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Abstract

Non-Coding RNAs (ncRNAs) such as microRNAs play an important role in the gene regu-

lation. Studies on both prokaryotic and eukaryotic cells show that ncRNAs usually bind to

their target mRNA to regulate the translation of corresponding genes. Therapeutic appli-

cations of RNA interference and antisense RNA regulation strongly motivate the problem

of predicting whether two RNAs interact. In the past few years, high-throughput sequenc-

ing technologies have identified a large set of new regulatory ncRNAs, but the number of

experimentally verified targets is considerably low. Thus, computational target prediction

methods are in high demand. Current methods for predicting ncRNA-target mRNA in-

teractions suffer from low specificity and accuracy. Moreover, their high computational

complexity makes them impractical for genome-wide target prediction problems.

In this dissertation, we present fast and accurate computational methods for predic-

tion and analysis of binding thermodynamics between two RNAs, typically oligonucleotides

and target RNAs. We develop a partition function algorithm to compute the stability and

probability of binding between two RNAs. Partition function is a scalar value from which

various thermodynamic quantities can be derived. For example, the equilibrium concentra-

tion of each complex nucleic acid species, the heat capacity and the melting temperature of

interacting nucleic acids can be calculated based on the partition function of the complex.

In order to reduce the time and space requirements of the computational RNA-RNA

interaction prediction problem, we introduce an efficient algorithm that can predict the

optimal interaction between two RNAs. Our algorithm applying a technique called sparsifi-

cation has been able to reduce both time and space requirements of the interaction prediction

by a linear factor. Finally, we propose a fast heuristic method for multiple binding sites

prediction, based on the site accessibility and binding probabilities, that can be used for

genome-wide target prediction problems.
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Chapter 1

Introduction

RNA (ribonucleic acid) is an important type of molecule inside living cells which exhibits

several functions. Until recently RNA was thought to have only two functions: (i) to

transmit information between DNA and proteins in the form of a messenger RNA (mRNA)

and (ii) to decode information in protein synthesis in the form of a ribosomal RNA (rRNA)

or a transfer RNA (tRNA). However, the discovery of microRNAs (miRNAs) and the advent

of genome-wide transcriptomics have shown that RNA plays several important roles in living

organisms that extend far beyond being a mere intermediate in protein biosynthesis [85].

A large fraction of the genome sequences consists of RNA transcripts that do not code

for proteins and are called Non-coding RNAs (ncRNAs). Non-coding RNA genes produce

highly abundant and functionally important RNAs. Non-coding RNAs can interact with

proteins, small molecules, and other RNAs. An ncRNA, by binding to a protein, controls

its activity and accessibility. A Riboswitch, which is part of an mRNA molecule, binds to

a small molecule and causes critical changes in the associated gene’s activity. But in fact

most of the ncRNAs exhibit their functions through interaction with other RNA molecules.

Regulatory ncRNAs play a crucial role in gene expression post-transcriptionally through

base pairing with a target mRNA as per the eukaryotic miRNAs and small interfering

RNAs (siRNAs) [13, 44, 102], antisense RNAs [95, 18], or bacterial small regulatory RNAs

(srRNAs) [38]. It has been predicted that only miRNAs regulate at least one-third of all

human genes [57].

Regulatory RNAs such as miRNAs and siRNAs are usually very short and have full

sequence complementarity to the targets. However some of the regulatory antisense RNAs

are relatively long and are not fully complementary to their target sequences. They exhibit

1



CHAPTER 1. INTRODUCTION 2

their regulatory functions by establishing stable joint structures with target mRNA initiated

by one or more loop-loop interactions.

1.1 Motivation

RNA interference (RNAi) is a process in which RNA molecules such as miRNAs and siR-

NAs bind to their target mRNAs and cause translational repression or activation, mRNA

degradation, or changes in mRNA stability. RNAi has three known biological functions:

(i) to defend cells against foreign genes such as viruses and transposons, (ii) to trigger the

RNA-induced silencing complex (RISC) to cleave specific mRNAs, (iii) to increase gene

transcription as part of a promoter. Therefore, RNAi mechanism provides a natural way to

control the activity of specific genes.

RNAi technology is an invaluable research tool, allowing much more rapid characteriza-

tion of the function of known genes. Large-scale functional genomics approaches for target

identification in human cells are indebted to RNAi technology. This technology can reveal

novel genes involved in disease processes. Applications of RNAi screening for the identifi-

cation of novel genes implicated in apoptosis, cell division, and drug resistance support the

enormous promise of this technology [14].

RNAi has several applications in drug discovery and therapeutics, particularly for viral

infections, cancer, and brain diseases. Small interfering RNAs (siRNAs) and short hairpin

RNAs (shRNAs) are used to block replication of specific viruses. For cancer therapy several

RNAi-based strategies such as the inhibiting of over-expressed oncogenes, promoting apop-

tosis, regulating cell cycle, antiangiogenesis and enhancing the efficacy of chemotherapy and

radiotherapy have been designed. Although RNAi technology has become an excellent ther-

apeutic strategy, yet RNAi-based drug designing is not as straightforward as it was thought

to be. An RNAi experiment should deal with difficulties in different steps including design-

ing an siRNA sequence with specific structural characteristics, delivering it into the cells,

and finally evaluating its result at both the mRNA and the protein levels with minimum

off-targeting effect [67].

These days more and more applications of RNAi in drug discovery and treatment of

diseases are discovered. Although still no siRNA is approved for medical use, a number

of R&D initiatives and clinical trials are currently underway. During past years, several

studies have demonstrated the role of RNAi in treatment of diseases such as hemophilia,
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hepatitis B, hepatitis C, and HIV. In April 2010, GenomeWeb News released a list of 10

new potential RNAi-based drugs. One example of these drugs is TransDerm, a treatment

for the rare skin disorder Pachyonychia congenital caused by a mutation in any one of the

dozens of genes encoding keratins. The drug targets a particular mutation in one of these

genes. In June 2010, an exciting discovery [70] was published that suggests that miRNA

can be a therapeutic target for increasing good cholesterol.

In addition to endogenous regulatory RNAs in RNAi, antisense oligonucleotides perform

as exogenous inhibitors of gene expression. In eukayotes, antisense RNAs interactions are

involved in several biological processes such as splicing, RNA editing, rRNA modification,

and development regulation. Antisense technology has been also used as a research tool

for therapeutic purposes. Antisense oligonucleotides can be fed to metabolic networks for

specific control of the the metabolism. Blocking the production of disease-causing proteins,

artificial regulatory RNA molecules promise to treat human diseases such as cancer, rheuma-

toid arthritis, brain diseases, and viral infections. However, the drug Fomivirsen [39] is the

only antisense-based drug which has reached the market so far. Antisense technology needs

further biological studies and analysis to be as effective as expected in disease therapy.

With recent progress in sequencing methods, a huge set of ncRNAs has become known.

However there is no high throughput method to detect their associated targets. Conse-

quently, there are increasing interests in computational target prediction methods. The

first set of computational methods for predicting ncRNA-target mRNA interactions suffered

from over-simplifying the types of interactions allowed. As a result they could not accu-

rately predict many known interactions, particularly those involving long ncRNAs. More

precisely, these methods either restricted the interactions to external positions, or they al-

lowed interactions with at most one interaction site. These restrictions were lifted by two

independently developed methods, which provided the first set of algorithms for predicting

a precise interaction structure of two RNA strands: (i) the algorithm by Pervouchine [74]

maximizes the total number of base pairs, and (ii) a more general method by Alkan et al.

[4], minimizes the total free energy of the interacting RNA strands using a nearest neighbor

energy model. Alkan et al. also provide proof of the NP-hardness of the general problem,

together with a precise definition of interaction types that can be handled in polynomial

time.
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Figure 1.1: RNA interference mechanism [97]. Double-stranded RNA (dsRNA) from repli-
cating viral RNA, viral-vector-derived (VIGS, or virus-induced gene silencing) RNA or
hairpin RNA (hpRNA) transcribed from a transgene, is processed by a Dicer-containing
complex to generate siRNAs. The antisense strand of siRNA incorporated into the RNA-
induced silencing complex (RISC) bind to its target mRNA. Depending on the degree of
complementarity between the siRNA and its target mRNA, RISC may either block the
translation machinery or cleave the target.
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One key problem with the above approaches for predicting a general joint structure

[74, 4] is that they all have a worst case running time of O(n6) and a space complexity

of O(n4). While this complexity might be acceptable when analyzing only a few putative

sRNA-target interaction pairs, we are now faced with a situation in which the amount of

data to be analyzed is vastly increasing. To give an example, a recent mapping of transcripts

using tiling arrays in the budding yeast S. cerevisiae [25] with 5,654 annotated open reading

frames (ORF) has found 1555 antisense RNAs that overlap at least partially with the ORFs

at the opposite strand. Currently, it is unclear what these antisense RNAs are doing -

whether they target only their associated sense mRNA or have also other mRNA targets,

and whether they always form a complete duplex or more complex joint structures such as

multiple kissing hairpins. The same situation appears in many other species. Thus, there

is an urgent need for a time and space efficient interaction prediction method that is able

to handle complex joint structures.

In order to characterize the effectiveness of the predicted interaction, it needs to be

further analyzed by a quantitative analysis of binding thermodynamics between oligonu-

cleotides and target RNA. The specificity of interaction depends on the stability of inter-

molecular and intramolecular base pairs. Therefore, a method which accurately computes

the probability and stability of interactions between two RNAs is greatly in demand.

1.2 Contributions

In this thesis, we (re)define the problem of computationally predicting the interaction be-

tween two RNAs and explain the main challenges for a general computational method for the

RNA-RNA interaction prediction problem. Our goal is to design and implement an efficient

computational method to be reliably used for target prediction purposes while providing

quantitative analysis of binding effectiveness. More specifically, we present the following

contributions:

• We introduce our energy model for interaction between nucleic acid strands (published

in [22]). Our interaction energy model is an extension of the nearest neighbor thermo-

dynamics energy model for RNA secondary structure that contains new components

for joint secondary structure between two RNAs. Energy functions for the interaction

components are defined in a similar way to the other nearest neighbor thermodynam-

ics rules. The interaction energy model uses validated thermodynamics parameters
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in the standard energy model and defines only a few new parameters related to the

interaction components. These new parameters are trained over a set of known short

interactions.

• We develop a dynamic programming algorithm to compute the interaction partition

function over the whole ensemble of almost all physically possible individuals and joint

secondary structures (published in [22]). Our algorithm with O(n6) time and O(n4)

space complexity considers the most general type of interactions introduced in the

literature. Our partition function algorithm can be used to compute various thermo-

dynamic quantities such as the equilibrium concentration of each complex nucleic acid

species, heat capacity, and the melting temperature of interacting nucleic acids. We

verify our algorithm by computing (i) the equilibrium concentration for the OxyS-fhlA

complex and (ii) the melting temperature for RNA pairs available in the literature.

In both experiments our algorithm shows high accuracy.

• We show how to reduce both time and space complexity of the minimum total free

energy for the joint structure using a technique called sparsification. Sparsification

technique uses the observation that the resulting DP-matrices are sparse. As in pre-

vious applications of sparsification to problems related to RNA folding, our approach

exploits a triangle inequation on the dynamic programming matrix. Assuming the

polymer-zeta property for interacting RNAs, we show an efficiency gain by a linear

factor. This polymer-zeta property basically states that the probability of a base pair

decreases with its size, i.e. there are only few long range base pairs. Our sparsified

algorithm (published in [80]) reduces the complexity of the original algorithm from

O(n6) time and O(n4) space to O(n4ψ(n)) time and O(n2ψ(n) + n3) space for some

function ψ(n), which turns out to have small values for the range of n that we en-

counter in practice. Under the assumption that the polymer-zeta property holds for

RNA-structures, we demonstrate that ψ(n) = O(n) on average, resulting in a linear

time and space complexity improvement over the original algorithm.

• There are several evidences [19] suggesting that interaction is a multi-step process

that involves: (i) unfolding of the two RNA structures to expose the bases needed for

hybridization, (ii) the hybridization at the binding site, and (iii) restructuring of the

complex to a new minimum free energy conformation. We present a heuristic approach

(published in [79]) that can predict interactions involving multiple binding sites by: (i)
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identifying the collection of accessible regions up to a maximum length w for both input

RNA sequences, (ii) using a matching algorithm, computing a set of ”non-conflicting”

interactions between the accessible regions which have the highest overall probability

of occurrence. Our method computes the most probable non-conflicting matching of

accessible regions with O(n2w4 + n3/w3) time and O(w4 + n2/w2) space complexity.,

where w is the window size for of accessible region.

The software is implemented in a C++ package and can be accessed through our website

for taveRNA:RNA suite at ”http://www.compbio.cs.sfu.ca/taverna”.

1.3 Organization of the thesis

The rest of the thesis is organized as follows. In Chapter 2, we first describe the problem

of RNA-RNA interaction prediction. Then we present an overview of the existing related

computational approaches and summarize the general issues related to the previous works.

In Chapter 3, an interaction energy model which is an extension of the RNA secondary

standard energy model is presented. This model can handle different interaction components

in an RNA-RNA joint secondary structure. Chapter 4 introduces our partition function

algorithm for two interacting nucleic acid strands. After explaining the details and recursion

cases of the algorithm, several applications of its implementation piRNA are discussed. At

the end of the chapter, the algorithm is verified through experiments for computing (i) the

equilibrium concentration for OxyS-fhlA complex and (ii) the melting temperature for RNA

pairs available in the literature. Later, possible solutions for the problem of high complexity

requirements of RNA-RNA interaction prediction methods are studied. In Chapter 5, we

introduce a technique called sparsification. We develop a sparsified algorithm that can

predict the optimal interaction between two RNAs. We show our algorithm achieves an

efficiency gain by a linear factor in comparison to the original algorithm for RNA-RNA

interaction prediction. Chapter 6 explains our fast heuristic algorithm for multiple binding

sites prediction, based on the site accessibility and binding probabilities, that can be used

for genome-wide target prediction problems. Finally, in Chapter 7 we offer a summary and

conclusion of our contributions to the RNA-RNA interaction prediction problem, as well as

a discussion of possible directions for future work.



Chapter 2

Definition and Background

In this chapter, we define the general problem of interaction prediction between two RNA

molecules. We first present some preliminary definitions related to the RNA sequence,

structure and interaction used through text or figures of the thesis. Since the interaction

between two RNAs can be considered as their joint secondary structure, we start by a short

review on the single RNA secondary structure prediction problem. A short introduction on

the structure prediction problem, the energy model of folding and some major strategies are

described here. Later we define the RNA-RNA interaction prediction problem and discuss

about the current approaches for this problem.

2.1 Preliminaries

The two RNAs are denoted by R and S. Strand R is indexed from 1 to LR in 5′ to 3′

direction and S is indexed from 1 to LS in 3′ to 5′ direction. Note that the two strands

interact in opposite directions, e.g. R in 5′ → 3′ with S in 3′ ← 5′ direction. Each nucleotide

is paired with at most one nucleotide in the same or the other strand. The subsequence

from the ith nucleotide to the jth nucleotide in a strand is denoted by [i, j]. We refer to the

ith nucleotide in R and S by iR and iS respectively. An intramolecular base pair between

the nucleotides i and j in a strand is called an arc and denoted by a bullet i • j. Two arcs

i • j and i′ • j′ are pseudoknot if i < i′ < j < j′ or i′ < i < j′ < j . An intermolecular

base pair between the nucleotides iR and iS is called a bond and denoted by a circle iR ◦ iS .

Two bonds iR ◦ iS and jR ◦ jS are called crossing bonds if iR < jR and iS > jS or iR > jR

and iS < jS . An interaction arc iR • jR in R subsumes a subsequence [iS , jS ] in S if there

8
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is at least one bond kR ◦ kS , where iR < kR < jR and iS < kS < jS , and for all bonds

kR ◦kS , if iS ≤ kS ≤ jS then iR < kR < jR. Analogously, interaction arcs in S can subsume

subsequences in R. Two interaction arcs iR • jR and iS • jS are part of a zigzag, if there is a

bond kR ◦ kS , where iR < kR < jR and iS < kS < jS , but neither iR • jR subsumes [iS , jS ]

nor iS • jS subsumes [iR, jR].

2.1.1 Recursion Diagrams

In this thesis dynamic programming (DP) algorithms are represented in a graphical notation

using the recursion diagrams. Within the recursion diagrams, a horizontal line indicates the

phosphate backbone, a solid curved line indicates an arc, and a dashed curved line encloses a

region and denotes its two terminal bases which may be paired or unpaired. Letters within a

region specify a recursive quantity. White regions are recursed over and blue regions indicate

those portions of the secondary structure that are fixed at the current recursion level and

contribute to the energy as defined by the energy model. Green and red regions have the

same recursion cases as the corresponding white regions, except that for the green regions

multiloop energy and for red regions kissing loop energy is applied, i.e. the corresponding

penalties for each unpaired base and base pair should be applied. A solid vertical line

indicates a bond, a dashed vertical line denotes two terminal bases of a region which may

be base paired or unpaired, and a dotted vertical line denotes two terminal bases of a region

which are assumed to be unpaired. A terminal determined by • is starting point of either

an interaction arc or a bond.

2.2 RNA Secondary Structure

RNA molecule is a linear polymer in which the nucleotides are linked together by means of

phosphodiester bridges, or bonds. The base types are Adenine (A), Cytosine (C), Guanine

(G), and Uracil (U). In a process called hybridization, some pairs of nucleotides from one

or two different RNAs creates hydrogen bonds. Two nucleotides that are connected via

hydrogen bonds are called a base pair. The canonical Watson-Crick base pairs, (A-U) and

(G-C) are the strongest ones. The thermodynamic stability of a wobble base pair (U-G)

is also comparable to that of a Watson-Crick base pair. Base pairing through alternate

hydrogen bonding patterns are non-canonical.

A set of base pairs between the nucleotides of an RNA strand forms an RNA secondary
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Figure 2.1: Example of RNA secondary structure (from Wikipedia).

structure. Figure 2.1 shows the secondary structure of a small subunit of ribosomal RNA.

For many RNA molecules, structure of RNA molecule determines both function and mech-

anism behind that function. During past decades several experimental and computational

techniques have been developed to determine the RNA structures.

Experimental methods. Here we briefly mention some of the experimental approaches

to analyze the RNA structures (please see [33] for a survey). One of the earliest method to

determine the structure of novel RNAs is structure probing of nucleic acids. This technique

can determine individual components of an existing structure such as the existence of a

given base pair. Structure probing analysis can be done through many different methods,

which include chemical probing, hydroxyl radical probing, nucleotide analog interference

mapping (NAIM), and in-line probing.
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The other widely used approach is X-ray crystallography. Crystal structures of proteins

began to be solved in the late 1950s. Before 2000, only three RNA crystal structures were

available. Since 2000, the structure determination of large and complex RNAs by X-ray

crystallography has been achieved, initiated by the analysis of the ribosomal subunits, and

now including several structures. Improvements in techniques for the synthesis, purification,

crystallization and derivatization of large RNAs, as well as the development of advanced

software, was essential for these spectacular achievements. Although the number of RNA

structure determinations has grown slowly, the average structure size has dramatically in-

creased. The closest competing method is nuclear magnetic resonance (NMR) spectroscopy.

Structure determination by NMR spectroscopy usually consists of several following phases,

each using a separate set of highly specialized techniques. The sample is prepared, reso-

nances are assigned, restraints are generated and a structure is calculated and validated.

Crystallography can solve structures of arbitrarily large molecules, whereas NMR is re-

stricted to relatively small ones (less than 70 kilodaltons).

A structural technique specialized for visualizing dynamic macromolecular complexes of

200 kilodaltons or larger, including RNAs, is single-particle cryo-electron microscopy (cryo-

EM). There are no size limitation. Cryo-EM of ribonucleoproteins combined with single-

particle reconstruction enables the visualization of each of its transitional states that can be

efficiently trapped. Cryo-EM maps are used to fit high-resolution X-ray structures, when

available, illustrating the complementarities between the two experimental approaches.

Although traditional methods (e.g. chemical probing, and mass spectrometry) are re-

placed by recent modern technologies such as X-ray crystallography, Nuclear Magnetic Res-

onance (NMR) spectroscopy, and Cryo-electron microscopy (Cryo-EM), the experimental

methods are still time consuming and costly processes. Consequently, only few RNA sec-

ondary structures have been experimentally determined.

Computational methods. The problem of computationally predicting RNA secondary

structure was first introduced more than thirty years ago. Although the problem is one of

the earliest in computational biology, it has attracted some fresh attention due to the recent

discoveries of new classes of non-coding RNAs. Additional interest in the problem comes

from the study of complete genomes of RNA viruses.

Several definitions for the ”optimal” RNA secondary structure has been presented. Usu-

ally it is interpreted as the most stable structure under a specific energy model. Also it can
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be defined as the most conserved secondary structure. Recently a notion of centroid has

been introduced as the most common structure. Based on this notion the most common

structure is the one with the minimum distance from the all possible structures (center) in

Boltzmann distribution.

Definition (RNA secondary structure prediction problem) Given an RNA sequence

R, compute the set of canonical base pairs {i • j|1 ≤ i < j ≤ n} of the optimal secondary

structure.

The following constraints are usually imposed on RNA secondary structure problem:

• Multi pairing is prohibited - each base i is paired with at most one base j.

• Sharp U-turn is prohibited - if i • j is a base pair then j > i+ 3.

• Pseudoknot is prohibited - if i • j and i′ • j′ are two base pairs such that i < i′, then

i < j < i′ < j′.

2.2.1 RNA secondary structure prediction methods

One of the earliest attempts to predict RNA secondary structure was made by Nussinov

and co-workers who used dynamic programming method for maximizing the number of base

pairs [72]. Nussinov algorithm simply works as follows. Let NX(i, j) (for X ∈ {R,S})

denotes the maximum number of base pairs of the subsequence [i, j] of the single sequence

X. The dynamic programming formulation of NX(i, j), corresponding to the recursion cases

in Figure 5.1, are calculated by the following recursions

NX(i, j) = max



















NX(i+ 1, j) (a)

max
i<k≤j

X[i],X[k] complementary

(

1 +NX(i+ 1, k − 1)

+NX(k + 1, j)

)

(b)
(2.1)

In case (a) base X[i] is not part of any base pair and in case (b) base X[i] forms a base

pair with base X[j]. The complexity of the algorithm is O(n3) with memory requirement

of O(n2). Since the base pair counting model used in Nussinov algorithm is in fact a basic

additive energy model, the algorithm can be easily adapted to calculate the optimal structure

based on a more accurate additive energy model such as nearest neighbor thermodynamic

model (NNTM).
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Figure 2.2: Recursion cases for computing the maximum base pairing secondary structure
of [i, j].

Nussinov et al. published an adaptation of their approach to use a simple NNTM in 1980

[71]. Later Zuker et al. [105] and Lyngso et al. [61] refined dynamic programming approach

for the more accurate versions of NNTM. The popular mfold [104] and its more efficient

version RNAfold [47] (from the Vienna package) are implementations of these algorithms.

In addition, some methods have been employed to speed up the dynamic programing

algorithm of RNA folding. Using Valiant’s approach, Akutsu [2] showed how to reduce

the worst case running time of RNA folding problem to O(n3(log logn)/(log n)1/2). Valiant

approach [93] is a classical algorithm for context-free recognition in less than cubic time.

That approach combining the new paper on the all-pairs shortest path problem [21] can

achieve a worst case bound of O(n3(log3 log n)/(log2 n)) [91]. Moreover, an approach based

on Four-Russian algorithm has been presented to speed up the minimum free energy RNA

structure perdition [36] to O(n3/ log(n)). Four-Russion technique is a general strategy to

achieve a worst-case speed-up of dynamic programming.

Recently, the dynamic programming sparsification technique has been used to reduce

the time and space complexity of calculation of the minimum free energy structure for a

single RNA sequence folding [98, 11]. As a result a (roughly) linear reduction in the time

and space complexity was achieved on average. To be more precise, the time complexity of

RNA-folding was reduced from O(n3) to O(nZ) and the space complexity was reduced from

O(n2) to O(Z), where Z is a sparsity factor satisfying n ≤ Z ≤ n2. An estimation [98] of

the expected value of a parameter related to Z, based on a probabilistic model for polymer

folding and measured by simulations, shows that Z is significantly smaller than O(n2). The

time and space reduction is based on the assumption that RNA structures or consensus

structures, in the simultaneous alignment and folding of RNAs, satisfy the polymer-zeta

behavior. The polymer-zeta property states that in any long polymer chain the probability

of having arc between two monomers with distance m converges to b.m−c, where b, c > 0
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are some constants.

In 1990, McCaskill introduced a recursive approach to compute the partition function

and base pair probabilities for RNA secondary structures in Boltzmann ensemble [65]. In

Boltzmann distribution the probability of each structure is related to its thermodynamics

free energy. The minimum free energy structure is the most probable structure in the

entire Boltzmann distribution over the set of all possible RNA secondary structures. One

alternative approach for RNA secondary structure prediction is to estimate the centroid

structure in the Boltzmann distribution that maximizes the expectation of the accuracy of

prediction [29, 42, 59]. If the similarity of two structures is defined as the number of their

common base pairs, the centorid structure is simply the structure formed of base pairs with

probability higher than 1/2.

Stochastic context-free grammars (SCFGs) have been also employed as a probabilistic

model for RNA secondary structure [53]. The features and their associated parameters of

SCFGs specify probability distributions over possible transformations which they may not

have any physical meaning. In this approach statistical learning algorithms are used to drive

such parameters. CONTRAfold program [32] which is based on conditional log-linear model

(CLLM), a probabilistic model which generalizes upon SCFG, attracted a lot of interest due

to its high accuracy in RNA folding problem.

An alternative direction in RNA secondary structure prediction aims to improve the

predictive power of single RNA folders by simultaneously predicting the structure of two

or more functionally similar RNA sequences. This general approach typically aims to op-

timize a linear combination of (i) the free energy of the alignment/consensus of the RNA

sequences and (ii) a score derived from covarying mutations or common motifs among the

RNA sequences.

There are two basic flavors of this general approach. The first one (e.g. used by alifold

program [46]), assumes that the precomputed multiple alignment between the input RNA

sequences corresponds to the alignment between their substructures. The structure is then

derived by folding the multiple alignment of the sequences with the goal of minimizing a

linear combination of the total free energy and a score derived from the covarying mutations

among aligned bases.

The second flavor suggests to perform the sequence alignment and the structure predic-

tion simultaneously [81, 37, 64, 12, 99, 43]. When formulated as a rigorous dynamic pro-

gramming procedure, the computational complexity of this technique becomes very high;
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it requires O(n6) time even for two sequences (and O(n3m) time for m sequences [26]. In

order to decrease the computational complexity, it may be possible to restrict the number

of substructures from each RNA sequence to be aligned to the substructures from other

sequences. In the RNAscf program [12], for example, this is done through a preprocess-

ing step which detects all statistically significant potential stems of each RNA sequence by

performing a local alignment between the sequence and its reverse complement. When com-

puting the consensus structure, only those substructures from each RNA sequence which

are enclosed by such stems are considered for being aligned to each other. The ultimate

goal is again minimizing a linear combination of the free energy of the consensus sequence

and the similarity of the aligned sequences and the structures they imply.

Note that this method crucially relies on the correctness of the multiple sequence align-

ment; thus its prediction quality is usually good for highly similar sequences (60% or more)

but can be quite poor for more divergent sequences.

The role of locally significant structural elements in determining the global structure of

an RNA molecule is further illustrated by consensus folding technique. In this approach,

rather than minimizing free energy, the goal is to first extract all potential stems of each

input RNA sequence. The consensus structure is then computed through determining the

largest set of compatible potential stems that are common to a significant majority of

the RNA sequences. A good example that uses the consensus folding technique is the

comRNA program [49] which, once all stems of length at least ℓ are extracted from individual

sequences, computes the maximum number of compatible stems that are common to at

least k of the sequences via a graph theoretic approach. As one can expect, the consensus

technique relies on the availability of many sequences that are functionally and structurally

related.

Alkan et al. [5] present an alternative approach for capturing locally stable structural

elements by delocalizing the thermodynamic cost of forming an RNA substructure. In

addition to the total free energy, Alkan et al. incorporate the energy density of substructures

which is defined as the length normalized free energy of a substructure w.r.t the nearest

neighbor thermodynamic model. This approach thus uses the sum of the energy densities

of individual substructures as the second component of the linear optimization function,

giving the stable but small structural elements the chance to compete with global elements.

The impact of locally stable substructure is also justified by kinetic folding of RNA. The

energy landscape of some RNA sequences contains local optima, in which the folding process
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may become trapped. Kinetic approaches (e.g. Kinfold [35], RNAkinetis [24]) study the

dynamics of RNA folding on such an energy landscape. Using stochastic simulation and

Markov chain, these methods aim to model the folding pathway over a couple of time steps.

Generally speaking, these methods have a set of rules for transition between structural states

which are in the simplest case adding or removing a base pair.

In addition to all the above approaches which focus on unseudoknoted secondary struc-

tures, a number of algorithms have been designed to study pseudoknotted structures during

recent years. There are two major problems concerning the analysis of pseudoknotted RNAs.

First, only few pseudoknoted structures have been known. Second, the prediction of pseu-

doknots is computationally very expensive. The full problem is known to be NP-hard [60],

and efficient algorithms exist only for restricted classes of pseudoknots. The running times

of the algorithms which predict the minimum free energy secondary structure for limited

classes of pseudoknotted structures [92, 78, 3, 60, 31], range from O(n4) to O(n6) while each

handles a different class of structures (Condon et al. present a study on the relationships of

the various classes of pseudoknotted structures [23]). All these algorithms use the properties

of the restricted class in a dynamic programming approach to efficiently solve the prediction

problem. Rivas and Eddy algorithm [78] can handle the most general class of structures.

Although, the algorithm of Dirks and Pierce [31] can be considered more general than the

others, because it can calculate the partition function as well as the minimum free energy

secondary structure. Even the most efficient algorithm by Reeder and Giegerich [76] still

has a high running time of O(n4), although it strongly restricts the class of predictable

pseudoknots.

2.3 RNA-RNA interaction

Many regulatory RNAs such as microRNAs and small interfering RNAs (miRNAs/siRNAs)

are very short (21 to 25 nt) and have full sequence complementarity to the targets. However,

some of the regulatory antisense RNAs are relatively long and are not fully complementary

to their target sequences. They exhibit their regulatory functions by establishing stable

joint structures with target mRNA involving one or more loop-loop interactions. Figure 2.3

shows the OxyS-fhlA complex in E.coli that contains two loop-loop interaction sites.

Brunel et al. [19] present a study of the structure and function of RNA loop-loop in-

teractions through some well known examples. Table 2.1 shows the list of the interesting
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Figure 2.3: Interaction structure of small RNA molecule OxyS (antisense RNA) and fhlA
(target) [9].

complexes and their functionality studied in [19]. The first intermolecular loop-loop inter-

actions were observed between complementary anticodons of different tRNA pairs. This

observation and the similar ones anticipated the high potential role of hairpin loops to

trigger RNA intermolecular recognition. Hairpin loops, due to both functional and struc-

tural properties, are perhaps the most adaptable motifs for initiating the interaction. First,

hairpin loops are well accessible provided that they are not engaged in the intramolecular

architecture. Second, their structural versatility allows them to adopt particular confor-

mations enabling a proper presentation of nucleotides that initiate the recognition process.

This initiation step generally involves Watson-Crick pairing of a few nucleotides, preferen-

tially G-C pairs. The initial reversible complex is subsequently converted into a more stable

complex through helix propagation or stabilization by a protein. A large diversity of the

stabilization mechanisms is observed. It appears that RNA structures have evolved either

to freeze the initial complex, or alternatively to convert initial interactions by propagating

helices along topologically feasible pathways. Stabilization of the initial complex may also

be assisted by proteins and/or formation of additional contacts. RNA loop-loop interactions

thus appear to be widely used to facilitate molecular recognition and trigger a variety of

dynamic pathways.
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Table 2.1: Examples of loop-loop interactions involved in the formation of several prokaryotic
antisense/target complexes [19].

Trans-acting RNA Target Function References
Plasmids (IncFII-relatives); CopA repA mRNA Replication control; [58, 73, 54]

translation inhibition
(IncB and IncIα-relatives); RNAI repZ mRNA Replication control; [83, 10]

translation inhibition
(ColE1-relatives); RNAI RNAII (preprimer) Replication control; [90, 89]

primer maturation
(pT181 and pIP501-relatives); RNAI repC mRNA Replication control;

transcriptional attenuation
(ColE2-relatives); RNAI rep mRNA Replication control;

translation inhibition
pAD1; RNAII RNAI Post-segregational killing;

translation inhibition
(IncFI/FII-relatives); FinP RNA traJ mRNA Control of conjugation; [55, 94]

translation inhibition
Bacteriophages P22; Sar RNA ant mRNA Lysis/lysogeny switch; [82]

translation inhibition
Bacterial E. coli OxyS fhlA mRNA; Oxidative stress; [6, 103, 9]

rpoS mRNA translation inhibition;
sequestration of Hfq

B. subtilis tRNAs Aminoacyl-tRNA Aminoacyl-tRNA synthetase regulation; [40]
synthetase mRNAs transcription antitermination

The problem of computationally predicting interaction between RNAs has been attracted

substantial interest in recent years. Currently the goal is to predict not only simple interac-

tions between miRNAs and mRNA targets, but even more complex interactions involving

loop-loop interactions and multiple binding sites. The RNA-RNA interaction prediction

problem in general can be considered as the RNA joint secondary structure prediction one.

A joint secondary structure between two RNA sequences is a set of base pairs where each

nucleotide is paired with at most one other nucleotide, either internal or external.

Definition (RNA-RNA interaction prediction problem) Given two RNA sequences

R and S, compute the set of canonical base pairs {iR • jR|1 ≤ iR < jR ≤ LR}∪ {iS • jS |1 ≤

iS < jS ≤ LS} ∪ {iR ◦ iS |1 ≤ iR ≤ LR ∧ 1 ≤ iS ≤ LS} of the optimal joint secondary

structure.

The RNA-RNA interaction prediction problem in its general case is known to be NP-

hard [4], but simplified versions of the problem that consider restricted types of interactions

under the specific energy models can be handled in polynomial times. There has been no

standard energy model for interaction previously. All the suggested energy models are over

simplified and useful only for a specific class of interactions.
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2.3.1 RNA-RNA interaction prediction methods

During the last few years, several computational methods emerged to study the interaction

between two RNAs. Based on their performance and approach we put them into four

different categories.

Concatenating the input sequences into a single sequence. Early attempts to an-

alyze the thermodynamics of multiple interacting strands concatenate input sequences in

some order and consider them as a single strand. For example, pairfold [8] and RNAcofold

[17] from Vienna package concatenate the two input sequences into a single strand and

predict its minimum free energy structure by treating the boundary between two adjacent

RNA sequences as a special loop. For the multiple input sequences, Andronescu et al. [8]

suggest to compute minimum free energy structure of concatenation of all different permu-

tation orders of input sequences. Furthermore, RNAcofold provides the similar extension

of McCaskill’s partition function algorithm to compute base pairing probabilities, and equi-

librium concentrations of duplex structures. Dirks et al. [30] present a method, as a part

of NUPack, that concatenates the input sequences in all unique cyclic permutation orders

and computes the partition function for the whole ensemble of complex species, carefully

considering symmetry and sequence multiplicities. Dirks et al. brought out the fact that for

complexes of interacting strands in which some strands are identical (e.g. AA), over count-

ing correction to the partition function recursions is necessary. Dirks et al. proved that

the correctness can be easily done for each permutation by dividing the calculated partition

function to a value v corresponding to the number of rotations of the cyclic permutation

that results in the same permutation. For example, v = 4 for AAAA, v = 3 for ABABAB,

and v = 2 for ABAABA.

Despite all the above advances, the methods based on concatenating the sequences are

not accurate at all in general, as even if pseudoknots are considered, some useful inter-

actions are excluded (for example loop-loop interaction) while many physically impossible

interactions are included (for example physically impossible crossing interactions).

Avoiding internal base pairing. Alternatively, several methods avoid internal base

pairing in either strand, and compute the minimum free energy secondary structure for

their hybridization under this constraint (RNAhybrid [77], UNAFold [28, 62], TargetRNA [88],

RNAduplex and RNAplex [86] from Vienna package). These approaches naturally work only
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for simple cases involving typically very short strands. Many regulatory RNAs such as

microRNAs and small interfering RNAs (miRNAs/siRNAs) are very short and have almost

full sequence complementarity to the targets. These methods are appropriate to find the

energetically most favorable hybridization sites of small regulatory RNAs in large target

RNAs.

RNAhybrid program calculates the MFE hybridizations of all possible start positions in

the miRNA and in the target. Bulge loops (i.e., stretches of unpaired nucleotides in either of

the sequences) and internal loops (i.e., stretches of unpaired nucleotides in both sequences)

are restricted to a constant maximum length in either sequence (which is set to 15 as a

default value). If m and n are the lengths of the target and the miRNA, respectively, and c

is the maximal length of a loop in either sequence, the space consumption of the algorithm

is of the order O(mn), and the time consumption is of the order O(c2mn). If m is much

larger than n and c, which is usually the case for miRNAs and their potential targets, the

space and time consumption is linear to the target length m.

RNAduplex and RNAplex follow the similar approaches as RNAhybrid, but RNAplex uses

a simplified energy model which makes it faster and thus more suitable for longer RNA

sequences. In addition a length penalty is considered to focus the target search on short

stable interactions.

Given the sequence of an sRNA gene in a particular organism, TargetRNA program out-

puts a ranked list of predicted targets for the sRNA. The program begins by consulting a

database of protein coding genes for the related organisms. For each protein coding gene

in the organism, the program extracts the mRNA sequence corresponding to the protein

coding region along with user-specified regions upstream and downstream of the coding

sequence, extending into the 5’-UTR and 3’-UTR, respectively. TargetRNA then evaluates

and sorts the potential for interaction between every extracted mRNA sequence and the

sRNA, and assigns each a hybridization score. In the hybridization score for two RNA se-

quences, intramolecular base pairings are not considered and pseudoknots are not allowed.

To calculate the hybridization score of an sRNA and candidate mRNA target, TargetRNA

can use either of two different hybridization score models for RNA sequence interactions:

an individual base pair model or a stacked base pair model. The individual base pair model

of hybridization scoring is based on a straightforward extension of the SmithWaterman dy-

namic programming algorithm [84], except that instead of assessing homology potential, base

pairing potential is assessed. The stacked base pair model of hybridization scoring is based
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on stacking and destabilizing energies of interacting sequences, where the calculation of the

optimal hybridization score for two sequences is comparable with folding RNA sequences

[105] without allowing intramolecular base pairings. Note that all the above methods are

not able to predict RNA complexes involving loop-loop interactions. However, as mentioned

earlier loop-loop interactions play important functionalities.

Considering interaction as a multi step process. There are several evidences [96, 19,

66, 41] that interaction can be considered as a multi step process: 1) unfolding of the two

molecules to expose bases needed for hybridization, 2) the hybridization at the binding site,

and 3) restructuring of the complex to a new minimum free energy conformation. Based

on this idea a third set of methods [69, 52, 20] are designed to predict the (most likely)

hybridization between the unpaired regions of the secondary structures of two individual

RNAs. The energy score of the interaction is calculated as the sum of the two energy

contributions: (i) the energy necessary to open the binding site ∆Gopen and (ii) the energy

gained from hybridization ∆Ghybrid. Note that the energy of the open region is assumed to

be unchanged by the binding of the oligo.

RNAup [69, 68] presents an extension of the standard partition function approach [65] that

computes the probabilities that a sequence interval remains unpaired. The corresponding

probability is computed as the ratio between the partition functions of the all secondary

structures in which the specific interval is unpaired, and the ensamble of all secondary

structures. Let Pu[i, j] be the probabilities that a sequence interval [i, j] remains unpaired,

then ∆Gopen = (1/β)lnPu[i, j], where β is the inverse of the temperature times Boltzmann’s

constant. ∆Gopen is calculated for all regions up to a maximum size w for two interacting

sequences R and S. The computation of the hybridization part is performed similar to

RNAhybrid - the binding region contains a set of stacks, bulge and internal loops. The

memory requirement is O(n2 + nw3), and the required CPU time scales as O(n3 + nw5).

Kertesz et al. [52] developed a quantitative study to examine the effect of site accessibil-

ity on miRNA-mRNA interaction. Their method, PITA, starts with a genome-wide search for

miRNA target seed regions and tries to extend these sites in one direction. The seed region is

a subsequence of seven or eight bases at the 5′ end of animal miRNAs. ∆Gopen is calculated,

in a way similar to RNAup, for the regions including highly conserved seeds. ∆Ghybrid is com-

puted such that miRNA and target are paired according to pairing constraints imposed by

seed. The results of the study in several genomes show that site accessibility is as important
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as sequence match in the seed for determining effectiveness of binding between miRNA and

target mRNA. More precisely, the analysis suggest that as seeds are more conserved and

regions are more accessible, the target sites are most likely to be preferred evolutionary and

thus functionally important.

IntaRNA [20] integrated both the accessibility of the target sites and the existence of a

user-definable seed in a general approach for arbitrary RNAs. The program is validated to

predict targets for bacterial sRNAs, but it can be used to find other RNA-RNA interactions

as well.

Although this type of methods show reasonable accuracy in predicting interaction of

single binding sites, but unfortunately they are not able to predict the interactions while

the complex contains multiple binding sites.

Predicting the joint secondary structure. The last set of approaches compute the

minimum total energy joint structure between two interacting strands under different en-

ergy models. Pervouchine [74] devised a dynamic programming algorithm to maximize the

number of base pairs among interacting strands. A follow up work by Kato et al. [51]

proposed a grammar based approach to RNA-RNA interaction prediction. More generally

Alkan et al. [4] studied the joint secondary structure prediction problem under three dif-

ferent models: 1) base pair counting, 2) stacked pair energy model, and 3) loop energy

model. Alkan et al. proved that the general RNA-RNA interaction prediction under all

three energy models is an NP-hard problem. Therefore, they suggested some natural con-

straints on the topology of possible joint secondary structures which are satisfied by all

examples of complex RNA-RNA interactions in the literature. The resulting algorithms

compute the minimum free energy secondary structure among all possible joint secondary

structures that do not contain (internal) pseudoknots, crossing interactions (i.e. external

pseudoknots), and zigzags (zigzag happens when two interacting loops, interact with other

region as well). Alkan et al. present the first experimental confirmation of the total free en-

ergy minimization approach via correctly predicting the joint structure formed by a number

of interacting RNA pairs.

Although these approaches are the most general ones as they can cover almost all pos-

sible types of interactions known so far, their significant resource requirements limit their

applicability. All the above approaches for predicting a general joint structure have a worst

case running time of O(n6) and a space complexity of O(n4). While this complexity might
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be acceptable when analyzing only a few putative sRNA-target interaction pairs, we are

now faced with the situation that the amount of data to be analyzed is vastly increasing.

Thus, there is an urgent need for a time and space efficient interaction prediction method

that is able to handle complex joint structures.



Chapter 3

Interaction Energy Model

In this section we propose an energy model for interaction between RNA strands. Our

interaction energy model is an extension of the nearest neighbor thermodynamics energy

model for RNA secondary structure. The nearest neighbor thermodynamics energy model

describes a framework to calculate the free energy of a given RNA secondary structure.

3.1 Nearest neighbor thermodynamics energy model

Much of the literature on RNA secondary structure prediction is devoted to the thermody-

namic approach which aims to minimize the sum of the contributions of certain structural

features to the global free energy of the RNA molecule. Perhaps the most widely used struc-

tural features and their associated thermodynamic parameters are provided by the nearest

neighbor thermodynamic model (NNTM) where the free energy contribution of a given base

pair is a function of its nearest base pair [87]. The NNTM has been developed in conjunc-

tion with the development of dynamic programming folding algorithm. The independence

assumptions in this model is dictated by independence assumptions needed by recursive

dynamic programming algorithms.

Since 1999, the NNTM has been accepted as the standard energy model of RNA sec-

ondary structure. An unpseudoknotted secondary structure s of a single nucleic acid strand

S, in the standard energy model, is decomposed into loops, and a free energy is associated

with every loop in s. The total free energy Gs is sum of the loop free energies. The standard

energy model consists of the following loop types:

24
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• Empty: Gempty
i,j is the free energy of a subsequence [i, j] that contains no base pairs

and is external to all loops. Its energy contribution is assumed to be zero.

• Hairpin: Ghairpin
i,j is the free energy of a hairpin closed by the arc i • j. The energy

contribution of this loop depends on the subsequence and the loop size.

• Interior: Ginterior
i,k1,k2,j is the free energy of the interior loop enclosed by the closing arc i•j

and the interior arc k1 • k2. This free energy depends on the closing base pairs and

the loop size. An interior loop is called bulge iff one side of the loop has zero length.

Stacked pairs are a special case of bulge loops in which case the size of the loop is

zero. A stem is a series of stacked pairs.

• Multi: Gmulti
U,B is the energy of a multiloop with B base pairs and U unpaired bases. It

is approximated by

Gmulti
U,B = α1 + α2U + α3B,

in which α1 is the penalty for the formation of the multiloop, α2 is the penalty per

each unpaired base in the multiloop, and α3 is the penalty per each base pair facing

to the multiloop.

Figure 3.1 shows the elementary substructures in 5S rRNA secondary structure. The

parameters associated with the NNTM have been determined from optical melting exper-

iments and have been measured quite precisely over the years. Moreover some (heuristic)

scoring models [63] have been used to overcome the difficulty of experimental procedures for

some cases. For instance, the energy of a multi-branch loop is approximated by a function

of number of branches, number of unpaired bases, dangling bases and the closing base pairs.

Recently some restrictions of laboratory experiments for certain structural features of

the NNTM led to the use of statistical learning methods for estimating their associated

energy parameters [7]. In this case, the parameters should be trained using large collections

of RNA sequences annotated with known secondary structures; clearly the accuracy and

the richness of the training set has a direct consequence on the accuracy of the predicted

structures.
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Figure 3.1: An example of RNA secondary structure containing all elementary substructures.

3.2 Interaction Energy Model

Similar to the standard energy model, an interaction structure rs of two nucleic acid strands

R and S, is decomposed into substructure components, and a free energy is associated with

every component. The total free energy Grs is sum of the free energies of components. The

standard energy model consists of the following loop types: 1) Hairpin, 2) Interior, and

3) Multiloop. However, in an interaction structure of two strands under our assumptions,

where pseudoknots, crossing bonds, and zigzags are not allowed, new kinds of components

can appear. We extend the standard energy model by defining those new kinds of interaction

components. Our extended energy model consists of the following new components:

• Hybrid: Ghybrid

{ki
R
◦ki

S
}

is the free energy of a joint secondary structure consisting of a series

of bonds, ki
R ◦ k

i
S , i = 1, . . . ,m, with no intramolecular base pairing or branching. We

call such a component hybrid (Figure 3.2). We define the energy associated with a

hybrid component by

Ghybrid

{ki
R
◦ki

S
}

= β1 + σ
m−1
∑

i=1

Ginterior
ki

R
,ki+1

R
,ki+1

S
,ki

S

, (3.1)
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in which β1 is the penalty for the formation of the hybrid, and σ ≤ 1 is the ratio of

the free energy of intermolecular to that of intramolecular interior loops (as suggested

by [4]). Note that with β1 = 0, σ = 1, Ghybrid is identical to the energy proposed

by RNAhybrid, first introduced by Rehmsmeier et al. [77] which considers only one

hybrid component for mRNA/target duplexes and does not allow any intramolecular

structure,

stem
1

bulge

stem
2

internal

stem
3

R

S

β1 ∗σ

Figure 3.2: A hybrid component between the two strands whose free energy is Ghybrid =
β1 + σ(Gstem1 +Gbulge +Gstem2 +Ginternal +Gstem3).

• Kissing: Gkissing
Uk,Bk is the energy of an intramolecular loop (hairpin, interior, or multiloop)

that makes interaction with the other strand and has Bk base pairs and Uk unpaired

bases. Such component is called a kissing loop (Figure 3.3). The energy associated

with a kissing loop is given by

Gkissing
Uk,Bk = β2U

k + β3B
k, (3.2)

in which Bk is the number of base pairs and Uk the number of unpaired bases in

the kissing loop, β2 is the penalty per each unpaired base, and β3 is the penalty per

each base pair. Note that in our model we use different β1 and σ values for a hybrid

component covered by a kissing loop.

• Inter-hybrid: Ginter-hybrid is the energy of an intermolecular loop bounded by two bonds

belonging to two consecutive hybrid components. Bases in either sequence facing this

kind of loop might be the end points of only arcs and not bonds. We call such a

component inter-hybrid loop (Figure 3.4). In this work the energy contribution of an

inter-hybrid loop is assumed to be zero.

Figure 3.5 shows the interaction energy model components in OxyS-fhlA complex struc-

ture. We use a different β1 penalty and σ for a hybrid component covered by a kissing loop.

The parameters for a hybrid component that is not covered by a kissing loop is denoted by
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R

S

β2 β2

β3

β3

Figure 3.3: A kissing loop in R that interacts with the other strand S. In this case, the free
energy of the kissing loop is Gkissing = 4β2 + 2β3.

hybrid2

hybrid1

inter−hybrid loop

R

S

Figure 3.4: An example of inter-hybrid loop in interaction structure of two strands R and
S.

β′1 and σ′. We add an AU penalty to the energy of a hybrid component per each terminal

AU base pair; this penalty is motivated by [101]. Similar to RNAhybrid, the interior loops in

a hybrid component are restricted to a constant maximum length, in either sequence, which

is set to 15 in this work.

Because of lack of data we could not use any learning method to find appropriate param-

eters for our model. We manually optimized the parameters for the melting temperature

experiment reported in [101] and also perturbed them a bit for the equilibrium concentra-

tion computation, based on intuition and a few trial and errors. The default values for our
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Figure 3.5: Interaction components of OxyS-fhlA pair presented in [9].

energy parameters are

β1 = 4.5, β2 = β3 = 0.1, σ = 0.7,

β′1 = 2.5, σ′ = 0.8

AUpenalty = 0.45

(3.3)

In future, provided a large set of interaction data, the parameters can be trained more

accurately. Further studies should approve the correctness and accuracy of the interaction

energy model and its parameters by extensive laboratory experiments.



Chapter 4

Partition Function for Interacting

Nucleic Acid Strands

There is a significant interest in quantitative analysis of binding thermodynamics between

oligonucleotides and target RNAs. Here we address the problem of calculating how likely

two RNA or DNA strands are to interact. We present a computational method to predict

the probability of intermolecular and intramolecular base pairing. Based on the base pair

probabilities, one can quantitatively measure the strength, probability, and stability of the

complex.

To predict base-pairing probability of any two bases of interacting nucleic acids, it is

necessary to compute the interaction partition function over the whole ensemble of possible

individual and joint secondary structures. Partition function is a scalar value from which

various thermodynamic quantities can be derived. For example, the equilibrium concentra-

tion of each complex nucleic acid species and also the melting temperature of interacting

nucleic acids can be calculated based on the partition function of the complex.

We present a partition function algorithm for analyzing the thermodynamics of two in-

teracting nucleic acid strands considering the most general type of interactions introduced

in the literature. We give a dynamic programming algorithm to compute the partition func-

tion over almost all physically possible interaction secondary structures in O(n6) time and

O(n4) space complexity. We verify our algorithm by computing (i) the equilibrium concen-

tration for OxyS-fhlA complex and (ii) the melting temperature for RNA pairs available in

the literature. In both experiments our algorithm shows high accuracy.

30
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4.1 Problem Definition

The partition function is a weighted sum over the set of all possible secondary structures S

Q(T ) =
∑

s∈S

e−Gs/RT (4.1)

where R is the universal gas constant and T is the temperature.

Efficient algorithms for computing the partition function for a single strand have been

given. McCaskill gave the first partition function algorithm for a single unpseudoknotted

nucleic acid strand [65], and Dirks and Pierce gave a partition function algorithm for a single

strand allowing pseudoknots [31]. However, computing the partition function for multiple

interacting strands has not been properly addressed. In previous attempts multiple strands

are concatenated in some order and partition function for the resulting single strand is com-

puted [28, 17, 30]. That approach is not accurate at all because even if pseudoknots are

considered, some useful interactions are excluded while many physically impossible interac-

tions are included (for example physically impossible crossing interactions). On the other

hand, considering all possible secondary structures makes the problem NP-hard [4]. There-

fore, we only consider all possible secondary structures that do not contain pseudoknots,

crossing bonds, and zigzags.

Interaction Partition Function (IPF) Problem

Given a pair of nucleic acid strands R and S, and a temperature T , compute the partition

function, QI(T ), over SI the set of all possible single or duplex secondary structures that

do not contain pseudoknots, crossing bonds, and zigzags.

Input: nucleic acid strands R and S.

Output:

QI(T ) =
∑

s∈SI

e−Gs/RT .

It is important to note that designing an algorithm to compute the partition function is

more challenging than giving an algorithm to predict the minimum free energy secondary

structure, because for partition function the algorithm should guarantee that every structure

is considered exactly once.
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4.2 The Algorithm: piRNA

We give a recursive algorithm, called Partition function for InteRacting Nucleic Acids

(piRNA), for the IPF problem. In all of our recursions, the considered cases are disjoint.

This fact shows that every possible secondary structure is reached by exactly one trajec-

tory in the recursion process. Our algorithm guarantees to consider all possible secondary

structures exactly once.

We present our algorithm using recursion diagrams [31, 78]. Our algorithm computes

two types of recursive quantities: 1) the partition function of a subsequence [i, j] in one

strand, and 2) the joint partition function of subsequences [iR, jR] and [iS , jS ]. A region is

the domain over which a partition function is computed. Terminal bases are the boundaries

of a region. For the first type, region is [i, j] with i and j terminal bases. For the second

type, region is [iR, jR] × [iS , jS ] with iR, jR, iS , and jS terminal bases. The length pair of

region [iR, jR] × [iS , jS ] is (lR = jR − iR + 1, lS = jS − iS + 1). Our algorithm starts with

(lR = 1, lS = 1) and considers all length pairs incrementally up to (lR = LR, lS = LS). For a

fixed length pair (lR, lS), recursive quantities for all the regions [iR, iR+lR−1]×[iS , iS+lS−1]

are computed.

4.2.1 Partition Function for Non-Interacting Subsequences

For computing the partition function of a subsequence in one strand we use McCaskill’s

algorithm [65]. McCaskill’s algorithm is shown in Figure 5.2, in which Qi,j is the partition

function for the subsequence [i, j].

In Figure 5.2, the first case of Qi,j corresponds to an empty structure (that constitutes

no base pairs) whose free energy is assumed to be zero, thus its contribution to the partition

function is e−Gempty
i,j /RT = 1. In the other case, there exists at least one arc and the leftmost

one is k1 • k2. It contributes Qb
k1,k2

Qk2+1,j to the partition function, therefore,

Qi,j = 1 +
∑

i≤k1<k2≤j

Qb
k1,k2

Qk2+1,j . (4.2)

The second line shows the cases ofQb
i,j which is the partition function for the subsequence

[i, j] assuming i and j are base paired. The arc i•j can close different substructures: hairpin,

interior, or multiloop. The energy contribution of each substructure is calculated based on

the standard thermodynamics energy model.
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=
b

bi j i j i
k1 k2
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Figure 4.1: McCaskill’s algorithm: recursion for Qi,j , the partition function for the subse-
quence [i, j]. Above, Qb

i,j is the partition function for the subsequence [i, j] assuming i and

j are base paired, and Qbz
i,j is the partition function for the subsequence [i, j] assuming there

is at least one arc in the region.

Qb
i,j =e−G

hairpin
i,j /RT +

∑

i≤k1<k2≤j

e
−Ginterior

i,k1,k2,j
/RT

+

∑

i≤k1<k2≤j

Qb
k1,k2

Qbz.green
k2+1,j−1 e−(α1+α2(k1−i−1)+α3)/RT .

(4.3)

The third line shows cases of Qbz
i,j which is the partition function for the subsequence

[i, j] assuming the region constitutes at least one arc. Therefore,

Qbz
i,j =

∑

i≤k1<k2≤j

Qb
k1,k2

Qk2+1,j . (4.4)

As mentioned before, a green region is contained in a multiloop. The region has the

same recursion as if it was white, however the base pair and unpaired base penalties of

multiloop should be applied to it. Explicitly,

Qbz.green
i,j =

∑

i≤k1<k2≤j

Qb
k1,k2

Q.green
k2+1,j e−(α2(k1−i−1)+α3)/RT , (4.5)

Q.green
i,j = e−α2(j−i−1)/RT +

∑

i≤k1<k2≤j

Qb
k1,k2

Q.green
k2+1,j e−(α2(k1−i−1)+α3)/RT . (4.6)
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4.2.2 Partition Function for Non-Interacting Gapped Subsequences

The gap partition function Qg is defined by the recursion in Figure 4.2. This quantity is

similar to the g in Dirks-Pierce’s algorithm [31]. For Qg
i,d,e,j , we assume i • j and d • e.

There are two groups of cases: 1) there is no more spanning arc in the region, and 2) there

is at least another outermost spanning arc k1 • k2. In both groups, there could be some

additional structure in the region. If there is no additional structure in the region, then the

spanning region is an interior loop. If there is at least one arc in either side of the region,

then the spanning region forms a multiloop and penalty of multiloop should be applied.

= i ji j

i ji ji j

i jji j i

ed

g

e

eee

ee

i j e

bz bz bz bz

bzbzbzbz

g

e

g

gg

dd

d

d

d d

dd

Figure 4.2: Recursion for Qg
i,d,e,j the partition function for the subsequence [i, j] excluding

the gap [d, e] assuming i • j and d • e.

Later, in the recursion of our interaction partition function, we need an extended version

of Qg where d and e do not necessarily form a base pair and the gap interval [d+ 1, e− 1]

contains either some direct bonds loop or multiple interaction arcs. The two extended

gapped partition functions are called Qgm and Qgk. Qgm
i,d,e,j and Qgk

i,d,e,j are the partition

functions for [i, j] excluding the gap [d, e], assuming i and j are base paired. For Qgm the

gap contains multiple interaction arcs, and for Qgk, the gap contains direct bond (see Figure

4.3). Therefore,

Qgm
i,d,e,j = Q.green

i+1,d Q
.green
e,j−1 +

∑

i<k1≤d

e≤k2<jS

Qg
i,k1,k2,jQ

.green
k1+1,dQ

.green
e,k2−1, (4.7)
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and

Qgk
i,d,e,j = Q.red

i+1,dQ
.red
e,j−1 +

∑

i<k1≤d

e≤k2<jS

Qg
i,k1,k2,jQ

.red
k1+1,dQ

.red
e,k2−1. (4.8)
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Figure 4.3: Recursion for Qgm
i,d,e,j and Qgk

i,d,e,j the partition functions for [i, j] excluding the
gap [d, e], assuming i and j are base paired. For Qgm the gap contains multiple interaction
arc, and for sQgk, the gap contains direct bond.

4.2.3 Partition Function for Interacting Subsequences

In the following, we present all cases of QI
iR,jR,iS ,jS

which is the interaction partition function

for the region [iR, jR]× [iS , jS ]. A solid vertical line indicates a bond, a dashed vertical line

denotes two terminal bases of a region which may be base paired or unpaired, and a dotted

vertical line denotes two terminal bases of a region which are assumed to be unpaired.

Figure 5.3 shows the cases of QI : 1) there is no bond between the two subsequences, 2) the

leftmost bond is a direct bond in both subsequences, and 3) the leftmost bond is covered

by an arc in at least one subsequence. Therefore,

QI
iR,jR,iS ,jS

=QiR,jR
QiS ,jS

+
∑

iR≤k1<jR
iS≤k2<jS

QiR,k1−1QiS ,k2−1Q
Ib
k1,jR,k2,jS

+

∑

iR≤k1<jR
iS≤k2<jS

QiR,k1−1QiS ,k2−1Q
Ia
k1,jR,k2,jS

,
(4.9)

Figure 5.4 shows the recursion for QIb
iR,jR,iS ,jS

, the interaction partition function for the

region [iR, jR] × [iS , jS ] assuming iR ◦ jS is a bond. Since we have penalties for opening

and closing a hybrid component, the recursion for QIb has to determine whether the region
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Figure 4.4: Cases of the interaction partition function QI
iR,jR,iS ,jS

. The first case constitutes
no bonds. In the second case, the leftmost bond is a direct bond on both subsequences. In
the third case, the leftmost bond is covered by an interaction arc in at least one subsequence.

contains one or several hybrid components. In all cases, QIh contains the full hybrid com-

ponent containing the bond iR ◦ jS (see Figure 4.7 for QIh recursion). The first possibility

reflects the case where we have only one hybrid component. In the other cases, we have

always at least two hybrid components. The subsequent intermolecular bond starts a new

hybrid component iff 1) it is not direct in at least one subsequence, i.e. it is covered by an

arc in the associated regions (case 2 of the QIb recursion), or 2) there is at least one arc

between the two successive intermolecular bonds (case 3 and 4 of the QIb recursion). Using

the additional matrices QIhh and QIhb, we get

QIb
iR,jR,iS ,jS

=QIhh
iR,jR,iS ,jS

+
∑

iR<k1<jR
iS<k2<jS

QIhb
iR,k1,iS ,k2

QIb
k1,jR,k2,jS

+

∑

iR<k1<jR
iS<k2<jS

QIhh
iR,k1,iS ,k2

QIa
k1,jR,k2,jS

.
(4.10)

The quantities QIhh and QIhb are defined by the recursion diagrams in Figure 4.6 and

equivalently by the following equations:

QIhb
iR,jR,iS ,jS

=
∑

iR≤k1≤jR
iS≤k2≤jS

e−β1/RTQIh
iR,k1,iS ,k2

(Qbz
k1+1,jR

Qk2+1,jS
+Qbz

k2+1,jS
) (4.11)

and

QIhh
iR,jR,iS ,jS

=
∑

iR≤k1≤jR
iS≤k2≤jS

e−β1/RTQIh
iR,k1,iS ,k2

Qk1+1,jR
Qk2+1,jS

, (4.12)

in which QIh is the interaction partition function for a hybridization region (Figure 4.7).
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Figure 4.5: Recursion for QIb
iR,jR,iS ,jS

assuming iR ◦ jS is a bond. We show a version of the
recursion that contains two split points in each sequence for simplicity reasons. However,
this would increase the complexity and can easily be resolved by introducing two additional
matrices QIhh and QIhb for the region [iR, k1]× [iS , k2] as indicated by the arrows.

Figure 4.7 shows the recursion for QIh. Since we do not allow isolated bond the base

case of QIh is an interior loop, otherwise it can be an isolated bond. Two cases is possible:

1) there is no bond other than iR ◦ jS and iS ◦ jR in the region, and 2) there exist more

bonds between iR ◦ jS and iS ◦ jR, the leftmost of which is k1 ◦ k2. Precisely,

QIh
iR,jR,iS ,jS

=e
−σGinterior

iR,jR,iS,jS
/RT

+
∑

iR≤k1≤jR
iS≤k2≤jS

e
−σGinterior

iR,k1,iS,k2
/RT

QIh
k1,jR,k2,jS

. (4.13)

Figure 4.8 shows the cases of QIa
iR,jR,iS ,jS

for which at least one of iR and jS is the end

point of interaction arc: 1) iR • k1 subsumes [iS , k2] and k2 is not base paired with iS , 2)

iS • k2 subsumes [iR, k1] and iR is not base paired with k1, and 3) iR • k1 and iS • k2 are
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Figure 4.6: Cases of QIhb
iR,jR,iS ,jS

and QIhh
iR,jR,iS ,jS

whose region contains one hybrid component
on the left. Here, region [iR, k1]× [iS , k2] represents a hybrid component. Figure 4.7 shows
the recursion for QIh.

= IhIh

jRiR

iS jS

k1

k2

Figure 4.7: Cases of QIh
iR,jR,iS ,jS

the interaction partition function for a single hybrid com-
ponent.

equivalent. If only one of iR and iS is the end point of an interaction arc while the other

one is the end point of a bond, then the interaction arc subsumes the other subsequence. If

both iR and iS are end points of interaction arcs, then one of the arcs subsumes the other

one or they are equivalent. Therefore,
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Figure 4.8: Cases of QIa
iR,jR,iS ,jS

, for which we assume at least one of iR and jS is the end
point of an interaction arc.

QIa
iR,jR,iS ,jS

=
∑

iR<k1≤jR
iS≤k2≤jS

QIs
iR,k1,iS ,k2

QI
k1+1,jR,k2+1,jS

+

∑

iR≤k1≤jR
iS<k2≤jS

QIs′

iR,k1,iS ,k2
QI

k1+1,jR,k2+1,jS
+

∑

iR<k1≤jR
iS<k2≤jS

QIe
iR,k1,iS ,k2

QI
k1+1,jR,k2+1,jS

,

(4.14)

in which QIs
iR,k1,iS ,k2

is the interaction partition function of [iR, k1]× [iS , k2] assuming iR •k1

is an interaction arc that subsumes [iS , k2], Q
Is′

iR,k1,iS ,k2
is the symmetric counterpart of QIs,

and QIe
iR,k1,iS ,k2

is the interaction partition function of [iR, k1]× [iS , k2] assuming iR •k1 and

iS • k2 are equivalent interaction arcs.

=Ie

gm

Ism Isk

gk

k2 k1 k2 k1

iR

jSiS

jR

Figure 4.9: Cases of QIe
iR,jR,iS ,jS

, for which iR • jR and iS • jS are equivalent interaction arcs.

For QIe, it does not make any difference which one of the covering arcs iR •jR and iS •jS

is extracted first. We first extract the covering arc from S (see Figure 4.9). Extracting the
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covering arc, the remaining subsequence of S contains either at least one direct bond, in

which case kissing loop penalty should be applied, or multiple interaction arcs, in which case

multiloop penalty should be applied. Hence, Figure 4.9 is appropriately colored by green

and red to remind the type of penalty. So, we have

QIe
iR,jR,iS ,jS

=
∑

iS<k1<k2<jS

QIsm.green
iR,jR,k1,k2

Qgm
iS ,k1−1,k2+1,jS

+QIsk.red
iR,iS ,k1,k2

Qgk
iS ,k1−1,k2+1,jS

. (4.15)

= Ism IskIs

iR jR

jSiS

=Ism

gm gk

Imm Ikm

jR

iS jS

iR

=

gm gk

Isk IkkImk

jSiS

iR jR

Figure 4.10: Recursion for QIs
iR,jR,iS ,jS

, interaction partition function assuming iR • jR is an

interaction arc subsuming [iS , jS ]. In QIsm, [iS , jS ] contains multiple interaction arcs and
in QIsk, [iS , jS ] contains at least one direct bond.

Assuming iR • jR is an interaction arc that subsumes [iS , jS ], QIs
iR,jR,iS ,jS

is the partition

function for [iR, jR] × [iS , jS ]. Since the union of the cases of QIsk and QIsm comprise the
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cases of QIs,

QIs
iR,jR,iS ,jS

= QIsk
iR,jR,iS ,jS

+QIsm
iR,jR,iS ,jS

. (4.16)

In particular, QIsk contains all cases of QIs in which [iS , jS ] has at least one direct

bond, and QIsm contains all cases of QIs in which [iS , jS ] includes multiple interaction

arcs. Similarly, we extract the covering arc from QIsk and QIsm to obtain QImm, QImk,

QIkm, and QIkk, where k stands for kissing (or equivalently containing a direct bond) and

m for multiple interaction arcs. The quantities QImm
iR,jR,iS ,jS

, QIkm
iR,jR,iS ,jS

, QImk
iR,jR,iS ,jS

, and

QIkk
iR,jR,iS ,jS

are defined by recursions in Figs. 4.11, 4.12, 4.13, and 4.14. Note that all four

terminal bases of their region can only be the end points of a bond or of an interaction arc.

In summary:

• QImm includes all cases that have multiple interaction arcs in both [iR, jR] and [iS , jS ].

• QImk includes all cases where [iR, jR] has multiple interaction arcs and [iS , jS ] has at

least one direct bond.

• QIkm is symmetric to QImk with respect to R and S.

• QIkk includes all cases where both [iR, jR] and [iS , jS ] have at least one direct bond.

In QImm, both subsequences [iR, jR] and [iS , jS ] include multiple interaction arcs and

have no direct bond (Figure 4.11). All four terminal bases are endpoints of interaction arcs.

Since iR and jS are endpoints of interaction arc, there must exist an QIa on the left side of

the region. This QIa has no direct bond on both subsequences from R and S, which we call

QIann . The bases jR and iS are also end points of interaction arc, so there are interaction

arcs on the right side of the QImm in both subsequences. These arcs can have three types:

1) arc in subsequence [iR, jR] subsumes the arc in subsequence [iS , jS ], 2) arc in subsequence

[iS , jS ] subsumes the arc in subsequence [iR, jR], or 3) two arcs are equivalent. Note that

for multiple interaction arcs there are an QIe, QIs or QIs′ on both left and right side of

the region. The left one is contained in an extracted QIa, and the right one is extracted

separately. This scheme will continue for the other cases with multiple interaction arcs.

In QImk, subsequence [iR, jR] has multiple interaction arcs and subsequence [iS , jS ] has

at least one direct bond (Figure 4.12). Here, iR and jR are the end points of an interaction

arc and iS and jS are the end points of a bond or interaction arc. Since iR is the end

point of an interaction arc, there must exist an QIa on the left side of the region. The QIa
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Figure 4.11: Recursions for QImm
iR,jR,iS ,jS

assuming both [iR, jR] and [iS , jS ] have multiple
interaction arcs.

has no direct bond in the subsequence of R, but it can have two cases with direct bond

in subsequence of S. We denote the special QIa that has at least one direct bond in the

subsequence of S by QIand . In this case, the arc on the right side of the subsequence of R

can have three types: 1) it subsumes an interacting region in [iS , jS ], 2) it is subsumed by

the interaction arc on the right side of [iS , jS ], 3) it is equivalent to the interaction arc on

the right side of [iS , jS ]. Note that the arc on [iS , jS ] can only subsume subsequences with

multiple interaction arcs. If QIa has no direct bond in S subsequence (denoted by QIann),

the arc on the right side of [iR, jR] should subsume a subsequence on the right side of [iS , jS ]

that has at least direct bond. The quantity QIkm is symmetric to QImk with respect to R

and S (Figure 4.13).

In QIkk, both subsequences of R and S have at least one direct bond, and all four
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terminal bases of the region can be end points of bond or interaction arc (Figure 4.14). We

go through the cases based on different possibilities of terminal bases. If two terminal bases

at the same side of the region are end points of a bond, then obviously they are base paired,

otherwise at least one of them is the end point of an interaction arc.

In the first case of Figure 4.14, all four terminal bases are end points of bond, i.e. iR ◦ jS

and jR ◦ iS . This case is similar to QIb with a bond on its right. We denote this special QIb

by QIbr which is shown in Figure 4.15. If just iR ◦ jS , then there is an QIb on left side of the

region. In that case, the right side has three cases: 1) the right side of [iR, jR] contains an

interaction arc that subsumes a subsequence on the right side of [iS , jS ], 2) the right side of

[iS , jS ] contains an interaction arc that subsumes a subsequence on the right side of [iR, jR],

and 3) there are equivalent interaction arcs on the right sides of [iR, jR] and [iS , jS ]. If just

jR ◦ iS , then the case is similar to an QIa with a bond on its right. We denote this special

QIa by QIar (Figure 4.15).

Now consider cases in which terminal bases neither on the left nor on the right make

bond with one another. In this type of cases, there must exist an QIa on the left side of the

region. This QIa may contain direct bonds on either subsequence. Denote the special QIa

that has at least one direct bond in both subsequences by QIadd . The right side of the region

has three cases: 1) there is an interaction arc on the right side of the remaining subsequence

of R that subsumes a subsequence on the right side of S, 2) there is an interaction arc on

the right side of the subsequence of S, that subsumes a subsequence on the right side of R,

and 3) there are equivalent interaction arcs on the right sides of the subsequences of R and

S. Denote the special QIa that has at least one direct bond in the subsequence of R by

QIadn . There must exist an interaction arc on the right side of the subsequence of R that

subsumes a subsequence on the right side of S. Note that the subsequence on the right side

of S should have at least one direct bond. We denote the special QIa that has at least one

direct bond in the subsequence of S by QIand . In that case, there must exist an interaction

arc on the right side of the subsequence of S that subsumes a subsequence on the right side

of R. Note that the subsequence on the right side of R should have at least one direct bond.
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Figure 4.12: Recursions for QImk
iR,jR,iS ,jS

assuming [iR, jR] has multiple interaction arcs and
[iS , jS ] has at least one direct bond.
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Figure 4.13: Recursions for QIkm
iR,jR,iS ,jS

assuming [iR, jR] has at least one direct bond and
[iS , jS ] has multiple interaction arcs.
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Figure 4.14: Recursions for QIkk
iR,jR,iS ,jS

assuming both [iR, jR] and [iS , jS ] have at least one
direct bond.
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Figure 4.15: The quantities QIr , QIbr and QIar are some auxiliary quantities similar to QI ,
QIb and QIa except that there is a bond on their right side.
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4.3 Applications

We describe how to compute the equilibrium concentrations, heat capacity and melting

temperature from partition functions based on the method in [28].

Given two nucleic acid strands R and S, the concentrations of R, S, RR, SS, RS

species, denoted by NR, NS, NRR, NSS, NRS respectively. The partition function Q for

a system at a given temperature T , volume V and all possible distributions of the initial

material, N0, between the species is computed as:

Q =
∑ N0

R
!N0

S
!

NR!NSNRR!NSS!NRS!
(QR)R(QS)S(QI

RR)RR(QI
SS)SS(QI

RS)RS (4.17)

In the equilibrium, the free energy of a closed system at constant temperature, volume, and

pressure tends toward a minimum [56]. The equilibrium distributions of NR, NS, NRR,

NSS, and NRS are determined by the minimization of the free energy.

Equilibrium concentrations are calculated from the chemical equilibrium constants

KR =
QI

RR

Q2
R

=
NRR

N2
R

,

KS =
QI

SS

Q2
S

=
NSS

N2
S

,

KRS =
QI

RS

QRQS

=
NRS

NRNS

,

(4.18)

under the constraint

NRS = N0
R − 2NRR −NR = N0

S − 2NSS −NS. (4.19)

The chemical potentials of the species can be obtained by differentiating the free energy

−RTln(Q) with respect to the concentrations of their corresponding molecules. Thus we

have µR = −RT ∂ln(Q)
∂NR

for R (as well as µS, µRR, µSS, and µRS for the other species).

The free energy of the whole ensemble of species can be represented as

F = µRNR + µSNS + µRRNRR + µSSNSS + µRSNRS. (4.20)

The heat capacity is a quantity for the amount of heat that is required to raise the

temperature of the solution. Heat capacity is expressed in units of joules per kelvin. From

statistical thermodynamics it is well known that the heat capacity, Cp, is derived from the

second derivative of the free energy, F , with respect to the temperature T .

Cp = −T

(

∂2F

∂T 2

)

p

(4.21)
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One has to make the above calculations for varying temperatures over the desired range.

To compute Cp for a particular temperature Tk an approach based on the derivation pro-

posed by Vienna Group [47] is used. Melting temperature Tm is the temperature at witch
∂Cp

∂T = 0, where 50% of the strands are unfolded.

4.4 Experimental Results

Here, we report our implementation of the algorithm and two types of experiments we

performed to test the predictive power of our algorithm:

(1) A novel experiment (which, to our knowledge has not been performed successfully by any

other program to date), uses our algorithm to predict the equilibrium concentration of an

RNA-RNA complex, in particular the OxyS-fhlA interaction [9]1. We successfully predicted

the equilibrium concentrations for OxyS with wild-type fhlA and 4 other fhlA mutants.

(2) Predicting the melting temperature of RNA duplexes is an important application of

the partition function for interacting nucleic acid pairs [28]; our first experiment thus test

how accurately our algorithm predicts the melting temperature of RNA pairs collected from

the several sources in the literature with respect to the accuracy of available alternatives,

RNAcofold from Vienna package v1.7.2 [17] and UNAFold v3.6 which is a new version of

former mfold [62]. We remind the reader that RNAcofold concatenates the two RNA strands

and computes the partition function for the resulting single strand. Therefore, it does

not consider many cases that our algorithm considers. UNAFold v3.6, on the other hand,

simplifies the problem by forbidding intramolecular base pairing. It computes the partition

function of the two strands over just hybridization structures. As can be expected, our

algorithm consistently outperforms the alternatives in all three data sets.

Note that the parameters used by our program in the above experiments have been

manually optimized as computational learning methods for fine tuning the parameters re-

quire prohibitive computational resources. It may be possible to improve the accuracy of

our program through a better selection of parameters.

1Equilibrium concentrations of another complex formed by CopA/I-CopT is also available in the literature
[45], however the interaction has tertiary structural components, i.e. a very long pair of kissing hairpins
forming a helix, anti-helix pair with a long gap in between. Alkan et al [4] were able to establish the most
likely joint structure between this RNA pair only through post processing. This complex requires some
additional constraints on the lengths of interacting loops which are not incorporated into our model due to
additional computational complexity they would impose.
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4.4.1 Implementation

We remind the reader that the time and space complexity of our algorithm are O(n6)

and O(n4) respectively; here n = max(LR, LS) is the maximum length of the two input

strands. We implemented our algorithm in C++, and used the energy functions and energy

parameters of UNAFold v3.6 for a single strand [62]. For our own interaction energy model,

the parameters used by our program are given in the next section. We use a different β1

penalty and σ for a hybrid component that is covered by a kissing loop. The parameters for

a hybrid component that is not covered by a kissing loop is denoted by β′1 and σ′. Similar to

RNAhybrid, the interior loops in a hybrid component are restricted to a constant maximum

length, in either sequence, which is set to 15 in this work.

Since our algorithm considers many more possible secondary structures in comparison

to alternative methods, our program has a higher running time. Fortunately, our algorithm

can be easily parallelized as the dynamic programming tables computed by our program on

subsequence pairs depend only on their (proper) subregions. We parallelized our program

using OpenMP 3.0. Our experiments were performed on a large scale shared memory

parallel platform with 64 PPC 1.9 GHz processors with 256 GB RAM. We ran our program

for strands of length between 5 nt to 120 nt. The running time of our program for short

strands (∼20 nt) was less than 1 minute - for longer strands (∼120 nt) it was about 10

hours.

4.4.2 Data Sets

The first data set that we used for predicting melting temperature contains all 9 different

RNA pairs reported in Table 3 of [101]. It contains almost complementary 5-7nt RNA pairs

that were designed to optimize the thermodynamic parameters for terminal base pairs. Their

melting temperatures vary from 29.8◦C to 53.7◦C.

The second data set that we used for computing melting temperature contains all 12

different RNA pairs reported in Table 1 of [27]. These RNA pairs are designed to optimize

the thermodynamic parameters for three-way multi loops. In each pair of this data set, the

first RNA has ∼20nt and the second one has ∼10nt. The experimental melting temperatures

were determined from heat absorption measurements by two different methods which are

explained as ”Method 3” and ”Method 4” in [75]. Although these pairs are very similar, the

average difference of the two methods for this data set is 2.49◦C. This suggests that there
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may exist RNA pairs with exceptional features in this set.

The third data set that we used for computing melting temperature contains all 62

different RNA pairs reported in Tables 3 and 4 of [64]. These pairs are designed to optimize

the thermodynamic parameters for three- and four-way multi loops. In each pair of this data

set, the first RNA has 22-40nt and the second one has 10-14nt. Again, the experimental

melting temperatures were determined by two different methods. This data set is large

enough with longer sequences, and the average difference of the two methods for this data

set is 0.7◦C, smaller than that of the second data set. Moreover, the variance and maximum

of the difference is smaller than those of the second data set. Overall, this data set is more

reliable than the previous one. These three data sets are all we were able to collect from

the literature.

4.4.3 Equilibrium Concentration

Our first set of experiments, to the best of our knowledge, have not been successfully per-

formed by the use of any available program to date. Here we predict the equilibrium

concentrations for OxyS with wild-type fhlA and 4 other fhlA mutants. OxyS is a small

untranslated RNA (109 nt) that is induced in response to oxidative stress in E. coli. It

acts as a regulator affecting the expression of multiple genes. In particular, OxyS represses

the translation of fhlA, a transcriptional activator for formate metabolism, by binding to it.

Argaman and Altuvia carried out a series of experiments to measure equilibrium dissociation

constants for OxyS with wild-type fhlA and its mutants [9]. To measure the equilibrium

dissociation constants, they measured the concentration of OxyS-fhlA complex for a fixed

initial OxyS concentration (2nM) and various initial concentrations of fhlA. Their plots are

reported in Figure 8 and Table 2 of [9]. Those plots can be predicted from the partition

functions for OxyS, fhlA, OxyS-OxyS, fhlA-fhlA, and OxyS-fhlA. To validate our algorithm,

we computed these partition functions using our program, and predicted the equilibrium

concentrations of OxyS-fhlA complex. Our results are compatible with experimental mea-

surements, as we had expected.

Figure 4.16 shows the experimental measurements and our results. Interestingly, our

algorithm predicted the equilibrium concentration of OxyS-fhlA complex quite accurately

for the wild-type fhlA and all of its mutants. Note that although we also experimented

with RNAcofold and UNAFold in this case, we do not report on their results as they signif-

icantly differed from the experimental measurements. This is probably not very surprising
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as correctly predicting the equilibrium concentrations is a very difficult task and is highly

sensitive to the accuracy of the partition functions. We noticed that QR and QS computed

by the three programs are very close because they use the same algorithm for a single strand

(i.e. McCaskill’s). Therefore based on (4.18), a method can compute equilibrium concen-

trations correctly only if it computes each individual QI accurately. As one can observe

in Figure 4.16, our program has been able to predict OxyS-fhlA complex concentrations

accurately, thus we can conclude that our program computes QI for OxyS-OxyS, fhlA-fhlA,

and OxyS-fhlA accurately.

As mentioned above, the parameters used by our program on this data set have been

manually optimized. Our energy parameters in this experiment are

β1 = 6.6, β2 = β2 = 0.1, σ = 0.9, (4.22)

β′1 = 4.5, σ′ = 0.9. (4.23)

4.4.4 Melting Temperature

As mentioned before, predicting the melting temperature of RNA duplexes is one of the most

important applications of the partition function for interacting nucleic acid pairs [28]. Table

4.1 shows the melting temperatures computed by our program, RNAcofold, and UNAFold

v3.6 for the first data set. In this set, the strands are short, and as we expected, our

algorithm is highly accurate with only 1.48◦C difference from experimental values on average.

It can be seen that RNAcofold and UNAFold perform relatively poorly, and their predicted

melting temperatures differ from the experimental values by about 9◦C on average.

Table A.1 shows the melting temperatures predicted by the three programs for the

second data set. Each pair is referred to by an identifier (A,B, . . . , L). Please refer to

the Appendix A or [27] to see the exact sequences of each pair. As mentioned before, the

experimental melting temperatures were determined from heat absorbance measurements

by two different methods which are explained as ”Method 3” and ”Method 4” in [75]. We

refer to the melting temperature values computed by ”Method 3” and ”Method 4”, by Tc

and Tl respectively. RNAcofold accuracy obviously dropped in this case, whereas UNAFold

accuracy did not change much in comparison to the results for the first data set. The

accuracy of our method has also dropped a bit, which may be because of some RNA pairs

with exceptional features.
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Figure 4.16: Experimental and computational determination of equilibrium constants for
pairs of OxyS with wild-type and mutated fhlA. Horizontal axis denotes the initial concen-
tration of fhlA, and the vertical axis denotes the percentage of OxyS in OxyS-fhlA complex.
Initial concentration of OxyS was 2× 10−9

M [9].
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Table 4.1: Experimental and predicted melting temperatures for the first data set (see
Section 4.4.2 and [101]).

Pairs Experiment piRNA RNAcofold UNAFold

ACGCA/UGCGU 29.8 29.41 42.64 46.14
GCACG/CGUGC 37.5 36.07 46.61 43.91
AGCGA/UCGCU 30.2 30.38 42.68 45.15
GCUCG/CGAGC 37.2 36.88 47.75 44.71

ACUGUCA/UGACAGU 48.2 44.91 56.8 57.59
GUCACUG/CAGUGAC 51.1 49.4 58.44 55.91
AGUCUGA/UCAGACU 45.7 45.47 56.4 56.68
GACUCAG/CUGAGUC 52 49.96 59.11 56.25
GAGUGAG/CUCACUC 53.7 49.97 59.07 56.00

Avg. error 1.48 9.35 8.55
Experimental melting temperatures are calculated using the linear plots of T−1

M
vs ln(CT /4). Buffer was 1.0 M

NaCl, 20 mM sodium cacodylate, and 0.5 mM Na2EDTA, pH 7.0 at 0.2 mM dulexes. All values are in ◦C.

Table 4.3 presents the melting temperatures predicted by the three programs for the

third data set. As you can see, our program has high accuracy and performs significantly

better than RNAcofold and UNAFold for this data set. As we argued before, the third data

set is the largest and the most reliable of the three data sets. It is important to note

that RNAcofold and UNAFold both perform poorly either in this case or the two previous

cases. Therefore, neither RNAcofold nor UNAFold are as reliable as our program for melting

temperature prediction.

Table 4.3: Predicted melting temperatures for the set RNA

pairs from [64].

Pairs Experiment piRNA RNAcofold UNAFold

Tl Tc

G-GC-G/C-C 45.4 46 56.81 37 21.4

G-GC-G/CaC 51.8 52.2 56.84 37 27.15

G-GC-G/Ca2C 55.9 56 56.86 37 27.12

G-GC-G/Ca3C 58.4 57.3 56.85 37 25.73

G-GC-G/CauaC 57.3 56.9 56.84 37 24.35

Continued on next page
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Table 4.3 – continued from previous page

Pairs Experiment piRNA RNAcofold UNAFold

Tl Tc

G-GC-G/Ca4C 56.7 57.1 56.85 37 25.06

GaGC-G/C-C 51.2 49.3 56.94 37.1 21.25

GaGC-G/CaC 55.2 54.7 56.96 41 21.44

GaGC-G/Ca2C 56.1 55.6 56.98 41 21.46

GaGC-G/Ca3C 56.1 54.9 56.97 41 21.44

GaGC-G/CauaC 54.8 54.3 56.98 37.06 21.47

GaGC-G/Ca4C 55.3 54.8 56.98 37 21.39

Ga2GC-G/C-C 55.1 52.9 57 50.17 36.04

Ga2GC-G/CaC 57 56.4 57.03 48.01 36.8

Ga2GC-G/Ca2C 55.6 55.4 57.05 41.84 36.91

Ga2GC-G/Ca3C 55 54.7 57.03 41.84 36.19

Ga2GC-G/CauaC 55.3 54.5 57.3 52.17 36.74

Ga2GC-G/Ca4C 54.1 53.9 57.05 48.01 34.22

Ga2GCaG/C-C 56.6 56.6 57.18 47.01 36.01

Ga2GCaG/CaC 58.7 58.9 57.18 44.1 36.81

Ga2GCaG/Ca2C 58 58.8 57.2 44.1 36.13

Ga2GCaG/Ca3C 56.5 57.5 57.15 44.1 36.96

Ga2GCaG/CauaC 57.2 56.9 57.48 43 35.92

Ga2GCaG/Ca4C 57.9 57.9 57.17 44.1 34.66

Ga2GCa2G/C-C 56 56.9 57.19 37.17 36.14

Ga2GCa2G/CaC 58.7 59.1 57.2 44.1 36.94

Ga2GCa2G/Ca2C 59.7 59.6 57.19 44.1 36.22

Ga2GCa2G/Ca3C 58.6 58.7 57.16 44.1 35.89

Ga2GCa2G/CauaC 57 57.3 57.74 37 35.03

Ga2GCa2G/Ca4C 57.5 58.1 57.18 44.1 34.93

G-UA-G/C-C 50.4 50.8 56.82 46.26 21.53

G-UA-G/CaC 54.3 55.8 57.88 61.42 34.47

G-UA-G/Ca2C 56.6 57.8 57.89 61.42 41.68

G-UA-G/Ca3C 57.6 58.5 57.88 61.42 40.84

Continued on next page
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Table 4.3 – continued from previous page

Pairs Experiment piRNA RNAcofold UNAFold

Tl Tc

G-UA-G/CauaC 57.9 58.7 57.87 61.41 40.96

G-UA-G/Ca4C 58.6 58.5 57.88 61.43 40.64

GaUA-G/C-C 51.6 51.8 56.96 49.18 21.42

GaUA-G/CaC 55.6 55.7 57.01 37.07 30.98

GaUA-G/Ca2C 56.7 57.4 57.04 50.31 31.46

GaUA-G/Ca3C 56.8 56.9 57 44.17 29.91

GaUA-G/CauaC 57 57.1 56.99 37.07 29.98

GaUA-G/Ca4C 56.8 56.8 57.01 50.31 29.29

G-CG-GC-G/C-C 64.8 65.2 57.24 37 21.38

G-CG-GC-G/CaC 58.8 60.4 57.22 37 21.44

G-CG-GC-G/Ca2C 55.6 56.4 57.35 37 21.38

G-CG-GC-G/Ca3C 55.4 55.3 57.32 37 21.56

G-CG-GC-G/Ca4C 53.9 53 57.19 37 21.38

GaCG-GC-G/C-C 57.3 58.7 57.2 37 21.71

GaCG-GC-G/CaC 59.7 61.2 57.21 37 21.76

GaCG-GC-G/Ca2C 55.4 57.2 57.19 37 21.45

GaCG-GC-G/Ca3C 55.2 56.5 57.11 37 21.42

GaCG-GC-G/CauaC 55.2 55.8 57.09 37 21.38

GaCG-GC-G/Ca4C 55 55.3 57.14 37 21.47

GaCG-GCaG/C-C 58.1 58.8 56.9 37 21.54

GaCG-GCaG/CaC 59.3 59.7 56.99 37 21.76

GaCG-GCaG/Ca2C 57.5 59.4 56.89 37 63.08

GaCG-GCaG/Ca3C 57.9 58.2 56.95 37 21.44

GaCG-GCaG/CauaC 58.9 58.3 56.93 37 21.53

GaCG-GCaG/Ca4C 57.3 58.1 56.84 37 21.46

Ga2CGa2GCa2G/C-C 54.4 55.5 57.12 47.17 67.28

Ga2CGa2GCa2G/CaC 55 56.6 57.04 44.01 67.23

Ga2CGa2GCa2G/Ca2C 55.3 57.2 57.12 51.31 66.09

Avg. difference Tl Tl Tc Tl Tc Tl Tc

Continued on next page
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Table 4.3 – continued from previous page

Pairs Experiment piRNA RNAcofold UNAFold

Tl Tc

0.7 1.87 1.95 14.27 14.41 26.5 26.56

Here each pair is referred to by an identifier. Please refer to the Appendix A or [64] to see the exact sequences of

each pair. Tl is calculated using the linear plots of T−1
M

vs ln(CT /4), and Tc is calculated by the average of melt

curve fits. Buffer was 1.0 M NaCl, 20 mM sodium cacodylate, and 0.5 mM Na2EDTA, pH 7.0 at 0.1 mM total

strand concentration. All values are in ◦C.

Please note that we did not use any learning methods for tuning our 6 interaction energy

parameters because of the running time of our algorithm. Our interaction energy parameters

in melting temperature experiments are

β1 = 5.1, β2 = β2 = 0.1, σ = 0.92, (4.24)

β′1 = 4.1, σ′ = 0.95, (4.25)

which were manually optimized using only the first data set. The second and third data

sets were used as test sets.
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Table 4.2: Experimental and predicted melting temperatures for the set of RNA pairs
reported in [27].

Pairs Experiment piRNA RNAcofold UNAFold
Tl Tc

A 28.7 30.3 32.44 50.99 21.52
B 19 20.5 31.55 52.55 33.22
C 33.6 33.6 32.94 53.11 39.77
D 33.9 36 32.43 51.02 26.85
E 23 24.4 31.66 52.48 32.22
F 34.9 36.9 33.28 54.7 39.91
G 32.4 33.6 32.76 49.76 64.27
H 16.1 18.9 36.41 57.92 29.76
I 29 32.3 32.32 50.99 29.18
J 32.3 37.1 37.01 56.92 28.8
K 23.4 30.7 31.45 49.36 26.18
L 33.5 35.4 32.61 50.51 28.01

Avg. difference Tl Tl Tc Tl Tc Tl Tc

2.49 5.53 4.19 24.21 21.72 8.86 9.38
Here each pair is referred to by an identifier (A, B, . . . , L). Please refer to the Appendix A or [27] to see the exact

sequences of each pair. Tl is calculated using the linear plots of T−1
M

vs ln(CT /4), and Tc is calculated by the

average of melt curve fits. Buffer was 1.0 M NaCl, 20 mM sodium cacodylate, and 0.5 mM Na2EDTA, pH 7.0 at 0.1

mM total strand concentration. All values are in ◦C.



Chapter 5

Efficient RNA-RNA Interaction

Prediction via Sparsification

As mentioned earlier, the key problem with the previous approaches for predicting a general

joint structure (please see chapter 2) is that they all have a worst case running time of

O(n6) and a space complexity of O(n4). While this complexity might be acceptable when

analyzing only a few putative sRNA-target interaction pairs, we are now faced with the

situation that the amount of data to be analyzed is vastly increasing. To give an example,

a recent mapping of transcripts using tiling arrays in the budding yeast S. cerevisiae [25]

with 5,654 annotated open reading frames (ORF) has found 1555 antisense RNAs that

overlap at least partially with the ORFs at the opposite strand. Currently, it is completely

unclear what these antisense RNAs are doing - whether they target only their associated

sense mRNA or have also other mRNA targets, and whether they always form a complete

duplex or more complex joint structures such as multiple kissing hairpins if they overlap

only partially is not known. The same situation appears in many other species. Thus, there

is urgent need for a more time and space efficient interaction prediction method that is able

to handle complex joint structures.

In this chapter we present a new method for calculating the joint structure of interacting

RNAs by minimizing their total free energy, which improves time and space efficiency over

previous approaches. As first in its class, the method is sufficiently fast to be applied in

large scale screening approaches.

59
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We show how to reduce both time and space complexity using an approach called sparsi-

fication, which uses the observation that the resulting DP-matrices are sparse. As previous

applications of sparsification to problems related to RNA folding, our approach exploits a

triangle inequation on the dynamic programming matrix. Assuming the polymer-zeta prop-

erty for interacting RNAs, we show an efficiency gain by a linear factor. This polymer-zeta

property basically states that the probability of a base pair decreases with its size, i.e. there

are only few long range base pairs.

Here, we consider a version of the polymer-zeta property for interacting RNAs and

develop novel algorithmic approaches as (1) we cannot assume the standard polymer-zeta

property for all base pairs as for intermolecular base pairs there is no clear notion of a

distance between the bases; (2) the joint interaction prediction problem does not allow

to split only at arcs in the recursion, which was crucial in the demonstration of a linear

(asymptotic) speed up for problems involving the folding of a single RNA.

We sparsify the dynamic programming tables involved in total free energy minimization

first described in Alkan et al. [4] on our more general Interaction energy model resulting in a

significant reduction in time and space complexity. There are four different cases that need

to be sped up, which results in a total of four different candidate lists; for each sequence and

each region, we have to consider folding with interaction or without interaction, which gives

rise to two types of candidate lists. We emphasize that beyond reducing time complexity, we

obtain a similar space reduction even in the intricate setting of the independent candidate

lists.

5.1 The Algorithm: Agile inteRNA

In this section we discuss an algorithm for RNA-RNA interaction prediction via total free

energy minimization, under the assumption that there are no (internal) pseudoknot, crossing

bond (i.e. external pseudoknots), or zigzag in the joint structure. We use sparsification

techniques to reduce the complexity of the original algorithm from O(n6) time and O(n4)

space to O(n4ψ(n)) time and O(n2ψ(n) + n3) space for some function ψ(n) = O(n) on

average. To simplify the presentation, we discuss the sparsification for the joint structure

prediction via total base pair maximization. Note that RNA-RNA interaction based on

base pair maximization is the generalized version of the Nussinov model [72] for single RNA

folding and was employed by Pervouchine [74] as well as Alkan et al. [4] for RNA-RNA
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interaction prediction. Later in this chapter we also provide all concepts for generalizing

the algorithm to capture our more realistic interaction energy model in Chapter 3.

5.1.1 Sparsification for Maximizing Base Pairs

Given two RNA sequences R and S, N(iR, jR, iS , jS) denotes the maximum number of base

pairs in the joint structure of [iR, jR] and [iS , jS ], and NX(i, j) (for X ∈ {R,S}) denotes

the maximum number of base pairs of the subsequence [i, j] of the single sequence X. The

recursion cases for computing the maximum number of base pairs for RNA-RNA interaction

are illustrated in Figure 5.1. N(iR, jR, iS , jS) and NX(i, j) for X ∈ {R,S} are calculated

by the following recursions

N(iR, jR, iS , jS) = max



















































































































N(iR + 1, jR, iS , jS) (a)

N(iR, jR, iS + 1, jS) (b)

N(iR + 1, jR, iS + 1, jS) + 1 (c)

max
iR<k≤jR

R[iR],R[k] compl.

(

1 +NR(iR + 1, k − 1)

+N(k + 1, jR, iS , jS)

)

(d)

max
iS≤k<jS

S[iS ],S[k] compl.

(

1 +NS(iS + 1, k − 1)

+N(iR, jR, k + 1, jS)

)

(e)

max
iR<kR≤jR
iS<kS≤jS

R[iR],R[kR] compl.

(

1 +N(iR + 1, kR − 1, iS , kS)

+N(kR + 1, jR, kS + 1, jS)

)

(f)

max
iR<kR≤jR
iS<kS≤jS

S[iS ],S[kS ] compl.

(

1 +N(iR, kR, iS + 1, kS − 1)

+N(kR + 1, jR, kS + 1, jS)

)

(g)

(5.1)

NX(i, j) = max



















NX(i+ 1, j) (a)

max
i<k≤j

X[i],X[k] compl.

(

1 +NX(i+ 1, k − 1)

+NX(k + 1, j)

)

(b)
(5.2)

In Eq. 5.1, the cases (a) and (b) introduce an unpaired base at positions iR and iS respec-

tively, and case (c) introduces a bond iR ◦ iS . Cases (d) and (f) introduce an arc at iR • k

and cases (e) and (g) at iS • k, where cases (f) and (g) assume that the arc is an interaction

arc and cases (d) and (e) assume that this is not the case.
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Figure 5.1: Recursion cases for computing the maximum base pairing joint structure of
[iR, jR] and [iS , jS ].

Time reduction by sparsification

We will apply a sparsification technique to reduce the number of cases necessary to be

considered for Eq 5.1(d)-(g), as well as Eq 5.2(b).

Concerning sparsification, the simple cases are Eq 5.1(d),(e), and Eq 5.2(b), which cor-

respond to the folding of a single sequence. The sparsification of these cases works in close

analogy to the sparsification of RNA structure prediction as described by Wexler et al. [98].

We will briefly review their approach adapted to case Eq 5.2(b). Thereafter, we describe

sparsification of the complex cases.

Sparsifying recursion cases for single structure folding The key to sparsification is

a triangle inequality property of the DP matrix. In the case of NX, for every subsequence

[i, j] and i < k ≤ j the following inequality holds:

NX(i, j) ≥ NX(i, k) +NX(k + 1, j).

Due to this property, it is sufficient to maximize in Eq. 5.2(b) for each i only over

certain candidates k instead of all k with i < k ≤ j. In this case, k is a candidate for i, iff

NX(i+1, k) < NX(i, k) and for all i < k′ < k, 1+NX(i+1, k′−1)+NX(k′+1, k) < NX(i, k).

Operationally, during the computation of NX(i, k) we detect that k is a candidate for i by

checking that the instance 1 +NX(i+ 1, k − 1) +NX(k + 1, k) of recursion case Eq. 5.2(b)

is the only maximal case.

For non-candidates k there exists some k′, i ≤ k′ < k, where NX(i, k) = NX(i, k′) +

NX(k′ + 1, k). Then for all j > k, NX(i, k) +NX(k + 1, j) = NX(i, k′) +NX(k′ + 1, k) +

NX(k+1, j), and by triangle inequality NX(i, k)+NX(k+1, j) ≤ NX(i, k′)+NX(k′+1, j).

This means that, whenever a non-candidate k yields a maximal value, then there is already

a k′ < k that yields the same value. Therefore k does not need to be considered, because
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the smallest such k′ is taken into account.

Wexler et al. showed that sparsification reduces the expected time complexity of RNA

folding by a linear factor, since the expected number of candidates for each i is constant.

The transfer of sparsification to cases Eq 5.1(d) and (e) is straightforward, because only one

subsequence is decomposed and the indices of the other subsequence remain fixed.

Sparsifying recursion cases for joint structure folding We extend the sparsification

idea to the recursion cases Eq 5.1(f) and (g), which split both sequences and therefore min-

imize over a pair of split points (kR, kS). For the four dimensional matrix N(iR, jR, iS , jS),

the following generalization of the triangle inequality holds.

Observation 5.1.1 (Triangle inequality for N(iR, jR, iS , jS)) For every subsequence [iR, jR]

and [iS , jS ] and for every iR < kR ≤ jR and iS ≤ kS < jS, N(iR, jR, iS , jS) ≥ N(iR, kR, iS , kS)

+ N(kR + 1, jR, kS + 1, jS).

Note that in principle both cases Eq 5.1(f) and (g) split the two subsequences at kR and kS ,

respectively, into the pairs [iR, kR], [iS , kS ] and [kR +1, jR], [kS +1, jS ]. The only difference

is that within the first pair of subsequences, [iR, kR], [iS , kS ], case (f) assumes an arc iR •kR

and case (g) assumes an arc iS • kS . We consider only the case Eq 5.1(f), the case (g) is

analogous.

Definition (Candidate for case Eq. 5.1(f)) For case Eq. 5.1(f), a pair (kR, kS) is a

candidate for (iR, iS), iff iR and kR are complementary and for all (k′R, k
′
S) 6= (kR, kS) with

iR < k′R ≤ kR, iS < k′S ≤ kS ,

1 +N(iR + 1, kR − 1, iS , kS) +N(kR + 1, kR, kS + 1, kS)

> 1 +N(iR + 1, k′R − 1, k′S , kS) +N(k′R + 1, kR, k
′
S + 1, kS),

With respect to the recursion case (f) a candidate (kR, kS) implies that the instance with

kR = jR and kS = jS (i.e. 1 +N(iR + 1, kR − 1, iS , kS) +N(kR + 1, kR, kS + 1, kS)) is the

only maximal instance in the maximization of (f). Furthermore, it implies that none of the

cases (a)-(e) in the computation of N(iR, kR, iS , kS) yields a larger value than case (f).

Lemma 5.1.2 For correctness of the recursion of Eq. 5.1, in the maximization of Eq. 5.1(f)

it suffices to consider only the set of candidates given above.
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Proof For any non-candidate (kR, kS), there exists some (k′R, k
′
S) with iR − 1 ≤ k′R ≤ kR,

iS − 1 ≤ k′S ≤ kS , (k′R, k
′
S) 6= (kR, kS), (k′R, k

′
S) 6= (iR − 1, iS − 1), and

1 +N(iR + 1, kR − 1, iS , kS) ≤ N(iR, k
′
R, iS , k

′
S) +N(k′R + 1, kR, k

′
S + 1, kS). (5.3)

Note that k′R = iR − 1 or k′S = iS − 1 in Eq. 5.3 occurs when (kR, kS) is not a candidate

due to one of the recursion cases (a)-(e).

Eq. 5.3 and the triangle inequality imply that for all jR > kR and jS > kS

1 +N(iR + 1, kR − 1, kS , jS) +N(kR + 1, jR, kS + 1, jS)

≤ N(iR, k
′
R, iS , k

′
S) +N(k′R + 1, kR, k

′
S + 1, kS) +N(kR + 1, jR, kS + 1, jS) (5.4)

≤ N(iR, k
′
R, iS , k

′
S) +N(k′R + 1, jR, k

′
S + 1, jS).

Non-candidates (kR, kS) for (iR, iS) do not need to be considered in the recursions of all

N(iR, jR, iS , jS), because there exists a recursion case splitting at (k′R, k
′
S) that yields the

same or better score for N(iR, kR, iS , kS). The equivalent case is considered in the recursion

of N(iR, jR, iS , jS) and, due to Eq. 5.4, yields a greater or equal score. �

Therefore the recursion case Eq. 5.1(f) can be updated such that the maximization runs

only over the candidates for this case.

max
iR<kR≤jR
iS<kS≤jS

(kR,kS) candidate for (iR, iS)

(

1 +N(iR + 1, kR − 1, iS , kS)

+N(kR + 1, jR, kS + 1, jS)

)

(5.5)

Analogously, we define candidates for case Eq. 5.1(g). The candidate criterion for

Eq. 5.1(g) is stricter than for Eq. 5.1(f), since we require that a candidate for Eq. 5.1(g) is

better than all cases Eq. 5.1(a)-(e) and (f).

Expected number of candidates ψ1(n) denotes the expected number of candidates k ≤

n + i for some i in cases Eq. 5.1(d),(e), and Eq. 5.2(b). ψ2(n) is the expected number of

candidates (kR, kS), kR ≤ iR + n, kS ≤ iS + n, for some (iR, iS) in cases Eq. 5.1(f) and (g).

Applying the described sparsification to all non-constant cases in recursions Eq. 5.1 and

Eq. 5.2, yields the following.

Theorem 5.1.3 N(1, LR, 1, LS) can be computed in O((ψ1(n) + ψ2(n))n4) expected time,

where n = max(LR, LS).
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For a theoretical bound on ψ1(n) and ψ2(n), we assume the polymer-zeta property holds

for each one of the RNA sequences that are involved in the interaction (with the other RNA

sequence). The polymer-zeta property states that in any long polymer chain the probability

of having arc between two monomers with distance m converges to b.m−c, where b, c > 0

are some constants. For a polymer as a self-avoiding random walk on a square lattice, it

has been known that c > 1 [34]. The exponent c for the denaturation transition of DNA

in both 2D and 3D models is found to be larger than 2 [50]. Since RNA folds similar to

other polymers, one can assume that RNA folding obeys the polymer-zeta property; i.e. the

probability that a structure is formed over the subsequence of length m converges to b.m−c,

where c > 1. Although the property is not proven for RNA molecules, there is empirical

evidence, as shown by Wexler et al. [98], that a version of polymer-zeta property holds for

RNA molecules as well.

Lemma 5.1.4 Assume that the two interacting RNAs independently satisfy the polymer-

zeta property with c > 1, i.e. there exist constants b > 0 and c > 1 such that the probability

for any internal base pair i • (i+m) is bounded by b ·m−c - even when two RNAs interact.

Then ψ1(n) = O(1) and ψ2(n) = O(n).

Proof ψ1(n) = O(1) follows from Wexler et al. [98]. For ψ2(n) = O(n), consider all

candidates (kR, kS) for (iR, iS) and case Eq. 5.1(f). (Case Eq. 5.1(g) is symmetric.) Note

that in Eq. 5.1(f), iR • kR. For a fixed kS analogously to Wexler et al. [98], the expected

number of kR with iR • kR is b
∑n

i=1 i
−c < b

∑∞
i=1 i

−c which converges to a constant for

c > 1. Hence for each of the O(n) possible values of kS , kR takes only a constant number

of different values and hence on average we have O(n) such candidates. �

Space efficient strategy

The space complexity of the algorithm can be reduced from O(n4) to O(n3 + ψ(n)n2) as

follows. The matrices NR and NS only require O(n2) space. All cases for the computation

of an entry N(iR, jR, iS , jS) only rely on entries N(i′R, j
′
R, i

′
S , j

′
S) that satisfy one of the

following two properties. (i) j′R ∈ {jR − 1, jR} and j′S ∈ {jS − 1, jS} or (ii) N(i′R, j
′
R, i

′
S , j

′
S)

corresponds to some candidate of the respective case, i.e. in case Eq. 5.1(d) j′R + 1 is

a candidate for i′R − 1 = iR, in case (e) j′S + 1 is a candidate for i′S − 1 = iS , in case (f)

(j′R+1, j′S) is a candidate for (i′R−1, i′S) = (iR, jR), and in case (g) (j′R, j
′
S +1) is a candidate

for (i′R, i
′
S − 1) = (iR, jR). As shown in the following algorithm, all values that satisfy (i)



CHAPTER 5. EFFICIENT RNA-RNA INTERACTION PREDICTION 66

Algorithm: Space efficient evaluation of Eq. 5.1

precompute matrices NR and NS ;
initialize empty lists for candidates ;
for jR = 1..LR do

allocate and init matrix slice N(·, jR, ·, ·) ;
for jS = 1..LS, iR = jR..1, iS = jS ..1 do

compute N(iR, jR, iS , jS) ;
if jR is candidate for iR and Eq. 5.1(d) then

store NR(iR + 1, jR − 1, iS , jS) in list for iR and Eq. 5.1(d)
else if jS is candidate for iS and Eq. 5.1(e) then

store NS(iS + 1, jS − 1) in list for iS and Eq. 5.1(e)
else if candidate for Eq. 5.1(f) then

store N(iR + 1, jR − 1, iS , jS) in list for (iR, iS) and Eq. 5.1(f)
else if candidate for Eq. 5.1(g) then

store N(iR, jR, iS + 1, jS + 1) in list for (iR, iS) and Eq. 5.1(g)
end

end
free matrix slice N(·, jR − 1, ·, ·) ;

end

can be stored in a three dimensional matrix and all values that satisfy (ii) can be stored in

candidate lists of length ψ(n) for each of the O(n2) instances of (iR, iS).

Note that, in the pseudocode, we maintain two three dimensional matrices, namely

N(·, jR, ·, ·) and N(·, jR − 1, ·, ·) during the computation of the values for jR. In practice,

we save half of this memory, because any entry N(·, jR − 1, ·, js) can be freed as soon as all

N(·, jR, ·, jS) are computed.

Trace-Back We describe the recursive trace-back starting from a matrix entry (iR, jR, iS , jS).

Computing the Trace-back involves some recomputation. First, the entire matrix slice

N(·, jR, ·, jS) is recomputed unless it is already in memory. This requires access to only

entries in the same matrix slice and candidates. Then, the best case in the recursion for

N(iR, jR, iS , jS) is identified. In cases (a)-(c), we recurse to the respective entry. In cases

(d)-(g), which split in a first and second entry, we first recurse to the second one, which is

in the same matrix slice. Then, we free the memory for the current matrix slice and recurse

to the first entry, which will cause recomputation. Since each entry is recomputed at most

once, the trace-back does not affect the asymptotic complexity.

5.1.2 Sparsification for Minimizing Free Energy

Alkan et al. [4] describe minimization of the free energy of RNA-RNA-interaction based on

a simple stacked-pair energy model assuming there are no pseudoknot, crossing bond, and
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zigzag in the joint structure. Here we discuss an algorithm for RNA-RNA interaction free

energy minimization on the same type of interactions based on the interaction energy model.

We call our algorithm Agile inteRNA, as it is in fact the efficient version of inteRNA by

Alkan et al. [4, 1]. Since the general recursive structure of this algorithm is identical to

base pair maximization, our sparsification technique can be applied to reduce their time and

space complexity in the same way. Compared to base pair maximization, these recursions

distinguish several matrices representing differently scored substructures. Notably, they

are formulated such that all cases that split an entry (iR, jR, iS , jS) at (kR, kS) are of the

same form as cases Eq. 5.1(f) and (g) or kR and kS are bounded due to the loop length

restriction of the energy model. Achieving the same space complexity requires one additional

consideration. For assigning correct energy to internal loops formed by interaction arcs,

an entry (iR, jR, iS , jS) can depend on (i′R, j
′
R, iS , jS), where j′R is neither jR nor jR − 1.

However, jR − j
′
R is still bounded by the maximal loop length ℓ of the energy model, i.e.

jR − j
′
R < ℓ. Hence, it suffices to store ℓ matrix slices (·, j′R, ·, ·) for jR − ℓ < j′R ≤ jR.

Theorem 5.1.5 The MFE interaction of two RNAs of maximal length n can be computed

in expected time O((ψ1(n) + ψ2(n))n4) and expected space O((ψ1(n) + ψ2(n))n2 + n3).

5.1.3 Minimum free energy RNA-RNA interaction prediction

In this section we present our recursive algorithm for RNA-RNA interaction free energy

minimization which is compatible to sparsification technique and is based on the interaction

energy model. The minimum free energy joint structure M(iR, jR, iS , jS) derived from one

of the seven possible cases shown in Figure 5.3. The first two cases are when iR or iS is an

unpaired base. In third case iR interacts with iS , this bond starts a special type of joint

structure denoted by Ib and it is explained in Figure 5.4. The forth and fifth cases are when

iR or iS is forming intramolecular base pairs. In other possible cases either iR • kR is an

interaction arc subsuming [iS , kS ] or iS •kS is an interaction arc subsuming [iR, kR]. The DP

algorithm for free energy minimization based on sparsification strategy, M(iR, jR, iS , jS), is
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defined as follows:

M(iR, jR, iS , jS) = max



















































































































M(iR + 1, jR, iS , jS) (a)

M(iR, jR, iS + 1, jS) (b)

M Ib(iR, jR, iS , j) (c)

max
iR<k≤jR

k candidate for (iR)

(

MR.b(iR, k)

+M(k + 1, jR, iS , jS)

)

(d)

max
iS≤k<jS

k candidate for (iS)

(

MS.b(iS , k)

+M(iR, jR, k + 1, jS)

)

(e)

max
iR<kR≤jR
iS<kS≤jS

(kR,kS) candidate for (iR, iS)

(

M Is(iR, kR, iS , kS)

+M(kR + 1, jR, kS + 1, jS)

)

(f)

max
iR<kR≤jR
iS<kS≤jS

(kR,kS) candidate for (iR, iS)

(

M Is′(iR, kR, iS , kS)

+M(kR + 1, jR, kS + 1, jS)

)

(g)

(5.6)

MX(i, j) = max



















MX(i+ 1, j) (a)

max
i<k≤j

(k) candidate for (i)

(

MX.b(i, k)

+MX(k + 1, j)

)

(b)
(5.7)

Here M Ib(iR, jR, iS , jS) (Figure 5.4) is the minimum free energy for the joint structure

of [iR, jR] and [iS , jS ] assuming iR ·jS is an interaction bond, and M Is(iR, jR, iS , jS) (Figure

5.5) is the minimum free energy for the joint structure of [iR, jR] and [iS , jS ] assuming

iR ◦ jR is an interaction arc subsuming [iS , jS ]. M Is′ is symmetric to M Is where iS ◦ jS is

an interaction arc subsuming [iR, jR]. In QIsl, [iS , jS ] contains at least one interaction arc

and in QIsk, [iS , jS ] contains at least one direct bond. The other auxiliary matrices are QIll,

QIlk, QIkl, and QIkk (Figure 5.8).

• QIll includes all cases where both [iR, jR] and [iS , jS ] have at least one interaction arc.

• QIlk (symmetric to Ikl) includes all cases where [iR, jR] has at least one interaction

arc and [iS , jS ] has at least one direct bond.

• QIkk includes all cases where both [iR, jR] and [iS , jS ] have at least one direct bond.
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Figure 5.2: Recursion cases for MFE single structure.
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Figure 5.3: Recursion cases for MFE joint structure.
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Figure 5.4: Recursion cases for MFE joint structure while iR ◦ jS is a bond. Here iR < kR ≤
min iR + ℓ, jR and iS < kS ≤ min iS + ℓ, jS w. ℓ is the maximal loop length.
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Figure 5.5: In recursive quantity Is, iR • jR is an interaction arc which subsumes interval
[iS , jS ]. The subsumed area contains at least one direct bond or at least one interaction
arcs.
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Figure 5.6: Recursion cases for Isl or Isk which extract the interaction arc iR • jR.
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Figure 5.7: In Ikk, Ikl, Ilk, or Ill, if the terminal point iR (or jS) is not an end point of
interaction bond or arc, some recursions should be applied to extract the internal structure.
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Figure 5.8: Recursion for joint structures that has direct interactions on both subsequences
(Ikk), direct interaction on one subsequence and interaction arc on the other (Ikl and Ilk
which are symmetric), and interaction arcs on both subsequences (Ill).
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5.2 Experimental Results

For evaluating the effect of sparsification on RNA-RNA-interaction, we implemented three

variants of the total free energy minimization algorithm for RNA-RNA-interaction predic-

tion: the first variant does not perform any sparsification, the second employs sparsification

for improving the time complexity, and the third improves both time and space complexity.

Below, we first evaluate the accuracy of the total free energy minimization algorithm

for RNA-RNA interaction prediction. We present an assessment of sensitivity, positive

prediction value, and F-measure of our method on the data set of Kato et al. [51] which

involves five distinct RNA-RNA interactions. Note that sparsification does not affect the

calculated free energy values (i.e. optimality of the calculated joint free energy of the

interaction), the accuracy of the predicted interactions is identical to the original approaches

for general RNA-RNA-interactions based on the same scoring scheme.

Later we demonstrate that sparsification leads to a significant reduction of the time

and space requirements in practice. Then we study the relationship between the sequence

length and the number of candidates per each base on a large set of confirmed RNA-RNA

interactions and study the average time/space behavior of the algorithms.

5.2.1 Accuracy of total free energy minimization

In this section, we assess the performance of our total minimum free energy algorithm for

RNA-RNA interaction prediction. For this purpose we used the 5 RNA-RNA complexes

from Kato et al. [51] test set. We compared our results with two state-of-the-art methods

for joint structure prediction: (1) the grammatical approach by Kato et al. [51] (denoted by

EBM as energy-based model), and (2) the DP methods for two models presented by Alkan

et al. [4] (denoted by SPM as stacked-pair model and LM as loop mode and implemented

in [1]).

In order to estimate the accuracy of prediction, we measured the sensitivity and PPV

defined as follows:

sensitivity =
number of correctly predicted base pairs

number of true base pairs
, (5.8)

PPV =
number of correctly predicted base pairs

number of predicted base pairs
. (5.9)

As another measure of accuracy we calculated F-measure which considers both sensitivity

and PPV. F-measure is the harmonic mean of sensitivity and PPV, and its formula is as
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follows:

F =
2× sensitivity × PPV

sensitivity + PPV
. (5.10)

Table 5.1: Prediction accuracy of competitive RNA-RNA joint structure prediction methods.

RNA-RNA Sensitivity PPV
interaction pairs Agile inteRNA EBM SPM LM Agile inteRNA EBM SPM LM

CopA-CopT 1.000 0.909 0.955 0.864 0.846 0.800 0.778 0.760
DIS-DIS 1.000 0.786 0.786 0.786 1.000 0.786 0.786 0.786

IncRNA54-RepZ 0.875 0.917 0.875 0.875 0.792 0.830 0.778 0.778
R1inv-R2inv 1.000 0.900 1.000 1.000 1.000 0.947 1.000 1.000

Tar-Tar* 1.000 1.000 1.000 1.000 0.875 0.933 0.875 0.875
Average 0.975 0.902 0.923 0.905 0.902 0.859 0.843 0.840

Table 5.2: F-measure values of competitive RNA-RNA joint structure prediction methods.
RNA-RNA F-measure

interaction pairs Agile inteRNA EBM SPM LM
CopA-CopT 0.917 0.851 0.857 0.809

DIS-DIS 1.000 0.786 0.786 0.786
IncRNA54-RepZ 0.831 0.871 0.824 0.824

R1inv-R2inv 0.900 0.923 1.000 1.000
Tar-Tar* 0.933 0.965 0.933 0.933
Average 0.916 0.879 0.880 0.870

Tables 5.1 and 5.2 show comparison between the accuracy of our method and other

competitors. As it can be seen, our method based on the three accuracy measures outper-

formed the competitors. For Tar-Tar* and R1inv-R2inv pairs that both RNAs are relatively

short (∼ 20nt), all methods were accurate enough. However, for DIS-DIS which is not still

long (35nt), only our method was able to predict the interaction while the other approaches

returned no interaction. CopA-CopT and IncRNA54-RepZ are a bit longer (∼ 60nt); CopA-

CopT has two disjoint binding sites and IncRNA54-RepZ has a continuous binding site.

Our method outperformed the others in predicting the joint structure of CopA-CopT, while

IncRNA54-RepZ was predicted more accurately by EBM. We did not compare the run-

ning time between these methods due to the fact that each one uses different platform and

hardware.

5.2.2 Time and space requirements of total free energy minimization

We applied the three variants of the MFE algorithm to five distinct RNA-RNA interactions

reported by Kato et al. [51], which were used to assess the accuracy of available RNA-RNA

interaction methods.
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(a) Run-time improvement (b) Space improvement (c) Average No. candidates

Figure 5.9: Performance of three variants of the RNA-RNA interaction prediction algorithm
via total free energy minimization, on a set of interactions compiled by Kato et al. [51]. All
values for time and space usage are normalized by the usage of the non-sparsified algorithm,
for which absolute time/space usage figures are also given.

Figure 5.9 shows (in absolute terms) time and space usage of the algorithms (with or

without sparsification) on a Sun Fire X4600 server with 2.6 GHz processor speed. The

results show that sparsification significantly improves the performance of the algorithms. In

fact, Figure 5.9 demonstrates that as the RNA sequences in question get longer, the relative

performance of the sparsified algorithms (with respect to the non-sparsified ones) improve.

Although the pure time optimization causes a small space overhead due to maintaining the

candidate lists, the time and space optimization not only improve the space utilization, as

expected, but also results in further reduction in running time.

5.2.3 Number of Candidates

The time and space complexity of the (time and space) sparsified RNA-RNA-interaction

prediction algorithm is linearly proportional to the (average) number of interaction partner

candidates per base. Figure 5.9(c) shows how the average number of candidates (kR, kS)

change as the lengths of the two RNA sequences increase. While the non-sparsified algo-

rithms need to consider a quadratic number of split points (kR, kS), the number of candidates

(and hence the number of split points) is much lower for the sparsified algorithms.

In order to observe the effects of sparsification on a much larger data set involving

longer RNA sequences, we employ the algorithm for RNA-RNA interaction prediction which

maximizes the number of (internal and external) base pairs. The data set we use for this

purpose includes 43 pairs of ncRNAs and their known target mRNAs. This set not only

includes (i) the data set of Kato et al. [51], but also (ii) a recently compiled test set of Busch

et al. [20] consisting of 18 sRNA-target pairs, as well as (iii) all ncRNA-target interactions
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of E.coli from NPinter [100]. Among these interactions 32 are from E.coli, 8 are from

Salmonella typhimurium and 3 are from HIV. Since the majority of the known ncRNAs

bind to their target mRNAs in close proximity of the start codon, we extracted - as the

target region - a subsequence comprising 300nt upstream and 50nt downstream of the first

base of the start codon of each mRNA from GenBank [15]. As a result, the maximum

sequence length is 227nt for ncRNAs and 350nt for target mRNAs.

The experimental results on this larger data set confirm that the sparsification technique

works for a single RNA folding via base pair maximization: the average number of candidates

for those cases is low (roughly 5) as previously reported by Wexler et al. [98].

The recursion cases Eq. 5.1(f) and (g) split both RNAs simultaneously at points (kR, kS).

Therefore they dominate the running time of the algorithm. For these cases, we counted

the candidates that were considered during the computation of (the maximum number

of base pairs of) each subsequence pair. The average number of candidates for different

subsequence lengths, both for ncRNAs and mRNAs are depicted in Figure 5.10 - specific

cases that correspond to Eq. 5.1(f) as well as Eq. 5.1(g) are provided separately. Note

that the average number of candidates are generally low regardless of the sequence lengths:

among all possible combinations of split points (kR, kS) (respectively in ncRNA and mRNA),

even for the longest subsequences (e.g. ncRNA length lS = 252 and mRNA length lR = 202),

no more than 40 pairs (of the possible 252 x 202 = 50, 904 combinations for this example)

are actual candidates on the average.1

5.2.4 Total number of fragments for different ncRNA and target subse-

quence lengths

The following graph shows the total number of fragments for different ncRNA and target

subsequence lengths. The white region on top right of the plot in Figure 5.11 (lR > 111∧lS >

252 and lR > 202 ∧ lS > 153) denotes the area that there are no fragments in our data set.

1Note that certain combinations of lR and lS there is no value for the number of candidates due to the
fact that there is no data for lR > 111 and lS > 252 as well as lR > 202 and lS > 153.
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(b) for case Eq. 5.1(g)

Figure 5.10: Average number of candidates as a function of subsequence lengths.
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Figure 5.11: Total number of fragments for different ncRNA and target lengths.



Chapter 6

Fast Binding Sites Prediction

There are several evidences suggesting that RNA-RNA interaction is a multi step process

[19, 66, 41] that involves: 1) unfolding of the two RNA structures to expose the bases

needed for hybridization, 2) the hybridization at the binding site, and 3) restructuring

of the complex to a new minimum free energy conformation. In this chapter we present

a fast heuristic algorithm to predict interaction involving multiple binding sites based on

the observation that the independent secondary structure of an RNA molecule is mostly

preserved even after it forms a joint structure with another RNA. The above observation

has been used by different methods for target prediction (see chapter 2 for an overview).

However, most of these methods focus on predicting interactions involving only a single

binding site, and are not able to predict interactions involving multiple binding sites. In

contrast, our heuristic approach can predict interactions involving multiple binding sites

by: (1) identifying the collection of accessible regions for both input RNA sequences, (2)

using a matching algorithm, computing a set of ”non-conflicting” interactions between the

accessible regions which have the highest overall probability of occurrence.

Note that an accessible region is a subsequence in an RNA sequence which, with ”high”

probability, remain unpaired in its secondary structure. Our method considers the possibil-

ity of interactions being formed between one such accessible region from an RNA sequence

with more than one such region from the other RNA sequence. Thus, in step (1), it extends

the algorithm by Mückstein et al. for computing the probability of a specific region being

unpaired [68] to compute the joint probability of two (or more) regions remaining unpaired.

Because an accessible region from an RNA typically interacts with no more than two ac-

cessible regions from the other RNA, we focus on calculating the probability of at most

76
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two regions remaining unpaired: within a given RNA sequence of length n, our method

can calculate the probability of any pair of regions of length ≤ w each, in O(n4w) time

and O(n2) space. In step (2), on two input RNA sequences of length n and m (n ≤ m),

our method computes the most probable non-conflicting matching of accessible regions in

O(n2w4 + n3/w3) time and O(w4 + n2/w2) space.

6.1 The Heuristic Algorithm: inRNAs

Our heuristic algorithm for RNA-RNA interaction prediction problem is based on the idea

that the external interactions mostly occur between pairs of unpaired regions of single

structures. We aim to predict interactions of multiple binding sites as long as they have no

crossing. The heuristic algorithm contains the following steps:

• Predict the highly accessible regions in each strands. These regions include the loop

regions in native structure of RNA strand. In order to predict accessible regions we

chose all the regions which remain unpaired with high probability.

• Predict the optimal non-conflicting interactions between the accessible regions. For

every pair of accessible regions of two interacting RNAs a cost of interaction is cal-

culated. Then a matching algorithm runs to find the minimum cost non-conflicting

subset of interactions.

6.1.1 Accessible Regions

For a single RNA sequence an accessible region is a subsequence that remains unpaired

in equilibrium state with high probability. The probability of an unpaired region can be

calculated based on the algorithm presented in [68]. Here, we are interested in multiple

unpaired regions. For this purpose one should compute the joint probabilities for any subset

of possible intervals. Since the computation of all joint probabilities needs substantial time

and space, here we only consider the joint probability of two unpaired subsequences.

Denoting the set of secondary structures in which the sequence interval [k, l] remains

unpaired by Su[k,l], the corresponding partition function is

Qu[k,l](T ) =
∑

s∈Su[k,l]

e−Gs/RT , (6.1)
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where R is the universal gas constant and T is the temperature. In order to compute

the Qu[k,l], the standard recursion for the partition function folding algorithm [65] can be

extended as:

1
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where i ≤ k ≤ l ≤ j and k1 · k2 is the leftmost base pair. Partition functions Q
b,u[k,l]
i,j

(where i · j) and Q
m,u[k,l]
i,j (where [i, j] is inside a multiloop and constitutes at least one base

pair) while the interval [k, l] remains unpaired are derived from the standard algorithm in

a similar way. Furthermore, probability of a base pair p · q while [k, l] remains unpaired,

P(p ·q|u[k, l]), can be calculated by applying the McCaskill algorithm [65] for computing the

base pair probability on Qu[k,l]. It is easy to see that the desired partition function Qu[k,l]

and base pair probability P(p · q|u[k, l]) are computed in same time and space complexity

as the standard algorithm by McCaskill (O(n3) and O(n2) respectively).

Mückstein et al. [68] introduce an algorithm to compute the probability of unpaired

region P(u[i, j]) for a given sequence interval [i, j]. Here, we extend the specified algorithm

to compute P(u[i, j]|u[k, l]) which is the probability of unpaired region [i, j] while [k, l]

remains unpaired. Clearly if some part of [i, j] is within the interval [k, l], the corresponding

probability for that part is equal to one. Hence, for computing the probability only parts

of [i, j] which are exterior to [k, l] should be considered. Here, without loss of generality we

assume k ≤ l < i ≤ j.

For unpaired interval [i, j] there are two general cases: either it is not closed by any base

pair, or it is part of a loop. Fiq. 6.1 summarizes the cases of unpaired interval [i, j] as a

part of the loop enclosed by base pair p · q while interval [k, l] remains unpaired. In case x

interval [p, q] does not contain interval [k, l], and in the other cases (a− e) interval [k, l] lies
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Figure 6.1: Cases of unpaired interval [i, j] within a loop enclosed by p ·q while [k, l] remains
unpaired.

in interval [p, q]. Probability P(u[i, j]|u[k, l]) can be calculated as follows:

P(u[i, j]|u[k, l]) =
Q

u[k,l]
1,i−1 × 1×Qj+1,n

Qu[k,l]

+
∑

l<p<i≤j<q

P(p · q|u[k, l])×
Qpq

i,j

Qb
p,q

(x)

+
∑

p<k≤l<i≤j<q

P(p · q|u[k, l])×
Qpq,u[k,l][i, j]

Q
b,u[k,l]
p,q

(a− e)

(6.2)

Qpq[i, j] which is introduced by Mückstein et al., counts all structures on [p, q] that [i, j] is

part of the loop closed by base pair p · q. The quantity Qpq,u[k,l][i, j] is a variant of Qpq[i, j]

while [k, l] lies in [p, q]. Recursion of Qpq,u[k,l][i, j] on cases (a − e) displayed in Figure 6.1,
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is based on different types of loop and position of [k, l]. Therefore, we have

Qpq,u[k,l][i, j] =e−G
hairpin
p,q /RT (a)

+
∑

j<k1<k2<q|
l<k1<k2<i|p<k1<k2<k

e
−Ginterior

i,k1,k2,j
/RT

Qb
k1,k2

(b, b′, b′′)

+
∑

i<k1<k≤l<k2<i

e
−Ginterior

i,k1,k2,j
/RT

Q
b,u[k,l]
k1,k2

(b′′′)

+Q
m2,u[k,l]
p+1,i−1 e−(a+b+c(q−i))/RT (c)

+Q
m,u[k,l]
p+1,i−1Q

m
j+1,q−1 e−(a+b+c(j−i−1))/RT (d)

+Qm2
j+1,q−1 e−(a+b+c(j−p))/RT (e)

(6.3)

where Qm2 is the partition function of a subsequence inside a multiloop that constitutes at

least two base pairs. Qm2 which is introduced in Mückstein et al. algorithm can be extended

to calculate Qm2,u[k,l]. Therefore, the joint probability of two unpaired regions is obtained

using

P(u[i, j], u[k, l]) = P(u[i, j] | u[k, l])× P(u[k, l]). (6.4)

Mückstein et al. algorithm requires O(n3) running time and O(n2) space complexity

to compute the probability of unpaired region P(u[i, j]) for every possible interval [i, j]

assuming the interval length is limited to size w. Using the the extended algorithm, given

sequence interval [k, l] computing P(u[i, j], u[k, l]) for every possible interval [i, j] requires

the same time and space complexity. Note that for each interval [k, l], Qu[k,l] should be

computed separately. Since there are O(nw) different intervals for a limited interval length

w, with O(n4w) running time and O(n2) space complexity we are able to compute the

joint probabilities for all pairs of unpaired regions. The same idea can be used to compute

the joint probability of multiple unpaired regions. However, considering each extra interval

increases the running time by a factor of O(nw).

Note that a simplified version of our algorithm which ignores the joint probability of

accessibility can be run in O(n3) time complexity. Moreover, for genome scale studies one

can apply the algorithm by Bernhart er al. [16] for computing local base pairing probabilities

in O(nw3) time complexity.
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6.1.2 Interaction Matching Algorithm

We are given two lists of non-overlapping accessible regions TR = {r1, r2, ..., rn′} and TS =

{s1, s2, ..., sm′} sorted according to their orders in interacting sequences R and S. We aim

to calculate the optimal set of interaction bonds between the accessible regions under the

following constraints: (1) Each accessible region can interact with at most two accessible

regions from the other sequence. (2) There is no crossing interaction.

Let QI
ri,sj

be the partition function of all possible joint structures of two interacting

sequence ri and sj , which can be calculated based on our interaction partition function

algorithm. Define I[ri, sj ] = QI
ri,sj
− Qri

Qsj
as the partition function for the set of joint

structures that contain some interactions between ri and sj . Two accessible regions ri

and sj are considered to be able to interact if and only if P(I[ri, sj ]) > 1/2. The cost of

interaction between two accessible regions ri and sj , C(ri, sj), is the sum of the following

terms:

• Eu(ri) and Eu(sj): the energy difference between the complete ensemble and the

ensemble in which the interacting subsequences are left unpaired for both accessible

regions. We have Eu(ri) = (−RT )(ln(Q
u[ri]
R

)− ln(QR)) = (−RT ) ln(P(u[ri])). Similar

equation can be used to calculate Eu(sj).

• EI(ri, sj): the ensemble energy of interacting joint structure for the two accessible

regions where EI(ri, sj) = (−RT ) ln(P(I[ri, sj ])).

Cost of interaction between an accessible region ri and two other accessible regions sk

and sj is defined as C(ri, sksj) = Eu(ri) + Eu(sk, sj) + EI(ri, sksj), where sksj is the

concatenation of two subsequences, and Eu(sk, sj) = (−RT ) ln(P(u[sk], u[sj ])). Similarly

the cost of interaction between two accessible regions from R and one accessible region from

S is defined.

As an option, one can use minimum free energy (MFE) instead of ensemble energy (EI)

to define the cost of interaction. Accessible regions ri and sj are considered to be able to

interact if and only if MFE(ri, sj) < MFE(ri) +MFE(sj), i.e. there are some interaction

bonds in the minimum free energy joint structure. Therefore, we have C(ri, sj) = Eu(ri) +

Eu(sj) + MFE(ri, sj). The cost of interaction of an accessible region ri with two other

accessible regions sk and sj is defined as C(ri, sksj) = Eu(ri) +Eu(sk, sj) +MFE(ri, sksj).

With H(i, j), we denote the minimum cost non-conflicting set of interactions between

the accessible regions {r1, ..., ri} and {sj , ..., sm′}. The following dynamic programming
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computes H(i, j):

H(i, j) = min















































H(i− 1, j + 1) + C(ri, sj) (i)

minj<k≤m′{H(i− 1, k + 1) + C(ri, sksj)} (ii)

min1≤k<i{H(k − 1, j + 1) + C(rkri, sj)} (iii)

H(i− 1, j) (iv)

H(i, j + 1) (v)

∞ (vi)















































(6.5)

where 1 ≤ i ≤ n′ and 1 ≤ j ≤ m′. The algorithm starts by calculating H(1,m′) and explores

all H(i, j) by increasing i and decreasing j until i = n′ and j = 1. The DP algorithm has

O(n′2m′ + n′m′2) time and O(n′m′) space requirements. Also we need O(n′m′w6) time

and O(w4) space to compute the cost of interaction for every pair of accessible regions.

Assuming n′ ≥ m′ and n′ ≤ n/w, we can conclude that this step of the algorithm requires

O(n2w4 + n3/w3) time and O(w4 + n2/w2) space.

Figure 6.2: Interaction between accessible regions of CopA-CopT: a simple example for
interaction matching algorithm.

CopA-CopT is a well known antisense RNA-target complex observed in E.coli [95]. The

joint structure of CopA-CopT contains two disjoint binding sites. Figure 6.2 shows the

identified accessible regions in CopA and CopT. Two regions connected by an edge are able

to interact. Figure 6.3 shows the known and predicted interaction bonds between CopA

and CopT. Note that internal bonds of both RNAs are not displayed in this figure.

6.2 Experimental Results

6.2.1 Dataset

In our experiments we used a dataset of 23 known RNA-RNA interactions which includes

two recently used test sets. Table 6.1 contains the list of these RNA pairs. The first 18

sRNA-target pairs are compiled and used as test set by IntaRNA [20]. Next 5 pairs of RNAs
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(a) Known Interactions

(b) Predicted Interactions

Figure 6.3: Interaction between CopA and CopT. (a) Natural interactions. (b) Predicted
interactions.

which are known to have loop-loop interactions have been used by Kato et al. [51] to evaluate

the proposed grammatical parsing approach for RNA-RNA joint structure prediction.

6.2.2 Binding Sites Prediction

For assessing the predictive power of our algorithm, we compared our algorithm with

IntaRNA [20] and RNAup [69]. Based on the experimental results presented by IntaRNA,

both IntaRNA and RNAup which incorporate accessibility of target regions, performed better

than the other (TargetRNA, RNAHybrid, and RNAplex) competitive programs.

The results of these two programs for the first 18 RNA pairs are as presented in Table 1.

in [20]. For the next 5 RNA pairs, we run IntaRNA v1.2 with its default settings and RNAup

(from Vienna package v1.8.4) with the same setting that has been used in the experiments

of Table 1. in [20]. RNAup has been run using parameter -b which considers the probability

of unpaired regions in both RNAs and the maximal length of interaction to 80. In order

to estimate the accuracy of programs, we measured the sensitivity, PPV and F-measure for

intermolecular base pairs.

Table 6.1 shows the performance results of our program inRNAs, IntaRNA and RNAup. On

average our method achieved 85% accuracy while IntaRNA and RNAup showed respectively

79% and 76% accuracy. This results demonstrate that our method predict RNA-RNA

binding sites more accurately in compare to the competitive methods. In this dataset

OxyS-fhlA and CopA-CopT are the only ones that have two disjoint binding sites where

our method outperformed IntaRNA and RNAup by up to 30% improvement in F-measure.

Both RNAup and IntaRNA could not predict any correct bond for GcvB-gltI pair, because

they missed the binding site. However, IntaRNA could get 80% accuracy by considering the
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suboptimal prediction which is close to the accuracy that we have achieved for this case.

Table 6.1: Prediction accuracy of competitive RNA-RNA binding site prediction methods.
RNA-RNA Sensitivity PPV F-measure

interaction pairs inRNAs IntaRNA RNAup inRNAs IntaRNA RNAup inRNAs IntaRNA RNAup

DsrA-RpoS 0.808 0.808 0.808 0.778 0.778 0.778 0.793 0.793 0.793
GcvB-argT 0.950 0.950 0.900 0.864 0.950 0.947 0.905 0.950 0.923
GcvB-dppA 1.000 1.000 1.000 0.850 0.586 0.459 0.919 0.739 0.629
GcvB-gltI 0.750 0.000 0.000 0.500 0.000 0.000 0.600 0.000 0.000
GcvB-livJ 0.634 0.955 0.955 0.824 0.955 0.955 0.717 0.955 0.955
GcvB-livK 0.540 0.542 0.542 0.570 0.565 0.565 0.555 0.553 0.553
GcvB-oppA 1.000 1.000 1.000 0.733 0.957 0.957 0.846 0.978 0.978

GcvB-STM4351 0.760 0.760 0.880 1.000 0.905 0.957 0.864 0.826 0.917
IstR-tisAB 0.722 0.879 0.667 1.000 0.960 1.000 0.839 0.918 0.800
MicA-ompA 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
MicA-lamB 1.000 1.000 0.826 1.000 0.821 0.704 1.000 0.902 0.760
MicC-ompC 1.000 1.000 0.727 1.000 0.537 0.410 1.000 0.699 0.524
MicF-ompF 0.960 0.960 0.800 0.960 0.960 0.952 0.960 0.960 0.869
OxyS-fhlA 0.813 0.500 0.375 1.000 1.000 1.000 0.897 0.667 0.545
RyhB-sdhD 0.618 0.588 0.794 0.955 1.000 0.794 0.750 0.741 0.794
RyhB-sodB 1.000 1.000 1.000 1.000 0.818 0.900 1.000 0.900 0.947
SgrS-ptsG 0.566 0.739 0.739 0.765 1.000 1.000 0.651 0.850 0.850

Spot42-galK 0.432 0.409 0.523 0.760 0.643 0.523 0.551 0.500 0.523
CopA-CopT 0.889 1.000 0.556 0.828 0.391 0.652 0.857 0.562 0.600

DIS-DIS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
IncRNA54-RepZ 1.000 0.738 0.750 0.889 0.850 0.857 0.941 0.790 0.800

R1inv-R2inv 1.000 1.000 1.000 0.778 1.000 0.778 0.875 1.000 0.875
Tar-Tar* 1.000 1.000 1.000 0.833 0.833 0.833 0.909 0.909 0.909
Average 0.845 0.819 0.776 0.865 0.805 0.784 0.845 0.791 0.763



Chapter 7

Conclusion and Discussion

The gene therapy applications of RNA interference have been approved by several studies

on drug discovery and biomedical research. Many pharmaceutical companies invest in RNA

interference technology to provide a new class of drugs. RNA interference technology is

expected to bring a revolution in medical treatment. Currently there is no high throughput

approach for experimental target prediction. Consequently, computational methods are in

high demand for target prediction problems.

This dissertation presents a computational study of the RNA-RNA interaction prediction

problem. Our proposed approaches satisfy the main requirements for a method to be useful

for genome wide screening problems.

We first present an interaction energy model which is an extension of the standard

thermodynamic energy model for an RNA secondary structure. Our model introduces three

new components: (i) the hybrid component, (ii) the kissing loop, and (iii) the inter-hybrid

loop. The corresponding energy functions of these components are extended versions of

hybridization, multi loop, and pseudoknot energy functions. Our model considers almost all

physically possible secondary structures that do not contain pseudoknots, crossing bonds,

and zigzags. Therefore the interaction energy model can calculate the energy contribution

of complex types of interactions including loop-loop interaction and multiple binding sites

Then, we develop an efficient algorithm to compute the partition function of two in-

teracting nucleic acid strands. Using our partition function algorithm, we can compute

the probability of interaction as well as several thermodynamic values such as equilibrium

concentration, melting temperature, heat capacity, and UV absorption. We verified our

algorithm by computing the melting temperature for RNA pairs available in the literature
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and the equilibrium concentration for the OxyS-fhlA complex. In both experiments our

algorithm provides high accuracy. A parallel work by Huang et al. [48], published just a

few months after our paper, solves the interaction partition function problem by a dynamic

programming algorithm based on a different set of recursion cases. This approach has the

same complexity and performance as our method.

We also consider the problem of predicting the joint structure of two interacting RNAs

via minimizing their total free energy as a tool for detecting/verifying mRNA targets of

regulatory ncRNAs. Earlier approaches to the problem either use a restricted interaction

model, not covering many known joint structures, or require significant computational re-

sources for many practical instances. We show that sparsification, a technique that has

been applied to single RNA folding prediction, can be applied to the problem of RNA-RNA

interaction prediction to improve significantly both the running time and the space utiliza-

tion of the DP algorithm. In fact, by employing a version of the polymer-zeta property for

interacting RNA-structures (a property generally assumed to be held by many polymers

and has been empirically shown for single RNAs), we show how to reduce the running time

and space of the RNA-RNA interaction prediction problem, from O(n6) time and O(n4)

space to O(n4ψ(n)) time and O(n2ψ(n)+n3) space, for a function ψ(n) = O(n) on average.

These theoretical improvements are verified by our experiments; as a result it is now pos-

sible to employ computational prediction of RNA-RNA interactions to a much wider range

of potential regulatory ncRNAs and their targets.

Finally, we introduce a fast heuristic algorithm for RNA-RNA interaction prediction.

Our heuristic algorithm for the RNA-RNA interaction prediction problem incorporates the

accessibility of unpaired regions and a matching algorithm to compute the optimal set of

interactions between the multiple accessible regions. The algorithm has an O(n4w + w6)

running time and O(n2 +w4) space complexity where w is the size of the sequence window

in ncRNA and target mRNA. Note that a simplified version of our algorithm which ignores

the joint probability of accessibility can be run in O(n3w+w6) time complexity. Moreover,

for genome scale studies where only the local base pairing probabilities are considered, time

complexity is O(nw3 + w6). The main advantage of our method is its ability to predict

multiple binding sites which have so far only been predictable by expensive algorithms.

On a set of known RNA-RNA complexes, our proposed algorithm shows great accuracy,

particularly for interaction complexes with multiple binding sites.
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7.1 Future Work

The RNA-RNA interaction problem is a relatively new one with many unresolved biological

aspects. Our information about the gene regulation mechanism and possible involving

components is still very limited. With progress in biological studies as more details of

the interaction process are revealed, computational approaches for target prediction can be

improved, resulting in more accurate predictions.

Currently, our method considers several folding factors including temperature, PH level,

salt and magnesium concentrations, as well as the initial concentrations of two interacting

strands. For simplicity we ignore the effect of RNA-induced silencing complex (RISC) and

some RNA chaperones such as Hfq known to be involved in the interaction process. One

direction for further improvement of interaction prediction problem is to study the effect of

more involving components.

The proposed interaction energy model needs experimental validation. The parameters

are learned over a limited set of short interaction samples. Perhaps a rich set of training

data increases the accuracy of the model. The correctness and accuracy of the model should

be approved by extensive laboratory experiments.

Although applying sparsification technique to the minimum free energy RNA-RNA inter-

action prediction problem results in a significant improvement of time and space complexity,

we cannot arrive at a similar result for the interaction partition function problem. The inter-

action partition function algorithm presented in this thesis has O(n6) time and O(n4) space

complexity. Recently, Tsur et al. [91] proved that by applying the Valiant algorithm, we can

improve the running time of the interaction partition function problem into O(n6. log
3 log n

log2 n
).

This time improvement, independent of its theoretical value, is not practically significant,

and since the algorithm is complicated it is not worth it to be implemented. In addition,

this method does not reduce the space complexity of the interaction prediction problem.

Therefore, improving the time and space complexity of our algorithm is a high priority.

Our heuristic algorithm in Chapter 6, as well as its competitors [20, 69], is based on

the assumption that interaction usually happens between the accessible regions of two RNA

structures. In fact, this method models the interaction as a double-step process. However,

as mentioned in Chapter 2, there are several well known RNA-RNA complexes [19] involved

in multi-step pathways of interaction. Based on the studied cases, interactions are initiated

by one or two loop-loop interactions. Then the structure is reformed into a more stable one
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by interacting along a topologically feasible pathway. Perhaps the multi-step pathway of

interaction can be modeled by a kinetic study.

The current interaction prediction methods consider the two-dimensional model of in-

teraction. Although modeling the interaction problem in three-dimensional space is too

complex and impractical at the present time, incorporating a few of topological constraints

into the two-dimensional models could be useful.



Appendix A

Data Sets Used in Chapter 4

For verification of our algorithm in predicting the melting temperature, we used three data

sets available in the literature. The RNA pairs from the first data set which were originally

reported in Table 3 of [101] has been presented in the paper. Here we present the RNA

sequence pairs from the second (originally reported in Table 1 of [27]) and third (originally

reported in Tables 3 and 4 of [64]) data sets that have been used in Tables 2 and 3 of the

paper.
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Table A.1: Sequences of the set of RNA pairs reported in Table 2 of the paper.

Pairs Sequences
A GGAGCGGCUUCGGCCGGACG

/CGUCaaCUCC
B GGAGaCGGCUUCGGCCGGACG

/CGUCauaCUCC
C GGAGaCGGCUUCGGCCGGCAG

/CUGCauaCUCC
D GGAGgCGGCUUCGGCCGuGACG

/CGUCcauaCUCC
E GGAGaCGGCUUCGGCCGcGACG

/CGUCauaCUCC
F GGAGgCGGCUUCGGCCGuGACG

/CGUCauaCUCC
G GGAGCGGCUUCGGCCGGACG

/CGUCCUCC
H GGAGaCGGCUUCGGCCGGACG

/CGUCcauaCUCC
I GGAGCGGCUUCGGCCGGACG

/CGUCauaCUCC
J GGAGCGGCUUCGGCCGGACG

/CGUCcauaCUCC
K GGAGaCGGCUUCGGCCGcGACG

/CGUCcauaCUCC
L GGAGaCGGCUUCGGCCGaGACG

/CGUCcauaCUCC

Table A.2: Sequences of the set of RNA pairs reported in Table 3

of the paper.

Pairs Sequences

G-GC-G/C-C GGCAGGCGCUUCGGCGCGGAGG

/CCUCCCUGCC

G-GC-G/CaC GGCAGGCGCUUCGGCGCGGAGG

/CCUCCaCUGCC

G-GC-G/Ca2C GGCAGGCGCUUCGGCGCGGAGG

/CCUCCaaCUGCC

G-GC-G/Ca3C GGCAGGCGCUUCGGCGCGGAGG

/CCUCCaaaCUGCC

Continued on next page
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Table A.2 – continued from previous page

Pairs Sequences

G-GC-G/CauaC GGCAGGCGCUUCGGCGCGGAGG

/CCUCCauaCUGCC

G-GC-G/Ca4C GGCAGGCGCUUCGGCGCGGAGG

/CCUCCaaaaCUGCC

GaGC-G/C-C GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCCUGCC

GaGC-G/CaC GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCaCUGCC

GaGC-G/Ca2C GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCaaCUGCC

GaGC-G/Ca3C GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCaaaCUGCC

GaGC-G/CauaC GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCauaCUGCC

GaGC-G/Ca4C GGCAGaGCGCUUCGGCGCGGAGG

/CCUCCaaaaCUGCC

Ga2GC-G/C-C GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCCUGCC

Ga2GC-G/CaC GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCaCUGCC

Ga2GC-G/Ca2C GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCaaCUGCC

Ga2GC-G/Ca3C GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCaaaCUGCC

Ga2GC-G/CauaC GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCauaCUGCC

Ga2GC-G/Ca4C GGCAGaaGCGCUUCGGCGCGGAGG

/CCUCCaaaaCUGCC

Ga2GCaG/C-C GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCCUGCC

Ga2GCaG/CaC GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCaCUGCC

Ga2GCaG/Ca2C GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCaaCUGCC

Continued on next page
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Table A.2 – continued from previous page

Pairs Sequences

Ga2GCaG/Ca3C GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCaaaCUGCC

Ga2GCaG/CauaC GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCauaCUGCC

Ga2GCaG/Ca4C GGCAGaaGCGCUUCGGCGCaGGAGG

/CCUCCaaaaCUGCC

Ga2GCa2G/C-C GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCCUGCC

Ga2GCa2G/CaC GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCaCUGCC

Ga2GCa2G/Ca2C GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCaaCUGCC

Ga2GCa2G/Ca3C GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCaaaCUGCC

Ga2GCa2G/CauaC GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCauaCUGCC

Ga2GCa2G/Ca4C GGCAGaaGCGCUUCGGCGCaaGGAGG

/CCUCCaaaaCUGCC

G-UA-G/C-C GGCAGUCGCUUCGGCGAGGAGG

/CCUCCCUGCC

G-UA-G/CaC GGCAGUCGCUUCGGCGAGGAGG

/CCUCCaCUGCC

G-UA-G/Ca2C GGCAGUCGCUUCGGCGAGGAGG

/CCUCCaaCUGCC

G-UA-G/Ca3C GGCAGUCGCUUCGGCGAGGAGG

/CCUCCaaaCUGCC

G-UA-G/CauaC GGCAGUCGCUUCGGCGAGGAGG

/CCUCCauaCUGCC

G-UA-G/Ca4C GGCAGUCGCUUCGGCGAGGAGG

/CCUCCaaaaCUGCC

GaUA-G/C-C GGCAGaUCGCUUCGGCGAGGAGG

/CCUCCCUGCC

GaUA-G/CaC GGCAGaUCGCUUCGGCGAGGAGG

/CCUCCaCUGCC

Continued on next page
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Table A.2 – continued from previous page

Pairs Sequences

GaUA-G/Ca2C GGCAGaUCGCUUCGGCGAGGAGG

/CCUCCaaCUGCC

GaUA-G/Ca3C GGCAGaUCGCUUCGGCGAGGAGG

/CCUCCaaaCUGCC

GaUA-G/CauaC GGCAGaUCGCUUCGGCGAGGAGG

/CCUCCauaCUGCC

GaUA-G/Ca4C GGCAGaUCGCUUCGGCGAGGAGG

/CCUCCaaaaCUGCC

G-CG-GC-G/C-C GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCCUGCC

G-CG-GC-G/CaC GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCaCUGCC

G-CG-GC-G/Ca2C GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCaaCUGCC

G-CG-GC-G/Ca3C GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCaaaCUGCC

G-CG-GC-G/Ca4C GGCAGCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCaaaaCUGCC

GaCG-GC-G/C-C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCCUGCC

GaCG-GC-G/CaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCaCUGCC

GaCG-GC-G/Ca2C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCaaCUGCC

GaCG-GC-G/Ca3C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCaaaCUGCC

GaCG-GC-G/CauaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCauaCUGCC

GaCG-GC-G/Ca4C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCGGAGG

/CCUCCaaaaCUGCC

GaCG-GCaG/C-C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG

/CCUCCCUGCC

GaCG-GCaG/CaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG

/CCUCCaCUGCC

Continued on next page
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Table A.2 – continued from previous page

Pairs Sequences

GaCG-GCaG/Ca2C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG

/CCUCCaaCUGCC

GaCG-GCaG/Ca3C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG

/CCUCCaaaCUGCC

GaCG-GCaG/CauaC GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG

/CCUCCauaCUGCC

GaCG-GCaG/Ca4C GGCAGaCGGCUUCGGCCGGCGCGCAAGCGCaGGAGG

/CCUCCaaaaCUGCC

Ga2CGa2GCa2G/C-C GGCAGaaCGGCUUCGGCCGaaGCGCGCAAGCGCaaGGAGG

/CCUCCCUGCC

Ga2CGa2GCa2G/CaC GGCAGaaCGGCUUCGGCCGaaGCGCGCAAGCGCaaGGAGG

/CCUCCaCUGCC

Ga2CGa2GCa2G/Ca2C GGCAGaaCGGCUUCGGCCGaaGCGCGCAAGCGCaaGGAGG

/CCUCCaaCUGCC
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