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Abstract

The recent shift to multi-core computing has meant more programmers are required to write

parallel programs. This is a daunting task even for experienced programmers due to the

complexity and challenges involved in parallel programming. Key among these issues is

managing concurrent accesses to shared memory. Unfortunately, most existing approaches

rely on synchronization primitives that leave the complexity of protecting shared memory

to the programmer and those that have attempted to automatically protect shared memory

have achieved limited success.

To address the issue of shared memory management while mitigating the limitations of

existing approaches, we introduce a new technique called Synchronization via Scheduling

(SvS). SvS provides efficient and automatic protection of shared memory by combining static

and dynamic analysis to determine the set of possible memory accesses a block of code makes

before it is executed and schedules these blocks such that no two blocks concurrently access

the same memory.
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Chapter 1

Introduction

Locating and protecting concurrent accesses (i.e. reads and writes) to shared memory

is a key challenge faced by any parallel programmer. Conflicting accesses occur when two

processors request access to the same memory location concurrently where at least one access

is a write. Such conflicting accesses are a prominent source of error causing race conditions

and data corruption. These bugs are difficult to track down as they may only manifest under

certain inter-leavings of multiple instruction streams. Unfortunately, most existing tools and

languages lack support for protecting shared memory and those that do attempt automatic

shared memory management suffer from limited parallelism or impractical overheads.

In lieu of providing mechanisms for automatic protection of shared memory, many ex-

isting parallel languages (e.g. Cilk [18, 21]) and runtime libraries (e.g. Intel Threading

Building Blocks [34, 2]) focus on hiding the details of dispatching code for parallel execution

by providing abstractions for expressing parallelism. In order to manage shared memory

accesses in these systems, the programmer is required to use synchronization primitives

provided by the system or another library (e.g. pthreads). These primitives not only rely

on the programmer correctly identifying all potential accesses to shared memory (which is

made difficult when memory is accessed through arbitrary pointer dereferencing), but also

organizing the use of these primitives in a way that avoids deadlock and high communication

overheads.

Traditionally, there have been two prominent approaches to automatic shared memory

management: static analysis and speculative parallelism. Solutions in the static analysis

category consist primarily of compiler techniques for automatic parallelization. These tech-

niques use code analysis (such as data dependence analysis [9], array dependence analysis

1



CHAPTER 1. INTRODUCTION 2

[10], shape analysis [37, 30] and points-to analysis [8, 39, 11, 40]) to identify regions of code

(often loop bodies) that can be safely executed in parallel. Due to the limited information

available at compile time, these techniques often make conservative assumptions when two

regions of code may access the same memory. In these cases, parallelizing compilers are

forced to serialize these blocks of code, thus reducing parallelism. For example, if loop itera-

tions write to an array and the location of each write is determined by input data at runtime,

then the compiler may assume that each access could potentially write to the same location

in the array and thus all loop iterations would be serialized, even though this may not be

necessary. In speculative parallelism, regions of code are optimistically executed in parallel

and if a violation is later detected (e.g. concurrent access to shared memory) then the of-

fending operation is squashed and restarted. Software transactional memory (STM) is the

canonical realization of speculative parallelism and has been heavily researched [38, 22, 23].

In STM, programmers annotate regions of code as being transactions. At run-time transac-

tions are speculatively executed in parallel and the system records the reads and writes of

transactions. After transactions have completed execution, their read/write sets are com-

pared and if the read/write sets of two transactions overlap, then one of these transactions

must abort, rollback its changes, and try again. The overhead costs of these transaction

aborts remain a limiting factor that has prevented the widespread adoption of STM.

To address the issue of shared memory management while mitigating the limitations and

inefficiencies of existing approaches, we introduce a new technique called Synchronization

via Scheduling (SvS). SvS provides efficient and automatic protection of concurrent accesses

to shared memory by combining static and dynamic analysis to determine the set of possible

memory accesses a block of code makes before it is executed and schedules these blocks such

that no two blocks concurrently access the same memory.

To achieve this, SvS structures programs using a standard task graph model. In task

graph models, code is divided into discrete units of execution (tasks) and directed edges

(dependencies) are placed between tasks in order to enforce a specific ordering or prevent

two tasks from running concurrently. SvS uses static code analysis to determine whether

two tasks may touch the same memory, and if they do, a dependency is placed between

them. The resulting tasks and dependencies define a static schedule (task graph) which

ensures a correct parallel execution of tasks. However, due to the limitations of static anal-

ysis, some dependencies may have been created between two tasks that don’t actually access
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the same memory at run-time. To address this issue, we introduce a new dynamic analy-

sis technique called dynamic reachability analysis. Dynamic reachability analysis monitors

connectivity/reachability properties of memory objects (our online abstraction for regions

of heap memory). Connectivity is represented as a graph where memory objects are nodes

and references between memory objects are edges. Reachability refers to the set of memory

objects that can possibly be reached from a memory object M by traversing heap references

(i.e. edges). The results of dynamic reachability analysis can then be leveraged to determine

more precise read/write sets for tasks that access memory objects. When a task is considered

for scheduling, it compares its read/write set with its dependent children and, if there is no

overlap, unnecessary dependencies are removed, potentially increasing parallelism. We call

the process of removing dependencies dynamic refinement. Finally, in specific cases where

dynamic refinement is not able to calculate read/write sets for tasks (e.g. when a task’s

accesses are input-dependent and the task is waiting for input), the checking of read/write

sets is deferred to the scheduler. It is then the job of the scheduler to efficiently dispatch

tasks such that no two tasks have overlapping read/write sets.

In summary, this work describes the following contributions:

• A new dynamic analysis technique called dynamic reachability analysis

• Scheduling algorithms and efficient implementations for dispatching tasks with non-

overlapping read/write sets

• The SvS framework for automatic shared memory management and an efficient im-

plementation that is demonstrated to work in practical applications

An incomplete implementation and shortened description of this work was presented in

[15]; here we review the SvS framework in its entirety and augment its implementation. The

remainder of this thesis is organized as follows. In chapter 2, we discuss the SvS framework,

followed by a description of the algorithms and implementations for each component of

this framework in chapter 3 to 6. In chapter 7 we provide experimental results for several

benchmarks and applications. In chapter 8 we discuss related work and in chapter 9 we

conclude and provide a discussion of future work.



Chapter 2

SvS Framework

2.1 Motivation and Overview

Many existing parallel runtime environments [2, 18, 28] employ task based parallel pro-

gramming models. In these models, users express their programs as a collection of tasks

(function-like, basic units of work) and the runtime environment orchestrates the creation,

scheduling, and execution of tasks in order to express parallelism. As described in the pre-

vious section, a prevailing problem with most implementations of this model is the lack of

automatic shared memory management between tasks. To further motivate this problem,

consider the example of character animation. In order to produce a character that is transi-

tioning from walking to running, we need to blend the “walking” and “running” animations.

In order to blend two animations, each animation performs mathematical transformations

to the “bones” of the character. While these transformations are commutative, it is unsafe

for two animations to be applied to the same character concurrently, because two animations

may apply a transformation to the same bone.

Without automatic shared memory management, programmers must protected accesses

to bones using the synchronization primitives available to them in order to enforce mutually

exclusive access to individual bones. A common method for achieving this in task based

models, besides using traditional lock based primitives, is through task graphs [31]. In a task

graph, dependencies are placed between two tasks A and B that may access the same state,

or require a specific ordering. A dependency (A,B) means that A must complete before B

can begin. However, protecting shared memory using dependencies has two problems. First,

like other synchronization methods, dependencies are prone to programmer error, especially

4



CHAPTER 2. SVS FRAMEWORK 5

when dealing with pointer-based memory accesses. To address the issue of programmer

error, static dependency analysis could be performed to automatically place dependencies

between tasks. While this will guarantee the protection of shared state, it does not address

the second problem: dependencies constrain parallelism in cases where tasks may access the

same memory, but do not actually access the same memory at run-time.

We address the issue of protecting shared memory in task graph models by introducing a

new technique called Synchronization via Scheduling (SvS). SvS provides automatic shared

state management by combining static and dynamic analysis to determine if two tasks can

potentially access shared memory. The goal of static analysis is to detect dependencies

between tasks in order to generate a task graph that guarantees the protection of shared

state. To address the limitations of static analysis, SvS performs dynamic analysis at run-

time to more precisely determine the read/write sets of tasks and uses these read/write sets

to potentially remove unnecessary dependencies and, if necessary, to enable the scheduler

to dispatch tasks with non-overlapping memory accesses. In the next section, we describe

how the SvS framework integrates the mechanisms involved during static analysis, dynamic

analysis, and scheduling.

Type safety &
Pointer 
restrictions

Task Graph Model

Scheduling Domains

Task Dependency Analysis

Dynamic 
Refinement

Dynamic 
Reachability 

Analysis

task symbol lists, task dependencies

SvS Compatible Language Static Analysis

Dynamic AnalysisTask Scheduler

Figure 2.1: SvS Framework
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2.2 Framework

Figure 2.1 shows the four main components of the SvS framework: an SvS compatible

language, static analysis, dynamic analysis, and the task scheduler. An SvS compatible

language enables a programmer to decompose a program into tasks: blocks of code repre-

senting units of work. Tasks in this language are assumed to be commutative, unless the

programmer imposes an ordering constraint between tasks. The programmer does this by

annotating a task B as having an explicit dependency with task A in that A must complete

before B can begin. Beyond providing a task-graph abstraction, an SvS compatible lan-

guage also provides type safety in that all accesses to memory (e.g. through pointers and

variables) are accesses to SvS’s abstraction for regions of memory called memory objects.

This is analogous to how all object types in Java inherit from the Object class. Additionally,

restrictions on pointer arithmetic is required such the result must always point to a memory

object. Although not a strict requirement for SvS, our implementation of an SvS compati-

ble language completely disallows pointer arithmetic in order to greatly simplify static code

analysis without imposing any burden on the programmer. We describe our prototype SvS

language in chapter 3.

A program written in an SvS compatible language is passed through a static code analy-

sis phase that collects symbols (linguistic abstractions for memory access) that are accessed

by tasks and creates dependencies between tasks that may access the same memory. Depen-

dencies inserted during static analysis are called implicit dependencies. These dependencies,

when combined with programmer specified explicit dependencies, define a static task graph

which provides an initial schedule that ensures that no two tasks will concurrently access the

same memory. The symbols collected by this phase are also used to generate task specific

functions that are called during dynamic analysis and scheduling in order to obtain more

precise read/write sets for tasks.

We purposely visualize the static analysis phase in figure 2.1 as a “black box” because

SvS is indifferent to the techniques used to implement static analysis. Any implementation

that extracts the list of symbols each task may access and produces dependencies that ensure

the protection of shared memory are sufficient for use in the SvS framework. For example, a

correct, but naive, static analysis implementation could simply place a dependency between

all tasks, leaving all extraction of parallelism to be performed by dynamic analysis. Static

analysis in SvS is formally defined as task dependency analysis in chapter 4. This chapter



CHAPTER 2. SVS FRAMEWORK 7

also describes how task dependency analysis can be implemented using existing techniques

and provides details on our implementation of one of these techniques. The classic limiting

factor of static analysis when applied to parallelization is that it is limited to compile

time information. As a result, static analysis is sometimes forced to make conservative

assumptions and place dependencies between tasks that are potentially unnecessary, thus

restricting parallelism. This problem can be alleviated using dynamic analysis.

We introduce a new dynamic analysis technique called dynamic reachability analysis.

Dynamic reachability analysis abstracts regions of heap memory as memory objects and

during task execution it monitors changes to the connectivity properties of memory objects

accessed by tasks. The result of dynamic reachability analysis is that a memory object M

can be queried to return a set of all the memory objects it can potentially access (i.e. reach)

through arbitrary dereferencing of M ’s “links” to other memory objects.

As tasks are considered for scheduling, the results of dynamic reachability analysis are

used to generate and compare more precise read/write sets for tasks in order to potentially

remove implicit dependencies that were created during static analysis, but are found to

be unnecessary when information from dynamic reachability analysis becomes available at

run-time. We call this process of removing implicit dependencies dynamic refinement.

Finally, the general role of the task scheduler is to ensure that concurrently executing

tasks have non-overlapping read/write sets, in effect performing synchronization via schedul-

ing. In most cases, this is achieved by simply executing tasks whose dependents have already

completed. However, there are cases where the comparison of read/write sets that is nor-

mally performed during dynamic refinement must be deferred onto the task scheduler. In

these cases the task scheduler is responsible for efficiently comparing the read/write sets of

(potentially many) tasks in order to dispatch tasks with non-overlapping read/write sets.

The method for orchestrating this process is called scheduling domains.

While the SvS framework is one of the contributions of this work, its implementation

relies on both new and existing techniques. Chapters 3 to 6 will discuss how these techniques

are integrated in order to implement the SvS framework.



Chapter 3

SvS Language

As described in chapter 2, a requirement of SvS is a language that provides a few restrictions

to enable static and dynamic analysis and allows the programmer to write a program as a

collection of tasks. In the following sections, we provide details on our implementation of

an SvS compatible language and the underlying task graph model assumed by SvS.

3.1 Task Graph Model

In this section, we define the task graph model that is assumed by the current implementa-

tion of SvS. In task graph based execution, a program is divided into units of work, called

tasks. A task graph defines a static scheduling of these tasks, as dictated by directed edges

called dependencies. Our task graph model has two types of dependencies: logical and

dataflow. A logical dependency (A,B) means that A must complete before B can begin.

When A has executed, we say that the dependency (A,B) has been satisfied. Logical de-

pendencies are used to implement implicit and explicit dependencies in the SvS framework.

In a dataflow dependency, the parent task (called a producer) sends data to the child task

(called a consumer). In this case, the dependency is satisfied as soon as input is available,

and the consumer task can run as soon as it receives a data item. Currently, our task graph

model does not allow the programmer to specify cyclic dependencies.

A task that has no parents or has all dependencies satisfied is said to be runnable and

we say that an instance of the task can be executed. A task instance is equivalent to

calling the task’s work kernel (the block of code encapsulated by the task) from one or

more cores/threads. Tasks can be single instance or multi-instance. In our implementation,

8



CHAPTER 3. SVS LANGUAGE 9

consumer tasks are multi-instance because an instance is executed for each data item re-

ceived. We also describe consumer tasks as dynamic because its instances are dynamically

“created” as data is received. Multi-instance consumer tasks allow for the expression of

data-parallelism and the collection of all instances of a consumer task defines a single data

parallel operation. All other tasks in our model are single instance tasks where a single call

to the tasks work kernel is executed on a processor.

Besides dependencies, there is also an implicit temporal ordering between executions of

a task graph, in that we execute all tasks in the graph and wait for them to complete before

executing the graph again. If we define a single execution of the task graph as an iteration,

then iteration i must complete before i + 1 can begin.

The features required to support this task graph model are implemented in our C++

parallel runtime environment, described in [12]. Additionally, the dependencies, tasks, and

constructs described in this section satisfy the task graph requirements of an SvS compatible

language, which we describe in the next section.

3.2 Cascade Data Management Language (CDML)

Programmers wanting to utilize the SvS framework write their programs in an SvS com-

patible language. Our prototype of an SvS compatible language is called the Cascade Data

Management Language (CDML). Note that CDML itself is not a requirement for SvS. As

described in chapter 2, a language is suitable for use in the SvS framework if it provides:

1. Support for defining task graphs

2. Minimal type safety in that all accesses to memory (e.g. pointers, variables) are

accesses to memory objects (SvS abstraction for regions of memory)

3. Restrictions on pointer arithmetic in that any resulting pointer must still point to a

memory object

We describe the concept of memory objects in greater detail in section 5.1. In order

to greatly simplify static analysis without burdening the programmer, CDML disallows

pointer arithmetic altogether. To differentiate pointers in CDML from traditional C/C++

pointers, we call pointers in CDML, links. Additionally, because our current specification

for CDML does not yet support object-oriented programming, we assume no inheritance



CHAPTER 3. SVS LANGUAGE 10

or polymorphism in our current implementation of SvS, but this is not a requirement in

general. We plan to address inheritance and polymorphism in future work. Because we are

not presenting CDML as a contribution of this work, the full syntax and features of CDML

will not be discussed here. More details on CDML and its future use and contributions can

be found in [13].

As in any SvS compatible language, the user writes a program as a collection of tasks.

The grammar for defining a task in CDML is shown in figure 3.1.

task := task_type task_name constraints? body
task_type := ‘itemizer’ | ‘transform’
constraints := (( send | receive | explicit ) ‘;’) +
sends := ‘sends’ ‘:’ (type output_var ‘=>’ task_name )
receives := ‘receives’ ‘:’ type input_var
explicit := ‘explicit’ ‘:’ task_name (‘,’ task_name)*
body := ‘{’ ( declarations | statements )* ‘}’

Figure 3.1: CDML task syntax

As shown in figure 3.1, there are two types of tasks in CDML: transform and itemizer.

A transform is just a single instance task. An itemizer is a multi-instance consumer task

where the body of the task is executed for each item received. In effect, an instance of an

itemizer is defined by the execution of the task body with a received data item at run-time.

Note that this means the data accesses made by an instance of an itemizer will depend on

the data item received, and thus is considered to be input dependent. The importance of

this distinction is described in section 5.2 and chapter 6. Additionally, because itemizers

are data parallel consumer tasks, they are always the children of dataflow dependencies.

Tasks written in CDML are assumed to have no specific ordering by default. In order to

enforce a specific ordering between tasks, a programmer must specify an explicit dependency

using the explicit constraint syntax of a task. For a task T , all tasks referenced by task name

in the explicit constraint define an explicit dependency (task name, T ) i.e. task name must

complete before T can be executed. At run-time, explicit constraints are never broken (i.e.

they are not considered during dynamic refinement). In many cases, the programmer will

not need to define an explicit ordering between tasks because the same outcome will be

achieved regardless of the ordering. This is often the case in video games and scientific

computing where many computations are commutative. A programmer can also define
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dataflow dependencies using the sends and receives constraints. For example, A task T

with “sends : int output => Consumer” in its constraints means that T sends integers

to the task Consumer. Consumer would then have the constraint “receives : int input”

where input stores the received integer.

Because SvS provides automatic shared memory management between tasks, program-

mers do not have to protect accesses to shared memory i.e. programmers do not have to

identify data dependencies or orchestrate synchronization or communication between tasks.

Static and dynamic analysis determine the potential read/write sets of tasks and the run-

time ensures that no two tasks with overlapping read/write sets are executed concurrently.

In the cases where two tasks (or task instances) are discovered to have overlapping read-

/write sets, an arbitrary ordering is chosen and the tasks are executed sequentially.

In order to compile CDML programs, we have implemented a translator in Java using the

ANTLR Parser Generator [32]. Our translator converts CDML programs into C++ using

classes defined by our run-time library. The translator also performs symbol collection and

static analysis to generate implicit dependencies, which is described in the next chapter.



Chapter 4

Static Analysis

4.1 Task Dependency Analysis

We term the static analysis performed in SvS as task dependency analysis. The goal of

task dependency analysis is to statically find implicit dependencies between tasks – that is,

determine whether two tasks (or task-instances) can potentially access the same memory

location. The collection of implicit and explicit dependencies define a task graph that ensures

the protection of shared state. Because task dependency analysis is essentially a form of

dependency analysis, we will present the definition of dependency analysis and derive from

it a formal definition for task dependency analysis.

In traditional dependency analysis [10], the fundamental goal is to determine whether a

statement T depends on a statement S. T depends on S if there exists an instance S
′
of S,

an instance T
′
of T , and a memory location M such that:

1. Both S
′
and T

′
reference M , and at least one reference is a write

2. In the serial execution of the program, S
′
is executed before T

′

3. In the serial execution, M is not written between the time that S
′

finishes and the

time T ′ starts

As mentioned in the previous chapter, the ordering between tasks in SvS, and thus their

accesses, are assumed to be commutative unless the programmer enforces an ordering be-

tween tasks by inserting explicit dependencies. For the remaining pairs of tasks, we are

not concerned with the order in which they execute. Because of this, conditions number

12
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symbol := identifier acessor*
identifier := [a-zA-Z_][a-ZA-Z0-9_]*
accessor :=

‘->’ identifier
| ‘.’ identifier
| (‘[’ expression ‘]’)+

Figure 4.1: CDML symbol syntax

2 and 3 are not applicable to SvS. It follows from this that task dependency analysis is

not concerned with whether the dependency is flow-dependent, anti-dependent, or output-

dependent. Therefore, task dependence analysis in SvS can be restated as follows: A de-

pendency exists between task T and a task S if there exists an instance S
′
of S, an instance

T
′
of T , and a memory location M such that:

Both S
′
and T

′
reference M , and at least one reference is a write. A task references

M if there exists a statement X in the body of the task that references M .

In modern programming languages, a reference to a memory location M might be repre-

sented as a scalar variable, array, or pointer. In SvS, we refer to these abstractions for

memory locations as symbols. The syntax for a symbol in CDML is provided in figure 4.1

and mirrors the syntax of C/C++ expressions for array, variable, and member access. Since

symbols abstract references to memory, task dependency analysis becomes collecting the

symbols in the body of a task and determining if a symbol x in task S can reference the

same memory location M as symbol y in task T where at least one of the references is a

write. The problem of determining if two symbols can reference the same memory has been

thoroughly explored by research in static analysis including points-to analysis [8, 39, 11, 40],

array dependence analysis [10], shape analysis [37, 30], and disjoint heap analysis [24].

Because it is not our goal to expand upon work that has already been done in static

analysis, we chose to implement Berndl et al.’s flow- and context-insensitive points-to anal-

ysis algorithm [11]. Our implementation is based on the descriptions of this algorithm found

in [6, 40]. An overview of this algorithm and its implementation in SvS is provided in the

following sections.



CHAPTER 4. STATIC ANALYSIS 14

pts(v, h) : − malloc(v, h) (4.1)
pts(v1, h) : − assign(v1, v2), pts(v2, h) (4.2)

hpts(h1, f, h2) : − store(v1, f, v2), pts(v2, h2), pts(v1, h1) (4.3)
pts(v1, h1) : − load(v1, f, v2), pts(v2, h2), hpts(h2, f, h1) (4.4)

Figure 4.2: Points-to Inference Rules

4.2 Points-to Analysis

The essential problem of points-to analysis is: given a pointer variable v, find all memory

locations h such that v may point to h. Points-to analysis can be context and flow sensitive or

insensitive. Flow sensitive analysis takes into account the order of statements in a program in

order to determine the locations h that v may point to at a specific program point. Context

sensitive analysis considers the calling context when analyzing function calls. Context and

flow sensitivity adds an immense amount of complexity that is far beyond the scope of

this work, so we chose to implement Berndl et al.’s flow- and context-insensitive points-

to analysis algorithm [11]. Furthermore, we currently do not implement inter-procedural

analysis. For the purposes of our experiments, we were able to manually inline function

calls as necessary to expose potential accesses to shared memory. The remaining function

calls are assumed to be “pure” in that they do not access heap memory and thus can be

safely ignored during task dependency analysis.

Berndl et al.’s points-to algorithm is compactly described by the inference rules in figure

4.2. The rules in figure 4.2 use the following relations and domains:

V is the domain of variables of the type “pointer to T” where T is a type. Note that

variables are specified using a qualified name that encodes the variable name, the task

it was declared in (if applicable), and the block it was declared in.

H is the domain of memory allocation sites. Allocation sites represent all heap objects that

can be created by an object allocation statement.

F is the domain of field descriptors. Field descriptors reference a member of an object

represented by a variable.

malloc : V ×H is the relation representing object allocation statements of the form “h : v
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= new Type” or “h: Type v” where h ∈ H and v ∈ V . The first statement represents

dynamically allocated objects and the second statement represents global variables.

Therefore malloc(v, h) means that there is an allocation site h that assigns a newly

allocated object to v.

assign : V × V represents assignment statements. assign(v1, v2) means that the statement

“v1 = v2” exists in the program and that v1 includes the points-to set of v2.

store : V × F × V represents field store statements. store(v1, f, v2) means that the program

contains the statement “v1.f = v2”.

load : V × F × V represents field load statements. load(v1, f, v2) means that there is a

statement “v1 = v2.f” in the program.

pts(v, h) : V ×H is the relation that says a variable v1 can point to heap objects from

allocation site h.

hpts(h1, f, h2) : H × F ×H is the relation that the field f of a heap object from site h1 can

point to an object from site h2.

Referring back to figure 4.2, rule 4.1 says that v can point to h if there is an allocation

site h that involves v. Rule 4.2 performs a transitive closure of assignment statements. Rule

4.3 captures the effects of “v1.f = v2” statements saying if v1 points to an object at site h1

and v2 points to an object at site h2, then the field f of objects at h1 points to objects at

h2. Finally, rule 4.4 captures the effects of “v1 = v2.f” statements saying if v2 points to an

object at h2 and the field f of an object at h2 points to an object at h1, then v1 points to

an object at h1.

Using the above relations and rules, points-to analysis is achieved as follows:

1. For each assignment statement in the program, create an appropriate load, store,

malloc, or assign relation.

2. Apply the rules in figure 4.2 until the results converge (i.e. until no new relations are

found)

The results of points-to analysis is a mapping of variables to sets of allocation sites that

a variable can point to at some point in the program. The implementation of points-to
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analysis in SvS, and how it is used in task dependency analysis, is described in the next

section.

symbol = symbol;
symbol = &symbol;

T symbol;
symbol = new T;

v = w.f.g
-----------------------

v1 = w.f;
v = v1.g

Collect Decompose

ExecuteDependency Analysis

Figure 4.3: Stages of Points-to Analysis in SvS

4.3 Implementation of Points-to Analysis in SvS

Figure 4.3 shows the stages of points-to analysis that take place in our translator. The first

stage is a symbol collection pass that collects all assignment and allocation statements in

the program that involve links (CDML’s pointer equivalent). It also collects symbols that

are read as part of expressions, since these appear in statements other than link assignment.

These assignments, allocations, and symbols cannot be immediately processed by our points-

to analysis algorithm because it only accepts statements recognized by the load, store,

malloc, and assign relations. Therefore the collected statements and symbols must first be

decomposed into a series of load, store, malloc, or assign statements. For example, the

statement “v = w.f.g” would be decomposed into “v1 = w.f” and “v = v1.g”. Each time a

new load, store, malloc, or assign statement is matched or created, the symbols/variables

involved are added to a list belonging to the task in which the original statement was

found. This list, called pt access list, is used for reference once points-to analysis results

are calculated.

Note that the relations and rules defined in the previous section can be implemented

directly in the Prolog language. Therefore, once all the load, store, malloc, or assign
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relations (now called facts) are created, the points-to inference rules are appended to create

a Prolog program. Using the SWI-Prolog [41] JPL library interface, we are able to execute

this program from within the translator and collect the results. The program is executed

by querying for all solutions to pts(V,H) and the results are stored in a hash map that

associates a set of allocation sites for each variable.

In the last stage, we perform task dependency analysis. First, we iterate over the

variables in the pt access list for each task that was generated during decomposition and

use the results map to look up the points-to set for each variable. Each of these points-to

sets are added to the cumulative points-to set for the task. Once the points-to sets have been

calculated for each task, a pairwise comparison between tasks’ points-to sets is performed

and if the points-to sets of two tasks T1 and T2 overlap, then the translator generates the

implicit dependency (T1, T2).

4.4 Summary

In our implementation of SvS, it is not our intention to match the state of the art or

expand upon the work that has already been done in static analysis, but rather to address

the unavoidable limitations associated with static analysis by developing and implementing

feasible and beneficial dynamic analysis techniques. However, some form of static analysis

satisfying the conditions outlined in section 4.1 is necessary for a complete implementation

of the SvS Framework. Therefore we have opted to implement the rudimentary static

analysis presented in this chapter for the purposes of completeness and proof of concept,

not accuracy. Regardless of the sophistication of static analysis, an unavoidable limitation

is the lack of information available at compile time. In the next chapter, we describe the

dynamic analysis techniques that SvS employs to address the limitations of static analysis.



Chapter 5

Dynamic Analysis

Due to the limitations of compile time information, static analysis is often forced to make

conservative assumptions. This may result in unnecessary dependencies, thus hindering

parallelism. The goal of dynamic analysis is to potentially remove such dependencies at

run-time. To achieve this, we use information available at run-time to generate more precise

read/write sets for tasks. Then, as task instances are considered for scheduling, we efficiently

compare their read/write sets to see if a dependency actually exists (a process we call

refinement) and subsequently scheduling non-dependent tasks to execute concurrently.

To calculate read/write sets, we monitor the connectivity and reachability properties

of memory objects, our online abstraction for memory accesses, to determine the set of all

addresses that can possibly be reached by a memory object. We call this set of accesses

the reachability of a memory object and its connectivity properties are represented as a

reachability graph. We use dynamic reachability analysis (section 5.1) to maintain dynamic

changes to reachability graphs as memory objects are created and linked together. Since

symbols reference memory objects at run-time, this enables us to determine the reachability

of symbols accessed by tasks and therefore more precise sets of potential reads and writes.

We will also introduce signatures (section 5.1.1), which are used to compactly represent

read/write sets and efficiently determine which tasks have non-overlapping memory accesses.

After dynamic refinement is performed, it is the role of the scheduler to ensure that

concurrently executing tasks have non-overlapping read/write sets. Note that if all of a task’s

dependencies are either satisfied or removed by dynamic refinement, then it is guaranteed to

not conflict with any other task. In these cases, the task scheduler can immediately execute

the task without any further checking. However, there are cases where the comparison of

18
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read/write sets that is normally performed during dynamic refinement must be deferred onto

the task scheduler. In these cases the task scheduler is responsible for efficiently comparing

the read/write sets of (potentially many) tasks/task instances in order to dispatch instances

with non-overlapping read/write sets. Two new scheduling algorithms that accomplish this

goal will be presented in chapter 6.

5.1 Dynamic Reachability Analysis

We use the notion of a memory object to abstract memory accesses in SvS. In the simplest

case, a memory object is a single primitive (e.g. int) and provides a direct access to memory.

In general, memory objects may contain one or more primitives or other memory objects.

Primitives and/or other memory objects that compose it are called its members. Such a

memory object can indirectly access all the memory that its members can access. So far,

the definition of memory objects still implies static accesses. To allow for dynamic accesses,

memory objects may also contain links and we say that the memory object that contains

the link is the parent. A link ‘points-to’ a child memory object, which allows the parent

memory object that contains the link to access all the memory addressable by the child

memory object. The difference between members and links is that members are static –

they cannot be removed from the object and their memory addresses within the enclosing

object cannot be modified – whereas links are dynamic. The child that a link points to can

be changed at any time, thus changing the set of memory addresses that a memory object

can access. Links can also exist on their own, in that they do not need to be declared as a

member of a memory object. In this case, the link has no parent and is merely a reference

or alias to the memory object it points to. Therefore, SvS tries to solve the problem of

determining what memory objects a task can possibly access before the task runs, where

memory objects can be accessed indirectly through members and links.

We formalize these definitions by representing the problem as a graph. Nodes in the

graph represent memory objects. A member edge is a directed edge defined as (X, Y ) where

memory object Y is a Member of X. A ‘link’ edge is a directed edge defined as (A,B) where

A is a memory object that contains a link L that points to memory object B. We say that

A is the parent of L and B is its child. If a link does not have a parent, it is essentially

just an alias for the memory object it points to. In other words, it is just an alias to a node

in the graph and therefore does not constitute an edge, nor does it affect the structure of
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T 
[tree]

data 
[node]

x [int] y [int] z [int]

T.left 
[tree]

data 
[node]

x [int] y [int] z [int]

static reachability of T

name 
[type]

leaf node link edge member edgename 
[type] internal node

left [tree*] right [tree*]

left [tree*] right [tree*]

struct node {
int x ;
int y ;
int z ;

} ;

struct t r e e {
node data ;
t r e e ∗ l e f t ;
t r e e ∗ r i g h t ;

} ;

Figure 5.1: The graph for a memory object representing a binary tree. The sub-graph
inside of the dashed boundary represents the result of a breadth-first search that only
follows member edges and is called the static reachability of T . Related C++ definitions
are provided on the bottom.

the graph. Since a link L can only change the memory object it points to, its parent never

changes. Changing L to point to a different memory object C effectively removes the edge

(A,B) and adds the edge (A,C). This graph represents the dynamic reachability of the

memory object and is called the reachability graph.

There are two important properties to note about graphs generated by the above for-

mulation. First, leaf nodes will always be primitives, since they have an out-degree of zero

and thus do not point to anything and do not have any members. Second, the only edges

in the graph that can be modified are link edges and only by changing the child that a link

points to. All other edges are static.

Given any node (i.e. memory object) in the graph, the set of memory addresses that

can be reached (i.e. accessed) by the node is called its reachability and is defined as the set

of all leaf-nodes reachable by performing a breadth (or depth) first search starting at the
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given node. Because leaf nodes are primitives, they directly correspond to an addresses in

memory, and thus define a set of memory addresses. If we restrict the breadth first search

to only follow member edges, then the resulting set of addresses is the static reachability of

the node (i.e. a unique, static set of memory accesses). Figure 5.1 provides an example of

a graph that would be defined by a typical binary tree. The leaf-nodes inside of the dashed

boundary represent the static reachability of the root node of the tree.

By keeping track of the structure of the reachability graph for each memory object (a

process we call dynamic reachability analysis), we are able to dynamically monitor reacha-

bility information providing significant insight into the potential memory accesses of tasks.

This is particularly useful when dealing with dynamic data structures that allow for ambigu-

ous accesses to memory. Implementation of reachability graphs and pertinent algorithms

are described in the next sections.

5.1.1 Signatures: Representing Memory Accesses

Sets of memory accesses in SvS are represented as signatures: constant length bitstrings.

When two signatures have the same bit set, it means they represent access to the same

memory location (or memory object) and are said to overlap. To build a signature, id’s

(i.e. memory object id’s) representing reads or writes are passed to a hash function to

determine the bit to set in the signature. Signature overlap is checked using simple and

efficient bit-wise operations.

Note that signatures are effectively Bloom filters [17] using a single hash function. Also,

because signatures are constant in length and use hashing, there is the opportunity for

false positives to occur when comparing signatures. This does not affect correctness and its

impact to performance can be greatly reduced by using large signature sizes with negligible

impact to performance, which will be discussed in section 7.2.

5.1.2 Implementing Reachability Graphs and Dynamic Reachability Anal-

ysis

As discussed in the previous section, there are two main components to a reachability graph:

memory objects and links. The goal of the implementation for these structures is to provide

the meta-data and meta-functions necessary to efficiently maintain reachability graphs and

extract the reachability of a memory object.
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Memory Objects

The implementation of memory objects is analogous to the Object class in Java in that

all types in an SvS compatible language are implemented as classes that inherit from a

MemoryObject template class. The MemoryObject class stores the id of a memory object

that is generated inside the class’s constructor. Ideally, this id would be unique, but this

is not a necessary condition for correctness and would require MemoryObject’s created on

separate threads to synchronize. To avoid this, we use a fast, thread-safe random number

generator to assign object ids. Recall that a newly created memory object will have a static

reachability that denotes a unique and static set of memory accesses. Because these accesses

are unique and static, they can correctly be represented by a single id: the id of the newly

created (root) memory object. We will use this property as an optimization for calculating

the reachability of a memory object.

The MemoryObject class contains a getSignature function that returns a signature

representing the reachability of a memory object. A straightforward way to implement this

function is to simply perform a breadth first search by recursively calling the getSignature

function of each member, or the getSignature function of the memory object a link points

to, and combine the returned signatures using a bitwise-or operation. However, for large

reachability graphs, a breadth first search will be too expensive. Instead, we have imple-

mented a more efficient method that utilizes the implementation of links as described in the

next section.

Links

Links are implemented in SvS as a smart pointer template class. Since a link is just an

edge in the reachability graph, the smart pointer representing the link stores pointers to a

parent and child memory object. The child pointer represents the memory object that a

link “points-to” whereas the parent pointer denotes the memory object that the link is a

member of. Recall that a link has a non-null parent only when it is a member of a memory

object and that its parent never changes. Therefore a memory object M that contains a

link as a member is responsible for setting the parent of the link to point to M and once

the parent has been set, it is never changed. Parent pointers are set in the constructor of

a class inheriting from the MemoryObject class and this code is generated by our translator

since it knows the members of a declared or built-in type. A null parent represents the case
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where a link is just a reference or alias to the memory object it points to (i.e. it is not a

member of a memory object so its parent does not get set) and is not considered to be an

edge in the reachability graph.

We now discuss how smart pointers are used to calculate and maintain the reachability

of a memory object. Note that the only way to change the reachability of a memory object,

and thus the reachability graph itself, is by changing the child node of a link edge. This is

equivalent to link assignment, and thus by overloading the assignment operator for the smart

pointer class, we can detect a change in reachability and perform the necessary updates. The

algorithm that performs these updates is called dynamic reachability analysis. First, consider

the situation where each memory object stores a signature that accurately represents its

reachability. Initially, the reachability of a memory object is just the signature created from

its object id (i.e. the signature representing its static reachability). When a link L is changed

to point to a memory object B, it means that the memory object A = parent(L) can now

access all memory objects reachable by B. It also means that all memory objects that can

reach A can also reach memory objects reachable by B. Therefore, during link assignment,

we could perform a reverse breadth first search starting at A, recursively updating the

signature of each node to include the signature for the reachability of B. However, we want

to reduce the cost of this breadth first search. To do this, we introduce the concept of

master nodes.

The goal of master nodes is to logically group together nodes in the reachability graph

to form super-nodes, thus reducing the effective size of the graph during updates. As such,

a master node M represents a bounded set of reachable nodes, i.e. a set of nodes X such

that a path M ; X exists. We call the set of nodes X the neighbourhood of M . A master

M maintains a signature that accurately represents its reachability; this signature is shared

by all nodes in the neighbourhood of M . M is also responsible for propagating changes in

the reachability of nodes in its neighbourhood to all other masters that can reach M .

All other nodes are called internal nodes. An internal node X can belong to multiple

neighbourhoods and keeps track of which masters (i.e. neighbourhoods) it belongs to.

X is responsible for notifying each of its masters when its reachability changes. We call

the first neighbourhood an internal node is assigned to its primary master. An internal

node belonging to multiple neighbourhoods has multiple signatures that conservatively (but

correctly) represent its reachability, so we arbitrarily choose the signature of the primary

master to represent its reachability.
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Algorithm 1: Link Assignment
Input: A link (lhs,rhs) where lhs is the parent memory object of the link and rhs is

the new child that the link will point to as a result of the assignment

begin1

if inDomain(lhs) then2

setMaster(lhs)3

end4

if getDomainSize(lhs) < K or inDomain(rhs) then5

incDomainSize(lhs)6

if not isEmpty(owningMasters(rhs)) then7

foreach master ∈ owningMasters(lhs) do8

push( notifyMasters( primaryMaster(rhs)), master)9

end10

end11

if not isMaster(rhs) then12

foreach master ∈ owningMasters(lhs) do13

push( owningMasters(rhs), master)14

end15

end16

else17

setMaster(rhs)18

foreach master ∈ owningMasters(lhs) do19

push( notifyMasters(rhs), master)20

end21

end22

updateReachability( lhs, reachability(rhs))23

end24

By introducing master and internal nodes, we essentially establish a tree of masters that

is smaller than the original reachability graph and only maintain precise reachability infor-

mation for masters. This decreases the cost of the reverse breadth first search required to

monitor reachability. Under this implementation, the getSignature function of a memory

object just returns the signature of its primary master. We are continuously investigating
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more efficient methods for maintaining dynamic reachability information, but algorithm 1

provides our current implementation of dynamic reachability analysis, including how mas-

ters are created. In this algorithm, the list owningMasters(node) is the masters to whose

neighbourhood node belongs. notifyMasters(master) is the list of masters that master

must notify when its reachability changes, because these masters can reach the nodes in

master’s reachability. Once the necessary updates to owningMasters and notifyMasters

are complete, the reverse breadth first search to update scope is initiated by the call to

updateReachability. Note that updateReachability also performs cycle detection in the

reachability graph.

5.1.3 Summary

Because symbols are just references to memory and because all types inherit from the

MemoryObject class, at runtime symbols are just memory objects or links to memory objects.

To maintain the reachability (i.e. potential memory accesses) of a memory object, we

perform dynamic reachability analysis every time a link assignment occurs. This means

that dynamic reachability analysis takes place (potentially in parallel) during task execution.

The next section discusses how the results of dynamic reachability analysis (signatures of

master nodes representing reachability) are used to generate more precise read/write sets

for tasks before tasks are executed in order to increase parallelism in SvS (e.g. by removing

unnecessary implicit dependencies) while still maintaining correctness.
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Algorithm 2: Refinement
Input: Task parent

Output:

begin1

foreach child ∈ implicitDependents(parent) do2

if not ( isDynamic(parent)) and not ( isDynamic(child)) then3

psig = getSignature(parent)4

csig = getSignature(child)5

if not( conflict(parent,child)) then6

removeDependency(parent,child)7

end8

else9

if doPropagate(parent) and ( atomic dec(parentsNotReady(child))10

== 0) then

propegateSchedulingDomain(parent,child)11

removeDependency(parent,child)12

end13

end14

end15

end16

5.2 Refinement

The purpose of dynamic refinement is to utilize the results of dynamic reachability analysis

in order to generate more precise read/write sets and compare these sets between tasks

in order to potentially remove unnecessary implicit dependencies that were created during

static analysis. The algorithm for this process is shown in algorithm 2.

The refinement algorithm is executed when a task becomes runnable, as defined in section

3.1. As depicted in algorithm 2, a runnable task (parent) iterates through each child (i.e.

dependent) for which an implicit dependency (parent, child) exists, and for each one, it

checks to see if both parent and child are not dynamic. Recall from section 3.1 that a task

is dynamic if it is the consumer task of a dataflow dependency. We describe the situation
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where one or both of parent and child are dynamic later in this section. Otherwise, if both

tasks are not dynamic, then signatures representing their read/write sets are compared

and if there is no overlap we can safely remove the dependency between parent and child.

This may cause child to become runnable and be executed concurrently with parent, thus

increasing parallelism.
Algorithm 3: run-time calculation of a signature to represent all possible memory

accesses that a task will make
Input: Task T

Output: Signature S

begin1

Let LT = symbols(T)2

foreach symbol ∈ LT do3

if symbol is not local then4

S + = getSignature(symbol)5

end6

end7

return S8

end9

The signatures representing the read/write sets of parent and child are generated by call-

ing getSignature, which is outlined in algorithm 3. Each task in SvS has a getSignature

function that implements this algorithm; the code for getSignature is generated by the

translator using the symbols collected during static analysis. Note that at run-time, these

symbols become references to memory objects. Therefore, a composite signature for the

task is created by iterating over each symbol and adding the signature representing the

reachability of the underlying memory object to the signature representing the read/write

set of the task. Note that we only iterate over symbols (memory objects) that are global

in scope or are received links to memory objects, since they potentially reference shared

memory. Symbols defined locally in a task are not visible outside the scope of the task and

can be safely ignored because in order to reference shared memory, it must be the case that

at some point a global or received symbol was aliased and any arbitrary link dereferenc-

ing/traversal will be encompassed by the reachability of that memory object. This follows

from the points-to analysis rules in section 4.2 and the definition of dynamic reachability
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analysis.

Complications arise when one or both of parent and child are dynamic tasks. Because

dynamic tasks are consumer tasks that receive data, their data accesses are dependent on

the data they receive and therefore the result of getSignature is dependent on the received

input. One way to resolve this issue is to make the conservative decision to leave the implicit

dependency in place at the cost of potentially limiting parallelism. Instead, we attempt to

optimistically remove the implicit dependency and defer read/write set comparison on to

the scheduler. This is what is happening on lines 10 to 12 of algorithm 2 and the mechanism

that allows us to optimistically remove dependencies is described in chapter 6. Note that

optimistically removing a dependency is not the same as the optimistic execution that

occurs in speculative parallelism. Optimistically removing a dependency during dynamic

refinement just means that the dependency is removed without checking read/write sets

because the checking of read/write sets will be performed by the scheduler instead. The

scheduler still performs the checks to detect potential conflicts before tasks are executed, as

opposed to performing checks during or after task execution as is the case with speculation.

There is another complication regarding dynamic tasks that is not addressed by dynamic

refinement. Because the instances of dynamic tasks are generated dynamically, we do not

have any dependency information for individual instances, only the collection of all instances

when considered as a single, serial task. In order to avoid having to serialize all instances of

a data-parallel consumer task, we again defer dependency checking on to the scheduler. It

is then the scheduler’s job to efficiently compare the read/write sets of (potentially many)

task instances in order to dispatch task instances with non-overlapping memory accesses.



Chapter 6

Scheduling

The key role of the task scheduler is to ensure that any two concurrently executing task

instances have non-overlapping read-write sets. In the absence of dynamic tasks, the job

of the task scheduler is trivial: if all the dependencies of a task have been satisfied or

removed by dynamic refinement, the task can be immediately executed. This is because

any remaining implicit dependencies after dynamic refinement are sufficient for protecting

shared state accesses. So if a task is runnable, all its dependencies have been satisfied and

thus will not conflict with any other task.

However, as described in the previous chapter, dynamic tasks introduce more complex-

ity. If, during dynamic refinement, an implicit dependency is optimistically removed, it is

up to the scheduler to check to see whether a dependency in fact exists once input data

becomes available. The scheduler is also responsible for efficiently comparing the read/write

sets of (potentially many) task instances of data parallel consumer tasks in order to extract

parallelism by dispatching task instances with non-overlapping read/write sets. The mech-

anism for coordinating this between instances of the same task or different tasks is called

scheduling domains.

6.1 Scheduling Domains

A scheduling domain is comprised of three main components:

1. A set of runnable task instances to be scheduled

29
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2. A signature representing instances that can be co-scheduled and/or are currently ex-

ecuting

3. A distributed algorithm that mediates the co-scheduling of instances and manages the

shared signature and other state required by the algorithm

While there are many ways to implement the co-scheduling of task instances using

scheduling domains, the basic process is as follows: as input becomes available, read/write

sets are generated for task instances. Task instances then compare their read/write sets to

the domain signature and if there is no overlap, they add their individual signatures to the

domain signature and execute. If there is overlap, the execution of the instance is deferred

until it is safe to run.

The process of assigning tasks to domains is described in lines 10 to 12 of algorithm

2. We call this method strict propagation. Strict propagation ensures the following set of

properties:

1. A parent task shares a domain with its children (i.e. propagates its domain to a child)

2. A child that is assigned a domain does not propagate it to other tasks

3. If a child has multiple parents, it only shares a domain with one of them

4. Tasks are assigned a single domain

5. Multiple tasks may be assigned to the same domain

The first property just provides a source for creating and assigning domains, and the

second property prevents domains from encompassing too large a region of the task graph.

For example, without the second property, a domain created by a parent that is a root

of the task graph may end up assigning all tasks in the graph to its domain. This is not

optimal because there will be many task instances in the domain that will never access the

same memory and therefore we incur unnecessary overhead by comparing the signatures

of non-conflicting tasks against each other. The third and fourth properties reduce the

complexity of the algorithm. Under a different scheme, we could allow tasks to be part

of multiple domains. However, in order for an instance of a task to run, it would have to

essentially “lock” each domain in order to prevent changes to the domains while the task
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instance compares its read/write set against each domain’s signature, which would create a

large critical section.

With relation to algorithm 2, the two conditions on line 10 ensure properties two and

three. The call to doPropagate ensures property two by returning true if parent has not

already been assigned an instance by one of its parents. The expression

atomic dec(parentsNotReady(child)) == 0

guarantees property three by checking to see if parent is the last of child’s parents to be

made runnable. If these two conditions are true, then we (optimistically) remove the implicit

dependency and assign the domain of parent to child.

1 2 2 2 1 1

A B C

0 1 1 2 1 1

A B C

0 0 0 1 1 1

A B C

0 0 0 0 0 0

A B C

Start Refine A

Refine B Refine C

Figure 6.1: Example of SvS scheduling domain propagation. Domains are represented by
the dashed boundaries.

Figure 6.1 demonstrates how strict propagation works. In the figure, tasks A, B and C

are being considered for refinement. While this process happens in parallel, we will describe

it in a serial fashion for ease of explanation. Assume that all tasks in the figure are dynamic.

First, task A decrements the parentsNotReady counter of each of it’s children. It succeeds

in decrementing one of these counters to 0 and thus shares its domain (represented by

the dashed region) with the child and leaves the dependencies with its other two children

intact. B then does the same, removing dependencies and sharing its domain with two of
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its children while leaving one dependency unbroken. Finally, C succeeds in removing all of

its dependencies with its children. Note that as dependencies are removed, some children

become runnable and are able to execute concurrently in the same domain as their parent.

While some dependencies remain, additional parallelism has (potentially) been uncovered.

It is important to note that unless there is a remaining implicit dependency between tasks

in different domains, two task instances from different domains will never conflict allowing

instances in one domain to be scheduled independently of instances in other domains.

Once a task becomes runnable and is assigned a domain, it executes the domain’s

scheduling algorithm. We have developed two different domain scheduling algorithms, pro-

gressive and staged, which we present in the following sections.
Algorithm 4: Progressive Scheduling Domain Algorithm

Input: Task T , input queue inputQueue and the SvS instance I assigned to T

begin1

while needsThreads() do2

if not( isResetting(I)) and pop(inputQueue,input) then3

currentSig = getSignature(T ,input)4

if atomic compare and update(I,currentSig) then5

execute(T ,input)6

else7

push(inputQueue,input)8

end9

end10

resetState(I)11

end12

end13

6.1.1 Progressive

The progressive algorithm is outlined in algorithm 4. The primary object of this algorithm

is to try and immediately execute task instances. The key mechanisms that facilitate im-

mediate execution are encapsulated in calls to atomic compare and update. This function

atomically compares the signature of the current task instance to the domain signature rep-

resenting all currently executing instances in the domain. If there is no conflict, the task’s
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signature is added to the domain’s signature and the function returns true. Otherwise,

the domain signature is not updated and the function returns false. During each call to

atomic compare and update, some state related to the domain’s signature is also atomi-

cally updated. If atomic compare and update returns true, it is safe to execute an instance

of the task. Note that once a task instance’s signature has been added to the domain sig-

nature it cannot be removed. Therefore, after several tasks complete execution, the domain

signature becomes stale and occasionally needs to be reset. When tasks call resetState,

the state of the signature is checked and if it needs to be reset, a single task instance (and

the thread it is running on) is elected to reset the domain signature and its state. While

this is happening, other tasks are prevented from being executed by calling isResetting.

Finally, the needsThreads function just signals to threads whether or not the domain can

currently utilize more threads to execute the domain algorithm. If needsThreads returns

false, threads will look for other domains to work on.

6.1.2 Staged

Algorithm 5 provides the staged method of executing task instances in a domain. A stage

refers to a working set of task instances that can be safely executed in parallel where the

creation and execution of one stage must complete before the next stage begins. When

threads enter a stage, a single thread is elected to create the working set by comparing the

signature of a task instance to the signature of the working set and if there is no conflict,

the instance is added to the working set. If there is a conflict, the execution of the task

instance is deferred to a later time. During this process, information related to the state

of the signature is updated (as is done in the progressive algorithm) in order to determine

when the working set/stage should be released. When it is determined a stage should be

released, doRelease returns true and the stage is released for execution. Note that while

the working set/stage is being constructed, no other task instances in the domain are being

executed. Once released, threads concurrently execute task instances in the working set

and all threads wait (by calling stageWaitAndReset) for all task instances in the working

set to complete before moving onto the next stage. The key differentiation between the

progressive and staged algorithms is that the staged algorithm alternates between phases

of stage creation and execution rather than trying to immediately execute task instances.

While the stage creation phase creates an, albeit small, bottleneck, when compared to

the progressive algorithm the staged algorithm decreases contention over the inputQueue,
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requires less synchronization, and is better at balancing load across threads in situations

where available parallelism is lacking. As a result, we have found the staged algorithm to

generally be more efficient than the progressive algorithm.
Algorithm 5: Staged Scheduling Domain Algorithm

Input: Task T , input queue inputQueue and the SvS instance I assigned to T

begin1

while needsThreads(I ) do2

if not ( releaseStage(I )) and becomeStageMaker(I ) then3

reset(I )4

while not ( doRelease(I )) and pop(inputQueue,input) do5

currentSig = getSignature(T,input)6

if not conflict(currentSig,signature(I )) then7

updateStateSuccess(I,currentSig)8

push( workQueue, input)9

else10

updateStateConflict(I )11

push(inputQueue,input)12

end13

end14

releaseStage(I ) = true15

end16

if releaseStage(I ) then17

while pop(workQueue, input) do18

execute(T,input)19

end20

stageWaitAndReset()21

end22

end23

end24



CHAPTER 6. SCHEDULING 35

6.2 Ensuring Correctness

It is important to underscore that SvS always generates a correct parallelization of the

code written in CDML. The first step of this is the static task dependency analysis of the

code, which builds a task graph that may contain unnecessary dependencies, but guarantees

that shared memory accesses are protected. At run-time, SvS performs dynamic reacha-

bility analysis to generate more precise read/write sets for tasks and dynamic refinement

uses these read/write sets to potentially remove unnecessary dependencies, thus enabling a

greater degree of parallelism while still ensuring correctness. In the cases where SvS lacks

static dependency information between dynamic task instances or dynamic refinement op-

timistically (i.e. without checking read/write sets) removes an implicit dependency, SvS

defers the checking of read/write sets onto the task scheduler. The end result is that SvS

automatically prevents conflicting accesses to shared memory by determining the potential

read/write sets of tasks before tasks are executed, and schedules tasks such that no two

concurrently executing tasks have overlapping read/write sets.



Chapter 7

Evaluation

In this chapter, we evaluate our implementation of the SvS framework on a series of micro-

benchmarks, existing parallel benchmarks, and a large scale example from the video game

domain. In section 7.1, we provide a discussion of the effects of static analysis on schedul-

ing and define the focus of our evaluation. We begin our quantitative analysis in section

7.2, providing several experiments utilizing micro-benchmarks to demonstrate the primary

parameters and costs associated with SvS. In section 7.3, we present two benchmarks from

the PARSEC suite [16]: Fluidanimate and Canneal. PARSEC was chosen as a well known

parallel benchmark suite that will help put the performance of SvS into perspective with ex-

isting parallel programming environments that require manual shared memory management.

Finally, we have implemented a video game benchmark that focuses on entity management

and artificial intelligence systems for managing and controlling the actions and movements

of numerous agents. We chose to test SvS with a game benchmark because game engines

have been profoundly affected by the shift to multi-core architectures and parallel program-

ming. The complexity and tightly coupled interactions of numerous subsystems can rival

operating systems, making the problem of protecting accesses to shared state extremely

difficult [4], thus making it an attractive testbed for SvS. On top of this, they have high

demands on performance and can greatly benefit from parallelization, if done efficiently.

The complexity of these systems also means that converting a serial game engine into a

parallel task-based model is almost insurmountable. Even in industry, it is instead often

more preferable to re-implement a parallelized engine from the ground up. Our video game

benchmark presented in section 7.4 represents our current efforts towards this goal.

For different experiments, we compare an SvS implementation, written in CDML, to

36
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implementations using Intel Threading Building Blocks (TBB) [2], Software Transactional

Memory (STM) with the Dresden TM Compiler [20] and TinySTM++ library, and pthreads.

In all SvS implementations, we use the staged scheduling domain algorithm as we have found

it to perform better than progressive in most cases. Our experiments were run on a machine

with two Intel Xeon E5405 chips with four cores each. Each two cores share a 6MB L2 cache

for a total of 12MB per chip.

7.1 Effects of Static Analysis on Scheduling

Conservative decisions during static analysis motivate the need for dynamic analysis, and

are easily handled by dynamic refinement when considering static, single instance tasks.

However, conservatism becomes problematic for scheduling when unnecessary implicit de-

pendencies are placed between data parallel tasks. If the unnecessary implicit dependency

is not optimistically removed, then the instances of one operation must complete before

instances of the other begin, causing a much greater decrease in potential parallelism than

there would be if two single instance tasks were being considered. Even if the dependency

is removed, many task instances that do not conflict will share a scheduling domain, and

thus we unnecessarily pay an extra cost (e.g. increased potential for false positives).

While the effects of static analysis on dynamic analysis and scheduling are an expected

source of overhead in our system, our rudimentary static analysis, implemented primarily for

completeness and proof of concept and not accuracy, has a greater propensity to exaggerate

this overhead because it is far more conservative than more modern implementations. Our

primary contribution, and thus the focus of our evaluation, is demonstrating the feasibility

of using dynamic reachability analysis to determine a task instance’s potential memory

accesses before it runs and subsequently protecting concurrent access to shared memory by

comparing read/write sets of many task instances and scheduling non-conflicting instances

to run concurrently, as orchestrated by our scheduling domain algorithms.

For these reasons, we have chosen benchmarks that are composed primarily of pipelined

or independent data parallel operations that require SvS to schedule instances within a

data parallel operation. However, instances of different tasks in these tests do not access

the same memory, and thus no implicit dependencies are required between tasks. In order

to avoid being penalized by the simplistic implementation of our static analysis, we disable

our points-to analysis in our experiments and only perform the symbol collection necessary
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for dynamic analysis. Therefore all protection of shared state is handled dynamically by

scheduling domains and dynamic reachability analysis, which are the main contributions of

this work.

7.2 SvS Overhead

In this section, we provide an evaluation of the primary parameters and costs associated with

SvS. SvS has two main run-time costs: false positives and the absolute cost of performing

dynamic reachability analysis during link assignment. False positives can lead to reduced

parallelism, and there are several sources for false positives in SvS. First, having fixed

sized signatures means that false positives occur as a result of signature hashing. Also,

because internal nodes share the signature of a master node, there may be memory objects

encoded in the signature that an internal node can not actually reach. Finally, our current

implementation of dynamic reachability analysis conservatively provides results for the full

reachability of a memory object, even though a task may only access a portion of this set

of potential accesses.

The key parameters governing the costs of false positives and link assignment are signa-

ture size, master neighbourhood size, and reachability graph size and shape (i.e. connectiv-

ity). In the following sections, we break down our analysis into two categories: signatures

and dynamic reachability analysis.

7.2.1 Signatures

As mentioned in section 5.1.1, false positives can occur during signature comparison, po-

tentially limiting parallelism. We define parallel width to be the number of tasks that are

able to execute concurrently at a given time. In the staging algorithm, this is the size of the

workQueue each time it is released. In the the simplest case where a task accesses a single

memory object, using signatures limits the theoretical maximum parallel width to the size

(in bits) of the signature.

To demonstrate how signature size affects parallel width, we have designed an experiment

consisting of a single producer task that sends unique memory objects to a data-parallel

consumer task. The consumer task simply writes to a field of a received object. Note that

the objects sent by the producer are single memory objects with no links as members (i.e.

its reachability is static). Therefore, when an object is queried for its reachability, it just
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Figure 7.1: Parallel width for 128,000 task-instances under varying signature sizes

returns a signature representing its static reachability: a signature with a single bit set by

hashing the id of the memory object. This means that there will be no false positives due

to master nodes or dynamic reachability analysis. Therefore, since all objects are unique,

any detected conflicts are strictly due to false positives caused by signature size.

Figure 7.1 provides the average parallel width (y-axis) for varying signature sizes (x-axis)

when the producer sends 128,000 objects. (This number was chosen to reflect the number

of particles involved in modern fluid dynamics simulations). To measure parallel width, we

just record the size of the workQueue each time a stage is released. The average parallel

width was calculated over 100 executions of the producer and consumer.

Note that for all signature sizes, we (approximately) achieve the theoretical maximum

parallel width and therefore the graph shows a linear increase in parallel width as signature

size increases. This demonstrates that the staging algorithm is often successful in finding

a task instance with a signature that does not conflict with the signature of the instances

already added to the workQueue.

It is also important to note that the computational cost of increasing signature size is

negligible. We have experimentally determined the cost of setting a bit to be about 10

cycles, and the cost of checking overlap on a 64-bit machine to be about n
64 ∗ 10 cycles,

where n is the number of bits in the signature. Finally, the bitwise operations used when

comparing/calculating signatures are prime candidates for vectorization.

Because parallel width increases with signature size and the computational cost of in-

creasing signatures is small, the overall cost of using signatures does not have a significant

impact on the performance of SvS. In our experiments, we have found a signature size of
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512 to be practical and sufficient.

7.2.2 Dynamic Reachability Analysis

Dynamic reachability analysis has two primary costs associated with it that contribute to

the overhead of SvS. The first cost is the absolute cost of performing dynamic reachability

analysis, i.e. performing a link assignment. The second cost is false positives that occur

due to memory objects in a neighbourhood sharing the same reachability signature: the

signature of the master node representing that neighbourhood. Another source of false

positives is conservativeness in dynamic reachability analysis. Any false positives will in

turn affect parallel width.

In general, absolute cost and parallel width are affected by the size (number of memory

objects and links) and shape (i.e. layout/connectivity) of reachability graphs. In the case

of absolute cost, larger reachability graphs potentially (although not necessarily) lead to

more expensive reverse breadth first searches during link assignment. Also, since memory

objects share the signature of a master and the reachability of a master is greater than the

reachability of its successors, the larger the graph, the larger the potential for false positives

due to sharing master-node signatures. The effective size of reachability graphs is regulated

by the size of a master node’s neighbourhood: the larger the neighbourhood, the fewer the

master nodes in a reachability graph.

The following experiments demonstrate how absolute cost and parallel width are affected

by the size of a reachability graph and the size of master neighbourhoods. Because dynamic

reachability analysis is also affected by the shape of reachability graphs, it is important to

give consideration to the data-structures that we used for these experiments. The micro-

benchmark that we implemented builds a binary space partitioning (BSP) tree of depth

d. BSP trees are commonly used data-structures in computer graphics algorithms and are

generated by continuously bisecting a space and creating nodes to represent each resulting

bisection. It is also common for the leafs of a BSP tree to store pointers to all the objects

(e.g. game entities or polygons) that are located in the space represented by each leaf.

Therefore each leaf also contains a linked list of objects (in our case game entities). If the

spaces represented by leafs are small enough, each leaf will likely point to one or zero objects.

The entities pointed to by leafs are also stored in a global linked list and each entity contains

a list of “items”.

To simulate the assignment of entities to partitions represented by the leafs of a BSP
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tree, the producer sends out (leaf, entity) pairs and the consumer performs the associated

link assignment, along with synthetic work. The (leaf, entity) pairs sent by the producer

ensure that each entity is assigned to a unique leaf. In this case, no synchronization is

actually required to protect the assignment of the entity to the leaf.

Using this micro-benchmark, we perform three experiments, which respectively demon-

strate how absolute cost, parallel width, and overall overhead varies as the number of

memory objects, and the size of neighbourhoods change. In all experiments, we demon-

strate results for approximately 20,000 (d = 10, entities = 1000) and 40,000 (d = 11,

entities = 2000) total memory objects. We ran all three experiments using 8 threads and a

signature size of 512.

Absolute Cost

For absolute cost, we measured the time it takes a consumer to perform a link assignment

under varying neighbourhood sizes. The results are shown in figure 7.2, with the cost in

microseconds on the y-axis and neighbourhood sizes (maximum number of internal nodes

per neighbourhood) on the x-axis. Figure 7.2 demonstrates that as neighbourhood sizes

increase, the cost decreases from about 7.2-4.6µs and 7.6-5.0µs for 20,000 and 40,000

objects respectively. There is also a slight overall increase ( 5.4%-7.6%) in cost going from

20,000 objects to 40,000 objects. Therefore, neighbourhood size appears to have a more

significant affect on cost than the size of reachability graphs.

Note that it is important to put the absolute cost of dynamic reachability analysis into

perspective. For example, acquiring a mutex lock (that does not actually protect any code)

can take anywhere from a hundred cycles to as much as 20µs, depending on the level of

contention. The cost of dynamic reachability analysis (and SvS in general) is not affected

by the amount of contention/sharing in an application. Also, although we are paying a

cost during link assignment, SvS does not pay the cost of conflict resolution paid by other

techniques such as STM. In sections 7.3 and 7.4 we demonstrate, with real applications,

that the costs of SvS are outweighed by its benefits.

Parallel Width

Figure 7.3 demonstrates the change in parallel width (y-axis) as we increase neighbourhood

sizes (x-axis). We measured the parallel width as described in section 7.2.1. Here we
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see that parallel width is dramatically affected by the size of master neighbourhoods. As

neighbourhood sizes increase, more memory objects share the same signature and master

nodes decrease. As the number of master nodes decrease, their respective reachability

increases, thus increasing the chances of conflict between the reachability of master nodes.

This accounts for the dramatic decreases in parallel width demonstrated by both curves in

figure 7.3. Note also that the size and shape of the reachability graph also have a dramatic

effect on parallel width. For neighbourhood size 2, parallel width drops from 140 to 18 when

going from 20,000 to 40,000 memory objects. This change is the result of how master nodes

are placed in the reachability graph. When we construct a binary tree, it turns out that if

the tree has an odd number of levels (as is the case for 20,000 objets) and a neighbourhood

size of 2, all leafs of the tree are master nodes and thus have precise reachability. Because

the signatures for task instances are built from the reachability of leafs, this means there

will be fewer false positives when comparing the read/write sets of task instances. However,

for an even number of levels, two leaves will share the master node of their parent (which

is the parent itself). Because sibling leafs share a master node, they cannot be processed

in parallel since they also share the same reachability signature. Additionally, leafs will

have larger reachability (the reachability of their parents), further increasing false positives

and affecting parallel width. How parallel width, along with link assignment, affects overall

performance is described in the next section.

Overall Overhead

The goal of this section is to precisely define the actual cost incurred by using SvS in

our system. If our system had zero overhead, we would be able to achieve the theoretical

maximum parallel speed up, and thus our theoretical execution time of the consumer would

be:

Tparallel =
N ∗ δ

C
(7.1)

where N is the number of task instances to be scheduled, δ is the minimum task completion

time and C is the number of available threads/cores. Note that N ∗ δ just defines the

minimum serial execution time of the consumer in a system with zero overhead. We can

then calculate the worst case overhead of our system by measuring the execution time of the

consumer in our micro-benchmark and calculating the difference between the actual parallel
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Neigh. Size Graph Size Link Assign. Scheduling False Pos.’s Total
2 20K 7.22 2.81 1.26 11.29

40K 7.61 3.52 19.72 30.84
4 20K 5.62 3.19 22.01 30.82

40K 6.05 3.46 19.44 28.95
8 20K 4.63 4.02 52.11 60.76

40K 4.96 4.05 52.40 61.40

Table 7.1: Breakdown for the average per-task instance overhead (in µs) of SvS.

runtime to the theoretical runtime given by equation 7.1. However, using equation 7.1 as

our baseline means that the calculated overhead will not only include the overhead of SvS,

but also the unavoidable overhead of any task scheduling system. In order to isolate the

overhead incurred by SvS, we use the following baseline: the execution time of the consumer

when SvS is disabled in our system. When SvS is disabled, dynamic reachability analysis is

not performed and the task scheduler does not compare the read/write sets of task instances

in order to schedule them, it just schedules task instances to be executed immediately. We

can then rearrange equation 7.1 as:

δ =
Tparallel ∗ C

N
(7.2)

where Tparallel is the execution time of the consumer when SvS is disabled. We can safely

disable SvS in our micro-benchmark because no sharing actually occurs. Note that δ provides

an average per task execution time which serves as more meaningful baseline as it includes

the minimum execution time of a task instance and the average minimum overhead required

to schedule a task instance in our system. We can then measure the execution time of

the consumer with SvS enabled, and calculate the difference between δ(SvSEnabled) and

δ(SvSDisabled) in order to provide a more precise measurement of the overhead of SvS.

Figure 7.4 shows on the y-axis the resulting average per-task instance overhead of SvS –

δ(SvSEnabled)− δ(SvSDisabled) – for different neighbourhood sizes (x-axis).

We see that for 20,000 objects, the per-task-instance overhead (µs) increases as neigh-

bourhood sizes increase. This is because the decrease in parallel width dominates the de-

crease in link assignment cost as neighbourhood sizes increase. For 40,000 objects, there is

virtually no decrease in parallel width between neighbourhood sizes 2 and 4 and therefore
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we see a slight decrease in overhead due to a decreased link assignment cost. After a neigh-

bourhood size of 4, overhead begins to increase. Overall, we see overheads ranging from 11

to 61µs.

The per-task instance overhead of SvS in figure 7.4 includes the overhead of both link

assignments and false positives (decreased parallel width) as well as the extra costs for

scheduling in SvS (e.g. read-write set comparison to schedule tasks). In order to further

break-down the overhead of SvS, we ran another experiment (which we label ZeroSig) where

we changed the getSignature function for task instances to return an empty signature

(all bits equal to 0). This means that SvS will not detect any conflicts (which are all

false positives in our benchmark) and therefore will only include link assignment and SvS

scheduling overhead. Therefore we can calculate the difference of the per-task overheads of

SvSEnabled and ZeroSig in order to get the amount of overhead caused by false positives.

Furthermore, because each task instance performs a single link assignment, we can just

subtract the absolute link assignment cost from the overhead for ZeroSig in order to get

the SvS scheduling overhead. The breakdown of overhead for false positives, link assignment

and scheduling in SvS is provided in table 7.1.

7.2.3 Discussion

One crucial characteristic of SvS is that its overhead is not dependent on the amount of

sharing in the system. Rather, it depends on a few internal parameters and, more pre-

dominantly, the size and shape of data-structures and their resulting reachability graphs.

This is fundamentally different from existing techniques where performance decreases as

the amount of sharing increases (e.g. contention over shared locks, communication over-

head from synchronization, and cost of transaction aborts). This is not the case for SvS.

In fact, since SvS knows the memory accesses of tasks before they execute, in can mitigate

sharing conflicts by grouping together non-conflicting tasks. This is an important distinc-

tion between SvS and existing techniques. We demonstrate in the next sections that this

distinction leads to SvS being able to perform as well as, or better than several existing

techniques, with the added benefit that it performs shared state protection automatically.
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Figure 7.5: Runtime of Fluidanimate for varying number of threads
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7.3 PARSEC

PARSEC is a parallel benchmark suite designed to represent state-of-the-art parallel work-

loads [16]. While the majority of these benchmarks are embarrassingly parallel (i.e. no

shared memory accesses) and thus do not need SvS, we converted Fluidanimate and Can-

neal which do have shared state conflicts and thus require synchronization. Both of these

benchmarks operate on objects (often array elements) that do not have any links as members

(i.e. objects with static reachability) and thus represent a real world case where dynamic

reachability analysis is not actively updating reachability due to the absence of link assign-

ments. For all PARSEC experiments, we used the simlarge dataset as input.

7.3.1 Fluidanimate

Fluidanimate performs fluid dynamics simulation by dividing a 3D space into partitions

of cells containing particles where each partition is assigned a thread/core. When a cell

is updated, the values of adjacent cells are are also updated. Internal cells of a partition

(those not on a partition boarder) can be updated without synchronization, while boarder

cells require locking. In the SvS implementation, writes to shared cells are never executed

concurrently, thus automatically protecting boarder cells. This enabled us to increase the

number of partitions and thus increase available parallelism. Figure 7.5 demonstrates the

average runtime (in seconds, y-axis) for varying number of threads (x-axis) and compares

SvS to the existing third party TBB and pthreads implementations of Fluidanimate. It is

difficult to see in the figure, but the TBB and pthreads implementations have almost identi-

cal performance. SvS closely resembles the performance of both third party implementations

and is 81 and 51 ms faster than TBB and pthreads respectively at 8 threads. Note that

the TBB and pthreads implementations use fine-grained locking in order to protect shared

state, while SvS does not require the programmer to perform any explicit synchronization.

These results demonstrate that SvS is able to match (and even exceed) the performance of

existing parallel programming techniques, with the added benefit that the programmer does

not have to managed concurrent accesses to shared memory.

7.3.2 Canneal

The Canneal benchmark is a place-and-route simulation that uses simulated annealing to

minimize routing costs on chips. The algorithm iteratively finds better solutions by choosing
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two random elements and swapping them if doing so leads to a more optimal solution. The

provided pthread implementation performs swaps in parallel using atomic pointers which

protect concurrent swaps using an atomic compare-and-swap (CAS) operation. In our SvS

implementation, a data parallel consumer task receives integers used to look up pairs of

elements in order to perform a swap. If two swaps share an element in common, then

SvS prevents these swaps from happening concurrently. Figure 7.6 compares the execution

time of the parallel section of Canneal (in seconds, y-axis) for varying number of threads

(x-axis) between SvS and the existing pthreads implementation of Canneal. At 8 threads,

SvS out performs the pthread implementation by 230 ms. The noticeable difference in

performance is due to the pthreads version’s heavy use of atomic CAS operations to perform

swaps in parallel. SvS, however, avoids the communication and contention overhead of

synchronization by only allowing the elements that can be swapped safely to be processed

in parallel.

7.4 QuakeSquad

Artificial Intelligence (AI), determining the actions of game entities, and Entity Manage-

ment, managing the movements and interactions of game objects, together make up one

common game subsystem that is notoriously difficult to parallelize [5]. This is because AI

involves arbitrary, complex logic, making it difficult to discover where, when and how data

accesses occur. Also, the large number of interactions and movements involved in Entity

Management means that several modifications may be made to a single object in one frame,

where objects may contain arbitrary links and may be stored in several different dynamically

linked data structures. These complicating factors, coupled with a potentially large amount

of shared memory accesses, make this system a primary concern for parallelization.

We took the approach of Lupei et al [29] with their SynQuake benchmark and created

an application, QuakeSquad, that captures the essential computational patterns and data

structures of video games while remaining simple enough for meaningful testing.

QuakeSquad consists of a two dimensional world with four types of entities (bombs,

walls, citizens and techs) that are governed by the following rules:

• Bombs explode reducing the health of citizens and techs within a set radius and if

they are not obstructed by a wall.
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• Bombs ‘project’ fear onto citizens and technicians who are within a set distance and

in the line of sight of the bomb.

• Fearful citizens will move away from the closest source of fear while a calm citizen will

move randomly.

• Calm citizens will not move into an area where it would be subject to fear.

• Techs will move toward the closet source of fear and if the tech touches a bomb it is

disarmed.

With a large number of entities in the system, ‘line-of-sight’ tests for occlusion are

very expensive, thus making them prime candidates for parallelization. Before paralleliza-

tion, we apply a common optimization employed in game engines: spatial partitioning. In

QuakeSquad, the world is divided into a grid where each cell contains a linked list of the

entities residing in that cell. As entities move from one cell to another, they are removed

from the list of the previous cell and added to the list of the destination cell. Applying this

optimization of spatial partitioning prevents each line-of-site test from having to consider

every entity in the world.

However, even with this optimization, occlusion testing still dominates computation and

so it is the focus of our parallelization efforts. These tests occur most frequently when

citizens move from one cell to another and when bombs project fear onto unobstructed

entities within their radius of effect. When parallelizing these tests, several concurrent

shared memory accesses are exposed.

In the case of bombs projecting fear, we have an UpdateBombs producer task that

for each bomb does a fast computation to collect all techs and citizens in the bomb’s radius

of effect and stores these techs and citizens in separate linked lists. It then sends each of

these lists (one for techs and one for citizens) to two separate data parallel consumer tasks.

These consumer tasks then perform expensive line-of-site checks to see if the fear should be

applied. Because two bombs may have overlapping radiuses, it is possible for two linked lists

to contain the same tech or citizen. Therefore accesses to the entities in these linked lists

must be protected. Because SvS uses dynamic reachability analysis to detect what memory

objects are present in a list, task instances that are accessing linked lists with common

entities will not be executed concurrently.
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Figure 7.7: Comparison of frame computation times (µs) for SvS, TBB, and STM

Before a citizen moves, it performs line-of-site checks to avoid moving into an area with

bombs. In order to perform these checks, it needs access to the adjacent cells surrounding

the current location and the adjacent cells surrounding the destination cell. To parallelize

this task, an UpdateCitizens producer task distributes citizens along with all the linked

lists stored at each cell location involved in the computation. Because a citizen moving

from one cell to another means it modifies the source and destination lists, it is possible

for citizens to either modify the same linked lists or to modify a list that another citizen

is reading. Again, SvS uses dynamic reachability analysis to produce a signature for each

linked list, and the results are used to generate signatures for task instances.

We also implemented parallelized versions of QuakeSquad using TBB and STM. Figure

7.7 shows a comparison of the average frame computation times (in microseconds, y-axis) for

varying numbers of threads (x-axis) between SvS, TBB, and STM. Using SvS, we were able

to decrease average frame computation time from 1,226 to 436 µs. Due to the high cost of

transaction aborts, STM only scales to 4 threads, after which performance begins to degrade.

TBB performs similarly to SvS but has a frame calculation time that is approximately 137

µs slower than SvS at 8 threads due to latency and communication costs of fine grained

locking.

QuakeSquad is a comprehensive example representing a previously difficult to parallelize

subsystem of modern game engines. The performance and scalability achieved by SvS in the

results and its comparison with other techniques demonstrate its ability to utilize dynamic
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reachability analysis to efficiently determine the reads/writes of tasks that access linked data

structures and subsequently concurrently schedule tasks with non-overlapping read/write

sets.



Chapter 8

Related Work

The concept of SvS was first introduced by us in a workshop paper [14], which gave only a

high level overview of the idea. A more developed model and implementation of SvS was

later presented in [15]. Here, we expanded upon this implementation and provided a more

complete and comprehensive description and implementation of SvS.

There are an ever increasing number of parallel environments and language/runtime

combinations such as Chapel [19], Cilk [18], OpenMP [3], Gossamer [36] and Intel’s Thread-

ing Building Blocks (TBB) [2] and Array Building Blocks (ArBB) [1]. However, none of

these environments provide automatic mechanisms for protecting shared memory. Instead,

they generally focus on providing better parallel abstractions to the programmer (e.g. tasks)

that enable the runtime to efficiently break up and map blocks of code to processing cores,

while leaving the programmer to manually manage shared memory accesses with the pro-

vided tools. Because many of these systems support task or annotation based parallelism,

SvS or an SvS-like technique could be implemented in a number of these systems.

The Jade [35] language and Prometheus’ Serialization Sets [7] both address shared mem-

ory protection. Jade proposes a set of parallel extensions to C where a programmer denotes

blocks of code as tasks and specifies their data constraints. Although Jade also schedules

tasks based on their constraints there are fundamental differences. Jade is based around

task-parallelism and constraints must be specified manually by the programmer whereas in

SvS they are derived automatically, thus freeing the programmer from the need to concen-

trate on implicit and hard to spot data dependencies. SvS also allows for the expression

of data parallel operations and automatically detects data dependencies between instances

of a data parallel task. Prometheus’ Serialization Sets work similarly to Jade, but they
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are applied to an object-oriented language and protect memory accesses within an object.

Shared memory protection using SvS is more general.

While there is a large body of existing work on static dependency analysis and compiler

assisted automatic parallelization, OoOJava [25] represents recent work in this field that

similar to SvS attempts leverage simple programmer annotations along with static analy-

sis to automatically protect against race conditions. While OoOJava focuses on powerful

static analysis techniques, SvS compliments this work by addressing the limitations of static

analysis and focuses on dynamic analysis techniques for automatically detecting data de-

pendencies. OoOJava introduces a new static analysis technique, called disjoint reachability

analysis [24] that abstracts collections of objects as heap region nodes and statically infers

connectivity between objects. The result is a set of reachability states that are used to

determine if two objects x and y are disjoint i.e. cannot reference the same heap node. If

it is determined that they might reach the same heap node, in very specific cases they are

able to check at run-time if x = y in order to test for disjointness. Otherwise, they are

forced to conservatively assume a dependency between x and y since they do not have full

reachability information at compile time. SvS addresses this issue by introducing reacha-

bility graphs and dynamic reachability analysis to provide an efficient way to maintain and

extract complete reachability information.

Many techniques that dynamically address the automatic protection of shared memory

are speculative in that they attempt to execute code without explicit synchronization, and

“roll-back” or undo operations if a violation is detected (e.g. conflicting accesses to shared

memory). Software Transactional Memory (STM) [38, 22, 23] is the most prominent of

these techniques. Programmers using STM wrap code that requires protection in an atomic

block (i.e. transaction) and the STM system tracks read/write accesses at runtime and

automatically resolves any conflicting accesses by aborting and retrying transactions. The

key difference between STM and SvS is that SvS determines whether or not two tasks will

conflict before they are executed, whereas STM detects conflicts during and after execution.

This means that STM is less conservative, potentially uncovering more parallelism, but may

be subject to expensive rollbacks. Since rollback costs are high, STM performs well when

most transactions are able to complete successfully. So STM may be advantageous to SvS in

cases where actual conflicts between tasks are extremely rare, but SvS would serialize them

due to the conservativeness of dynamic reachability analysis. This suggests an interesting

direction for future work where we could combine SvS with STM, using STM in cases where
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conflicting accesses to shared memory are rare and SvS in cases where conflicts are more

frequent.

Another prominent parallel programming model based on speculative parallelism is the

Galois [27, 26, 33] framework. Galios differs from SvS in that it focusses on commutativity

(as opposed to data dependency) analysis to automatically ensure a correct ordering of

dependent tasks. Also, due to its speculative nature, it is subject to rollback overheads not

present in SvS.



Chapter 9

Conclusion and Future Work

Synchronization via Scheduling (SvS) is a new framework for efficiently and automatically

protecting concurrent access to shared memory in task graph models. SvS combines static

and dynamic analysis in order to detect the potential memory accesses a task will make

before it is executed, and schedules tasks such that concurrently executing tasks have non-

overlapping read/write sets. SvS introduces a new dynamic analysis technique called dy-

namic reachability analysis that monitors connectivity properties of heap objects in order to

determine more precise read/write sets for tasks. The SvS task scheduler also contributes

new algorithms for efficiently comparing the read/write sets of (potentially many) task in-

stances, thus enabling parallelism while avoiding conflicting accesses to shared memory. We

also present our implementation of SvS and an evaluation of its overhead and performance

in practical applications.

While this work demonstrates the feasibility of SvS, there are many opportunities for

improvement and future research. One direction is to improve the performance of dynamic

reachability analysis using more information from static analysis. For example, if static

analysis determines that only a fixed “neighbourhood” of memory objects are accessed indi-

rectly through memory object M , then reachability information needs only be maintained

for this neighbourhood, thus reducing the cost of link assignment and false positives due

to conservatism in our current implementation. Another source for optimization is better

placement of master nodes. For example, instead of spatially determining master nodes, as

is done in our current implementation, we could use semantic information to inform master

node creation. For example, by using type information, if a list node of type Node assigns its

data link member of type Entity to point to an Entity memory object, it may be beneficial
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to elect the Entity object to become a master because the parent of the link is a different

type. Finally, we currently do not account for signatures in reachability graphs becoming

stale. When a link assignment occurs, new reachability information is propagated, but due

to the nature of signatures, the old reachability information cannot be “subtracted”. One

approach to fix this would be to periodically enter a phase that recalculates reachability

information for memory objects in the system. This phase could be executed in parallel and

infrequently, minimizing the impact on overhead.

We only presented two scheduling domain algorithms, but exploring other strategies

for dispatching tasks with non-overlapping read/write sets is part of our ongoing research.

Additionally, as the specification of the Cascade Data Management Language matures, we

intend to conduct user studies to quantify its potential impact on the parallel programming

community.
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