
LOCATION-AWARE MOBILE SOCIAL NETWORKING

FOR VIDEO SHARING

by

Li Ma

B.Eng, Zhejiang University, 2008

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c© Li Ma 2011

SIMON FRASER UNIVERSITY

Summer 2011

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.



APPROVAL

Name: Li Ma

Degree: Master of Science

Title of Thesis: Location-Aware Mobile Social Networking for Video Sharing

Examining Committee: Dr. Lou Hafer

Chair

Dr. Jiangchuan Liu, Senior Supervisor

Dr. Qianping Gu, Supervisor

Dr. Jie Liang, SFU Examiner

Date Approved:

ii

lib m-scan11
Typewritten Text
22 August 2011



 

Partial Copyright Licence 

  

 



Abstract

Location information improves the routing effectiveness and facilitates the development of

diverse novel applications in mobile networking. Although more people enjoy Internet and

multimedia via their cell phones, most of the services for online video sharing are still

restricted to traditional PC users. The existing systems of mobile video sharing have yet

to effectively explore mobility decently or address the energy and bandwidth limitations

of mobile devices. Furthermore, while such location information can lead to better user

experiences, given privacy concerns and hardware constraints, a mobile user often exposes a

limited number of locations only. We are thus interested in the Trajectory Exposure Problem

in this context, i.e., to what degree that the user’s trajectory (i.e., its route) is exposed?

Furthermore, can the user adaptively control the exposure of its trajectory and yet offer

useful information for location-based services?

In this thesis, we first propose MoViShare (Mobile Video Share), a universal video

sharing platform that will provide anytime anywhere video browsing and publishing services

for mobile devices. MoViShare targets to create and maintain location-aware mobile social

networks, and to apply video abstraction technique for saving bandwidth and energy. We

extend it with another project Scoop as the enhancement for professional uses.

We then explore Gaussian Process Regression, an effective tool to re-construct the trajec-

tory of the mobile user with selected exposed locations. We examine how the re-constructed

trajectory differs from the real trajectory, i.e., evaluating the exposure rate. We present an

effective heuristic that adaptively controls the trajectory exposure rate by carefully choos-

ing the exposed locations. We further demonstrate a practical routing protocol, MoRPTE,

which, controlled by a single parameter, utilizes location information flexibly and adaptively

in the spectrum from zero knowledge to full knowledge to fit the applications’ demands.
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Chapter 1

Introduction

With the great penetration of GPS and other tracking services (e.g., through WiFi or

cellular based stations), the geographical location is now readily available in numerous

mobile devices. Such information improves the routing effectiveness and facilitates the

development of diverse novel applications and social networks, making mobile users better

interact with their ambient environment [47][40]. Many of their properties and issues have

been analyzed through both theoretical and experimental studies; however, one aspect yet

to be fully explored is the trajectory exposure and recovery of mobile users.

1.1 Location-aware Mobile Social Networks for Multimedia

Sharing

Recent seven years have witnessed an explosion of networked video sharing, e.g., YouTube

[14], as a new killer Internet application. Their great achievements lie in the combination

of the content-rich videos and, equally or even more importantly, the establishment of

social networks. The videos are no longer stand-alone units but are hyper-linked to each

other based on their owners’ social relationships, which has greatly motivated individuals’

participation. It is interesting to point out that the clients of video sharing sites and that of

advanced mobile devices are largely overlapped, with a majority of them belonging to the

young generation. Unfortunately, most of the video sharing services are generally customized

to traditional Internet users, even though more and more mobile devices are multimedia-

ready. According to a recent report from Veeker Ltd. [13], only about 50 percent of U.S.

1



CHAPTER 1. INTRODUCTION 2

mobile phone subscribers with built-in cameras actually snap photos, not to mention videos.

Only recently have we seen preliminary attempts that explore mobile video sharing, e.g., by

YouTube, Veeker, and iTouch [5].

Comparing to PCs, mobile devices have weaker processors and smaller screen sizes.

Most of them are also suffered from battery-energy limitations. Wireless mobile networks

have much narrower bandwidth as compared to the broad-band Internet. Therefore, simply

launching a mirror of the wired video sharing site and opening existing sources to mobile

users can hardly offer satisfying services quality.

Mobile-specific social networks like airG [1] and MocoSpace [8] have started attracting

clients worldwide. These mobile social networking services emphasize the activities people

tend to do on their mobile devices, such as locating friends via GPS, and using camera

phones and cellular data networks to get data. Unfortunately, these systems have so far

focused on mobile-based communications or simple user-based social networks. Most of

them have very limited location-wise considerations when building the social networks, not

to mention combining them with video sharing.

To fill the gaps, we design and implement MoViShare (Mobile Video Share), a universal

video sharing platform that accommodates mobile accesses. MoViShare is targeting a seam-

less combination of social networking and multimedia sharing for wireless mobile clients. It

creates and maintains location-aware social networks among the clients. It will explore their

mobility by effectively utilizing the location information and activating context-sensitive

location-aware video browsing and sharing. The incorporation of mobile clients also en-

riches the traditional video sharing sites, given that the video contents can now be captured

and published anywhere anytime. In addition, to address the issue of bandwidth and energy

limitations of the mobile devices, MoViShare generates a video abstraction for every video

stream. The abstractions, containing a series of key frames, are representative and intuitive,

yet their lengths are only 1% to 5% of the original video clips. In mobile environment, these

unique features will greatly benefit clients when using MoViShare system [42].

Furthermore, in order to meet the increasing requirements of technical professional uses,

we design and implement a system called Scoop, a fast, simple and mobile social commu-

nication platform for creating comments, and tracking issues, problems and pursuits as an

enhancement of workforce.



CHAPTER 1. INTRODUCTION 3

1.2 Trajectory Exposure Problem

While these new location-aware applications and routing designs can lead to better user

experience, the exposure of personal location nevertheless involves privacy concerns as well.

The concern is particularly severe given that the broadcast nature of a wireless channel.

Recent survey [7] shows that 22% of the adult users use location based services at least

once a week. However, there’re still around 78% simply disable the location services in their

iPhone devices or yet do not use such services often, based on privacy and other concerns.

In some more critical cases, for example battle fields, exposed location would even lead to

disastrous consequences [39].

Fortunately, most of the common people do not have such a stringent requirements as in

battle fields. To benefit the improved performance and convenience, they often do not mind

a few location points to be divulged, as long as the their visited locations are not always

exposed. In other words, the exposed data should not enable an accurate re-construction of

the whole route. This is also true for commercial organizations where the daily routes are

strategically valuable data, e.g., for Taxi companies. We have used the taxi location data

from a major vendor in the city of Beijing in the performance evaluation of our work. The

companies do not mind exposing some location information to improve service or vehicle-to-

vehicle communications. Yet they do not expect the daily route of their taxis to be exposed,

which would greatly benefit their competitor’s strategic plans. In fact, most of their taxi

drivers are not comfortable if their daily routes are fully exposed, either.

Besides privacy, other concerns might involve the consideration of battery energy and

the low sample rates that GPS can provide. Thus a user cannot expose all its locations

continuously in location-based services and routings. Both location-oblivious and location-

based services have been extensively studied in the literature. Yet services in between these

two extremes have been largely unexplored. Considering the above concerns, we thus ask

the following two critical questions:

If a mobile user exposes a limited number of locations only, what is the exposure rate of

its trajectory (i.e., its route) ?

How can we adaptively control the exposure of a mobile user’s trajectory (i.e., its route)

and yet offer useful information for location-based services?

In this thesis, we explore Gaussian Process Regression, an effective tool to re-construct

the trajectory of the mobile user with selected exposed locations. We examine how the
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re-constructed trajectory differs from the real trajectory, i.e., evaluating the exposure rate.

We present an effective heuristic that adaptively controls the trajectory exposure rate by

carefully choosing the exposed locations. In state-of-the-art location-based routings, the lo-

cation information is periodically updated and not real-time. We substitute it with predicted

location which performs better than historical advertised location. We further demonstrate

a practical routing protocol, MoRPTE, which, controlled by a single parameter, utilizes

location information flexibly and adaptively in the spectrum from zero knowledge to full

knowledge to fit the applications’ demands. Our performance evaluation based on both

the real Beijing Taxi data and synthetic data demonstrate the flexibility and efficiency of

our solution. It also facilitates the understanding of the fundamental utility and impact of

location information exposed at various degrees.

1.3 Organization of the Work

We introduce some background and related works to ours in Chapter 2, and then go into

some details about the location-aware mobile network projects MoViShare and Scoop in

Chapter 3. After studying our mobile sharing platforms, we then raise the trajectory expo-

sure problem in Chapter 4, presenting our motivation and introduce our proposed method

of evaluating and the adaptive control of exposure rates. We further demonstrate a prac-

tical routing protocol, MoRPTE, in Chapter 5, followed by the performance evaluation in

Chapter 6 and eventually the conclusion in Chapter 7.



Chapter 2

Background and Related Works

Though there have been many recent research projects investigating specifically the content

sharing in mobile social networks, most have focused on the mobile-based communications

or simple user-based social networks. Such data transmissions require advanced routing

mechanisms specified for mobile devices, in which users’ geographical locations might be

exposed and trajectory reconstructed. In this chapter we will present some background and

related works in such areas.

2.1 Mobile Video Sharing and Mobile Social Networking

2.1.1 Mobile Video Sharing

In May 2006, YouTube started a service that allows users to upload homemade clips via their

mobile phones or PDAs [16]. Later in same year YouTube Mobile site (http://m.youtube.com)

has been launched to open its video repository to cell phone users. In the early stage there

are only very small amount of video clips with special format can be watched via cell phone.

In recent two years, YouTube collaborated with giants of the industry such as Nokia, Veri-

zon, Apple, Vodafone, and extended the mobile video service to 16 other countries outside

USA and 10 other languages than English [15]. For example, during the collaboration with

Apple Inc., they offered a feature in Apple’s products, iTouch and iPhone, that allows user

to browse YouTube website through a single click on one icon.

Unfortunately there are still several fundamental issues to be addressed. The perfor-

mance can be compromised due to the restricted hardware conditions of mobile devices.

5
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Comparing to PCs, mobile devices have weaker processors and smaller screen sizes. Most

cell phones are also suffered from power limitations when watching videos. Comparing to

wired network, mobile phone network has averagely narrower bandwidth in terms of Inter-

net data transferring. Therefore, simply launching a mirror of the original video sharing

site and opening all sources to mobile users may not give satisfying services as expected.

Mobile users may face difficulties to find a wanted video, or experience long buffering time

and lagging performance when playing back. We believe that more efforts need to be made

to overcome the above obstacles in mobile video sharing business.

2.1.2 Mobile Social Networking

There has been several mobile-specific social networks like AirG, MocoSpace and Nokia’s

Ovi attracting clients worldwide in recent several years. AirG’s mobile community [2] has

more than 20 million unique users worldwide and is interconnected to more than 100 mobile

operators in over 40 countries. AirG’s mobile community solutions are proven to increase

customer affinity and brand recognition for leading mobile operators and media companies

globally. MocoSpace is a social network specifically designed for use on a mobile device

[9]. The features of the site are similar to other social networking sites including mobile

chatting, instant messaging, photo and video sharing, as well as forums. MocoSpace is the

largest mobile social network in the U.S. with over 6 million registered users and over one

billion monthly page-views. Nokia’s Ovi is marketing as ”personal dashboard” where users

can share photos with friends, buy music and access third-party services [10]. It has some

significance in that Nokia is moving deeper into the world of Internet services. So far, Ovi

has successfully pitched to European operators [33].

To catch up the trend, traditional Internet social network providers poured money into

mobile services as well. Facebook Mobile, Yahoo! Mobile and MySpace Mobile are the most

successful cases in this category. Google also launched a new service called ”Latitude” which

allowed mobile users to see where friends were and what they were up to. Taking advantages

of their existing gigantic social networks, various web2.0 services and rich contents, they got

double results with half efforts.

These mobile social networking services emphasize the activities people tend to do on

their phones, such as chatting, instant messaging, friends locating, and multimedia source

sharing. Those features create groups for consumers, and a new profit center for carriers.

eMarketer forecasts that over 800 million people worldwide will be participating in a social
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network via their mobile phones by 2012, up from 82 million in 2007 [3].

2.2 Two Extremes in Routing Trends

2.2.1 Location-oblivious Routing

Traditional wireless routing protocols seldom utilize nodes’ geographical information. Com-

paring with position based routings, they can be categorized into topology based routings.

There are several sub-categories, while they can be further divided into proactive, reactive

and hybrid approaches; and some of them specifically can be categorized as flow-oriented or

power-aware approach, and etc.

For instance, wireless routing protocol WRP uses an enhanced version of the distance-

vector routing protocol. It maintains an up-to-date view of the whole network. The com-

plexity of maintenance of table updating requires nodes’ large memory and great processing

power. Suffering from scalability and mobility, it is not suitable for highly dynamic net-

works. Other similar protocols such as DSDV, Virtual Ring [24], TBRPF [23], OLSR [29],

are proactive routings, or data driven routings which maintain lists of destination and routes

by periodically updating routing tables. They keep records of available paths both currently

used and not used. The disadvantages of such protocols are about maintenance and failures

or reconstructions, especially when the topology changes frequently.

Other protocols, like SENCAST [20] which perform reactive routings figure out a route

on demand by flooding the requesting packets. Then, like Virtual Ring [24], DSR [27] and

Reclaim Caching [49], they maintain only routes that are currently in use. However, without

location information, the main disadvantage is high latency in routes finding.

Location-oblivious routings do not suffer from privacy issues, but they miss the oppor-

tunity of taking advantage of location information and thus to decrease the routes finding

latency or the data for maintenance, which can significantly accelerate data transmissions

due to the high speed and low latency requirements nowadays.

2.2.2 Location-based Routing

Another trend in an extremely opposite way is geographical routing. This type of protocols

acknowledges the influence of geographical distances as significant to network performance.
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They fully utilize location information and distribution of nodes in the networks, such as Self-

adaptive Ondemand Geographic Routing (SOGR) [47], Simple Forwarding over Trajectory

(SiFT) [25], Partial Unit Delaunay Triangulation (PUDT) [40] , and [46]. They have been

proposed to cope with the highly dynamic networks. Taking advantages of mobile devices’

physical position information, routing efficiency has increased significantly.

Many routing protocols use greedy forwarding, like Most Forward with R (MFR) which

always tries to deliver to the neighbor who is closest to destination. Compass Routing [37]

establishes a straight line between sender and destination first, and select the neighbor clos-

est to the line, which tries to minimize the spatial distance for a packet to be transmitted.

Also, random selection for the next hop is also doable to minimize the accuracy geographi-

cal information required. Combined-Greedy-Face [50] also provide recovery approaches for

greedy routing failure, based on planar graph traversal.

These routing protocols, in the spectrum with full knowledge of nodes geographical infor-

mation, however have to deal with privacy issues. Privacy information abuse might lead to

disasters, meanwhile various people might have personal demanding of privacy regarding to

their own situation. Therefore, traditional routing which fully utilizing location information

lacks of scalability and dynamics.

2.3 Privacy-aware Location Based Service (LBS) and Rout-

ing

In security fields, similar problems have been issued as privacy in Location Based Service

(LBS) [45]. A simple way of defining LBS is a certain service which is provided to the users

based on their own locations, such as location based traffic reports and location based store

finder, and etc. Solutions such as Cloaking [48] and K-anonymity, have been proposed, in

which the real location is hided by providing misleading information or non-sense data for

those who overhear. They usually require a centralized server as trusted proxy to gather

information, handle all calculations and the deliveries for cloaking nodes’ identities and

encrypting data.

There are also privacy-aware wireless routings proposed. PPBR [51] tries to avoid peri-

odically broadcasting nodes’ positions to neighbors without protection, by taking dynamic

pseudo ID in advertising the nodes’ positions. [22] proposed a method which is practical

to identify an optimal k-anonymization of real census data when the optimal one cannot
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be found in time, as stated in [41]. NWA [17] proposed a revised K-anonymity method for

trajectory privacy, by defining a cylinder which contains k moving objects. [32] utilized two

K-anonymity techniques to protect privacy through the whole time of LBS service.

However, these approaches mostly focus on encryption and anonymity, but not for ben-

efiting routings at the same time. And they can not dynamically accommodate diverse

requirements of privacy by different people’s demands.

2.4 Prediction and Modeling of Object movements

A variety of methods have been proposed to deal with the prediction and modeling of

objects movements. Parametric approach can restrict the class of function by, for instance,

polynomials. For example, to let y = w0x
0 +w1x

1 + ...+wnx
n. However, it will be difficult

in determining the parameters in order to be more suitable fitting the pattern. There are

also user mobility models proposed, such as [30][41] [36]. It is also suggested in [31] that

each user regularly visits a list of hubs with probability, or can be predicted on a map-based

basis. However, such schemes rely on knowledge of maps and user profiles which might

not be always available. Studies [34][21] revealed that Multi-layer Neural Network and

Gaussian Process Regression are the best. However, the disadvantages of Neural Network

will be stated in Chapter 6.

However, our focus is more on generally utilizing location information while preserving

trajectory exposure dynamically. After comparing different methods among each other, we

take Gaussian Process Regression as an example in our scenario to reconstruct trajectories

given incomplete location information.



Chapter 3

Building Location-Aware Mobile

Social Networks for Media Sharing

Given the fact that although a large population of video sharing clients and that of advanced

mobile devices are overlapped, unfortunately, most of the video sharing services are still

restricted to traditional Internet users, even though more and more mobile devices are

multimedia-ready.

In order to provide a universal video sharing platform that accommodates mobile ac-

cesses, and to study its properties and related issues, we designed and implemented Mo-

ViShare, a location-aware mobile social network for multimedia sharing. This work, con-

ducted by me and another student Zonggao Jia, was supported by a Nokia University Re-

lation Initiative Grant. And the first stage of our prototype was successfully demonstrated

in conference ACM MobiCom 2009 [42].

Later on, another project Scoop was conducted as an enhancement which offers efficient

and simple access for professional mobile uses. This project was supported by a NSERC

ENGAGE grant, with the collaboration of local company Trusterra.

3.1 Problem Statements

All current existing mobile video sharing systems have not fully utilized the biggest advan-

tage of the mobile devices - the mobility. While nowadays any multimedia-ready cell phone

10
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can take pictures or capture videos anytime anywhere, thus the users intuitively would ex-

pect to share their information or data with others instantly. Instead of simply gathering

video clips and streaming them to cell phones, it is better to develop a network that tar-

gets on building and maintaining a mobility aware social network among massive end users

by effectively utilizing the location information. Therefore the users can instantly retrieve

nearby photos and videos, make new friends during trips, and share live experiences with

old friends. This kind of services is still lack at present.

Besides mobility issue, another problem is that the cell phones have limited battery

power and restricted network bandwidth. These problems must be addressed because they

will affect the overall usability of the whole system. To search for a video, no one is willing

to spend a lot of time on waiting for loading a page with searching results. Also it is not

reasonable to ask the users to watch all the candidate video clips in order to find the one

they are looking for, because it is quite time and energy consuming to stream a video clip

through cell phone [42].

Therefore, to fill the gaps, we developed a location-aware mobile social network named

MoVishare that accommodates mobility issue; and came up with the solution of giving

video abstraction of the available video clips. So that users can browse quickly and have a

look at the abstraction first, then they can decide whether to watch the whole video or not

[33]. Furthermore, we also developed Scoop platform as an enhancement for professional

communications and sharings.

3.2 MoViShare Hights

3.2.1 Location-Aware Social Network

MoViShare will create and maintain location-aware social networks among mobile clients, as

shown in Figure 3.1. Specifically, it enables context-sensitive location-aware video browsing

and sharing. A client can search for videos based on their current positions or expected

locations. Diverse social networking features can also be easily enabled in framework, such

as locating a friend, share live experiences with existing friends, communicating with others

in the same event or party, advertising visualized location information to others, and etc.

This kind of services are unique in the mobile environment, and will conveniently facilitate

clients to interact with their environment and other users.
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Figure 3.1: Location aware Social Network

3.2.2 Video Abstraction

Limited battery power and restricted network bandwidth remain challenges in wireless mo-

bile networks. Thus it is not reasonable for a mobile client to download and then browse all

the video clips (or even the initial parts) in order to find the right one.

MoViShare addresses the challenges through video abstraction. By displaying a series

of key frames, it facilitates a user to immediately obtain a global impression of the whole

video, such as the mainly content, place of taken, and protagonists of the video. Figure 3.2

displays a sample video abstraction, in which we can easily figure out the main content. The

length of abstraction files are normally only 1% to 5% of original video clips. Therefore,

fast browsing and searching features on mobile devices can be activated. With additional

information provided by the system, such as the length, view times, rating and comments, a

user can make a well-informed decision of whether to watch the whole video. Moreover, the

video abstractions can be used by the notification system to promote video clips to selected

user groups via emails or MMS messages.

There are two optional running modes for video abstraction process, at the phone and at

the server. The task can be done by mobile devices themselves before uploading the videos.
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Figure 3.2: An example of video abstraction

In such way there are no extra server workloads required and users have more control of

the abstraction. However, there are still some problems we cannot afford to overlook in

implementing this mode, such as issues with processor, memory, storage and file format, etc

[42].

It is almost impossible to implement a universal application which works for all modern

mobile devices. And further more, cell phones usually have no processors powerful enough

to run even the simplest video abstraction algorithms. Therefore we choose to implement a

centralized service for making video summaries. Such service is running at the back-end on

server all the time. Once a new video is uploaded, the process is triggered to extract salient

images from the source.Thus the workload on mobile devices is minimized.
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3.3 MoViShare Design and Implementation

The ultimate goal of our MoViShare system is to provide a universal video sharing platform

that accommodates mobile accesses. As the first stage, we target a basic prototype system

demonstrating the MoViShare fundamental concepts and ideas based on Nokia’s hardware

and software development environments. Via Wi-Fi access available in most new Nokia

mobile device models, the prototype allows users to build connections with other mobile

users and share videos. Basic functions of location-aware sharing and video abstracting will

be demonstrated as well.

3.3.1 System Design

Our MoViShare system consists of four major modules.

Communication Module

This is a core module which supports all the communications between the clients and the

server. It manipulates clients requests, translates them, and then sends them to the server.

It is also responsible for all the instructions given by clients and the feedbacks from the

server. All other modules are constructed based on this module.

Social Networking Module

This module serves the social networking functionality, playing an important role in creating

and maintaining the mobile social networks among the users and their friends. It provides

key social network functionalities, such as commenting and rating, etc. Enhanced services

can be provided through cooperation with the location management module.

Video Processing Module

This module facilitates real-time video streaming over wireless channels. While streaming

has been realized in current mobile platforms, our module will generate abstractions from

large video files for users to digest. Working with the location management module, location-

aware video displaying, browsing, and searching will be implemented as well.

MoViShare will also explore video popularity and correlations derived from social net-

works. Our experience with YouTube videos has shown that there are strong clustering



CHAPTER 3. BUILDING LOCATION-AWARE MOBILE SOCIAL NETWORKS 15

behaviors among videos and users, thanks to social networks [26]. This offers great poten-

tials for effective caching and pre-fetching of videos of interest.

Location Management Module

The location management module keeps track of the client location (through GPS or Wi-Fi

access point’s information). More importantly, it will work together with the social network

and the video processing modules to promote location-aware medias to selected groups of

users.

Figure 3.3 briefly shows the location-aware video display interface, which is directly

presented on a map. Other interfaces including client side main interface, uploading video

interface, video browsing and searching interface can be seen in our reference website.

Figure 3.3: MoViShare interface with visualized location information

Users upload the media files to the system. Meanwhile, working with the integrated
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GPS hardware, the location information will be uploaded as well. Therefore people can see

where other users are, how far they are away from, or even a visualized location information

by pictures or videos, together with other contextual information. Thus, they can further

reveal nearby friends, places of interests. Also, real-time social activities can be deployed,

which remain cumbersome in traditional social networking [42].

3.3.2 Prototype Implementation

Supported by Nokia, we have successfully built a MoViShare prototype on the N96 smart-

phones with the Nokia Symbian S60 development platform.

We applied the S60 Web Runtime technique [11] on the client side. The Web Runtime

(WRT) extends the web browser for S60 to enable widgets and offers an optimized web

experience that a user can access with a single click. On the server side, we adopt the

Microsoft .Net 2.0 as the framework, using Helix server [4] to provide video streaming

service. The WAP sites offer video uploading, searching and other functions to end users.

We also integrated other web developing technologies such as Javascript, Google Map API

to make the interface more friendly and intuitive. As such, the MoViShare can display

videos directly on a map with small icons showing exact locations dynamically.

The MoViShare video processing is based on MPEG-4 standard, in which the data of

information is stored in a nested box structure [6]. The Video Abstraction implementation

works on several specific boxes. The Sample Table Box (“stbl”) contains all the time and

data indexing of the media samples (frames) in a track. One of its child boxes, the Sync

Sample Box (“stss”), provides the set of the sequence numbers of all the random access

points (i.e. I-Frames) within the stream. After getting the sequence numbers of a portion

of I-Frames, we retrieve the corresponding chunks in Chunk Offset Box (“stco”) and the

size from the Sample Size Box (“sts”). This way the consumed memory and the processing

time are both minimized. Considering that most of the videos captured by mobile phones

are short and with a single scene only, it might not be necessary to apply shot-, cluster- or

feature-based algorithms that cost much more processing time and energy [38] [43]. Yet we

have started testing these advanced algorithms in our implementation as well [42].

We then covert the MPEG-4 frames to a single GIF file that is suitable for displaying

in web interfaces or multimedia short messages, as shown in Figure 3.4.
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Figure 3.4: Snapshot of demonstration

3.4 Scoop Enhancements

Another project called Scoop was conducted with the collaboration of Trusterra [12]. While

MoViShare targets the market of mobile social network for multimedia sharing for gen-

eral uses, Scoop furthermore tries to get professional people focused on issues and pursuits

that really matter. The global workforce is increasingly a mobile one, and it is predicted

that by 2013, 35% of this workforce will consist of mobile knowledge professionals. An

increasing number of organizations are adopting, even encouraging tele-commuting to at-

tract employees striving for work-life balance. Lots of companies have tried to reduce the

need to travel for financial and environmental reasons, while also many senior experts are

typically located remotely from operational centers but desire to remain accessible and con-

tribute. Since nowadays the mobile devices are capable of being connected to each other

and multimedia ready, it is innovative to enable efficient communication, tele-presence and
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issue-focused collaborations.

Technical professionals are increasingly distributed and mobile. Thus they often need to

collaborate across locations, company boundaries and time zones. Those companies’ time is

in high demand and they need to get maximum value from remote experts. But the old ways

and tools does not measure up and instead have the experts run in circles with unproductive

meetings, excessive travel, poorly described issues and complex user interfaces. Scoop then

offers a fresh yet visual, mobile and simple approach that is in the needs of modern technical

teams.

Scoop allows distributed or remote users to rapidly create issue-specific online workspaces

from web and smart phone devices. Such embedded multimedia features allow users to

utilize voice, pictures and video to clearly describe and document the topic at hand directly

from the field. The users are capable of forming dynamic teams around each workspace

and access the multimedia communication facilities to expand and discuss the topic at hand

more efficiently than ever possible before [12].

3.4.1 Scoop Design and Implementation

Scoop enables a collaboration experience featuring the clarity and immediacy of an in-person

or on-site meeting but without the need to coordinate same-time meetings or site visits and

without the financial, environmental and personal burdens of field travel. It reduces the need

to type with natural audio visual communications, and maximizes the value from remote

experts, while cutting down unnecessary field costs.

The Scoop platform mainly consists of four parts.

Document and Description

Scoop leverages multimedia to describe issues and leads quickly and accurately at the source.

In the system, each issue, or problem, is called a ”scoop”. The following Figure 3.5 shows the

dashboard interface of Scoop, with the list showing all existing ”scoops” that have already

been assigned/shared with the current user. Figure 3.6 is the overview of a ”scoop” showing

all the detailed related information.

A user can create a ”scoop” for the issue at hand from his mobile device. This works

as a container keeping all relevant media and conversations together. There are a number

of ways to describe a scoop. One or more media may be appropriate depending on each
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Figure 3.5: Scoop dashboard interface Figure 3.6: A Scoop Details



CHAPTER 3. BUILDING LOCATION-AWARE MOBILE SOCIAL NETWORKS 20

Figure 3.7: create a new scoop Figure 3.8: pictures of one scoop

specific scenario, as shown in Figure 3.7. For example, a user can capture and add media

then explain the details with voice or text captions and comments. Thus it minimizes

the need of typing in the fields. Figure 3.8 shows an example of all pictures related to a

”shopping scoop”.

Teaming and Sharing

The system offers a way to rapidly form a micro-team for given issue. Therefore, the

companies can minimize distraction to the rest of the whole team while getting the best

suitable people focused on given issue. The following Figure 3.9 and Figure 3.10 are the

screenshots of sharing module. An issue creator can add invitees to his scoop from contacts
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Figure 3.9: Sharing list of a scoop Figure 3.10: quick manipulations on invitees

or simply type in their email addresses, and can let his invitees invite others, while controlling

different levels of access by assigning different team roles.

Discussion and Resolution

With network connected mobile devices, a user can comment on specific details using text or

voice, and get notified of the latest updates for each issue, which increases the communication

speed and accuracy. The following Figure 3.11 shows the always up-to-dated comments list

about the issues available to the current user. Comments, or a simple like/unlike attitude

can also be made on pictures, videos and voice clips, which is shown in Figure 3.12.
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Figure 3.11: Sharing list of a scoop Figure 3.12: quick manipulations on invitees
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Synchronization and Contribution

With the synchronization module, a user can access the latest data at his office or on the

road. It is convenient to turn the mobile device into a mobile command center, by utilizing

continuous 2-way synchronization.



Chapter 4

Trajectory Reconstruction and

Evaluation

After explored and studied location-aware mobile social networks with two systems Mo-

ViShare and Scoop built, we found a series of properties of mobile network and issues it

might be facing. One important problem of such mobile networks is the trajectory exposure

problem.

4.1 Motivation

We now discuss the motivation toward the Trajectory Exposure Problem in mobile routing in

more details. Clearly, if a mobile user exposes every location it visits, the whole trajectory of

its route can be accurately reconstructed. On the other hand, if no any location is exposed,

then the trajectory is basically hidden as well. While existing systems implements one or the

other, between the two extremes, the mobile user indeed may expose some of the locations

only. Besides the obvious privacy concerns, users might have different concerns. Considering

the limited battery energy, the user (or even the mobile devices itself) might not always turn

on GPS devices. Even when the GPS is turned on, depending on its implementation, the

location update rate is often low. The first ”real-time” tracking device New WorldTracker

GPS can only update every 15 seconds.

Fig. 4.1 provides an example where three locations along a route are exposed by the

24
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mobile user. Given these incomplete location samples, an adversary can predict the trajec-

tory of the user. With limited location samples, the predicted trajectory clearly will deviate

from the real one. More importantly, the deviation largely depends on the quality of the

exposed location samples, while not necessary their amount, as illustrated in Fig. 4.1.

What we are interested in this thesis, as motivated by the above example, is to under-

stand the basic relations between the location exposure and the trajectory exposure. More

explicitly, how can we evaluate the prediction deviations and how can the locations to be

exposed be selected so that the risk of trajectory exposure be minimized? Beyond this, we

look further into a practical protocol design that can utilize the location information flexi-

bly and adaptively. With a single control parameter (the exposure rate of a trajectory), the

protocol will work in the whole spectrum from zero location knowledge to full knowledge,

so as to fit diverse applications’ demands.

(a) (b) (c)

Figure 4.1: Different trajectory predictions

4.2 Trajectory Reconstruction and Evaluation

In this thesis, we will focus on the trajectory prediction with Gaussian Process Regression

(GPR) [44]. The Gaussian Progress Regression has been widely used in different fields. For

trajectory prediction, it incurs much lower overhead and yet achieves excellent accuracy

as compared with other state-of-the-art tools e.g., multi-layer neural networks [19]. Our

solution framework for the trajectory exposure problem however are generally applicable

with other prediction tools, and we will also compare with other classical tools in later

chapters.

We now briefly review GPR; more details can be found at [44]. We will also derive the

trajectory exposure rate under the GPR model in this chapter. Before reviewing, we first

give some notations helpful for understanding, in the following Table 4.1.
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Table 4.1: Term Notations

x random variable

f(x) target value of variable x

f∗(x) predicted target value of variable x

vector of sampled data sets, and
f f = [f1, ..., fn] on sampled data set X

f∗ vector for target value of the estimate data set

mean function of random variable distribution,
m(x) often considered as 0

k(x, x′) general form of covariance function

matrix of the sampled data set, where
X X = [x1, ..., xn]

X∗ matrix of the estimate data set

mean value for estimated target value on

f∗ estimate data set

y is f(x) + noise, which is the real target
y value plus noise

4.2.1 Gaussian Process Regression (GPR)

A Gaussian Process [44] is defined as a collection of random variables, any finite number

of which have joint Gaussian distributions, and is fully specified by a mean function and

a covariance function. The inference of continuous values with a Gaussian process prior is

known as Gaussian process regression. The mean is often set to zero for notational simplicity,

and hence the Gaussian Process Regression only includes determining covariance function.

The covariance function can be defined by a Radial Basis Function (also called Squared

Exponential) with some hyper-parameters inside the function. The GPR has a natural

Bayesian interpretation and has various desirable properties, e.g., ease of obtaining and

expressing uncertainty in predictions and the ability to capture a wide variety of behaviors

through a simple parameterization [21].

Consider x as a general random variable, a Gaussian process can be written as:

f(x) ∼ GP(m(x), k(x, x′)), (4.1)

where m(x) is the mean function of the distribution of x, and k(x, x′) is the covariance

function. The latter specifies the covariance between pairs of random variables. When



CHAPTER 4. TRAJECTORY RECONSTRUCTION AND EVALUATION 27

observations are noise-free, given two samples of variable x, namely xp and xq, we have

cov(f(xp), f(xq)) = k(xp, xq) = exp(−1
2 |xp − xq|2), (4.2)

as one possible situation. As mentioned, for notational simplicity, the mean function m(x) is

generally set to 0. However, considering noises, we assume additive independent identically

distributed Gaussian noise ε, with variance σ2n, such that y = f(x) + ε. And thus the prior

is

cov(y) = K(X,X) + σ2nI. (4.3)

The specification of the covariance function implies a distribution over functions. By

choosing a number of points X∗ to estimate, we can generate a random Gaussian vector

with this covariance matrix into a Gaussian Distribution,

f∗ ∼ N (0, K(X∗, X∗)). (4.4)

If the vector f contains sampled data outputs of function f and we would like to predict

the value of f∗ on estimate points X∗, considering noise, the joint distribution according to

the prior will be[
y

f∗

]
∼ N

(
0,

[
K(X,X) + σ2nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
. (4.5)

The posterior distribution over functions can be obtained by restricting the joint prior

distribution to include the one which agrees with the sampled data

f∗|X, y, X∗ ∼ N (f∗, cov(f∗)),where (4.6)

f∗ , E[f∗|X, y, X∗]

= K(X∗, X)[K(X,X) + σ2nI]−1y
(4.7)

cov(f∗) = K(X∗, X∗)[K(X,X) + σ2nI]−1K(X,X∗). (4.8)

Thus f∗ which corresponds to X∗ can be sampled from the joint posterior distribution

by evaluating the mean and covariance matrix from Equation 4.6, and it gives the predicted

mean value f(X∗) and an prediction uncertainty related variance V[f∗] [44][28].
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4.2.2 Trajectory Reconstruction

We then focus on how an estimated trajectory can be constructed, using the Gaussian

Process Regression with a selection of sampled location points.

A trajectory is the path a moving object follows through space as a function of time.

Specifically, we have sampled location points from x1 to xn, referring as the location samples

in Section 4.1. The location points are represented by two dimensional points xi = (xi, yi),

and X is the sampled data set for all (xi, yi)s. Trajectories will be represented by generated

Gaussian Process Regression functions which is determined by a covariance function and a

mean function. Therefore we hope to learn f such that it can be mapped to the changes in

location: ∆xi+1 = xi+1 − xi.

We adopt Gaussian process Regression reviewed in the previous Section 4.2.1 to estimate

trajectory. By deriving the conditional distribution in Equation 4.6, if we let K = K(X,X),

K∗ = K(X,X∗),to denote the vector of covariance between the estimate points and the n

location samples, and k(x∗) = k∗ in case there’s only one estimate point x∗. Therefore,

compactly we can get the scenario of one estimate point case, where Equation 4.7 and

Equation 4.8 can be shorten as

f∗ = K>∗ (K + σ2nI)−1y (4.9)

V[f∗] = k(x∗, x∗)− k>∗ (K + σ2nI)−1k∗. (4.10)

On obtaining Equation 4.9 and 4.10, we can predict the changes in two trajectories at

future times. The mean of the prior Gaussian process is normally determined to be zero.

And for covariance function, we can use bias term and noises added version of original,

as shown in Equation 4.3. After combining them, we get the following Algorithm 1 for

prediction. Here X is the data set, y is the target value, k is covariance and σ2n is the

noise, while x∗ is the data for estimation. And f∗ is the mean value, V[f∗] is variance, while

logp(y|X) is marginal likelihood. In the algorithm, cholesky(K + σ2nI) is the Cholesky

decomposition on the matrix of K + σ2nI.

About the hyperparameters in the noisy squared-exponential covariance function,

ky(xp, xq) = σ2fexp(−
1

2l2
(xp − xq)2) + σ2nδpq, (4.11)

setting different values for length-scale l, signal variance σ2f , and noise variance σ2n might get

different trajectories, but some under-fits data and some over-fits. We can get the values by
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Algorithm 1 Predictions(X, y, k, σ2n, x∗):

L = cholesky(K + σ2nI)
α = L>\(L\y)
f∗ = k>∗ α
v = L\k∗
V[f∗] = k(x∗, x∗)− v>v
logp(y|X) = −1

2y
>α− ΣilogLii − n

2 log2π
return(f∗,V[f∗], logp(y|X)

maximizing the hyperparameters (l, σ2f , σ2n) through optimizing the log marginal likelihood

logp(y|X) in Algorithm 1. To obtain this, we do a partial derivatives of the marginal

likelihood w.r.t. the hyperparameters, such that

∂

∂θj
logp(y|X, θ) =

1

2
y>K−1

∂K

∂θj
K−1y − 1

2
tr(

K−1
∂K

∂θj
)

=
1

2
tr
(

(αα> −K−1)∂K∂θj
)
,

(4.12)

where α = K−1y. A More detailed explanation can be referred to [44].

4.2.3 Exposure Rate Evaluation

To calculate the exposure rate of a trajectory, we compare how much corresponds the

estimated trajectory is towards the original trajectory, in which we calculate the deviation

(f∗ − y) at each location point, and summarize along the whole path. We introduce a

measurement Exposure Rate (ER), which ensures the overall consistency limited within r%,

as in Equation 4.13, where the exposure rate gets 1 when f∗ has value the same with y, and

gets a minimum of 0 when the deviation of f∗ towards y is |y|. When the deviation is too

large and exceeds threshold, the exposure rate will be counted as 0, although it is indeed

negative.

ExposureRate(ER) =
1

n

n∑
i=0

(
1− |f∗i−yiyi

|
)
∗ 100%. (4.13)

We then can ensure location trajectory exposure to be maintained within a percentage

r% using the above equation. If the computed result is less than r%, then the differences
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between the original trajectory and the predicted trajectory is great enough, so that the ex-

posure is safe and trajectory exposure is maintained under a Exposure Rate ER. Otherwise

the exposure is beyond the limitation and it is over exposed.

4.2.4 Controlling Exposure Rate

We now address the problem of how to control the trajectory exposure rate r% through a

careful selection of exposed locations. As we have illustrated in Fig. 4.1, exposing different

location samples, even with the same quantity, can lead to dramatically different trajectory

reconstruction, and hence different exposure rate. A natural question therefore is: given a

threshold r%, which locations can be exposed by a mobile user, such that the exposure rate

of its trajectory does not exceed r%?

Clearly, an optimal solution of this problem for general trajectories involves the enumer-

ation of different subsets of location samples. It is known that state-of-the-art GPS devices

updates the location information at a rate of 15s/update. That is, for a constantly moving

user, 4 samples can be generated in one minute, and the total number quickly accumu-

lates over time. As such, an optimal solution is computational infeasible, particularly for

computation-power-limited and memory-storage-limited mobile devices.

We now present an effective heuristic that tries to capture the key features of a trajectory.

We define the critical value of each location sample as the criticalness when the location is

exposed. The higher the value is, the more critical it should be towards the trajectory. The

points representing features mostly occur when there is a direction turning in the trajectory,

as the middle point in Fig. 4.1 and Fig. 4.2(a). Thus the middle point in Fig. 4.2(b) is not

critical. We define the location critical value by comparing a location sample with its

neighbor points, to determine if it represents some feature of trajectory, in Equation 4.14:

CriticalV alue = |
∆yleft + ∆yright

2
|. (4.14)

X values can also be used in the substitution of y values.

The heuristic solution works as the following: First, the critical value of each location

sample of the whole trajectory is evaluated. Then the location samples are sorted in as-

cending order by critical values. Every iteration we choose a point with minimum critical

values, so on and so forth, and apply our proposed mechanism to do prediction and see if

r% is maintained. Thus, given the threshold of r%, we can determine the maximum number
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of location samples that can be exposed and which these points are, and all possible ways

of different location points’ combinations.

However, there are certain percentage of people that do not always move based on a

routine. Their trajectory are not periodically repeated and a future trajectory can not be

decided. Based on historical location samples, we perform a practical implementation with

progressive trajectory exposure. We can periodically update the sender’s historical location

points, generate a new up-to-date trajectory periodically. Then based on historical records

and the Already Exposed Location Points, we can progressively choose new points to expose,

after assuring such new selection will not result in a predicted trajectory exceeding the

limit, with the using of GPR to calculate the Exposure Rate, and only expose if the selected

location samples will have the exposure rate less than r%.

left right

left

right

Figure 4.2: Different cases in determining location critical value



Chapter 5

Mobile Routing with Partial

Trajectory Exposure (MoRPTE)

— A Case Study

We now proceed with a case study using our trajectory exposure control tool for mobile

routing. A conventional wisdom for location-based mobile routing is to decouple the location

advertisement and path determination [47][40]. First, a location advertisement module

enables each node to broadcast its locations to others with which they can use in routing.

Such advertisement can be done by periodically broadcasting its location information to

others that spreads out the whole network or to some server which keeps records of all nodes’

up-to-date location data. Such information will then be used by the path determination

module to locate the best route.

However, such routing schemes assume nodes’ location advertisements real-time, which

is not in real world. A user may have different concerns as mentioned in Section 4.1.

Therefore realistically, a user cannot expose its trajectory at a exposure rate of 100%. In

the state of art location-based routings, all locations of nodes are assumed to be up-to-

dated. But the location of a user’s neighbor might be updated a period of time ago, leaving

its current location unknown. We target SOGR [47] and present our MoRPTE (Mobile

Routing with Partial Trajectory Exposure) which utilizes predicted location in substitute

of the previously advertised locations, in order to make routings more efficient, while also

considering trajectory privacy.

32
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Figure 5.1: Less precise prediction occurs

In the original SOGR protocol, an intermediate node makes packet forwarding decisions

based on its knowledge of the neighbors’ positions and the destination’s position. It uses

a geographic-based greedy forwarding that forwards data greedily to a neighbor that pro-

gresses the most towards the destination. However, the locations of intermediate nodes are

advertised periodically and not up-to-date, though it is assumed to be real-timed. We adopt

a predicted location in substitute of original location, so as to deliver the packets efficiently,

while the rest of SOGR routing protocol is remained the same, including back-off replies

and route optimizations.

The advertisement of locations is thus more flexible, adopting the proposed GPR pre-

diction in Section 4.2.2. Predicted locations are now used for calculation to determine

next-hops. Thus, when a node doesn’t advertise its location for some time, an estimated

location will behave better than last-updated location. SOGR offers a simple estimation

during the phase of validity estimation, in which simply last two recorded locations are

used to form a simple line. Our prediction methods behaves more realistic, considering the

randomness and realities of node movements.
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Figure 5.2: Handling inaccurate destination location problem

Although it seems that locations are simply substituted by predicted ones, there exists a

certain problem, that prediction might sometimes bring non-optimal paths. Different nodes

might obtain different historical data of each other, which will bring different predicted

future locations of intermediate nodes. Thus during path calculation, a prediction not

precise enough might be generated and a non-optimal next-hop might be selected. As the

Fig. 5.1 shows, A wants to deliver a packet to the destination B based on the predictions

of current locations of its neighbors and the location of B, it selects C as its next-hop.

However, C might not be able to predict the real-time current location of B, and will select

D as its optimal next-hop. D predicts that B will move to the current new location, it

will send the packet to B and thus brings a longer path than directly from C to B. We

solve the problem with the help of other overhearing nodes. During the forwarding, if a

node E which possesses more information about the movement of B and can predict its

current location, E will send a correction message to C, notifying C to change its next-hop

as B, when dis(C,B) < dis(C,D) + dis(D,B). Our mechanism can also handle the inaccurate

destination location problem. As shown in Fig. 5.2, if B moves out of the transmission range

of A but A doesn’t predict that, the transmission will fail. However another node C can

predict B’s movement and correct A’s next-hop so as to fit the current location of B.
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Therefore, all locations for calculation are predicted and thus fit more of the real-time

locations, rather than the ones advertised before. It brings more efficient and precise data

forwardings, also guarantees the exposure rate during location advertisements.



Chapter 6

Performance Evaluation

To examine the performance of our proposed mechanism, we have conducted a series of

experiments, both with real traces and synthetic data. The traced data we use is the

real trajectory correspondent data of taxis in Beijing, China. Such data is administrated

by Beijing government and is hard to obtain. The data reflects real situations of taxis’

movements throughout the whole city, and one single of all data files contains 10, 050 taxis’

trajectories with size over 100MB for one day. The data is collected periodically, with each

taxi’s identity, time, GPS location, velocity, direction information. The capacity of data

is too huge so we picked a number of typical ones for performance evaluation. ”Typical”

means the taxi is mostly moving rather than mostly staying at a same location.

6.1 Performance of MoRPTE Routing when Having Differ-

ent Trajectory Exposure Rates

For instance, the trajectory of taxi A73198 from 20 : 38 to 23 : 56 is shown in Fig. 6.1, in

which the coordinate has been normalized. There are 100 nodes randomly deployed in the

area, which represent intermediate nodes. For clarity, here we only show 15 of them, which

are used in the following comparisons. By MoRPTE routing, the following figures show the

routing paths when setting the trajectory exposure rate parameter r to 10%, 50%, 100%,

as in Fig. 6.2, Fig. 6.3 and Fig. 6.4, where different colored lines denotes different routing

paths.

We can find in the graph that if the parameter is set to be 100% as shown in Fig. 6.4,

36
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Figure 6.1: Taxi A73198 trajectory path sample

the source node does not care about exposure of its trajectory information; therefore the

routing paths are the same as when using MFR. Fig. 6.5 shows the trajectory prediction

progress of one intermediate node. We generate prediction using another taxi BG0544 data

which has 200 more entries.

We can see from the figure that, at some nodes the prediction consistency is low com-

paring with other points, which is due to data latency and loss. Therefore, using integration

does not help to determine the consistency of prediction. Because of discontinued data

sampling, we achieve the judging by Equation 4.13 instead. The previous case study shows

the performance of MoRPTE routing, which dynamically controls users’ trajectory exposure

adaptively in the spectrum from zero knowledge to full knowledge, limiting the exposure

rate within r%.
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Figure 6.2: Routing Paths when r%=10%

6.2 Performance on Predicted-location-based Data Forward-

ing

We simulated our mechanism MoRPTE on 1000 random nodes to compare with SOGR-

HR which use last-advertised position as node’s current location; AODV which do not use

location information and GPSR [35]. We set SOGR parameters Refbackoff , Incbackoff ,

Distimeout and [Mintimeout,Maxtimeout] to be 10ms, 2ms, 300m and [10s, 30s], with the

Maxhops as 2. The movement models follows random way point model, setting the maximum

speed to be 0m/s to 50m/s. Also, an advertisement option is added randomly, for each node

to choose whether or not to advertise its current location. We study the same metrics as

in [47]: packet delivery ratio, which is the ratio of packets delivered; control overhead, that

the total number of control messages sending over each hop divided by the total number of
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Figure 6.3: Routing Paths when r%=50%

packets received; and the total number of data packet forwarding accumulated from each

hop over the total number of data packets received.

The scalability of AODV is limited, which is because of limited network range and

restricted flooding. Therefore, when the networks are dynamic, the routes can be easily

broken and packets are dropped. On the contrary, location-based routings such as MoRPTE

are more scalable and robust. The following Fig. 6.6 shows the packet delivery ratios of

different routing protocols with different maximum moving speeds. The location-oblivious

routings have lower delivery ratios than location-based routings. MoRPTE behaves stable

even when the nodes move fast, with the help of GPR location prediction of intermediate

nodes. SOGR only use advertised locations and thus when nodes do not advertise its location

for a period of time, the performance will be affected. Also the performance of SOGR

decreases than the experiments conducted in [47], which is due to the random advertising
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Figure 6.4: Routing Paths when r%=100%

and de-advertising of locations by intermediate nodes.

In Fig. 6.7, we find that MoRPTE generates least control messages. SOGR generate

reasonably more messages as mobility increases. In MoRPTE, predicted location fits real-

time location better than previously advertised data. GPSR brings unnecessary overhead

when the movements are slow. Fig. 6.8 shows that GPSR has the maximum overhead, due to

non-optimal routing when topology is changed dynamically. SOGR’s optimization process

helps with the route changing and thus performs better. MoRPTE handles the situations

too when in-precise prediction and detour occurs.
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Figure 6.5: The prediction at one intermediate node

6.3 Performance of General Estimation Model with Gaussian

Process Regression for Trajectory Exposure Control

Next we’ll show the performances compared with other predicting methods. We carry

out synthetic-data-based experiments in a large simulation system. The nodes and users’

trajectories are randomly deployed. The nodes move following the model of Random Way

Point, with the speed between 1 and 20 m/s, and a pause time 30s. As Fig. 6.9 shows, we

set the network size to be 50, 100, and 500, in order to examine the impact of network size

on the mechanisms’ performances by the metrics of consistency rate and deviation.

The more precise one can reach, the more consistent the predicted trajectory should be

with the original trajectory, the greater consistency rate it should be, while the error should
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Figure 6.6: packet delivery ratio

be smaller which stands for the deviation between prediction and the original.

6.3.1 Comparisons with other prediction mechanisms

Upon network size, we also conduct other parameters such as r%, and errors between pre-

dicted and original trajectories. We compare MoRPTE with the parametric approaches with

exponent level 1 to 3, and multi-layer neural networks, which is one of the best prediction

mechanisms mentioned in Chapter 2.

Fig. 6.11 shows the result of neural network, where we chose a model with 1 hidden

layer and 2 neurons for the hidden layer for not to incur too much overheads in generating

the model. However it can only have outputs in a certain interval and is not possible to

predict values outside the interval. Besides, another disadvantage as stated in [18], is that

to determine the correct model, complexity and to build a model with desired complexity
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Figure 6.7: control overhead

are often expensive.

Fig. 6.10 shows the different performances of the three when network size is different.

We can find that generally polynomial has the most significant deviation towards the real

trajectory. Neural Network performs better, while the proposed GPR the best as expected.

As the network size grows, the polynomial with different exponent levels perform more dif-

ferent. This is because with the increase of network size and trajectories, the inconsistency

rate will be amplified. Also, the error rate, which means the ability of prediction by corre-

sponding methods, differs and our approach performs the best among the three, considering

complexity and overheads.
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Figure 6.8: average number of data packet forwarding
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Figure 6.9: data generation in large simulation system
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Figure 6.10: Error/Deviation Comparison among different network sizes
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Figure 6.11: Prediction of Simple Neural Network



Chapter 7

Conclusion and Future Works

In this thesis, in order to explore the trajectory exposure problem in mobile networks, we

studied location-aware mobile social networks for general media sharing and professional

uses, by designing and implementing two platforms MoViShare and Scoop. we then pro-

posed a mechanism to adaptively control the exposure of a mobile user’s trajectory while

offer useful information for location-based services. We further discussed the controlling of

exposure rate, to specify which locations to expose. We also proposed MoRPTE that utilizes

location information flexibly in the spectrum from zero to full knowledge, which makes sure

no trajectory exposure rate would exceed r%. We may later introduce and examine more

flexible controls, for instance, user specific or heterogeneous demands.

Also we are planning to use other fitting methods, such as B-spline which is predefined

by a number of de Boor points, to manipulate between predefined and dynamic controls of

trajectory information exposure and recovery.
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