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Abstract

Lightning-caused fires account for approximately 45% of ignitions and 80% of area burned

annually in Canada. Investigating the seasonality of these fires and how this is changing

over time is of interest to fire managers and researchers. In this project, we develop flexible

models for describing the temporal variation in the risk of lightning-caused ignitions and

fit these models to historical forest fire records from Alberta and Ontario, Canada. The

generalized additive models we utilize provide smooth estimates of fire risk by day of year

for each year. Inverse calculations are used to obtain interval estimates of the start and end

of the fire season annually; these are defined by the crossing of a risk threshold. Permutation-

based methods are employed to test for significant trends. Finally, trends from this complex

approach are compared to those of simple empirical estimates. Results suggest changes to

the timing of the fire season in Alberta, but not Ontario.
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Chapter 1

Introduction

1.1 Motivation

The goal of this project is to develop a method to test for changes in the timing of the

forest fire season. We illustrate this methodology by analyzing Canadian historical forest

fire records aggregated at the provincial level. The practical significance of such a study

quickly becomes clear when examining the following summary statistics. On average each

year in Canada, there are 8000 forest fires, resulting in approximately 2.1 million hectares

(ha) being burned. Suppression resources for controlling and extinguishing these fires cost

between $500 million and $1 billion annually (Natural Resources Canada, 2008). Under a

warming climate, these statistics have the potential to substantially increase. The magnitude

of these changes, however, may not be homogeneous throughout Canada.

The consequential impacts of climate change in forestry have been extensively studied in

the literature. Bonsal et al. (2001) compared climate change effects in western and eastern

Canada, demonstrating a difference in the effects between these two regions. In that paper,

the authors showed how the upper and lower percentiles of daily temperature have increased

during winter and spring from 1950 through 1998 in western Canada. Meanwhile, these

quantities have decreased throughout eastern Canada. Projections for future trends was a

topic considered by Williamson et al. (2009). Discussions therein centred around an expected

increase in the frequency and severity of extreme weather events throughout Canada, such

as fire, drought and severe storms. These researchers predicted a 74%-118% increase in

annual area burned by the latter part of this century. Again, this is expected to be highest

in the western half of Canada, which includes regions of western Ontario, a central province.

1



CHAPTER 1. INTRODUCTION 2

Wotton and Flannigan (1993) commented that projections of increased temperatures will

likely result in drier forest fuels, conditional on rainfall patterns not being significantly

altered. However, variability in rainfall scenarios from current general circulation models

(GCMs) is relatively large. Under a warming climate, it is postulated that there could be

an increase in the number of ignitions, an increase in the amount of severe fire-weather and

an extended length of the fire season (Weber and Stocks, 1998; Williamson et al., 2009). In

this project, we investigate the third effect listed above.

In terms of fire management operations, the fire season officially runs from April 1

to October 31 each year, in both Alberta and Ontario (Government of Alberta: Office

of Statistics and Information, 2011; Ontario Ministry of Natural Resources, 2004). This

defines a period where forest fires, under the right conditions, are likely to ignite and have the

potential to rapidly spread. As outlined above, we might expect to experience longer periods

each year that are conducive to forest fires as a result of a warming climate. Although much

work has been done toward identifying potential future climate change trends in forestry

through the analysis of data from GCM scenarios, relatively little has been done in terms

of quantifying historical trends. Wotton and Flannigan (1993) used output from a GCM in

a doubling of atmospheric carbon dioxide scenario and compared this to projections from

a scenario where carbon dioxide levels remained constant. They defined the fire season as

starting after three consecutive days with temperatures greater than twelve degrees Celsius

and conversely for the end. Predictions based on their approach showed a 16%-17% extension

in the length of the fire season in regions of western and central Canada.

With data aggregated at the provincial level, defining the length of the fire season from

empirical estimates, as was done in Wotton and Flannigan (1993), can be troublesome due

to its high variability which is reflected, in part, by the heterogeneity of fire-weather indices

over such large spatial extents. We address this issue by adopting a modelling approach

based on the use of a nonparametric generalized additive model. Flexible models such as

these allow us to relax the linearity assumption imposed on linear and generalized linear

models to accurately predict fire risk. This is an extension of an approach developed in an

exploratory paper by Woolford et al. (2010). In that paper, a generalized additive mixed

model framework was developed to estimate the probability of at least one fire being reported

on a given day, termed a fire day. Probabilities were estimated from a bivariate smoother

of time, where time was viewed as the ordered pair of day of year, and year. The local

neighbourhood influencing the fit of that model at any time point contained observations
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surrounding the date in question from the same year as well as those from neighbouring

years. Our interest is in extending their model to accurately quantify trends in individual

fire seasons. To do this, we construct a more flexible model where the local neighbourhood

determining a fitted value is solely influenced by the surrounding days within a given year.

In this project, we develop a two-stage approach to test for possible climate change

trends in the start and end of the forest fire season. We use a nonparametric generalized

additive model to estimate fire day risk and the start and end of the fire season are defined

as the crossing of a fire day risk threshold. Inverse techniques are employed to calculate

confidence intervals associated with the point estimates of the start and end of the fire

season. Linear models are then used to quantify these temporal trends and resampling

techniques are employed to test for significance. Trends from this complex approach are

contrasted with those of comparable empirical estimates of fire season length. We apply

these approaches to historical forest fire records from Alberta and Ontario, Canada. It is

important to note that although this project is motivated by climate change effects, much

work is required before any trends may be definitively linked to climate change. We leave

this discussion topic for Chapter 5.

1.2 Exploratory Analysis

1.2.1 Analysis of Alberta Forest Fire Data

The historical forest fire data in Alberta, Canada considered here span forty-three years,

from 1961-2003. During this period, there were roughly 37,000 fires, approximately half

of which are attributed to lightning. These 18,000 lightning-caused fires resulted in about

6,000,000 ha being burned and corresponded to about 75% of the total area burned.

The panels in Figure 1.1 display the total number of fire days in Alberta, aggregated by

day of year, and by year. The seasonality of the ignition process is clear in Figure 1.1(a);

few fires occur at the beginning and end of each year. Annual trends are displayed below in

Figure 1.1(b). In the Alberta forest fire data set, there appears to be an annual increase in

the number of fire days. Figure 1.2 visually summarizes simple empirical estimates of the

start and end of the fire season, displaying scatterplots of the day of year for the fifth, and

fifth last, fire day by year. A decreasing trend in the start of the fire season can be observed

from Figure 1.2(a). Informally, Figure 1.2(b) suggests a stronger trend in the end of the fire

season, relative to the start.
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and year (bottom) for lightning-caused fires in Alberta.
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1.2.2 Analysis of Ontario Forest Fire Data

Our forest fire data for Ontario consists of all fires reported between 1963 and 2004, in-

clusive. This database contains approximately 61,000 fires, with about 22,000 caused by

lightning. Approximately 7,000,000 ha were burned, 83% of which resulted from lightning-

caused fires. In contrast to Alberta, Ontario experienced a larger number of fires, with a

smaller proportion attributed to lightning.

Exploratory figures, analogous to those from Section 1.2.1, are shown here for the Ontario

data set. Figure 1.3 summarizes the number of fire days by day of year, and year. Although

Figure 1.3(a) shows strong seasonality, no annual trends in the number of fire days are

apparent in Figure 1.3(b). When using the fifth annual fire day and the fifth last annual

fire day to define the start and end of the fire season, as illustrated in Figure 1.4, there is

no clear trend in the length of the fire season.

1.3 Project Outline

The remainder of this project is organized as follows. Chapter 2 reviews the theory of gen-

eralized additive models with emphasis on thin plate regression splines. Trends in empirical

estimates of the start and end of the fire season for Alberta and Ontario, including an outline

of the approach used to estimate these trends, is the topic of Chapter 3. Chapter 4 describes

our two stage nonparametric approach to test for temporal trends in the length of the fire

season. Results from applying this to Alberta and Ontario historical forest fire records are

also discussed and a comparison is made between these estimates and that of the empirical

approaches. Chapter 5 concludes this project with a discussion and suggestions for future

work.



CHAPTER 1. INTRODUCTION 7

●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●
●●●●●

●●
●●●●

●
●●●
●
●

●

●

●

●
●
●●●
●
●

●

●
●

●●

●●

●

●
●
●

●
●

●

●
●●
●

●
●

●

●

●

●

●●
●
●

●●●

●

●

●

●

●

●
●

●
●●

●

●

●
●
●●

●

●
●
●

●

●
●

●

●●●●
●●

●

●

●

●

●

●

●
●
●●●

●●

●
●

●

●
●

●

●●

●

●
●

●

●
●

●●

●
●●
●

●

●
●●
●

●
●

●

●

●

●

●

●●

●
●●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●●

●●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●
●

●
●

●●●
●
●
●

●
●

●
●

●

●

●
●●●●

●
●●

●

●
●

●

●
●●
●●

●
●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300

0

10

20

30

40

day of year

nu
mb

er 
of 

fire
 da

ys

(a) Number of fire days aggregated by day of year.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1970 1980 1990 2000

60

80

100

120

year

nu
mb

er 
of 

fire
 da

ys

(b) Number of fire days aggregated by year.

Figure 1.3: Summary scatterplots of counts of fire days aggregated by day of year (top),
and year (bottom) for lightning-caused fires in Ontario.
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Figure 1.4: Fifth (top), and fifth last (bottom) fire day each year for lightning-caused fires
in Ontario.



Chapter 2

Generalized Additive Models

This chapter reviews theory underlying the models employed throughout this project. We

begin with a brief review of generalized linear models in Section 2.1. Section 2.2 provides

an introduction to generalized additive models and penalized spline smoothing. We also

include an example of thin plate regression splines, the basis function we use for the models

developed in Chapter 4.

2.1 Generalized Linear Models

Generalized linear models (GLMs) extend the familiar linear regression models by relaxing

the normality assumption on the response, allowing it to follow any exponential family

distribution including Poisson, binomial and gamma (McCullagh and Nelder, 1989). GLMs

can be written as follows:

g(µi) = Xiβ (2.1)

for i = 1, . . . , n. Using the above notation, g(.) is the link function, µi ≡ E[Yi|Xi] is

the conditional expectation of the ith observation, Yi; Xi is the ith row of the model (or

design) matrix which incorporates the covariates considered in the analysis, while β denotes

the corresponding vector of parameters. On the scale of the link function, the conditional

mean of the response is assumed to be a linear function of the parameters. Note that linear

models are special cases of GLMs, where the link function is the identity.

9
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The distribution of a random variable Y is from the exponential family if it has a

probability density function that can be written in the form:

f(Y ) = exp {[Y θ − b(θ)]/a(φ) + c(y, φ)} (2.2)

where a, b and c are known functions, φ is the scale parameter and θ is the canonical

parameter. The mean and variance of any random variable belonging to an exponential

family distribution are, respectively,

E(Y ) = b′(θ)

and

Var(Y ) = b′′(θ)a(φ)

where V(µ) = b′′(θ) and a(φ) = φ.

Parameter estimation follows likelihood-based inference procedures. Specifically, an op-

timization method known as iteratively reweighted least squares (IRLS) is commonly em-

ployed. See McCullagh and Nelder (1989) for more details.

2.2 Generalized Additive Models

Generalized additive models (GAMs) are extensions of GLMs. They allow for nonlinear

covariate effects by incorporating nonparametric smooth functions, referred to as smoothers

or partial effects (Hastie and Tibshirani, 1990; Wood, 2006). In general, GAMs have the

following structure:

g(µi) = X∗iβ +
J∑
j=1

fj(xji) (2.3)

where i indexes the observation and j indexes the smoother, i = 1, . . . , n and j = 1, . . . , J .

As in GLMs, g(.) denotes the link function and µi ≡ E(Yi|Xi) where Yi, the response

variable, follows an exponential family distribution (see 2.2). In (2.3), the mean of the



CHAPTER 2. GENERALIZED ADDITIVE MODELS 11

response is a linear function of the coefficients, β, on the scale of the link function. Hence,

covariates X∗i are incorporated into the model in a similar fashion as for GLMs. In contrast,

fj(xji) represent the nonparametric smooth functions of the covariates, xji, which affect

the response nonlinearly. Note that xji need not be scalar, for example, it may have two

components: xji = (x1ji, x2ji). As well, in the case of a multivariate smoother, xji may be

a vector of covariates.

The two common concerns when fitting a GAM are related to determining the most

appropriate basis function as well as determining the flexibility of each smoother. These

two problems, along with inference for GAMs, are described in the remainder of this chapter.

2.2.1 Penalized Spline Smoothing in Generalized Additive Models

In GAMs, a smoother as a function of scalar xj is represented as follows:

fj(xj) =
qj∑
k=1

θjkbjk(xj). (2.4)

Here, k indexes the knot for the jth smoother, k = 1, . . . , qj , bjk(xj) is the basis function

for the jth covariate at the kth knot and θjk is the corresponding basis coefficient. Notice,

in this context a smoother is simply a linear combination of basis functions. Let

bj(xj) =
[
bj1(xj), bj2(xj), . . . , bjqj (xj)

]
(2.5)

and

θTj =
[
θj1, θj2, . . . , θjqj

]
, (2.6)

with θj
T denoting the transpose of θj . Then, fj(xj) may be written in the form bj(xj)θj ,

similar to a GLM. Throughout this project we make use of univariate thin plate regression

splines. These are a class of flexible basis functions that can be used to smooth one or more

covariates. An example of thin plate regression splines will be provided at the end of this

section.

Controlling model smoothness using splines amounts to altering the number of knots

for each smoother; the fewer the number of knots, the smoother the estimated function.
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However, choosing the number and location of knots when fitting a regression spline is

problematic as these factors strongly influence the resulting fit. The use of penalized splines

circumvents this knot selection problem (Wood, 2006). In this approach, the basis dimension

is fixed at a size larger than believed to be reasonable and overfitting is controlled by adding

a penalty to the log likelihood, as will be discussed in detail below. This penalty determines

the roughness of the spline and is often measured by the integral of the squared second

derivative of the smoother:

J(fj) =
∫

[f ′′j (xj)]2dxj (2.7)

=
∫

[b′′j (xj)θj ]
2dxj

=
∫
θTj Sj(xj)θjdxj ,

where Sj(xj) is the qj × qj matrix:
b′′j1(xj)2 b′′j1(xj)b′′j2(xj) · · · b′′j1(xj)b′′jqj (xj)

b′′j2(xj)b′′j1(xj) b′′j2(xj)2 · · · b′′j2(xj)b′′jqj (xj)
...

...
. . .

...

b′′jqj (xj)b′′j1(xj) b′′jqj (xj)b′′j2(xj) · · · b′′jqj (xj)2


.

Other common measures of spline roughness are
∫

[f ′j(xj)]
2dxj and

∫
[f ′′′j (xj)]2dxj (Wood

and Augustin, 2002). The only requirement is that they be continuous up to and including

the order of the derivative of the penalty, as splines are joined at knot locations. The

penalty, J(fj), will be large if fj(xj) is rough and small for a smooth fj(xj). Note that for

this project, we use the penalty shown in (2.7).

Inference

As mentioned above, parameter estimation for a GAM is performed using a penalized

likelihood-based approach. This is a reasonable remedy for overfitting as the penalties

suppress estimates of smoothers that could lead to overfitting. To illustrate this estimation

procedure, consider writing a GAM in the form of the following GLM:
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g(µ) = Xθ (2.8)

where X is the full design matrix and θ is the vector of coefficients. From Equation 2.8,

X = [X∗,X1,X2, . . . ,XJ ], where X∗ is the model matrix with ith row X∗i corresponding

to the parametric model (i.e. linear) components and Xj is the n× qj matrix with the ith

row corresponding to bj(xji), i = 1, . . . , n. Recall, bj(xj) is defined in (2.5). Additionally,

θT = [βT ,θT1 ,θ
T
2 , . . . ,θ

T
J ], where θTj is defined in (2.6). Letting `(θ|y) denote the log

likelihood of a GAM, the penalized log likelihood is then:

`p(θ|y) = `(θ|y)− 1
2

J∑
j=1

λj

∫
θTj Sj(xj)θjdxj . (2.9)

When xj is an n-vector, the elements in the matrix Sj(xj) correspond to
∑n

i=1 b
′′
j`(xji)b

′′
j`′(xji)

for ` = 1, . . . , qj and `′ = 1, . . . , qj , where ` and `′ index rows and columns, respectively. In

Equation 2.9, λj represents the smoothing parameter for the jth smoother. These smooth-

ing parameters control the tradeoff between the two conflicting goals of a GAM: model fit

and model smoothness. If λj = 0, then fj(xj) is unpenalized and the resulting smoother

is quite rough. Conversely, as λj → ∞, fj(xj) becomes increasingly smooth and closer to

a straight line. Just as we discussed that IRLS is employed for parameter estimation in

GLMs, penalized iteratively reweighted least squares (P-IRLS) is used to optimize the pe-

nalized log likelihood and estimate coefficients in GAMs. In P-IRLS, smoothing parameters

are assumed to be known. Estimation of λj , the smoothing parameter, is performed using

generalized cross validation, which is discussed in Section 2.2.2.

The degrees of freedom for the a fitted model would simply be the dimension of θ if all

smoothing parameters were zero. Conversely, if the smoothing parameters were large, the

model would have relatively few degrees of freedom. Therefore, to measure the flexibility of

a fitted model we use a quantity known as the effective degrees of freedom. This is defined

as the trace of the influence matrix of a GAM, or tr(A), where

A = X

XTWX +
J∑
j=1

λj

∫
Sj(xj)dxj

−1

XTW (2.10)
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and W is an n×n diagonal matrix of weights with diagonal elements equal to 1
V (µ̂i)[g′(µ̂i)]2

.

Note that µ̂i denotes the fitted values and V(µ̂i) is a function of the fitted values. For

logistic models, as we employ in Chapter 4, V(µi) = µi(1− µi).
Based on the fitted model, we estimate the variance of the response in a manner analo-

gous to that of a GLM. Specifically,

V̂ar(Yi) = V(µ̂i)φ̂.

In GAMs, the scale parameter is estimated as:

φ̂ =
∑n

i=1 V(µ̂i)−1(yi − µ̂i)2

n− tr(A)
.

Note that estimation and inference for GAMs is performed using existing software in

the mgcv package (Wood, 2006) in R (R Development Core Team, 2008).

Example of Penalized Spline Smoothing: Thin Plate Regression Splines

Consider estimating the smoother f(xi) from the following model:

g(µi) = f(xi) (2.11)

for i = 1, . . . , n, where x consists of d covariates, each with n observations. Let x∗j , j =

1, . . . , q, represent the knots. For thin plate regression splines, the estimated smoother has

the form:

f̂(x) =
q∑
j=1

δjηwd(||x− x∗j ||) +
M∑
j=1

αjφj(x) (2.12)

where α and δ contain the unknown parameters that need to be estimated subject to the

constraint T Tδ = 0, and T is a q ×M matrix with elements Tij = φj(x∗i ). Note that q

represents the number of knots, while M =
(
w+d−1

d

)
, where w is the order of the derivative

that measures the flexibility of the spline smoother, and d is the dimension of the smoother.

Finally, φi are linearly independent polynomials and the basis function, ηwd(r), has the

following form:
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ηwd(r) =


(−1)w+1+d/2

22w−1πd/2(w−1)!(w−d/2)!
r2w−dlog(r), if d even

Γ(d/2−w)

22wπd/2(w−1)!
r2w−d, if d odd.

The penalty is:

Jwd(f) =
∫
· · ·
∫
<

∑
υ1+···+υd=w

w!
υ1! · · · υd!

(
∂wf

∂xυ1
1 · · · ∂x

υd
d

)2

dx1 · · · dxd (2.13)

where υ1, . . . , υd represents the order of the derivative for the respective covariate (Wood,

2003).

Take, for example, the case where f(x) is a bivariate smoother and model flexibility is

measured by the integral of the squared second derivative of the basis function (Wood and

Augustin, 2002). This implies that w = 2 and d = 2. The penalty, J22(f), is then:

J22(f) =
∫ ∫ [(

∂2f

∂x2
1

)
+ 2

(
∂2f

∂x1∂x2

)
+
(
∂2f

∂x2
2

)]
dx1dx2. (2.14)

The M = 3 linear polynomials are: φ1(x1, x2) = 1, φ2(x1, x2) = x1 and φ3(x1, x2) = x2 and

the matrix, T , is:

T =


1 x∗11 x∗21

1 x∗12 x∗22
...

...
...

1 x∗1q x∗2q


.

Finally, the basis function, ηwd(r), is 1
8π r

2log(r). Generalizations to a univariate smoother,

as we employ in this project, are straightforward.

2.2.2 Smoothing Parameter Selection

As mentioned above, P-IRLS is conditional on the estimated smoothing parameters, λj ,

j = 1, . . . , J . Generalized cross validation (GCV) is employed to estimate these parameters

(Wood, 2006; Wood and Augustin, 2002).

The idea behind cross validation techniques is to estimate smoothing parameters by

minimizing the mean square prediction error, namely the average squared prediction error
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that results from predicting a new observation using the fitted model. For the case of an

additive model, where the response is approximately normally distributed, this amounts to

minimizing:

γg =
n∑
i=1

n||Y − µ̂||2

[n− tr(A)]2
(2.15)

where µ̂ = Y A are the predicted values and A is the influence matrix.

In the case of GAMs, rather than minimizing the residual sum of squares, the GCV

score is calculating using model deviance, D(θ̂), as follows:

γg =
nD(θ̂)

[n− tr(A)]2
, (2.16)

where D(θ̂) is simply −2[`(θ̂)− `(θ̂max)]. Using this notation, `(θ̂max) is the log likelihood

from the saturated model, where we have one parameter estimate per observation and `(θ̂)

is the log likelihood from the model being fit. Note that GCV can also be used as a criteria

for model selection, with the most appropriate model having the smallest GCV score.



Chapter 3

Investigating Trends in Empirical

Estimates of Fire Season Length

The focus of this chapter is on quantifying trends in the start and end of the fire season from

simple empirical estimates of fire season length. Section 3.1 discusses our methodology for

investigating these trends, including explanations of our tests for significance. The results

when testing for trends in the Alberta and Ontario forest fire data are summarized in Section

3.2. As well, model goodness of fit is assessed via residual analysis. Note that the intent of

this chapter is to briefly discuss these results for use as a comparison to that of the preferred

nonparametric approach we present in Chapter 4.

3.1 Empirical Approach to Estimating Trends in the Start

and End of the Fire Season

As a preliminary investigation, we develop two empirical estimates of fire season length, one

based on observed fire day counts and the other on the empirical cumulative distribution

function (ECDF) of fire days. For the count-based empirical estimate, we define the start

of the fire season using three different thresholds: the observed date of the first, fifth, and

tenth fire day each year. The comparable quantity for the procedure based on the ECDF

also considers three thresholds, defined as the first day the ECDF of fire days exceeds 1%,

5%, and 10%, annually. Analogous estimates are employed as definitions for the end of the

fire season. That is, the last, fifth last, and tenth last fire day and correspondingly, the last

17
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day the ECDF fails to exceed 99%, 95%, and 90%. Based on these results, we developed

the following approach to estimate trends in the start and end of the fire season.

Let Xr = (Xr
1 , X

r
2 , . . . , X

r
n) denote the vector of estimated dates for the start of the fire

season for n years of data at the rth threshold and Y r = (Y r
1 , Y

r
2 , . . . , Y

r
n ) denote the end

dates. We assume that both Xr and Y r follow a correlated normal distribution. Trends in

start of the fire season, can then be estimated using the following linear regression model:

Xr
i = βrX0 + βrX1di + εri (3.1)

and correspondingly

Y r
i = βrY 0 + βrY 1di + εri (3.2)

for the end of the fire season where the covariate d represents year, and i = 1, . . . , n.

The subscripts on the slope and intercept are used to differentiate between parameters

for the start and end of the fire season. We assume that the residuals, εri , follow a first

order autoregressive process, denoted AR(1), to account for possible short term correlation

between these estimates:

εri = ρrεri−1 + ari . (3.3)

Here, ari are independent and normally distributed random variables with mean 0 and con-

stant variance, σ2
ar . For AR(1) errors, E(εri ) = 0, Var(εri ) = σ2

ar

[
1

1−(ρr)2

]
and Cov(εri , ε

r
i+u) =

ρr|u|σ2
ar

[
1

1−(ρr)2

]
, u ε Z. Note that Montgomery et al. (2006) provides a thorough discussion

of inference for linear models in this context.

Confidence intervals for the fitted values are obtained through a parametric bootstrap-

based method. We construct (1−α)100% pointwise confidence intervals using the following

algorithm.

1. Let b index the replication. Set b to 1.

2. Simulate observations from a correlated normal distribution with parameters matching

that of the estimated parametric model. For the bth permutation, these observations

are denoted Xrb = (Xrb
1 , X

rb
2 , . . . , X

rb
n )/Y rb = (Y rb

1 , Y rb
2 , . . . , Y rb

n ) for the start/end of

the fire season.
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3. Using the simulated observations from step 2, refit the AR(1) linear regression model

(3.1)/(3.2).

4. Set b to b+ 1.

5. Repeat steps 2 to 4 a large number of times (e.g. b = 1, . . . , 1000) to obtain the

bootstrap distribution of the fitted values.

The (α/2)th and (1−α/2)th quantiles of the ECDF of the fitted values provide the desired

(1− α)100% bootstrap pointwise confidence intervals.

We test for significant trends in the start and end of the fire season via a Wald test

(Casella and Berger, 2002) and a permutation test (Davison and Hinkley, 2006). Regardless

of the estimation method, we test the null hypothesis H0 : βrX1 = 0 versus the one-sided

alternative H1 : βrX1 < 0 for trends in the start of the fire season. That is, the fire season

is starting significantly earlier over the span of our data. Testing whether the fire season

is ending later corresponds to H0 : βrY 1 = 0 versus H1 : βrY 1 > 0. The remainder of this

section explains these tests in detail.

Wald Test

If we let t0 denote the test statistic for the Wald test, then:

t0 =
β̂rX1 − 0
σβ̂r

X1

∼ tn−2 (3.4)

where β̂rX1 is the estimated slope in models for the start of the fire season and σβ̂r
X1

is its

standard error. The p-value can then be calculated as Pr(t > t0|βrX1 = 0). For trends in

the end of the fire season, we replace β̂rX1 with β̂rY 1 in (3.4) and the corresponding p-value

is Pr(t < t0|βrY 1 = 0). This test relies on asymptotic-based parametric inference and is

appealing because of its simplicity and computational ease.

Permutation Test

Throughout this project, we also make use of resampling methods for inference rather than

solely relying on maximum likelihood asymptotics. A class of such tests are permutation

tests. These are nonparametric resampling techniques used to numerically estimate the
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sampling distribution of a statistic under the null hypothesis. To test for significant trends

we employ the following permutation algorithm.

1. Fit (3.1)/(3.2) to the observed data to model the estimates of the start/end of the fire

season. From the AR(1) linear regression model, we obtain an estimate of the slope,

β̂rX1/β̂rY 1.

2. Let b index the replication. Set b to 1.

3. Randomly permute the responses from the model in step 1 and let Xrb = (Xrb
1 , X

rb
2 ,

. . . , Xrb
n )/Y rb = (Y rb

1 , Y rb
2 , . . . , Y rb

n ) denote the bth random permutation of the re-

sponse.

4. Refit (3.1)/(3.2) using the response vector from step 3. From the model, we obtain an

estimate of the slope, β̂rbX1/β̂rbY 1.

5. Set b to b+ 1.

6. Repeat steps 3 to 5 a large number of times (e.g. b = 1, . . . , 1000) to obtain an accurate

estimate of the sampling distribution of the estimated slope under the null hypothesis

of no trend.

Letting I represent the indicator function, the p-value for trends in the start of the fire

season is calculated as:

1
B

B∑
b=1

I
{
β̂rbX1 ≤ β̂rX1

}
and as:

1
B

B∑
b=1

I
{
β̂rbY 1 ≥ β̂rY 1

}
for trends in the end, where B represents the total number of permutations.
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3.2 Results

3.2.1 Analysis of Alberta Forest Fire Data

Figure 3.1 displays the empirical estimates of the start and end of the fire season when

using annual counts of fire days to define the length. Overlayed are the estimated trends in

the timing of the fire season with 95% boostrap-based confidence intervals of fitted values,

as discussed in Section 3.1. The magnitudes of these trends, including standard errors and

p-values from the significance tests are displayed in Table 3.1. The trend in the first annual

fire day is not significant because of its high variability. Meanwhile, those of the fifth and

tenth annual fire days are quite strong and both the Wald and permutation tests indicate

that they are significantly negative. For the end of the fire season, all trends are all highly

significant and quite close in magnitude, regardless of the threshold. Note that, in general,

trends based on the first and last fire day have wider confidence intervals than those at other

thresholds.

Analogous summaries estimated when using the first and last day a threshold in the

ECDF of fire days is crossed each year are visually presented in Figure 3.2 with correspond-

ing summary statistics in Table 3.2. Once again, the trend in the start of the fire season

constructed from the first day the ECDF exceeds the 1% threshold each year is not signif-

icant. Despite being relatively strong in magnitude, the associated standard error is quite

large. The trend estimate based on an annual crossing of a 5% ECDF threshold for the start

of the fire season is marginally significant, while at the 10% threshold is not significant. For

the analysis in the end of the fire season, all trends are highly significant, regardless of the

threshold employed. Trends in the first day the ECDF exceeds 1% each year and the last

day the ECDF fails to exceed 99% each year have relatively large standard errors.

Goodness of Fit

The goodness of fit for these regression models is examined using standard residual analysis

techniques. Figure 3.3 displays QQ plots of the residuals for each fitted model. Note that

these panels do not indicate any striking discrepancies, except for those of the first fire day

and the first day the ECDF of fire days exceeds 1%.
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(a) First fire day.
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(b) Last fire day.
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(c) Fifth fire day.
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(d) Fifth last fire day.
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(e) Tenth fire day.
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(f) Tenth last fire day.

Figure 3.1: Empirical estimates of the start (left column) and end (right column) of the fire
season for each year in Alberta (black points). Estimates are based on observed fire day
counts. Overlayed are the fitted values from the linear models of the annual start and end
of the fire season (solid red line), as appropriate, with 95% confidence intervals (dashed red
lines).
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Quantity Threshold Slope SE WT PT
Start 1 -0.273 0.359 0.226 0.226

5 -0.293 0.137 0.019 0.004
10 -0.311 0.133 0.012 0

End 1 0.818 0.202 <0.001 0
5 0.817 0.172 <0.001 0
10 0.798 0.163 <0.001 0

Table 3.1: Summary of trends, including the estimated slope and its standard error (SE),
along with p-values from the Wald (WT) and permutation (PT) significance tests when
using observed fire day counts to define the start and end of the fire season each year in
Alberta.
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(a) First day ECDF exceeds 1%.
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(b) Last day ECDF fails to exceed 99%.
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(c) First day ECDF exceed 5%.
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(d) Last day ECDF fails to exceed 95%.
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(e) First day ECDF exceeds 10%.
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(f) Last day ECDF fails to exceed 90%.

Figure 3.2: Empirical estimates of the start (left column) and end (right column) of the fire
season for each year in Alberta (black points). Estimates are based on the ECDF of fire
days. Overlayed are the fitted values from the linear models of the annual start and end of
the fire season (solid red line), as appropriate, with 95% confidence intervals (dashed red
lines).
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Quantity Threshold Slope SE WT PT
Start 1 -0.273 0.363 0.228 0.256

5 -0.200 0.120 0.052 0.048
10 -0.100 0.104 0.170 0.164

End 99 0.486 0.260 0.034 0.056
95 0.545 0.132 <0.001 0.002
90 0.586 0.142 <0.001 0

Table 3.2: Summary of trends, including the estimated slope and its standard error (SE),
along with p-values from the Wald (WT) and permutation (PT) significance tests when
using the ECDF of fire days to define the start and end of the fire season each year in
Alberta.
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(a) Residuals from the linear models of the observed fire day counts for the start and
end of the fire season.
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(b) Residuals from the linear models of the ECDF of fire days for the start and end of
the fire season.

Figure 3.3: Residual QQ plots from the linear models of the observed fire day counts (upper
panels) and the ECDF of fire days (lower panels) for the start and end of the fire season in
Alberta.
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3.2.2 Analysis of Ontario Forest Fire Data

Trends in the Ontario fire data, when defining the start of the fire season by the count of fire

days crossing a threshold each year, are displayed in Figure 3.4 and summarized in Table

3.3. No significance is found when defining the start of the fire season as the first, fifth, or

tenth fire day each year. Corresponding trends in the end of the fire season are marginally

significant when using the fifth last and tenth last annual fire day. The trend in the timing

of the last fire day each year is not significant.

We now turn our attention to estimating trends by defining the start of the fire season as

the crossing of 1%, 5%, and 10% thresholds in the ECDF of fire days and conversely for the

end. Consider Figure 3.5 and Table 3.4. As with the fire day counts discussed previously,

no significance is found in the start of the Ontario fire season. However, trends in the end of

the fire season are relatively strong when looking at the last day the ECDF of fire days fails

to exceed 95% and 90% annually; the p-values from both the Wald and permutation tests

are quite small. Trends based on the last day each year the ECDF fails to exceed 99% are

quite weak and neither the p-value from the Wald test nor the p-value from the permutation

test indicate significance.

Goodness of Fit

Once again, model goodness of fit is assessed via residual QQ plots. Figure 3.6 displays the

QQ plots separately for each model constructed. These panels only indicate discrepancies

at smaller thresholds.
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(a) First fire day.
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(b) Last fire day.
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(c) Fifth fire day.
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(d) Fifth last fire day.
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(e) Tenth fire day.
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(f) Tenth last fire day.

Figure 3.4: Empirical estimates of the start (left column) and end (right column) of the fire
season for each year in Ontario (black points). Estimates are based on observed fire day
counts. Overlayed are the fitted values from the linear models of the annual start and end
of the fire season (solid red line), as appropriate, with 95% confidence intervals (dashed red
lines).
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Quantity Threshold Slope SE WT PT
Start 1 0.043 0.266 0.563 0.522

5 0.030 0.149 0.578 0.610
10 0.107 0.154 0.755 0.774

End 1 0.174 0.159 0.141 0.154
5 0.294 0.171 0.046 0.062
10 0.285 0.170 0.051 0.060

Table 3.3: Summary of trends, including the estimated slope and its standard error (SE),
along with p-values from the Wald (WT) and permutation (PT) significance tests when
using observed fire day counts to define the start and end of the fire season each year in
Ontario.



CHAPTER 3. EMPIRICAL ESTIMATES OF FIRE SEASON LENGTH 30

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

1970 1980 1990 2000

0

50

100

150

200

year

da
y o

f y
ea

r

(a) First day ECDF exceeds 1%.
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(b) Last day ECDF fails to exceed 99%.
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(c) First day ECDF exceeds 5%.
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(d) Last day ECDF fails to exceed 95%.
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Figure 3.5: Empirical estimates of the start (left column) and end (right column) of the fire
season for each year in Ontario (black points). Estimates are based on the ECDF of fire
days. Overlayed are the fitted values from the linear models of the annual start and end of
the fire season (solid red line), as appropriate, with 95% confidence intervals (dashed red
lines).
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Quantity Threshold Slope SE WT PT
Start 1 0.091 0.268 0.632 0.580

5 0.058 0.130 0.670 0.680
10 0.181 0.126 0.921 0.910

End 99 -0.051 0.207 0.597 0.560
95 0.312 0.121 0.007 0.032
90 0.273 0.129 0.022 0.042

Table 3.4: Summary of trends, including the estimated slope and its standard error (SE),
along with p-values from the Wald (WT) and permutation (PT) significance tests when
using the ECDF of fire days to define the start and end of the fire season each year in
Ontario.
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(a) Residuals from the linear models of the observed fire day counts for the start and
end of the fire season.
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(b) Residuals from the linear models of the ECDF of fire days for the start and end of
the fire season.

Figure 3.6: Residual QQ plots from the linear models of the observed fire day counts (upper
panels) and the ECDF of fire days (lower panels) for the start and end of the fire season in
Ontario.



Chapter 4

Investigating Trends in

Nonparametric Estimates of Fire

Season Length

In this chapter, we focus on a two stage approach for estimating trends in the start and

end of the fire season. Section 4.1 outlines this method, detailing the models used along

with the significance tests employed. The results, when applied to the Alberta and Ontario

forest fire data sets, are the subject of Section 4.2, where trends are discussed and model

goodness of fit is assessed. Finally, in Section 4.3, comparisons are made between the trends

from our two stage nonparametric approach to those of the empirical estimates presented

in the previous chapter.

4.1 Nonparametric Approach to Estimating Trends in the

Start and End of the Fire Season

4.1.1 Stage 1: Estimating the Start and End of the Fire Season

From Chapter 1, recall the definition of a fire day as a day where one or more fires were

reported. Let Zt represent the fire day indicator:

Zt =

{
1, if day t is a fire day

0, otherwise.

33
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The time index is denoted t, where t = 1, . . . , T , with T being the number of observations in

our data set. In vector notation for year i, let ti = (t1+(i−1)365, t2+(i−1)365, . . . , t365+(i−1)365)

for i = 1, . . . , n. Then, t = (t1, t2, . . . , tn). If we let E(Zt|t) = pt, then pt represents the

probability of day t being a fire day. Estimates of pt are termed the estimated risk of a fire

day at time t. This probability is modelled using the following logistic GAM:

logit(pt) = β0 + f(t) (4.1)

with β0 begin an intercept parameter and f(t) being a thin plate regression spline. The

flexibility inherent in this basis function was required to adequately characterize the shape

of individual fire seasons as we expect there to be one mode within each season, dropping to

periods of nil risk between fire seasons. To visualize this, refer to Figure 4.1 for fitted values

and 95% confidence intervals from model 4.1 for the first three years of the Alberta fire

data. In this data set, t = 1 corresponds to January 1, 1961, while t = T is December 31,

2003, with T = 15, 695. For the Ontario data set, T = 15, 330 corresponding to forty-two

years of fire records. Note that this model can be extended to include other covariates, such

as fire-weather and climate indices. We return to this discussion in Chapter 5.

As mentioned previously, the fire season, in both Alberta and Ontario, officially runs

from April 1 - October 31 in terms of fire management operations. However, in order to

test for significant temporal trends we redefine the start and end of the fire season, allowing

these to change dynamically over years. Specifically, we define these quantities as the annual

crossing of a fixed risk threshold: the start of the fire season is the first day the estimated

risk of a fire day exceeds a predefined threshold, and the end of the fire season is defined as

the last day the estimated risk exceeds that threshold. Figure 4.2 illustrates this concept

using a 5% risk threshold for the 1965 subset of the estimated smoother for Alberta.

Figure 4.3 displays the estimated risk during 1965 in Alberta as well as 95% pointwise

confidence bands for such risks, shaded in gray. These confidence bands can be inverted and

used to identify two-sided confidence intervals for the start and end of the fire season by

finding all values of t for which we may not reject the hypothesis that the risk is 5%. The

confidence limits for the start of the fire season correspond to the first day the upper and

lower confidence bands in Figure 4.3 cross the threshold of 5%. For the end of the fire season,

the confidence interval corresponds to the last day the lower and upper confidence bands

exceed 5%. These confidence limits are highlighted by the red vertical lines in Figure 4.3. In
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general, such confidence intervals may consist of a union of disjoint intervals depending on

the form of the function, f(t). However, with the smoother employed in our context, they

consist of a single connected interval. We compute the standard error of the estimated start

and end of the fire season by dividing the width of the corresponding confidence interval

obtained through this inversion procedure by 2× 1.96, or 3.92, as would be appropriate for

confidence intervals derived from a normal distribution. The normality assumption permits

the use of linear models at the second stage of this analysis, discussed in Section 4.1.2.

These procedures employ likelihood-based parameter estimation and are therefore robust

to departures from the normality assumption (Montgomery et al., 2006). We also comment

that these confidence intervals are not guaranteed to be symmetric. However, as our results

show in Section 4.2, they are approximately symmetric, with those calculated at higher fire

day risk thresholds being closer to symmetric.
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Figure 4.1: Estimated fire day risk (black curve) and 95% confidence intervals (gray shaded
region) from the GAM for the first three years of Alberta fire data.
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Figure 4.2: Estimated fire day risk (black curve) from the GAM for the period of 1965 in
Alberta. Point estimates for the start and end of the fire season are identified (vertical red
lines) for a 5% fire day risk threshold (red horizontal line).
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Figure 4.3: Estimated fire day risk (black curve) from the GAM with 95% confidence in-
tervals (grey shaded region) for the period of 1965 in Alberta. Overlayed are the inverse
confidence intervals for the start and end of the fire season (red vertical lines) for a 5% fire
day risk threshold (red horizontal line).
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4.1.2 Stage 2: Quantifying Trends in the Start and End of the Fire Season

Using the notation defined in Chapter 3, let Xr
i and Y r

i denote the estimated start and

end of the fire season, defined by the rth threshold for year i, i = 1, . . . , n. Although a

threshold of 5% is used throughout the examples in this section, note that any threshold

can be employed in practice; we also consider thresholds of 1% and 10% for comparative

purposes in Section 4.2. In Section 4.1.1, we described methods for estimating Xr
i and Y r

i

for specific values of r and approximating their standard errors, denoted V −1/2
Xr

i
and V −1/2

Y r
i

.

In order to quantify trends, we model Xr
i and Y r

i using linear regression with the inverse of

their standard errors as known weights incorporated to handle the heteroscedasticity of the

response and an AR(1) error to account for possible short-term correlation in the behaviour

of fire risk from year to year. Let αrX1/α
r
Y 1 denote the trend parameter (slope) in such

models for the start/end of the fire season.

We contrast three different techniques to test for significant trends: a Wald test and

two different permutation techniques. As in Chapter 3, we are testing the null hypothesis

H0 : αrX1 = 0 versus the one-sided alternative H1 : αrX1 < 0 for trends in the start of the fire

season. For trends in the end of the fire season, we test H0 : αrY 1 = 0 versus H1 : αrY 1 > 0.

We omit a discussion of the Wald test from this section, as it was previously discussed in

Section 3.1. The remainder of this section details the two permutation test algorithms.

Stage 1 Block Permutation Test

The first permutation test block permutes the data, using years as blocks, and repeats the

full two stage analysis to develop a sampling distribution for the estimated slope. The

algorithm for this test follows.

1. Perform the full two stage analysis on the observed data (c.f. 4.1) to estimate the

start/end of the fire season each year and subsequently the trend in the start/end of

the fire season. We denote the slope estimate α̂rX1/α̂rY 1.

2. Let b index the replication. Set b to 1.

3. Randomly permute the fire day indicator, grouping together blocks of observations

within each year so that the order of the observations within each year remains un-

changed. Let ib index the resampled years, where ib = 1b, 2b, . . . , nb, a permuta-

tion of the vector 1, 2, . . . , n. The vector of fire day indicators then becomes Zb
t =
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(
Z1+(ib−1)365,Z2+(ib−1)365, . . . ,Z365+(ib−1)365

)
.

4. Model the permuted responses using (4.1). Then, use the approach described in Sec-

tion 4.1.1 to obtain point estimates and confidence intervals for the annual start/end

of the fire season based on the output from (4.1).

5. Fit a weighted AR(1) linear regression model (c.f. Section 4.1.2) to estimate the slope,

denoted α̂rbX1/α̂rbY 1.

6. Set b to b+ 1.

7. Repeat steps 3 to 6 a large number of times (e.g. b = 1, . . . , 1000) to obtain an accurate

estimate of the sampling distribution of the estimated slope under the null hypothesis

of no trend.

The p-value for trends in the start of the fire season is calculated as the proportion of

replications where α̂rpX1 is less than α̂rX1. Correspondingly, for the end of the fire season, the

p-value is the proportion of replications where α̂rpY 1 is greater than α̂rY 1.

Refitting the GAM during each replication is computationally intensive. We therefore

consider a second approach which permutes the data only at the second stage. It is likely

that Xr
i and Y r

i are primarily influenced by data within year i rather than the full data

series across years, as fire risk drops to zero at the end of each year. Therefore, this approach

is justified.

Stage 2 Permutation Test

The second permutation method offers computational simplicities, with resampling occur-

ring only at the second stage of the analysis, as described in the algorithm below.

1. Perform the full two stage analysis on the observed data (c.f. 4.1) to estimate the

start/end of the fire season each year and subsequently the trend in the start/end of

the fire season. We denote the slope estimate α̂rX1/α̂rY 1.

2. Let b index the replication. Set b to 1.

3. Randomly permute the response and weight pairs from the weighted AR(1) linear re-

gression model in step 1, letting Xrb = (Xrb
1 , X

rb
2 , . . . , X

rb
n )/Y rb = (Y rb

1 , Y rb
2 , . . . , Y rb

n )
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denote the bth permutation of the response vector and V −1/2
Xr = (V −1/2

Xr
1

, V
−1/2
Xr

2
, . . . ,

V
−1/2
Xr

n
)/V −1/2

Y r = (V −1/2
Y r
1

, V
−1/2
Y r
2

, . . . , V
−1/2
Y r

n
) denote the bth permutation of weight vec-

tor.

4. Fit a weighted AR(1) linear regression model (c.f. Section 4.1.2) to estimate the slope,

denoted α̂rbX1/α̂rbY 1.

5. Set b to b+ 1.

6. Repeat steps 3 to 5 a large number of times (e.g. b = 1, . . . , 1000) to obtain an accurate

estimate of the sampling distribution of the estimated slope under the null hypothesis

of no trend.

Again, the p-value for trends in the start of the fire season corresponds to the proportion of

replications where α̂rpX1 is less than α̂rX1. The proportion of replications where α̂rpY 1 is greater

than α̂rY 1 corresponds to the p-value for trends in the end of the fire season.

4.2 Results

4.2.1 Analysis of Alberta Forest Fire Data

Figure 4.4 summarizes the point estimates and inverse confidence intervals for the start and

end of the fire season using fire day risk thresholds of 1%, 5%, and 10%. Overlayed on these

panels are the fitted values from the linear models and 95% bootstrap-based confidence

intervals for the response (c.f. Section 3.1). Table 4.1 quantifies these trends, summarizing

the slopes from the linear models and their corresponding standard errors as well as p-

values from the tests for significant trends. Panels 4.4(a), 4.4(c), and 4.4(e) in Figure 4.4,

show strong, negative trends, suggesting that the fire season is starting earlier regardless

of the threshold used to define it. The steepest trend occurs when utilizing a threshold of

1%, where we estimate that the fire season is starting approximately 0.6 days earlier per

year. This corresponds to twenty-five days over the forty-three years of observed Alberta

data. At the 5% and 10% thresholds, Alberta’s fire season is estimated to start eighteen

and fifteen days earlier, respectively. The Wald and permutation tests indicate that these

trends are statistically significant. As well, there are only minor discrepancies between

the p-values from these three significance tests. Notice, from Table 4.1, that trends are
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more pronounced for the end of the fire season. Our models predict that Alberta’s fire

season is ending forty-one, thirty-five and thirty-three days later in 2003 than it was in

1961, at risk thresholds of 1%, 5%, and 10%, respectively. All estimated trends are highly

significant. Therefore, regardless of the threshold employed, our approach suggests that

there is a significant lengthening of the forest fire season in Alberta due significant negative

trends in the start of the fire season and positive trends for the end of the season.

Goodness of Fit

Goodness of fit for our two stage approach is conducted at both the first stage, on the

GAM, and the second stage, on the linear models. For the GAM, goodness of fit consists

of a comparison between the expected and the observed number of fire days, aggregated

by day of year and by year. These summaries are displayed in Figure 4.5 and show close

agreement between these two quantities. In particular, note how closely the expected and

observed number of fire days in Figure 4.5(b) agree; the GAM essentially interpolates the

annual total number of fire days across years. This result is expected, as a large number of

knots are required in order to ensure that the model is flexible enough to drop to a period of

nil risk between each fire season. We also note that, in addition to the correlated residuals

in the linear models, correlation is present between day to day observations in the logistic

GAM. However, this has not yet been incorporated into the model and we return to this

discussion in Chapter 5. Goodness of fit in the second stage linear models is again assessed

via residual QQ plots, shown in Figure 4.6. These diagnostics do not indicate any glaring

problems with model fit.
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(a) First day 1% threshold is exceeded.
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(b) Last day 1% threshold is exceeded.
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(c) First day 5% threshold is exceeded.
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(d) Last day 5% threshold is exceeded.
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(e) First day 10% threshold is exceeded.
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Figure 4.4: Estimates (black points) and confidence intervals (black lines) for the start (left
column) and end (right column) of the fire season in Alberta. Overlayed are the trends (red
solid line) and 95% confidence intervals for the trends (red dashed lines).
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Threshold Slope SE WT 1BPT 2PT
Start 1 -0.590 0.215 0.004 0.020 0

5 -0.413 0.135 0.002 0.002 0
10 -0.361 0.117 0.002 0 0

End 1 0.953 0.296 0.001 0 0
5 0.804 0.210 <0.001 0 0
10 0.767 0.189 <0.001 0 0

Table 4.1: Summary of trends, including the estimated slope and its standard error (SE),
along with p-values from the Wald (WT), stage 1 block permutation (1BPT) and stage
2 permutation (2PT) significance tests for trends in the start and end of the Alberta fire
season.
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(a) Number of fire days aggregated by day of year.
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Figure 4.5: Observed (black points) and expected (red solid lines) number of fire days
aggregated by day of year, and year from the GAM when applied to the Alberta fire data.
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Figure 4.6: Residual QQ plots from the linear models fit to the nonparametric estimates of
the start (top row) and end (bottom row) of the fire season in Alberta.
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4.2.2 Analysis of Ontario Forest Fire Data

Figure 4.7, displays the fitted values and 95% bootstrap-based confidence intervals from the

linear models. Again, these trends are overlayed on the point estimates and inverse confi-

dence intervals for the start or end of the fire season, as indicated. No overwhelming trends

are observed for the beginning of the fire season, as displayed in the right column of Figure

4.7. Table 4.2 summarizes the trends in the start of the fire season; the estimated slopes are

quite small in comparison to their standard errors. Additionally, the corresponding p-values

displayed in this table are large. Hence, there are no significant trends detected in the start

of the fire season from 1963-2004 in Ontario. Trends in the end of the fire season are also

displayed in Figure 4.7 and summarized in Table 4.2. The slope estimates are largest for

the 10% threshold. As well, it is only for this threshold that there is significant evidence

against the hypothesis of no trend. Marginal significance is detected for the 5% threshold.

The p-values in Table 4.2 decrease as the thresholds increase. Note that for the Ontario

data, there are inconsistencies between the results for the three significance tests, with the

Wald test being the most conservative. This is in contrast to the results for Alberta, where

trends in both the start and end of the fire season were quite strong, and the p-values from

all three tests closely agreed.

Goodness of Fit

Goodness of fit is again assessed for the Ontario GAM via a comparison of the observed and

expected number of fire days, and for the corresponding linear models through the use of

residual QQ plots. Figure 4.8 summarizes the goodness of fit results in the former model and

the residuals in the latter are displayed in Figure 4.9. The expected and observed number

of fire days, when aggregated by both day of year, and year show close agreement. The

residual QQ plots do not indicate any substantial problems with model fit.
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Figure 4.7: Estimates (black points) and confidence intervals (black lines) for the start (left
column) and end (right column) of the fire season in Ontario. Overlayed are the trends (red
solid line) and 95% confidence intervals for the trends (red dashed lines).
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Threshold Slope SE WT 1BPT 2PT
Start 1 0.119 0.257 0.676 0.766 0.760

5 0.110 0.192 0.716 0.764 0.782
10 0.098 0.174 0.712 0.726 0.76

End 1 0.199 0.300 0.255 0.172 0.212
5 0.262 0.231 0.255 0.078 0.104
10 0.289 0.210 0.089 0.050 0.06

Table 4.2: Summary of trends, including the estimated slope and its standard error (SE),
along with p-values from the Wald (WT), stage 1 block permutation (1BPT) and stage
2 permutation (2PT) significance tests for trends in the start and end of the Ontario fire
season.
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(a) Number of fire days aggregated by day of year.
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Figure 4.8: Observed (black points) and expected (red solid lines) number of fire days
aggregated by day of year, and year from the GAM when applied to the Ontario fire data.
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Figure 4.9: Residual QQ plots from the linear models fit to the nonparametric estimates of
the start (top row) and end (bottom row) of the fire season in Ontario.
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4.3 A Comparison of Trends from the Nonparametric and

Empirical Approaches

This section is devoted to contrasting the results from our three approaches for estimating

trends in the start and end of the forest fire season. Specifically, we focus on the magnitudes

of the trends. Recall that the three approaches to estimating fire season length were based

on the estimated fire day probabilities from the logistic GAM, the counts of fire days and

the ECDF of fire days within each year. In this section, we refer to the three fire season

estimation methods as the GAM approach, the count-based approach and the ECDF ap-

proach, respectively. Note that for all figures referenced in this section, “threshold” refers

to the percentage used to define the fire season length for the GAM and ECDF methods,

while for fire day counts refers to the fire day number. Also, in this discussion, we refer to

the last day the ECDF of fire days fails to exceed 99%, 95% and 90% as thresholds of one,

five and ten, respectively.

4.3.1 Analysis of Alberta Forest Fire Data

Figure 4.10 displays the trends from all three methods, summarized by threshold. Panel

4.10(a) displays the fitted values from the linear models based on all three approaches at

the first threshold. Trends based on the GAM are relatively strong in comparison to those

of the two empirical approaches. For thresholds of five and ten, summarized in 4.10(c) and

4.10(e), the magnitudes of these trends from the GAM and count-based methods are quite

similar, with weaker trends present in the ECDF of fire days. Panels 4.10(b), 4.10(d) and

4.10(f) compare fitted values from the models for the end of the fire season. From these

figures, the trends based on the GAM estimates and counts-based estimates of the end of

the fire season are approximately parallel, once again indicating that they are of roughly the

same strength. Meanwhile, those of the ECDF of fire days are relatively weak. Note that

trends based on counts of fire days and the ECDF of fire days are conservative estimates

of fire season length. That is, the start and end of the fire season based on the GAM is

estimated to be earlier and later during the year than the corresponding estimates from the

two empirical approaches.
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4.3.2 Analysis of Ontario Forest Fire Data

Similar patterns can be seen in Figure 4.11 for the Ontario forest fire data set. Panels

4.11(a), 4.11(c) and 4.11(e) display the estimated trends for the start of the fire season.

The magnitudes of the trends are similar in all panels. For thresholds of five and ten at

the end of the fire season, the strength of the estimated trends are quite similar. This is

indicated by the three lines being approximately parallel. However, in panel 4.11(b), trends

based on fire day risk from the GAM and counts of fire days are much stronger than that of

the ECDF of fire days. Again, the start and end of the fire season from our nonparametric

approach is estimated to be earlier and later in the year, respectively, when compared to

the two empirical approaches.
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(b) Threshold 1.
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(c) Threshold 5.
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(d) Threshold 5.
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(e) Threshold 10.

1960 1970 1980 1990 2000

220

240

260

280

300

year

da
y o

f y
ea

r

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

(f) Threshold 10.

Figure 4.10: A comparison of trends in the start (left column) and end (right column) of the
Alberta fire season when estimating its length from GAM estimates of fire day probabilities
(solid lines), observed fire day counts (points) and the ECDF of fire days (dashed lines).
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(a) Threshold 1.
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(b) Threshold 1.
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(c) Threshold 5.
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(d) Threshold 5.
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(e) Threshold 10.
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(f) Threshold 10.

Figure 4.11: A comparison of trends in the start (left column) and end (right column) of the
Ontario fire season when estimating its length from GAM estimates of fire day probabilities
(solid lines), observed fire day counts (points) and the ECDF of fire days (dashed lines).



Chapter 5

Discussion

In this project, we developed a two stage approach to quantify and test for trends in the

start and end of the fire season. A logistic GAM, using a thin plate regression spline basis,

estimated the daily probability of a fire day within and across years. The fire season was

defined as the crossing of a risk threshold within each year and inverse confidence intervals

were calculated for the point estimates of the start and end of the fire season. Linear models

were then fit to estimate trends, the significance of which were examined though the use

of a Wald test as well as two bootstrap-based resampling tests. We then contrasted these

trends to comparable empirical estimates of fire season length based on counts of and the

ECDF of fire days.

Emphasis throughout this project was on applications of this approach to historical

lightning-caused forest fire data from Alberta and Ontario, Canada. We noted significant

trends in both the start and end of Alberta’s fire season. The strongest trends were detected

when using the output of the GAM to estimate the length of the fire season, while the weakest

were those based on the ECDF of fire days. Meanwhile, no significant trends were found

in the start of the Ontario fire season, but marginal significance was observed in the end

of the fire season at the two highest thresholds. In contrast to Alberta, there were small

differences in the magnitudes of the trends from the three estimates of fire season length.

For both provinces, we noted stronger trends in the end of the fire season, in comparison

to the start. We postulate that this result is due to a lingering effect of dry sub-litter fuels

causing higher fire risk to last later into the fall.

Future work for this project includes incorporating spatial and temporal correlation

into our GAM. Day-to-day temporal correlation is present in the residuals, but not yet
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incorporated into the GAM. The addition of an AR(1) correlation structure to account for

this was investigated, but resulted in oversmoothed estimates of fire day risk. This is likely

due to the long runs of zeros between fire seasons leading to an inflated estimate of the

autocorrelation parameter. Additionally, large smoothing parameters resulted in unusually

low effective degrees of freedom. The presence of residual autocorrelation is known to result

in underestimated standard errors. This occurs because the model constructed here from n

observations assumes these are independent. However, when there is correlation present, the

effective number of observations is fewer than the actual number of observations. Ideally,

autocorrelation should be incorporated in the model to only account for correlation within

the fire season. Future work could investigate the use of a time-varying autocorrelation

component, which is currently not feasible using existing software. Spatial correlation should

also be incorporated. In this project, we examine trends at the provincial level. However,

both Alberta and Ontario can be partitioned into a set of sub-regions, where the area

within each sub-region can be considered approximately homogenous with respect to fuel,

weather and fire management strategy. Neighbouring regions may be correlated in terms

of their forest fire activity, with decreasing correlation proportional to the distance between

sub-regions.

Recall that this work is motivated by climate change. However, the trends discussed in

this project have not yet been directly linked to changes in climate variables. Covariates,

such as fire-weather indices should be considered. The inclusion of relevant teleconnections

as additional covariates, such as El-Niño Southern Oscillation, could also be incorporated.

Significant confounding factors, such as changes in detection efficiency, are also a concern.

A power study could be undertaken to allow for more objective comparisons between

trends in the fire season when using the output of a GAM, empirical estimates of fire days

and the ECDF of fire days to define the length of the fire season each year. This could be

conducted via simulation and could take into account factors such as the number of years

of fire records available for study and the strength of the trend.

Finally, constructing a model that incorporates counts of fires, rather than simply ab-

sence versus presence of a fire day, will likely result in more powerful tests for trends.

Additionally, it has the potential to reveal further information. For example, rather than

just investigating trends in the length of the fire season, we may be able to simultaneously

detect trends in the number of fires. Hence, investigating the use of a Poisson-based GAM

is of interest. Lightning caused fires occur in clusters, with the potential to ignite as many
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as fifty to one hundred fires in a day (Canadian Forest Service, 2011). Woolford and Braun

(2007) identified spatio-temporal centers of lightning activity and explored its relation to

fire ignitions. Therefore, there is a need to account for the clustering that arrises in the

data once counts are incorporated. As well, the data are zero-heavy and a mixture model

framework would likely be necessary to handle this overdispersion.
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