
EDGE AWARE ANISOTROPIC DIFFUSION FOR 3D

SCALAR DATA ON REGULAR LATTICES

by

Zahid Hossain

BSc. Honours, North South University 2006

a thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Zahid Hossain 2011

SIMON FRASER UNIVERSITY

Spring 2011

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.



APPROVAL

Name: Zahid Hossain

Degree: Master of Science

Title of thesis: Edge Aware Anisotropic Diffusion for 3D Scalar Data on Reg-

ular Lattices

Examining Committee: Dr. Greg Mori

Chair

Dr. Torsten Möller,
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Abstract

We present a novel anisotropic diffusion model targeted for 3D scalar field data. Our model

preserves material boundaries as well as fine tubular structures while noise is smoothed

out. One of the major novelties is the use of the directional second derivative to define

material boundaries instead of the gradient magnitude for thresholding. This results in a

diffusion model that has much lower sensitivity to the diffusion parameter and smoothes

material boundaries consistently compared to gradient magnitude based techniques. We

analyze the stability and convergence of the proposed diffusion and demonstrate its de-

noising capabilities for both analytic and real data. We also discuss applications in the

context of volume rendering.

We extend our algorithm to non-Cartesian lattices such as Body Centric Cubic (BCC).

The key to such an extension is a method to estimate derivatives reliably. Therefore, we

present a general framework to estimate derivatives on arbitrary regular lattices. With this

framework a user can design filters with compact support and specify a polynomial order of

accuracy.

Keywords: anisotropic diffusion; PDE; de-noising; scale-space; principal curvatures; Tay-

lor series expansion; derivative estimation; Body-Centred Cubic (BCC) lattice;

Subject terms: 3D image processing; level-set method; visualization; computer graphics;

de-noising
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Chapter 1

Introduction

The core of volume visualization and volume rendering has been the extraction and pre-

sentation of the salient features in the volume. Often times, the data at hand has been

corrupted by noise (e.g. Ultrasound [56], MRI, or data range scanners [47]) or the salient

features of interest are fine structures, like the tubular vessel structures [29] or the cell walls

in microscopy [36]. Usually, these types of data can not be properly processed by a volume

rendering pipeline, since both transfer function based approaches [48] as well as topological

approaches [9] will break down and not yield a comprehensible view of the data. In all of

these cases, a pre-processing step is needed in order to prepare the data for visualization

and analysis purposes. A very powerful framework for this purpose is diffusion.

A simple Gaussian blur usually destroys a lot of features together with noise artifacts

in an isotropic / indiscriminate way. Hence, the concept of anisotropic diffusion has been

introduced by Perona and Malik in 1990 [40] (summarized in Section 2) and has become one

of the most popular techniques in image and volume processing. Many different variants of

anisotropic diffusion have since been introduced. One of the core drawbacks, however, of

any diffusion model has been the non-intuitive setting of some parameters attached with it.

This is typically rooted in the fact that the diffusion is controlled by the gradient magnitude

of the underlying function. In most practical cases the distribution of gradient strength of

salient boundaries is not known a priori. In fact a single gradient magnitude threshold rarely

defines all the salient features within the data. Hence, the diffusion algorithm often needs

to be re-fined for each new data set or each new application.

In this thesis we attempt to address these problems of the existing non-linear diffusion

and propose a noble anisotropic diffusion. We also develop a generic framework to compute

1



CHAPTER 1. INTRODUCTION 2

various derivatives on arbitrary lattices so that our proposed anisotropic diffusion could be

implemented on other lattices too. Our main contributions are:

• We derive an anisotropic diffusion equation with the following features (see Sec-

tion 3.1.1):

– No diffusion is performed along the gradient direction.

– Diffusion is stopped around the edge locations.

– Diffusion is performed anisotropically along the direction of the minimum curva-

ture.

– Isotropic diffusion on the tangent plane of the normal in regions where the local

iso-surface is isotropic in shape.

• We create a stopping function, that is based on the second derivative in the gradi-

ent direction, which allows us to create a robust diffusion algorithm, insensitive to

parameter tuning (see Section 3.1.1).

• We develop a generic framework for designing discrete derivative estimation filters

for arbitrary lattices whereby users can specify design criteria like polynomial order.

With this framework in hand one can implement our proposed anisotropic diffusion

on any regular lattice.

In Chapter 3 we will introduce our novel anistropic diffusion and show an efficient way

to compute the diffusion equation using the principal curvatures and thereby reducing the

computational burden inherit in the scheme. In Section 3.3 we will discuss some properties of

our proposed diffusion model along with aptly demonstrating its advantage over a gradient

based diffusion method [29]. We will follow this by showing the de-noising property of our

model in Section 3.4 and support its significance by critically comparing it with a very

recent anisotropic diffusion based de-noising filter [28]. Before the comparison, however, we

will analyze the stability of our diffusion both theoretically and empirically in Section 3.3.5.

Finally, in Section 3.5 we will discuss some potential applications in volume visualization.

Volumetric data can be given in various kinds of discrete lattices other than the com-

monly used Cartesian Cubic (CC) lattice. Often times, therefore, its is desirable to apply

image processing techniques like de-nosing and other PDE based methods directly on the

given lattice without converting them to CC, which may introduce undesirable errors and

may even be non-trivial. Therefore, in Chapter 4 we will develop a generic framework to
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design discrete filters to compute various derivatives, which are required to implement our

proposed anisotropic diffusion, on arbitrary lattices. Along this line we will introduce the

Taylor Series approach towards designing filters along with other design criteria in Sec-

tion 4.1. Finally, in Section 4.2, we will compare our results in light of gradient (first

derivative) estimation across two different regular lattices namely Cartesian Cubic (CC)

and Body Centric Cubic (BCC) lattices. We will also compare our framework with the

existing gradient estimation technique on the non-standard BCC lattice which only uses

filters from the CC lattice without considering the special geometry of the BCC.



Chapter 2

Previous Work

Throughout the thesis we will use the notation f and t to denote a real valued scalar function

and the time dimension respectively.

2.1 Anisotropic Diffusion

2.1.1 The Perona and Malik Model

To alleviate the problem of isotropic diffusion, which is similar to Gaussian blurring, Perona

and Malik [40] proposed an anisotropic diffusion scheme, which we will refer to as the PM

model for brevity, given by the following:

∂f

∂t
= div (h(‖∇f‖)∇f) (2.1)

The function h(‖∇f‖), termed stopping function, is usually a monotonically decreasing

function with function values around one for smaller arguments. Perona and Malik [40] also

proposed two such h functions and one of them is:

h(α) = e−
1

2
(α
k )

2

, (2.2)

With such an h(·) function this approach does tend to preserve certain edges given the pa-

rameter k in Equation (2.2) is chosen carefully which is often not trivial and data dependent.

4
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2.1.2 Generalizations in 2D

Carmona et al. [8] generalized the classical PM [40] model (in 2D) in a more intuitive way

- performing diffusions along the gradient and the orthogonal direction to the gradient as

given by the following:
∂f

∂t
= c(·)

(

a(·)fnn + b(·)fvv
)

(2.3)

Here a and b are some scalar functions modulating diffusion along the gradient direction

n = ∇f/‖∇f‖ and the orthogonal direction to the gradient, v = n⊥ respectively. Here, c is

a scalar function, usually called the stopping function, that modulates the overall diffusion.

The notation fnn and fvv denotes the directional second derivative along the gradient

direction n and the orthogonal direction v respectively.

2.1.3 Extensions to 3D

(a) Without curvatures (b) Original (c) With curvatures

Figure 2.1: Iso-surface (iso-value=100) rendering of the tooth data showing effects of taking
principal curvatures into account during diffusion. (a) Diffused isotropically on the tan-
gent plane of gradients without taking principal curvatures into account. (b) Without any
diffusion. (c) Diffused anisotropically taking principal curvatures into account.

A straightforward extension of the PM model to 3D, as it was generalized by Gerig et
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al. [18], remains isotropic on the tangent plane of the gradient. This isotropic behavior

on the tangent plane may destroy fine tubular structures which are vital, for example, in

3D medical imaging. Figure 2.1 clearly shows how tubular structures get destroyed when

diffusion is performed isotropically on the tangent plane without taking principal curvatures1

into account. Therefore Weickert [54] classifies the PM model and higher order diffusion

processes as non-linear rather than anisotropic. Thus far, the majority of previous work on

these higher order PDEs are based on 2D solutions. On the other hand, a true anisotropic

diffusion in arbitrary dimension is usually derived from the diffusion tensor notation [55]

and has the following form:
∂f

∂t
= div(D∇f) (2.4)

were D is a matrix known as diffusion tensor.

To address this, Krissian et al. [29] proposed a true anisotropic diffusion model (referred

to as KM model in the remainder of the thesis) whereby diffusion would be performed

primarily along the direction of the minimum curvature. However, their underlying formu-

lation was based on that of the gradient based PM model. They have a gradient threshold

parameter k and the edges in a volume get implicitly defined by locations where ‖∇f‖ > k.

However, the tuning of this parameter is difficult and very much data and application de-

pendent. Different values for this parameter can lead to drastically different smoothing

effects as we will demonstrate later. Therefore, the KM model inherits similar problems

related to this threshold parameter as the classical PM model. Nonetheless, the KM model

based on principal curvatures is truly anisotropic in nature. In a later work, Krissian [25]

proposed a flux-based anisotropic diffusion which is based on a directional first derivative,

i.e. the gradient measured along a direction vector, while the author himself acknowledged

the difficulty of choosing a correct threshold parameter for this directional first derivative.

Recently Mosaliganti et al. [36] reaffirm the problems of the gradient threshold based

stopping function as found in PM or KM models and proposed a new anisotropic diffusion

in 3D that is able to automatically detect and enhance specifically plate like structures in

a 3D microscopy image of cell membranes. Beside being specific to a particular problem

domain, i.e. detecting cell membranes which are largely planar, their method has at least

four different user tunable parameters which makes it hard to apply in a practical setting.

1Principal curvatures, measured at a point, are the minimum and the maximum curvatures of the level
set surface passing through that point.
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Therefore, the problem of developing a robust general purpose anisotropic diffusion that

respects edges in a 3D volume in a meaningful way remains open.

On the other hand, several interesting works have been done on anisotropic diffusion

using level sets, for example Nemitz et al. [37] evolved a separate level set function to

capture the tubular structures of 3D angiography data. This work is different in the sense

that the level set function attempts to restore tubular structure using shape priors even

when they may be broken. Other interesting level set methods were proposed by Preusser

et al. [42] and Tasdizen et al. [47] where diffusion is performed on a level set and the definition

of an edge is based on curvature that is measured on the surface of the level set. This is

different from our method where an edge is defined by the directional second derivative

along a gradient and is measured across level sets.

2.2 De-noising

A variant of anisotropic diffusion, also known as SRAD, has been developed to specifically

de-noise speckle noise in 2D by Yu and Action [57], which was then extended to 3D by

Krissian et al. [26] and Sun et al. [46]. Both SRAD and 3D SRAD use a local statistical

measure to define the stopping function. Very recently Krissian and Aja-Fernández [28]

proposed a noise-driven anisotropic diffusion that is able to remove Rician noise from a

3D MRI volume, and this method too uses statistical measures similar to that of the 3D

SRAD [26]. Both of these methods require the user to specify a region of interest for the

estimation of noise.

State-of-the art image de-noising techniques are often based on techniques such as bilat-

eral filtering [50], mean-shift filtering [11], or non-local means [7]. These techniques are often

related to diffusion processes. Barash et al. [5] showed that bilateral filtering, mean-shift,

and non-linear diffusion are indeed equivalent and use the gradient magnitude to decide on

the amount of diffusion/smoothing.

2.3 Derivative Estimation

There is a vast body of work on function interpolation and reconstruction. There are really

two philosophies - a) improving the numerical accuracy based on Taylor series expansions

and b) considering shift-invariant function spaces. The former stems from a local argument
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and is typically pursued in numerical mathematics and focuses on accuracy in terms of

asymptotic error behavior, while the latter is a global constraint grounded in signal pro-

cessing theory and focuses on smoothness properties. Strang and Fix [44] were the first to

try to reconcile these two viewpoints. Later, Unser [51] introduced the framework of recon-

struction in shift-invariant spaces and removed the restriction of bandlimited functions so

that more general basis functions can be employed. This resulted in the emergence of an

elegant unified framework for combining smoothness and accuracy constraints.

In rendering, we are often concerned with the smoothness of the reconstruction. Towards

this end, Möller et al. [34] provide a general filter design scheme that extends a purely numer-

ical approach based on a Taylor series expansion by incorporating smoothness constraints.

In a different work [35], they contrast two possible approaches to gradient estimation - using

a combination of a discrete derivative filter with a continuous interpolation filter or simply

computing the derivative of the interpolation filter. While in the former case, one has much

better control over smoothness and accuracy, the latter case is simply more attractive since

it creates the exact gradient of the interpolated function, but is typically more expensive.

Despite these fundamental insights on function reconstruction, not much work has fo-

cused on derivative reconstruction, and to the best of our knowledge, no work has been

done on designing proper derivative filters for arbitrary lattices. Theoretically, BCC is the

optimal sampling lattice for band limited functions as its dual in the frequency domain

happens to be the Face Centric Cubic (FCC) lattice, which has the tightest packing ratio.

From a signal processing perspective; a tighter pack in the frequency domain corresponds

to sparser sampling in the spatial domain and therefore less number of samples are theoreti-

cally required to recover the original function. This theoretical fact of the BCC lattice being

optimal for sampling over CC lattice has been shown by Theußl et al. [49] and Neuphytou

et al. [38] using volume splatting. Later Entezari et al. [16] developed box splines for scalar

interpolation on BCC lattices and showed how both numerical and run-time performances

outperformed the CC lattice, which is remarkable. On the other hand, this superiority of

the BCC over CC was also observed by Alim et al. [3] in a totally different context of fluid

simulation. However, it is not clear whether the advantages of the BCC lattice extend to

derivative reconstruction as well. This thesis addresses this issue.

Hamers et al. [20] derive discrete filters for gradient estimation using Lagrange polyno-

mials on a CC lattice. In fact, their discrete filters happen to be particular solutions of the

general solution space in our Taylor series approach (Section 4.1). Sun et al. [45] develop
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a fourth order gradient estimation scheme for the hexagonal lattice in 2D only. Hertog et

al. [13] compare different discrete derivative filters in the presence of noise.

One track of research has focused on designing digital first derivative (gradient) filters

in the Fourier domain. These techniques inherently assume an underlying band-limited

signal. Most methods have focused on designing filters in 1D where gradient reconstruction

corresponds to a multiplication with a unit slope ramp in the frequency domain. The ideal

discrete gradient filter in that case is the infinite impulse response (IIR) sinc′ sampled at

the grid points. The continuous derivative can then be recovered by using the sinc as an

interpolation kernel on the filtered signal. However, most methods - like numerical non-

linear PDEs - seek to recover the derivative at the grid points only for which a digital

filtering solution suffices. Because of the slow decay, sinc′ is rarely used in practice and

many approximations have been proposed. These approximations proceed by appropriately

choosing a design criterion in the frequency domain and then optimizing it to yield either

IIR or finite impulse response (FIR) filters in the spatial domain. For example, Dutta Roy

et al. [14] design 1D FIR filters that are maximally linear over a specified frequency band

and therefore attempt to match the unit slope ramp as closely as possible within the band.

Farid et al. [17] choose the rotation invariance of the gradient operator in higher dimensions

as an optimality criterion to design separable FIR filters. We are unaware of any Fourier

domain techniques that design non-separable derivative filters for arbitrary sampling lattices

in higher dimensions.



Chapter 3

Edge Aware Anisotropic Diffusion

3.1 Proposed Anisotropic Diffusion

Kindlmann and Durkin [22] used the directional second derivative along the normal direction

as a measure for edge locations. They pointed out that, for a simple 1D case, an edge could

be modeled using the error function [24] as plotted in Figure 3.1.

Figure 3.1: The red solid curve is the error function, scaled and shifted for clarity, while the
dashed black curve is the second derivative of it. Note the second derivative crosses zero at
the edge of the error function.

This is a fair assumption as often measuring devices are band-limited and so sharp

edges get convolved with a Gaussian type point spread function upon sampling. Therefore,

an edge location can be defined by the zero-crossing of the second derivative, a technique

commonly used in computer vision [30]. The same idea can be applied in 3D by measuring

10
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the directional second derivative along the normal direction and checking for zero-crossings

to define the edge/boundary locations.

For the rest of the thesis we will restrict our attention to a 3D scalar function f : R3 → R.

We will use the notation fv to denote a directional first derivative along a unit vector v

which is simply given by fv = 〈∇f,v〉, where 〈·, ·〉 denotes the inner product. Similarly, we

will use the notation fvv to denote a directional second derivative measured along a unit

vector v and this is given by fvv = vTHv, where H is the 3D Hessian (see Appendix A.1 for

details). Therefore, using the notation n = ∇f/‖∇f‖ as the normal vector we will denote

the directional second derivative along the normal with fnn.

In the following subsection we will derive a PDE with the following objectives in mind:

O-1 No diffusion will be performed along the gradient direction. This is one

of the major differences our proposed diffusion model has with that of the classical

ones [29, 40]. An edge in a 3D volume will be a surface which is perpendicular to the

normal n. Not diffusing along n prevents blurring across an edge.

O-2 Diffusion will be stopped around the edge locations. Diffusion can be stopped

in locations where fvv = 0, a condition which will be satisfied in both constant ho-

mogeneous regions and edge locations. However, stopping diffusion in constant homo-

geneous regions creates no problem as diffusion in such regions would not have any

effect.

O-3 Diffusion will be performed anisotropically along the direction of the min-

imum curvature. In accordance to the work of Krissian et al. [29], this motivation

was derived from the fact that fine tubular structures, e.g. blood vessels in a CT scan,

get preserved.

O-4 Diffuse isotropically on the tangent plane of the normal n in regions where

the local iso-surface has similar principal curvatures. On the surface of a

sphere, for example, where both the principal curvatures are fairly close to each other,

it makes more sense to diffuse isotropically on the tangent plane of n, rather than

choosing one direction, which might lead to undesirable artifacts, as is the case with

Krissian et al. [29].
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3.1.1 Our PDE Model

Consider a simple 1D heat equation as follows:

∂f

∂t
= cfxx (3.1)

The solution of the above Equation (3.1) can be approximated very well by convolving the

function locally with a 1D Gaussian kernel. We will use this insight to design our new

anisotropic diffusion in 3D with the goals described in the previous subsection in mind.

In 3D, we can use the directional derivatives along the directions given by three or-

thonormal basis vectors, r1, r2, and n at a point and write our diffusion equation as the

following:
∂f

∂t
= h(·)fr1r1 + g(·)fr2r2 + w(·)fnn (3.2)

where h(·), g(·), and w(·) are some scalar functions and the vector n is the normal direction.

We emphasize that the PDE model given in Equation (3.2) is different from the diffusion

tensor model (2.4). At this point we will take the vectors r1 and r2 to be the directions

associated with the minimum curvature, κ1, and maximum curvature, κ2, respectively such

that |κ1| ≤ |κ2|. By definition, the vectors r1, r2, and n form an orthonormal bases and thus

fit our proposed diffusion model. We will also set the scalar functions such that g(·) = τh(·)
and w(·) = ηh(·) where τ, η ∈ [0, 1]. With this setup, Equation (3.2) can be re-written:

∂f

∂t
= h(·) (fr1r1 + τfr2r2 + ηfnn) (3.3)

Without referring to the exact argument of the scalar function h(·) yet, Equation (3.3)

models an anisotropic diffusion which can be intuitively thought of as the summation of the

local convolutions of three different 1D Gaussian kernels oriented along the three associated

vector fields (compare each term of the diffusion with Equation (3.1)). The amount of

diffusion along the maximum curvature direction r2, and the normal direction n is modulated

by τ and η respectively, while diffusion is always performed along the minimum curvature

direction r1 and finally the overall diffusion is modulated by the scalar function h(·), which
we will call the stopping function.

We will set η = 0 for the rest of the thesis to achieve objective O-1. To fulfill objectives

O-3 and O-4 together we will replace the notation τ with τρ which is defined by the
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following:

τρ =







(

κ1,ρ

κ2,ρ

)2λ
where |κ2,ρ| > 0, λ ∈ N

1 κ2,ρ = 0
(3.4)

where the quantities, κ1,ρ (the minimum curvature) and κ2,ρ (the maximum curvature), are

computed from a smoothed version of the data fρ with a Gaussian filter having a small

variance ρ2. The technique of taking measurements from a smoothed volume fρ is common

in many PDE based methods specially under noisy conditions and we will discuss the effect

of having a small ρ in section Section 3.4. We will use the notation ρ = 0 to imply that f

was used to compute the curvatures instead of the smoothed version fρ. With the above

definition, τρ drops quickly to values very close to 0 whenever the maximum curvature

|κ2,ρ| is larger than the minimum curvature |κ1,ρ|, i.e. the surface is not isotropic. In this

case, diffusion is performed primarily along the minimum curvature direction r1. For an

isotropic surface where |κ1,ρ| = |κ2,ρ| and a degenerate case, where |κ2,ρ| = 0 (note that

|κ1,ρ| ≤ |κ2,ρ|), τρ gets assigned to 1 which amounts to performing simple isotropic diffusion

on the tangent plane of n. The exponent of Equation (3.4) is always an even integer which

makes sure that we are comparing only the absolute values of the curvatures.

Objective O-2 can be addressed by computing the second derivative along the gradient

direction, fnn and stop diffusion whenever fnn ≈ 0. To model this we can define the function

h(·) such that it is continuous and approaches 0 for an argument close to 0 and 1 otherwise.

For this we can simply modify the functions proposed by PM [40] as follows:

h(α) = 1− e− ln( 10

9
)(α

σ )
2

= 1− (0.9)(
α
σ )

2

, σ ∈ R (3.5)

The scaling factor of ln (10/9) (Equation (3.5)) is there so that we have h(α) < 0.1, which

we considered to be very little diffusion, whenever |α| < σ. This allows a more intuitive

relationship between the argument α and the parameter σ. However, for a different purpose,

this scaling factor could be changed or just simply be omitted. Using fnn as the input to

h(·) we essentially fulfill all four objectives we had set for ourselves. We finally present our

anisotropic diffusion PDE by the following equation:

∂f

∂t
= h(fnn)(fr1r1 + τρfr2r2) (3.6)



CHAPTER 3. EDGE AWARE ANISOTROPIC DIFFUSION 14

3.2 Implementation

Krissian et al. [29] have shown that we could skip computing the principal curvature di-

rections, which usually involves expensive eigenvalue decomposition of some matrix [23,52],

altogether and compute the quantities fr1r1 and fr2r2 directly using the following relation-

ships:

fr1r1 = −‖∇f‖κ1, fr2r2 = −‖∇f‖κ2 (3.7)

In the above, κ1 and κ2 can be computed in a straightforward fashion by the following

κi = K ±
√

K2 −G, i ∈ {1, 2} : |κ1| ≤ |κ2| (3.8)

where G and K are the Gaussian and Mean curvatures respectively. These can be computed

directly from the first and second derivatives as given by Goldman [19]:

G =
1

‖∇f‖4∇f
THc∇f

K =
1

2‖∇f‖3
(

∇fTH∇f − ‖∇f‖2 trace(H)
)

where Hc (see Appendix A.1 for details) is the co-factor matrix of the Hessian H. Compu-

tation of both G and K can be implemented very efficiently without performing the actual

matrix multiplications by expanding the equations as summations first (see Appendix A.2

for details). It should be noted that the formulae given by Goldman [19] are based on the

convention that if a surface turns in the direction of the normals then it would be said to

have a positive curvature. In simple terms; if a sphere is defined implicitly by a level-set of

a function f , which has higher values inside the sphere while lower outside (i.e normals are

pointing inside the sphere) then the curvature on the surface of the sphere will be positive.

Taking the relations given by (3.7), Equation (3.6) can be written more compactly and

in matrix form as the following:

∂f

∂t
= −h(nTHn) (‖∇f‖(κ1 + τρκ2)) (3.9)

Note that κ1 and κ2 in the above equation are measured from f whereas τρ is measured from

fρ where ρ is usually 1 when diffusion is used for the purpose of de-noising (see Section 3.4)

and 0 otherwise.
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3.3 Results and Discussion

In this section we will first demonstrate the shortcomings of the classical anistropic diffusion,

proposed by Krissian et al. [29] - referred to as KM model for brevity - which in turn was

based on the gradient magnitude, i.e. the PM model [40], and compare the results with our

novel approach. Next we will show the impact of the parameter σ, in Equation (3.5), of our

method on the final output. We will then follow the discussion by showing diffusion results

using higher order derivative filters and finally provide empirical analysis of stability and

convergence of our PDE.

3.3.1 Parameter Settings

For all the diffusion experiments performed in this section we have set λ = 2 in Equa-

tion (3.4). Voxel spacing was assumed to be 1 in all directions and scalar values, which

ranged between [0, 255], and the 3D volumes were not scaled. For the time step we have

chosen ∆t = 0.05, and η = 0 (no diffusion along the gradient direction) for the rest of the

thesis. We have used f without smoothing, i.e. ρ = 0 while we investigated different prop-

erties of our diffusion, as discussed in Subsections 3.3.2, 3.3.3, and 3.3.4. However, we have

set ρ = 1 when we analyzed the stability and applied our diffusion in real world problems,

as discussed in Section 3.3.5 onward.

For all derivative estimations we have used the standard second-order stencils unless

specified otherwise.

3.3.2 The Impact of the Stopping Function

In this section we will use the Sheep’s Heart dataset [43] and demonstrate the sensitivity of

the KM method to the parameter chosen. Likewise, we will show the robustness of our novel

method with respect to its parameter and yet give a compelling example of its importance.

In our experiment, we chose Equation (2.2) and Equation (3.5) as the stopping functions

in the KM method and in our new proposed method respectively, and use 35 iterations for

both diffusion models. Figure 3.2 demonstrates the sensitivity of the KM method to its

parameter k. The yellow circle marks an area where regions of small gradient magnitude

merge with regions of higher gradient magnitude (see Figure 3.2b). Figure 3.2c, which was

diffused with the KM model at k = 40 shows the selective nature of this method. Regions

with a low gradient magnitude diffused much more compared to regions with higher gradient
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(f) σ = 1, n = 35 (g) σ = 10, n = 35 (h) σ = 1, n = 100

Figure 3.2: Iso-surface (iso-value=153) rendering of the Sheep’s Heart dataset. Except
for (b) all the other images were rendered with shadows. The image (b) is the gradient
magnitude map where 0 is mapped to black while 130 is mapped to white. The blue circle
shows a region of low gradient magnitude, while the yellow circle shows a region where
medium and high gradient magnitude meet. The second and the third row show results
from the KM method and our method respectively. The corresponding parameter values,
k for the KM method and σ for our method along with the number of iterations n are
provided for each experiment.
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magnitude. On the other hand, regions having very low gradient magnitude (the blue circle)

got diffused the most. As the value of k was increased to 80 (Figure 3.2d) a dramatically

different output was produced. Here, regions inside the blue circle got diffused to the point

of losing structure while those with higher gradient magnitude (the lower part of the yellow

circle) just started to get diffused. We also refer readers to Figure 3.2e to see this selective

nature of the KM method based on gradient magnitude and the resulting artifacts after

100 iterations were performed. A single iso-surface rendering may not tell the full story

sometimes and for this reason we provide 2D slices of the same experiment (as performed

for Figure 3.2) in Figure 3.3.

(a) Original

(b) KM method: k = 40 (c) KM method: k = 80 (d) Our method: σ = 1 (e) Our method: σ = 10

Figure 3.3: The 2D slice (z = 65) of the Sheep’s Heart dataset, after diffusing with the KM
method and our method with 100 iterations as used in Figure 3.2e and 3.2h. We have also
marked the same iso-surface of 153 with blue lines.

On the other hand, our method has been found to be more robust with respect to its

parameter σ. Unlike the KM model, smoothing of an iso-surface in our approach is per-

formed consistently without any discrimination based on the gradient magnitudes. Since

the parameter σ in our model is tied to the directional second derivative, fnn, it has a
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more intuitive impact on the overall diffusion process; i.e. decreasing σ amounts to smooth-

ing a larger range of fnn. This can be thought of removing high frequencies from the 3D

volume except near the boundaries between relatively homogeneous regions, where fnn ap-

proaches zero and the stopping function h(fnn) approaches zero too, making the diffusion

stop (see Equation (3.9)). The sensitivity of parameters in both the KM and our proposed

model is further illustrated in two separate animations we provide as supplementary ma-

terials (KM K effect.avi and sigma effect.avi respectively). For both animations, we

only changed the parameters k and σ for the KM and our model respectively and ran 35

iterations of diffusion while all the other parameters were kept the same.

3.3.3 Significance of σ

In our previous examples, we have demonstrated the robustness of our new diffusion model

with regards to the parameter σ. However, this robustness is observed for points away from

zero. In this section, we argue with an appropriate example that the role of σ around zero

is critical.

(a) Original (b) h(·) = 1 (c) σ = 40

Figure 3.4: Iso-surface rendering of a sampled phantom data with spheres. The value inside
the spherical regions were 255 and 0 elsewhere. The volumes in (b) and (c) were diffused
with 300 iterations. (a) The original volume (b) Diffused with h(·) = 1 (c) Diffused with
Equation (3.5) set as h(·) with σ = 40.

A quick look at Equation (3.9) immediately reveals that having the stopping function

h(·) always evaluate to 1 with η = 0 makes the diffusion similar to the well known mean

curvature motion [32] (assuming τ ≈ 1, i.e. on isotropic surfaces, like a sphere). Mean

curvature motion is a well studied diffusion scheme where spherical structures shrink until
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they disappear, which may not be desirable when preserving structures in a 3D volume.

To verify this we created a phantom dataset with several spherical regions of different

sizes and diffused it by making h(·) a constant 1 as well as by using Equation (3.5) with

σ = 40. Figure 3.4 aptly demonstrates the significance of the parameter σ. When the phan-

tom data was diffused with σ = 40 (Figure 3.4c) the basic structure of the original data,

Figure 3.4a, was retained except for the very small spheres. On the other hand when the

stopping function h(·) was set to a constant 1, Figure 3.4b, the overall diffusion converged to

a simple mean curvature motion and the structure was destroyed. Our supplemental mate-

rial includes animations that show the full evolution of the diffusions as given in Figure 3.4b

(sigma unity.avi), and 3.4c (sigma 40.avi).

3.3.4 Impact of Derivative Estimation Filters

To implement Equation (3.9) we need to compute the principal curvatures which require

second order derivatives for the Hessian H in addition to the gradient components. Since we

are computing all these quantities from sampled data the quality of the derivative estimation

filters plays an important role.

We used the Taylor Series based framework, which is discussed in more details in Chap-

ter 4, to construct discrete derivative estimation filters of error order 2-EF and 4-EF 1.

Usually for real data where the polynomial order of the underlying function is not known

apriori, a 4-EF filter has been found to yield more accurate results than 2-EF.

For our experiment, we used an Angiography dataset [6] in which the blood vessels were

the focus of the study. We used the same diffusion parameters (σ = 1) and only varied the

order of the derivative filters. For the derivative filters, we used 2-cd (see Table C.1a) and

4-cd (see Table C.1b) as the second and fourth order filters respectively (consult Chapter 4

for more details). Figure 3.5 demonstrates that the higher order filter (4-EF) preserves more

details in the blood vessels while still removing some of the spurious elements.

1A filter is called n-EF , where EF stands for Error Filter, if it estimates a given derivative with error
bounded by O(hn), where h is the grid spacing.
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(a) Original

(b) 2-EF (c) 4-EF

Figure 3.5: Direct volume rendering of an angiography dataset of a human head. The
red circles mark the regions where the images had noticeable differences. (a) The original
dataset. (b) Derivatives estimated using 2-EF filters. (c) Derivatives estimated using 4-EF
filters.

3.3.5 Stability and Convergence

Setting η = 0 and rearranging terms renders Equation (3.9) into the following:

∂f

∂t
+ h(·) (κ1 + τκ2)N · ∇f = 0 (3.10)

where N = ∇f/‖∇f‖ is the normal of the scalar field f at every point. Equation (3.10) is

of the form ∂f
∂t

+ V · ∇f = 0 where V is the velocity, at a point, during the evolution of

the PDE of the level set passing through the same point. Hence, Equation (3.10) describes

an evolution whereby the level sets would be moving along the directions of the normals

of the level sets. Due to the notational convention adopted in this thesis, as discussed in

Section 3.2, this propagation of the level-sets along the direction of the normals is consistent

and similar to the Mean Curvature Motion (MCM) as discussed in the book of Osher and
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Fedkiw [39].

In this section we will use the Courant-Friedrichs-Lewy (CFL) condition to provide a

necessary but not sufficient condition on ∆t to be used in numerical methods to evolve

Equation (3.9).

The CFL requires that the distance travelled by a level set during the time interval ∆t

must be less than the minimum distance between two neighboring grid points. Mathemati-

cally this means

s∆t < d (3.11)

Where d is the minimum distance between two neighboring grid points and s is the speed,

i.e the magnitude of the velocity V. In case of a Cartesian Cubic (CC) Lattice, d =

min{dx, dy, dz} where dx, dy, and dz are the grid spacings along x, y, and z axes respectively.

In Equation (3.10), s = |h(·) (κ1 + τκ2)| and therefore, from the CFL point of view, the

following must be satisfied at every point to keep the numerical evolution stable.

|h(·) (κ1 + τκ2)|∆t < d

∆t <
d

|h(·) (κ1 + τκ2)|
(3.12)

Note that both h(·) and τ are bounded between 0 and 1, i.e.

0 ≤ h(·) ≤ 1, 0 ≤ τ ≤ 1, (3.13)

Therefore,

d

|h(·) (κ1 + τκ2)|
≥ d

|(κ1 + τκ2)|
, 0 ≤ h(·) ≤ 1

≥ d

|κ1|+ |τκ2|
,

≥ d

|κ1|+ |κ2|
, 0 ≤ τ ≤ 1

By definition, |κ1| ≤ |κ2|, and hence

≥ d

2 |κ2|
(3.14)
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An important observation to be made here is that the largest meaningful curvature that can

be captured in a grid must be bounded by κ2 ≤ 1/d, as argued by Osher and Fedkiw [39].

This is because the smallest sphere that can be sampled in a grid must have a radius greater

than d. Hence, we can write:
d

2 |κ2|
≥ d

21
d

=
d2

2
(3.15)

Therefore the right hand side of Equation (3.12) is bounded from the bottom by the follow-

ing:
d2

2
≤ d

|h(·) (κ1 + τκ2)|
(3.16)

Hence a safe choice for ∆t must satisfy the following relationship:

∆t ≤ C
d2

2
(3.17)

where C is the Courant number which is a constant and is bounded by 0 ≤ C ≤ 1 and is

typically assigned a value between 0.5 and 0.9.

To prescribe a value for the Courant number C in Equation (3.17) we performed em-

pirical analysis of stability and convergence. For this analysis we only varied ∆t for each

diffusion experiment keeping all the other parameters the same. Let L2(i, j) denote the l2

norm between the volumes f(x, i) and f(x, j) at iterations i and j respectively during the

evolution. This is given by the following:

L2(i, j) =

√

∑

x∈R3

(

f(x, i)− f(x, j)
)2

(3.18)

The Root Mean Squared Difference RMSD between two volumes at iterations i and j, which

is just the scaled l2 norm, can now be given by:

RMSD(i, j) =
L2(i, j)√

V
(3.19)

where V is the total number of voxels and is a constant for a given dataset. Considering

the volume f(x, n) as a V dimensional point in R
V , the RMSD can be thought of as the

Euclidean distance between the volume at iterations i and j, scaled by a constant 1/
√
V .

We define a quantity D(n), that measures the RMSD of the volume at iteration n ∈
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{0 . . . N} from the original volume, i.e. f(x, 0), as given below:

D(n) = RMSD(n, 0) =
L2(n, 0)√

V
(3.20)

Finally we define the rate of change of the Euclidean distance, scaled by the constant 1/
√
V ,

with respect to time t between two successive volumes at iterations n − 1 and n by the

following:

S(n) =
RMSD(n, n− 1)

∆t
=

L2(n, n− 1)

∆t
√
V

(3.21)

Note that the quantity S(n) is nothing but a numerical approximation of the instantaneous

speed, scaled by the 1/
√
V , of the evolution of the volume f(x, n) ∈ R

V at iteration n.

Now, for every ∆t we ran N iterations of diffusion on a dataset and measured D(n)

and S(n). The quantity D(n) will show how a volume evolves with respect to the original

volume in an l2 norm sense and as well provide evidence of de-noising, which we will show

later. On the other hand S(n) → 0 as n → ∞ will provide evidence of convergence of our

proposed PDE.

We used a simulated structural MR data, obtained from the BrainWeb database [10] for

this study. This data is noise free yet realistic with many details and variation. Therefore,

it is a good candidate for our test scenario. The structural MR data contains 256 gray levels

and has a size of 181× 217× 181.

In the first phase of the experiment we kept all the parameters the same as Section 3.3.1,

except we set ρ = 1 (in voxel units), and only varied ∆t. Therefore, the other parameters

were: λ = 2, σ = 1, and voxel spacing was assumed to be 1 in all directions and scalar values

ranged between [0, 255]. The 3D volumes were not scaled and a simple central differencing

2-EF filter was applied for all the derivative estimations. For each ∆t we ran n = 25

iterations. Figure 3.6 plots D(n) and S(n) for different values of ∆t as indicated by the

legend. With the noise-free MRI data, Figure 3.6b shows that for ∆t ≤ 0.4 the PDE behaves

well. However for ∆t ≥ 0.5, the speed S(n) drops less quickly until ∆t ≥ 0.55 when the

PDE becomes unstable. However, the plot for D(n) (Figure 3.6a) does not reveal anomalies

until ∆t ≥ 0.6.

In the second phase of the experiment we added Gaussian noise with zero mean and

a variance of 0.01 (in a normalized scale) to the synthetic MR data to add random high

frequency variation to pose a more challenging test for our proposed diffusion PDE in terms
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Figure 3.6: Plot of (a) D(n) and (b) S(n) for each ∆t (indicated by the legend), with the
noise-free MRI data.

of stability. This noisy volume has an SNR of 11.3 dB. All other parameters were kept the

same. For this experiment D(n) was measured from the original noise-free MRI data. In

Figure 3.7a, the slope of D(n) is negative initially because the D(n) was measured from the

original noise-free MRI data and diffusion would bring the noisy data closer to the original in

an l2 sense with each iteration, i.e. the l2 norm would progressively get reduced. This is an

indication of de-noising taking place. This time however, both Figure 3.7a and Figure 3.7b

indicate that for ∆t ≥ 0.55 the PDE becomes unstable. It is noteworthy that even a bad

SNR of 11.3 dB did not drastically change the stability from the one we found with the

noise-free MRI data.

In the third phase, we used a 40 × 40 × 40 data volume of a random signal uniformly

distributed for values in (0, 255). This poses an even more challenging test of stability and

convergence. Figure 3.8b shows that even in the case of this random noisy volume the

stability of the PDE did not change for ∆t < 0.55. For 0.4 < ∆t < 0.55, although the PDE

eventually converged, Figure 3.8a reveals some oscillation in D(n) in the first few iterations.

In all three experiments, the plot of S(n) showed that the PDE converged for ∆t ≤ 0.4

with ∆t = 0.4 yielding the fastest convergence. On the other hand, the plot of D(n) in

all three experiments revealed that for ∆t ≤ 0.4 the PDE evolves without any oscillation.

This led us to believe that for the parameter settings used in Section 3.3.1, augmented with

ρ = 1, our proposed PDE is stable for ∆t ≤ 0.4 for most practical purposes.
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Figure 3.7: Plot of (a) D(n) and (b) S(n) for each ∆t (indicated by the legend), with the
MRI data corrupted with Gaussian noise.

The choice of ρ = 1, which is common in many diffusion methods, was made only to

have a better smoothing behavior in a relatively homogeneous region under noise, and this

has little effect on the stability. This parameter ρ is typically useful for the purpose of

de-noising and the value of 1 yields best results for most noise types as we will demonstrate

in the next section.

From this empirical analysis we conclude that a Courant number C of 0.8 in Equa-

tion (3.17) is stable for most practical purposes and therefore prescribe the following con-

dition for stability:

∆t ≤ 0.8d2

2
= 0.4d2 (3.22)

where d is the minimum distance between two neighboring grid points.

Finally, we validated the above Courant number by performing two more experiments

with grid spacing set to 0.5 and 0.25. According to Equation (3.22) a time stepping of

∆t ≤ 0.1 and ∆t ≤ 0.025 should be stable for the grid spacing of 0.5 and 0.25 respectively.

The experimental results are shown in Figure 3.9 which corroborates with this prediction.

In both cases (grid spacing of 0.5 and 0.25) the evolution becomes unstable above the

prescribed time steppings.
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Figure 3.8: Plot of (a) D(n) and (b) S(n) for each ∆t (indicated by the legend), with a
random data volume (40× 40× 40) uniformly distributed for [0, 255].
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Figure 3.9: Plot of S(n) for each ∆t (indicated by the legend) for a grid spacing of (a) 0.5
and (b) 0.25 , with a random data volume (40× 40× 40) uniformly distributed for [0, 255].



CHAPTER 3. EDGE AWARE ANISOTROPIC DIFFUSION 27

3.4 De-noising Properties of Our Proposed Model

Although our proposed PDE model is a general purpose smoothing technique to evolve a 3D

volume over time removing small high frequency details while preserving edges it exhibits

de-noising properties too. On the other hand, general purpose de-noising techniques have

been formulated previously, e.g. simple bi-lateral filtering, which has been shown to be

a variant of gradient magnitude based non-linear diffusion by Barash and Comaniciu [5].

But the drawbacks of the gradient magnitude based models have been aptly demonstrated

in Section 3.3.2 and therefore equivalent de-noising operators will inherit similar problems.

Further, anistropic diffusion in 3D based on the KM model is very sensitive to the parameter

choice. Therefore, none of these existing techniques would be well suited for de-noising in

3D without facing difficulties.

In this subsection we will discuss, both qualitatively and quantitatively, the de-noising

properties our proposed PDE model has in the context of the four common noise types:

additive Gaussian noise, additive Poisson noise, multiplicative Speckle noise and Salt and

Pepper noise. We chose the Tooth dataset [43] which is relatively noise-free and diffused it

using our proposed method after adding a particular type of noise. For all the experiments

we have set the parameters as described in Section 3.3.5.

Figure 3.11–3.14 summarizes the de-noising properties of our proposed anistropic diffu-

sion model and it shows that our proposed method could de-noise the tooth data quite well

in all four cases. Our method works best with Salt and Pepper noise which is of no surprise

because Salt and Pepper noise introduces random and very local blob type artifacts in the

volume that get removed immediately and remarkably well. For Gaussian noise and Poisson

noise, our method performed similarly well on both occasions. Speckle noise turned out to

be the hardest to tackle of all, which is not surprising, and yet our method performed well

achieving an SNR of over 24.5 dB (see Figure 3.13). We also provide animation sequences

to show the de-noising process for each noise type listed in Figure 3.11–3.14 as supple-

mentary materials: gaussian.avi, poisson.avi, speckle.avi, and salt-pepper.avi. In

Figure 3.10 we present a qualitative result of our diffusion model applied to a 3D Ultra-

sound data of human liver [41] with a size of 247 × 208 × 86, which has been sub-sampled

from the original data by a factor of two in each dimension only to speed up computations.

Ultrasound data are usually contaminated with speckle noise and it is noteworthy how the

noise was lessened keeping all the vital structures intact even for a relatively low resolution
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(a) Original (b) Diffused

Figure 3.10: A 3D Ultrasound data diffused with our method using σ = 1 and 5 iterations.
(a) The original volume (b) The diffused volume using the same transfer function.

volume. Note how the tubular structures, which were barely discernible in Figure 3.10a,

stick out clearly in Figure 3.10b. When we attempt to apply the KM model on this same

dataset we face real challenges to pick a right value for the parameter k as we had no prior

knowledge about the gradient magnitude distribution around the tubular structures and

this itself speaks in favor of our method where we could pick within a wide range of values

for σ and still get some decent and consistent results.
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Noisy, SNR=12.89 Original Our method, SNR=26.12

Profile

Figure 3.11: Gaussian noise: λ = 2,∆t = 0.4, σ = 1, ρ = 1, iterations = 25.
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Figure 3.12: Poisson noise: λ = 2,∆t = 0.4, σ = 1, ρ = 1, iterations = 25
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Figure 3.13: Speckle noise: λ = 2,∆t = 0.4, σ = 1, ρ = 1, iterations = 25
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Figure 3.14: Salt and Pepper noise: λ = 2,∆t = 0.4, σ = 1, ρ = 1, iterations = 25



CHAPTER 3. EDGE AWARE ANISOTROPIC DIFFUSION 33

3.4.1 Comparison with other de-noising methods

In this section we will compare our method with two very recent PDE based de-noising

filters, namely Scalar Rician Noise-Reducing Anisotropic Diffusion SRNRAD and Oriented

Rician Noise-Reducing Anisotropic Diffusion ORNRAD, proposed by Krissian and Aja-

Fernández [28]. These filters were designed to de-noise specifically Rician noise in 3D MRI

data. At a higher SNR, a Rician distribution converges to a Gaussian distribution. Accord-

ing to Aja-Fernández et al. [2], the noise estimator used by Krissian and Aja-Fernández [28]

is based on the variance estimation of additive Gaussian noise. This is, however, not an

unfair mismatch because the Rician noise converges to additive Gaussian noise after few

iterations. Therefore, we will also apply their filters on additive Gaussian noise. It is worth

mentioning that both SRNRAD and ORNRAD require users to manually specify a sub-

volume for the noise estimator. Further, to demonstrate the versatility of our proposed

method, we will apply all three methods on other types of noise and show that our method

can be applied equally well in most types of naturally occurring noise types using exactly

the same set of parameter values.

For comparison we have chosen the same dataset as [28]: the simulated structural

MR data [10], and used the same quantitative metrics - namely Mean Squared Error

(MSE), Structural Similarity Index (SSIM) [53], and Quality Index Based on Local Variance

(QILV) [1] - for quality assessment. In accordance to Krissian and Aja-Fernández [28], we

also discarded the background, where the original noise-free volume is zero, from any as-

sessments. It is noteworthy to mention that we have used the exact same Matlab script to

compute these metrics as the authors of [28] and for SRNRAD and ORNRAD we have used

their own C/C++ implementations in the AMILab software [27].

Table 3.1 summarizes the performance of the three diffusion techniques and we provide

the corresponding images in Figure 3.15–3.19. In terms of MSE, our method performed

significantly better than both ORNRAD and SRNRAD for all noise types except Speckle

and Poisson, where the differences are close for the MSE metric. For the SSIM metric, we

find that our method again performed better than both ORNRAD and SRNRAD for all

noise types except Speckle where the numerical difference is only in the third decimal place.

It is rather intriguing to find that our method tied with ORNRAD and actually performed

better than SRNRAD for the SSIM metric in the case of Rician noise, for which those two

filters were specifically designed for. Using the QILV metric, our method performed only
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Gaussian Rician
MSE SSIM QILV MSE SSIM QILV

Noise 558.750 0.540 0.503 450.558 0.561 0.712
SRNRAD 162.017 0.816 0.886 232.459 0.792 0.913
ORNRAD 153.873 0.819 0.859 226.405 0.795 0.889
Our 75.878 0.900 0.860 173.851 0.795 0.820

Poisson Salt & Pepper Speckle
MSE SSIM QILV MSE SSIM QILV MSE SSIM QILV

Noise 482.905 0.678 0.492 2202.452 0.476 0.022 493.013 0.714 0.455
SRNRAD 91.766 0.917 0.914 1262.760 0.625 0.033 84.301 0.929 0.906
ORNRAD 78.731 0.924 0.899 1114.028 0.642 0.101 78.308 0.929 0.863
Our 70.671 0.930 0.857 33.210 0.968 0.924 85.129 0.922 0.838

Table 3.1: Performance evaluation of different diffusion methods: our method, SRNRAD
and ORNRAD, on different types of naturally occurring noise. The best performing result
for each metric is highlighted with a bold number while the second best is underlined. For
the Rician noise we used a standard deviation of 20 similar to [28]. Note that there can be
ties.

marginally different from ORNRAD for all the noise types except Salt and Pepper noise

for which case our method clearly outperformed both ORNRAD and SRNRAD by a large

margin for all the three metrics. However, we acknowledge that ORNRAD and SRNRAD

were designed for Rician noise (and should also work well for Gaussian) but this experiment

reveals that our proposed method, unlike many de-noising methods, can be applied generally

for all common noise types and still produces decent results if not better in some cases and

without re-tuning parameters.

Figure 3.15–3.19 corroborates our numerical results although we see the results yielded

by ORNRAD and SRNRAD are visually smoother in homogeneous regions. On the other

hand we argue that the fine fiber like structures as seen in the bottom left region of the

original volume were preserved better by our method.

Our method was implemented in Matlab where the values of τρ, κ1, κ2 and nTHn in

Equation (3.9) were computed using MEX files (C/C++ extension for Matlab) using only

a single thread. Other computations including all first and second derivative estimations

and convolutions were performed using Matlab scripts. On the other hand SRNRAD and

ORNRAD were implemented as multi-threaded C/C++ codes in AMILab as mentioned
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in [28]. Table 3.2 reports average time (in seconds) each method took per iteration when

we ran them on an Intel CoreTM2 Duo (2.4 GHz on each core) based system using the MRI

dataset. Table 3.2 shows that despite the Matlab implementation our method performs

≈ 14.4 times faster than ORNRAD, which was implemented in C/C++ using multiple

threads. On the other hand, though SRNRAD - which was implemented in C/C++ using

multiple threads too - runs faster, a clear winner is not yet obvious as most computations

in our method were performed in Matlab.

Our SRNRAD ORNRAD

Time/Iteration (seconds) 7.52 3.75 108.48

Table 3.2: Average time (in seconds) for each method per iteration while diffusing the MRI
dataset (181× 217× 181).

The proposed method is not only superior in run-time performance, but is superior or

comparable in both qualitative (Figure 3.15–3.19) and quantitative (Table 3.1) measures.

In addition, we would like to re-emphasize the ease of parameter choice in our method as

we achieved all of these performances using exactly the same parameter settings without

re-tuning.
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Original Noisy

Our SRNRAD ORNRAD

Figure 3.15: Gaussian noise (x = 90 slice of the synthetic MRI data)

Original Noisy

Our SRNRAD ORNRAD

Figure 3.16: Rician noise (x = 90 slice of the synthetic MRI data)
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Original Noisy

Our SRNRAD ORNRAD

Figure 3.17: Poisson noise (x = 90 slice of the synthetic MRI data)

Original Noisy

Our SRNRAD ORNRAD

Figure 3.18: Speckle noise (x = 90 slice of the synthetic MRI data)
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Original Noisy

Our SRNRAD ORNRAD

Figure 3.19: Salt and Pepper noise (x = 90 slice of the synthetic MRI data)
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3.5 Impact on Visualization: 2D Transfer Function

Kindlmann and Durkin [22] proposed a 2D transfer function which proved to be very pow-

erful at classifying homogeneous regions and boundaries in a 3D volume. In their method a

2D histogram would be generated where the horizontal axis would be the function value and

the vertical axis would be the directional first derivative along the gradient fn, a quantity

that happens to be just the gradient magnitude, i.e. fv = ‖∇f‖. For a clean 3D scalar

data this histogram will have arc like patterns for every unique boundary in the volume.

Because of its importance in visualization, we show the utility of our novel diffusion method

in the context of this 2D transfer function. The counts in the histograms are compressed

with the function log10(x+1) - where x is the actual count - before plotting them as pixels.

Darker pixels denote higher count. For brevity, we will omit the axes labels from the 2D

histogram images in this section. In Figure 3.20 we present the 2D histogram before and

after diffusion for two different noise types while a reference histogram of the original dataset

is provided in Figure 3.20a and also in Figure 3.21a. It is remarkable to see how each noise

type changes the 2D histogram so dramatically while our diffusion method brings the origi-

nal pattern back to a recognizable form. A closer inspection of Figure 3.20e reveals that our

diffusion not only removes the Salt and Pepper noise but also enhances the pattern in the

2D histogram. This indicates that running our diffusion on a clean dataset for the purpose

of smoothing will also enhance its 2D histogram. To verify this, we diffused the tooth data

without adding any noise and computed the 2D histogram in Figure 3.21 which shows that

the patterns in the histogram are indeed enhanced. This makes sense because our diffusion

was modeled in a way such that edges and tubular structures are well preserved while small,

high frequency details are smoothed out. Figure 3.22 immediately demonstrates an even

greater problem with the gradient magnitude based KM model where the patterns in the

2D histogram get virtually destroyed whereas the patterns get enhanced with our method

instead.
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(a) Original

(b) Gaussian (c) Poisson

(d) Speckle (e) Salt and Pepper

Figure 3.20: 2D histogram of the tooth dataset with four different noise types. (a) is the 2D
histogram of the original dataset. After that, each pair of images correponds to a noise type
as indicated by the caption. The histogram on the left column of each pair was computed
after adding the noise and that of the right column after performing diffusion.
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(a) Original (b) Diffused

Figure 3.21: Tooth data diffused without adding any noise. (a) 2D histogram of the original
tooth (b) Histogram of the tooth data after diffusion.

(a) KM model (b) Original (c) Our method

Figure 3.22: 2D histogram - (a), (b) and (c) - of the Sheep’s heart dataset corresponding to
Figure 3.2e, 3.2a, and 3.2h respectively.



Chapter 4

Derivative Estimation on Regular

Lattices

4.1 Taylor Series Approach Towards Filter Design

We use the notation L to characterize an arbitrary d-dimensional lattice generated by the

matrix

L = [l1, l2, . . . , ld] , (4.1)

where the li are column vectors. Lattice sites of L are given by the product Lk, where the

integer vector k = (k1, k2, · · · , kd)T indicates the lattice index. In this section we derive the

Taylor series expansion of a convolution sum in R
d. We follow the 1D analysis of Möller et

al. [33, 34] and extend it to multiple dimensions.

4.1.1 Taylor Expansion of Convolution Sum over a Lattice L

We can decompose a multidimensional function f at the point v ∈ R
d about x ∈ R

d using

the Taylor series as

f(v) =
∑

n≥0

(v − x)n

n!
Dnf(x), (4.2)

where n ∈ N
d and Dn is a cascaded partial differential operator defined as

Dn(·) :=
(

∂n1

∂x1n1

∂n2

∂x2n2

· · · ∂nd

∂xdnd

)

(·). (4.3)

42
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The vector factorial and vector exponent have the usual multi-index interpretation, i.e.

n! :=
∏d

k=1 nk!, and vn :=
∏d

k=1 v
nk

k . With this setup, the function at the lattice sites

v = Lk is given by

f(Lk) =
∑

n

(Lk− x)n

n!
Dnf(x). (4.4)

To capture a varying sampling rate we uniformly scale the lattice L by a scalar factor

h. Intuitively, higher h means a lower sampling rate and vice-versa. Denoting fw
r (x) as the

result of convolving the function, sampled at the scaled lattice points hLk, with the filter

w, defined for the lattice L, we can write

fw
r (x) =

∑

k

f(hLk) · w
(

x− hLk

h

)

(4.5)

Substituting (4.4) into (4.5) we obtain

fw
r (x) =

∑

k

f(hLk) · w
(

x− hLk

h

)

=
∑

k

[

∑

n

(hLk− x)n

n!
Dnf(x)

]

· w
(

x− hLk

h

)

=
∑

n

[

∑

k

(hLk− x)n

n!
· w

(

x− hLk

h

)

]

Dnf(x)

=
∑

n

awn (x) ·Dnf(x)

(4.6)

where awn (x), hereinafter referred to as Taylor Coefficient, is defined as

awn (x) :=
∑

k

(hLk− x)n

n!
· w

(

x− hLk

h

)

(4.7)

This is very similar to what Möller et al. [34] arrived at with their 1D analysis and therefore,

following their approach, we also introduce a continuous variable τ . Let x = hL (k0 + τ) :

τ = (τ1, τ2, . . . , τd)
T, and ∀i, τi ∈ [0, 1), and where k0 is a lattice site coordinate such that the

above condition on τ is satisfied for any x. Rewriting equation (4.7) with the new variable

τ and replacing m = k− k0 yields

awn (τ) =
hn

n!

∑

m

(L (m− τ))n · w (L (τ −m)) , (4.8)
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which is very similar to the 1D counterpart [34]. Finally we can rewrite the convolution

sum in equation (4.6) as

fw
r (x) =

∑

n

Dnf(x) · awn (τ), (4.9)

where τ = ( 1
h
L−1x − k0) and k0 = ⌊ 1

h
L−1x⌋. Again, the multi-index operator ⌊·⌋ has the

usual interpretation of taking component-wise floor.

4.1.2 Classification

A filter w can be classified based on its Taylor Coefficients awn (τ) given by (4.8). For

example, in 3D, an ideal interpolation filter will have awn (τ) = 1 for n = 0 and awn (τ) = 0

for n 6= 0. Likewise, an ideal first derivative filter along x in 3D will have awn (τ) = 1 for

n = (1, 0, 0) and 0 otherwise. However, in practical settings, awn (τ) may not be equal to

zero for all combinations of n and this characterizes the error behavior of a filter, which can

be used in filter classification.

Before introducing a classification, we introduce a λ-order set ηλd that contains all the

vectors in N
d whose order, i.e. l1-norm, is a constant λ. More formally, with λ ∈ N and d

dimensions, a λ-order set ηλd is defined as

ηλd :=
{

v ∈ N
d : ‖v‖1 = λ

}

. (4.10)

The size of this set, |ηλd | is given by

|ηλd | =
(

d+ λ− 1

λ

)

The above formula could be derived easily using combinatorics by treating d as the number

of container while λ as the number of similar objects and solving for how many distinct ways

the objects could be distributed among the containers. A container in this case is allowed

to be empty.

Analogously, we define an [a, b]-order set η
[a,b]
d as

η
[a,b]
d :=

b
⋃

k=a

ηkd , (4.11)

where a, b ∈ N and 0 ≤ a ≤ b. Contrary to [34] we define an n-order filter (n-OF) and
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a k-error filter (k-EF) separately. We define an n-order filter to be a filter capable of

reconstructing the desired derivative (or function) perfectly for any underlying polynomial

of degree n or less. Whereas, if the underlying polynomial degree is higher than n (with

an n-OF filter) then the error will be bounded by O(hk) if the same filter is a k-EF filter,

where h ≤ 1 is the grid spacing. This definition of k-EF is the same as that of Möller et

al. [34]. Shortly, we will show that n-OF and k-EF are related to each other depending on

the type of derivative we wish to reconstruct.

Given a vector u ∈ η
[0,n]
d , which we refer to as a derivative vector, a filter w is n-OF if

the following is satisfied.

awn (τ) =







0, n ∈ η
[0,n]
d and n 6= u

1, n = u.
(4.12)

In light of this definition, it is easy to see from equation (4.9) that the filter will recover

Duf(x), with f(x) having a maximum polynomial order of n. Therefore, we shall also refer

to w as a u-derivative filter. When u = 0, the filter is actually an interpolation filter.

4.1.3 Designing First Derivative Filters in R
3

For rest of the thesis, we focus mostly on designing first derivative filters in 3D for the BCC

lattice and hence we set d = 3 and drop subscripts from the notations accordingly. In this

case, u ∈ η13.

Considering equation (4.8) for a discrete filter ∆ implies τ = 0. Hence, we drop τ and

write the Taylor Coefficients as

a∆n =
hn

n!

∑

m

(Lm)n ·∆(L (−m)) . (4.13)

The definition (4.12) is also applicable to any discrete filter.

Möller et al. [34] have shown that a normalization step is necessary before the actual

derivative of the function can be extracted properly. This step is very important as it

ensures that awu (τ) and a∆u evaluate to 1 for the desired derivative Du. The normalization is

performed by simply dividing the filter weights by awu (τ) or a
∆
u . With proper normalization,

the asymptotic order of the error in terms of h is given by O(hn+1−ς) [34], where n is the

order of the filter as defined in (4.12) and ς = ‖u‖1 is the l1-norm of the vector u. In other
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terms, the relationship between EF and OF can be given by

EF = OF + 1− ς (4.14)

In case of first derivative filters, the error is bounded by O(hn). Hence, we refer to such a

filter as n-EF. An n-OF filter that computes first derivatives is also an n-EF filter.

4.1.4 Linear System For Designing Discrete Filters for BCC

Equation (4.13) forms a system of linear equations where we set values for a∆n a priori and

seek to find the unknowns ∆ (L (−m)). The two parameters for this system are:

1. Number of equations: This is determined by how many a∆n are fixed, which in turn

is given by the size of the set η[0,n]. This parameter decides the order of the filter in

definition (4.12)

2. Number of unknowns: This is given by how many different m vectors, i.e. neighbor-

hood of the filter, we want to restrict the filter to. This parameter therefore decides

the support of the discrete filter.

Later in Section 3.3 we will demonstrate our Taylor Series based framework in the light

of gradient estimation and how shading is improved while rendering volumetric data in

both CC and BCC lattices. While shading, we will interpolate the gradient estimated at

the grid points with an appropriate interpolation filter which is typically the Tricubic B-

Spline for CC and Quintic Box Spline [16] for BCC. The polynomial approximation order

of the interpolating Quintic Box Spline has been shown to be 4 where the interpolation

constraint is met by applying a suitable digital prefilter [12, 15]. Thus, to design a good

gradient estimator we need a discrete derivative filter that has a polynomial order of at

least 4. Therefore, in this section, we design a 4-OF discrete derivative filter along x that is

suitable for the BCC lattice. For this, we have to impose the following conditions.

• a∆n = 0, ∀n ∈ η[0,4] and n 6= [1, 0, 0]

• a∆n = 1,n = [1, 0, 0]

This leads to 35 equations and hence we must have at least 35 unknowns to form a gen-

eral solution. Interestingly, if we take the vectors m such that L (−m) include all the
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BCC lattice points up to fourth-order neighbors (inclusive) we have 35 unknown weights

∆ (L (−m)). However, the linear system formed with this setting is not full-rank and pro-

duces a 5 dimensional solution space with all 5 free variables (filter weights) belonging to

the set of fourth-order neighbors. Interesting patterns, however, can be seen in the general

solution space among the weights of the first-order neighbors. Particularly, we observe a

total of 12 symmetries and anti-symmetries. We impose similar symmetries on the 5 free

variables which reduces the solution space to 1D and the resulting filter shows an overall

anti-symmetry along the x axis and symmetries along the y and z axes. At this point, we

seek to reduce the error in the 5th polynomial order and for that we choose an error metric

which weights all the Taylor Coefficients equally and is given by

E =
∑

n∈η5

(

a∆n
)2

(4.15)

Minimizing this error with respect to the one free variable (filter weight) yields a discrete

filter ∆ which has 26 non-zero weights. Table C.2d in Appendix C.1.2 provides the weights

of this 26 sample discrete 4-OF first derivative filter (OPT26 ) along the x axis. Filters for

y and z derivatives follow analogously.

These filter weights are not unique as they are derived from a general solution space

and hence an alternate functional that could be minimized is the l0-norm of the filter,

i.e. the support of the filter. This yields a filter having 16 non-zero weights (OPT16, see

Table 4.1). In a similar fashion, we can derive filters for CC and BCC with different orders

and support. The properties of some of these filters are listed in Table 4.1. BCD is a 2-OF

discrete derivative filter that takes into account the closest 8 first-order neighbors, which

form the corners of a box, while SOCD uses the two axis aligned second-order neighbors

which are further away in Euclidean distance.

4.1.5 Combination of Discrete and Continuous Filter

In this section we present the effectiveness of combining a discrete first derivative filter

and a continuous interpolation filter to approximate first derivatives globally. Following

Möller et al [34], we extend their analysis to arbitrary dimensions and reaffirm the convo-

lution relationship between the Taylor Coefficients of the discrete filter and the continuous

interpolation filter.
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Filter Type Filter Name Approx. Order (OF) Filter Size

BCC

SOCD 2 2
BCD 2 8

OPT16 4 16
OPT26 4 26

CC
2-cd 2 2
4-cd 4 4

The filters are grouped by lattice type and approximation order with corresponding filter
size, in number of non-zero weights. The first row shows the BCC filters: Second-Order Cen-
tral Differencing (SOCD), Box Central Differencing (BCD), Support-Optimal-16 (OPT16 )
and Error-Optimal-26 (OPT26 ). The second row provides the CC filters and the prefix
in the name denotes approximation order while cd stands for Central Differencing. The
weights are given in Appendix C.

Table 4.1: Taylor Series filters

Consider a discrete filter ∆[k], which is given by Equation (4.16), and a continuous filer

w defined on an unscaled lattice defined by the matrix L.

∆[k] = ∆(Lk) (4.16)

Note how we use the notation ∆[k] with square braces to denote discrete values. With this

notation we will develop a continuous filter by convolving these two filters which we will

denote as Ψ and this can be given by 1:

Ψ(x) = (∆ ∗ w) (x) =
∑

k

∆[k] · w (x− Lk) (4.17)

1Note both ∆ and w are filters and hence their convolution can be performed on an unscaled lattice.
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Writing the Taylor Coefficient of Ψ and substituting Equation (4.17) yields

aΨn (τ) =
hn

n!

∑

m

(L (m− τ))n ·Ψ(L (τ −m))

=
hn

n!

∑

m

(L (m− τ))n ·
∑

k

∆[k] · w (L (τ −m− k))

=
hn

n!

∑

k

∆[k]
∑

m

(L (m− τ))n · w (L (τ −m− k))

Taking p = m+ k

=
hn

n!

∑

k

∆[k]
∑

p

(L (p− k− τ))n · w (L (τ − p))

=
hn

n!

∑

k

∆[k]
∑

p

(L (p− τ) + L (−k))n · w (L (τ − p))

=
hn

n!

∑

k

∆[k]
∑

p

{

∑

i

(

n

i

)

(L (p− τ))i (L (−k))n−i

}

· w (L (τ − p))

After re-arranging

=
hn

n!

∑

i

∑

k

∆[k] (L (−k))n−i

(

n

i

)

∑

p

(L (p− τ))i · w (L (τ − p))

Using Equation (4.8)

=
hn

n!

∑

i

∑

k

∆[k] (L (−k))n−i

(

n

i

){

i!

hi
· awi (τ)

}

=
hn

n!

∑

i

{

(n− i)!

hn−i
· a∆n−i(0)

}(

n

i

){

i!

hi
· awi (τ)

}

=
∑

i

a∆n−i(0) · awi (τ)

(4.18)

Dropping the 0 from the notation for the discrete filter we can compactly write the above

as

aΨn (τ) =
∑

0≤i≤n

a∆n−i · awi (τ), (4.19)
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where i is the index vector such that ∀k, 0 ≤ ik ≤ nk. Möller et al. [33] showed a similar

convolution relationship in 1D.

Further, we analyze the polynomial order (OF) of the combined filter which leads to the

following Theorem 4.1.1.

Theorem 4.1.1 Given a discrete n-OF derivative, an ǫ-OF continuous interpolation filter

and a required derivative order ς = ‖u‖1, (see Equation (4.12) for u) the order (OF) of the

combined filter is given by

min(ǫ+ ς, n) (4.20)

The proof of this theorem is provided in the Appendix B.

A direct consequence of the above Theorem 4.1.1 is that having an interpolation filter

set with a polynomial order (OF) of ǫ, a discrete derivate filter of polynomial order (OF)

anything higher than ǫ+ ς does not improve the overall polynomial order and hence is not

very useful.

4.2 Results and Discussion

The primary advantage of the Taylor series framework lies in the fact that filters can be

designed with sufficient compactness along with choosing polynomial order (OF). This keeps

the filter size small enough for derivatives to be computed on the fly without storing them

beforehand.

In this section we will show the effectiveness of the filters generated from our proposed

framework in the light of gradient estimation and thereby shading iso-surfaces and volume

rendered images. Along this line, we will compare estimation qualities, both qualitatively

and quantitatively, between CC and BCC lattices.

The gradient filters presented in Table 4.1 are defined in the spatial domain and have

compact support. We therefore implemented them so that the gradients are estimated on-

the-fly using Algorithm 1. We also used the Multi-dimensional Discrete Fourier Transform

(MDFT), proposed by Alim and Möller [4], to prefilter scalar data when interpolating with

either the tricubic B-splines on CC or the quintic box spline on BCC in order to fully exploit

the approximation power. The cost of this prefiltering step is negligible as compared to the

cost of the subsequent rendering operations. In most visualization applications (for example

ray-tracing), sampling is performed in a sequential manner and often the sampling step is



CHAPTER 4. DERIVATIVE ESTIMATION ON REGULAR LATTICES 51

Algorithm 1 Compute the gradient at an arbitrary point x, using an interpolation filter
w and discrete derivative filters ∆x,∆y, and ∆z, one for each component. G denotes a set
of lattice site gradients, that are computed on the fly.

Require: x, w,∆x,∆y, and ∆z

Ensure: v is the gradient at x
1: G← ∅
2: for all {k : Lattice sites that are within the support of the interpolation filter w} do
3: Ω← {All the data within the support of ∆x,∆y, and ∆z, centered at k}
4: g← Compute the lattice site gradient at k using Ω,∆x,∆y, and ∆z

5: G← G ∪ g
6: end for
7: v← Compute the gradient using the set G and the filter w
8: return v

very small compared to the grid spacing. For such a setting, step 4 in Algorithm 1 can be

optimized considerably by employing a cache whereby previously computed gradients at the

lattice sites are reused.

4.2.1 Implementation

We only stored the prefiltered scalar volume in memory for all the Taylor Series filters and

always computed gradients on-the-fly. We evaluated ray-casting integrals in two modes:

• Iso-Surface Rendering (ISR): A given iso-surface is extracted along a ray in the

volume using a Linear Bisection technique and once the iso-surface is found, the gra-

dient is estimated at that point and shaded accordingly. Only scalar interpolation is

performed during the iso-surface extraction stage. Keeping the underlying interpola-

tion filter the same allows us to investigate how the quality of the rendered images

changes as a result of different gradient estimation schemes.

• Direct Volume Rendering (DVR): For every sample taken along the ray, scalar

interpolation is performed and a transfer function is evaluated. The gradient is esti-

mated only when the transfer function is non-zero.

We implemented our volume ray-caster as a single threaded application and ran all our

experiments on an Intel CoreTM2 Duo (2.40GHz on each core) machine with 4GB RAM run-

ning Linux. We also optimized our codes using compiler (GCC version 4.4.1) level optimiza-

tion flags (-march=core2 -O6 -ffast-math -funroll-all-loops -ftree-vectorize). All

reported timing data are obtained using these codes.
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4.2.2 Synthetic Data

We used the popular synthetic function proposed by Marschner and Lobb (ML) [31]. This

function has a form that allows one to correctly point sample it so as to ensure that there

is no aliasing of the spectrum in the frequency domain. In practice however, one may

have little to no knowledge of the underlying frequency content of a sampled signal, in

which case, a reconstruction that attempts to minimize the L2 norm of the error is a more

desirable one. Furthermore, isosurfaces of the ML function are not closed manifolds and

error is introduced near the boundaries of the sampling window since data outside the

window needs to be fetched to accurately reconstruct the function or its gradient. For these

reasons, we also employed an appropriately modified version of the ML function so that the

isosurfaces are closed manifolds that radiate spherically outwards with increasing isovalue

(Figure 4.1). The resulting function can be written in Cartesian coordinates as

ftest(x) := γ‖x‖ − α cos(2πfm
x3
‖x‖), (4.21)

where x ∈ R
3 (x 6= 0) and γ, α and fm are positive real parameters. The cosine frequency

modulation form akin to the ML function can be obtained by expressing the above equation

in spherical coordinates. As x → 0, the oscillation frequency of this function tends to

infinity. Thus, for any finite sampling rate, one can always choose an isosurface that would

be a demanding test for any reconstruction filter.

We point sampled both the ML function and ftest within a (−1, 1)3 window on CC and

BCC lattices. For the ML function, we used the parameters given in [31] and sampled the

function on a 41× 41× 41 CC grid and on an equivalent 32× 32× 64 BCC grid. For ftest,

we used the parameters shown in Figure 4.1 and sampled it on CC and BCC grid sizes of

101× 101× 101 and 80× 80× 160 respectively.

We performed ISR experiments using both test functions. For the ML function, we chose

an isovalue of 0.5 whereas for ftest, we chose an isovalue of 0.4. We used the analytic form

of the functions to compute isosurface intersections and used the sampled versions solely for

normal estimation. This ensures that the underlying shape of the isosurface is the same for

both lattice types. Gradients were computed on-the-fly using the prefiltered sampled data

and combined with either tricubic B-spline or quintic box spline interpolation depending on

the lattice.
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Figure 4.1: Isosurfaces of the unsampled synthetic functions. Left, the modified test func-
tion, α = 0.25, γ = 2 and fm = 6, showing the isovalues 0.4 (rendered opaque), 0.5 (green)
and 0.6 (purple). Right, isovalue = 0.5 of the ML test function with fm = 6 and α = 0.25
as used in [31].

Figure 4.2 shows the isosurface of the ML function shaded with different gradient estima-

tion schemes. The terms ǫ-cd (on CC) and ǫ-CD (on BCC) refer to estimating the gradient

locally at the point of intersection by computing the gradient of the interpolated function

using central differences in the axial directions with a step size of ǫ. As ǫ goes to zero,

we recover the analytic derivative of the interpolated function. The superiority of the BCC

lattice is clearly evident; the BCC filters BCD and OPT16 do a better job at reconstructing

the normals than their CC counterparts 2-cd and 4-cd. The difference between OPT16 and

BCD is also more apparent than the difference between 4-cd and 2-cd. Additionally, we

observe that ǫ central differencing yields better normal estimates as compared to the second

and fourth order Taylor filters. However, ǫ-CD on BCC gives rise to rippling artifacts which

are absent in ǫ-cd on CC.

We also used the test functions to quantify the performance of the filters and measured

the Root Mean Square (RMS) l2-norm of the difference between the true gradient and the

estimated gradient, as well as the RMS angular deviation from the truth, on the visible

isosurface. Beside numerical accuracy, we also measured the time taken to estimate gradi-

ents. The resulting data is tabulated in Table 4.2 and some of the isosurface renderings of
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(a) 2-cd (b) ǫ-cd (c) 4-cd

(d) BCD (e) ǫ-CD (f) OPT16

Figure 4.2: Isosurface of the ML function shaded using different normal estimation schemes;
top row, CC, and bottom row, BCC. The analytic form of the ML function is used to
compute the isosurface and the sampled data is used for normal estimation. To facilitate
comparison, the left half of each image shows the truth. For (b) and (e), ǫ = 0.003.

ftest along with the error distributions are shown in Figure 4.3. Please note that we do not

report the scalar interpolation time because scalar values were evaluated from the analytic

functions.

Our numerical results corroborate the fact that the advantages of BCC sampling extend

to gradient reconstruction as well. The BCC filters yield significantly lower RMS error

values as compared to their CC cousins. We observe the same trend quantitatively that we

qualitatively saw in Figure 4.2; epsilon central differencing is better than the second and

fourth order Taylor filters.

Timing results show run time increases with increasing filter order (OF). Since most

of the time in ISR mode is spent evaluating the analytic functions, the total run-times

of all the experiments are fairly close to each other. With compiler optimizations turned

on, we observed that quintic box spline evaluation is fairly similar, if not marginally faster
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(a) 4-cd (b) ǫ-cd (c) OPT16 (d) ǫ-CD

Figure 4.3: Reconstructed isosurface of ftest shaded using different gradient estimation
schemes. The top row shows the rendered images as compared to the truth while the
bottom row shows the corresponding error images. The left half of an error image illus-
trates the l2-norm of the error vector where a value of 15 or more is mapped to the brightest
green. The right half illustrates the angular deviation where an angle of 15 degrees or more
is mapped to the brightest orange. For (b), ǫ = 0.005.

sometimes, to that of tricubic B-Spline on Intel CoreTM2 Duo. But on AMD OpteronTM,

with the same compiler optimizations, we noticed that quintic box spline evaluation is

usually marginally slower than that of tricubic B-Spline. On the other hand, with no

compiler optimizations, we observed that this fact is quite the opposite and BCC performs

twice faster than CC on both platforms. However, we do not report times from unoptimized

codes in this thesis.

4.2.3 Real Data

To assess the practical impact of our filters on the visualization of volumetric data, we

rendered isosurface images of the carp data sets in ISR mode. The original CC data sets have

grid sizes of 512×512×512 and 512×512×361 respectively. Figure 4.4 depicts the original

high resolution carp’s skull reconstructed with prefiltered tricubic B-spline interpolation
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ftest ML
l θ time l θ time

2-cd 19.0 35.3 1.59/35.81 3.13 49.4 2.23/22.56

4-cd 17.9 31.8 2.55/36.06 2.79 44.1 2.64/21.77

ǫ-cd 11.9 22.4 0.85/35.63 1.52 25.7 0.86/19.10

(a) CC

ftest ML
l θ time l θ time

SOCD 22.0 70.3 1.43/35.58 3.78 68.9 1.84/21.58
BCD 15.8 18.7 1.89/34.57 2.88 39.2 2.37/21.44
OPT16 13.7 17.0 2.39/35.96 2.42 28.7 2.65/22.07
OPT26 13.5 16.1 3.00/34.44 2.42 28.7 4.01/23.17
ǫ-CD 9.8 12.0 0.88/34.95 1.61 26.1 0.97/20.55

(b) BCC

Table 4.2: RMS length of the error vector (l) and RMS angular deviation (θ in degrees)
on the visible isosurface. Normal computation time (in seconds) vs. total render time is
indicated. The comparison is performed on the 0.4 isosurface of ftest and the 0.5 isosurface
of ML. For ftest, ǫ = 0.005 and for ML, ǫ = 0.003. All images were rendered at a resolution
of 800× 800 pixels.

and shaded using a very accurate Orthogonal Projection (OP) filter namely cc, as proposed

by [21], in conjunction with the tricubic B-spline. This was done to generate a ground truth

image because the OP framework was the best known method to produce the most accurate,

yet smooth, shading of sample data at the time of writing of this thesis. However filters

generated by the OP framework are typically large and can only be practically implemented

in the frequency domain.

The first row of Figure 4.5 shows the carp’s skull reconstructed using prefiltered tricubic

B-spline scalar interpolation on a downsampled CC grid and shaded using four different

gradient estimation schemes. The second row analogously shows the results for a downsam-

pled BCC grid. The quality of filters is of paramount importance with volumes given in

lower resolution otherwise even a mediocre filter would suffice for high resolution volumes.

Futhermore, large volumes are often downsampled for practical purposes. The images follow
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Figure 4.4: An Isosurface of the high resolution carp fish data set.

the same trend as that in Figure 4.2. With the second order filters (2-cd and BCD) the

image appears smoothed out and sharp features are largely absent. It becomes progres-

sively better with the fourth order filters (4-cd and OPT16 ) and ǫ central differencing. The

rippling artifacts that we observed in the case ǫ-CD earlier, can be seen here as well.

In a typical ISR setting, the majority of the time is spent performing scalar interpolations

and this fact is reaffirmed in the timings of Figure 4.5. Note that the gradient estimation

time for ISR is very small compared to the overall time and is therefore susceptible to time

measurement noises.

We also rendered DVR images, Figure 4.6, of the carp dataset to study the visual

artifacts and the run time of different gradient estimation techniques combined with different

scalar interpolations on CC and BCC. For these images, we used the same data set as

Figure 4.5. The zoomed-in insets of Figure 4.6 clearly show that BCC renditions are visually

superior in terms of scalar interpolation as the bones were reconstructed better. Likewise, in

terms of gradient estimation, OPT16 in BCC produces better contrast compared to the CC

counterpart, 4-cd. The time measurements in Figure 4.6 show that the gradient estimation

with OPT16, for example, is slower than that of 4-cd by a factor of about 1.04.
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0.10, 72.10, 73.75

(a) 2-cd

0.05, 72.27, 73.86

(b) ǫ-cd

0.37, 72.47, 73.52

(c) 4-cd

0.05, 70.23, 71.82

(d) BCD

0.05, 69.72, 71.54

(e) ǫ-CD

0.20, 68.85, 70.65

(f) OPT16

Figure 4.5: Carp data set downsampled to a 160×160×160 CC grid (a-c) and a 126×126×
252 BCC grid (d-f) and prefiltered appropriately for interpolation filters on the respective
grids. Isosurface reconstructed and shaded using tricubic B-spline interpolation on CC and
quintic box spline interpolation on BCC. The timing data (in seconds) indicates the normal
computation time, the scalar interpolation time and the total render time respectively. All
images were rendered at a resolution of 512× 512.

(a) 4-cd (56.35, 69.89, 129.00) (b) OPT16 (58.75, 68.38, 130.22)

Figure 4.6: DVR images of the downsampled carp CC (a) and BCC (b) datasets (prefiltered
for the respective interpolation filters) rendered at a resolution of 600× 390 pixels. Normal
computation time, scalar interpolation time and the total time (all in seconds) are indicated.
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Conclusion

Often times, the salient features in 3D data are not easily detectable by volume visualiza-

tion methods, especially those based on simple transfer function designs. Therefore, there

is often a need to pre-process data in a reliable manner so that the salient features are pre-

served. Such pre-processing methods are often based on a smoothing or anisotropic diffusion

framework, which requires laborious parameter tuning.

In this thesis we have presented a novel anisotropic diffusion model for 3D scalar data to

address these issues. We have used an intuitive definition for edges based on the directional

second derivative along the gradient. This led us to the design of a PDE with a stopping

function that is much less sensitive to its parameter σ and smoothes data while preserving

edges. We have shown that with this new stopping function diffusion is performed consis-

tently on an iso-surface regardless of the gradient magnitude, which is in contrast to previous

methods, like KM. Even more so, our proposed diffusion model remains second order and

much simpler to implement, unlike higher order and existing de-noising PDEs.

On the other hand, our results demonstrate some remarkable de-noising properties of

the proposed diffusion model. On this end, we have compared our results with a recent

PDE based de-noising technique on five different noise types.

With such consistent edge preserving smoothing and de-noising properties our diffusion

model has great utility in the context of visualization. We demonstrated the effect of our

diffusion model on the quality of the rendered images using a variety of datasets, including

both synthetic and real. Further, we showed its impact on multi-dimensional histograms,

which are the basis of many volume rendering algorithms. Specifically, we are able to recover

the arc patterns in the histogram even in the presence of strong noise. In the noiseless case,

59
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our diffusion has been found to still enhance these histograms without re-tuning a parameter

for each new dataset. This will eventually let the practitioner use our diffusion model as a

general purpose smoothing and de-noising tool without destroying salient features or tuning

a parameter.

When volumetric data are given in other types of lattices, for example BCC, practitioners

need to apply de-noising and other PDE methods directly on the given lattice without having

to convert them to CC. Along this line we have developed a general framework for designing

derivative estimation filters on arbitrary lattices whereby users can specify polynomial orders

along with filter sizes. These filters are compact and often small in size which are suitable

for solving PDEs. With this framework in hand, we can now implement our proposed

anisotropic diffusion and many other PDEs on regular lattices.

Finally, we conclude this thesis by providing all the filters for estimating first and second

derivatives for both CC and BCC lattices in Appendix C.



Appendix A

Formulae

A.1 Co-factor matrix of the Hessian

Given a 3D scalar function f : R3 → R we will use the notation fxy to denote the partial

derivative ∂
∂x

∂f
∂y

and the notation fxx to denote the second derivative along x, i.e. ∂2f
∂x2 and

so forth. Using these notations a Hessian matrix H can be written as the following:

H =









fxx fxy fxz

fxy fyy fyz

fxz fyz fzz









The co-factor of the Hessian, denoted by Hc, is another matrix where every element is

replaced by the co-factor of the corresponding element in H, and the simplification is given

below:

Hc =









fyyfzz − fyzfyz fyzfxz − fxyfzz fxyfyz − fyyfxz

fxzfyz − fxyfzz fxxfzz − fxzfxz fxyfxz − fxxfyz

fxyfyz − fxzfyy fxyfxz − fxxfyz fxxfyy − fxyfxy








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A.2 Gaussian and Mean Curvature

Gaussian Curvature G is given by the following

G =
1

‖∇f‖4
[

f2
x

(

fyyfzz − f2
yz

)

+ 2fyfz (fxzfxy − fxxfyz)+

f2
y

(

fxxfzz − f2
xz

)

+ 2fxfz (fyzfxy − fyyfxz)+

f2
z

(

fxxfyy − f2
xy

)

+ 2fxfy (fxzfyz − fzzfxy)
]

and the Mean Curvature K is given by

K =
1

2‖∇f‖3
[

2fyfzfyz − f2
x (fyy + fzz)+

2fxfzfxz − f2
y (fxx + fzz)+

2fxfyfxy − f2
z (fxx + fyy)

]

where the gradient magnitude is ‖∇f‖ =
√

f2
x + f2

y + f2
z .



Appendix B

Polynomial Order of Combined

Filter

Lemma B.0.1 Given two non-negative vectors u and v, i.e. ∀i, ui, vi ≥ 0, that satisfies

u ≥ v, i.e. ∀i, ui ≥ vi then

‖u− v‖1 = ‖u‖1 − ‖v‖1 (B.1)

Proof

‖u− v‖1

=
d

∑

i=1

|ui − vi|, d = dimensions

But ∀i, ui ≥ vi

=

d
∑

i=1

(ui − vi)

=
d

∑

i=1

ui −
d

∑

i=1

vi
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Since ∀i, ui, vi ≥ 0

=
d

∑

i=1

|ui| −
d

∑

i=1

|vi|

=‖u‖1 − ‖v‖1

Theorem B.0.2 Given a discrete n-OF derivative, an ǫ-OF continuous interpolation filter

and a required derivative order ς = ‖u‖1, see Equation (4.12) for u, the order (OF) of the

combined filter is given by

min(ǫ+ ς, n) (B.2)

Proof Lets assume a discrete n-OF derivative filter ∆ and a continuous ǫ-OF interpolation

filter w. Also, lets assume that ς = ‖u‖1 ≤ n otherwise the discrete filter ∆ would not be

able to recover the derivative with a lower polynomial order (OF).

Therefore, according to Equation (4.12) the following must be satisfied for the filter w.

awv (τ) =







0, ‖v‖1 ≤ ǫ, and v 6= 0

1, v = 0.
(B.3)

Similarly the following relationship must hold for the discrete derivative filter ∆:

a∆v =







0, ‖v‖1 ≤ n, and v 6= u

1, v = u and ς = ‖u‖1 ≤ n
(B.4)

Now we write the convolution relationship as given by the Equation (4.19) for the combined

filter Ψ = w ∗∆:

aΨx (τ) =
∑

0≤i≤x

a∆x−i · awi (τ), x ∈ N
d

substituting k = x− i and re-writing we have

aΨx (τ) =
∑

0≤k≤x

a∆k · awx−k(τ), x ∈ N
d (B.5)

To analyze aΨx (τ) for each x we will use the following three cases. For all the cases we will
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assume that all the Taylor Coefficients, i.e. awx (τ) and a∆x , are positive so as to create worst

possible scenario by avoiding cancellation in the summations.

• Case 1: ‖x‖1 < ς ≤ n

According to Equation (B.4) the terms a∆k in Equation (B.5) will all be 0. Hence, for

this case, aΨx (τ) = 0.

• Case 2: ‖x‖1 = ς ≤ n

Equation (B.5) could be written as:

aΨx (τ) = a∆x · aw0 (τ) +
∑

0≤k<x

a∆k · awx−k(τ)

Similarly to Case 1, for 0 ≤ k < x where ‖x‖1 = ς the terms a∆k = 0 and therefore

aΨu (τ) = a∆u · aw0 (τ)

Using Equation (B.3), aw0 (τ) = 1 and so we have

aΨu (τ) = a∆x (B.6)

Now, using Equation (B.4)

aΨx (τ) =







1 x = u

0 otherwise
(B.7)

Therefore, combined filter Ψ recovers the derivative u and u only.

• Case 3: ς < ‖x‖1 ≤ n

Note that for this case we are assuming ς < n while the situation ς = n is already

handled in the Case 2.

Assuming u < x, which is the worst case in this scenario, Equation (B.5) could be
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written as:

aΨx (τ) = a∆u · awx−u(τ) +
∑

0≤k≤x
k 6=u

a∆k · awx−k(τ)

Using Equation (B.4), a∆u = 1, yields

aΨx (τ) = awx−u(τ) +
∑

0≤k≤x
k 6=u

a∆k · awx−k(τ)

Now, for ‖x‖1 ≤ n and k 6= u, the terms a∆k will vanish and therefore

aΨx (τ) = awx−u(τ) (B.8)

According to Equation (B.3) the above will be 0 only if

0 < ‖x− u‖1 ≤ ǫ (B.9)

Taking the right hand side of the above inequality (Equation (B.9)) we have

‖x− u‖1 ≤ ǫ

Using Lemma B.0.1

‖x‖1 ≤ ǫ+ ς, ‖u‖1 = ς (B.10)

On the other hand, the left hand side of the inequality (Equation (B.9)) only reveals

that ‖x‖1 > ς which was the basic premise of this case anyway.

Hence, for this case, the term aΨx (τ) = 0 when ‖x‖1 ≤ ς + ǫ and ‖x‖1 ≤ n. Another

way of writing this is

‖x‖1 ≤ min (ς + ǫ, n) (B.11)
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Finally we write the Taylor Coefficients of our combined filter Ψ = w ∗∆ as:

aΨv (τ) =







0, ‖v‖1 ≤ min (ǫ+ ς, n) , and v 6= u

1, v = u.
(B.12)

which proves that the polynomial order (OF) of Ψ is min (ǫ+ ς, n)

We can understand the above theorem more intuitively by considering a sampled polynomial

function of degree n. According to the definition of OF (see Section 4.1.2) we can apply

our n-OF discrete derivative filter ∆ on the samples to recover the exact derivate of the

function at the grid points. Since the order of the derivative is ς, the polynomial degree of

the derivative will be n − ς. Therefore, we only need a continuous filter w of ǫ-OF, where

ǫ = n − ς, to interpolate this sampled derivative function perfectly. Since we started out

with a sampled polynomial function of degree of n and recovered its derivative perfectly,

the overal polynomial order of the combined filter Ψ = w ∗∆ will be n or ǫ+ ς, whichever

is smaller, i.e. min (ǫ+ ς, n).



Appendix C

Taylor Series Filters Weights

C.1 Filters for First Order Derivatives

The weights are for filters that compute the first order derivative along the x axis. First

derivative along other axes can be inferred easily from this.

Note that the filter weights need to be divided by hx, the scaling factor along x axis, as

indicated by each of the tables listed below. For filters along other axes, the weights need

to be divided by their corresponding scaling factors, i.e. hy and hz.

C.1.1 First Order Derivative Filters for CC

Lattice Coordinates hx· Weight

(1, 0, 0) −1/2
(−1, 0, 0) 1/2

(a) 2-cd (2-OF, 2-EF)

Lattice Coordinates hx· Weight

(1, 0, 0) −2/3
(−1, 0, 0) 2/3
(2, 0, 0) 1/12
(−2, 0, 0) −1/12

(b) 4-cd (4-OF,4-EF)

Table C.1: First order derivative filters for CC
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C.1.2 First Order Derivative Filters for BCC

Lattice Site Coordinates hx· Weight

(2, 0, 0) −1/4
(−2, 0, 0) 1/4

(a) SOCD (2-OF,2-EF)

Lattice Site Coordinates hx· Weight

(1,±1,±1) −1/8
(−1,±1,±1) 1/8

(b) BCD (2-OF,2-EF)

Lattice Site Coordinates hx· Weight

(1,±1,±1) −1/6
(−1,±1,±1) 1/6
(2,±2,±2) 1/48
(−2,±2,±2) −1/48

(c) OPT16 (4-OF,4-EF)

Lattice Site Coordinates hx· Weight

(1,±1,±1), (2, 0, 0) −1/6
(−1,±1,±1), (−2, 0, 0) 1/6

(2, 0,−2), (2,−2, 0), (2, 2, 0), (2, 0, 2) 1/32
(−2, 0,−2), (−2,−2, 0), (−2, 2, 0), (−2, 0, 2) −1/32

(2,±2,±2) 1/192
(−2,±2,±2) −1/192

(d) OPT26 (4-OF,4-EF)

Table C.2: First order derivative filters for BCC

C.1.3 Taylor Coefficients Plot for First Derivative Filters

In this section we plot the Taylor Coefficients of each filter and group them by EF. For

clarity we only plot for the derivative orders n, where most significant errors are made.

Therefore Figure C.1 plots Taylor Coefficients of both CC and BCC filters in the third

derivative order.
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Figure C.1: Plot of absolute Taylor Coefficients in the third derivative (n ∈ η3) order for
different 2-EF filters in CC and BCC.
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Figure C.2: Plot of absolute Taylor Coefficients in the fifth derivative (n ∈ η5) order for
different 4-EF filters in CC and BCC.
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C.2 Filters for Second Order Derivatives

In this section we provide filters for estimating second order derivative of fxx and fxy. The

other second order derivatives filters, like filters for estimating fyy, fzz, fxz and fyz, can be

inferred easily from that of fxx and fxy.

For every filter we also provide a plot of Taylor Coefficients where the most significant

errors are made, and hx, hy are the scaling factors along x and y axes respectively. Note

that the filter weights in this case need to be divided by either h2x or hxhy (quadratic order),

as indicated by each of the tables listed below.

In this section we will use the following naming convention for every filter.

Filter Name = (Lattice Type)-(Derivative Type)-(EF of the Filter)

Where

(Lattice Type) ∈{CC,BCC}
(Derivative Type) ∈{xx, xy}
(EF of the Filter) ∈{2ef,4ef}

Therefore a name of CC-xx-2ef refers to a 2-EF filter in CC lattice that estimates the

derivative of fxx. Likewise, BCC-xy-4ef refers to a 4-EF filter in BCC lattice that estimates

the derivative of fxy and so forth.
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C.2.1 Second Order Derivative Filters for CC

Lattice Site Coordinates h2x· Weight

(±1, 0, 0) 1
(0, 0, 0) −2

(a) CC-xx-2ef (3-OF,2-EF)

Lattice Site Coordinates hxhy· Weight

(−1,−1, 0), (1, 1, 0) 1/4
(1,−1, 0), (−1, 1, 0) −1/4

(b) CC-xy-2ef (3-OF,2-EF)

Lattice Site Coordinates h2x· Weight

(±2, 0, 0) −1/12
(±1, 0, 0) 4/3
(0, 0, 0) −5/2

(c) CC-xx-4ef (5-OF,4-EF)

Lattice Site Coordinates hxhy· Weight

(−2,−2, 0), (2, 2, 0) 1/144
(−1,−2, 0), (1, 2, 0) −1/18
(1,−2, 0), (−1, 2, 0) 1/18
(2,−2, 0), (−2, 2, 0) −1/144
(−2,−1, 0), (2, 1, 0) −1/18
(−1,−1, 0), (1, 1, 0) 4/9
(1,−1, 0), (−1, 1, 0) −4/9
(2,−1, 0), (−2, 1, 0) 1/18

(d) CC-xy-4ef (5-OF,4-EF)

Table C.3: Second order derivative filters for CC
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C.2.2 Second Order Derivative Filters for BCC

Lattice Site Coordinates h2x· Weight

(±2, 0, 0), (2, 2, 0) 1/4
(0, 0, 0) −1/2

(a) BCC-xx-2ef (3-OF,2-EF)

Lattice Site Coordinates hxhy· Weight

(−1,−1, 1), (1, 1,−1), (1, 1, 1), (−1,−1,−1) 1/8
(1,−1, 1), (−1, 1,−1), (−1, 1, 1), (1,−1,−1) −1/8

(b) BCC-xy-2ef (3-OF,2-EF)

Lattice Site Coordinates h2x· Weight

(±4, 0, 0) −1/48
(±2, 0, 0) 1/3
(0, 0, 0) −5/8

(c) BCC-xx-4ef (5-OF,4-EF)

Lattice Site Coordinates hxhy· Weight

(−1,−1, 1), (1, 1− 1), (1, 1, 1), (−1,−1,−1) 1/6
(1,−1, 1), (−1, 1,−1), (−1, 1, 1), (1,−1,−1) −1/6
(−2,−2, 2), (2, 2,−2), (2, 2, 2), (−2,−2,−2) −1/96
(2,−2, 2), (−2, 2,−2), (−2, 2, 2), (2,−2,−2) 1/96

(d) BCC-xy-4ef (5-OF,4-EF)

Table C.4: Second order deriviate filters for BCC
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C.2.3 Taylor Coefficients Plot for Second Derivative Filters

In this section we plot the Taylor Coefficients of each filter and group them by EF. For

clarity we only plot for the derivative orders n, where most significant errors are made.

Therefore Figure C.3 plots Taylor Coefficients of both CC and BCC filters in the fourth

derivative order. This is because OF of a 2-EF filters will be 3 (see Equation (4.14)) and

hence all the errors will be made in the fourth order and beyond. Similarly, all the errors

of a 4-EF second derivative filter will be made in the sixth order and beyond.
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Figure C.3: Plot of absolute Taylor Coefficients in the fourth derivative (n ∈ η4) order for
different 2-EF fxx estimating filters in CC and BCC.
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Figure C.4: Plot of absolute Taylor Coefficients in the fourth derivative (n ∈ η4) order for
different 2-EF fxy estimating filters in CC and BCC.



APPENDIX C. TAYLOR SERIES FILTERS WEIGHTS 77

 

 

BCC-xx-4ef

CC-xx-4ef

A
b
so
lu
te

T
ay
lo
r
C
o
effi

ci
en
t:
|a

∆ n
∈
η
6
|

Derivative order: n ∈ η6

[0
,0
,6
]

[0
,1
,5
]

[0
,2
,4
]

[0
,3
,3
]

[0
,4
,2
]

[0
,5
,1
]

[0
,6
,0
]

[1
,0
,5
]

[1
,1
,4
]

[1
,2
,3
]

[1
,3
,2
]

[1
,4
,1
]

[1
,5
,0
]

[2
,0
,4
]

[2
,1
,3
]

[2
,2
,2
]

[2
,3
,1
]

[2
,4
,0
]

[3
,0
,3
]

[3
,1
,2
]

[3
,2
,1
]

[3
,3
,0
]

[4
,0
,2
]

[4
,1
,1
]

[4
,2
,0
]

[5
,0
,1
]

[5
,1
,0
]

[6
,0
,0
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure C.5: Plot of absolute Taylor Coefficients in the sixth derivative (n ∈ η6) order for
different 4-EF fxx estimating filters in CC and BCC.
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Figure C.6: Plot of absolute Taylor Coefficients in the sixth derivative (n ∈ η6) order for
different 4-EF fxy estimating filters in CC and BCC.
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López. Automatic noise estimation in images using local statistics. Additive and mul-
tiplicative cases. Image and Vision Computing, 27(6):756–770, 2009.

[3] Usman Raza Alim, Alireza Entezari, and Torsten Möller. The Lattice-Boltzmann
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