COMBINING SIMPLE TRACKERS USING STRUCTURAL SVMS
FOR OFFLINE SINGLE OBJECT TRACKING

by

Bahman Yari Saeed Khanloo

B.Sc, University of Tehran, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
in the School
of

Computing Science

© Bahman Yari Saeed Khanloo 2010
SIMON FRASER UNIVERSITY
Summer 2010

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Bahman Yari Saeed Khanloo
Degree: MASTER OF SCIENCE
Title of thesis: COMBINING SIMPLE TRACKERS USING STRUCTURAL SVMs

FOR OFFLINE SINGLE OBJECT TRACKING

Examining Committee: Dr. Anoop Sarkar
Chair

Dr. Gregory P. Mori, Senior Supervisor

Dr. Ghassan Hamarneh, Supervisor

Dr. Ze-Nian Li, SFU Examiner

Date Approved: ‘T!i[? 4()‘“1 cQ-D\O MQMC‘Q ciCNtQ Y Al’lﬁ 951{) élO 10

11

SF SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Last revision: Spring 09

Abstract

We introduce MMTrack, our single-target tracking system, that combines the idea of cluster-based
and adaptive appearance modeling. MMTrack uses SVMs for linearly aggregating simple trackers.
We focus on modeling tracking as a structured output prediction task where the goal is to find a
sequence of interdependent locations of the target given a video. Since trajectories are difficult to
characterize and that ”bad” trajectories are (usually) not given, we require a principled way for au-
tomatically generating them. Following recent advances in machine learning, we discriminatively
learn the tracking task by first generating bad trajectories and then employing a max-margin criterion
to learn how to distinguish among ground truth trajectories and all other possibilities. Our frame-
work for tracking can be of general interest since one can add or remove trackers easily to obtain a
customized tracker with desired properties. Our method enjoys robustness against occlusion, drift
and appearance change. We applied our framework to single pedestrian tracking and experimen-
tally demonstrated the effectiveness of our method on a real-world data set by achieving comparable

results to the state-of-the-art tracking systems.

il

v

“’If you are not falling, you are not trying.”

— SONNIE TROTTER

Acknowledgments

I would like to take advantage of this opportunity and acknowlede numerous people who were in-
fluential during my studies and scholarly work at Simon Fraser University. First of all, I am grateful
to my supervisor Greg Mori for the patience, support, deep insights, encouragement, invaluable
directions and thoughtful omissions. I would like to thank Kevin Murphy who introduced me to
probabilistic machine learning and Bob Hadley whose insights in neural networks inspired me a lot.
I have been fortunate to work in the friendly environment of Vision and Media Lab (VML) where
constructive and stimulating ideas from faculty and student colleagues were always of help. Specifi-
cally, I wish to express my gratitude to Mohammad Norouzi, Mani Ranjbar and Yang Wang for their
generous discussions, genuine directions and friendly support. Also, I warmly thank my colleague
Ferdinand Stefanus for his honest cooperation and useful discussions. Finally, I appreciate valuable
comments by the committee Ze-Nian Li, Greg Mori and Ghassan Hamarmeh and extend thanks to

Anoop Sarkar for taking the time to serve as chair for my defense seminar.

Contents

Approval ii
Abstract iii
Quotation iv
Acknowledgments v
Contents vi
List of Tables viii
List of Figures ix
1 Introduction 1
1.1 Pedestrian Detection 2
1.2 Pedestrian Tracking 3
1.3 Combining Trackers 4
1.4 Features e 5
1.5 LearningandInference 9
1.6 Contribution e e e e e 9
2 Previous Work 11
2.1 Multi-Class Support Vector Machines 12
2.2 Structural Support Vector Machines, 13
2.3 Cutting Plane Training of SSVMs o oL 16

Vi

3 Preliminaries
3.1 Max-Margin Learning for Structured Spaces
3.2 Modeling StructureintheData
3.3 The Cutting Plane Method

Structural Support Vector Machines for Tracking

4.1 Trajectory Modeling
4.2 Max-Margin Formulation for Tracking
4.3 TrackingasInference,

Details and Experiments

5.1 Implementation Details
5.2 Automatic Trajectory Extraction
53 Results.

6 Conclusion

Bibliography

Vil

18
18
19
21

23
23
26
30

3
32
32
33

37

38

List of Tables

5.1 Our tracking results with different learning and loss functions on 22 test samples. . 33

5.2 Comparisonof trackingresults. o L 0oL 34

viii

List of Figures

1.1
1.2

2.1

4.1

42
43

5.1
52

A frame and its corresponding HOG featuremap. 6
Color histogram distance features generation: a) Nine histograms are computed over
sections of the detected person’s bounding box and the resulting histograms are
concatenated to give a hierarchical description. b) all such histograms are clustered.
¢) Histogram distance maps are then generated for every frame by sliding a window
and computing the y?-distance between the histogram of each of the sections of the

window to the cluster mean to which the target belongs. 7

A few stages of cutting plane optimization. Shading denotes the current solution
and we start with no constraints and wg = 0. a) First constraint added which cuts
off the solution. b) Another constraint added and the solution recomputed. ¢) The

procedure is repeated until no violation more than ¢ is detected. Figure taken from {1]. 17

Our model: a tree-structured CRF with the initial label and all the inputs observed.
The rectangles show the factors of the graph and the plate notation refers to 7" — 1
replications of the structure for each frame that give the temporal model. 24
A given image sequence X and trajectory y and their unnormalized joint representation. 26

Some stages of optimization: green is the ground truth and red is the negative example. 29

Snapshots from the UBC fireworks dataset. 31
An example illustrating the motivations behind our design of features. The tracked
“objects” throughout the trajectories are shown in red insets and also superimposed
along the trajectories. Left: HOG+histograms, Middle: HOG+templates, Right:
HOGH+histogram-+templates. 36

X

Chapter 1

Introduction

Computers were built to help make repetitive and time-consuming tasks easier to perform for hu-
mans. Computer scientists, however, have been interested in developing systems than can accom-
plish complicated tasks with minimum amount of supervision. In other words, people have been
aiming at incorporating intelligence in their systems. In fact, the grand goal of artificial intelligence
is to build intelligent machines i.e. machines that can ideally decide and act as an intelligent human
being would. Since describing and formulating real-world problems has proven to be unpredictably
challenging, we are often concerned with building intelligence by having machines “learn” to solve
the tasks of interest by looking at problem-solution instances.

Generally speaking, computer vision is concerned with understanding images and videos. Aside
from extracting problem-specific features and representations from images and videos and devising
algorithms that can handle the related tasks, computer vision researchers have recently been able
to successfully employ learning algorithms in this area. Hence, many problems have often been
redefined or revisited from the learning point of view. For example, object recognition problem is
sometimes defined as the problem of learning to recognize objects. Although irregularities or rare
characteristics can be of interest, the learning perspective of vision originates from the belief that
similar events tend to have specific patterns or statistics that implicitly reflect their commonalities.
Interestingly, the viewpoint of learning to perform vision tasks has brought up many interdisci-
plinary challenges and issues that has motivated contributions from both the theoretical learning and
practical vision communities,

Here, we are interested in applying computer vision in traffic monitoring and analysis of public
transportation. Our work is motivated by the fact that motion statistics and behavioural patterns

of people and pedestrian-vehicle interactions on the roads can help improve civil architecture and

CHAPTER 1. INTRODUCTION 2

road safety. Since gathering such statistics is extremely costly and tedious, our long term goal is
to develop reliable systems that can automatically perform these tasks. Hence, we seek to devise
algorithms that, given a recorded video of the settings of interest, summarize the activities and
motion patterns of people and their interaction with vehicles. Specifically, we focus on tracking
the pedestrians that show up in a given video sequence. This would enable us model pedestrian
vehicle interactions as well as pedestrian movement patterns from sidewalk to road and vice versa.
Following the previously mentioned learning perspective of vision problems, we try to learn to
perform tracking by appropriately representing the trajectories and learning to differentiate among
good and bad ones given their features. This is inspired by the observation that complex objects,
such as trajectories, can be compactly represented using their statistics. For instance, a trajectory
can be described by the expectations of patterns of movements and changes in the appearance of
the object being tracked. The complexity of objects of interest, on the other hand, suggests using
multiple trackers. Therefore, we use a classifier in order to aggregate multiple trackers and learn to
characterize the difference between the representations of good and bad trajectories so as to be able
to predict a good trajectory by choosing one that respects the expected distributions most. Although
characterizing trajectories brings up challenges and issues and learning and inference is costly, we
benefit from the added flexibility in terms of features and gain good performance in pedestrian
tracking and hope our work would help understand related problems better.

The thesis is organized as follows. The remainder of introduction briefly describes pedestrian de-
tection and tracking and their connection. Next, having motivated tracker combination approaches,
we explain our features and learing and inference and summarize the contribution. Chapter 2 dis-
cusses the previous work and recent advances in learning functional dependencies in structured
spaces that extend them. Chapter 3 briefly reviews some background knowledge that our learn-
ing and inference schemes build upon. Chapter 4 provides detailed information about our tracking

system. Chapter 5 presents experimental evaluations and Chapter 6 concludes the thesis.

1.1 Pedestrian Detection

Object detection generally refers to the problem of localizing objects of a specific category (such
as cars, buildings or pedestrians) in an image or a video. Since building models that can faithfully
describe objects is difficult, we are often interested in finding rectangular bounding boxes that en-
close the region of the image that belongs to the object of interest such that the center of the object

coincides with the center of the box. This is usually done by sliding a window all over the image

CHAPTER 1. INTRODUCTION 3

and examining whether that window contains an object belonging to the desired category.

Object detectors are often classifiers that decide upon existence of object of interest based on
the evidence in a given bounding box. Pedestrian detectors usually perform similarly to detectors
designed for other object categories and differ only in the features they employ. Although we do
not aim to build a pedestrian detector, we use a state-of-the-art detector [13] in order to initiate our
tracking algorithm.

Detection is challenging a problem because objects may be occluded (by objects in the same
or different category) or appear in different angles, sizes or scales. They can be of non-rigid or
articulated nature (e.g. human body), have a complex shape or pose or even be irregular i.e. have
an unusual appearance (for example a person may be missing a leg or wearing a backpack). More-
over, general challanges of computer vision problems such as image noise, differences in scene

illumination and information loss in 3D to 2D projection are also to be dealt with.

1.2 Pedestrian Tracking

Object tracking, in its simplest and most general setting, is the task of following an object of interest
throughout a video sequence and obtaining its trajectory while it is within the field of view or until
some other criterion is satisfied. Tracking is an important computer vision task with numerous appli-
cations such as human tracking, motion-based recognition, automated navigation, human-computer
interaction, traffic monitoring and video surveillance [44].

Tracking and detection are tightly coupled tasks that can potentially help one another. One can
think of tracking as a sequence of detections [27] with some considerations. Namely, motion, time
coherence and color are often ignored in object detection. Moreover, since time comes into play in
tracking, one has to handle identity preserving issues as many instances of the same category can
show up in a video sequence simultaneously for a considerable amount of time.

The tracking problem is very challenging in general due to appearance change, camera motion
and the motion of object of interest. Needless to mention that all previously noted issues discussed
under object detection also come up in the tracking problem in more or less similar way.

We will be making a few simplifying assumptions to narrow down the problem and to make it
tractable. We are interested in the problem of tracking an object in a video recorded using a sta-
tionary camera where the initial location of the object is given by some detector which is assumed

to be perfectly reliable. Presuming that a mechanism for performing multi-object tracking exists,

CHAPTER 1. INTRODUCTION 4

we focus our attention on building a good single-object tracking system. Finally, instead of frame-
to-frame tracking, we choose to estimate the trajectory of the object throughout the whole video
sequence at once hoping that we can gain robustness against occlusion and compensate for simpli-
fications made in our model and respresentations. Although our tracking framework is general, we
make it specific for pedestrian tracking by using appearance and motion models that are designed to

describe pedestrians.

1.3 Combining Trackers

Building a good tracker that can do well in all the possible complicated settings turns out to be
impractical. However, a common approach for overcoming some of the above mentioned challenges
is to introduce a number of different trackers that either individually or in groups explain different
part of the problem. Most tracking systems amount to defining a set of features that best describe the
appearance of the object along with a motion model that explains the patterns of movements between
consecutive frames. The appearance and motion models are usually treated separately by tracking
algorithms, using independent components whose parameters are set or learned independently (e.g.
Haar-like features for appearance model and constant velocity dynamics as the motion model [42],
or Eigenbasis appearance model-Brownian motion model pair [31]).

Further, choosing an appearance model is itself challenging due to appearance change of the
target and potential similarity in appearance with other objects. Ramanan et al. [30] consider a
static approach to appearance modeling using clustering while Collins et al. [9] use online adaptive
appearance modeling. A good appearance model should be able to strike a balance between resis-
tance to drift and adaptation of the object’s appearance over time. This suggests that a combination
of static and continually updated cues may help a tracker achieve superior performance. It has been
shown that combining different cues helps improve tracking performance, if it is done in a princi-
pled manner [35, 27]. Note that aside from multiple trackers, [27] includes a segmentation i.e. a
delineation of boundaries for obtaining better appearance models (which is not always practical due
to view limitations or background similarities etc.). Many existing multi-cue tracking algorithms,
however, combine the cues with either fixed weighting [5, 34, 33], or update the weights according
to a heuristically-selected measure [23, 26].

Another approach that has gained popularity recently is to use some feature selection criteria
to select the features that best discriminate the appearance of the object from its surroundings. In

{91, a Fisher-like criterion is used to select the most discriminative features at each frame, whereas

CHAPTER 1. INTRODUCTION 5

in [3], a boosting mechanism is used to select the best features from a fixed pool of features. Both
methods, however, use only one type of feature (linear combination of RGB channels for [9], and
Haar-like features for [3]). Considering the fact that different feature types help and that the features
are not independent from each other necessarily, we try to combine various features and determine

their relative contribution in a principled way.

1.4 Features

In general, learning, inference and features are closely related to each other. Often, it is very difficult
to consider the wide range of possibilities of these components since exhaustively trying all the
combinations is impractical for most of the frameworks and real-world problems. Therefore, we
usually choose a learning and inference framework and try to extract features that are suitable for
both the problem and the framework or vice versa. Here, we are interested in exploring the former
approach and define our task-relevant features accordingly. It is known that the choice of “good”
features has an important contribution towards performance. Yet, we design a set of features in such
a way that they fit our specific framework. More precisely, we require our features not only to be
informative but also to respect the nature of our training procedure. In what follows, we briefly
describe the intuitions behind our choice of features and then explain the roles of the features and
associate them with their names.

Our goal is to combine the idea of constant appearance modeling [30] and adaptive appearance
modeling by striking a balance between trackers representing each of them. Specifically, we intro-
duce a component that forces constant appearance and another that models the appearance change
over time. Also, we use trackers built on top of hierarchical color histograms that describe how the
histograms of different parts of the bounding box enclosing the pedestrian deviate from their mean
over time. Note, however, that we are not interested in recognition (i.e. learning to describe how
pedestrians tend to look like) as a pedestrian detector would. Instead, we use information from a
reliable detector to help us with localization.

We expect the Histogram of Oriented Gradients (HOG) feature to be of help to the system in dis-
criminating between pedestrians and non-pedestrian objects (e.g. car, trees, etc.). Color histogram
distance features are used to provide information about the deviation of appearance of the tracked
pedestrian. Appearance template features, on the other hand, give clues about a particular pedes-
trian at a finer level than the histogram distance features. Further, other than the static histogram

distance features, another type of appearance template feature is used to explain expected patterns of

CHAPTER 1. INTRODUCTION 6

appearance updates for pedestrians. With the combination of both static and continually-updated ap-
pearance model, we hope to achieve a good balance between resistance to track drift and adaptation

to a pedestrian’s varying appearance throughout its trajectory.

HOG Score

We use the output of the linear SVM classifier that operates on HOG [13] as a feature to help our
system differentiate between pedestrians and other objects. We trained the SVM classifier to detect
pedestrians in top-down view so as to make it suitable for our particular experimental setup. The
detection window size is set to 48x112 and the detection is performed on a pyramid built on the
input image with its scale varying up to 130% of the original resolution. For each pixel. we take the
maximum SVM score over all scales resulting in a score map where the peaks vote for presence of
pedestrians. We then normalize these scores so they fall within the range [0,1] and use the final map
as our feature. Figure 1.1 illustrates an input image along with the corresponding normalized HOG

score map.

Figure 1.1: A frame and its corresponding HOG feature map.

Color Histogram Distance

Although HOG scores can help the system differentiate between pedestrians and other objects, they
are not informative in distinguishing among different pedestrians, as many pedestrians will poten-
tially have high HOG scores. Thus, features that convey identity i.e. features that can uniquely resp-
resent the appearance of a pedestrian are needed. We incorporate such features using a static color
histogram model obtained from clustering. The main idea here is that by clustering the histograms
obtained from bounding boxes around the pedestrians throughout the video, we can gain a good

insight into the average appearance statistics of each of the people. Thus, we will be able to track

CHAPTER 1. INTRODUCTION 7

T B ER Be B £ .
AL ANAs s st an

c)

. DR o i Py P11
IS A T
-) - - - s :'

ab R =
[.

Figure 1.2: Color histogram distance features generation: a) Nine histograms are computed over
sections of the detected person’s bounding box and the resulting histograms are concatenated to
give a hierarchical description. b) all such histograms are clustered. ¢) Histogram distance maps
are then generated for every frame by sliding a window and computing the x?-distance between the
histogram of each of the sections of the window to the cluster mean to which the target belongs.

CHAPTER 1. INTRODUCTION 8

the change instead of trying to learn the appearance and so we would be able to obtain a simple yet
effective appearance model. Note that static appearance features in our tracker contributes towards
gaining resistance againts drift that often occurs in tracking systems with dynamically-updated ap-
pearance models.

The generation of the color histogram distance features is as follows. Based on the image evi-
dence inside the bounding box obtained from a HOG detection, nine histograms are computed over
different sections of a pedestrian’s body as depicted in the second column of Figure 1.2. Each his-
togram consists of 30 bins with 10 bins for each of the R, G and B channels. These nine histograms
are then concatenated together to give one histogram characterizing the person’s appearance. Next,
we cluster all the instances of histograms of all the people in the video using the mean-shift clus-
tering algorithm. We then represent the target pedestrian using the mean of the cluster to which it
belongs. Finally, we compute one histogram distance map for each of the nine body sections by
computing, at each pixel location, the y?-distance between the histogram built using the image ob-
servation within the corresponding section of the bounding box centered at that pixel and the mean
of the cluster to which the target belongs. The resulting maps have low values in areas with sim-
ilar color to the target person’s and high values elsewhere. We efficiently compute the histogram

distance maps using the integral histogram trick [28].

Appearance Templates

Besides a person’s color histogram distance maps, we use appearance templates to describe the
person’s appearance. We use two templates: a template obtained from the image patch inside the
bounding box surrounding the given location of the target in the initial frame, and another template
obtained similarly from the previous frame. The initial template implements a constant appearance
model which is used to provide a fixed reference to the person’s appearance similar to the cluster
center of the color histograms. However, the initial appearance template describes the person’s
appearance at a finer level of detail than the histogram distance features. This template acts as a
memory template which ensures that the tracker does not completely forget about the appearance
of the target when it first showed up. On the other hand, the previous frame template incorporates
the idea of adaptive appearance modeling because it mimics the appearance adaptation mechanism
by encoding the expected amount of frame-to-frame change of the tamplate during the inference,
which helps the system cope with some degree of object appearance changes over time.

Distance maps are computed for each of the templates by sliding each template over the current

frame, and computing the sum of absolute pixel value differences in all three color channels of each

CHAPTER 1. INTRODUCTION 9

pixel belonging to the template, which is efficiently performed using a modified integral image trick

[41]. These distance maps are then normalized to fall in the rage of [0,1].

1.5 Learning and Inference

As noted before, we are interested in exploring learning perspective of the tracking problem. In fact,
since we believe that temporal information is important when modeling tracking, we are concerned
with the problem of learning to predict trajectories as structured objects. Although we do not build
upon probabilistic interpretations, we will be using a simple probabilistic temporal model in order
to define our learning and inference procedures.

We propose to use a large margin criterion for learning. In our formulation, having considered
each feature as a tracker, we define our tracker to be a linear combination of individual trackers
whose relative contributions i.e. the weights are jointly determined. The idea is to induce an ap-
propriate features space where any given trajectory can be summarized as a point and use a Support
Vector Machine (SVM) in order to learn to produce good trajectories. Therefore, tracking amounts

to performing an inference in our temporal model given the model parameters.

1.6 Contribution

The main contribution of this thesis is to employ structural support vector machines in the context
of object tracking. Structural SVM is a recent development in machine learning that generalizes
multi-class Support Vector Machine formulation to deal with interdependent and structured variables
[37, 39]. Object tracking can be formulated as a structured output prediction problem, as it tries to
find the sequence of coordinates that best explain input features. This is verified by the observation
that the locations of an object in consecutive frames must be close to each other as an object is
assumed to have physically restricted movements. In addition, by formulating the problem as a
tree-structured Conditional Random Field (CRF), we will show that Structural SVM also provides
an intuitive and principled way to treat the feature representation and motion model in a unified way
while jointly learning the relative contributions of multiple cues.

The tree-structured CRF model and the inference scheme that we adopt is similar to the model
adopted in [5]. However, our objective is not to build a multi-target tracker but rather to define a prin-
cipled way to combine different cues. Berclaz et al. [S] combine simple cues such as ground plane

occupancy and color model by treating them equally (i.e. using fixed weighting), whereas we try to

CHAPTER 1. INTRODUCTION 10

find weights that represent relative contributions of features. In a way, the idea of combining differ-
ent cues in our framework is closely related to the approach presented in [35]. The main difference
is that instead of combining the results of muitiple ’observers’ (i.e. complete tracking systems each
having its own appearance and motion model), we fuse different appearance models and a motion
model. Moreover, the parameters for fusing the appearance models and motion model are learned
jointly in our case whereas in [35] the observers are combined according to error distributions that
are learned independently for each observer.

We adopted our framework to devise a single pedestrian tracking algorithm and demonstrated
the effectiveness of our method experimentally on a real-world data set achieving comparable resutls
to the state-of-the-art. This work was done in collaboration with Ferdinand Stefanus, Mani Ranjbar,
Ze-Nian Li and Greg Mori, parts of which appeared as a publication in [22]. My contribution to
this work centered around applying structural support vector machines in the context of single target

tracking using different sources of information.

Chapter 2

Previous Work

Supervised approaches for learning discrete labels from given independent objects have been around
for six decades now. Support vector machine [11], which maximizes the confidence in classification
using the so called margin criterion has been very successful in immensely many applications. Aside
from well studied theoretical foundations and generalization guarantees, support vector machines
enjoy efficiency in learning and prediction while being capable of handling very high dimensional
spaces through the kernel trick. The SVM recipe for modeling a group of variables i.e. multi-class
classification of multiple objects, however, is limited to introducing a single joint label for the entire
data set with the number of classes being exponential in the size of the set which is intractable. This
means that, in practice, SVM is unable to exploit the sparsity in structure for more efficient search
in the parameter space.

Although the general problem of modeling complex objects is difficult, the challenge has been
effectively addressed for many simple structures using probabilistic graphical models e.g. [4] and
[24]. Structured prediction i.e. the idea of combining graphical models and SVMs aiming at get-
ting the best of both frameworks was first investigated in the work Hidden Markov Support Vector
Machines (HM-SVM) [2] by Altun et al. which was based on an instance of working set optimiza-
tion for SVMs. This work was inspired mainly by perceptron-like discriminative training work by
Collins [8], learning structured output spaces using joint kernels by Hofmann et al. [15] and the
n-best algorithm [7]. In the following, another significant contribution towards combining graphical
models and the large margin framework, Max-Margin Markov Networks was proposed by Taskar et
al. {37] which resulted in a novel polynomial-size formulation. Tsochantaridis et al. [39, 40] and
Joachims et al. [20], however, viewed the problem as the problem of learning general functional

dependencies in structured output spaces and used the cutting plane method to exploit the structure

11

CHAPTER 2. PREVIOUS WORK 12

and sparsity in the dependency network (of course the cutting plane approach is believed to be in-
spired by the one best pseudo example approach employed in [2]). This line of work was closely
related to the learning framework developed for sequence alignment problem (which appeared also
as a technical report before publication of [37]) by Joachims in {18]. Interestingly, these pieces of
work later inspired the use of cutting plane method in efficient training of linear binary support vec-
tor machines [19]. Notably, a generative approach to the structured prediction problem was recently
introduced by Lampert and Blaschko [25] which, taking advantage of the one-class SVM formula-
tion, suggests building models for estimating the support of the joint space instead of modeling the
full joint distribution.

In the following, we briefly review some related pieces of previous work. For simplicity of
presentation, we start with the probabilistic view of multi-class support vector machines and build
on that to elaborate on a widely received structural extension of support vector machines and the

cutting plane approach used for training them.

2.1 Multi-Class Support Vector Machines

Support vector machines were originally formulated for 2-class classification. An extension to multi-
class SVM, however, is not quite straightforward. A common approach is the so called one-versus-
the-rest approach where k independent 2-class SVM classifiers are trained to distinguish among data
from their class and data from other k — 1 classes. Here, we are interested in the approach introduced
in [12]. In order to understand the idea, we start by drawing analogies between multi-class logistic
regression and the multi-class SVMs. In logistic regression for the k-class classification problem,

we assign a parameter vector to each class conditional and so we have
plyi = klzi; wi) = exp(wi 2). (2.1)
The learning is similar to the binary case and the predictor is derived similarly
gi = maxp(y; = klzi; wy). (2.2)

In order to optimize for prediction performance, we are interested in the following constraints
= k|xi,w
plyi = blzsw) o 2.3)
pyi = jlas; wj)
Note that w is the concatenation of weight vectors for individual classifiers and the choice of con-

Vi, V5 # k,

stant c is arbitrary. Thus, taking logs and picking an appropriate constant we obtain

Vi,Vj 74 k, Wle'i - WjTCEi > 1. (24)

CHAPTER 2. PREVIOUS WORK 13

In order to come up with a unique solution and to avoid overfitting, we consider a positive constant

A and /5 regularization of the parameters yielding the following objective

min A||w|| (2.5)
s.t. WkTZL‘i - WjTZL'i > 1, \V/Z,Vj 75 k. (26)

We wish to enforce a solution and hence need non-negative slack variables. However, instead of

introducing one slack variable for each constraint as in [43], we modify the constraints in Eq. 2.3 as

R P
Vi, ap(yz ‘“fl“w) j2 @7
max p(y; = jle;; w;
Vj#kp Yi = JiTis Wy

which results in the following program

min 3llwlf; + & 3 & (2.8)

st. Vi,Vi#y wylai—wile, >1-6, Vi,&>0. (2.9)

Here, C is a positive constant that requires a balance between the contributions of regularizer and
the prediction error. We observe that the objective is identical to SVM formulation. It suggests
that, according to the probabilistic perspective noted above (which was discussed in many works
including [14]), a valid multi-class SVM formalism can be obtained by writing down the usual
SVM objective with the constraints forcing a fixed gap between the correct and incorrect labels for

each example.

2.2 Structural Support Vector Machines

As pointed out earlier, the structural extensions of support vector machines aim at enabling SVMs
to deal with complex objects. Thus, instead of predicting a single label for each instance, we wish
to predict a set of labels for a group of interdependent variables jointly. In structural SVM, we inject
the properties of a graphical model of interest into SVM classifier using the features coming from a
structural extension of the same model.

An interesting instance of this generic problem is the case where predicting a sequence of vari-
ables that describe the same category of events is desired. The structural SVM becomes capable of
capturing sequential and possibly overlapping dependencies by mimicing, for instance, the structural

extension of logistic regressor i.e. Conditional Random Fields model [24]. For brevity, we restrict

CHAPTER 2. PREVIOUS WORK 14

ourselves to problems where input varibles are observed and a set of shared parameters are respon-
sible for explaining the input-output pairs {(x;,y;)}.—,. Similar to the multi-class formulation in

Eq. 2.1 and Eq. 2.3, the prediction rule for the i-th sample can be expressed as
yi= max p(yilxi; w), (2.10)

where the shared parameters w are to be estimated such that

vivy £y, D) @.11)
p(y[xi; w)
Again, taking logs we end up with
Vi,Vy # yi, log p(y:|xi; w) — log p(y|x;; w) > 1. (2.12)

As in Eq. 2.7, we come up with the following constraints
Vi, log p(yi|x;; w) — max log p(y|x;; w) > 1 (2.13)
y

which essentially results in the method discussed in [2]. The maximization in the above gives the
runner up to the ground truth (called pseudo example by the authors) which we call negative example
for consistency.

In order to explain complex objects, we introduce a loss function A(y;,y) called structural
loss that describes how a prediction y differs from the desired labeling y;. If we incorporate a
suitable loss and replace the log probabilities with their equivalent expression using Eq. 3.5, the

normalization terms get cancelled and including the regularizer and slack variables we obtain

min 3|wli; + 5 3, & (2.14)
s.t. vzlgz z O: F(xi:yi;w) — max F(xlaY7w) z A(yl’y) - 61 (215)
y

The above formulation is in fact the so called structural support vector machines. Here, the loss
function which reflects the quality of classifier in the specific problem at hand, accounts for the
fact that the gap i.e. the margin between a prediction and its corresponding ground truth must be
determined according to the loss incurred when predicting it.

It is worthwhile considering again the constraints in Eq. 2.15. In fact, each of these constraints

is implicitly representing exponentially many constraints given by

Vi.Vy #yi. F(x,ysw)—max F(x;,y;w) > Ay, y) — &- (2.16)
y

CHAPTER 2. PREVIOUS WORK 15

If we plug them in and use the feature representation $, we obtain the formulation in [39] given by

nnn—||w||2 qu st Vi, & >0, 2.17)

This method, which was proposed in [37] and [39] known as the margin rescaling formulation in the
latter, is extensively used since it is simple and the maximization needed to produce the constraints
in Eq. 2.15 can be made efficient for many problems. A drawback of this approach is that it may put
too much effort on pushing easy negative examples away from the ground truth namely manipulating
the margin size for examples that are far from being confusing. For example, a bad example with a
large slack might be unnecessarily prioritized resulting in other examples being dominated.

On the contrary, another approach is to maintain a fixed margin as in the general SVM formu-
lation and rescale the slack proportional to the loss. This is known as slack rescaling [39] which

focuses on difficult negative examples and results in the following optimization problem
min 3] jwii5 + £ 22, & 2.19)

st Vi,& >0, wld(x;,y) - maxwl®(x;,y)>1— (2.20)
y

Alyiy)”
To see the differences between these two methods for modeling the hinge loss, we observe that in the
margin scaling the position of the margin is adjusted whereas in slack scaling the slope is modified

and the marigin is fixed:
& = max (A(yi,y)(l - wio(x;,y:) + WT<I>(XiaY)))v (2:21)
&™ = max (A(yi, y) — wle(x;,yi) +wl O(x;, Y))' 2.22)
y

The slack £° in slack rescaling formulation is invariant to the loss scale changes. For instance, if
we set A’ = MA with A > 0, then we can get the same solution i.e. the same set of weights by
building a new program using A’ and C' = C/\. This is not the case in margin rescaling and one
also needs to rescale the feature vectors accordingly. In slack rescaling, the slack is just a function
of high scoring examples that reside in the margin area as the components of the right-hand side of
Eq. 2.21 are non-negative. Clearly, in margin rescaling this does not hold and an example can have a
huge loss with features that do not resemble the features of ground truth at all. In practice, however,
it turns out that the difference between these methods is not significant experimentally. On the other
hand, slack rescaling can be very complicated and expensive and so, one may wish to stick to the

margin scaling for many applications.

CHAPTER 2. PREVIOUS WORK 16

Although we limited our discussion to posterior probabilities, one can view structural SVM as a
powerful framework for learning arbitrary general dependencies that are expressible using tractable

probabilistic graphical models.

2.3 Cutting Plane Training of SSVMs

As pointed out earlier, the optimization problems we aim to solve are problematic in that we can not
hand them in directly to solvers that employ common methods as the huge number of constraints
renders them useless. Therefore, instead of solving the problem with full constraints, we seek to
find a polynomially sized subset of constraints such that if we solve for them we can guarantee a
predetermined desired accuracy [{40].

It is worth considering again the problem setting of interest. One can think of our problem
as a weighted instance of one class classification problem [32] where, given a number of positive
samples we are interested in localizing (i.e. finding the center of) the positive class by exploring the
“nearby” space. Here, we consider a polyhedron P constructed by querying the cutting plane oracle
(explained in Section 3.3) which is updated using potentially more accurate/informative queries as
we proceed. The idea is to approximate the borders by having data points vote for the location of the

positive set. In order to do so, we examine how much we can move each positive sample according

Algorithm 1 Cutting Plane Training of SSVM

Require: input pairs (x1,y1), ..., (Xn,¥n)s & C
Si=0,&6&=0,i=1,...,n
w=0,P=40
repeat
fori=1,..,ndo
Hiy) = { Alyi,y) — wld(x;,y:) + wle(x;,y) Margin Scaling }
Ay, y)(1 - wle(x;,y:) + wIO(x;,y)) Slack Scaling
y = argmax H(y)
y

&; = max (O,mak)q('H(y))

pASIH]
if H(y) > & + < then
S; =S U{y}

P = update(P, &(x;,¥))
w «— aggregate(P, §)
end if
end for
until no 5; has changed during iteration

CHAPTER 2. PREVIOUS WORK 17

wi
w? w? w‘:‘
= b) L c)

Figure 2.1: A few stages of cutting plane optimization. Shading denotes the current solution and
we start with no constraints and wg = 0. a) First constraint added which cuts off the solution.
b) Another constraint added and the solution recomputed. ¢) The procedure is repeated until no
violation more than ¢ is detected. Figure taken from [1].

to the displacement cost associated by function H(.). This is done by building vectors Ad; =
O(x;,y:) — ®(x;,y) that characterize the displacement for each positive sample, and weighting
them with their cost while trying to encourage the informativeness (i.e. prioritize displacements that
give negative examples which explore new places and the ones that are explaining finer details). This
is implemented using the aggregate function as explained in our simplified version of the method
in algorithm 1. Roughly speaking, this function expands the positive class boundaries by weighting
displacement vectors for each sample and considering the center of the region induced by all such
vectors as an estimate for the parameters w.

Figure 2.1 illustrates some consecutive weight updates for the slack scaling variation of the
cutting plane optimization. We summarize the procedure as follows. We iterate over the training
samples and solve for the examples whose constraint (the cost for the sample introduced by the
oracle) is violated by more than the current threshold. We shrink the threshold and obtain a new

relaxation using all the constraints added so far and repeat until the desired accuracy ¢ is reached.

Chapter 3

Preliminaries

3.1 Max-Margin Learning for Structured Spaces

Structured prediction problems are problems where predicting a number of interdependent variables
is desirable. The structure can either be modeled in inputs or outputs or both inputs and outputs.
Assuming that input and output variable vectors are of length L, we are interested in structured
prediction problems where we wish to learn a mapping from an input x € X'~ to a discrete output
label y € V¥ given training pairs (x1,y1), ..., (Xn, ¥n) drawn from some unknown yet fixed dis-
tribution P. Note that a sequence of inputs is to be mapped to a sequence of structured response
labels. So, we are dealing with a generalization of multi-class classification. Since solving for
one label per structure is impractical and in fact unnecessary for many of the problems, having ex-
ploited the structure and the relationships between output labels, we reduce the problem to finding
a discriminant function. Such a function is specified as a mapping F : X x Y — R which basi-
cally assigns a real-valued score to input-output pairs. Hence, the discriminant function becomes a

w-parameterized scoring function expressed by
f(x;w) = maxF(x,y; w)
yEY

whose maximum is ideally at the desired output y for a given input x. Further, one needs to extend
zero-one classification loss and introduce the notion of loss for structured prediction. The basic
underlying idea is to reflect the fact that different structure choices should be treated according to
their correctness using a bounded loss function A : Y* x Y& — R. This function is expected to
convey reliable information about how a prediction y = f(x; w) differs from the desired labeling

y. Then, the goal of learning is to find a function f(.;w) from a certain family of functions that

18

CHAPTER 3. PRELIMINARIES 19

minimizes the following weighted sum

Ra(f)=) Ay, fw(x)P(xy)
AxyeSs
where Ra(f) is the empirical risk on the training sample pairs S = {(x;,y;) € X x Y} drawn

from P. Considering the common i.i.d. assumption, the risk reduces to
1 n
Ra(f) =~ > Alyi, f(xi))
i=1

which is the quantity of interest in SVM learning framework. In fact, the max-margin recipe for
learning structured spaces amounts to minimizing an upper bound on the structural loss of the pre-

dictor f while avoiding overfitting using the so-called margin criterion.

3.2 Modeling Structure in the Data

In general, the term model refers to probabilistic models and modeling is the procedure of specifying
the relationship and dependencies between the variables according to the nature of the processes to
which they are assigned. Here, we are interested in models that use conditional independence for
describing the relationships between the variables. Specifically, we define a Markov network over
the variables so we can easily express the dependencies in terms of a product of factors defined over
subsets of these variables.

Consider prediction probiems where, instead of a single response variable y €), we are aiming
at predicting a set of variables y = (y(I), ..., y(™) C) x ... x Y,. For instance, y can model the
trajectory of an object in the context of tracking and each element y(?) in this variable vector would
represent the pixel location of the object at time ¢ € {1,...,n}. The joint space induced by these
variables is known as a structured space because it is characterized by their interdependence and
constraints. Interestingly, by exploiting the dependencies and interactions between the variables,
we would not need to model the whole space in practice. For example, in the tracking problem we
do not really need to consider the huge space of all possibilities and it is enough, for each pair of
consecutive frames, to look at nearby pixels of the hypothesized location because an object can not
“fly away”.

Structured prediction is the problem of learning to predict structured spaces. Again, we are
assuming that input and output variable vectors are of length L. In structured prediction, we are

interested in the general problem of learning a mapping from inputs x € X' to discrete output

CHAPTER 3. PRELIMINARIES 20

labels y € V'* given a training set S = {(x;,y;) € X x Y} containing n samples drawn uniformly
from some unknown but fixed distribution P. Hence, assuming that P comes from an exponential

family, we can express it as

n

p(SIw) = exp {Z CXEIOE g(xz-;vv))} G.1)

i=1
where g(.) is the partition function and ®(x,y) is a combined feature representation that encodes
the structure in input-output pairs. More precisely, the representation of the joint space respects
the independence assumptions of the network of variables on which it is defined. Considering the
Markov properties of the network and linearity of the model, each ®(x;, y;) factorizes as

O(xi,y:) = 3 e(Xi, ¥i): (3.2)
ceC

where C' is the set of maximal cliques defined over the variables and ®.(.) is the vector valued
potential function which provides a concatenated representation of the contributions of the nodes
and edges for clique ¢ in the underlying dependency graph. Interestingly, ®(x,y) is the sample
average of the sufficient statistics ®(X,Y) = > . ®(x;.y;) and we expect w to reflect this fact
appropriately. For example, the maximum-likelihood principle for the likelihood amounts to the

following condition
E[®(x,y)] = ®(5) = Es[®(x,y)] (3.3)

whereas the same principle for the likelihood ratios results in conditions on expectations on the
difference between sufficient statistics of the distributions that represent individual likelihoods. In
other words, in a likelihood ratio setting, w is supposed to tell us how the average of the values of
the features corresponding to each of the distributions differ from one another.

We restrict our attention to conditional models as modeling the input space is burdensome and

in fact unnecessary in most of the problems. So, the quantity of interest is

¥

p(ylx;w) = —Zﬁexw(x,y;w» (3.4)

where we have defined F(x,y;w) = (w, ®(x,y)) to be a linear scoring function that summarizes
the joint representation of a given pair (x,y). Since the model is log-linear, we can write down the
log-conditional in the following simple form

log p(y|x; w) = F(x,y; w) — log Z(x; w). (3.5)

Note that the normalizing constant Z is only a function of the input which is often cancelled out in

cases where likelihood ratio is being modeled.

CHAPTER 3. PRELIMINARIES 21

3.3 The Cutting Plane Method

The cutting plane method also known as the Kelley method [21] refers to general iterative methods
for solving optimization problems with linear inequalities. These methods are appealing since they
neither require differentiability of the objective and constraints nor do they need the evaluation
of these quantities at each iteration and so they are suitable for problems with large number of
constraints. For simplicity, we focus on standard convex minimization problems where the optimal
set i.e. the target is given.

In this approach, the objective is to find a convex region 7 € R% called the rarget whose
description is provided only through a so-called oracle. The role of oracle is to determine, given a
query point z € R, if it lives in the target or to return a hyperplane called cut located between z and
7 that helps us narrow down the search by ruling out a halfspace. The hyperplane is parameterized

with a and b that must satisfy the following
vteT a't<b, alz>b, |all,=1 (3.6)
We start by an initial set that is known to contain 7, namely we have
T C Po={z] Aoz < bo}. 3.7)

Now we keep sampling from the space bounded in Py by querying from the oracle until we come

up with k points z(1 ..., () that do not lie in 7. Hence, we obtain the following cutting planes
a;’z <b;y i=1,..k (3.8)

The polyhedron built using these &k hyperplanes, denoted by Py, encapsulates 7 namely

T CPr={z| Aoz < by, ailz<b, i=1,..k} (3.9)

The idea is to obtain a good approximation of the target by tightening the hypothesis P using nested
solutions Py 2 ... 2 P 2 7. If we realize that Py, is empty we conclude 7 is empty and stop.
Otherwise, we sample another point inside P, and stop if it lies in 7 or update the solution using
the new point to get Pr+. A simple implementation of the idea [6] is summarized in Algorithm 2.

The informativeness of the cutting planes that we introduce can be captured by the reduction
in size of the feasible space. Therefore, an ideal procedure is one that consistently cuts as much as

possible from the uncertain region of the search. Since the discarded part of the space is unknown

CHAPTER 3. PRELIMINARIES 22

Algorithm 2 The Generic Cutting Plane Algorithm

Require: An initial polyhedron Py containing 7
k—20
loop
Choose a point z5+1) in Py
Query the oracle at z(F+1)
if 25+ € 7T then
Exit Loop
else
Prr1 = Pr N {z| a£+lz < bt}
end if
if Pr+1 = 0 then
Exit Loop
end if
k—k+1
end loop

a priori, a good query point turns out to be the one that lies in the center of the current polyhedron.
Progress measure is often chosen to be the ratio of the volume of two consecutive solutions.

An important concern in this method is that the number of cutting planes grows as we proceed.
So, we require good strategies for maintaining a reasonably sized working set. Although redundant
constraints (i.e. hyperplanes whose consideration neither changes the hypothesis P nor the conver-
gance speed) can be exactly identified, most practical implementations employ heuristics such as
relevance or ranking to prune the working set.

Another important aspect of the algorithm is the stopping condition. A suitable approach, which
is usually used in convex minimization, is to keep record of the value and the location of the optimal
point for the objective and use its difference to the best known lower bound obtained in the previous

step as the stopping criterion.

Chapter 4

Structural Support Vector Machines for

Tracking

In this section, we introduce our tracking system called MMTrack in the context of pedestrian track-
ing. The system is comprised of three main components: constant appearance model, adaptive
appearance model and motion model. Constant appearance model is used to represent the appear-
ance of the target pedestrian whereas adaptive model is used to distinguish among the tracked object
and other objects. Also, the motion model favors specific movement patterns from one frame to an-
other. A large margin learning approach combines these three cues by learning weights associated
to each of the components. Finally, the learned model is used to estimate pedestrian trajectories.
The rest of this section is organized as follows. Section 4.1 describes our trajectory model-
ing approach. We explain our max-margin formulation for tracking in Section 4.2 and outline our

inference schemes in Section 4.3.

4.1 Trajectory Modeling

As pointed out earlier, we are interested in offline tracking where the goal is to obtain the whole
trajectory in the entire sequence given an initial location. This is in contrast to online tracking
algorithms that greedily pick the next best location of the object at each frame. Thus, the tracking
problem in this setting is formulated as one of finding the optimal trajectory y = (y(, ..., y(T)
with the starting location y(!) and the image sequence x = (x(), ..., x(T)) given. We use a simple

tree-structured model as illustrated in Figure 4.1 and define a trajectory to be optimal if it scores the

23

CHAPTER 4. STRUCTURAL SUPPORT VECTOR MACHINES FOR TRACKING 24

Figure 4.1: Our model: a tree-structured CRF with the initial label and all the inputs observed. The
rectangles show the factors of the graph and the plate notation refers to 7" — 1 replications of the
structure for each frame that give the temporal model.

highest among all possible tracks according to this model.

Our scoring function is a mapping in the form of F(x,y:w) : X7 x YT — R that maps a
sequence of frames x = {x1), ..., x(™} and a trajectory y = {y¥), ..., y™} to a real number.
Each location y‘) is a discrete variable which is to be assigned to one of the image pixels and w
is a set of weights that parameterize the features extracted from the frames. The scoring function

of this model is decomposed into two contributions: transition model and observation model. The

transition model in our problem is summarized by the motion model which describes the spatial
relationship between the locations of the target in two consecutive frames. The observation model is
a measure of compatibility between a location and the observed features at that pixel location. We
define the score of a trajectory as

Fx,y;w) =Y Fr(y" ", y";wr)

||Mq
[\

4 Z Fo(xW, xt=1 x® y1) yt=1) y®.) 4.1

t=2
where Fr(-) and Fn(-) are linear models describing transition and observation contributions respec-
tively. These potential functions are parameterized by w7 and w» whose concatenation we denote

by w.

CHAPTER 4. STRUCTURAL SUPPORT VECTOR MACHINES FOR TRACKING 25

Observation Model

The observation model includes several features whose weighted combination votes for the presence
of the target pedestrian. These features include HOG score that helps with discriminating among
humans and other objects and, color histogram distance and appearance templates that describe how
the pedestrian looks like and how its look varies over time. Thus, the observation model at time ¢

decomposes into the following contributions
Fo(iwo) = wa & (x",y")

+ wel @ (x, y1)

+ wpTop(xD, x, y 1), y) 42)

+ wrlop(x1),x0, yM, yh)
where ®3(-), D¢ (), Dp(-) and @ £(-) denote the potential functions representing HOG score, color
distance histogram, and the difference between appearance templates of the previous frame and the
first frame to the current frame respectively. We concatenate all the observation weights to give

Wo = [We; Wy Wr; wfp}T. Intuitively, w weighs the observation features i.e. the trackers to

give a map that ideally peaks at the body center of the target pedestrian.

Transition Model

Similar to the observation model, we define the transition model as
Fr(y® V. yOwr) = wrl oy, yt), 4.3)

where Fr(-) is in fact a symmetric motion model. The motion model discretizes the distance trav-
elled between two consecutive frames into a number of bins that represent concentric circles centered

at the previous location. So, we have
o7 (y" ™D, y) = bin(d(y* D,y ")), 4.4)
bink. (d/) =]l[Ld’JZk]v k= 0, ceey LdmaxJ- (45)

Here, d(y,y’) is the Euclidean distance between the 2d image locations of y and ¢/, 1|, is the
indicator function and bin(-) acts as a selection operator that generates a vector of length d, 4, + 1
with all the elements set to 0 except one being 1. The upper bound d,,,,, on the travelled distance
from one frame to the next one is estimated using the dataset. Note that the symmetric motion
model results in w7 being a disk-like motion prior which is learned jointly with the observation

model parameters.

CHAPTER 4. STRUCTURAL SUPPORT VECTOR MACHINES FOR TRACKING 26

200————— . st

, |
D(x,y) | w l
[j
ﬁ

l

‘|

1 2 3 4 5 86 7 8 9 10 11 12 13 14 15
\ :)
HOG ColorDist Templates Motion

Figure 4.2: A given image sequence X and trajectory y and their unnormalized joint representation.

Trajectory Representation

As noted earlier, we require a combined feature representation in order to build our scoring function.
We encode a trajectory-video pair (x, y) using a function ®(.), whose components we implicitly in-
troduced previously, that compactly represents their statistics. Figure 4.2 illustrates a ground truth
input-output pair and its histogram representaion. Recall that this feature representation is decom-
posed in the same way that the model parameter vector does, namely ® = [®4; P¢; Pp; D r; @7],[.
Note that HOG, color distance features and template features are real-valued whereas motion fea-
tures are of counting nature and hence of type integer.

In this example, we observe that the overall change in color distribution of upper body and top-
left part of the body tends to be less compared to other color histogram hierarchies. Also, the amount
of change in appearance templates from the first frame to the current one is higher than the change
from the previous template to the current one. Moreover, the distribution of the motion counts are
as expected considering the following three facts: top-down view of the camera, high frame rate and

frequent stops (for short-time groupings, waiting for light, etc).

4.2 Max-Margin Formulation for Tracking

As described earlier, trajectories are difficult to predict as the complexity of their space is exponen-
tial in their length. Therefore, the idea is to design a linear function that measures the quality of
trajectories and to estimate its parameters such that we can identify good tracks from bad ones by

looking at the scores they would end up having according to the scoring function.

CHAPTER 4. STRUCTURAL SUPPORT VECTOR MACHINES FOR TRACKING 27

Our scoring function is parameterized by a set of weights w which puts together a variety of
desired features linearly. The learning task is to find a set of parameters that best explain the depen-
dencies between image features and trajectories. We use a discriminative approach, namely we try
to discriminate between a compatible video-trajectory pair and all other trajectories. Hence, we find
a predictor that estimates the best trajectory given an input video by learning a set of parameters that
maximize the score of training set examples while pushing down the score of potential runner-ups.

Learning the model parameters in this problem setting is challenging since we do not have
negative examples. In other words, we do not know how a "bad” trajectory looks like and more
importantly, how it differs from a ”good” one because this information is not included in the dataset.
Notice that the scoring function in equation 4.1 can be viewed as a w-parameterized discriminant
function. Further, the locations in a trajectory are highly interdependent and so we are dealing with a
structured output problem. Hence, it is natural to adopt structural support vector machines to jointly
estimate the parameters. Here, we consider the notation and viewpoint suggested in [39].

According to the large margin criterion in structural SVM, we require a set of parameters that
maximize the score of 7 given ground truth tracks while pushing away the score of all other trajec-

tories from these maxima and hence the following program

m1n w i, st Vi,& >0, 4.6
min 1wl 3 + Zé ¢ (46)

3

wld(x;,y;) —w ‘P(xi,y) > Alyi,y) — &, 4.7)
Yi=1,..nVyé€ yT\yi.

The constant C' > 0 specifies the relative importance of margin maximization and error minimiza-
tion which is determined by cross validation. Note that, the constraints can be expressed in various
ways among which we are considering the margin rescaling formulation. Here, 4.6 guarantees gen-
eralization while learning whereas the constraints in 4.7 require the score of ground truth y, to be
at least as far away from the score of a possibly incorrect trajectory y as the loss A(y;, y) incurred
when predicting y. The averaging is performed to make examples with different lengths comparable
since in an unnormalized representation, an example may seem unreasonably difficult (or easy) as
its location with respect to the hyperplane(s) and hence the shape and location of the feasible region

would depend upon the length of the sequence.

CHAPTER 4. STRUCTURAL SUPPORT VECTOR MACHINES FOR TRACKING 28

The loss function measures the total squared Euclidean distance between corresponding loca-

tions in two trajectories:

Alyi,y) =Y d*(y:i",y®). (4.8)

teT

In tracking, a target is often considered to be "lost” if the tracker is off by more than a predefined
number of pixels p. So, one can consider all such trajectories as being equally invalid since they
are false tracks anyway. Therefore, we also define a bounded loss function which is again sum of

individual losses incurred at each frame. The bounded loss at time ¢ is expressed as

) 4.9

AB(f) (y’Lay) = A(t) (YMY) if A(t) (Y’Lay) S p2’
P otherwise.

We use the SV M5! framework[39] to solve this problem. In this approach, we find a subset
of inequality constraints in equation 4.7, the most violated ones, and then solve for them such that
all the constraints would be violated by no more than a desired precision.

As discussed earlier, since this problem has a huge number of contraints, we resort to the cutting
plane method for training. In this approach, for each training pair (x;,y;) we identify the most
confusing constraint i.e. a trajectory that is not only the most appealing one given the current model

parameters but also maximizes the loss function. Hence, we seek to find

y = argmax F(x;,¥) + Ay, y). (4.10)
Y#yi

Figure 4.3 illustrates some notable stages of the optimization procedure using unbounded loss
and a suitable constant C. Here, green indicates ground truth trajectory and red is the negative
example. We can observe that, among negative examples generated for a particular training sample,
there are examples that reasonably represent possible failure modes. For instance, Figure 4.3(b)
shows a trajectory that corresponds to “nothing” i.e. background but it covers a wide range of such
mistakes in tracking according to the parameters at that stage. Also, Figure 4.3(c) shows what we
call a distractor negative example where the system is trying to learn to avoid tracking other people
whose appearance is similar to the target pedestrian.

It is worth mentioning that the choice of loss function is crucial in this setting as it implicitly
affects the characteristics of the solution of the problem. Specifically, the negative examples i.e.
bad trajectories that are generated while solving the optimization problem are a function of loss.

It is not straightforward how one can make sure that the negative examples introduced are useful

CHAPTER 4. STRUCTURAL SUPPORT VECTOR MACHINES FOR TRACKING 29

(a) First iteration: The worst track possible i.e.
maximizing the loss only.

(c) Tracking the distractors i.e. another person (d) Convergence: tracking the right person.
with similar appearance.

Figure 4.3: Some stages of optimization: green is the ground truth and red is the negative example.

namely if they introduce representative failure modes in prediction. Moreover, the choice of loss
function and the model are closely related. For example, we could modify ®(.) to account for
background clutter captured in the bounding box around the pedestrian to compensate for a shift in
the sum of absolute differences when moving from sidewalk to the street and vice versa. Although
this can result in a better representation for a trajectory, one can argue that nothing would stop bad
trajectories from having the same pattern. So, the learning problem can become more complicated

which would not necessarily help with the performance.

CHAPTER 4. STRUCTURAL SUPPORT VECTOR MACHINES FOR TRACKING 30

4.3 Tracking as Inference

Having estimated the model parameters, the tracking task becomes an inference according to our
CRF model namely finding the highest scoring trajectory. Obviously, exhaustive search for the
optimal track is computationally intractable. We efficiently solve for this problem using a slightly

modified version of the Viterbi algorithm which is given by the following dynamic program

M _max(M((l)+ Fr(yt =1y, y”—lc)) +Fo(.3" =lc). @10
t=2,...T, Iy eN(e),
MY =0, VI # b, M) = —c0. (4.12)

(Linit) O]

In fact, back to the probabilistic interpretation, this is equal to finding the maximum of the log
posterior given the parameters with the prior of the initial location set to 1 and other pixels set to 0.
Each element M ((§ corresponds to a pixel and indicates the score of the highest scoring trajectory
that originates at the initial location li;;; and terminates at pixel p at time #. A traceback from the
final most scoring location is done to recover the track. In our notation, [and Iy refer to the current
hypothesized location and its neighboring location(s) respectively. We just search the neighborhood
N (l¢) when trying to find the next possible location instead of doing a full search. Note that this
local search is valid since it complies with the nature of the movements of humans as a pedestrian is
not expected to jump to a pixel which is far away from the current location. Namely, we are finding
an exact solution in the space of "valid” trajectories.

As we will point out later, we need to run our tracker in the original resolution since all the
trackers to which we will be comparing our system are doing the same. However, performing
inference in high resolutions turns out to be computationally prohibitive even with local search and
integral histogram optimizations. Thus, we resort to approximate inference. So, we perform beam
search and only consider the V top-scoring trajectories (e.g. N = 3 in our experiments) and discard
the rest. This allows us to produce the tracking results in the original resolution while keeping the
inference feasible. Obviously, beam search will return suboptimal results because it does not explore

the whole hypothesis space. However, experimental results show that our approximate inference

scheme works well in practice.

Chapter 5
Details and Experiments

We use UBC Fireworks dataset for our experiments [16]. The dataset consists of clips recorded
at 1440 x 1080 resolution using a stationary camera installed on top of a building in downtown
Vancouver. Some sample snapshots are shown in figure 5.1. Hence, a top-down view of a moderately
crowded scene is captured with variety of moving objects typical to an urban setting present in the
image. This includes cars, bikers and pedestrians. The amount of change in illumination, scale and
pose is not significant but one needs to deal with background clutter and partial occlusions. The main
challenges in the dataset are the presence of occasional crowded blobs of moving pedestrians that
introduces many potential distractors and significant background change that occurs when people

move from sidewalk to street area and vice versa.

Figure 5.1: Snapshots from the UBC fireworks dataset.

31

CHAPTER 5. DETAILS AND EXPERIMENTS 32

We use 10 manually-labeled trajectories from different sequences for training and 22 other
manually-labeled trajectories for evaluating the performance of our system. Both training and test
examples are of length 350-500 and contain easy, moderate and hard sequences ranging from a soli-

tary person going through the scene to a pedestrian walking within a crowd with partial occlusions.

5.1 Implementation Details

To reduce training time, we precompute HOG and color histogram distance features prior to training
and testing. Appearance templates, however, must be generated online (as they are pairwise poten-
tials) and we compute them efficiently using integral images. We significantly reduce the space of
possible trajectories in training by running the Viterbi algorithm in steps of nine pixels in both hor-
izontal and vertical directions so the actual working resolution for Viterbi is 160 x 120. We define
the neighborhood AV,) to be the area within a radius of 2 pixels centered at the current location
lc. This choice is made based upon empirical statistics of the dataset which is in fact a function of
the camera angle, average walking speed of pedestrians and frame rate. Similarly, we set the d,;,4,
in motion model and p in bounded loss to the same constant. Note also that because testing pro-
cesses images at different resolution from training, the motion model obtained from training must
be adapted for testing. So, a simple nearest neighbor interpolation of the motion model is performed

using the same number of discretization bins as in training and the weights are used directly.

5.2 Automatic Trajectory Extraction

For qualitative evaluation, we design a system that automatically performs the tracking task. Search-
ing for all the targets and learning their appearance as done in [30] is not practical in our problem
because we neither can assume a constant appearance nor can we get a reliable segmentation (or
pose as in [38]) of them as the view is top-down and pedestrians are far away. As pointed out earlier,
we assume that initial locations of the pedestrians are given by a competent detector and the task
is to follow them while they are visible. The procedure can be summarized as follows. We divide
the whole footage into some fixed length clips and extract the features for each clip. Next, using
the HOG-based human detector we locate the people and mark them using bounding boxes in the
image. Then, we initialize one tracker per detection for all the detections that are within a specified
boundary in the scene and terminate them when they hit some pixel at the boundaries of the region of

interest. Since even the state-of-the-art detector misses some instances, we initialize one tracker per

CHAPTER 5. DETAILS AND EXPERIMENTS 33

Learning Loss Type | #CDT | Avg CT | Avg Error
Exact A 15 0.56 11.38
Exact Ap 21 0.67 7.01

Approximate A 17 0.61 9.90
Approximate Ap 20 0.64 12.24

Table 5.1: Our tracking results with different learning and loss functions on 22 test samples.

detection every 50 frames and perform tracking forward and backward in time and merge the two so
we get full trajectories of all the pedestrians that show up in that clip. As a result, we get potentially
many trajectories belonging to the same person that differ only in their initial location of detection.
Finally, we cluster all the trajectories using the mean-shift clustering algorithm, prune the outliers
and false detections and introduce the cluster centers as the final tracking results. Interestingly, this
procedure is very successful in practice which was capable of recovering almost all the pedestrians

in our experiments.

5.3 Results

We compare the results of our tracking system with the algorithms proposed in [9] and {3]. To
gain insight into the importance of the proposed combination of the features, we design experiments
with some groups of features turned off. Obviously, we learned different sets of parameters for
each combination of the features independently. We used the MIL-tracker software provided by the
authors and implemented our own version of [9] which we call the Collins-Liu tracker.

We chose 22 challenging trajectories and manually labelled them for quantitative evaluation. As
before, we run independent instances of the tracker forward and backward in time in order to get
complete trajectories starting from the fixed set of selected detections. Trackers are terminated once
they are within a certain number of pixels from the image borders. We use the same procedure to
extract trajectories using other methods so we can make a more realistic comparison.

Besides the usual average pixel error measure, we use two other performance measures pro-
posed in [45]. Correct Detected Track (CDT) indicates the number of correct trajectories. A track
is defined as a CDT if the amount of spatial and temporal overlap with the ground truth exceed
thresholds T, and T'R,,, respectively, where T,,, and T R, are both set to 0.5 in our experiments.
This roughly means that at least half of a CDT must temporally coincide with its ground truth, its
length cannot be less than half of its ground truth, and the average spatial overlap must be at least

0.5. Closeness of Track (CT) is defined as the average spatial overlap between a ground truth and a

CHAPTER 5. DETAILS AND EXPERIMENTS 34

B Tracker #CDT | Avg CT | Avg Error
MMTrack: All 21 0.67 7.01
MMTrack: Hist+Templates 20 0.61 12.74
MMTrack: HOG+Templates 14 0.52 22.24
MMTrack: HOG+Hist 10 0.47 14.40
MILTrack 19 0.61 19.87
Collins-Liu 14 0.54 21.24

Table 5.2: Comparison of tracking results.

system track in the temporally coincident portion of the track. Its value ranges from O to 1, with 1
indicating that the track is exactly the same as the ground truth in the temporally coincident section
of the track. More detailed explanation of the measures are provided in [45].

We tried exact and approximate learning schemes as well as bounded and unbounded loss while
keeping the inference the same for all the experiments. Table 5.1 summarizes the performance of
our tracker. As seen in the table, exact training using bounded loss achieves the best result in all
measurements among all the configurations of MMTrack. Theoretical guarantees of the optimization
algorithm clearly explains the superiority of the exact training over approximate training. Moreover,
as motivated earlier by its definition, bounded loss is a better loss function than unbounded loss in
all settings as expected. It is well-known that directly optimizing for the measurement of interest is
clearly advantageous. Although we are not exactly doing so, bounded loss better matches the nature
of our measurements as it roughly mimics the overlap constraint and stops over-penalizing as soon
as the overlap becomes zero. Obviously, the quality of the features corresponding to a trajectory
does not necessarily become worse if it is shifted away from the ground truth.

The second set of experiments compare our tracker with other trackers on the same test set
and experimentally justifies our choice of features. As shown in table 5.2, our tracker outperforms
MIL tracker [3] and Collins-Liu tracker [9] in this dataset. One can explain this promising perfor-
mance by reasoning about the role of different cues in our system. Specifically, HOG feature helps
the tracker eliminate areas belonging to non-pedestrian objects, histogram distance maps provide a
rough description of the pedestrian and helps alleviate drift whereas appearance templates provide
finer levels of the appearance, with the previous frame appearance template allowing some degree
of adaptability to appearance change over time. These results, of course, are not directly compa-
rable since the trackers build upon completely different set of features and we just aim at system
level comparison. Also, both [9] and [3] are only concerned with appearance modeling and do not

include a parameterized motion model.

CHAPTER 5. DETAILS AND EXPERIMENTS 35

Interestingly, table 5.2 shows that removing some of the features significantly reduces the per-
formance of our tracker indicating that the combination of HOG, histogram distance and template
appearance features is essential in achieving good performance. While each feature group is re-
sponsible for avoiding certain types of failures, interactions between groups accounts for difficult
situations. Hence. when a feature group is discarded, not only the corresponding failure modes show
up but also more complicated failure modes occur as feature groups are not completely independent.

It is worth mentioning that table 5.2 reminds vs that the most important components of our
tracker are distance histograms and appearance templates. The second row, which corresponds to
the system with the second best results, does not include HOG score which implies that our tracker
does not really depend on a detector although a good one would slightly improve the performance.
Since directly justifying this table might be vague, we would like to use an example to help with
understanding the results.

Figure 5.2 is an example that illustrates the importance of our cue combination strategy. As
observed in the subfigures, our tracker with only HOG and histogram distance features drifts to
a nearby distractor at some parts of the track as it does not know about the initial appearance of
the person. The jitter in the track is mostly due to lack of fine details of the appearance which
roughly makes the neighbors become equally good according to the model. On the other hand,
with HOG and appearance templates, the tracker gets stuck in background area at the boundary
between the sidewalk and the street. The reason is that the a significant change in appearance
template from frame to frame which occurs at this boundary is rare and hence not supported by the
average statistics. So, the tracker is not robust against sudden changes in appearance. Also, since
information about average appearance and average background is lacking, drift is inevitable and
the role of initial template breaks as background pixels make the stay in sidewalk more rewarding
than moving towards the street. The combination of HOG, distance maps and appearance templates
manages to track the person correctly. In this case, the system is stable against rapid changes while

being reasonably accurate.

CHAPTER 5. DETAILS AND EXPERIMENTS 36

Figure 5.2: An example illustrating the motivations behind our design of features. The tracked
“objects” throughout the trajectories are shown in red insets and also superimposed along the trajec-
tories. Left: HOG+histograms, Middle: HOG+templates, Right: HOG+histogram+templates.

Chapter 6

Conclusion

In this thesis, we introduced MMTrack, our offline single target tracking system that employs a large
margin learning criterion to effectively combine different trackers. My contribution was adopting
learning and inference procedures and designing suitable features for tracking. Although MMTrack
is used for pedestrian tracking in this work, we believe that our framework is general and can be
used to track other objects too provided that features can reliably describe the target object and
handle situations of interest while avoiding confusions for our discriminative classifier. As discussed
earlier, even though our best results were obtained when we included a detector signal, we showed
that excluding it would not hurt much and we can still perform better than the trackers we compared
with. As a result, we have managed to introduce a simple system with few parameters that does not
require to model the recognition to do the tracking.

Our tracking system has its limitation in handling severe occlusion and track hijacks caused by
significant change in appearance or situations where the background patch is very similar to the ap-
pearance of the target. Incorporating mechanisms that would enable single target trackers to explain
long-term occlusions while avoiding distractor hijacks turns out to be very challenging. However, a
possible future direction is to extend this framework to more complicated systems that can param-
eterize multi-target tracking. Moreover, learning different parameters for different locations in the
image may also be of interest. Such a tracking system would be able to deal with location specific
situations that are difficult to handle for a generic tracker. This is motivated by the intuition that the
relative importance of the features is likely to be affected by the statistics of background patches and
particular occlusions at different locations. On the other hand, designing trackers with more com-
plicated statistics or background models can result in better performance. Finally, defining suitable

problem-specific loss functions that directly optimize for benchmark measurements is desirable.

37

Bibliography

(1]

[2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

Yasemin Altun, Thomas Hofmann, and loannis Tsochantaridis. Large margin methods for
structured and interdependent output variables. In Gékhan H. Bakir, Thomas Hofmann, Bern-
hard Scholkopf, Alexander J. Smola, Ben Taskar, and S. V. N, Vishwanathan, editors, Predict-
ing Structured Data (Neural Information Processing). The MIT Press, 2007.

Yasemin Altun, loannis Tsochantaridis, and Thomas Hofmann. Hidden markov support vec-
tor machines. In ICML ’03: Proceedings of the 20th international conference on Machine
learning, 2003.

B. Babenko, Ming-Hsuan Yang, and S. Belongie. Visual Tracking with Online Multiple In-
stance Leamning. In IEEE Conference on Computer Vision and Pattern Recognition 2009
(CVPR’09), 2009.

Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. The Annals of
Mathematical Statistics, 1970.

J. Berclaz, F. Fleuret, and P. Fua. Robust people tracking with global trajectory optimization.
In IEEE Conference on Computer Vision and Pattern Recognition, 2006.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

Yen-Lu Chow and Richard Schwartz. The n-best algorithm: an efficient procedure for finding
top n sentence hypotheses. In HLT ’89: Proceedings of the workshop on Speech and Natural
Language, 1989.

Michael Collins. Discriminative training methods for hidden markov models: theory and ex-
periments with perceptron algorithms. In EMNLP *02: Proceedings of the ACL-02 conference
on Empirical methods in natural language processing, 2002.

Robert Collins, Yanxi Liu, and Marius Leordeanu. On-line selection of discriminative tracking
features. IEEE Transactions of Pattern Analysis and Machine Intelligence, 2005.

Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time tracking of non-rigid ob-
jects using mean shift. In IEEE Computer Vision and Pattern Recognition, 2000.

38

BIBLIOGRAPHY 39

[111 Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine Learning, 1995.

[12] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal Machine Learning Research, 2002.

[13] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In
Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, International Conference on Com-
puter Vision & Pattern Recognition, 2005.

[14] Yves Gr, Johnny Mariéthoz, and Samy Bengio. A probabilistic interpretation of svms with
an application to unbalanced classification. In Advances in Neural Information Processing
Systems 18, 2005.

[15] Altun Y. Hofmann T., Tsochantaridis I. Learning over structured output spaces via joint kernel
functions. In Proceedings of the Sixth Kernel Workshop, 2002.

[16] K. Ismail, T. Sayed, and N. Saunier. Automated collection of pedestrian data using computer
vision techniques. In Transportation Research Board Annual Meeting Compendium of Papers,
2009.

[17] K. Ismail, T. Sayed, and N. Saunier. Automated collection of pedestrian data using computer
vision techniques. In Transportation Research Board Annual Meeting Compendium of Papers,
2009.

[18] Thorsten Joachims. Learning to align sequences: A maximum-margin approach. In New
Algorithms for Macromolecular Simulation. Volume 49 of LNCS, 2003.

[19] Thorsten Joachims. Training linear svms in linear time. In KDD ’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge discovery and data mining, 2006.

[20] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of struc-
tural svins. Machine Learning, 2009.

[21] J. E. Kelley. The cutting plane method for solving convex programs. Journal of the SIAM,
1960.

[22] Bahman Yari Saeced Khanloo, Ferdinand Stefanus, Mani Ranjbar, Ze-Nian Li, Nicolas Saunier,
Tarek Sayed, and Greg Mori. Max-margin offline pedestrian tracking with multiple cues. In
Seventh Canadian Conference on Computer and Robot Vision (CRV), 2010.

[23] Mathias Kolsch and Matthew Turk. Fast 2d hand tracking with flocks of features and multi-
cue integration. In CVPRW ’04: Proceedings of the 2004 Conference on Computer Vision and
Pattern Recognition Workshop (CVPRW’04) Volume 10, 2004.

[24] John Lafferty. Conditional random fields: Probabilistic models for segmenting and labeling
sequence data. In ICML ’01: Proceedings of the 18th international conference on Machine
learning, 2001.

BIBLIOGRAPHY 40

[25] Christoph H. Lampert and Matthew B. Blaschko. Structured prediction by joint kernel support
estimation. Mach. Learn., 2009.

[26] Hong Liu, Lin Zhang, Ze Yu, Hongbin Zha, and Ying Shi. Collaborative mean shift tracking
based on multi-cue integration and auxiliary objects. In IEEE International Conference of
Image Processing (1CIP), 2007.

[27] S. M. Shahed Nejhum, Jeffrey Ho, and Ming-Hsuan Yang. Visual tracking with histograms
and articulating blocks. Computer Vision and Pattern Recognition, IEEE Computer Society
Conference on, 2008.

[28] Fatih Porikli. Integral histogram: A fast way to extract higtograms in cartesian spaces. Inter-
national Conference on Computer Vision & Pattern Recognition, 2005.

{29] Lawrence R. Rabiner. A tutorial on hidden markov models and selected applications in speech
recognition. In Proceedings of the IEEE, 1989.

[30] Deva Ramanan, David Forsyth, and Kobus Barnard. Building models of animals from video.
In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2001.

[31] David A. Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-Hsuan Yang. Incremental learning
for robust visual tracking. International Journal of Compute Vision, 2008.

{32] Bernhard Scholkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola, and Robert C.
Williamson. Estimating the support of a high-dimensional distribution. Neural Computation,
2001.

[33} Lei Song, Rong Zhang, Zhengkai Liu, and Xingxing Chen. Object tracking based on parzen
particle filter using multiple cues. Advances in Multimedia Information Processing, 2005.

[34] Martin Spengler and Bernt Schiele. Towards robust multi-cue integration for visual tracking.
In Machine Vision and Applications, 2003.

[35] B. Stenger, T. E. Woodley, and R. Cipolla. Learning to track with multiple observers. In IEEE
Conference on Computer Vision and Pattern Recognition, 2009.

[36] Ben Taskar. Learning structured prediction models: a large margin approach. PhD thesis,
Stanford University, 2005. Adviser-Koller, Daphne.

[37] Ben Taskar, Carlos Guestrin, and Daphne Koller. Max-margin markov networks. In Neural
Information Processing (NIPS), 2003.

[38] Leonid Taycher, David Demirdjian, Trevor Darrell, and Gregory Shakhnarovich. Conditional
random people: Tracking humans with crfs and grid filters. In CVPR *06: Proceedings of the
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006.

BIBLIOGRAPHY 41

[39] loannis Tsochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Support
vector machine learning for interdependent and structured output spaces. In IEEE International
Conference on Machine Learning (ICML), 2004.

[40] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun, and Yoram
Singer. Large margin methods for structured and interdependent output variables. Journal of
Machine Learning Research, 2005.

[41] Paul Viola and Michael Jones. Robust real-time object detection. In International Journal of
Computer Vision (IICV), 2001.

[42] Jianyu Wang, Xilin Chen, and Wen Gao. Online selecting discriminative tracking features
using particle filter. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2005.

[43] J. Weston and C. Watkins. Support vector machines for multi-class pattern recognition. In The
European Symposium on Artificial Neural Networks, 1999.

[44] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object tracking: A survey. ACM Computing
Surveys, 2006.

[45] Fei Yin, D. Makris, and S. A. Velastin. Performance evaluation of object tracking algo-
rithms. IEEE International Workshop on Performance Evaluation of Tracking and Surveillance
(PETS2007), 2007.

	ETD6095_BYariSaeedKhanloo_001
	ETD6095_BYariSaeedKhanloo_002
	ETD6095_BYariSaeedKhanloo_003
	ETD6095_BYariSaeedKhanloo_004
	ETD6095_BYariSaeedKhanloo_005
	ETD6095_BYariSaeedKhanloo_006
	ETD6095_BYariSaeedKhanloo_007
	ETD6095_BYariSaeedKhanloo_008
	ETD6095_BYariSaeedKhanloo_009
	ETD6095_BYariSaeedKhanloo_010
	ETD6095_BYariSaeedKhanloo_011
	ETD6095_BYariSaeedKhanloo_012
	ETD6095_BYariSaeedKhanloo_013
	ETD6095_BYariSaeedKhanloo_014
	ETD6095_BYariSaeedKhanloo_015
	ETD6095_BYariSaeedKhanloo_016
	ETD6095_BYariSaeedKhanloo_017
	ETD6095_BYariSaeedKhanloo_018
	ETD6095_BYariSaeedKhanloo_019
	ETD6095_BYariSaeedKhanloo_020
	ETD6095_BYariSaeedKhanloo_021
	ETD6095_BYariSaeedKhanloo_022
	ETD6095_BYariSaeedKhanloo_023
	ETD6095_BYariSaeedKhanloo_024
	ETD6095_BYariSaeedKhanloo_025
	ETD6095_BYariSaeedKhanloo_026
	ETD6095_BYariSaeedKhanloo_027
	ETD6095_BYariSaeedKhanloo_028
	ETD6095_BYariSaeedKhanloo_029
	ETD6095_BYariSaeedKhanloo_030
	ETD6095_BYariSaeedKhanloo_031
	ETD6095_BYariSaeedKhanloo_032
	ETD6095_BYariSaeedKhanloo_033
	ETD6095_BYariSaeedKhanloo_034
	ETD6095_BYariSaeedKhanloo_035
	ETD6095_BYariSaeedKhanloo_036
	ETD6095_BYariSaeedKhanloo_037
	ETD6095_BYariSaeedKhanloo_038
	ETD6095_BYariSaeedKhanloo_039
	ETD6095_BYariSaeedKhanloo_040
	ETD6095_BYariSaeedKhanloo_041
	ETD6095_BYariSaeedKhanloo_042
	ETD6095_BYariSaeedKhanloo_043
	ETD6095_BYariSaeedKhanloo_044
	ETD6095_BYariSaeedKhanloo_045
	ETD6095_BYariSaeedKhanloo_046
	ETD6095_BYariSaeedKhanloo_047
	ETD6095_BYariSaeedKhanloo_048
	ETD6095_BYariSaeedKhanloo_049
	ETD6095_BYariSaeedKhanloo_050
	ETD6095_BYariSaeedKhanloo_051

