
INTELLIGENT DECISION SUPPORT FOR

MARINE SAFETY AND SECURITY OPERATION

CENTRES

by

Ali Khalili-Araghi

B.Sc., University of Tehran, 2007

a thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Ali Khalili-Araghi 2011

SIMON FRASER UNIVERSITY

Summer 2011

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced, without authorization, under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance with

the law, particularly if cited appropriately.

APPROVAL

Name: Ali Khalili-Araghi

Degree: Master of Science

Title of thesis: Intelligent Decision Support for Marine Safety and Security

Operation Centres

Examining Committee: Dr. Steven Pearce

Chair

Dr. Uwe Glässer, Professor

Senior Supervisor

Dr. Alexandra Fedorova, Assistant Professor

Supervisor

Dr. Lou Hafer, Professor,

SFU Examiner

Date Approved: August 24, 2011

ii

Last revision: Spring 09

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Surveillance of large volume traffic demands robust and scalable network architectures for

distributed information fusion. Operating in an uncertain environment and the ability

to flexibly adapt to dynamic changes in resource availabilities are critical for the success

of surveillance and rescue missions. In this thesis the architectural design of a decision

support system for a Marine Safety and Security Operation Centre (MSOC) is presented.

The goal of this system is to improve coordination in emergency response services. The

system design emphasizes robustness and scalability through its decentralized control struc-

ture, automated planning, dynamic resource configuration management and task execution

management under uncertainty. The proposed model is described in abstract functional and

operational terms based on the Abstract State Machine (ASM) paradigm and the CoreASM

open source tool environment for modeling dynamic properties of the system. An example

scenario from the marine operations domain is described in detail, and afterwards, an ex-

perimental analysis which evaluates the validity of our system under various scenarios are

presented at the end.

Keywords: Decision Support Systems; Multi-agent Systems; Marine Safety and Secu-

rity; Abstract State Machines; CoreASM; Distributed Systems; Automated Planning

iii

To my beloved grandparents...

iv

“Two roads diverged in a wood, and I..

I took the one less traveled by,

And that has made all the difference.”

— The Road Not Taken, Robert Frost, 1920

v

Acknowledgments

First and foremost, I would like to offer my sincerest gratitude to my supervisor, Dr. Uwe

Glässer, who supported me throughout this thesis with his patience and knowledge whilst

allowing me the room to work in my own way. Without his guidance, I could never have

reached the heights or explored the depths; one simply could not wish for a better or

friendlier supervisor.

I also wish to express my especial appreciation to Roozbeh Farahbod, who was not only

my mentor but also a close friend who taught me innumerable lessons and gave me valuable

insight into research. It is not that often that one finds a colleague who always finds time

to offer help.

Last, but not least, I would like to express my heartfelt thanks to my dear one, Azin

Dastpak, who stood by me through it all and gave me the utmost encouragement and

support.

vi

Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 5

1.3 Significance . 6

1.4 Thesis Organization . 7

2 Background 8

2.1 Command and Control Hierarchy . 8

2.2 Cooperative Models . 9

2.2.1 Definitions . 10

2.2.2 Collaborative Systems . 10

2.2.3 Swarms . 11

2.2.4 Coalition Systems . 12

2.2.5 Clusters . 14

2.3 Conclusions . 15

vii

3 Problem Characteristics 17

3.1 System Distribution . 18

3.2 Dynamic Environment . 19

3.3 Uncertainty . 20

4 Proposed Model 22

4.1 High Level View . 22

4.2 System Architecture . 25

4.2.1 Planning . 27

4.2.2 Resource Management . 28

4.2.3 Execution Management . 29

4.2.4 Tasking . 29

4.2.5 Decentralized Control . 30

4.3 Reference Model . 30

4.3.1 An Introduction to User Requirements Notation 30

4.3.2 Describing the Abstract Generic Scenario 31

5 Formal Model 33

5.1 Basic Concepts . 34

5.1.1 Node . 34

5.1.2 Capability . 34

5.1.3 Layered Architecture . 37

5.1.4 Capability Pattern . 38

5.2 Task Management . 40

5.2.1 Node Program . 41

5.2.2 Task Lifecycle . 42

5.2.3 Matching Child Node . 47

5.3 Simple Scenario . 51

6 Experimental Analysis 54

6.1 Evaluation metrics . 55

6.2 Test Setup . 57

6.3 Simulation Results . 58

6.4 Conclusions . 60

viii

7 Conclusions 62

A ASM Formalism 64

Bibliography 67

Glossary 73

ix

List of Figures

1.1 Maritime traffic in Strait of Dover . 2

1.2 Density of marine traffic at BC Coast area . 3

2.1 Command and control hierarchy . 9

2.2 Swarms robots . 12

2.3 Coalition organization . 13

2.4 Hierarchical clustering . 15

3.1 Problem Characteristics . 20

4.1 Nodes represent physical or logical resources. 24

4.2 Components of the System Architecture . 27

4.3 Hierarchical Task Network (HTN) Example 28

4.4 Abstract Generic Scenario of the NADIF System 31

5.1 Capability Hierarchy example . 35

5.2 RMA is organized in four layers. 37

5.3 Control state diagram of a Search-and-Rescue task 40

5.4 Activity cycle of a node . 41

5.5 Task Lifecycle . 42

5.6 Control state diagram of matching tasks to child nodes 48

5.7 Structure of the resource hierarchy . 53

6.1 Resource network for scenario testing . 57

6.2 Results of scenarios runs . 59

6.3 Receiver Operating Characteristic diagram 60

x

List of Tables

6.1 Types of test results . 56

xi

Chapter 1

Introduction

This thesis focuses on the architectural design of a surveillance system to be used for marine

security centres. A comprehensive model is proposed, which captures all the requirements

needed for surveillance operations. Such a model encompasses different features of a multi-

agent architecture to address the surveillance problem by providing a robust and scalable

system which can be used in emergency response situations. Moreover, the model is precisely

formalized using the Abstract State Machine paradigm, which provides abstract specifica-

tions of the system. Furthermore, by using CoreASM , the ASM descriptions can be executed

for simple scenarios to validate the model.

1.1 Motivation

In recent years, the increasing international trade has led to more cargo, more ships, and

more traffic in ports, coastal areas and regional waterways. Figure 1.1 shows the Strait of

Dover (located between France and England).1 In the map, colored icons represent vessels

in water. Each type of vessel is represented by a unique icon shape. As depicted in the

figure, there’s a huge vessel traffic in this region, which is the busiest international seaway in

the world with over 400 commercial vessels passing through daily2 Such tremendous increase

in maritime traffic means considerable challenges for many countries.

Every waterway introduces unique safety and security challenges. The more dense the

1Provided by www.marinetraffic.com
2Reported by Department of Transport in UK http://www.dft.gov.uk

1

http://www.dft.gov.uk

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Maritime traffic in Strait of Dover

area, the more challenging the issues are. Ports and coastal regions are recognized as the

most dense locations in the world with large volume of maritime traffic. For instance,

Figure 1.2 illustrates the density of vessel traffic in BC coast area. The colors represent the

volume of traffic; colors towards red show more traffic density. As depicted in the picture,

the majority of vessel traffic in the BC coast is in the south, through the Strait of Georgia,

which is a narrow waterway between Seattle port and Vancouver port with a great number

of inbound and outbound marine traffic. Such huge traffic in this region introduces many

challenges for the United States and Canada. For instance, in emergency response situations

or dealing with national security issues such as piracy, smuggling, and illegal immigration.

In general, Canada, with the longest coastline in the world (243,042 km), faces the

problem of large volume coastline surveillance [1]. Here, an automated tracking system such

as AIS (Automatic Identification System) has greatly improved the monitoring of maritime

traffic. AIS technology is used on ships and by Vessel Traffic Services3 to provide information

needed for identifying and locating vessels in the water. This can be done by electronically

exchanging data with other nearby ships and VTS stations. AIS has revolutionized vessel

traffic control and marine navigation collision avoidance. Still, managing the deployment

of resources in a rapidly changing environment is an issue that calls for a Decision Support

System to mitigate the problem.

According to the definition by Turban and Aronson [23], the central purpose of a Decision

3A Vessel Traffic Service (VTS) is a monitoring system designed for marine traffic; the system is established
by competent authority to keep track of vessel movements and to provide a safe navigation in the relevant
area [4, 49]. This system is very similar to air traffic control designed for aircrafts.

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Density of marine traffic at BC Coast area4

Support System (DSS) is to support and improve decision making. Such systems have been

applied in many different domains. For instance, they have been used to address the gate

allocation problem in international airports [18] and in railway scheduling problems for the

Canadian Pacific Railway [51].

One of the main critical fields in the decision making process is Situation Awareness (SA).

According to Endsley’s definition [25], “Situation Awareness is the perception of the ele-

ments in the environment, comprehension of their meanings, and projection of their status

in the near future”. If SA is considered as a state of knowledge, the process that leads

to achieve this state is called Situation Assessment. Therefore, in order to have a consis-

tent understanding of the elements in the system, situation analysis of the current state is

necessary.

4Provided by the Pacific North Coast Integrated Management Area Initiative. 2011. Atlas of the Pacific
North Coast Integrated Management Area. Available at www.pncima.org

www.pncima.org

CHAPTER 1. INTRODUCTION 4

The design of decision support systems has been shifted towards a more distributed and

collaborative paradigm. Agent-based technologies have greatly enhanced the capabilities of

decision support systems [73] . There are many definitions for an “agent” in the literature.

Wooldrige et al. [76] distinguished two notions for the term agent, weak and strong. In

weak notion, an agent is defined as a distinct, autonomous, and active entity with features

including pro-activeness, reactivity and social ability (the capability to interact with other

agents or humans). In strong notion, Intelligent Agents (IA) have other extensive features

such as human-like characteristics, e.g., knowledge, beliefs, desires and intentions. In Multi-

agent systems, cooperation among agents refers to situations in which several agents in

the system are trying to fulfill a shared goal through different means of communication.

From this perspective, a maritime surveillance system can be considered as a cooperative

multi-agent system. For this research, cooperative multi-agent systems have been thoroughly

explored in diverse areas ranging from biology5 to engineering applications6. Some examples

will be described in more detail in Chapter 2.

In this thesis, an intelligent decision support system, called NADIF (Net-Enabled Adap-

tive Distributed Information Fusion), is proposed for large volume coastal surveillance [7].

The system is based upon a realistic application scenario and have been designed over the

ideas used from the design and development of the CanCoastWatch system [72, 75]. Moreover

by using the Abstract State Machine (ASM) formalism, the ideas have been implemented at

an abstract level of understanding [30, 31]. Furthermore, promising evaluation results show

that the proposed architecture is indeed a good choice for such a surveillance system [43, 42]

Our model consists of three major building blocks: 1) Information Fusion Engine, 2) De-

cision Support Engine, 3) Resource Management Engine.

Information fusion helps us to obtain useful information about the current state of the

system. The raw data, indicating the status of each resource, are dynamically collected

using the updated information within the system. Subsequently, more useful knowledge

(i.e. Situation Awareness) can be generated based on these information by different means

of analysis techniques, called Situation Assessment. The knowledge can then be used as

feedback to the system or can be reported back to the commander [16].

Decision support is one of the main aspects of a surveillance system. Most of the time,

there are different ways to make a decision. For instance, finding a proper resource for a

5such as Swarms [54] and ant colonies [22]
6for instance, intelligent vehicle highway system [44] and cooperative control for UAVs [24]

CHAPTER 1. INTRODUCTION 5

“rescue” mission can be difficult when all of the resources have already been assigned to

other tasks. This problem can be overcome by choosing one or more low-priority tasks

and suspending them, so that their resources can be released and assigned to another task.

In general, task prioritizing can be beneficial in critical situations with limited resources.

Therefore, a decision support engine is needed in a complicated system which deals with a

great number of resources and potentially conflicting tasks, hence, different choices for any

decision.

A surveillance system may have to deal with a number of distributed heterogeneous

resources which are autonomously interacting with each other by different means of com-

munication. Therefore, the role of a resource management engine in monitoring and man-

agement of such many resources is crucial. In addition, by having a resource management

engine, more complex resource configuration structures (e.g. clusters, trees, and etc.) can

be exploited which would then improve the performance of task assignments by use of new

features such as capability aggregations, load balancing, and so on. Lastly, the surveillance

system works under dynamically changing conditions. The environment can influence the

availability and performance of the resources unpredictably. For this reason, having the

status of the resources updated at all time is essential for the performance of other engines,

such as task management, in order to accomplish the missions. The focus of this thesis is on

the design of a collaborative decision support system with an underlying configuration man-

agement model. Moreover, information about the current state of the system is gathered

dynamically in order to keep a consistent view of the world.

1.2 Objectives

The goal of our work is to provide the architecture and core mechanisms of a decision

support system in the domain of maritime operations related to safety and security. The

system should configure and manage the resources at run-time while facilitating the decision

making process for humans in emergency response situations and for preventing smuggling

operations, especially near ports and harbors. The surveillance system has some main

characteristics that need to be addressed:

• Dynamic environment: unpredictable changes in the environment or the availability

of resources in the system;

CHAPTER 1. INTRODUCTION 6

• System Distribution: people and equipment are working in different locations in real-

time;

• Uncertainty: lack of perfect and complete knowledge of the environment or unexpected

results of actions performed by the system.

In this regard, the proposed model benefits from the use of a multi-agent system design

approach, which can also increase the robustness and scalability of the system. In addition,

by using ASM, the specification of the system is formalized in abstract descriptions. By

further refining of the model, it can be made executable. To achieve this goal, an ASM

ground model of the system [11] is formally described, which can be further enriched with

more detail through stepwise refinements. Basically, a ground model is a precise yet abstract

description of the system. It is also flexible for future changes. Such a model is abstract

yet complete insofar as completeness refers to the presence of every semantically relevant

feature in the system [10].

1.3 Significance

According to the statistics [37], software project failures cost billions of dollars annually.

Thus, it is crucial to identify any defect in early stages of software development, to reduce the

possibility of failure. As mentioned before, providing safety and security for maritime traffic

is a great national challenge that calls for an intelligent decision support system. Therefore,

the complexity and importance of the system, accentuates the need for validation of the

model from the beginning of design process. As the earlier a defect is found, the cheaper it

is to fix it.

When tackling complex systems, it is difficult, if not impossible, to test the correctness

of the design model before implementation. In this work, we use ASM methodology, to

formally describe the specifications of the model. ASM allows us to have models with

different levels of abstraction. Starting from the ground model, a hierarchy of intermediate

models can be obtained through stepwise refinements. The uniqueness of this approach lies

in the fact that with use of ASM, the system model can be tested for validation, in each

level of abstraction, before actually building the system.

CHAPTER 1. INTRODUCTION 7

1.4 Thesis Organization

The thesis is organized as follows: Chapter 2 provides an overview of the related work. In

this chapter, some similar architectures of cooperative multi-agent systems are explored and

the command and control hierarchy, used in military operations, is introduced. In Chapter 3,

the problem domain is described in more detail, with the focus being on the characteristics

of the system that we are dealing with.

Chapter 4 introduces our proposed model for the system. An overview of the architec-

ture and main components of the model is presented in this chapter, while explaining the

functionalities of each component with use of User Requirement Notation. Afterwards, in

Chapter 5, formal specifications of the model is presented by use of the ASM paradigm.

In addition, the system is implemented in parts using CoreASM framework to simulate a

simple scenario in marine operations domain, which is explained at the end of the chapter.

Chapter 6 will evaluate the system runs over a set of scenarios. In this chapter robustness of

the system is measured in dynamic changing environment. Finally, Chapter 7 concludes the

thesis by presenting the significance of this research and introducing the subjects of future

work.

Chapter 2

Background

This chapter briefly discusses background concepts and related works relevant to surveillance

systems along with domain-specific aspects presented in the literature. We employ such

ideas to formulate a model that accurately captures the characteristics, functionalities and

requirements of the target system.

2.1 Command and Control Hierarchy

One of the essential concepts in dealing with surveillance systems is command and con-

trol (C2), which is mostly used in military domains [57]. As defined by the Department of

Defense in the Dictionary of Military and Associated Terms [70]:

Command and control: “The exercise of authority and direction by a properly

designated commander over assigned and attached forces in the accomplishment

of the mission. Command and control functions are performed through an ar-

rangement of personnel, equipment, communications, facilities, and procedures

employed by a commander in planning, directing, coordinating, and controlling

forces and operations in the accomplishment of the mission.”

By this definition, missions are assigned by the commander to subordinate personnel;

any failure or completion of the assigned tasks should be reported back to the commander for

further assignments. This model works very well when there is a small number of personnel

involved. It is not very difficult to imagine the degree of complexity in a coastal surveillance

system with a large number of widely spread out heterogeneous resources and personnel.

8

CHAPTER 2. BACKGROUND 9

Figure 2.1: Command and control hierarchy

Hierarchical layering is one of the general approaches for managing complex systems. It

has also been used by the military for effectiveness and efficiency of command and control

structure. In a system comprises of multiple nodes, organized in a hierarchical structure,

the scope of higher level nodes are broader and the details are skipped while the lower

level nodes are merely responsible for certain tasks including specific details [3]. Using

hierarchical structuring will be helpful in terms of decreasing the complexity of the system.

This is due to the fact that a node at a certain level of the hierarchy does not have to deal

with broad scopes and low-level details at the same time.

For example, at the top level of the command and control hierarchy shown in Figure 2.1,

new tasks are selected and introduced to the system by top commander based on high-level

goals and priorities, whereas the subordinates deal with the details of task execution.

2.2 Cooperative Models

Cooperative Multi-Agent System is a well-studied concept in the area of multi-agent systems.

There are also different architectural models for such systems representing the nature of

cooperation between the agents. For this thesis, different architecture models have been

studied, which will be introduced shortly, and the appropriate model for a marine safety

and security system is proposed in next chapters.

CHAPTER 2. BACKGROUND 10

2.2.1 Definitions

According to definitions by Pannit [62], an agent can be described as a high level autonomous

computational mechanism. Its actions are based on the information (sensors, feedback) re-

ceived from the environment. A multi-agent environment is an environment, where each

agent interacts with more than one agent. There may be other constraints on such envi-

ronments in terms of distribution of information within the system. For instance, a given

agent might not be aware of the status of other agents or their internal states due to some

restrictions in the system.

As Franklin and Graesser explained [36], in cooperative multi-agent systems, the agendas

of the agents consist of cooperation with other agents in the system. Such systems are di-

vided into two types: Communicative and Non-communicative. Communicative is when the

agents are cooperating with each other by different means of communication, while in non-

communicative systems, there is no communication between the cooperative agents (agents

can perform cooperations by monitoring the behaviour of other agents and responding ac-

cordingly). In another perspective, Doran [21] describes cooperation as a property of the

actions of agents. In this view, agents either have shared goals in common or they perform

actions that help the other ones to achieve their goals.

Based on the definitions provided above, the coastline surveillance system in this study

can be a good example of a cooperative multi-agent system, where there are different agents

(resources) cooperating with each other to fulfill introduced tasks.

In general, there are various types of cooperative systems. Each has its own charac-

teristics and architectural model. Some of such systems that are related to our proposed

model have been studied and are briefly introduced in this chapter. Understanding the

architectural models of these systems is beneficial for our proposed model of the coastline

surveillance system which will be described in more detail in Chapter 4.

2.2.2 Collaborative Systems

In a collaborative system, a shared task is performed by multiple agents, and are usually

connected to each other from different locations. The main feature that distinguishes such

systems from a larger domain of distributed applications, is the fact that the agents are

collaborating to achieve common goals. They also need to closely interact with each other

by exchanging requests and sharing information or status among each other [20].

CHAPTER 2. BACKGROUND 11

Chat system can be a good example of a collaborative system as all the users involved in

the chat session need to collaborate so that no comments are missed. However, in the email

system the only issue that the user is concerned about is the delivery of the message to the

right person. Therefore, there is no intention to have any collaboration in such systems.

Some other examples of collaborative systems are: shared white-boards, interactive chat,

and coordinated data search agents (e.g., web ”robots”) [35].

There are some issues with collaborative systems. These issues are related to the concur-

rency of the actions happening in the system or the collaboration among the agents. Some

of these issues, categorized by Farely in [35], are briefly explained here.

- Communication needs: Since in collaborative systems various agents are collaborating

with each other dynamically, the system should be able to support different types of

message passing among agents. The routing mechanism can be point-to-point, broadcast

or narrowcast based on the application’s needs. For example, in a chat system a user can

send a message to the entire users in the specific chat room or only to another agent as a

private message.

- Maintaining agent identities: In a collaborative system each agent should be recognized

with a unique identity, which can be used in different applications such as message passing,

task assignments, etc. In addition authentication of agents prior to accessing a shared

resource can be facilitated by means of such unique identities.

- Shared state information: Generally, information is shared within many distributed sys-

tems. Such a feature is even more highlighted in collaborative systems where, intrinsically,

cooperation can take place by sharing a set of data among different agents. In addition,

concurrent updates on the shared state information can take place by various agent at the

same time, hence preserving consistency and validity of such information is a challenging

issue that needs to be carefully addressed.

2.2.3 Swarms

In Swarm systems, a large number of simple agents locally interact with each other and

the environment without the presence of a central controller [59]. In such systems, agents

do not necessarily have an understanding of the whole system, i.e. each agent has its

own view of the world. The agents are self-organizing based on the emergent behaviour

CHAPTER 2. BACKGROUND 12

Figure 2.2: Swarms robots

types of simple interactions. This behaviour is also observed in insects and flocks of birds.

Bonabeau et al. [19], who studied self-organization in social insects, reveal that interactions

among agents that show simple behaviours can result in complex collective behaviours in the

system. The emergent behaviour is also referred to as the macroscopic behaviour whereas

local interactions are referred to as the microscopic behaviour.

In this regard, the concept of self-organization can be seen easily in swarm systems.

Generally, self-organization is defined as the emergence of global patterns in a system as a

result of many low-level interactions which utilize only local information [19]. For instance,

in Swarm Robotics (see Figure 2.2), a huge number of simple physical robots interact with

each other and the environment. These communications provide feedback to the system,

hence initiating emergent global behaviour in the system. Such behaviour is called Swarm

Intelligence [9], which can be originated from highly simple rules for individual agents.

2.2.4 Coalition Systems

In many diverse areas, the concept of coalition has been well studied and based on the

applications, the idea can be used to enrich cooperations in the system. It has also been

proved that using coalition of individuals is a practical approach in multi-agent systems [48].

Generally speaking, working in groups can imply more utilities. This is the motivation

behind co-ops, clubs, and unions. In computational domains coalitions can cause more

CHAPTER 2. BACKGROUND 13

Figure 2.3: Coalition organization

efficient task allocations, or greater ability for solving problems than any single agent can

offer [67]. Practically, in a multi-agent system, any subset of the agents can be a potential

coalition. In addition as Horling and Lesser stated in [48]:

“Coalitions in general are goal-directed and short-lived; they are formed with a

purpose in mind and dissolve when that need no longer exists, the coalition ceases

to suit its designed purpose, or critical mass is lost as agents depart.”

There are also various related studies that expand the coalition domain. In such extensions,

coalition can be defined as longer-term agreements which are based on trust [17]. In addition,

iterative formation of multiple coalitions can take place in an environment where tasks in the

system are dynamic [58]. Although coalitions can be formed in both cooperative and self-

interested populations, cooperative community is more related to the scope of this research.

Figure 2.3 shows a simple coalition structure in a population of agents. The organiza-

tional structure within a coalition is often flat. However, there might be a representative

agent for each group [55, 53]. Such leading agents are in charge of interactions among the

groups. For instance, if one coalition needs the results of another one, there might be an

agreement upon the deadline between the two groups. This arrangement can only be done

by the interactions between the two representatives.

In general, coalitions restrict the scope of interactions among agents while increasing

the effectiveness of the whole system [68]. In addition, there is always a cost to form any

coalition in the system. Therefore, coalition formation turns into a problem of choosing

the appropriate subset of agents S ⊂A to maximize the utility of the group that can be

achieved in the environment. which the group can achieve in the environment. There are

CHAPTER 2. BACKGROUND 14

several algorithms for coalition formation in a multi-agent systems. Among those, Soh

et al. [69] present a technique for coalition formation, where agents have incomplete and

uncertain knowledge and must achieve their goals in real-time response situations.

2.2.5 Clusters

Classification goes back to early stages of human beings and can be considered as a basic

ability of living creatures to group similar objects together [27]. In classification, the objects

in a set are investigated to see if they can be placed into groups (or classes, or clusters), so

that objects in a group are similar to each other and different from objects in other groups

as stated by Gordan in [45].

Use of classification is widely spread in different areas such as biology, medicine, mar-

keting, etc. With the growing number of large databases in many areas of science, it is

essential to organize large data sets so that they can be more easily understood and infor-

mation retrieved more efficiently.

There are different numerical techniques for deriving classifications. Conversely, the

same procedure may be known by various names, depending on the application domain.

For instance, numerical taxonomy in biology, segmentation in marketing, and unsupervised

pattern recognition in artificial intelligence are all using the same concept of the classification.

Nonetheless, cluster analysis refers to a method to uncover relevant groups in data sets, in

which objects resemble each other in a cluster and are different in some respects from the

objects in other clusters [27]. Although clusters do not have overlaps with each other in

general, there are some applications where an element belongs to more than one cluster.

In this regard, there are a number of applications that need a hierarchically-nested set

of partitions. For instance, in biological taxonomy, an object is commonly regarded as

belonging successively to a species, a genus, a family, and an order. Secondly, hierarchi-

cal classification has been found to be a useful model in several topics in psychology and

cognitive science, for example in the analysis of the phrase structure of sentences and the

definition of a story grammar [6].

Although the mathematical definition of a hierarchical cluster is not presented in this

thesis for the sake of simplicity, an example is provided to elaborate this concept and to help

intuitively understand such structure. Suppose we have a set of objects A = {1, 2, ..., 10}. A

hierarchical classification of this set can be represented as Figure 2.4. In such tree a leaf or

terminal node represents an object of the set, and each internal node shows a non-singleton

CHAPTER 2. BACKGROUND 15

H

73629481051

D

B

F

C A

E

G

Figure 2.4: Hierarchical clustering

subset of objects. In this example the tree has the following subsets: {1, 5}, {2, 6}, {8, 4, 9},
{1, 5, 10}, {2, 6, 3}, {8, 4, 9, 2, 6, 3}, and {1, 5, 10, 8, 4, 9, 2, 6, 3} where each can be

identified with internal nodes labeled A–G. Such a tree is called a rooted tree with labeled

leaves, in which all the internal nodes have degree of greater than two (except the root,

which its degree is equal to two). A binary tree is a sort of unordered rooted tree, in which

all the internal nodes have degree three (except the root). There are many classification

algorithms using binary trees.

There are also other mathematical concepts associated with the tree presentation of

hierarchical clusterings (e.g. dendrograms, valued trees, etc.), which are beyond the scope

of this research.

2.3 Conclusions

Considering the trade-off between the behavioural simplicity of the agents and the structural

simplicity of the system, there is a spectrum of different architectural models available.

In one end of the spectrum, we have swarm models where each agent has low intelligence

and is capable of performing simple tasks. For such systems exploiting a huge number of

simple agents can increase performance and robustness of the system. The latter is essential

for a system working in a dynamically changing environment where unpredictable changes

can affect the availability and performance of the agents. Nevertheless, a robust system is

functional in spite of resource failures. In the other end of the spectrum there is a concept of

CHAPTER 2. BACKGROUND 16

highly intelligent agents that can be used for more complicated tasks. They can collaborate

with each other through different types of interactions and attempt to form collaborative

groups to increase capabilities, hence improving system performance. A coalition system

can be a good example for such description. Cluster systems lie between the two ends of

the spectrum. While such systems are more complicated structurally, they preserve the

simple behaviour of each node. Although clustering makes the system difficult to manage,

it increases flexibility, which is needed for restructuring of the system in a dynamically

changing environment. For instance, if the required capabilities needed for an introduced

task cannot be found within the current distribution of resources, new clustering may solve

the problem.

Moreover, the similarities between the command and control hierarchy and Hierarchical

Clustering structure make the cluster architecture more appropriate for marine security

operations domain. However, in order to thoroughly address all the features of our system,

different characteristics from the introduced models in this chapter have been exploited in

our proposed system, which will be described in more detail in the following chapters.

Chapter 3

Problem Characteristics

In 2004, the Canadian government introduced a need to have marine operational centres to

provide safety and security for the coastline of Canada. This motivation was published in the

document entitled Securing an Open Society: Canada’s National Security Policy. Therefore,

the application domain of this thesis is mostly related to marine security operations. As

defined in [2], there are considerable challenges for such centres.

A Marine Security Operation Centre (MSOC) provides support to operations by

collecting vast amounts of information from the marine environment and analyz-

ing it to create a maritime domain awareness picture. The primary purpose of an

MSOC is to produce actionable intelligence, concentrating on national security,

organized crime and other criminality and to communicate the information to

the appropriate jurisdiction in a timely fashion.

There are different government departments (such as National Defence, RCMP, Cana-

dian Coast Guard, etc.) involved in an MSOC. The complexity of such centres can be best

understood by considering the information exchange among the departments and the level of

cooperation between the personnel, necessary for accomplishing a given task. Large volume

of marine traffic and management of resources impose different challenges on such a system.

Therefore, an intelligent decision support system [46] appears worthwhile for exploration

as a choice of computational means to facilitate the complex command and control tasks

performed by MSOC personnel by improving situational awareness and automating certain

routine coordination tasks.

17

CHAPTER 3. PROBLEM CHARACTERISTICS 18

In a large volume of maritime traffic surveillance, there is a network of a huge number

of distributed, heterogeneous and autonomous resources. These resources have different

characteristics, they can be fixed or mobile, they can perform different tasks, they also have

different constraints and capabilities. In addition, they are connected to each other by dif-

ferent means of communications. Let (V,E) be a graph of nodes. The nodes might represent

different entities (e.g., resources, MSOC units, even sensors); the edges show connectivity

(e.g., link, TCP/IP, radio) or relationships (e.g., Command, Control). A node is, there-

fore, an information producer, gatherer, processor, and/or consumer. The network edges

represent the information exchange pipes and information fusion structures. Inherently,

matching with the concept of command and control, such a network consists of a hierarchy

of mobile resources operating under a given commander who introduces new missions into

the system. Missions represent complex tasks, typically involving a number of explicitly or

implicitly identified subtasks, each with specific resource capability requirements that need

to be matched with the capabilities of mobile resources in order to perform a given task. In

general, operations are carried out by allocating a set of resources to a mission. These re-

sources are distributed in time and space. Therefore, coordination of these resources can be

a challenging problem. In such a hierarchical network, each resource is assigned to different

tasks over time by higher level commanders. Consequently, each commander gets his order

from a higher authority. In our network we assume that MSOC, as the top-level node, is

the highest level authority, with the ability to introduce new missions into the system.

Intuitively, the first step to propose the solution for a problem is to identify the problem

characteristics. In the domain of maritime surveillance, there are three main problem char-

acteristics that can be recognized and any proposed model should address these features:

Distributed System, Dynamic Environment, and Uncertainty.

3.1 System Distribution

The system can be described as distributed in which there are a large number of hetero-

geneous resources working in different locations, asynchronously. Generally, the system

consists of different units and sensors. The resources can be located on different platforms.

For instance, consider a sensor installed on a helicopter, where the helicopter itself is lo-

cated on a frigate and can fly a certain distance from frigate. Therefore, the complexity of

the resource distribution can be easily recognized when an integrated resource management

CHAPTER 3. PROBLEM CHARACTERISTICS 19

model is needed for such a system.

When a node receives a complex task, it tries to find a child node with matching capa-

bilities to perform the task. If none of the child nodes can perform the task, it attempts to

split the task into a collection of subtasks that can be performed by two or more of its child

nodes. Of course, if this attempt fails as well, the task will be rejected. Otherwise, it will

travel downward the hierarchy until all of the resulting tasks are of elementary type, mean-

ing that each of them can directly be assigned to a single resource capable of performing

the task.

Accordingly, the status of the original mission can be achieved upon completion or

failures of the subtasks and should be reported back to the higher level nodes. Such flow of

tasks in the system from the top level node (MSOC) downwards to the lowest level nodes

(actual resources) is also called Task Life Cycle and will be discussed in more detail in the

following chapters.

3.2 Dynamic Environment

We are interested in providing intelligent decision support for real-world operations. Any

such support system exists in a dynamic environment, where changes occur outside of the

system’s control, e.g. weather. These changes can be categorized as one of two kinds:

internal or external. Internal changes refer to the changes that happen inside the system.

For instance, the set of tasks belonging to a particular mission may grow or shrink from one

system state to the next, due to the dynamic nature of missions. Likewise, the total number

of missions to be performed concurrently, in any given state, can be varied, hence making it

difficult to predict and can cause sudden spikes. Thus, the overall workload and the global

distribution of work within the system may change spontaneously and vary considerably over

time. External changes, on the other hand, are caused from outside of the system. Resources

can be problematic, as external conditions in the operational environment adversely affect

the performance of a distributed fusion system. Reduced resource capabilities occur due to

transient or permanent unit failures, as well as, common events in the physical environment

in which the resources operate.

CHAPTER 3. PROBLEM CHARACTERISTICS 20

Dynamic
Environment

Uncertainty

Distributed
System

Figure 3.1: Problem Characteristics

3.3 Uncertainty

Uncertainty is another concern of a system that deals with real-world operations. There

is an unavoidable lack of perfect knowledge in the system. The current state can never be

known definitively, since all sensors have limitations. It is also impossible to be certain of

the outcome of actions in advance, since there may be randomness or other factors involved.

Therefore, fault tolerant behaviour is crucial for increasing the reliability of the system and

to avoid catastrophic system failures that are created by communication failures and partial

or total resource failures (e.g., in disaster situations). Since the knowledge in the system

can be gained gradually, the decision making procedures should be able to adapt to new

situations by providing partial decisions based on the incomplete knowledge.

The system we are dealing with, lies within the overlaps of the three main problems

mentioned above (see Figure 3.1). In addition, operating under dynamically changing and

essentially unpredictable conditions calls for design principles that ensure robustness and

scalability. Therefore, such a surveillance system has two specific design challenges:

• Create a feasible set of combinations for an initial task allocation: the feasibility of

a set of resource combinations has to be reviewed a priori to deal with high priority

task execution or with routine surveillance operations.

• Adjust to changes: there are two dynamic control mechanisms to adjust to internal

CHAPTER 3. PROBLEM CHARACTERISTICS 21

changes in resource requirements and external changes affecting the availability of

resources.

a. New events may require a reconfiguration of resources in order to deal with an un-

desired network status, accommodate distributed fusion dynamic requirements,

or address additional tasks triggered by new information in the network. The

resulting configurations or structures have to be constantly refined.

b. It is also vital that any system has the capacity for re-planning and re-tasking.

Re-tasking involves re-assigning a task to a different resource or set of resources,

because the original assignment was unsuccessful. Re-planning is invoked when

a plan, in its current formulation, is no longer able to provide a solution for the

mission it was designed for. Changing situations or the unforeseen consequences

of actions can result in requiring this kind of flexibility. An acute example of this

is when rescue workers themselves, end up needing to be rescued.

Given the scale of systems considered here, specifically the enormous volume of data and

information to be processed, the complexity of control tasks to be managed, and the dy-

namic nature of mission requirements [72, 75], a decentralized approach facilitates dynamic

configuration and management of multiple mobile resources in an unstable environment

and enhances the robustness and scalability of the distributed information fusion system,

by avoiding the bottleneck of centralized fusion systems [63].

Chapter 4

Proposed Model

This chapter introduces a conceptual model shaping the NADIF system along with the de-

scription of its components. Following that, a reference model is introduced to describe a

generic abstract scenario. The model also shows the correspondence to the three building

engines previously mentioned (e.g. Resource Management, Decision Support, and Infor-

mation Fusion). The choices made for this system reflect the challenges and limitations

faced within the realm of marine safety and security. The proposed model uses some of the

architectural design principles previously presented in [33].

4.1 High Level View

As illustrated in the previous chapter, circumstances can change rapidly. Therefore, operat-

ing under uncertain mission requirements in an unstable physical environment calls for flex-

ible adaptation to new situations. In this regard, using collaborative self-organizing system

concepts [42] naturally facilitates reconfigurable applications and dynamic reorganization

in response to internal changes in resource requirements and external changes affecting the

availability of resources. In addition, considering the complexity of introduced tasks and the

volume of data and information in the system, a decentralized technique for management

of resources and tasks, arguably enhances robustness and scalability of the system.

Therefore, the proposed model is built on a decentralized organization of mobile resources

and the tasks they perform, one that naturally supports a hierarchical command and control

structure. The complex command and control structure is realized in a distributed and

hierarchical fashion by means of a dynamic ensemble of autonomously operating control

22

CHAPTER 4. PROPOSED MODEL 23

agents, interacting with one another and with their local environment. Intuitively, each

agent is associated with an individual resource representing a concurrent control thread of

the decentralized system. Agents are created or eliminated at run-time as resources are

added to or removed from the system.

In order to simplify mapping the tasks onto resources that execute them, the network

architecture, hierarchically organizes resources into clusters. Control agents are nodes in

the network architecture; their organization into clusters is stated by undirected edges (see

Figure 4.1). Referring to distinct roles of resource entities, there are two different types of

nodes that can be distinguished as follows:

• Physical resources refer to real-world resource entities as part of an existing distributed

fusion system. In the hierarchical structure, only the leave nodes represent physical

resources. Depending on the level of abstraction at which a distributed fusion system

is considered, a physical resource may refer to a group of mobile sensor platforms, to a

single mobile platform, or even to an individual sensor unit on a given sensor platform.

• Logical resources refer to abstract resource entities formed by clustering two or more

physical and/or logical resources, each with a certain range of capabilities, into a higher

level resource with aggregated (richer) capabilities needed to perform more complex

operations. A logical resource identifies a cluster of resources.1 In the hierarchical

structure (e.g. as illustrated in Fig. 4.1) all non-leave nodes represent logical resources.

For increased robustness and to reduce control and communication overhead, logical

resources operate semi-autonomously, making local decisions on the realignment and reor-

ganization of resources within a cluster. Resource management policies govern the migration

of resources between clusters based on common prioritization schemes for resource selection,

load balancing, and organization of idle resource pools [33]. Reconfiguration is performed in

an ad hoc manner using ‘plug and play’ mechanisms. Resources may be added or removed

from a cluster on demand and depending on their sensor capabilities, mobility capabilities,

geographic location, cost aspects and other characteristics. The underlying design principles

resemble those for improving performance and robustness in mobile ad hoc networks [56].

1Logical resources require command capabilities in their clusters; we abstract away from this notion in
this report.

CHAPTER 4. PROPOSED MODEL 24

Logical Resource

Physical Resource

Figure 4.1: Nodes represent physical or logical resources.

Organization Principles

Specific challenges arise from complex interaction patterns between logical and physical

resources and the dependencies between the operations and tasks to be performed in a

collaborative fashion. The following organization principles outline some of the aspects that

need to be addressed.

• Resource Clustering Principles control the arrangement of resources into resource clus-

ters. Composition rules defined over resource descriptors specify the clustering of re-

sources so as to form composite resources with richer behaviours. A resource descriptor

is an abstract representation of resource attributes such as physical capabilities (e.g.,

sensor capabilities, mobility and time constraints), geographic position and workload

information.

• Resource Distribution Principles refer to distribution of resources which can be either

physical or logical:

– Physical distribution is the spatio-temporal distribution of mobile resources in

the geographical environment. Position information and projections of resource

trajectories provide important input for grouping resources into clusters (e.g.,

keeping resources of the same group in close proximity to each other) and also to

satisfy communication requirements (e.g., moving a resource in order to act as a

communication proxy).

CHAPTER 4. PROPOSED MODEL 25

– Logical distribution refers to the dynamic configuration of physical resources into

clusters that change in response to the changes in tasking information (e.g., new

task orders or changes in task priorities), changes in the capabilities of resources

(e.g., device failures or new resources joining the network), changes in the environ-

ment (e.g., changes in weather conditions), and to maintain a desirable workload

balance within individual clusters and across the whole network.

Resource Allocation

Missions represent complex tasks, typically involving a number of explicitly or implicitly

identified subtasks, each with specific resource capability requirements that need to be

matched with the capabilities of mobile resources in order to be performed. In general, the

operations carried out by a set of resources, allocated to a mission, are distributed in time

and space, making the coordination of these resources a challenging problem.

In the domain of marine safety and security, new missions are introduced by assigning

a mission to the top-level node. When a logical resource receives a complex task, it tries to

find a child node with matching capabilities to perform the task. If none of the child nodes

can perform the task, the logical resource attempts to split it into a collection of subtasks

that can be performed by two or more of its child nodes. Intuitively, one may view new

tasks as ‘sinking’ downwards in the node hierarchy until they reach a matching physical

resource or become transformed into a collection of related subtasks.

Since our system takes place in a dynamic environment where actions have uncertain

outcomes, it must be able to replan an alternative solution to a mission when the need

arises. In order to be able to know when to do this, the system should evaluate the outcome

of finished tasks.

4.2 System Architecture

As mentioned before, there are three engine blocks introduced in our system. Resource

Configuration Management is responsible for monitoring and configuration of resources by

dynamically updating the command and control hierarchy, so that for every task introduced

to the system, it provides a list of capable resources which can be used to perform the task.

This engine is based on the work done by Farahbod et al. [33]. In their research, a Dynamic

Resource Configuration Management Architecture (DRCMA) is designed so that the best

CHAPTER 4. PROPOSED MODEL 26

matching resources with minimum cost can be found by use of a bidding algorithm to quote

from different child nodes [29]. Therefore, the Resource Management engine of the proposed

model in this thesis is an extension of their work.

Another important building block of the system presented here is Decision Support; in

order to support decision making of the system operators, it is vital for the system to be able

to simulate the entire process of decision making. In our system, the main responsibility

of the Decision Support engine is organization and management of tasks. Therefore, we

define Task Management as the the process of handling and monitoring the missions from

the moment they are introduced to the system until their completion or failure [31].

Finally, the basic aspect of the Information Fusion engine is implemented by gather-

ing information and updating the current state of the system. Other fusion aspects (e.g.

transforming raw data into knowledge) are not relevant to this thesis.

In addition to the three engine blocks mentioned above, the system can also be decom-

posed into four components in the design level [43]. These components are based on the

four aspects of mission completion that our system is required to process: planning, resource

management, execution management and tasking. Isolating these aspects into individual

areas of responsibility has facilitated greater separation of concerns. This has several bene-

fits: complexity of the system as a whole is reduced; design and construction of the system

are expedited; design validation becomes more straightforward; and primary interactions

become apparent and can be fully addressed. Each of the four aspects corresponds to a

component in the model of our system: the Planner, Resourcer, Executor and Tasker, as

illustrated in Figure 4.2.

It is worth mentioning that each component at design level is related to an engine in the

system. The Resourcer is responsible for the role of Resource Configuration Management

engine, while the Decision Support responsibility, management of tasks, can be fulfilled by

Planner, Tasker and Executer. The information fusion is achieved by situation assessment

on the updates received from different components.

In addition, the behaviour of each component is represented as an intelligent agent in

the system, operating in a coordinated fashion [46]. In this section general responsibilities

of these components are described, leaving the functionalities and their interactions to the

next section.

CHAPTER 4. PROPOSED MODEL 27

ResourcerPlanner

Executor

Tasker

Command &

Control Centre

Physical

Environment

System Boundary

Figure 4.2: Components of the System Architecture

4.2.1 Planning

The main goal of the system is to successfully complete the missions introduced to it. A

mission, as stated, is usually too abstract to be dealt with, so it must be broken down into a

set of executable actions. Automated planning is the field of computing that deals with this

process [66]. The process of planning involves finding a set of actions that will accomplish a

set of goals, without violating any relevant constraints. For example, precedence constraints

are used to establish which tasks precede others. Since our system resides in a dynamic

environment where actions have uncertain outcomes, it must be able to replan an alternative

solution to a mission when the need arises. The Planner must be able to evaluate the

outcome of a finished task so that it will know when to do this.

We employ the Hierarchical Task Network (HTN) approach to generate plans [26]. HTNs

work by successively refining abstract tasks to increasingly concrete tasks using replacement

rules called methods. The tasks are maintained in a tree-like structure that depicts both the

relation between abstract parent tasks and refined subtasks as well as constraints between

the tasks. If a solution to the mission can be found, all of the leaves of the graph will be

executable tasks, which are called primitive tasks [38]. One advantage of using HTNs is that

the methods mirror domain expert understanding. Thus plans generated by an HTN system

make sense in their relevant field, and verifying the logic of an HTN planner is straightfor-

ward for someone familiar with that field. There are several popular implementations of the

HTN approach available, such as JSHOP2 [50]. Furthermore, HTN plans are amenable to

re-planning, including local re-planning, which changes as little as possible in a problematic

CHAPTER 4. PROPOSED MODEL 28

Capsized
Boat

Search
Rescue
Persons

Transport
Persons

Extract
Persons

Move

Secure
Boat

Precedence

Shared

Resource

Legend

Figure 4.3: Hierarchical Task Network (HTN) Example

plan [8].

A simple example of how an HTN planner works can be shown with the following example

(see Figure 4.3). The mission, Capsized Boat, is introduced to the system as an abstract

task. This task is too general to be processed so we start to decompose it using the Search

and Rescue method, which breaks it down into three tasks: Search, Rescue Persons and

Secure Boat. Notice that precedence constraints exist between Search and the other two

tasks: Search must be completed first, then the others may proceed in any order. In the

diagram, Rescue Persons has been refined further into more specific subtasks: Move, Extract

Persons and Transport Persons. This process of refinement through the use of methods can

continue with any leaf node in the network until all the tasks generated are primitive.

4.2.2 Resource Management

For any conceivable real-world task, one or more resources are required to achieve it. For

example, a marine patrol aircraft may be necessary to perform an air search, a helicopter

to extract a person from sea, and a paramedic to administer first aid. Our decision support

system must keep tabs on which resources are available in the system, and be able of

establishing which of those would be appropriate for dealing with any given task. It is

important to note that there may be multiple criteria for determining which resource is

most appropriate for a specific job, such as time and cost. Thus the system should be able

to come up with a selection of resources that are capable of fulfilling a task, even though

they may do it in different ways and with different levels of efficacy.

As mentioned before, the Resourcer component, is responsible for configuration and

CHAPTER 4. PROPOSED MODEL 29

management of resources within the system. The assignment of resources to given tasks

can be improved by orchestrating them into different clusters. This organization in the

system is also aligned with the C2 hierarchy, and the hierarchical clustering structure pre-

viously mentioned. In other words, the resources should be arranged into groups that are

complementary in terms of characteristics and capabilities. This arrangement should be

done dynamically, taking into account the current conditions of both the resources and the

external environment (e.g. weather).

4.2.3 Execution Management

Execution Management concerns the handling of tasks that are currently underway. While

the actual undertaking of the task will be done by the resources assigned to it, the decision

support system is also required to perform certain management activities. The progress of

task execution must be monitored. In addition, interactions between a task and the rest of

the system must also be handled. For example, a report will be generated and passed along

when a task finishes. Similarly, messages may be sent to or from the task in problematic

circumstances.

4.2.4 Tasking

During design, we recognized that in addition to planning and execution management, there

are other states that tasks can have. We use the concept of Tasking, common in defense-

related literature, to deal with this issue. Tasking includes responsibilities such as ensuring

that resources are properly assigned with no conflicts, and execution constraints, which

determine when a task executes, are observed. The Tasker is also employed to manage

interactions between the other components. In this way, we can deal with the timing issues

that can occur in a real-time asynchronous system.

The Tasker is also responsible for deciding what happens to a task when finishes execut-

ing. Depending on the generated execution report, the task may be retried with or without

a new resource assignment. A task may also be sent to the Planner for evaluation, which

could result in re-planning, or the generation of a mission report.

CHAPTER 4. PROPOSED MODEL 30

4.2.5 Decentralized Control

This system is intended to be implemented in a distributed manner, with all four services

running on each node in the C2 hierarchy. This allows for a truly decentralized control struc-

ture and improves the robustness of the network. However, the distributed implementation

of the system will be described in more detail in the next chapter, but for now, the examples

are given using a centralized model, where a single set of component services organizes all

resources in the network.

4.3 Reference Model

In the previous section, the four main areas of responsibility were described. We now

describe the interactions between these components in terms of an abstract generic scenario

indicating their responsibilities and relations.2 In order to model and analyze the scenarios

of the system, a standard notation, User Requirements Notation (URN) [61, 5] is used.

4.3.1 An Introduction to User Requirements Notation

In 2008, the User Requirements Notation was approved as an ITU-T standard [64] that

combines concepts and notations for modeling goals and scenarios. jUCMNav [61] is an

Eclipse plug-in for URN used here to model and analyze scenarios.

A scenario describes a partial usage of the system. It is defined as a set of partially

ordered responsibilities to be performed such that the system reaches its goals. Each scenario

has start points, represented by filled circles, which capture the preconditions or triggers of

the system. End points are illustrated by solid bars and capture the postconditions of the

system. A scenario progresses along paths between these start and end points, and the

responsibilities are represented by crosses on the path. The diamond symbol is called a

stub and is a placeholder for a sub-scenario. We employ them in our model for complexity

management which can be done by encapsulating some related and coherent responsibilities

in a subcomponent. Beyond concepts and notations mentioned here, there are some other

aspects supported by URN but they are not used here.

2For the sake of simplicity, the scenario is given in a centralized fashion.

CHAPTER 4. PROPOSED MODEL 31

2 3 4

5

67

Planner Tasker

Executor

Resourcer

Plan Generation

Evaluation

Task Organizer

Execution

Initialization

Resource Selection

Task Report

Generation

Task

Execution

Command and

Control Centre

Mission Report
1

Mission Start

NODE

COMPONENTS

Figure 4.4: Abstract Generic Scenario of the NADIF System

4.3.2 Describing the Abstract Generic Scenario

We use jUCMNav for modeling different concrete scenarios of the system in various cases

and situations. The abstract generic scenario is the result of generalizing the common parts

of these concrete scenarios. As shown in Figure 4.4, the system has four components in

addition to the command and control centre. This section defines the responsibilities of

each component and also the communication among them. It is important to note that

Figure 4.4 shows only the flow of control and the duties of each element, therefore, some

parts of the path can be executed concurrently for different missions or tasks.

The command and control centre is outside the boundary of the system and is assumed

to be an actor on the system. This component is responsible for introducing a new mission

to the Planner. In addition, it will receive a report of the finished mission, whether it is

successful or not.

1. Evaluation: This subcomponent is responsible for evaluating finished tasks. If the

results of a task compromise an active mission, it is sent back to Plan Generation for

re-planning. If instead, it means that a mission has finished (whether successful or

not), this subcomponent issues a report to the command and control centre.

2. Plan Generation: In this subcomponent, the current plan is decomposed into a set of

tasks. Any tasks that are atomic, and thus executable, are sent to the Task Organizer

subcomponent in order to wait for resource assignment and execution.

CHAPTER 4. PROPOSED MODEL 32

3. Task Organizer: This subcomponent maintains the pool of ready tasks that are waiting

for execution. When possible, it chooses one of these tasks and checks its status. If

the task needs a resource, a request is made. If the task is ready to execute, then it

is sent to Task Execution. This subcomponent also checks if a task can no longer be

executed, due to exceeding its time window, finished status (from the execution report

sent by Task Report Generation), or if no resource assignments are possible (i.e., a

rejection message from Execution Initialization). In these cases, the task will be sent

back to Evaluation, which may result in re-planning if necessary.

4. Resource Selection: This subcomponent acts as a filter to find the resources that satisfy

the required capabilities of a task. In this manner, a list of resources that are able to

perform the task is created and sent to the Execution Initialization subcomponent in

the Tasker.

5. Execution Initialization: Its main duty is to pick the best resources for executing the

current task from the list provided by Resource Selection. The decision is based on

different parameters such as resource availability, task priority, resource location, and

other information. First, resources currently in use by tasks of equal or higher priority

are pruned from the list sent by Resource Selection. If the resulting list is empty,

there are no appropriate resources for executing the task, and an exception is sent to

Task Organizer. Otherwise, one or more resources from the list are assigned to the

current task, which is in turn sent to the Task Execution subcomponent for execution.

If a selected resource is in use, a request to release the resource is sent to the Task

Execution subcomponent.

6. Task Execution: This subcomponent is responsible for monitoring the execution of the

current tasks. In addition, it will release any resources that are required by higher

priority tasks on request.

7. Task Report Generation: Whenever an task execution has finished, this subcompo-

nent generates a report. The report contains the results of task performance and it

should be sent to the Task Organizer subcomponent. This report will be used in Task

Organizer to determine whether or not the task has effectively finished execution, and

in Evaluation to determine the effect of any execution on the progress of the mission

as a whole.

Chapter 5

Formal Model

This chapter introduces a precise architectural model defined in terms of a Distributed

Abstract State Machine (DASM) based on the asynchronous ASM modeling framework.

Building upon the design concepts described in Chapter 4, the formal description of the

model can turn the abstract architecture into a high-level computational model that can

be systematically analyzed, inspected, refined and validated. The formal representation

ensures that the key system attributes are specified concisely and unambiguously, providing

a reliable foundation for checking that these attributes are well understood and actually do

meet the functional requirements.

In this chapter, we present another parallel view of the system. In this perspective, the

model consists of Resource Management and Task Management. The former is responsible

for dynamic configuration of the resources by using hierarchical clustering structures while

the later is responsible for the management of the assigned tasks. It should be mentioned

that the focus of this thesis is mostly related to the Task Management. The Resource Man-

agement part is based on the Dynamic Resource Configuration Management Architecture

presented in [30, 33].

In this regard, by using the CoreASM modeling environment [28], the specifications of the

proposed model have been described in DASM.1 We also developed a basic graphical user

interface in Java to provide a live view of the resource network and its command and control

hierarchy during the simulation of the scenarios using the JASMine plugin of CoreASM [34].

1The current version of our model in CoreASM is available for download in the Software Technology Lab
website at http://www.stl.sfu.ca.

33

http://www.stl.sfu.ca

CHAPTER 5. FORMAL MODEL 34

The structure of this chapter is as follows. A formal description of the system’s basic

concepts is given in the first section. Next, the Task Management is presented in more

detail. Finally, a simple scenario is presented to show how the system works.

5.1 Basic Concepts

In order to define any system precisely, the elements should be formally described. As men-

tioned in the previous chapters, our system consists of a hierarchical network of resources,

which is aligned with the command and control hierarchy used in military. Such a structure

was depicted in Figure 4.1. In the following, some of the main elements of the proposed

model is described with use of Abstract State Machine formalism.

5.1.1 Node

One of the basic elements in our model is Node. Each node refers to either a logical or a

physical resource in the network (see Section 4.1), where logical resources represent clusters

of resources formed to perform coordinated tasks (e.g., in a search and rescue mission).

Every logical resource represents a non-empty set of subordinate resources, called child

resources, that belong to its cluster. We formally model this structure as follows:

Resources

universe Node

universe Resource

node : Resource → Node

resource : Node → Resource

∀r ∈ Resource ∀n ∈ Node resource(n) = r ⇔ node(r) = n

cluster : Resource → Resource-set

isCluster : Resource → Boolean

∀r ∈ Resource ¬isCluster(r)⇒ (cluster(r) = {})

5.1.2 Capability

Every resource identifies a nonempty set of capabilities. For each capability, there is a

set of properties, defined as pairs of 〈name, value〉, that specifies the particular types of

services that the resource provides (name) along with related quantifying measures (value).

CHAPTER 5. FORMAL MODEL 35

Mobility

mode: air
speed:medium

Helicopter
capability set

Communication

mode: Link11
range: high

Communication

mode: Link16
range: high

Radar

mode: night
range: medium

Capability Hierarchy

Figure 5.1: Capability Hierarchy example

As illustrated in the Figure 5.1, a helicopter has ‘mobility’, ‘communication’, and ‘radar’

capabilities. The ‘mobility’ has some properties such as: 〈speed, ‘medium’〉, 〈mode, ‘air’〉.

Capabilities

universe Capability

capName : Capability → String

capProperties : Capability → String × Value

Resource capabilities refer to operational aspects such as sensor capabilities, mobility

constraints, time constraints, et cetera; as such, they are subject to dynamic changes caused

by impediments like weather conditions and unit failures that may restrict temporarily or

permanently the full range of services that a resource can potentially provide.

In addition, resources can have more than one instance of a capability. Imagine that

the helicopter in our example can communicate with two different communication links.

Therefore, it has two ‘communication’ capabilities, each with a different value for its ‘mode’

property, such as 〈mode, link11〉, and 〈mode, link16〉 (see Figure 5.1).

The capabilities of a cluster are the aggregated capabilities of its resources in combina-

tion with the additional capability of orchestrating these resources as required to perform

certain tasks or missions. Thus, higher level logical resources usually have more complex or

sophisticated capabilities (e.g., search and rescue), which are composed of lower level capa-

bilities of the resources that belong to their clusters. See also Figure 4.1 for an example.

CHAPTER 5. FORMAL MODEL 36

Capabilities

resourceCapabilities : Resource → Multiset(Capability)

capabilities : Resource → Multiset(Capability)

∀r ∈ Resource capabilities(r) = resourceCapabilities(r) ∪ (
⋃

s∈cluster(r) capabilities(s))

The relationship between a physical resource and its capabilities is formally described

by means of a unary monitored function resourceCapabilities that, in any given system state,

associates some finite set of capabilities with each of the elements in Resource. Likewise, a

function capabilities is defined on each resource. This function identifies a set of aggregated

capabilities for each of the logical resources, based on the respective resource cluster they

belong to.

Logical Distribution The logical distribution of resources is reflected by the network

topology as stated through the following functions defined on nodes:

• rootNode : → Node, a static function that identifies a distinguished node of the

network representing the top level command and control unit.

• childNodes : Node → Node-set, childNodes(node) holds the set of nodes under direct

authority of node.

• parentNode : Node → Node, points to the parent node of a node.

Physical Distribution The physical distribution of resources within a given geographical

environment in which they operate typically changes over time. This is abstractly modeled

by a monitored function

location : Resource → Coordinate

which, in any given system state, associates with each of the resources a geographical lo-

cation, e.g. as identified by a global positioning system. As resources change their location

dynamically, the function location may change its interpretation from state to state. Based

on the location of resources and certain dynamic characteristics of the environment, such

as weather and terrain conditions, various derived functions model various aspects of the

physical distribution of resources. For instance, for any given node, the set of all the given

nodes that are reachable over a certain communication channel is modeled by

CHAPTER 5. FORMAL MODEL 37

Figure 5.2: RMA is organized in four layers.

Communication Layer

Physical Distribution

Logical Distribution

Resource Management

visibleResources : Resource × Channel → Resource-set.

5.1.3 Layered Architecture

In the Dynamic Resource Configuration Management Architecture (DRCMA) presented in

the previous works [33, 30], resource management policies govern the migration of resources

between clusters based on common prioritization schemes for resource selection, load bal-

ancing and organization of idle resource pools. Configuration and management of resources

across nodes is organized by means of a service-oriented architecture consisting of four hi-

erarchical service layers, namely: Resource Management (L4), Logical Distribution (L3),

Physical Distribution (L2), and Communication (L1), where L1 refers to the bottom level

layer; see Figure 5.2. The proposed DRCMA model assumes clearly identified and well de-

fined interfaces between layers, such that layern renders services to the next higher layern+1

using layern protocols realized by means of services provided by layern−1 [40]. The encap-

sulation of services in separate layers not only improves the separation of concerns but also

simplifies the control of complexity by providing convenient abstractions for decomposing

complex interaction patterns.

The physical distribution layer provides services to query about and manipulate the

physical distribution of resources in DRCMA. We abstract here from the internals of this

layer, assuming an underlying model resembling those used in the routing layer of mobile

ad hoc communication networks [40].

CHAPTER 5. FORMAL MODEL 38

5.1.4 Capability Pattern

Most often a task needs more than one type of capability to be performed. To address this

need, we define Capability Patterns with almost the same structure of the capability, but

with the conceptual difference that the property values of capability patterns can be a range

or a set of acceptable values. For instance, suppose an introduced task requires ‘search’ from

either ‘air’ or ’ground’. Therefore, any resource which has one of these two property values

in their capabilities is a candidate to perform this task. Here, capability pattern can be

used to find the capable matches among the resources.

A matchCapability function of the form

matchCapability : CapabilityPattern × Capability → Boolean

holds if a capability matches a given capability pattern.

Capability Pattern

domain CapabilityPattern

requiredCaps : Task → Set(CapabilityPattern)

decomposeCapability : CapabilityPattern → Set(CapabilityPattern)

requiredCaps is a set of all the required capabilities in the form of capability patterns.

These are used for matching the capabilities needed for the given task. Capability patterns

can also be viewed as higher level capabilities used in logical nodes in order to find matching

lower level resources for the introduced tasks.

Platforms

A group of physical resources may be physically bound together on a platform. A boat or

a helicopter with various sensors are two examples of platforms. Resources on a platform,

together with the platform itself, are moved together and their location is relative to plat-

form’s absolute location. Each platform has a set of resources and each resource has at most

one platform. The following function maps a resource to its platform.

platform : Resource → Platform

If resource r does not have a platform, we have platform(r) = undef. If we count platforms

as resources as well, we can have a hierarchy of platforms. A resource sitting on a platform

CHAPTER 5. FORMAL MODEL 39

could itself be a platform for other resources. For example, a helicopter is a platform for its

various sensors, while it can be, as a whole, a resource which is landed on a frigate.

It is important to note that the concept of platform is different from that of a logical

resource. A logical resource represents a cluster of resources that are, in most cases, logically

suitable to perform a specific task. Logical resources also aggregate resources based on the

command and control hierarchy, but not based on the physical binding of resources. To

separate these concepts, the resource-platform relation is not automatically mapped onto

the logical distribution of resources. As a result, we can potentially have a resource in the

system (e.g. radar on a frigate) that is controlled by a commander unit different from the

resource’s platform.

There are some characteristics that the concept of platform brings into our architecture:

1. Set of resources located on a platform can only be moved together. However, these

resources that have the capability of ‘mobility‘, but cannot move separately (e.g. a

special airplane that should be controlled from a frigate) can still have a relative

movement around their platforms. The actual location of such a resource can be

computed based on their platform’s location. We define coord(r) to be the absolute

location of resource r, and position(r) to be the relative location of r to its platform.

If a resource r′ does not have a platform, position(r′) holds the absolute location of

r′; one can read that as a position relative to (0, 0).

∀r ∈ Resource coord(r) =

{
coord(p) + position(r) if platform(r) = p;

position(r) otherwise.

2. We define a movement range for resources that can move relative to their platform,

as follows:

movementRange : Resource → Radius

In order to find out which resource is capable of reaching a target, we can compute

resource movement range and add it to its platform location to see if it can reach tar-

get’s location. If resource r is attached to a platform p (i.e. platform(r) 6= undef) and r

doesn’t have the ‘mobility’ capability, then its movement range is equal to the range of

its platform. If r has the ‘mobility’ capability, the combination of movementRange(r)

and movementRange(p) tells us how far r can go.

CHAPTER 5. FORMAL MODEL 40

Searching Search

SEARCH AND RESCUE

is the target
found? Rescuing Rescue

search again?

yes

no

yes no

Figure 5.3: Control state diagram of a Search-and-Rescue task

Detachable Resources: We assign a detachable capability to model the possibility of a

resource to be detached from its platform. A resource with a ‘detachable’ capability has the

potential to move separately from its platform; i.e., it can have its own location and there

would be no physical constraint on its movement since it is detached from its platform. In

our example a helicopter on a frigate, the helicopter has the ‘detachable’ capability which

allows it to fly away from the frigate.

5.2 Task Management

In our proposed model, high-level (or abstract) tasks are assigned to higher level nodes in

the command and control hierarchy (see Section 4.1). As long as there exists a single child

node or a combination of children capable of performing the task, the whole abstract task

should bubble down the tree. In a situation where there is no combination of children that

can perform an abstract task, the task is decomposed into subtasks.

The result of task decomposition should not only provide a set of subtasks the abstract

tasks is comprised of, but also the process of orchestration of the subtasks.

Another issue which should be taken into account is that we may want to have some

tasks unordered in a sequence (i.e. none of them has any priority to the others) so that,

when the sequence is to be performed we may have to sort those tasks with respect to

the availability of resources, time constraint, work balance and etc. In order to model this

situation, partially ordered sets can be useful. In a partially ordered sequence, some of the

elements might have been left unordered so that there is no priority between those elements.

This can be used in task decomposition to build a sequence of tasks which may have some

unordered elements.

CHAPTER 5. FORMAL MODEL 41

PROCESS TASKS

Processing size(taskPool) > 0 t ← ChooseTask(taskPool) CommunicatingProcessTask(t)

CommunicatingProcessMessages

Observing MonitorResourcesAndCommLinks Processing

ProcessTasks

yes

no

Figure 5.4: Activity cycle of a node (top) and control state diagram of ProcessTasks (bot-
tom)

Such a decomposition can be modeled as a control state ASM diagram in which rules

(boxes) represent subtasks. Every task starts with an input (normally assigned by the

higher-level node) and generates an output that can be used as an input for the next task

in the sequence. The output of performing the last task in a task decomposition of abstract

task t is taken as the output of execution of t.

To give an example, an abstract search-and-rescue operation can be decomposed into

two tasks of search and rescue orchestrated by the control state diagram of Figure 5.3.

5.2.1 Node Program

The process of performing tasks and dynamically maintaining the configuration of resources

is modeled as a distributed process carried out by individual nodes of the network. Every

node continuously goes through a cycle of three activity phases (see Figure 5.4): observing,

where it monitors and observes its resources and communication links in order to update its

“understanding” of the network and react to changes if needed, processing, where it processes

and performs tasks that are assigned to it, and communicating, in which it processes and

responds to messages received from other nodes in the network.

Here, we focus on the processing phase; we look into the ProcessTasks rule and explain

how tasks are analyzed and eventually carried out by nodes.

CHAPTER 5. FORMAL MODEL 42

5.2.2 Task Lifecycle

Every task, once injected into the network, goes through a lifecycle from being assigned to

a node to being completed or rejected (see Figure 5.5). A task, once created, will always be

assigned to a node—i.e., residing in the task pool of one and only one node at any time—

and it will be in an implicit waiting state until it gets processed by the node it is assigned

to. Tasks can be moved from parent nodes to child nodes and vice versa. The state (or

“mode”) of a task in its lifecycle is maintained by the nodes that are processing it through

its lifecycle.

waiting for

resources

being

processed

suspended

assigned

decomposed

completed

being

performed

rejected

created

TASK LIFE CYCLE

Figure 5.5: Task Lifecycle

Every node in the model, during its computation cycle, non-deterministically chooses

a task t from taskPool(self), the pool of tasks that are assigned to it, and processes that

task by calling the ASM rule ProcessTask(t);2 (see Figure 5.4). Every call to ProcessTask(t)

can potentially change the mode of task t, moving it to a different stage of its lifecycle

(Figure 5.5). If the task is at the beginning of its cycle, ProcessTask will initialize the task

and changes its mode to beingProcessed.

2Here, for the sake of simplicity, we assume that an abstract rule ChooseTask (see Figure 5.4 (bottom)),
would non-deterministically choose a task. However, in further refinements it can take into account various
factors such as the task priorities and their pre-conditions.

CHAPTER 5. FORMAL MODEL 43

NodeProgramProcessTask(t) ≡
case taskMode(t) of

assigned→
InitTask(t)

taskMode(t) := beingProcessed

. . .

When a task is in the beingProcessed mode, the processing node is basically looking for the

suitable resources to assign to the task:3

beingProcessed→
if nodeSatisfiesCapabilities(self , t) then

if ¬leafNode(self) then

taskBiddingCtrlState(self , t) := requestingQuotes

FindMatchingChildNode(t)

else

if allCapabilitiesAvailable(self , t) then

AssignCapabilitiesToTask(self , t)

taskMode(t) := beingPerformed

else

let victimSet← ComputeTasksToBeSuspended(self , t) in

if |victimSet| > 0 then

SuspendTasks(victimSet, t)

else

taskMode(t) := assigned

else

taskMode(t) := rejected

taskRejectionReason(t) := “Cannot match required capabilities.”

If the node meets the capability requirements of the task:

1. If the node is not a leaf node, it starts looking for a suitable child node or a combination

of child nodes that can carry out the task; this is done by setting the value of the control

state function taskBiddingCtrlState(self , t) to requestingQuotes so that from now on

the task will be passed to FindMatchingChildNode rule until its task mode is changed.

It should be mentioned that the focus of the Task Life Cycle is only on the ‘mode’ of a

task; while Figure 5.6 illustrates the control state diagram of FindMatchingChildNode

rule. This rule is responsible to find a proper child node capable of performing the

3In these rules, self refers to the node executing the rule.

CHAPTER 5. FORMAL MODEL 44

task. The process of finding matching child node shown in Figure 5.6 involves sending

quote requests to all the child nodes, waiting to receive the responses and decide

whether to [33]:

(a) assign the task to a single child node, hence moving the task to the task pool of

the child node and changing the task mode back to assigned;

(b) decompose the task into subtasks, hence changing the task mode to decomposed

and create new subtasks that would start their lifecycle from being assigned to

the node;

(c) aggregating required resources into a cluster that can later carry out the task,

hence changing the task mode to waitingForResources;

(d) or rejecting the task if none of the above applies and changing the task mode to

rejected.

2. If the node is a leaf node and if all the capabilities required to perform the task are

available, they will be assigned to the task and the task mode becomes beingPerformed;

otherwise, if some capabilities are busy with lower priority tasks, those tasks will be

suspended to free up the required capabilities. In order to suspend any task, first a

victim set should be defined. This set includes all busy tasks that have lower priority

with regard to the priority of the given task. When such list is ready, then a task

should be chosen from the list and all the resources previously assigned to it must be

released for further assignments. If there is no task to be suspended, the task mode

will be switched back to assigned and it stays in the task pool to be processed at a

later time.

In the unlikely event that the node cannot afford the capabilities required by the task,4

the task will be rejected. If the rejecting node is not a root node, the task will be sent back

to the parent node.

When a task is decomposed, it is basically waiting for its subtasks to be completed. If at

least one of the subtasks is rejected for any reason, the decomposed task will be considered

rejected as well.5 The following piece models this behaviour:

4This should not happen too often, since the parent node should have already matched the required
capabilities of the task with the capabilities of the node; however, as we mentioned before, in a dynamic
environment the capabilities of the node can change anytime.

5With further refinements, the node can try to re-allocate the rejected subtask to some other nodes.

CHAPTER 5. FORMAL MODEL 45

decomposed→
if ∀t′ ∈ subTasks(t) taskMode(t′) = completed then

taskMode(t) := completed

if ∃t′ ∈ subTasks(t) taskMode(t′) = rejected then

taskMode(t) := rejected

taskRejectionReason(t) := “At least one sub task failed.”

CancelAllSubtasks(t)

When a task is rejected or completed, it is removed from the task pool of the node, its

resources are released and the parent node is notified of the rejection or completion of the

task.

completed→
remove t from taskPool(self)

ReleaseCapabilities(self , t)

if parentTask(t) 6∈ taskPool(self) then

SendCompletionNotice(parent(self), t)

Every node has to keep the following info:

assignedChildNode : Node × Task → Node

taskAssigned : Node × Capability → Task

Note: capabilities will be locked when they are being transferred. They will be unlocked

as soon as they are assigned.

So far, some of the possible modes that a task can have during its lifecycle have been

explained. In the following, the remaining task modes of the ProcessTask rule, presented in

Figure 5.5, are described with ASM formalism.

CHAPTER 5. FORMAL MODEL 46

NodeProgramProcessTask(t) ≡
case taskMode(t) of

assigned→
. . .

beginProcessed→
. . .

beingPerformed→
if taskCompleted(t) then

taskMode(t) := completed

if taskFailed(t) then

taskMode(t) := rejected

taskRejectionReason(t) := “Task failed.”

suspended→
if suspensionCause(t) 6∈ taskPool(self) then

taskMode(t) := beingProcessed

decomposed→
. . .

rejected→
remove t from taskPool(self)

ReleaseCapabilities(self , t)

if parentTask(t) 6∈ taskPool(self) then

SendRejectionNotice(parent(self), t)

completed→
remove t from taskPool(self)

ReleaseCapabilities(self , t)

if parentTask(t) 6∈ taskPool(self) then

SendCompletionNotice(parent(self), t)

waitingForResources→
if waitCause(self , t) = waitingForCapTransfer ∧ allCapabilitiesTransferred(self , t) then

AssignTaskToNode(t,newClusterNode(self , t))

where

allCapabilitiesAvailable(t) ≡
∀rc ∈ requiredCaps(t), ∃c ∈ nodeCapabilities(self)match(rc, c) ∧ taskAssigned(self , c) = undef

taskIsBeingProcessed(node, task) ≡ taskProcessingMode(self , t) 6= undef

InitTask(t) ≡
if requiredCaps(t) = undef then

requiredCaps(t)← ComputeCapabilities(t)

CHAPTER 5. FORMAL MODEL 47

AssignTaskToNode(task, node) ≡
assignedChildNode(self , task) := node

SendMessage(node,newTaskMassage(task))

taskMode(task) := assigned

remove task from taskPool(self)

DecomposeTask(task) ≡
forall t′ ∈ taskDecomposition(task) do

parentTask(t′) := task

add t′ to taskPool(self)

add t′ to subTasks(task)

taskMode(t′) := assigned

In order to do decomposition, we break the task into subtasks and put all of them in

our task pool.

5.2.3 Matching Child Node

FindMatchingChildNode rule which is depicted in Figure 5.6 tries to find an appropriate node

for the required task. The diagram provides the overview of the process and its control flow,

the details of the conditions and the actions they trigger are defined in terms of an ASM.

For instance, the following predicates specifies the condition ‘Is there a candidate?’:

candidateExists(node, task) ≡ ∃ c ∈ childNodes(node) isACandidate(c, task)

isACandidate(node, task) ≡ ∀ rc ∈ requiredCapabilities(task) quote(node, task)(rc) 6= undef

and the following rules define the actions ‘Send Quote Requests to Child Nodes’ and ‘Receive

Quotes’ of the resource management (RM) Layer:

SendQuoteRequestsRM (task) ≡
forall c in activeChildNodes(self) do

let m = new(Message) in

msgType(m) := quoteRequest

msgData(m, “task”) := task

msgData(m, “capabilities”) := requiredCapabilities(task)

quote(c, task) := undef

SendMessageRM (c,m)

where

activeChildNodes(n) = {x | x ∈ childNodes(n) ∧ ¬isDead(x)}

CHAPTER 5. FORMAL MODEL 48

Requesting
Quotes

MATCHING TASKS TO CHILD NODES

Send Quote Requests
to Child Nodes

all quotes received
or timed out?

Receiving
Quotes

Looking for
Candidate

is there a
candidate?

Choose Child c with
Minimum Cost

Assigning
Task to Node

yes

no

Choosing
 Combination

Choose a Combination
with Min Cost

need a new
cluster? Create New Cluster

Is there such a
combination?

yes

Rejecting
Task

no

Receive Quotes
yes

no

yes

no

can the task be
decomposed?

Clustering
Resources

Decomposing
Task

yes

no

Transferring
Capabilities

AssignTaskToNode(t, c)
taskMode(t) := assigned

taskMode(t) := rejected

TranferCapabilities
taskMode(t) := waitingForResources

DecomposeTask(t)
taskMode(t) := decomposed

Figure 5.6: Control state diagram of matching tasks to child nodes

ReceiveQuotesRM (task) ≡
choose m ∈ inbox(self) with

msgType(m) = quoteResponse ∧msgData(m, “task”) = task do

quote(sender(m), task) := msgData(m, “quote”)

remove m from inbox(self)

The above rules exhibit two important abstractions in the model. In these rules, the

abstract view of communication services and data structures of messages allows us to focus

on the main functionality of the process. To send quote requests to child nodes, the model

relies on the messaging services provided by the communication layer. For every child node,

a new quote request message is created asking for a quote on the cost of performing the new

task, and the message is sent using the abstract routine SendMessageRM . In the next step, the

node looks into its message inbox and non-deterministically chooses quote messages related

to the new task and stores the received quotes in an internal data structure to be used later

in the process (see ReceiveQuotes above). This rule is repeated until all the expected quotes

have either been received or timed-out.

If no single resource cluster suitable to perform the new task is available, the best

combination of resources from different clusters are selected to form a new cluster (see

“Choosing Combination” in Figure 5.6). To create a new cluster, a new logical resource and a

CHAPTER 5. FORMAL MODEL 49

corresponding node is created, and the hierarchical structure is then modified by changing

the values of functions parentNode and childNodes, effectively adding the new cluster node

to the tree (see CreateNewClusterNodeLD above). The following rules define the action ‘Create

New Cluster’ of the resource management layer and the respective rule it uses from the logical

distribution (LD) layer:

CreateNewClusterRM ≡
newClusterNode(self)← CreateNewClusterNodeLD

CreateNewClusterNodeLD ≡
let nr = new(Resource) in

ConfigureResource(nr, emptyCluster,noCapability)

CreateAndConfigureNode(nr)

add node(nr) to childNodes(self)

parent(node(nr)) := self

result := node(nr)

The next step is to transfer the selected resources of the winning combination into the

newly created cluster. Here, the resource manager layer directly uses the transfer capabilities

service provided by the logical distribution layer (see TransferCapabilitiesLD below). Based on

the selected combination, a transfer map is created. Transfer of resources is done using a

messaging protocol: for every pair of (node, capability) in the given transfer map, a transfer

request message is sent to node requesting to transfer its capability to the new cluster.

Resources acknowledge a successful transfer of their capabilities by sending back a transfer

ack message, which is collected in the next step.

The following rule defines the action ‘Transfer Capabilities’ of the logical distribution (LD)

layer. Here we provide a simple implementation of the protocol. The node keeps a set of

the capability transfer requests that it has sent so far, and then it removes those requests

for which an acknowledgment is received. The transfer is considered to be successful when

all the requests are acknowledged before a time-out event occurs.

CHAPTER 5. FORMAL MODEL 50

TransferCapabilitiesLD(task, target, transferMap) ≡
if requestsSent = undef then

outcome := undef

timer← GetNewTimer

SendCapabilityTransferRequestsLD(task, target, transferMap)

else

if |requestsSent| > 0 then

if timedOut(timer) then

outcome := failed

else

RemoveProcessedTransferRequests(self , task, target, transferMap)

else

requestsSent := undef

outcome := successful

where

requestsSent = capabilityTransferRequestsSent(self , task, target, transferMap)

outcome = transferResult(self , task, target, transferMap) := successful

timer = transferTimer(self , task, target, transferMap)

SendCapabilityTransferRequestsLD(task, target, transferMap) ≡
seq

requestsSent := {}
next

forall (node, cap) in transferMap do

extend Message with m do

msgType(m) := transferRequest

msgData(m, “capability”) := cap

msgData(m, “task”) := task

msgData(m, “target node”) := target

SendMessage(node,m)

add (node, cap) to requestsSent

where

requestsSent = capabilityTransferRequestsSent(self , task, target, transferMap)

CHAPTER 5. FORMAL MODEL 51

5.3 Simple Scenario

In this section, we present a simple scenario modeled with CoreASM6. We assume that we

have a network of resources (Figure 5.7 illustrates the corresponding tree structure of the

network, in which each node represents a physical or logical resource) with Base as the root

node. In this scenario, there are two logical nodes under Base: GroupA and GroupB ; each

of these nodes has a set of physical or logical resources as its child nodes. There are different

number of physical resources of types (aurora, helicopter, boat and frigate) in the system. As

you can see in the figure, there are two nodes, Helicopter-1 and Helicopter-2 , with resource

type helicopter. The capabilities of these resources can be defined as follows:

helicopter


mobility : 〈type, ‘air’〉, 〈speed, ‘high’〉
vision : 〈type, ‘day’ and ‘night’〉, 〈quality, ‘high’〉
rescue : 〈type, ‘lift’〉

boat


mobility : 〈type, ‘sea’〉, 〈speed, ‘medium’〉
vision : 〈type, ‘day’〉, 〈quality, ‘medium’〉
rescue : 〈type, ‘tow’〉

aurora

{
mobility : 〈type, ‘air’〉, 〈speed, ‘high’〉
vision : 〈type, ‘day’〉, 〈quality, ‘low’〉

frigate

{
mobility : 〈type, ‘sea’〉, 〈speed, ‘medium’〉
vision : 〈type, ‘day’ and ‘night’〉, 〈quality, ‘high’〉

At the outset, a Patrol task is assigned to Base. Processing its tasks pool, the Base

computes the required capabilities for the given task in order to find proper resources (child

node) for the task assignment. As explained in Section 5.1.4, the required capabilities for a

task are defined by a set of Capability Patterns. For instance, in this scenario, the required

capabilities needed for Patrol task are defined as follows:

Patrol

{
mobility : 〈type, ‘sea’ OR ‘air’〉, 〈speed, ‘> low’〉
vision : 〈type, ‘day’〉, 〈quality, ‘medium’〉

In this case, helicopter, boat and frigate are all capable of performing the task. However,

it is more cost efficient to have Boat performing this task; hence, Base will assign the task

to GroupB . Upon receiving the task, GroupB queries its child nodes for cost estimations

6The scenario presented here is aligned with the view of the system explained in this chapter.

CHAPTER 5. FORMAL MODEL 52

and realizes that Boat is the best candidate to perform the task.

While Boat is patrolling the area, suppose a new SOS task is assigned to Base. The

required capabilities for this task are as follows:

SOS


mobility : 〈type, ‘sea’ AND ‘air’〉, 〈speed, ‘> medium’〉
vision : 〈type, ‘day’ AND ‘night’〉, 〈quality, ‘high’〉
rescue : 〈type, ‘lift’ AND ‘tow’〉

The capabilities needed for this task can not be found in any of GroupA or GroupB

exclusively. Thus, Base determines that it cannot assign the task to a single child node,

therefore, the task must be decomposed. For this example we can assume that SOS task can

only be broken down into two subtasks of Search and Rescue with the following capability

patterns:

Search

{
mobility : 〈type, ‘sea’ AND ‘air’〉, 〈speed, ‘> medium’〉
vision : 〈type, ‘day’ AND ‘night’〉, 〈quality, ‘high’〉

Rescue


mobility : 〈type, ‘sea’ AND ‘air’〉, 〈speed, ‘> medium’〉
vision : 〈type, ‘day’ AND ‘night’〉, 〈quality, ‘medium’〉
rescue : 〈type, ‘lift’ AND ‘tow’〉

As a result, helicopter and frigate are both needed to carry out Search task. Therefore,

Base will assign the task to GroupA. Since Search task consists of two different searches in

the area, GroupA will further decompose the Search and assigns Search Air and Search Sea

to Helicopter-2 and Frigate respectively. Whenever a task is decomposed into subtasks, the

original task stays in the node where it was decomposed (the task mode should be changed

to decomposed) until all its subtasks are completed or at least one of them is failed. In our

example, when the sinking boat is found by any of the resources (Frigate or Helicopter-2)

deployed to the area, the task mode of both subtasks will be changed to Completed and

a report containing the status of victims and the boat will be sent to the parent node.

Subsequently, information is bubbled up through the hierarchy, so that Base is notified

about the completion of Search task, hence triggering Rescue task into the system.

When Rescue task is introduced by Base node, a similar procedure is carried out to

find the matching child node for the task. Assuming that the capabilities needed for Rescue

operation are ‘lift’ and ‘tow’, where the victims should be lifted up and the boat needs to

be towed to a secure location, both boat and helicopter resources are needed to carry out

this task. Therefore, Rescue task should be assigned to GroupB and later to GroupC in

CHAPTER 5. FORMAL MODEL 53

Figure 5.7: Structure of the resource hierarchy

the hierarchy. After decomposition to subtasks Lift and Tow, GroupC realizes that Boat is

busy with Patrol task. However, since rescue has a higher priority than patrolling, the node

suspends Patrol operation and sets the task mode to Suspended (it will stay suspended until

all the required resources become available again). By suspending the low-priority task,

both Helicopter-1 and Boat will be available and Rescue operation can be performed.

Upon the completion of Rescue operation (i.e. victims are rescued and the boat is

secured on the shore), the task mode is switched to Completed, effectively releasing the

resources. At this point, the suspended task (Patrol), which was residing in the task pool

of Boat node, can be resumed for processing.7

Finally, SOS task mode will be determined by the success or failure of Rescue operation,

and the report is sent back to the commander in charge.

7When the mission is not accomplished successfully, the task will be terminated with Rejected mode.
Consequently, the parent node tries to reassign the task to other resources (if possible).

Chapter 6

Experimental Analysis

Generally, evaluation of a system can be based on various criteria. Each of these criteria

focuses on certain aspects of the system. It is also important to take into account the domain

of the system, when choosing appropriate metrics. For any complex decision support system,

validity of the results is one of the main factors that should be tested even in early stages

of design. The need for validation is even more highlighted when the system is operating

in a dynamically changing environment. Such an additional requirement raises another

important issue to consider in system evaluation which is referred to as the robustness of

the system. In other words, robustness is the key requirement for any real time decision

support system. Therefore, in our application context where the system deals with real life

situations such as emergency responses, validity and robustness are the two most important

metrics which place other criteria such as efficiency or cost in second priority.

In the previous chapters, we have proposed an abstract model of the system. Since the

model is formally described with Abstract State Machine formalism, its specifications can

be implemented at different levels of abstraction by using the CoreASM tool environment

in order to evaluate the model before building the whole system. In this chapter, our goal

is to provide a number of test schemes in order to validate the results of running different

scenarios in the system. The scenarios are designed in a way to resemble dynamic changes

happening in the real system in order to better analyze the robustness of the system.

It is important to note that measuring robustness in the system is not a trivial issue.

Although there is no well-established quantitative metrics to evaluate the robustness of the

system; intuitively, robustness refers to the situation where the system works validly in the

presence of dynamic changes, still operating reasonably well when confronted with sudden

54

CHAPTER 6. EXPERIMENTAL ANALYSIS 55

failure of resources.

In this chapter we analyze the robustness of our system based on the validity of the

results defined in terms of correct task assignments to available resources under various

circumstances. In order to do so, we have extended the scope of scenarios introduced in the

previous chapter and run the system on a series of such scenarios, in which the dynamic

changes in the system are modeled by random failure of resources. In the next step, the

results obtained from system runs will be compared to our expected results, and differences

will be analyzed based on Error Type I and II. The outcome of such analysis will give us

an insight into the robustness of our system.

6.1 Evaluation metrics

As mentioned earlier in the thesis, our decision support system is meant to provide help

in decision making processes regarding the assignment of tasks based on the availability of

resources with matching capabilities. Therefore, evaluation of task assignment helps us to

assess the validity of the system. Each task assignment is a result of the system run with a

series of inputs (e.g. scenarios). For any given task in a scenario, the system’s response can

be either negative—rejection of the task—or positive—successful assignment of one or more

matching resources to a given task. Moreover, in order to simulate dynamic changes in the

system, scenarios are chosen in a way that resources get disabled non-deterministically at

different times.

The results of the system will be evaluated by comparing them to the standard results

obtained from a reference model. The results of our reference model are gained by a brute-

force algorithm that explores the problem space to generate solutions based on the knowledge

about the common concepts of Marine Safety and Security Operations. This knowledge is

acquired through close collaborations with the MSOC experts familiar with the domain.

This reference model acts as a standard benchmark for the evaluation of our model, also

known as gold standard [74]. Apparently, acquiring such results is very costly yet needed to

provide a baseline to analyze the validity of our system. In other words, if a result obtained

from our model matches the standard result, it will be considered as true otherwise it will

be false. Therefore, each result from the system falls into one of the four cases depicted in

Table 6.1. As shown in the table, there are two types of errors for any given result.

CHAPTER 6. EXPERIMENTAL ANALYSIS 56

Gold Standard

Positive Negative

Test Results

Positive
Correct outcome Type I error

True Positive False Positive

Negative
Type II error Correct outcome

False Negative True Negative

Table 6.1: Types of test results

o Type I errors: Also known as an error of the first kind, refers to a false positive result

in which the system has a positive result for the given question while it in not true in

reality. An example of this error can be seen in diagnosis systems, where a positive result

shows a disease when in fact the patient doesn’t have any, or when a security scanner

in the airport detects a dangerous thing in a passenger’s luggage while there’s no such a

thing in there. Type I error can be seen in our model as the system response is positive

for the given task assignment, while the configuration of resources chosen for such task

can not satisfy the task required capabilities. In this situation, the system shows wrong

answers.

o Type II error: This type of error, also known as a β error or a false negative, is the

error of failing to response positively, meaning that the answer to a given question is

true in reality while the results show opposite. To understand this type of error, we can

refer to the same diagnosis system; one can consider the situation where the result shows

nothing for a patient who in fact suffers from a disease, and similarly, when a metal

detector in airport fails to detect a person with a weapon. In our model, a false negative

result refers to the situation in which the system cannot find any set of resources for a

task assignment, while considering the capability of resources and current configuration

of the network, it is possible to do so; for instance, different scheduling techniques or

re-planning can be used to perform the introduced task.

In statistics, type I errors are also known as α errors, whereas type II is called β. These

parameters are defined as follows:

α =
FP

FP + TN
, β =

FN

FN + TP

CHAPTER 6. EXPERIMENTAL ANALYSIS 57

Base

Group3Group2Group1

Logical-14Logical-13

Group4 Group5 Group6 Group7

Group8 Group9 Group10 Group11 Group12 Group13 Group14

Frigate-2
Boat-1

Helicopter-2
Zodiac-3

Aurora-3
Boat-2

Helicopter-1
Frigate-3Frigate-1

Boat-3Aurora-2Aurora-1 Zodiac-1Zodiac-2 Helicopter-3Boat-4
Boat-5 SAR-1SAR-2

Tug-1
Tug-3Boat-4 Tug-2

Group7

Group13 Group14

Frigate-2Aurora-3
Boat-1

Helicopter-2
Zodiac-3

Figure 6.1: Resource network for scenario testing

In addition, sensitivity is described as a conditional probability of getting true positive

results from a test while the true answer is positive. This can be defined as 1 − β and is

evaluated as the proportion of True Positive results by the total of positive values. By this

definition, it can be easily recognized that when a system is highly sensitive, it means that

the probability of getting false negative results are very low. For instance, a highly sensitive

diagnosis system barely ignores any symptom of disease.

Similarly, specificity is referred to the ability of a test to provide true negative results,

which is defined as 1 −β or in other words, the ratio of True Negative results to the total of

negative values. Likewise, when the diagnosis system is specific, the chance of recognizing

a disease for a healthy patient is very unlikely.

6.2 Test Setup

We test the system by running a number of different scenarios. Each scenario consists of

a list of tasks, which are introduced to the system at specific times, and an initial configu-

ration of resources in the system. These scenarios are very similar to what is described in

Section 5.3. However, our chosen scenarios are more complex in terms of task requirements

CHAPTER 6. EXPERIMENTAL ANALYSIS 58

and configuration of resources in the system (see Figure 6.1).

Our data set includes 30 scenarios that are frequently encountered in daily routine of the

Marine Safety and Security Operation domain. Furthermore, to resemble dynamic changes

in the system, we randomly disable some of the resources that are busy performing tasks.1

We observe how the system copes with changes in the environment and analyze the results

of tasks assignments by comparing them to our standard benchmarks, in order to associate

their values with truth or falseness. We summarize the results in a table where the value

of the element in row i and column j corresponds to the result of running scenario i with

random failure of j resources and can take up one of the four possible values mentioned

before in Table 6.1. In addition, since the failure of resources has a random nature, we run

each scenario 10 times to get possibly different responses from the system, hence obtaining

10 such tables.

6.3 Simulation Results

Table 6.2 shows the results of one run of the scenarios for different number of resource

failures. First column represents the results of running scenarios in a normal situation

with no sudden changes in the availabilities of resources, while other columns show how

the system behaves in the presence of progressive resource failures—one or more resources

die. In addition, for each column of the table, sensitivity (1− β) corresponds to the rate of

true positive results and α represents the rate of false positive results. Therefore, to better

understand and compare the results, Receiver Operative Characteristic (ROC) diagram [77]

is used (see Figure 6.3). In this diagram, sensitivity is plotted against α for every column of

all tables. In the digram, scenario runs with the same number of resource failures (RF) are

shown with the same symbol. Conceptually, each point in the figure can be interpreted as

the results of running 30 scenarios under the specified number of resource failures, and the

whole digram can be used to measure the validity of the system with respect to changes in

the environment.

The ROC diagram in Figure 6.3 shows that the rates of false positive results (α values)

are very small (less than 0.2). This shows that the system barely assign tasks to the resources

1To better analyze how the system responds to changes, one of the busy assigned resources is selected
non-deterministically at each step. We repeat this procedure until we reach a total failure of 5 resources at
once.

CHAPTER 6. EXPERIMENTAL ANALYSIS 59

No Resource
Failure

1 Resource
Failure

2 Resources
Failure

3 Resources
Failure

4 Resources
Failure

5 Resources
Failure

Scenario 1 TP TP TP TN TN TN
Scenario 2 TP TP TP TP TP TN
Scenario 3 TP TN TN TN TN TN
Scenario 4 TP TN TN TN TN TN
Scenario 5 TP TP TN TN TN TN
Scenario 6 TP FP FP FP TN TN
Scenario 7 TP TP TP TP TN TN
Scenario 8 TP TP FN TN TN TN
Scenario 9 TP TP TP TP TP TP
Scenario 10 TP TP TN TN TN TN
Scenario 11 TP TP TP TN TN TN
Scenario 12 TP TP TP TP TP TN
Scenario 13 TP TN TN TN TN TN
Scenario 14 TP TN TN TN TN TN
Scenario 15 TP TP TP TP FN TN
Scenario 16 TP TN TN TN TN TN
Scenario 17 TP TP TP TN TN TN
Scenario 18 FN FN FN TN TN TN
Scenario 19 TP TP TP TN TN TN
Scenario 20 TP TP TN TN TN TN
Scenario 21 TP TP TP TP TP FP
Scenario 22 FN FN FN TN TN TN
Scenario 23 TP TP TP TN TN TN
Scenario 24 TP TP TN TN TN TN
Scenario 25 TP TN TN TN TN TN
Scenario 26 TP TN TN TN TN TN
Scenario 27 TP TP TP FP FP TN
Scenario 28 TN TN TN TN TN TN
Scenario 29 TP TP TP TP TP FN
Scenario 30 FN FN FN FN TN TN

Figure 6.2: Results of scenarios runs

which are not capable of performing them. The false positive results mainly occur with the

sudden failure of two or more resources. The concurrent nature of the system along with

the dynamic changes, results in system’s failure to notice the death of a resource in a timely

manner.

Moreover, the distribution of points in the diagram confirms the high rates of true

positive results (sensitivity values), which infers low rates of false negatives (sensitivity =

1 − β). It was also noted that these false negative results are either the consequence of

static decomposition of tasks or the system’s inability to perform re-planning when faced

with dynamic changes in the availability of resources. The system produced false negative

results more often in the situations with smaller numbers of failed resources, as the more

CHAPTER 6. EXPERIMENTAL ANALYSIS 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Se
n

si
ti

vi
ty

False Positive Rate (α)

0 RF

1 RF

2 RF

3 RF

4 RF

5 RF

Figure 6.3: Receiver Operating Characteristic diagram2

resources were failed, the higher was the chance of true negative results.

6.4 Conclusions

In conclusion, in order to measure the robustness of our system, we examined the validity

of the system with a certain number of scenarios under dynamic changes in the availabil-

ity of resources. The promising results showed that the system is resilient enough to cope

with unpredictable changes. As to further improve the results, we can enrich the system by

providing dynamic re-planning during any stages of task execution to reduce the possibility

of having false negative results. Moreover, information fusion techniques can be exploited

to increase situation awareness and prevent any false results caused by outdated knowledge

2Scenario runs with a certain number of resource failures are shown with the same symbol on the diagram.
RF refers to the resource failures.

CHAPTER 6. EXPERIMENTAL ANALYSIS 61

about current state of the system. Such features are critical for emergency response sit-

uations with stringent time constraints where any failure in task assignments can highly

reduce the functionality of the system.

It’s worth mentioning that although there are various other metrics to study the be-

havior of the system, the focus of our analysis was on the robustness, which is essential for

any system working in a highly dynamic environment. Moreover, measuring other metrics

requires implementation of the system in a lower abstract level with more details which is

beyond the work presented in this thesis.

Chapter 7

Conclusions

Distributed information fusion and information sharing across a heterogeneous distributed

network (e.g., consisting of surveillance assets or search and rescue platforms) operating in

an adverse, dynamic and uncertain environment require an intelligent, robust and scalable

framework to integrate the different views in a coherent and consistent model. Resource

Configuration Management and Task Management are the two central and coupled issues

that are critical for the ability to adapt to dynamic changes in the distributed information

fusion typology, the availability and the conditions of its constituents.

The process of Dynamic Resource Configuration Management for surveillance platforms

can be described in terms of dynamic management of distributed, heterogeneous and au-

tonomous resources. The key challenge of this process, is to dynamically manage the above

described resources in order to optimize the achievement of the mission goals and to en-

sure the adaptability to a continuously changing operating environment and network. In

addition, Decision Support can be recognized as the process of Dynamic Task Management,

where the main focus is on the resource allocation for given tasks, considering the current

state of the system, resource availability, task constraints, and priorities. Moreover, by tak-

ing into account the uncertainty in the system, caused by internal or external changes in an

unpredictable environment, the robustness of the system can be maintained by introducing

dynamic re-planning. Both aspects, resource configuration management and task manage-

ment, are challenging problems that require reliable and accurate models to systematically

analyze, reason about and compare possible solutions.

The work presented here aims at proposing a comprehensive formal framework that fa-

cilitates not only the integration between dynamic resource configuration management and

62

CHAPTER 7. CONCLUSIONS 63

dynamic task management into an integrated model, but also allows focusing on and mod-

eling the interplay between the two aspects. Arguably, there is no reliable way of developing

any comprehensive system concept without having the ability to perform quantitative ex-

periments. Specifically, the concurrent and reactive behaviour of the underlying algorithms

and protocols make it difficult to predict the resulting properties accurately. This situation

calls for quantitative analysis and experimental validation of design decisions in early design

phases, prior to actually building the system. To address this issue, we have used CoreASM

as a platform for experimental validation. Early stage prototypes of the system along with

the evaluation of the results gained after various scenario runs showed satisfying results for

the stakeholders.

Future Work

In future we will work on the Planning component in a way that the current situation of

the system have more impact on the plan generation. In other words, a complex mission

introduced to the system can be decomposed into different combination of subtasks, hence

generating different plans. Our goal will be to find the optimal solution to the decomposition

problem, based on the resource availability, task prioritization, load balancing, and etc.

As mentioned in Chapter 4, the need for a dynamic re-planning is vital for a system

operating in a dynamically changing environment. Therefore, the Planning component

should be enriched in a way that re-planning can take place in a real-time manner in any

steps of task execution.

Another issue in our proposed model which needs further improvements is scheduling

of the resources for given tasks. By taking into account, time constraint, availability of

resources in future, load balancing, and etc., an scheduler can be attached to the system as

a new component, which will facilitate the resource allocation process.

Appendix A

ASM Formalism

This section outlines the formal modeling framework at an intuitive level of understanding

using common notions and structures from computational logic and discrete mathematics.

For details, we refer to the existing literature on the theory of abstract state machines [47,

65].

Abstract State Machines [15] are known for their versatility in semantic modeling of

algorithms, architectures, languages, protocols and virtually all kinds of sequential, parallel

and distributed systems. Widely recognized applications include semantic foundations of

popular industrial system design languages, like SDL [39], VHDL [13] and SystemC [60]

(the ASM model of SDL is part of ITU’s SDL standard [52]), programming languages,

like JAVA [71] and C# [12], Web services [32], communication architectures [41], embedded

control systems [14], wireless networks [40], among many others.1 Leaning towards practical

applications of formal methods, a driving factor for the development of ASM specification,

validation and verification techniques employed in the above applications has been the desire

to systematically reveal abstract architectural and behavioural concepts inevitably present

in every system design, but often not in an explicit form, so that the underlying semantic

blueprint of the functional system requirements becomes clearly visible and can be inspected

and checked by analytical means.

1Information on ASM applications and foundations is provided by the ASM Research Centre at
www.asmcenter.org.

64

APPENDIX A. ASM FORMALISM 65

Concurrency, Reactivity and Time

The asynchronous computation model of Distributed ASM (DASM) defines concurrent and

reactive behaviour, as observable in distributed computations performed by autonomously

operating computational agents, according to the underlying semantic model in terms of

partially ordered runs [41].

A DASM M is defined over a given vocabulary V by its program PM and a non-empty

set IM of initial states. V consists of a finite collection of symbols denoting mathematical

objects and their relation in the formal representation of M , where we distinguish domain

symbols, function symbols and predicate symbols. Symbols that have a fixed interpretation

regardless of the state of M are called static; those that may have different interpretations in

different states of M are called dynamic. A state S of M results from a valid interpretation

of all the symbols in V and constitutes a variant of a first-order structure, one in which all

relations are formally represented as Boolean-valued functions.

Concurrent control threads in an execution of PM are modeled by a dynamic set AGENT

of computational agents. This set may change dynamically over runs of M , as required

to model a varying number of computational resources. Agents of M interact with one

another, and possibly also with the operational environment of M , by reading and writing

shared locations of a global machine state. The underlying semantic model regulates such

interactions so that potential conflicts are resolved according to the definition of partially

ordered runs.

PM consists of a statically defined collection of agent programs PM1 , ..., PMk
, k ≥ 1, each

of which defines the behaviour of a certain type of agent in terms of state transition rules.

The canonical rule consists of a basic update instruction of the form

f(t1, t2, ..., tn) := t0,

where f is an n-ary dynamic function symbol and the ti
′s (0 ≤ i ≤ n) are terms. An

update instruction specifies a pointwise function update, i.e., an operation that replaces an

existing function value by a new value to be associated with the given function arguments.

Complex rules are inductively defined by a number of well defined rule constructors allowing

the composition of rules for describing sophisticated behavioural patterns.

A computation of an individual agent of M , executing program PMj , results in a finite

or infinite sequence of state transitions of the form

APPENDIX A. ASM FORMALISM 66

S0

∆S0
(PMj

)
−→ S1

∆S1
(PMj

)
−→ S2

∆S2
(PMj

)
−→ · · · ,

such that Si+1 is obtained from Si, for i ≥ 0, by firing ∆Si(PMj) on Si, where ∆Si(PMj)

denotes a finite set of updates computed by evaluating PMj over Si. Firing an update set

means that all the updates in this set are fired simultaneously in one atomic step. The

result of firing an update set is defined if and only if the set does not contain any conflicting

updates (attempting to assign different values to the same location).

A DASM M interacts with a given operational environment—the part of the external

world visible to M—through actions and events as observable at external interfaces, formally

represented by externally controlled functions. Intuitively, such functions are manipulated

by the external world rather than the agents of M . Of particular interest are monitored

functions. Such functions change their values dynamically over runs of M , although they

cannot be updated internally by agents of M . A typical example is the abstract representa-

tion of global system time. In a given state S of M , the global time (as measured by some

external clock) is given by a monitored nullary function now, taking values in a linearly

ordered domain TIME. Values of now increase monotonic over runs of M . Additionally, ′∞′

represents a distinguished value of TIME, such that t < ∞ for all t ∈ TIME \ {∞}. Finite

time intervals are given as elements of a linearly ordered domain DURATION.

Bibliography

[1] Natural Resources Canada, The Atlas of Canada – Coastline and Shoreline. Last visited
Mar 2010.

[2] Royal canadian mounted police, marine security operation centres (msoc), 2010. Last
visited, February 2011.

[3] J.S. Albus. The engineering of mind. In From animals to animats 4: proceedings of
the Fourth International Conference on Simulation of Adaptive Behavior, volume 4,
page 23. The MIT Press, 1996.

[4] F. Amato, M. Fiorini, S. Gallone, and G. Golino. Fully solid state radar for vessel
traffic services. In Radar Symposium (IRS), 2010 11th International, pages 1–5. IEEE.

[5] D. Amyot. Introduction to the user requirements notation: learning by example. Com-
puter Networks, 42(3):285–301, 2003.

[6] P. Arabie, L.J. Hubert, and G. De Soete. Clustering and classification. World Scientific
Pub Co Inc, 1996.

[7] Ali Khalili Araghi. Net-Enabled Adaptive Distributed Information Fusion for Large
Volume Surveillance (NADIF). Last visited June 2010.

[8] N.F. Ayan, U. Kuter, F. Yaman, and R.P. Goldman. Hotride: Hierarchical ordered task
replanning in dynamic environments. In Proceedings of the 3rd Workshop on Planning
and Plan Execution for Real-World Systems (held in conjunction with ICAPS 2007).
Citeseer, 2007.

[9] G. Beni and J. Wang. Swarm Intelligence in Cellular Robotic Systems. 1989.

[10] E. Börger. The ASM ground model method as a foundation of requirements engineering.
Verification: theory and practice: essays delivered to Zohar Manna on the occasion of
his 64th birthday, page 145, 2003.

[11] E. Börger. The Abstract State Machines method for high-level system design and
analysis. Formal Methods: State of the Art and New Directions, pages 79–116, 2010.

67

BIBLIOGRAPHY 68

[12] E. Börger, N. G. Fruja, V. Gervasi, and R. F. Stärk. A High-level Modular Definition
of the Semantics of C#. Theoretical Computer Science, 336(2/3):235–284, May 2005.

[13] E. Börger, U. Glässer, and W. Müller. Formal Definition of an Abstract VHDL’93
Simulator by EA-Machines. In C. Delgado Kloos and P. T. Breuer, editors, Formal
Semantics for VHDL, pages 107–139. Kluwer Academic Publishers, 1995.

[14] E. Börger, E. Riccobene, and J. Schmid. Capturing Requirements by Abstract State
Machines: The Light Control Case Study. Journal of Universal Computer Science,
6(7):597–620, 2000.

[15] E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

[16] É. Bossé, J. Roy, and S. Ward. Models and Tools for Information Fusion. 2007.

[17] S. Breban and J. Vassileva. Long-term coalitions for the electronic marketplace. In
Proceedings of Canadian AI Workshop on Novel E-Commerce Applications of Agents,
pages 6–12. Citeseer, 2001.

[18] Shifrin C.A. Gate assignment expert system reduces delays at United’s hubs. Aviation
Week & Space Technology, 128(4):148–159, 1988.

[19] S. Camazine. Self-organization in biological systems. Princeton University Press, 2001.

[20] O. Dobrican. An example of collaborative system. In International Workshop Collab-
orative Support Systems in Business and Education, Risoprint, Cluj-Napoca, page 48,
2005.

[21] J.E. Doran, S. Franklin, N.R. Jennings, and T.J. Norman. On cooperation in multi-
agent systems. The Knowledge Engineering Review, 12(3):309–314, 1997.

[22] M. Dorigo and T. Stützle. Ant colony optimization. MIT press, 2004.

[23] Turban E. and Aronson J. E. Decision Support Systems and Intelligent Systems. 6th
edition. Prentice Hall, 6th edition, 2001.

[24] M. Egerstedt and X. Hu. Formation constrained multi-agent control. Robotics and
Automation, IEEE Transactions on, 17(6):947–951, 2001.

[25] Mica R. Endsley. Toward a theory of situation awareness in dynamic systems. Human
Factors: The Journal of the Human Factors and Ergonomics Society, pages 32–64,
1995.

[26] K. Erol. Semantics for hierarchical task-network planning. Technical report, MARY-
LAND UNIV COLLEGE PARK INST FOR SYSTEMS RESEARCH, 1995.

[27] BS Everitt, S. Landau, and M. Leese. Cluster analysis. 2001. Arnold, London, 2001.

BIBLIOGRAPHY 69

[28] R. Farahbod, V. Gervasi, and U. Glässer. CoreASM: An Extensible ASM Execution
Engine. Fundamenta Informaticae, pages 71–103, 2007.

[29] R. Farahbod and U. Glässer. Dynamic Resource Management for Adaptive Distributed
Information Fusion in Large Volume Surveillance—Phase One. Technical Report SFU-
CMPT-TR-2008-08, Simon Fraser University, April 2008.

[30] R. Farahbod, U. Glässer, and A. Khalili. A Multi-Layer Network Architecture for Dy-
namic Resource Configuration & Management of Multiple Mobile Resources in Mar-
itime Surveillance. In Proc. of SPIE Defense & Security Symposium, March 2009.

[31] R. Farahbod, U. Glässer, A. Khalili, and Adel Guitouni. Dynamic Resource Manage-
ment for Adaptive Distributed Information Fusion in Large Volume Surveillance—
Phase Two. Technical Report SFU-CMPT-TR-2009-05, Simon Fraser University,
March 2009.

[32] R. Farahbod, U. Glässer, and M. Vajihollahi. An Abstract Machine Architecture for
Web Service Based Business Process Management. International Journal of Business
Process Integration and Management, 1:279–291, 2007.

[33] R. Farahbod, U. Glässer, and H. Wehn. Dynamic Resource Management for Adaptive
Distributed Information Fusion in Large Volume Surveillance. In Proc. of SPIE Defense
& Security Symposium, March 2008.

[34] Roozbeh Farahbod and Vincenzo Gervasi. JASMine: Accessing Java Code from Core-
ASM. In Proceedings of the Dagstuhl Seminar on Rigorous Methods for Software Con-
struction and Analysis (LNCS Festschrift), 2008. (to be published).

[35] J. Farley. Java distributed computing. O’Reilly Media, 1998.

[36] S. Franklin and A. Graesser. Is it an Agent, or just a Program?: A Taxonomy for Au-
tonomous Agents. Intelligent Agents III Agent Theories, Architectures, and Languages,
pages 21–35, 1997.

[37] Dan Galorath. Software Project Failure Costs Billions-Better Estimation & Planning
Can Help, June 2008.

[38] M. Ghallab, D.S. Nau, and P. Traverso. Automated Planning: theory and practice.
Morgan Kaufmann Publishers, 2004.

[39] U. Glässer, R. Gotzhein, and A. Prinz. The Formal Semantics of SDL-2000: Status
and Perspectives. Computer Networks, 42(3):343–358, 2003.

[40] U. Glässer and Q.-P. Gu. Formal Description and Analysis of a Distributed Location
Service for Mobile Ad Hoc Networks. Theoretical Comp. Sci., 336:285–309, May 2005.

[41] U. Glässer, Y. Gurevich, and M. Veanes. Abstract Communication Model for Dis-
tributed Systems. IEEE Trans. on Soft. Eng., 30(7):458–472, July 2004.

BIBLIOGRAPHY 70

[42] U. Glässer, P. Jackson, A. Araghi, H. Wehn, and H. Shahir. A collaborative decision
support model for marine safety and security operations. Distributed, Parallel and
Biologically Inspired Systems, pages 266–277, 2010.

[43] U. Glässer, P. Jackson, A. Khalili Araghi, and H. Yaghoubi Shahir. Intelligent Deci-
sion Support for Marine Safety and Security Operations. In Intelligence and Security
Informatics, IEEE International Conference on Intelligence and Security Informatics,
ISI 2010, Vancouver, Canada, Lecture Notes in Computer Science. Springer, 2010.

[44] D.N. Godbole and J. Lygeros. Longitudinal control of the lead car of a platoon. Ve-
hicular Technology, IEEE Transactions on, 43(4):1125–1135, 1994.

[45] A.D. Gordon. Hierarchical classification. Clustering and classification, pages 65–121,
1996.

[46] S. Guerlain, D.E. Brown, and C. Mastrangelo. Intelligent decision support systems.
In Systems, Man, and Cybernetics, 2000 IEEE International Conference on, volume 3,
pages 1934–1938. IEEE, 2000.

[47] Y. Gurevich. Sequential Abstract State Machines Capture Sequential Algorithms. ACM
Transactions on Computational Logic, 1(1):77–111, July 2000.

[48] B. Horling and V. Lesser. A survey of multi-agent organizational paradigms. The
Knowledge Engineering Review, 19(04):281–316, 2004.

[49] IALA. VTS Manual, 4th edition.

[50] O. Ilghami. Documentation for jshop2. Department of Computer Science, University
of Maryland, Tech. Rep, 2006.

[51] P. Ireland, R. Case, J. Fallis, C. Van Dyke, J. Kuehn, and M. Meketon. The Canadian
Pacific Railway transforms operations by using models to develop its operating plans.
Interfaces, pages 5–14, 2004.

[52] ITU-T Recommendation Z.100 Annex F (11/00). SDL Formal Semantics Definition.
International Telecommunication Union, 2001.

[53] J.P. Kahan and A. Rapoport. Theories of coalition formation. Lawrence Erlbaum,
1984.

[54] J. Kennedy. Swarm intelligence. Handbook of Nature-Inspired and Innovative Comput-
ing, pages 187–219, 2006.

[55] M. Klusch and A. Gerber. Dynamic coalition formation among rational agents. Intel-
ligent Systems, IEEE, 17(3):42–47, 2002.

[56] M. Mauve, J. Widmer, and H. Hartenstein. A survey on position-based routing in
mobile ad-hoc networks. IEEE Network, 15(6), 2001.

BIBLIOGRAPHY 71

[57] C. McCann and R. Pigeau. Clarifying the Concepts of Control and of Command. In
Proceedings of the 1999 Command and Control Research and Technology Symposium,
pages 475–490, 1999.

[58] C. Merida-Campos and S. Willmott. Modelling coalition formation over time for iter-
ative coalition games. In Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems-Volume 2, pages 572–579. IEEE Computer
Society, 2004.

[59] N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm simulation system:
A toolkit for building multi-agent simulations, 1996.

[60] W. Müller, J. Ruf, and W. Rosenstiel. An ASM Based SystemC Simulation Seman-
tics. In W. Müller et al., editors, SystemC - Methodologies and Applications. Kluwer
Academic Publishers, June 2003.

[61] G. Mussbacher and D. Amyot. Goal and scenario modeling, analysis, and trans-
formation with jucmnav. In Software Engineering-Companion Volume, 2009. ICSE-
Companion 2009. 31st International Conference on, pages 431–432. IEEE.

[62] L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art. Au-
tonomous Agents and Multi-Agent Systems, 11(3):387–434, 2005.

[63] Gregor Pavlin, Marinus Maris, and Jan Nunnink. An agent-based approach to dis-
tributed data and information fusion. In IAT, pages 466–470, 2004.

[64] ITU-T Recommendations. Z.150-z.159: User requirements notation. 2009.

[65] W. Reisig. On gurevich’s theorem on sequential algorithms. Acta Informatica,
39(4):273–305, 2003.

[66] S.J. Russell and P. Norvig. Artificial intelligence: a modern approach. 2003.

[67] O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation.
Artificial Intelligence, 101(1-2):165–200, 1998.

[68] M. Sims, C.V. Goldman, and V. Lesser. Self-organization through bottom-up coalition
formation. In Proceedings of the second international joint conference on Autonomous
agents and multiagent systems, pages 867–874. ACM, 2003.

[69] L.K. Soh, C. Tsatsoulis, and H. Sevay. A satisficing, negotiated, and learning coalition
formation architecture. Distributed sensor networks: a multiagent perspective, pages
109–138, 2003.

[70] J. Staff. Joint Publication 1-02: Department of Defense Dictionary of Military and
Associated Terms. Washington, DC, 2001.

BIBLIOGRAPHY 72

[71] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Definition,
Verification, Validation. Springer-Verlag, 2001.

[72] CCW Team. CanCoastWatch System Concept. Technical report, Technical report,
MacDonald, Dettwiler and Associates Ltd., 2006.

[73] R. Vahidov and B. Fazlollahi. Pluralistic multi-agent decision support system: a frame-
work and an empirical test. Information & Management, 41(7):883–898, 2004.

[74] S. Wacholder, B. Armstrong, and P. Hartge. Validation studies using an alloyed gold
standard. American journal of epidemiology, 137(11):1251, 1993.

[75] H. Wehn et al. A Distributed Information Fusion Testbed for Coastal Surveillance. In
Proc. of the 10th Intl. Conf. on Information Fusion, July 2007.

[76] M. Wooldridge and N. Jennings. Agent theories, architectures, and languages: a survey.
Intelligent agents, pages 1–39, 1995.

[77] X.H. Zhou, N.A. Obuchowski, and D.K. McClish. Statistical methods in diagnostic
medicine, volume 414. LibreDigital, 2002.

Glossary

AIS Automatic Identification System

ASM Abstract State Machine

C2 Command and Control

DASM Distributed Abstract State Machine

DRCMA Dynamic Resource Configuration Management Architecture

DSS Decision Support System

HTN Hierarchical Task Network

IA Intelligent Agent

ITU-T International Telecommunication Union -

Telecommunication Standardization Sector

MAS Multi-Agent Systems

MDA MacDonald, Dettwiler and Associates Ltd.

MSOC Marine Security Operation Centre

NADIF Net-Enabled Adaptive Distributed Information Fusion

RCMP Royal Canadian Mounted Police

RMA Resource Management Architecture

ROC Receiver Operating Characteristic

SA Situation Awareness

SDL Specification and Description Language

STL Software Technology Lab

TM Task Management

URN User Requirements Notation

VTS Vessel Traffic Service

73

	Approval
	Abstract
	Dedication
	Quotation
	Acknowledgments
	Introduction
	Motivation
	Objectives
	Significance
	Thesis Organization

	Background
	Command and Control Hierarchy
	Cooperative Models
	Definitions
	Collaborative Systems
	Swarms
	Coalition Systems
	Clusters

	Conclusions

	Problem Characteristics
	System Distribution
	Dynamic Environment
	Uncertainty

	Proposed Model
	High Level View
	System Architecture
	Planning
	Resource Management
	Execution Management
	Tasking
	Decentralized Control

	Reference Model
	An Introduction to User Requirements Notation
	Describing the Abstract Generic Scenario

	Formal Model
	Basic Concepts
	Node
	Capability
	Layered Architecture
	Capability Pattern

	Task Management
	Node Program
	Task Lifecycle
	Matching Child Node

	Simple Scenario

	Experimental Analysis
	Evaluation metrics
	Test Setup
	Simulation Results
	Conclusions

	Conclusions
	ASM Formalism
	Bibliography
	Glossary

