed the location of the energy gaps on

the nested regions of the Fermi surface [36].

3.2.1 Density wave instability

The origin of the SDW can be understood by analogy with the density-wave instability that generi-

cally occurs in one dimension. The ability of itinerant electrons to screen a perturbation is reflected

in the response function χ(Q,ω). The density response of the electron gas to a perturbing potential

of arbitrary wavelength is defined as [37]

δρ(Q,ω) = χ(Q,ω)V (Q,ω), (3.2)

where the Q-dependent dynamical susceptibility χ(Q,ω) is

χ(Q,ω) =
2

V

∫

nk−nk+Q

εk+Q− εk− h̄(ω)
dk, (3.3)

with nk the occupation number of the k-state and εk the dispersion relation. Equation 3.3 is de-

rived from second order perturbation theory [37]. To illustrate the mechanism, we calculate the DC
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Figure 3.3: a) Perfect mapping of Fermi surface points with a single wavevector Q in one dimension.

b) A circular Fermi surface in two dimensions, for which a single wavevector Q does not span the

Fermi surface at all locations.

susceptibility for a one-dimensional metal at zero temperature. As shown in Fig. 3.3(a), the Fermi

surface in one dimension consists of two isolated points at ±kF . At zero temperature, the integrand

of Eqn. 3.3 is non-zero if only one of the states |k〉 or |k+Q〉 is occupied; that is, when nk = 1 and

nk+Q = 0 or nk = 0 and nk+q = 1. In one dimension, the DC susceptibility is then reduced to:

χ(Q,0) =
m

πh̄Q
ln

∣

∣

∣

∣

Q+2kF

Q−2kF

∣

∣

∣

∣

. (3.4)

The response function (susceptibility) exhibits a logarithmic divergence at Q = 2kF . This implies a

divergent change in the density response for a weak perturbing potential that implies a density wave

instability. In a real system, electron-electron interactions provide the potential.

This instability is associated with the perfect mapping of all points of the Fermi surface by a

single wavevector Q, and is thereby limited to one dimension. A circular Fermi surface in two

dimensions is shown in Fig. 3.3(b). With no dominant spanning wavevector in two dimensions and

higher, the response function integral does not diverge, but exhibits discontinuous derivatives at 2kF .

3.2.2 SDW ground state in chromium

Density wave instabilities can occur in higher dimensions under favorable circumstances, for exam-

ple if a sufficiently large portion of the Fermi surface has a one-dimensional character. This readily

happens when the Fermi surface has large parallel portions that can be related by translations through

a single wavevector. As illustrated in Fig. 3.4(a), the electron and hole octahedra in chromium have

almost identical shapes. This leads to a divergence in the magnetic response at wavevectors that

connect the two surfaces, resulting in an SDW instability. The potential at wavevector Q connects

states on one side of the electron octahedron with the corresponding side of the hole octahedron. For
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Figure 3.4: Solid lines show the electron sheet centered at Γ and two hole sheets centered at H.

Dashed lines show the hole sheets after translation through nesting wavevectors ±Q.

a sufficiently strong potential, an energy gap can appear in the energy spectrum at the Fermi level

wherever ε(k) = ε(k±Q). Angle resolved photoemission spectroscopy (ARPES) of chromium thin

films reveals a complete gapping of the nested regions of Fermi surface at low temperatures [36].

Chromium exhibits both bulk and surface magnetic transitions [36], and ARPES primarily probes

the surface properties. The ARPES energy gap of ∼200 meV covers the entire flat portions of the

electron and hole octahedra. Above the near-surface transition at 440 K, the gap disappears and the

paramagnetic Fermi surface is restored. The loss of conduction electrons also has a dramatic effect

on the Hall coefficient [38]. This is explained in detail in Section 3.3.

3.2.3 Binary Chromium alloys

In pure chromium, the electron Fermi volume is slightly smaller than the hole Fermi volume, result-

ing in nesting wavevectors Q± that are slightly incommensurate with the lattice. The incommensu-

rate state can be transformed into a commensurate state by introducing small amounts of transition

metals impurities such as Mn, Re, or Ru. These elements have higher electron concentration per

unit cell and bring the electron and hole Fermi surfaces closer in size. Increasing the electron Fermi

volume eventually leads to a triple point on the concentration-temperature phase diagram where

the SDW, incommensurate SDW (ISDW) and paramagnetic (P) phases coexist [19]. In contrast,

vanadium doping increases the hole concentration and makes the magnetic structure more incom-

mensurate, while also reducing the transition temperature. Compared to chromium, vanadium has a

similar atomic mass, so doping with vanadium is not expected to significantly disturb the phonon-

dispersion relations [19].
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Figure 3.5: Magnetic phase diagram of Cr1−xVx showing the suppression of Néel temperature as a

function of vanadium concentration. The dashed line shows the transition from a longitudinal spin

direction (AF2) to a transverse spin direction (AF1). Adapted from Fawcett et al. [19]; used with

permission.

The magnetic phase diagram of Cr1−xVx is shown in Fig. 3.5. At zero temperature, adding a

small amount of vanadium rapidly suppresses the ordered state at a critical concentration of about

3.45%. The dashed line in the phase diagram shows the spin-flip transition (SF), where the spin

polarization changes from the longitudinal direction below TSF to a transverse direction above TSF .

3.3 Hall effect in Cr1−xVx

Yeh et al. [23] performed Hall measurements on Cr1−xVx alloys with concentrations that spanned

the quantum phase transition at x = 0.035. As shown in Fig. 3.6(c), they reported that the Hall

coefficient jumped sharply by a factor of two upon entering the ordered state. Norman et al. [25]

explained the sharpness of the transition by considering a realistic model of how the Fermi surface

changes with magnetic ordering. Within the relaxation time approximation, the Hall coefficient is

defined as RH = σxyz/σ2
xx, where

σxyz =
e3τ2

h̄Ωc
∑
~k

vx(~v×~∇k)zvy

(

− δ f

δεk

)

, (3.5)

σxx =
e2τ

Ω ∑
~k

v2
x

(

− δ f

δεk

)

. (3.6)
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Figure 3.6: a) Suppression of the Néel temperature with increasing vanadium concentration. b)

Magnetic moment measured by magnetic neutron diffraction [39] at 4.2 K. c) Carrier density ob-

tained from the inverse Hall coefficient (T < 5 K). d) Magnetic susceptibility (T < 5 K). From Yeh

et al [23]; used with permission.
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Here, τ is the scattering lifetime, Ω is the volume, and f is the Fermi distribution function. Nor-

man et al. suggested that the sharp jump in the zero-temperature Hall coefficient arises from the

geometry of the Fermi surface. They pointed out that σxyz depends on the curvature of Fermi surface

and contains negligible contribution from the flat Fermi surface portions in the paramagnetic state.

As a result, σxyz is not expected to change significantly at the QPT. On the other hand, σxx contains

only the velocity components and is affected strongly by the removal of the flat regions of the Fermi

surface in the magnetic state. The effect is amplified because the square of σxx appears in the Hall

coefficient denominator.

While the Norman et al. [25] argument provides a quantitative description of the sharp zero-

temperature change in carrier density observed in Hall effect measurements, their argument also

emphasizes the importance of the Fermi surface shape when inferring the carrier density from Hall

data. In contrast, the plasma frequency measured in optics is relatively insensitive to the shape of

Fermi surface, as can be seen from Eq. 3.6 and σxx = ε0ω2
pτ. In this work, we use THz-TDS to

estimate the plasma frequency, as a complementary probe of carrier density.

3.4 THz-TDS on Cr1−xVx

3.4.1 Conductivity spectra

We use time domain THz spectroscopy (THz-TDS) to determine the complex conductivity of Cr1−xVx

for various values of x. The complex conductivity of pure Cr and Cr0.973V0.027 at selected tempera-

tures is shown in Fig. 3.7. The dashed curves represent the Drude fits. The data points are calculated

from direct quotients of the T̃2,1(ω) = Ẽ2(ω)/Ẽ1(ω) and the Tinkham formula. The fits are calcu-

lated by minimizing |Ẽ2(ω)− T̃2,1(ω)Ẽ1(ω)|2 with the maximum likelihood denominator explained

in Ch. 2. To calculate the fits, we limit the THz bandwidth to the range 500-1000 GHz where the

systematic uncertainties are minimized, as described in Ch. 2. For ease of interpretation, we limit

the conductivity spectra to frequencies in the range 250-800 GHz. Below 250 GHz, the systematic

uncertainty associated with positioning error increases, due to the large size of the THz beam. The

large beam diameter makes the measurements more sensitive to scattered THz radiation from the

sample apertures. Above 800 GHz, the noise power density becomes comparable to that of the sig-

nal. A more detailed discussion of the systematic uncertainties is provided in Ch. 2. The optical

conductivity within the limited bandwidth is adequately described by the Drude model.
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Figure 3.7: a) Real and b) Imaginary parts of the optical conductivity of Cr at T=30, 60, 75, 100,

125, 150, and 200 K. c) Real and d) Imaginary parts of the optical conductivity of Cr0.973V0.027 at

T=30, 60, 75, 100, 125, 150, and 200 K. Dashed curves show Drude fits at the selected temperatures.
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3.4.2 Resistivity

Zero-frequency extrapolations ρ(T ) = 1/σ(ω→ 0,T ) yield the resistivity as a function of temper-

ature. The results for samples with vanadium concentrations of 0, 2.7, 3.1, and 4.3% are shown

in Fig. 3.8. Standard four-point measurements are made on the same samples and the agreement

between the two techniques is shown. A discussion on the agreement between the two techniques

is provided in Appendix B. The measured resistivity as a function of temperature and vanadium
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Figure 3.8: Resistivity as a function of temperature for samples with a) 0, b) 2.7%, c) 4.15% and

d) 4.3% vanadium concentration. Filled circles and solid curves denote the THz-TDS and standard

four-point measurements, respectively.

concentration is consistent with earlier resistivity measurements on single crystals, but with a larger

elastic impurity scattering contribution. As shown in Fig. 3.10(a), the low-temperature resistivity

varies as T3 below 100 K, in accordance with Yeh et al. [23]. Moreover, the residual resistivity

increases weakly with doping in the magnetic phase, in accordance with Takeuchi et al. [40], and

it changes smoothly through the QPT, as observed by Yeh et al. [23]. This agreement suggests that

Matthiessen’s rule is obeyed and that the resistivity of Cr1−xVx alloys has the form [41]:

ρ = ρr(x)+ρL(x,T ), (3.7)
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where ρr(x), the residual resistivity, is a function of concentration x, while ρL(x,T ) depends on both

x and T and represents the contribution to the resistivity from temperature-dependent scattering

processes.
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Figure 3.9: Low temperature resistivity as a function of T 3 for 4.3%, 3.1%, 2.7%, and 0% vanadium

doped samples, respectively from the top.

The first derivative of resistivity with respect to temperature shows a local minimum that is

related to the SDW transition, as indicated in Fig. 3.9. This minimum becomes broader and shifts to

lower temperatures with increasing vanadium concentration. By tracking these minima from the data

in Fig 3.8, we observe a rapid suppression of the SDW phase at the QPT. As shown in Fig. 3.10(b),

the Néel temperatures obtained from the resistivity anomaly in CrV thin films are consistent with

earlier work. For pure chromium, TN ∼ 300 K is slightly lower than the value observed in single

crystals (TN = 311 K). A lower Néel temperature for films has been previously reported [42] and

could be related to the constraint imposed by the MgO substrate [28].

3.4.3 Relaxation time

The relaxation times as a function of temperature in samples with vanadium concentrations of 0,

2.7, 3.1, 4.15, and 4.3% are shown in Fig. 3.11. An increase in the vanadium concentration mono-

tonically lowers the low-temperature relaxation time from ∼200 fs in pure chromium to ∼85 fs

near the QPT. In the paramagnetic phase, doping further lowers the low temperature relaxation time

to ∼40 fs at ∼8% doping. Within ±5 fs, the room-temperature relaxation time is independent of

vanadium concentration on both sides of QPT.
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Figure 3.10: a) First derivative of resistivity with respect to temperature in pure Cr. The arrow

indicates the local minimum that occurs at the Néel temperature. b) Magnetic phase diagram of

Cr1−xVx showing the suppression of Néel temperature as a function of vanadium concentration.

The large circles indicates the Néel temperature derived from the THz-TDS resistivity anomaly.

From Lee et al. [24]; used with permission.
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Figure 3.11: Relaxation time as a function of temperature for samples with 0 (◦), 2.7 (�), 3.1

(�), 3.45 (M), 4.15(B), and 8% (C) vanadium concentration. The low-temperature relaxation time

decreases monotonically with increasing vanadium concentration.



CHAPTER 3. THZ TIME-DOMAIN SPECTROSCOPY OF CR1−XVX FILMS 30

3.4.4 Plasma frequency

From measurements of the relaxation time and resistivity we can determine the plasma frequency

(ωp), a fundamental ground-state property of the Fermi surface that is given by

ω−2
p = ε0ρτ. (3.8)

For a spherical Fermi surface, the plasma frequency is related to the density of carriers through

ωp = (nce
2/m∗ε0)

1/2, where nc is the carrier density, e is the electric charge, ε0 is the permittivity

of free space, and m∗ is the effective mass. Ditusa et al. performed de Haas-van Alphen (dHvA)

measurements on Cr1−xVx and obtained m∗ = 0.5 m0, independent of vanadium concentration over

a doping range of 0–5% [43]. However, the dHvA technique is sensitive primarily to the hole

ellipsoids and is relatively insensitive to the large nested region of the Fermi surface, while both

Fermi surface sheets will contribute equally to the plasma frequency [43].
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Figure 3.12: Temperature dependance of ω−2
p in pure Cr. Filled circles and empty squares corre-

spond to the THz-TDS and Hall measurements, respectively.

For comparison, we performed Hall measurements on a number of samples under a magnetic

field of 5 kG. In each sample, we measure the Hall resistance, RH , in the range of 10-375 K. The tem-

perature dependence of ω−2
p inferred from the Hall and THz-TDS measurements for pure chromium

are compared in Fig 3.12. The Hall coefficient shows a rapid drop at about 50 K that has been

attributed to the anisotropy of Umklapp scattering processes at low temperatures [38]. This feature

appears in the low-temperature Hall coefficient of many metals, including ones with nearly spherical

Fermi surfaces like Li, Ag, Au, and Mo [38]. In chromium, it has been shown that the minimum

occurs between 30 and 50 K, depending on the magnetic field strength [38]. As the magnetic field
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Figure 3.13: a) Normal scattering process on a spherical Fermi surface. b) Umklapp scattering

process on a spherical Fermi surface. Dashed lines denote the boundary of first Brillouin zone.

is increased from 1 kG to 25 kG, the minimum becomes more pronounced and shifts to higher

temperatures.

3.4.5 Anisotropic scattering

The minimum in the Hall effect is most pronounced in pure chromium and gradually disappears with

vanadium substitution. At about 2% vanadium concentration the Hall effect becomes monotonically

decreasing with increasing temperature, signalling a crossover to a different transport regime. Here

I provide a qualitative explanation of the low-temperature disagreement in ω−2
p between the THz-

TDS and Hall measurements in the range of 0–2% vanadium concentration, based on anisotropic

scattering.

Examples of normal and Umklapp scattering processes are shown in Fig. 3.13. Umklapp scat-

tering processes involve a phonon with a momentum q = k′−k−G outside the first Brillouin zone,

where G is a reciprocal lattice vector [41]. As the temperature is lowered, this scattering channel be-

comes less effective as the phonon population decreases. At low temperatures, the average number

of phonons with an energy εq is given approximately by the Boltzmann distribution:

< nq >∼ exp

(

− εq

kBT

)

. (3.9)

Umklapp processes are known to be highly anisotropic at low temperatures even for a spherical

Fermi surface [41]. The anisotropy is stronger when the Fermi surface touches the boundary of the

first Brillouin zone, as shown in Fig. 3.14. For a given initial state k, the phonon momentum q with

the smallest amplitude qmin will connect k to the neck point, resulting in a final state k′ at a neck

point on the opposite side of the Brillouin zone. This shows that the Umklapp scattering can play an

important role even at the lowest temperatures. In general, the value of qmin determines the minimum
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Figure 3.14: Umklapp process for copper in the repeated Brillouin zone. From Ziman et al. [44];

used by permission.

temperature at which the Umklapp process occurs. In contrast, the belly point on the Fermi surface

is far away from the zone boundaries and further from the points in the repeated zone. The Umklapp

scattering from these points are frozen out at low temperatures. From the Fermi surface shown in

Fig. 3.14, Ziman et al. estimated a scattering anisotropy of τbelly/τneck ∼ 2.2 at T = 0.2 TD, where

TD is the Debye temperature [44].

For a spherical Fermi surface, Trofimenkoff estimated the Umklapp scattering anisotropy by

considering the partial resistivities over the Fermi surface [45]. Using the Debye spectrum model,

they reproduced the low-temperature resistivity of potassium and showed that the temperature de-

pendence of the anisotropy ratio < τ(k,T ) >2 / < τ(k,T )2 > closely follows the temperature depen-

dence of the Hall coefficient. The estimated scattering anisotropy is shown in Fig. 3.15. As shown

in Appendix C, this anisotropy ratio is proportional to the effective electron density n∗, as estimated

from Hall measurements:

n∗

n
=

< τ >2

< τ2 >
, (3.10)

where n is the mean electron density obtained by assuming a constant scattering rate over the entire

Fermi surface. We claim that THz-TDS produces a more reliable estimate of carrier density at low

temperatures because it is insensitive to this anisotropy in the scattering processes.

In Cr1−xVx with x ≥ 0.02, the rapid drop in the Hall coefficient disappears. Moreover, we

observe a weak increase in the residual resistivity with increasing vanadium concentration in the

magnetic phase. This suggests that elastic scattering increases with increasing vanadium concentra-

tion and may become the dominant scattering mechanism for vanadium concentrations of 2% and

higher. We expect this elastic scattering to be more isotropic, resulting in better agreement between

the Hall effect and the THz-TDS measurements.
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Figure 3.15: Temperature dependence of < τ(k,T ) >2 / < τ(k,T )2 > obtained from the partial

resistivities over a spherical Fermi surface [45]. From P. N. Trofimenkoff [45]; used with permission

3.4.6 Quantum phase transition

Fig. 3.16 shows the low-temperature values of ω−2
p as a function of vanadium concentration, as

inferred from both Hall and THz-TDS measurements, assuming an effective mass m∗ = me and

including only Hall measurements for x > 0.02. Neither THz-TDS nor Hall measurements reveal a

sharp jump in the density of states at the QPT [23]. Instead, we observe a smooth loss of free carriers

upon entering the SDW state. We believe that the sharp jump in the density of states is smeared by

disorder in the thin-film samples. Nonetheless, the data clearly indicate an increase in the carrier

density as the SDW transition is suppressed.

The temperature dependence of ω−2
p inferred from Hall effect and THz-TDS measurements in

Cr1−xVx for x=2.7, 4.15 and 4.3% are compared in Fig 3.17. In samples that exhibit an SDW ground

state, both measurements reveal a temperature dependence to ω−2
p that clearly reflects the density of

states reduction as the SDW gap removes parts of the Fermi surface. Above the critical vanadium

concentration, the temperature dependence is weaker but still persists, suggesting that the carrier

density is depleted by magnetic fluctuations above the QPT.

Although both Hall and THz-TDS measurements reveal a depletion in the density of states as the

temperature is lowered, below T ∼ 75 K they exhibit quantitative differences. For 35 ≤ T ≤ 75 K,

THz-TDS measurements indicate a carrier density that is 15% higher than that measured with the

Hall effect. We observe this low-temperature disagreement in the doping range between 2 to 4.3%,
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Figure 3.16: a) Concentration dependence of low temperature ω−2
p . Filled circles and empty squares

correspond to ω−2
p , inferred from the THz-TDS and Hall measurement respectively. The values are

averaged over the temperature range of 35-75 K. Solid lines are the fits to the earlier Hall measure-

ments on Cr1−xVx single crystals [23]. b) THz-TDS results on a new set of samples with vanadium

concentration extended to 8%.

which includes both sides of the QPT. Assuming the disagreement is related to the Fermi surface

nesting in the magnetic state, it is not surprising to see this behavior even above the QPT. Inelas-

tic neutron scattering experiments reveal strong magnetic fluctuations even at 5% vanadium doped

chromium [46], and the strong temperature dependence of Hall coefficient has led to speculations

about a pseudogap region near the QPT [23].

For the chosen effective mass of m∗ = me, this low-temperature disagreement cannot be ex-

plained by the anisotropic scattering. In contrast to the doping range below 2%, the low-temperature

values of ω−2
p inferred from the Hall measurements are higher than those of THz-TDS. If we use

m∗ = 0.5me, as measured by dHvA technique [43], the low-temperature values of ω−2
p inferred from

the Hall measurements are reduced by a factor of 2 and falls under those of THz-TDS. In this case,

the low-temperature disagreement might be explained by the anisotropic scattering but it creates a

puzzling high-temperature disagreement. These considerations suggest that we are either using an

incorrect value for the effective mass or the nature of anisotropy below and above 2% vanadium

doping is different. At the moment the origin of this difference in temperature variation remains

unexplained and warrants further study.



CHAPTER 3. THZ TIME-DOMAIN SPECTROSCOPY OF CR1−XVX FILMS 35

0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

T (K)

ω
P−

2
 (e

V
−

2
)

0 100 200 300 400
0

0.02

0.04

0.06

T (K)

ω
P−

2
 (e

V
−

2
)

 

 

0 100 200 300 400
0

0.02

0.04

0.06

T (K)

ω
P−

2
 (e

V
−

2
)

V(%)=2.7

V(%)=4.15

V(%)=4.3

a)

b)

c)

Figure 3.17: a-c) Temperature dependence of ω−2
p in Cr1−xVx for x=2.7, 4.15 and 4.3%, respectively.

Filled circles and empty squares correspond to the THZ-TDS and Hall measurement, respectively.

.
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3.5 Conclusion

THz-TDS and Hall measurements are commonly used to infer the conduction carrier density. It is

known that each technique uses different averaging techniques over the Fermi surface. We applied

the Hall technique and THz-TDS to Cr1−xVx thin film samples and tracked the loss of free carriers

across the QPT by estimating the plasma frequency. For x> 0.02, both techniques reveal the opening

of the SDW gap and a factor of two change in the carrier density as the material undergoes the

magnetic transition at QPT. However, neither of the techniques reveal the zero-temperature jump

in carrier density at the QPT. We compared the temperature dependence of the plasma frequency

inferred from the two techniques and found quantitative differences at low temperatures.

In Cr1−xVx with 0≤ x≤ 0.02, Hall measurements reveal a minimum in ω−2
p at about 50 K that

had been attributed to the anisotropy in the scattering time. We qualitatively explained the low-

temperature disagreement between the two techniques by considering a spherical Fermi surface and

calculating the ratio of carrier densities estimated from each technique. In this simplified scenario,

we determined that our THz-TDS technique is insensitive to the scattering time anisotropy and

yields a more reliable estimate of carrier density. In Cr1−xVx with 0.025 ≤ x ≤ 0.043, THz-TDS

indicates a higher number of carriers by 15% than the Hall effect at low temperatures. We could not

explain this low-temperature disagreement by considering a simple model and suspect that it could

be related to the way the real Cr1−xVx Fermi surface is treated in each technique. To address this

issue, a realistic Fermi surface should be considered. The results should be further supplemented by

considering disorder.



Chapter 4

Visible-pump, THz-probe spectroscopy

In this chapter, I discuss the theoretical and experimental aspects of the visible-pump, THz-probe

spectrometer in our laboratory. The spectrometer was originally designed to study the intrinsic

photoconductivity of insulating cuprates. In order to create a high density of photoexcitations

(1019 cm−3), we employ an amplified laser system that provides 850 mW of average power with

a repetition rate of 1 kHz. We use 90% of the total laser power to photoexcite the samples and the

remaining power to probe with THz-TDS, using optical rectification and electro-optic sampling.

4.1 Amplified Ti:sapphire laser

We use a commercial Ti:sapphire regenerative amplifier [47] (SP Spitfire 50 fs) to drive the visible-

pump, THz-probe spectrometer. A schematic of the main units in the amplifier system is shown in

Fig. 4.1. There are four main units:

1) A mode-locked Ti:sapphire oscillator (KML) delivers 30 fs pulses, centered at 800 nm with a

100 MHz repetition rate and an average power of 550 mW. We use 50% of the total power, while

the other half is used for the linear THz-TDS setup. The Ti:sapphire oscillator is CW pumped with

4.1 W at λ = 532 nm, using a commercial CW Nd:YLF laser (SP Millennia V).

2) A grating-based pulse stretcher introduces strong group velocity dispersion to stretch the 30 fs

pulses by as much as a factor of 104. The diffraction gratings are arranged so that the high-frequency

components lag behind the low-frequency components (positive chirp). This procedure is used to

reduce the peak intensity of the laser pulse before seeding it into the amplifier. A high intensity

37
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Nd: YLF Pump Laser (SP Millenia V)

 4.1 W,  532 nm, CW

Mode-Locked Ti:Sapphire Laser (KML)

275 mW, 800 nm, 30 fs, 100 MHz

Q-switched Pump Laser (SP Evolution X)

8 W, 532 nm, 10 ns, 1 KHz

Pump

850 mW, 815 nm, 50 fs, 1 KHz

Stretcher

Amplifier Compressor

Spectra Physics Regenerative Amplifier

(SP Spitfire 50 fs)

pump

Seed

Figure 4.1: Schematic of the Ti:sapphire regenerative amplifier. The Spitfire amplifier is pumped

with 10 ns pulses at λ = 532 nm, and seeded by 30 fs pulses with λ = 800 nm from a mode-locked

laser. Ultrafast pulses are stretched prior to amplification. Once they are amplified, the stretched

pulses are recompressed to 50 fs pulsewidth.

pulse with short duration can damage the amplifier gain-medium.

3) A Ti:sapphire regenerative amplifier is designed to amplify pulses from the mode-locked Ti:sapphire

laser (seed). The amplifier is pumped with a commercial Q-switched pump laser (SP Evolution X)

that produces 10 ns pulses centered at 532 nm with a 1 kHz repetition rate and an average power of

8 W. The pump laser excites the Ti:sapphire crystal of the regenerative amplifier and turns it into a

gain medium for approximately 70 ns. A Pockels cell allows a single stretched pulse to enter the

amplifier cavity and gain energy from the excited crystal. Once it is amplified, a second Pockels cell

lets the amplified pulse out of the cavity resonator.

4) A grating-based pulse compressor compensates for the group velocity dispersion of the stretcher

and the multiple passes through the amplifier cavity, to recompress the amplified pulse to 50 fs

pulsewidth.

The technique of using the dispersive delays to stretch a pulse prior to amplificaion and recom-

press it afterward is known as chirped pulse amplification (CPA). A schematic of the CPA technique

is shown in Fig. 4.2.
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Stretcher Amplifier Compressor

Figure 4.2: Schematic of the chirped pulse amplification technique. An ultrashort laser pulse is

stretched in time prior to amplification. Once it is amplified, the high-energy stretched pulse is

recompressed.

4.2 Optical rectification

The electric polarization P(t) can be expressed as a power series of the field strength [48]:

P(t) = P(1)(t)+P(2)(t)+P(3)(t)+ ... = χ(1)E(t)+χ(2)E2(t)+χ(3)E3(t)+ ... . (4.1)

For simplicity, we assume that the polarization P(t) and electric field E(t) are scalar quantities, and

that the medium responds spontaneously to the electric field. In general, P(t) and E(t) are vectors,

χ1 is second-rank tensor, χ2 is a third-rank tensor, etc. In reality, the medium has its own dynamics

and produces a much more complicated structure to the equation that we can ignore for the purpose

of this discussion.

Optical rectification is a second order nonlinear effect and occurs in crystals without inversion

symmetry. Consider two optical fields E1(t) = A1(t)cos(ω1t+δ1) and E2(t) = A2(t)cos(ω2t+δ2),

where A1(t) and A2(t) are the slowly varying envelopes of carrier waves at ω1 and ω2. We assume

δ1 = δ2 = 0 to focus on the basic frequency mixing process, although in general this will not be

satisfied at all locations and times in the nonlinear optical medium. The second order nonlinear

polarization has the following form:

P(2) = χ2A1(t)cos(ω1t)A2(t)cos(ω2t), (4.2)

=
1

2
χ2A1(t)A2(t)[cos(ω1−ω2)t+ cos(ω1 +ω2)t],

= P(2)(ω1−ω2)+P(2)(ω1 +ω2).
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Figure 4.3: Time-domain illustration of SHG and optical rectification processes. The second order

polarization oscillates at the sum (SHG) and difference (optical rectification) of the driving frequen-

cies.

The terms P(2)(ω1−ω2) and P(2)(ω1 +ω2) correspond to polarization oscillations at the difference

and sum of the incident frequencies, respectively. For two identical incident fields, the second order

nonlinear polarization is reduced to:

P(2) =
1

2
χ2A

2(t)+
1

2
χ2A

2(t)cos(2ωt), (4.3)

= P(2)(0)+P(2)(2ω).

The P(2)(2ω) term contains oscillations at twice the carrier frequency and is associated with an effect

known as second harmonic generation (SHG). The P(2)(0) term appears at DC in this treatment, but

for short laser pulses with center frequency ω it is proportional to the square of the incident field

envelope. The process of producing this polarization is called optical rectification and is relevant to

THz generation. The time domain picture of these processes is illustrated in Fig. 4.3.

In our case, optical rectification may be considered as difference frequency generation (DFG)

between the longitudinal modes of a mode-locked laser. A mode-locked laser spectrum consists of

distinct, phase-locked frequency components equally spaced by the inverse of the pulse repetition

rate. When such an electric field is applied to a medium with an appropriate χ2, the nonlinear

polarization oscillates at the sum and difference of each pair of frequencies within the spectrum. The

difference polarization term has a spectrum centered at ω = 0 but with several THz of bandwidth,

depending on the χ2 and the duration of the incident optical pulse [49, 48].

The efficiency of this processes is limited by the mismatch between the phase velocity of the THz

pulse and the group velocity of the incident optical pulse [48]. The phase mismatch corresponds to

the out-of-phase propagation of the THz and optical pulses and results in destructive interference
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throughout the crystal. The length over which this mismatch is tolerated is given by [50]:

lc =
πc

ωTHz | n(eff)
opt −nTHz |

, (4.4)

with

n
(eff)
opt = nopt−λopt

(

∂nopt

∂λ

)

|λopt
, (4.5)

where c is the light velocity, ωTHz the THz frequency, n
(eff)
opt the group velocity refractive index of the

optical pulse, nTHz the medium refractive index in the THz region, and nopt the medium refractive

index at optical wavelength λopt. Efficient optical rectification occurs when the coherence length (lc)

is longer than the nonlinear crystal thickness. In ZnTe, the coherence length is 3 mm at ω0 = 800 nm

and ωTHz = 1 THz [50]. In our setup, we use a 0.5 mm ZnTe crystal to generate THz pulses.

4.3 Electro-optic sampling

In electro-optic sampling, the instantaneous electric field of the THz pulse induces a small birefrin-

gence in an electro-optic crystal. An optical pulse (probe) gains a small ellipticity in the polarization

when it passes through such a crystal. For small applied fields, the induced ellipticity is proportional

to the instantaneous THz electric field.

The optimum orientation of the incident THz field, the optical probe field, and the ZnTe crystals

is shown in Fig. 4.4. In our setup, we use a 1-mm thick 〈110〉-oriented ZnTe as an electro-optic

crystal. ZnTe is a cubic crystal of 4̄3m symmetry class with three non-zero electro-optic tensor

elements r41 = r52 = r63 = 3.9 pm/V [49]. When the THz electric field is oriented along 〈11̄0〉, it

induces a birefringence with natural axes that are identified as x̂ and ŷ in Fig. 4.4. When the optical

probe pulse passes through the crystal, the probe beam acquires the following phase shift between

the birefringent modes [49],

∆φ ∝ n3
0r41ETHzd, (4.6)

where n0 is the crystal refractive index, ETHz is the amplitude of the THz pulse, and d is the crystal

thickness. After passing through the ZnTe crystal, the probe beam goes through a quarter-wave plate

and then a Wollaston prism that separates the vertical and horizontal polarizations. Finally, a pair

of photodiodes is used to read the signal. A schematic of this process is shown in Fig. 4.5. By

measuring the electro-optic phase shift as a function of the delay between the THz and optical probe
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Figure 4.4: Electric field orientation together with the polarization of THz and optical pulses with

respect to the ZnTe crystal. This geometry corresponds to the optimal electro-optic phase modula-

tion.
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Figure 4.5: Schematic of electro-optic sampling. The sampling beam and THz pulses are directed

into a ZnTe in a collinear fashion. The incident THz pulse induces a birefringence in the ZnTe

crystal which is proportional to the THz electric field. This varying birefringence is measured by

monitoring the change in polarization state of the optical probe pulse. The transmitted probe beam

goes through a quarter-wave plate that converts the ellipticity into polarization rotation by inducing

a phase delay. Finally, a Wollaston prism separates the vertical and horizontal polarizations and a

pair of balanced photodiodes is used to read the signal.
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pulse, the entire time profile of the THz field is mapped. According to Eq. 4.6, this detection method

is sensitive to both the magnitude and sign of the THz field.

By introducing a quarter-wave plate before the Wollaston prism, the induced ellipticity is con-

verted into polarization rotation with an angle that is proportional to the THz field. After the probe

beam is transmitted through the Wollaston prism, the intensity difference between the polarizations

along the x and y directions of the crystal is measured with a lock-in amplifier by chopping the probe

beam at 500 Hz. In practice, small misalignments can produce an imbalance in the absence of an

applied field. We compensate for this by blocking the THz beam and adjusting the quarter-wave

plate orientation to null the differential signal.

4.4 Spectrometer layout

The spectrometer is driven by optical pulses from a Spectra Physics regenerative amplifier that

provides pulses of 50 fs duration centered at λ = 815 nm with a 1 kHz repetition rate and an average

power of 850 mW. A detailed schematic of the visible-pump, THz-probe spectrometer is shown in

Fig. 4.6. The laser beam is split into two arms: one arm (10% of total power) is used for THz

generation and detection, and the other (90%) is used for creating photoexcitation in samples. The

less intense beam is then divided into two parts using a 8-92% pellicle: one part (92%) is used

for THz generation and the other (8%) is used for THz sampling. THz pulses are generated via

optical rectification in a 0.5-mm thick 〈110〉 ZnTe crystal. The generated THz beam is collimated

and focused onto the sample using a pair of 45◦ off-axis parabolic mirrors. Compared to the 90◦

off-axis parabolic mirrors, these mirrors are more compact and produce less 3rd-order abberation.

The sample is located in an Oxford cold finger cryostat that is capable of controlling temperature

over a range of 5-340 K. The transmitted THz pulses are then collimated and focused onto a 1-mm

thick 〈110〉 ZnTe crystal using another pair of 45◦ off-axis parabolic mirrors.

Just before the ZnTe crystal, a pellicle is placed in the THz path to direct the optical probe and

THz beams collinearly through the ZnTe crystal. The incident THz pulse induces a birefringence in

the ZnTe crystal that is proportional to the THz electric field. This varying birefringence is measured

by monitoring the change in polarization state of the optical probe pulse. After the ZnTe crystal,

the optical probe beam goes through a quarter wave-plate, then a Wollaston prism that splits the

vertical and horizontal polarizations. A pair of balanced photodiodes is used to read the signal. The

probe beam is chopped at 500 Hz, and the differential voltage of the photodiodes is measured with

a lock-in amplifier that is referenced to the chopper.
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Figure 4.6: Optical layout of the visible-pump, THz-probe spectrometer. The amplified laser beam

is divided into two parts: one part is used for THz generation and detection, and the other part is

used for photoexciting the sample. The THz arm is then divided into two parts using a pellicle: one

part is used for THz generation and the other is used for THz detection. THz pulses are generated

via optical rectification in a ZnTe crystal. The generated pulses are collimated and focused onto

the sample and then directed to another ZnTe crystal using 45◦ off-axis parabolic mirrors. Using a

second pellicle, the sampling beam is also directed into the ZnTe in a collinear fashion. The sampling

beam is then transmitted through a quarter-wave plate and a Wollaston prism before arriving at the

balanced photodiodes. About 90% of total laser power is frequency doubled with a BBO crystal and

used for creating optical excitations in the sample.
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About 90% of total laser power is used for optical excitation, as described in Sec. 4.6. To

create photocarriers in the sample, we use optical second-harmonic generation to double the pump

photon energy from 1.52 eV to 3.04 eV, using a 1-mm crystal of β-barium borate (BBO) that has

a conversion efficiency of 15%. Right after the BBO crystal, a blue-pass filter blocks the residual

815 nm light. The final pump mirror is mounted as close as possible to the edge of the second

parabolic mirror to minimize the angle between their propagation directions. In our spectrometer,

there is a 10◦ angle between the two beams. This limits the temporal resolution to about 2.9 ps

because one side of the 5 mm diameter pump beam arrives before the other.

To ensure that the THz pulse probes a uniformly photoexcited area, the pump beam spot size

should be larger than that of the THz probe. The parabolic mirrors focus the THz probe onto the

sample to a spot radius of 1.1 mm or less above 500 GHz, and 2.9 mm at 200 GHz. We provide

uniform illumination for most of the THz frequencies in the spectrum by setting the pump beam

radius to be 2.2-2.5 mm at the sample. This suggests that THz probe beam do not probe a uniformly

photoexcited area below 200 GHz. The knife-edge method used in measuring the pump beam radius

is discussed in Appendix D.

4.5 THz pulses

To measure the THz pulse, a chopper is used to modulate the sampling beam at 500 Hz. The chopper

frequency is set to half of the laser repetition rate, so that every other pulse is completely blocked.

A lock-in amplifier that is phase locked to the chopper frequency is used to retrieve the measured

signal. By varying the delay between the THz and sampling beams, the entire THz pulse is measured

in the time domain.

With no sample in the THz beam path, a typical THz time-trace is shown in Fig. 4.7(a). Com-

pared to the linear THz spectrometer described in Ch. 2, the measurement process of the pump-probe

system must be adapted to the lower modulation frequency of the amplifier laser systems. In our ex-

periments, we typically sample the THz waveform with 128 points spaced by 0.05 ps. The sampling

time corresponds to a Nyquist frequency of 10 THz, well beyond the signal bandwidth. We set the

lock-in time constant to 500 ms as there is a trade-off between the noise reduction and measurement

time. The ratio of the maximum amplitude at 0.5 THz and the averaged noise floor yields an SNR of

about 100. This is at least an order of magnitude lower than the antenna-based systems, for which

the laser noise performance is better and the lock-in modulation frequency is higher.
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Figure 4.7: a) A typical time-domain THz pulse through air. b) Spectrum of the THz pulse.

4.6 Measurement process

In the pump-probe measurement, an ultrafast optical pulse creates photocarriers in the sample and

a subsequent THz pulse probes the nonequilibrium state. The optical pulse creates a photoexcited

layer that is similar to a metallic film on a substrate. We define an effective film thickness to be the

optical penetration depth or 1/e intensity decay length, assuming a simple exponential absorption.

A schematic of the visible-pump, THz-probe technique is shown in Fig. 4.8.

We modulate the pump beam and measure the pump-induced change in the THz amplitude,

∆E(t,τ) = Epump on(t,∆τ)−Epump off(t), where ∆τ is the delay between pump and probe pulses and

t is the THz-delay time. To determine the THz spectrum as a function of time delay requires THz

difference scans (∆E) at a series of pump-probe delays ∆τ before and after photoexcitation. This

procedure is referred to as a 2D scan [51]. To extract the conductivity, the modulation ∆E(t,∆τ)

is referenced to the transmitted THz field through the unexcited sample E(t). The profile of the

reference field E(t) is measured by modulating the THz beam when the pump beam is blocked.

Rearranging the Tinkham formula [13],

σ̃(ω,τ) =−ns +1

Z0d f

∆Ẽ(ω,τ)

Ẽ(ω)

(

1− ∆Ẽ(ω,τ)

Ẽ(ω)

)−1

(4.7)

where d f denotes the penetration depth, Z0 the impedance of free space, and ns the refractive index

of the unexcited samples in THz region.

To observe the decay dynamics with better resolution, we can fix the THz delay stage at the

peak THz amplitude t = tp and monitor the change in the THz amplitude E(t = tp) as a function of
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Figure 4.8: Schematic of visible-pump, THz-probe technique. We apply ultrafast optical pulses to

create photocarriers in the sample and use THz pulses to probe the nonequilibrium state as a function

of the pump-probe delay ∆τ.

pump-probe delay ∆τ, ∆E(t = tp,∆τ). This procedure is referred to as a 1D pump scan [51]. We

also measure the peak THz amplitude transmitted through the unexcited sample E(t = tp). From

the ratio of ∆E(t = tp,∆τ)/E(t = tp) and assuming a frequency-independent conductivity in Eq. 4.7,

we can estimate the photoconductivity as a function of pump-probe delay. We note that this esti-

mate contains contributions from all frequencies within the experimental bandwidth, and hence it is

referred to as spectrally averaged conductivity.

4.6.1 Results on GaAs

To validate the measurement procedure, I present results on a 〈100〉-orientated GaAs sample. The

analysis allows extraction of the carrier mobility and comparison to the literature values. This point

becomes critical when we compare the mobility in photoexcited and chemically doped cuprates in

Chapter 5.

In this experiment, a GaAs surface is stimulated by 50 fs pulses of 815 nm light. Fig. 4.9(a)

shows the THz time-traces transmitted through GaAs. The solid waveform shows the differential

signal (−∆E) at 116 ps after photoexcitation and the dashed waveform shows the differential signal

at 15 ps before photoexcitation. We measure the differential signal before photoexcitation to define

a baseline for the measurement. Typically it contains a nonzero residue that is built up from previous

pulses. The dotted waveform shows the transmitted THz waveform through the unexcited GaAs.

Fig. 4.9 shows the real and imaginary parts of the photoconductivity in GaAs. The solid curves
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Figure 4.9: a) THz time-traces transmitted through GaAs. The solid waveform shows the differential

signal (−∆E) at 116 ps after photoexcitation and the dashed waveform shows the differential signal

at 15 ps before photoexcitation. The dotted waveform shows the transmitted THz waveform through

the unexcited GaAs (E). b) Real (�) and imaginary (◦) part of photoconductivity in GaAs at 116 ps

after photoexcitation, together with the real (.) and imaginary (�) parts of photoconductivity at 15 ps

before photoexcitation. The solid curves show the fits to the Drude model.

show the fits to the simple Drude model at 116 ps after photoexcitation. From the fits, we determine

the Drude relaxation time τ = 250 fs and DC resistivity ρ0 = 0.024 Ω− cm. The square of plasma

frequency (ω2
p) is inversely proportional to the product of the relaxation time (τ) and resistivity

(ρ) [17]:

ω2
p =

1

ε0ρτ
, (4.8)

where ε0 is the permittivity of free space. For a spherical Fermi surface, the plasma frequency is

related to the total density of carriers through

ωp =

(

nce
2

m∗ε0

)1/2

, (4.9)

where nc is the total carrier density, e is the electric charge, and m∗ is the effective mass. We

assume an equal density of electrons and holes, each with different effective mass, m∗e = 0.067m0

for electrons and an average effective mass of m∗h = 0.47m0 for holes [52]. Including both electron

and hole contributions, we obtain

ω2
p =

nee
2

m∗eε0
+

nhe
2

m∗hε0
=

ne,he
2

ε0

(

1

m∗e
+

1

m∗h

)

. (4.10)
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Figure 4.10: Room temperature fractional change (−∆E/E) measured at the THz peak amplitude in

photoexcited GaAs.

From Eq. 4.10, we estimate an electron-hole pair density of ne,h = 3.4×1016 cm−3. From the pump

beam fluence (1.5 µJ/pulse) and photon energy (1.52 eV), we estimate a photoexcitation density of

nex = 6.2× 1016 cm−3, with a penetration depth of 1 µm [53]. From the definition of the quantum

efficiency:

η =
Number of generated electron-hole pairs

Number of incident photons
=

ne,h

nph
, (4.11)

we estimate a quantum efficiency of η = 55%. Electron mobility can be determined according

to µe = eτ/me. At 116 ps after photoexcitation, we estimate a room-temperature electron mobil-

ity of 6550 cm2/V · s. Using the same experimental technique, Beard et al. [51] reported a mo-

bility of 6540 cm2/V · s at 100 ps after photoexcitation, with a photoexcitation density of nex =

1.6× 1016 cm−3. However, they used a generalized Drude model and neglected the contribution

of induced holes in the plasma frequency [51]. At this doping range, the room-temperature Hall

mobility of electron-doped GaAs is expected to be 5500±1500 cm2/V · s [54].

Figure 4.10 shows the time evolution of (−∆E/E) at the THz peak as a function of pump-probe

delay ∆τ in GaAs, for nex = 6.0× 1016 cm−3. The decay of photocarriers occurs on a nanosecond

timescale and is attributed to electron-hole recombination [51].



Chapter 5

Intrinsic photoconductivity of undoped

cuprates

5.1 Purpose of this study

Cuprate high-temperature superconductors are often considered in terms of doping an antiferro-

magnetic insulator [55]. To understand them fully, then, it is important to understand the transport

properties of dilute charge carriers in an antiferromagnetic insulating system. Yet even after two

decades, such an understanding remains elusive. For example, the relative importance of magnetic

and charge-lattice interactions in determining the DC mobility are not known, and various experi-

mental approaches yield ambiguous results.

Photoconductivity measurements in the truly dilute limit have been restricted to the observation

of the DC photoconductivity, which is sensitive primarily to long-lived impurity states [56]. In

contrast, DC transport measurements on lightly doped compounds give surprisingly high carrier

mobility that may be due to some form of cooperative transport [57]. Here, we create electrons and

holes in undoped cuprates with a femtosecond laser pulse, and use a THz frequency probe pulse to

directly measure the low-energy excitation spectrum of the photodoped material. Our picosecond

time-resolved technique allows us to examine free electron-hole excitations before they relax, in

order to determine the intrinsic mobility of the dilute carriers. We find that the decay dynamics of

the transient photoconductivity bears a strong similarity to the spectral changes seen in visible-pump,

visible-probe spectroscopy [58]. From this relationship, together with the temperature dependence

of the photoconductivity, we conclude that the photocarriers exhibit hopping conductivity that is

50
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limited by the availability of optically or thermally generated bosonic modes.

5.2 Background

A superconductor is a material with no resistance to the flow of electricity below a critical tem-

perature Tc. The phenomenon was discovered by H. K. Onnes in mercury 100 years ago, soon

after liquifying helium [59]. In the following decades, many elements and alloys were identified

as superconductors. This new phenomenon was not understood until Bardeen, Cooper, and Schri-

effer formulated the first microscopic theory of superconductivity (BCS) in 1957 [60]. Within this

framework, superconductivity results from the condensation of electron pairs (Cooper pairs) into a

coherent ground state. The pairing interaction is provided via electron-phonon coupling. The theory

is successful in predicting many physical properties of the superconducting state, e.g. the Meissner

effect, the isotope effect, the universal relationship between Tc and energy gap, and the exponential

form of the low temperature specific heat. The theory was not challenged until the discovery of

superconductivity in copper oxide ceramics (HTS or high-Tc or cuprates).

This new type of superconductor was discovered by Bednorz and Müller in 1986 after a system-

atic study of the electrical properties of ceramic compounds [61]. The first compound discovered

was lanthanum copper oxide doped with barium, La2−xBaxCuO4+δ with a Tc of 29 K. Surprisingly,

the undoped compound is an insulating ceramic and becomes a superconductor when doped. In the

following year, Paul Chu and his colleagues synthesized YBa2Cu3O7 with a critical temperature

of around 93 K [62], exceeding the boiling point of liquid nitrogen. Tremendous advances were

made in crystal chemistry and experimental techniques, and more high Tc compounds were found in

quick succession. The current record belongs to the Tl-doped HgBa2Ca2Cu3O8+δ with Tc ≈ 138 K

at ambient pressure [63].

It was soon established that all these new compounds share two-dimensional CuO2 planes. It is

now believed that the strong correlation within these planes is responsible for many exotic properties

of cuprate superconductors. After 25 years of intensive research, the superconductivity mechanism

in cuprates is still controversial.

5.2.1 Phase diagram

High-Tc superconductors share a universal phase diagram. The undoped phase is antiferromagnet-

ically ordered below the Néel temperature of about 250-500 K. La2−xSrxCuO4 is commonly con-

sidered as a prototype example of a hole-doped cuprate. As shown in the right side of Fig. 5.1,
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Figure 5.1: Schematic phase diagram of hole-doped (right) and electron-doped (left) cuprates;

Adapted from Ref. [55].

introducing holes to the Cu-O plane rapidly suppresses the ordered state at 3-5% hole concentra-

tion. Almost immediately after the suppression of the ordered state, superconductivity emerges and

persists up to 25% hole concentration. The generic dome-shaped phase of the superconducting state

has a maximum Tc at an optimal doping of about 15% hole concentration. The region with doping

x less than that of the maximum Tc is known as the underdoped region. In underdoped samples, the

metallic state above Tc and below a temperature T ∗ exhibits many unusual properties and is referred

to as the pseudogap. The nature of the pseudogap phase remains controversial, but it is common

to associate it with the incomplete formation of the superconducting state well above Tc [64]. The

region with doping x higher than that of the maximum Tc is called the overdoped region and exhibits

normal metallic properties above Tc.

It is possible to dope these compounds with electrons rather than holes. A typical electron-

doped system is Nd2−xCexCuO4+δ (NCCO). As shown in the left side of Fig. 5.1, the phase diagram

of electron-doped cuprates shows a more robust antiferromagnetism that persists to much higher

doping, leaving a narrower superconductivity dome [65]. The pseudogap phase is not observed in

the electron-doped cuprates.

5.2.2 Undoped cuprates

Undoped cuprates have an odd number of electrons in the conduction band and conventional band

theory predicts them to be metals. The insulating character of the real materials arises from the
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Figure 5.2: a) Schematic of the CuO2 plane in undoped cuprates. The arrows indicate the spin align-

ment of the antiferromagnetic ground state. b) A schematic energy diagram of undoped cuprates.

The copper electronic state is split into upper Hubbard band (UHB) and lower Hubbard band (LHB),

separated by the gap energy U . The highest occupied band is about 1.5-2 eV below the UHB and is

associated with oxygen 2p band.

anomalously strong electron-electron repulsion that imposes a high energy cost for double occu-

pancy. The Coulomb energy, commonly denoted by U , dominates over the hopping energy t, and

thus the ground state is insulating. Typical values of t and U are 300-500 meV and 8-10 eV, respec-

tively [66, 67].

After double-ionization, the planar copper has a 3d9 configuration, so there is one unpaired

electron per copper atom. For U � t, the copper state is split into the upper Hubbard band (UHB)

and the lower Hubbard band (LHB), separated by the energy U as shown in Fig. 5.2(a). In this

limit, superexchange produces an antiferromagnetic interaction between neighbouring sites with a

typical exchange interaction J of 100-140 meV [67]. A schematic of the spin alignments in the

CuO2 plane is shown in Fig. 5.2(b). An anisotropic crystal field lifts the degeneracy of the copper

d orbital so that the highest partially occupied orbital is dx2−y2 . As illustrated in Fig. 5.3(a), the

dx2−y2 orbital lobes point directly towards the pσ orbitals of the four planar oxygens surrounding it

and form strong covalent bonds with hopping integral tpd . The oxygen valence orbitals 2px,y have a

closed-shell configuration but the dx2−y2 orbital has a single vacancy.
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5.2.3 Charge-transfer excitation

The Cu-O charge transfer energy ∆ = εp− εd is smaller than the on-site Hubbard U , so these com-

pounds are called charge transfer (CT) insulators. The optical gap of a CT insulator corresponds to

the transfer of an electron from an oxygen ion to a vacant state on a neighboring transition metal ion.

When ∆ >U , the optical gap corresponds to the electron transfer directly between two neighboring

transition metal ions, and the material is called a Mott insulator. The charge transfer character of the

insulating gap in cuprates has been confirmed by electron energy loss spectroscopy (EELS) [69].

A schematic of the CT process is illustrated in Fig. 5.3(b). The CT gap manifests itself as a pro-

nounced peak at 1.5-2 eV in the in-plane optical conductivity spectra of copper oxides [68]. The

optical conductivity spectra of some 1D and 2D insulating cuprates are illustrated in Fig. 5.3(c).

In undoped cuprates, the optical conductivity spectrum above the gap edge is dominated by two

peaks [70, 68]: the low energy peak corresponds to an electron transfer from an O-2pσ orbital to

a Cu-3dx2−y2 orbital, while the higher energy peak corresponds to an electron transfer from an O-

2pπ orbital to a Cu-3dx2−y2 orbital. In the low energy peak, the hole created at the 2pσ hybridizes

with three other neighbour oxygen orbitals, as shown with a dashed circle in Fig. 5.3(a). The com-

bined state of four oxygen hole states and the central 3dx2−y2 electron state form a spin singlet state,

known as Zhang-Rice singlet (ZRS). It has been shown that this singlet state corresponds to the

lowest energy excitation for an undoped cuprate [71] and can move with little disturbance to the an-

tiferromagnetic background. In the higher energy peak, the hole in the O-2pπ orbital also hybridizes

with neigbouring O-2pπ orbitals in a nonbonding state that has little hybridization with the central

Cu-3dx2−y2 orbital.

5.3 Bosonic excitations

One essential question concerning the physics of high temperature superconductors is the contribu-

tion of phonons in modulating electronic and magnetic interactions in these compounds. ARPES

provides evidence for the importance of phonons in lightly doped cuprates. Lanzara et al. reported

a ubiquitous anomaly (kink) in the dispersion relation around 50-80 meV along (0,0)-(π,π) direction

in various copper-oxide superconductors. The kink corresponds to a sharp change in the velocity

and scattering rate near the phonon energies. The feature appears to be more pronounced in the un-

derdoped regions and persists to well above the transition temperature Tc [72]. In undoped cuprates,
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Figure 5.3: a) A sketch of the charge-transfer excitation in CuO2 plane. The combined state of four

oxygen hole state and the central 3dx2−y2 electron state forms a spin singlet state. The dashed circle

denotes a Zhang-Rice singlet. b) A schematic energy diagram of charge-transfer bands in the hole

picture. c) Optical conductivity spectra of parent 1D and 2D copper-oxide compounds. The electric

field is parallel to the copper-oxide basal plane. From Tokura et al [68]; used by permission.
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ARPES spectra reveals a considerable broadening of the lineshape that is interpreted as a Franck-

Condon type process [73, 74]. Viewed in this way, the generated photoholes are strongly coupled to

the bosonic modes that modulate the electronic interactions in the system.

Another indication of polaron formation arises from measurements of the dielectric constant in

La2CuO4 [75, 76]. Chen et al. estimated a static dielectric constant of εs = 31± 2 for the electric

field perpendicular to the CuO2 plane, considerably higher than the optical-frequency dielectric

constant of ε∞ = 5. The large difference between εs and ε∞ indicates a large contribution from optical

phonons in the static polarization and leads to a strong coupling between carriers and phonons, as

expressed by the Fröhlich coupling constant [77, 78]

αF =
e2

4h̄ω0

(

1

ε∞
− 1

εs

)(

2m∗ω0

h̄

)1/2

, (5.1)

where ω0 denotes the optical phonon frequency. Using m∗ = 4m0 [79] and h̄ω0 = 43 meV [80],

we find a coupling constant of αF ∼ 5.8 which puts the polarons in La2CuO4 in the intermediate

coupling region (3≤ αF ≤ 6).

The strong temperature dependence of the CT excitation also provides evidence for polaronic

behaviour at near zero doping. Upon raising the temperature, the CT peak exhibits a broadening and

a shift to lower energies [80, 70]. Falck et al. proposed a model based on short range electron-hole

attraction and carrier-phonon interaction to explain the strong temperature dependence of the peak

in the imaginary part of the dielectric function (ε2) at 2.25 eV [80]. From the fits to the data, they

estimated an average phonon energy of 43±4 meV as the only adjustable parameter.

Dodge et al. [58] demonstrated the role of bosons in determining the optical pump-probe proper-

ties of the CT excitation. They used a visible-pump, visible-probe technique to measure the transient

change in the optical transmission spectrum of Sr2CuO2Cl2 after pumping with 2.1 and 3.1 eV pho-

tons. They observed a photoinduced softening and shift of CT gap to lower energies, shown in

Fig. 5.4(a), that resembles the effect of raising temperature. The similarity in energy position and

spectral shape between heating and photoexcitation suggests that they result from the same underly-

ing mechanism. The temperature dependence of CT excitation corresponds to the change in Bose-

Einstein occupation of a bosonic mode with an energy of 43± 4 meV [80]. Note that this bosonic

mode could be related to the phonons or spin fluctuations or a combination of the two. Dodge et al.

related the pump-induced signal to the differential linear absorption, α(15 K)−α(250 K), and esti-

mated that each 3.1 eV photon creates from eleven to twenty bosons with energies ranging from 70 to

130 meV. They argued that these non-thermal bosons decay anharmonically into acoustic phonons

on a picosecond timescale, and that this process governs the temporal decay of the pump-probe
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signal.

a) b)

(i) (ii) (iii)

Figure 5.4: a) Comparison between the change in optical transmission spectrum due to photoexci-

tation and heating in Sr2CuO2Cl2. The solid line represents the transient photoinduced change after

pumping with 3.1 eV photons at 15 K and the dashed line represents the differential linear absorp-

tion from 15 to 250 K. b) An illustration of the photoexcitation event sequence: i) absorption of a

3.1 V photon. ii) hot carrier decay to the gap edge through a boson cascade. iii) hot bosons broaden

and shift the CT gap to lower energies. From Dodge et al. [58]; used with permission.

The event sequence of this process is illustrated in Fig. 5.4(b). It begins with the absorption of

a 3.1 eV photon followed by initial relaxation of the photoexcited state by successive emission of

bosons in tens of femtoseconds. These hot bosons produce a softening of the CT gap that broad-

ens the optical gap excitation and shifts it to lower energies. As time evolves, the photoinduced

absorption signal decays as the nonequilibrium boson population thermalizes. This proposed model

closely resembles the relaxation process in photoexcited polar semiconductors [77].

5.4 Mobility of dilute carriers

ARPES shows quasiparticle (QP) peaks in the superconducting state of optimally and underdoped

cuprates, indicating the coherent motion of photoexcited carriers [81]. When the Mott transition is

approached, the QP peak is replaced by a broad feature at the gap edge that has been attributed to a

phonon sideband [73, 74], indicating strong coupling to bosonic shake-off modes. In this limit, one

would consider these as polaronic excitations that are effectively localized.

Thio et al. [56] carried out the first DC photoconductivity measurement on insulating cuprate

La2CuO4 and reported a very slow decay of ∼ 10 s at room temperature. Using this slow decay,
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they estimated a mobility of ηµ≈ 10−7 cm2/V · s, where η is the quantum efficiency for producing

free carriers per photon. This very small value of ηµ could either arise from a small value of η or

a very low average mobility. The first case is unlikely since the 2.2-eV pump energy is well above

interband absorption threshold. The more likely case is that the low average mobility results from

the localization of photocarriers. Considering the low mobility and very slow relaxation time, it

was argued that the photocarriers are trapped at defect sites, so this measurement does not yield any

useful information about the intrinsic charge transport of dilute carriers.

An in-plane transport measurement on very lightly doped La2−xSrxCuO4 was carried out by

Ando et al. [57]. Upon doping, they observed a Hall mobility with a value of 3 cm2/V · s in

La1.99Sr.01CuO4. The magnitude of the mobility is relatively high for an oxide and comparable

to those of typical metals at room temperature. It was argued that the surprisingly high value of

mobility and its doping insensitivity could be an indication of phase segregation on a mesoscopic

scale. In this picture, charge carriers tend to aggregate in self-organized regions of high density and

relatively high mobility.

Given the high Hall mobility, low photoconducting drift mobility, and evidence for strong

electron-boson effects in ARPES, there is ambiguity over the nature of the photoexcited state in

very lightly doped cuprates. We attempt to understand the transport properties of photoexcitations

in the undoped cuprates Sr2CuO2Cl2 (SCOC), YBa2Cu3O6 (YBCO), and La2CuO4 (LCO) using a

visible pump, THz-probe technique. The technique provides the necessary time resolution to ex-

amine the intrinsic photoconductivity of the CT states. Moreover, the THz-frequency probe pulse

is primarily sensitive to the movement of free charges. Using this technique, we estimate the mo-

bility of photoexcited carriers in their initial state after photoexcitation. The technique has already

proven successful in determining the mobility of photoexcited states in systems such as GaAs and

TiO2 [51, 82].

5.5 Samples

In our experiment, we photoexcite insulating single crystals of SCOC, YBCO, and a thin film of

LCO. These compounds have the same electronic configuration in the CuO2 plane and comparable

interaction energies t, J and U [83, 67]. Here I provide a brief description of the crystal structure

and growth technique of each sample.

LCO is the parent compound of prototypical La2−xSrxCuO4. The ground state is an antiferro-

magnetic insulator with a Néel temperature of 325 K [84]. The material exhibits superconductivity
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Figure 5.5: Crystal structure of a) La2CuO4, b) Sr2CuO2Cl2 and c) YBa2Cu3O6.

when doped with an alkaline earth element, typically by partial substitution of divalent Sr for triva-

lent La. The crystal structure is shown in Fig. 5.5(a). In LCO, corner sharing CuO6 octahedra form

a two-dimensional square lattice stacked along the c-axis with intervening La atoms [61].

We attempted to measure an LCO single crystal obtained from Graeme Luke’s group at McMas-

ter University. The sample was polished and thinned to a thickness of about 200 µm but it was not

transparent in the THz region even at low temperatures. The lack of transmission could be related

to a high impurity content. Subsequently, we were successful with measurements on an 80 nm LCO

film. We note that the LCO skin depth for 3.1 eV photons is around 160 nm [85] and thus, the

photoexcited region is fairly uniform throughout the entire 80 nm film thickness. The LCO film was

deposited by molecular beam epitaxy on a 10×10 mm2 MgO substrate and was synthesized by Ivan

Bozovic at Brookhaven National Laboratory.

SCOC is an antiferromagnetic insulator with a Néel temperature of 256 K [86]. The crystal

structure of SCOC is illustrated in Fig. 5.5(b). The material is isostructural to the high temperature

phase of LCO, with the apical oxygens replaced by chlorine and lanthanum by strontium. SCOC

is a nearly ideal two-dimensional antiferromagnetic system as it is stochiometrically stable and

grows exactly at zero doping with minimum disorder [86]. Superconductivity is achieved by partial

substitution of oxygens for apical chlorine under high pressure. Sr2CuO2+δCl2−y yields a Tc of

30 K at y = 0.8 [87]. Alternatively, the analogous compound Ca2CuO2Cl2 can be doped by partial

substitution of Na for Ca and produces a Tc of 28 K at 18% hole concentration [88].
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SCOC crystals were synthesized by Ruixing Liang at the University of British Columbia. They

were grown by cooling the melt from 1110◦C to 1075◦C at a rate of 3◦C/hr in an alumina cru-

cible [89].

YBCO is the parent compound of superconducting YBa2Cu3O6+x (x≈ 6.5−7.5), the first mate-

rial to exhibit superconductivity above the boiling point of nitrogen. It belongs to the class of bilayer

materials, since there are two distinct CuO2 layers per unit cell. The CuO2 distortion appears as a

shift of oxygen ions toward the interior of the bilayer as shown in Fig. 5.5(c). The undoped regime

exhibits antiferromagnetic ordering below a Néel temperature of about 500 K. The parent compound

can either be doped by partial substitution of Y3+ for Ca2+ [90] or by adjusting the oxygen content

by proper heat treatment [91]. The optimally doped YBa2Cu3O6.95 yields a maximum Tc of 93 K.

The YBCO crystal used in this work was fabricated by a top-seeded melt growth technique [92].

An oxygen content of 6.00-6.01 was achieved by annealing at 700◦C under 5× 10−7 torr oxygen

pressure for 10 days. The YBCO crystal was synthesized by Ruixing Liang at the University of

British Columbia.

5.6 Results

5.6.1 Photoconductivity spectra

The room temperature photoconductivity spectra of SCOC, YBCO, and LCO are shown in Fig. 5.6.

The measurements are performed at optical fluences equivalent to 0.015, 0.016, and 0.012 pho-

toexcitations per unit cell, respectively. The photoexcitation density is different for each compound

owing to differences in penetration depth, pump-beam area, and unit cell size. The procedure for

determining the photoexcitation density is provided in Appendix E. Two key features of σ1 are im-

mediately apparent. First, the lines extrapolate to a nonzero σ1 at DC, indicating the presence of free

and mobile carriers. Second, we do not observe any dispersion within our experimental uncertainty,

and this remains true as the photoconductivity decays with time. Fitting the SCOC data at 1.3 ps

to an even polynomial expansion about ω = 0 gives a curvature of 0.05±0.10 ω−1cm−1/THz2, so

that within our experimental uncertainly, there is no dispersion. Clearly, significant spectral content

must lie at higher frequencies. The expected increase in spectral weight can be calculated according

to the f-sum rule [93],

nc(Ω)e2

m∗
=

2

π

∫ Ω

0
σ1(ω)dω. (5.2)
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Figure 5.6: a) Room temperature photoconductivity of SCOC at 1.3 (�), 4 (◦), 16 (�), 75 (O), and

-15 (.) ps after photoexcitation. b) Room temperature photoconductivity of YBCO at 0 (�), 0.7 (◦),
3.3 (�), 8.7 (/), 79 (O), and -15 (.) ps after photoexcitation. c) Room temperature photoconductivity

of LCO at 1.3(�), 4 (◦), 15 (�), 80 (O), and -15 (.) ps after photoexcitation.
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In addition to hole transport, we consider an equal contribution from photoexcited electrons be-

cause of their similar mobility in the lightly electron-doped cuprates [94, 57]. In SCOC, using

nc = 1.2× 1020 cm−3 and m∗ = 4m0 [79], only 0.2% of the expected increase in spectral weight

after photoexcitation is accounted for by the conductivity seen within our experimental bandwidth.

This means that even though mobile carriers are being created, they must be strongly renormalized

by interaction with a characteristic energy scale that lies well above our measurement bandwidth. We

also simultaneously measure the imaginary part of conductivity to be zero within ±0.9 (Ω cm)−1.

The imaginary parts of conductivity are shown in Appendix F.

As described in Appendix E, we can estimate the free-carrier mobility µ from σ w 2ηnexqeµ,

where η is the quantum efficiency for free carrier production, nc is the excitation density, and qe is

the electric charge. The quantum efficiency for the creation of unbound excitations is unknown, so

our measurements give the product of mobility and quantum efficiency ηµ. In SCOC, at +1.3 ps

after photoexcitation, the extrapolated DC conductivity corresponds to charge transport with an ηµ

of 0.15±0.05 cm2/V · s, where the dominant uncertainty is the variation from sample to sample.

The estimated values of ηµ at 1.3 ps after photoexcitation is listed in Table 5.1 for all compounds

studied. We expect the quantum efficiency η to be close to unity since the 3.04 eV pump energy is

well above the optical absorption threshold for these compounds. It should be noted that the photo-

Table 5.1: Room temperature ηµ at 1.3 ps after photoexcitation.

SCOC YBCO LCO

x(%) 1.5 1.6 1.2

ηµ(cm2/V · s) 0.15 0.07 0.03

induced change in LCO is 4 times smaller than SCOC, resulting in lower SNR and data quality

compared to SCOC and YBCO. This is partially due to the 80 nm film thickness, which is half of

the 160 nm penetration depth in this compound [85]. The LCO photoconductivity spectrum is the

result of averaging 200 2D scans, equivalent to two days of data collection.

5.6.2 Relaxation dynamics

Because σ1(ω) is non-dispersive within our bandwidth, measuring the change in the peak THz

amplitude with time is sufficient to characterize the decay dynamics. Figure 5.7(a) shows the time

evolution of −∆E/E as a function of pump-probe delay (∆τ) in SCOC. We observe a rapid onset

of photoconductivity followed by a non-exponential decay that we fit using a double-exponential
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Figure 5.7: Room temperature fractional change -∆E/E in the THz transmission amplitude through

SCOC after photoexcitation, measured at the peak of the THz pulse. The solid line is a fit to a

double exponential decay to a constant, as described in the text. Errorbars indicate the statistical

variability in the measured value at each point. The dashed line is the experimental data of Dodge

et al. [58] for the change in total optical transmission in a visible-pump, visible-probe experiment.

b) Normalized decay dynamics in SCOC (solid line), YBCO (dashed line), and LCO (dotted line)

at room temperature.
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decay to a constant, with exponential time constants of 2 and 40 ps. From the change at the THz

peak, we estimate a spectrally averaged ηµ of 0.22 cm2/V ·s at peak fluence, corresponding to 1.5%

photoexcitations per unit cell. Similarly, we obtain exponential time constants of 0.6 and 7 ps at a

fluence of 1.6% in YBCO and exponential time constants of 0.9 and 4 ps at peak fluence of 1.2% in

LCO.

We compare the change in THz conductivity and optical transmission seen in a visible-pump,

visible-probe measurement in Fig. 5.7(a), and the agreement between the two is striking.1 In the

visible-pump, visible-probe measurements [58], the change in optical transmission was related to

bosonic modes that couple strongly to the charge-transfer excitations. The agreement between the

decay rates seen in the two techniques suggests that the non-thermal phonon population contributes

to DC transport, and that the time dependence of the photoconductivity is dominated by changes in

the mobility, not the carrier concentration.

The normalized decay dynamics of all studied compounds are shown in Fig. 5.7(b). At 1.3 ps

after photoexcitation, we estimate a spectrally averaged ηµ of 0.07 and 0.03 cm2/V ·s in YBCO and

LCO, respectively. The qualitative agreement among the values for ηµ and the similarity of the decay

dynamics across three different compounds indicate that the observed picosecond photoconductivity

is an intrinsic feature of the copper oxide plane.

The temperature dependence of the decay dynamics in SCOC and YBCO is shown in Fig. 5.8(a).

The fitted exponential time constants are relatively temperature-independent, but the residual con-

ductivity that remains after several picoseconds increases strongly with increasing temperature.

As shown in the inset of Fig. 5.8(b), the peak conductivity is nearly temperature-independent.

Fig. 5.8(c) show semilogarithmic plots of Tσr(T ) versus 1/T . The linearity of the data at high

temperature is consistent with the form expected from Holstein’s model of adiabatic polaron hop-

ping, σ = (α/T )exp(−Ea/kBT ) [95]. In SCOC and YBCO, the fits over the linear region give

activation energies Ea of 17 and 25 meV, which compares favorably with the phonon energy range

of 20-70 meV in these compounds [96, 97].

At this point, we are only certain that the residual conductivity increases with increasing tem-

perature and this implies some form of hopping conduction, in contrast to coherent band transport.

We should acknowledge that the conductivity model is not unique and there are other ways of fitting

to the data. For example, the data can also be described by the conductivity of the variable-range

hopping (VRH) form σ ∼ exp[−(T0/T )1/4], which describes the the carrier transport in disordered

1Optical transmission measurements give the reduction in transmitted power or intensity I. But for small changes,

∆I/I ≈ 2∆E/E, so the time dependence of dynamical processes can be compared directly between the two techniques.
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Figure 5.8: a) Decay dynamics at 15 K (solid lines), 150 K (dashed lines) and 300 K (dotted lines)

in SCOC (left) and YBCO (right). The decay dynamics are shifted by 3 ps for clarity. SCOC

and YBCO measurements are performed at hole densities of 6× 1019 cm−3 and 9× 1019 cm−3

equivalent to 0.015 and 0.016 holes per unit cell, respectively. Inset: Temperature dependence of

the peak conductivity (•) along with the 5-times magnified residual conductivity (�) in SCOC (left)

and YBCO (right). b) semilogarithmic plots of the temperature-dependent residual conductivity in

SCOC (left) and YBCO (right). Residual conductivity is defined as averaged conductivity of the

decay tail above 100 ps. Error bars indicate statistical variability at each point.
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Figure 5.9: Arrhenius plots of the temperature-dependent residual conductivity and the VRH fits in

SCOC (left) and YBCO (right).

systems [17]. In this model, the available sites are not equally spaced, so there is a trade off between

the tunneling (∝ exp(−2R/ξ)) and activation probability (∝ exp(−Ea/kBT )), where the R is the hop-

ping length and ξ is the localization length. This model is also used to describes the low-temperature

conduction in the insulating phase of cuprates [98]. In SCOC and YBCO, the fits yield a T0 value

of 580 and 1400 K, respectively. The is comparable to the value estimated by Ellman et al. [98].

From the low-temperature resistivity of La2−xSrxCuO4 at x=0.05, they estimated T0 = 645 K. In

the variable range hopping model, the T0 parameter relates to the average energy spacing within a

localization volume, and is usually much higher than what we obtain from our measurements. The

Arrhenius plots of the temperature-dependent residual conductivity and the VRH fits to the data are

shown in Fig. 5.9. In contrast to the Holstein’s fit, the VRH fits captures both the low and high

temperature points at the cost of some deviations at higher temperatures.

5.6.3 Doping dependence

Doping levels can be easily varied by adjusting the pump fluence from 20 to 250 mW/cm2, equiv-

alent to hole concentration of 0.002 and 0.016 per unit cell in SCOC. At each fluence, we measure

the fractional change in the peak THz amplitude ∆E/E as a function of pump-probe delay ∆τ. This

enables us to study the doping dependence of the peak mobility and the decay dynamics. The de-

cay dynamics in both SCOC and YBCO are independent of hole concentration over a range of 0.2

to 1.6%. The peak mobilities of photodoped carriers in SCOC and YBCO are shown in Fig. 5.10

together with Hall mobility of chemically doped La2−xSrxCuO4 [57]. In the photoexcited state,

we observe that the inferred mobility decreases weakly with doping, and appears to stabilize at ηµ
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Figure 5.10: Evolution of mobility with carrier concentration. DC mobility of photocarriers in

SCOC (�) and YBCO (�), inferred from (∆E/E)peak. Hole mobility (•) in chemically-doped

La2−xSrxCuO4, from Hall-effect data reported by Ando et al. [57]. These measurements are per-

formed at the effective doping range before the superconductivity emerges at 5% doping.

values of 0.22 and 0.15 cm2/V · s in SCOC and YBCO, respectively. We should emphasize that

the inferred mobilities are lower than the Hall mobility in La2−xSrxCuO4 with similar carrier con-

centration. This is significant, especially because in other systems such as GaAs and TiO2, similar

measurements give a ηµ value consistent with the Hall mobility [51, 82]. In Chapter 3, we showed

that our spectrometer is capable of accurately measuring the electron mobility in GaAs . Even if we

use the estimated quantum efficiency of η = 0.55 in GaAs, the mobilities in undoped cuprates are

still lower than those of chemically doped systems.

5.7 Conclusion

The suppressed mobility compared to the Hall value, and the fact that most photocarrier spectral

weight must lie at energies well above a few meV, indicate that the electrons and holes created by

photoexcitation are inhibited against long-range transport. From the Sr2CuO2Cl2 mobility at 1.3 ps

after photoexcitation, we estimate a mean scattering time of τ ∼ 0.3 fs. Using the Fermi wave

number kF ∼ 0.62 Å−1 [99], we estimate a mean free path of l ∼ 0.6 Å, smaller than the lattice

constant in the Cu-O plane. The time scale for the mobility to decay is too short for the carriers

to move very far, so they are unable to aggregate as Ando et al. have suggested occurs in doped
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compounds. In this picture, the chemically doped compounds have higher mobility because of this

screening effect.

Although excitons may be expected to form from photoexcitations near zero doping, the large

exciton peak linewidth implies a short timescale for exciton decay and therefore cannot explain the

conductivity decay dynamics that we observe [100, 101].

We conclude that the most natural explanation for all these effects is that the photocarriers im-

mediately form small polarons. Immediately after photoexcitation, the excess bosons provide the

necessary activation energy to yield the nonzero DC conductivity revealed by the THz spectra. As

these bosons decay, the mobility is lost. Because the mobility is low and lasts only briefly, the

photocarriers are unable to interact with one another and there is no enhancement of mobility with

increased photodoping. In contrast, in chemically doped systems σ1 is concentrated at low energies,

the mobility is higher, and the mobility increases as a function of doping. The contrast between

the two cases supports the view that lightly doped cuprates are characterized by a type of electronic

phase separation that enhances the screening of the lattice polarization and consequently increases

the mobility above the value it would have in a homogeneous system. [57].



Chapter 6

Future directions

In this thesis, I described the application of THz spectroscopy to two physical systems, metallic

Cr1−xVx alloys and insulating cuprates. In the first system, we use THz time-domain spectroscopy

(THz-TDS) to determine the plasma frequency of Cr1−xVx thin films, as the system undergoes a

Fermi surface instability. In the second system, we use visible-pump, THz-probe spectroscopy to

determine the drift mobility of photoexcited insulating cuprates. In the following, I discuss a selec-

tion of ideas that has emerged during the course of this work to improve the quality of measurements.

Moreover, I outline further applications of our spectrometers to other physical systems.

6.1 THz time-domain spectrometer

The followings are steps that can be taken to improve the spectrometer.

• In Chapter 4, we presented the resistivity and relaxation time values for Cr1−xVx thin films over

the temperature range of 35-300 K. Below 30 K, the optical path length through the cryostat changes

as α/T , where T is the temperature inside the cryostat and α = 2570 fs. This results in a systematic

uncertainty in our optical thickness measurements that results from small temperature fluctuations.

We initially suspected that the 1/T behavior may either arise from oxygen in the cryostat vacuum

jacket or THz window material (mylar). Despite a systematic investigation by Graham Lea, a former

member of our group, the source of this issue is not resolved [102].

• To reduce contributions to the time-domain jitter from low-frequency temperature fluctuations,

we can implement a faster THz scan rate. This requires a faster delay stage and a faster acquisition

lock-in amplifier.

• We currently use silicon-on-sapphire photoconductive antennas to generate and detect THz pulses.
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Our group is planning to fabricate LT-GaAs antennas which can extend the bandwidth up to 3 THz.

6.2 Chromium vanadium project

We observe a series of disagreements at low temperatures in the plasma frequency estimates be-

tween the THz-TDS and Hall technique. A theoretical framework is required to explain these dis-

agreements. We plan to perform similar measurements on less disordered alloys that undergo a

quantum phase transition. This should further clarify the role of Fermi surface and disorder in the

low-temperature disagreements in Cr1−xVx alloys. Our group is planning to study thin film samples

of palladium-nickel (PdNi) alloys across the paramagnetic-ferromagnetic transition at 2.32% nickel

concentration [103].

6.3 Visible-pump, THz-probe spectrometer

We laid a foundation for the use of THz pulses in the study of photoexcited state of insulating

cuprates. In the future, the technique can be applied to a wide range of correlated electron systems.

The followings are steps which can be taken to improve the spectrometer.

• The SNR of the system can be further improved by replacing the compressor gratings in the

regenerative amplifier, which have become less reflective with age. Newer gratings also employ

optical coatings that have improved since the manufacture of the current gratings. Overall, replacing

this grating could increase the overall power by 50%.

• We can improve the temporal resolution of the spectrometer by focusing the pump and THz beams

collinearly onto samples. This can be achieved by guiding the pump beam through a hole drilled in

the center of the second parabolic mirror.

6.4 Undoped cuprates

We use the agreement between the visible and THz probe experiments to establish the polaronic

nature of photoexcited state in Sr2CuO2Cl2 and extend the argument to other studied compounds.

Ideally, we should perform the visible-pump, visible-probe experiments on the same samples of

Sr2CuO2Cl2, YBa2Cu3O6 and La2CuO4 that we used in visible-pump, THz-probe experiments. It is

also valuable to measure the evolution of mobility as a function of photoexcitation wavelength using
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an optical parametric amplifier (OPA), which allows us to control the photon excitation energy. This

will allow us the vary the hot boson density that results from photoexcitation.



Appendix A

Derivation of Tinkham formula

Here I present a detailed derivation of the Tinkham formula for fields at normal incidence in trans-

mission mode. We assume a thin conducting film with a thickness d f and refractive index n f on an

insulating substrate with a refractive index ns. The incident beam and multiple reflections from the

film-substrate interface is shown in Fig. A.1. The drawing depicts an incident beam with a non-zero

angle. The substrate and air are indicated by indices s and a, respectively. The total transmission

df

sf aa

Figure A.1: Wave propagation through a thin film ( f ) with a thickness d f on a substrate (s).

amplitude t̃ f is an infinite summation of waves produced by multiple reflections in the thin film

layer. We apply the Fresnel conditions every time the wave meets the interface. In addition, the

wave picks up a phase difference φ = ω
c
d f ñ f every time it transverses the thin film medium. The

total transmission amplitude is given by:

t̃ f = Ẽ0 [t̃a f t̃ f se
iφ + t̃a f r̃ f sr̃ f ae

2iφt̃ f se
iφ + t̃a f (r̃ f sr̃ f ae

2iφ)2t̃ f se
iφ + t̃a f (r̃ f sr̃ f ae

2iφ)4t̃ f se
iφ + ...], (A.1)
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where t̃i j = (2ñi)/(ñi+ ñ j) is the Fresnel coefficient for transmission, r̃i j = (ñi− ñ j)/(ñi+ ñ j) is the

Fresnel coefficient for reflection, and Ẽ0 is the incident electric field amplitude. Taking the limit of

the geometrical series, the total transmission is written as:

Ẽ0 t̃a f t̃ f se
iφ

1− r̃ f sr̃ f ae2iφ
. (A.2)

Similarly, the transmission through a bare substrate is written as:

t̃s = Ẽ0 [t̃ase
iω
c
d f ñs ]. (A.3)

Assuming ñs = ns, the complex transmittance ratio t̃ f /t̃s is given by:

t̃ f

t̃s
=

t̃a f t̃ f s

t̃as

eiφei
ω
c
d f ns

1− r̃ f sr̃ f ae2iφ
. (A.4)

After inserting the Fresnel coefficients and some manipulation, the complex transmittance has the

following form:

t̃ f

t̃s
=

2ñ f (na +ns)e
iω
c
d f ns

(na + ñ f )(ñ f +ns)e−iφ− (ñ f −ns)(ñ f −na)eiφ
. (A.5)

Within the long-wavelength thin film limit of ω
c
d f ñ f � 1 and ω

c
d f ns� 1,

t̃ f

t̃s
=

(na +ns)(1− iω
c
d f ns)

(na +ns)− iω
c
d f (ñ

2
f +nans)

. (A.6)

The complex index of ñ f of the film is related to the conductivity via ñ2
f = ε̃ f = 1 + i

σ̃ f

ωε0
. Setting

na = 1, the complex transmittance ratio has the following form:

t̃ f

t̃s
=

(1+ns)(1− iω
c
d f ns)

(1+ns)(1− iω
c
d f )+ ω

c
d f

σ̃ f

ωε0

. (A.7)

Assuming 1− iω
c
d f ns ≈ 1,

t̃ f

t̃s
=

(1+ns)

1+ns +Z0d f σ̃ f

, (A.8)

where Z0 =
√

ε0

µ0
= 377Ω is the impedance of free space. Equation A.8 is known as the Tinkham

formula.

The derivation of the Tinkham formula remains valid for a photoexcited layer induced by optical

pumping on an insulating substrate. We define an effective film thickness to be the optical penetra-

tion depth or 1/e intensity decay length, assuming a simple exponential absorption. For transmission
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through the photoexcited layer on a bare substrate, the calculation remains identical up to Eq. A.6

and I continue further by assuming a small photoinduced conductivity, σ̃ f = σ̃s +∆σ̃,

ñ2
f = 1+ i

σ̃s

ωε0
+ i

∆σ̃

ωε0
. (A.9)

After inserting Eq. A.9 into Eq. A.6 and taking the reference substrate to be the sample with no

photoexcitation, the complex transmittance ratio t̃ f /t̃s will have the following form:

t̃ f

t̃s
=

(1+ns)(1− iω
c
d f ns)

(1+ns)(1− iω
c
d f ns)+ ω

c
d f

∆σ̃
ωε0

. (A.10)

Assuming 1− iω
c
d f ns≈ 1,

t̃ f

t̃s
=

(1+ns)

1+ns +Z0d f∆σ̃
. (A.11)

In case of insulating compounds, there is no conduction prior to photoexcitation, and so ∆σ̃ = σ̃ f .

For small changes in the transmission amplitude, ∆t̃ = t̃ f − t̃s� t̃s,

σ̃ f =−1+ns

Z0d f

∆t̃

t̃s
. (A.12)

From σ1(ω = 0), we can calculate the free-carrier mobility µ from σ = ηnceµ, where η is the quan-

tum efficiency for free carrier production, nc is the excitation density, and e is the electric charge,

ηµ =− 1+ns

Z0d f nce

∆t̃

t̃s
. (A.13)



Appendix B

Resistivity measurements on CrV alloys

We have applied the standard four-point technique and THz-TDS to Cr1−xVx thin film samples

and measured the resistivity as a function of temperature. In Chapter 3, I presented the data on

the samples that we found a good agreement between the two techniques. Fig. G.1 shows the

resistivity as a function of temperature for 6 more samples. In 0.9%, 1.25%, and 1.6% vanadium

concentrations, THz-TDS produces the knee in the resistivity at the Néel temperature as expected,

but the four-point technique do not show the feature. In 2% doped sample, we observe a good

agreement between the two techniques. In 2.35% and 2.9% vanadium concentrations, there is an

offset between the resistivities. The sign of the offset appears to be arbitrary and consequently, we

discarded the measurements on those samples.
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Figure B.1: Resistivity as a function of temperature for samples with a) 0.9%, b) 1.25%, c) 1.6%,

d) 2.0%, e) 2.35%, and f) 2.9% vanadium concentration. Filled circles and solid curves denote the

THz-TDS and standard four-point measurements, respectively.



Appendix C

Hall coefficient and anisotropic

scattering lifetime

Here I use Boltzmann transport equation to evaluate the Hall coefficient for spherical Fermi surface

with anisotropic scattering. In the relaxation time approximation,

∂ f

∂t
+F.

∂ f

∂p
=− f − f ◦

τ(p)
, (C.1)

where F = −e(E + v×B) is the Lorentz force, f = f (r, p) is the electron distribution function,

and f ◦ is the equilibrium Fermi-Dirac distribution. We assume that the applied field causes a small

deviation from equilibrium distribution so as f = f ◦+ δ f . For simplicity, we assume that B‖pz
and define ε = p2/2m, ~v = ~p/m, p =

√

p2
x + p2

y + p2
z , θ = cos−1(pz/p), and φ = tan−1(py/px).

After performing the partial derivatives, a Fourier transform and some algebra, the linear Boltzmann

equation will have the following form:

[

1− iωτ(θ,φ)+ω0τ(θ,φ)
∂

∂φ

]

δ f =−e~E.~v τ(θ,φ)
∂ f ◦

∂ε
, (C.2)

where ω0 = eB/m. We study the low energy excitations and hence we drop the energy dependence

of scattering lifetime. In the DC limit and zero magnetic field,

δ f =−e~E.~v τ(θ,φ)
∂ f ◦

∂ε
. (C.3)

The electrical current density jx = σxxEx is defined as:

jx =−2e

∫

d3p

(2πh̄)3
vx δ f (p). (C.4)
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After changing the integral variable from momentum p to energy (ε = p2/m),

σxx =
e2

4π3h̄3

∫ 2π

0
dφ

∫ π

0
dθsin(θ)

∫ ∞

0
m
√

2mε v2
x τ(θ,φ)

(

∂ f ◦

∂ε

)

. (C.5)

At zero temperature, ∂ f ◦/∂ε peaks sharply near the Fermi level as −δ(ε− εF),

σxx =
e2m

√
2mεF v2

F

4π3h̄3

∫ 2π

0
dφ

∫ π

0
dθcos2(φ)sin3(θ) τ(θ,φ) = α < τ > . (C.6)

In this notation, < τ > represents a weighted average over τ. Alternatively, we can write α−1 = ρ <

τ >= m/ne2, where ρ is the DC resistivity and n is the mean (unbiased) carrier density. Now we

evaluate σxy, defined through the relationship jx = σxyEy. In the DC limit and with a weak magnetic

field,

∂ f '
(

1−ω0τ(θ,φ)
∂

∂φ

)

(−eEyvyτ(θ,φ))(
∂ f ◦

∂ε
). (C.7)

Using the definition of the current density jx, we write σxy as:

σxy =
e2

4π3h̄3

∫ 2π

0
dφ

∫ π

0
d(θ)sin(θ)

∫ ∞

0
dε m

√
2mε δ(ε− εF) vx

(

1−ω0τ(θ,φ)
∂

∂φ
(vyτ(θ,φ)

)

.

(C.8)

Using polar coordinates vx = vF sin(θ)cos(φ) and vy = vF sin(θ)sin(φ),

σxy =−αω0

[

∫ 2π

0
dφcos(φ)

∫ π

0
dθsin3(θ) τ(θ,φ)

∂

∂φ
(sin(φ)τ(θ,φ))

]

. (C.9)

After performing the partial derivative, we end up with two terms,

σxy =−αω0[
∫ 2π

0
dφ

∫ π

0
dθsin3(θ)

[

cos(φ)sin(φ)τ(θ,φ)
∂

∂φ
(τ(θ,φ))+ cos2(φ)τ(θ,φ)]

]

. (C.10)

For the first symmetry allowed in a cubic crystal, τ(φ) = τ0(1+αcos(2φ)), the first term is zero,

σxy =−αω0

[

∫ 2π

0
dφ

∫ π

0
dθsin3(θ) cos2(φ)τ(θ,φ)

]

=−αω0 < τ2 > . (C.11)

The Hall coefficient RH is defined as:

RH =
σxy

B σ2
xx

=−ω0

Bα

< τ2 >

< τ >2
=− 1

ne

< τ2 >

< τ >2
. (C.12)

The effective density of carriers n∗ determined from RH =−(1/n∗e) is then given by:

n∗

n
=

< τ >2

< τ2 >
. (C.13)



Appendix D

Knife-edge technique

Here I briefly discuss the the knife-edge method used to measure the pump beam radius. The pho-

toexcited area on the sample plays an important role in determining the photoexcitation density and

photoconductivity. Moreover, the pump beam radius should be larger than that of THz probe beam,

to ensure a uniformly photoexcited area for the THz probe beam.

power meter

Knife

Pump beam

   x

Figure D.1: Illustration of the knife-edge method.

We record the total power of the pump beam as a knife edge is translated through the beam, as

shown schematically in Fig. D.1. A power meter records the integral of the Gaussian beam between

±∞ and the position of the knife edge. The radius (R) of the Gaussian beam is determined from:

P(R,P0,x0;x) =
P0

2

[

1± erf

(√
2(x− x0)

R

)]

, (D.1)

where R, P0, x0 are free parameters determined from the fit, and the ± signs are chosen from the

direction of the translated knife edge. The result of a typical horizontal knife-edge measurement is
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Figure D.2: Horizontal knife-edge measurement yielding a radius of 2.55±0.32 mm

shown in Fig. D.2. This measurement was performed prior to the photoconductivity measurement

on Sr2CuO2Cl2. Given a constant 0.5 mW uncertainty on each point, we estimate a pump beam

radius of 2.55±0.32 mm.

In this particular measurement, knife edge measurements along two orthogonal directions in the

focal plane confirmed the symmetric shape of the pump beam. The uncertainty in the pump beam

radius implies a 12% uncertainty in the photoexcitation density.



Appendix E

Derivation of mobility from

experimental quantities

Here I present the detailed derivation of mobility from the experimentally measured values. We

measure the average pump power with a power meter. The pump beam radius is measured using a

knife edge technique as described in Appendix D. From the central wavelength of amplifier laser,

we estimate the photon energy. We define an effective film thickness to be the optical penetration

depth or 1/e intensity decay length, assuming a simple exponential absorption. The photoexcitation

density is given by:

nex =
Pp

εγπr2d f

(E.1)

where Pp is the pump power per pulse, εγ is the photon energy, r is the pump beam radius, and

d f is the penetration depth. In SCOC, we measured a pump power of 50 mW and pump beam

radius of 2.55 mm. For our 1 kHz amplifier laser, we estimate a flux of 2.5 W/m2 per pulse. For

3.1 eV photons, we use an effective thickness of d f = 80 nm [96]. Using Eqn. E.1, we estimate a

photoexcitation density of nex = 6.2× 1019 cm−3. For lattice constants of a = 3.97 Å, b = 3.97 Å,

and c = 15.61 Å in SCOC, this is equivalent to 1.5%, or 0.015 photoexcitations per unit cell.

For small pump-induced change in the transmitted THz amplitude (∆Ẽ/Ẽ� 1) , the conductiv-

ity can be calculated from:

σ̃ =−1+ns

Z0d f

∆Ẽ

Ẽ
. (E.2)
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where Z0 the impedance of free space, and ns the refractive index of the unexcited samples in THz

region and . In SCOC, we estimate a DC conductivity of 3.3 (Ω− cm)−1 at 1.3 ps after photoex-

citation. From σ1(0) we can calculate the free-carrier mobility µ implied by σ = ηqe(neµe +nhµh),

where η is the quantum efficiency for producing free carriers per photon, and qe is the electron

charge. Note that each incident photon creates an electron-hole pair and thus, nex = ne = nh. We

assume that µe ≈ µh ≡ µ for photoexcited electrons because of their similar mobility in the lightly

electron-doped cuprates [94, 57]. Therefore,

σ w 2ηµqenex. (E.3)

Since the quantum efficiency for the creation of unbound excitations is not known, our mea-

surement gives the product of mobility and quantum efficiency ηµ. In SCOC, 1.3 ps after pho-

toexcitation, the extrapolated DC conductivity corresponds to charge transport with a mobility of

0.15±0.05 cm2/V.s, where the dominant uncertainty is the variation from sample to sample.



Appendix F

Imaginary part of photoconductivity

The visibile-pump, THz-probe technique provides a simultaneous measurement of real and imagi-

nary part of conductivity. Fig. F.1 shows the comparison between the real and imaginary part of the
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Figure F.1: Real (◦) and imaginary (�) part of conductivity at 1.3 ps after photoexcitation in a)

SCOC b) YBCo c) LCO.
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conductivity at 1.3 ps after photoexcitation in the undoped cuprates SCOC, YBCO, and LCO. The

imaginary part in SCOC and LCO do not show any significant dispersion and the values are zero

within ±0.9 (Ω cm)−1. In YBCO at 1.3 ps after photoexcitation, the imaginary part increases with

increasing frequency that we attribute to the experimental artifacts. At later times after photoexcita-

tion, the imaginary part shows less frequency dependence.



Appendix G

Resistivity measurements on CrV alloys

We have applied the Standard four-point technique and THz-TDS to Cr1−xVx thin film samples and

measured the resistivity as a function of temperature. In Chapter 4, I chose the samples that we

found a good agreement between the two techniques. Fig. G.1shows the resistivity as a fubction

of temperature for 6 more samples. For 0.9%, 1.25%, and 1.6% vanadium concentrations, THz-

TDS produces the knee in the resistivity at the Neel temperature as expected, but the four-point

technique do not show the feature. In 2% doped sample, we observe a good agreement between

the two techniques. For 2.35% and 2.9% vanadium concentrations, there is an offset between the

resistivities. The sign of the offset appears to be arbitrary and we discarded the measurements on

those samples.
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[69] N. Nücker, J. Fink, J. C. Fuggle, P. J. Durham, and W. M. Temmerman. Evidence for holes

on oxygen sites in the high-Tc superconductors La2−xSrxCuO4 and YBa2Cu3O7−y. Phys. Rev.
B, 37:5158, 1988.

[70] H. S. Choi, Y. S. Lee, T. W. Noh, E. J. Choi, Y. Bang, and Y. J. Kim. Anomalous temperature

dependence of charge-transfer excitation in the undoped cuprate Sr2CuO2Cl2. Phys. Rev. B,

60:4646, 1999.

[71] F. C. Zhang and T. M. Rice. Effective Hamiltonian for the superconducting copper oxides.

Phys. Rev. B, 37:3759, 1988.

[72] A. Lanzara et al. Evidence for ubiquitous strong electron-phonon coupling in high-

temperature superconductors. Nature, 412:510, 2001.



BIBLIOGRAPHY 92

[73] B. O. Wells, Z. X. Shen, A. Matsuura, D. M. King, M. A. Kastner, M. Greven, and R. J.

Birgeneau. E versus k relations and many body effects in the model insulating copper oxide

Sr2CuO2Cl2. Phys. Rev. Lett., 74:964, 1995.

[74] K. M. Shen et al. Angle-resolved photoemission studies of lattice polaron formation in the

cuprate Ca2CuO2Cl2. Phys. Rev. B, 75:075115, 2007.

[75] C. Y. Chen, R. J. Birgeneau, M. A. Kastner, N. W. Preyer, and T. Thio. Frequency and

magnetic-field dependence of the dielectric constant and conductivity of La2CuO4+y. Phys.

Rev. B, 43:392, 1991.

[76] C. Y. Chen, N. W. Preyer, P. J. Picone, M. A. Kastner, H. P. Jenssen, D. R. Gabbe, A. Cas-

sanho, and R. J. Birgeneau. Frequency dependence of the conductivity and dielectric constant

of La2CuO4+y near the insulator-metal transition. Phys. Rev. Lett., 63:2307, 1989.

[77] J. Shah. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures, volume

115 of Springer Series in Solid State Sciences. Springer, New York, 2nd edition, 1999.

[78] M. A. Kastner et al. Resistivity of nonmetallic La2−ySryCu1−xLixO4−δ single crystals and

ceramics. Phys. Rev. B, 37:111, 1988.

[79] W. J. Padilla, Y. S. Lee, , M. Dumm, S. Ono, K. Segawa, S. Komiya, Y. Ando, and D. N.

Basov. Constant effective mass across the phase diagram of high-Tc cuprates. Phys. Rev. B,

72:060511, 2005.

[80] J. P. Falck, A. Levy, M. A. Kastner, and R. J. Birgeneau. Charge-transfer spectrum and its

temperature dependence in La2CuO4. Phys. Rev. Lett., 69:1109, 1992.

[81] J. Orenstein and A. J. Millis. Advances in the physics of high-temperature superconductivity.

Science, 288:468, 2000.

[82] E. Hendry, F. Wang, J. Shan, T. F. Heinz, and M. Bonn. Electron transport in TiO2 probed by

THz time-domain spectroscopy. Phys. Rev. B, 69:081101, 2004.

[83] K. B. Lyons, P. A. Fleury, J. P. Remeika, A. S. Cooper, and T. J. Negran. Dynamics of spin

fluctuations in lanthanum cuprate. Phys. Rev. B, 37:2353, 1988.

[84] R. J. Birgeneau, M. Greven, M. A. Kastner, Y. S. Lee, B. O. Wells, Y. Endoh, K. Yamada, and

G. Shirane. Instantaneous spin correlations in La2CuO4. Phys. Rev. B, 59:13788, 1999.

[85] M. Suzuki. Hall coefficients and optical properties of La2CuO4 single-crystal thin films.

Phys. Rev. B, 39:2312, 1989.

[86] L. L. Miller, X. L. Wang, S. X. Wang, C. Stassis, D. C. Johnston, J. Faber, and C.-K. Loong.

Synthesis, structure and properties of Sr2CuO2Cl2. Phys. Rev. B, 41:1921, 1990.



BIBLIOGRAPHY 93

[87] H. Yang, Q. Q. Liu, R. C. Yu, F. Y. Li, and C. Q. Jin. New superconducting phase of

Sr2CuO2+δCl2−y with 0201-type structure synthesized under high pressure. Supercond. Sci.

Technol., 18:813, 2005.

[88] Z. Hiroi, N. Kobayashi, and M. Takano. Probable hole-doped superconductivity without

apical oxygens in (Ca, Na)2CuO2Cl2. Nature, 371:139, 1994.

[89] Hk. Müller-Buschbaum. On the crystal chemistry of oxomercurates (II). Angew. Chem.,

89:704, 1977.

[90] Ch. Niedermayer, C. Bernhard, T. Blasius, A. Golnik, A. Moodenbaugh, and J. I. Budnick.

Common phase diagram for antiferromagnetism in La2−xSrxCuO4 and Y1−xCaxBa2Cu3O6 as

seen by muon spin rotation. Phys. Rev. Lett., 80:3483, 1998.

[91] J. Zaanen, A. T. Paxton, O. Jepsen, and O. K. Andersen. Chain-fragment doping and the

phase diagram of YBa2Cu3O7−x. Phys. Rev. Lett., 60:2685, 1988.

[92] D. C. Peets, Ruixing Liang, C. Stock, W. J. L. Buyers, Z. Tun, L. Taillefer, R. J. Birgeneau,

D. A. Bonn, and W. N. Hardy. Top-seeded melt-growth of YBa2Cu3Ox crystals for neutron

diffraction studies. J. Superconductivity, 531:2312, 2002.

[93] A. J. Millis. Optical conductivity and correlated electron physics. In D. Baeriswyl and

L. Degiorgi, editors, Strong interactions in low dimensions. Kluwer, Netherlands, 2004.

[94] X. F. Sun, Y. Kurita, T. Suzuki, Seiki Komiya, and Yoichi Ando. Thermal conductivity of

Pe1.3−xLa0.7CexCuO4 single crystals and signitures of stripes in an electron-doped cuprates.

Phys. Rev. Lett., 92:047001, 2004.

[95] T. Holstein. Studies of polaron motion. Ann. Phys. (N.Y), 8:325, 1959.

[96] A. Zibold, H. L. Liu, S. W. Moore, J. M. Graybeal, and D. B. Tanner. Optical properties of

single-crystal Sr2CuO2Cl2. Phys. Rev. B, 53:11734, 1996.

[97] H. J. Ye, R. P. McCall, W. E. Farneth, E. M. McCarron, and A. J. Epstein. Infrared-absorption

and photoinduced-absorption spectroscopy of semiconducting YBa2Cu3O6+x (A=16 and 18;

0 ≤ x ≤ 0.3). Phys. Rev. B, 43:10574, 1991.

[98] B. Ellman, H. M. Jaeger, D. P. Katz, T. F. Rosenbaum, A. S. Cooper, and G. P. Espinosa.

Transport studies of La2−xSrxCuO4 near the insulator-metal-superconductor transition. Phys.

Rev. B, 39:9012, 1988.

[99] T. Yoshida et al. Metallic behavior of lightly doped La2−xSrxCuO4 with a Fermi surface

forming an arc. Phys. Rev. Lett., 91:027001, 2003.

[100] D. S. Ellis, J. P. Hill, S. Wakimoto, R. J. Birgeneau, D. Casa, T. Gog, and Young-June Kim.

Charge-transfer exciton in La2CuO4 probed with resonant inelastic x-ray scattering. Phys.

Rev. B, 77:060501, 2008.



BIBLIOGRAPHY 94

[101] Y. Y. Wang, F. C. Zhang, V. P. Dravid, K. K. Ng, M. V. Klein, S. E. Schnatterly, and L. L.

Miller. Momentum-dependent charge transfer excitations in Sr2CuO2Cl2 angle-resolved elec-

tron energy loss spectroscopy. Phys. Rev. Lett., 77:1809, 1996.

[102] Graham Lea. Metallic scattering lifetime measurement with terahertz time-domain spec-

troscopy. Master’s thesis, Simon Fraser University, 2010.

[103] A. Tari and B. R. Coles. Electrical resistivity and the transition to ferromagnetism in the

palladium-nickel alloys. J. Phys. F: Met. Phys., 1:69, 1971.




