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Abstract

An important and crucial part of any object oriented image processing procedure is success-

ful image segmentation which, is a method of separating an image into regions of interest.

Our contributions are as follows: (i) We propose a novel method to apply the random walker

method to segment non-scalar diffusion tensor magnetic resonance imaging (DT-MRI) data.

We also extend the implementation by including a non-parametric probability density model

to enable the random walker method to successfully segment disconnected objects. (ii) We

apply the random walker method to both 2nd and 4th order DT-MR data and demonstrate

the advantages of performing segmentations on higher order data. (iii) We use a DTI seg-

mented atlas to investigate tissue discrimination in the brain, which serves to evaluate a

measure of diffusion anisotropy (iv) Finally, we propose a novel method for the segmentation

of the breast from mammograms. The method automatically identifies intensity values that

are used to define a probability distribution used in the segmentation.

Keywords: segmentation; random walker; diffusion tensor magnetic resonance imaging

(DT-MRI); probability density; fourth order; anisotropy; mammograms; medical image

analysis

Subject Terms: medical image analysis; segmentation
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“The most exciting phrase to hear in science, the one that heralds the most discoveries, is

not Eureka! but ’That’s funny...’”

—Isaac Asimov, (1920-1992)

“Keep your eyes on the stars and your feet on the ground”

— Theodore Roosevelt, (1858-1919)
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Chapter 1

Introduction

Diffusion tensor magnetic resonance imaging (DT-MRI) has attracted attention in many

fields such as image processing, computer vision, and medical imaging. To this date, it re-

mains the only non invasive method that provides a mean of distinguishing between anatom-

ical structures of the white matter in the brain. Unlike scalar images where each pixel is an

intensity value, in DT-MR images each voxel is a 3x3 symmetric positive definite diffusion

tensor depicting the anisotropy within the underlying tissue. The diffusion tensor depicts

the degree of and the principle direction of anisotropic diffusion. Several Scalar measure-

ments have been proposed to describe the properties of the diffusion tensor and its diffusion

anisotropy[34].

Image segmentation can be described as the process of separating an image into regions

of interest. Segmentation methods should be able to provide fast computation, avoid over

segmentation and produce accurate and intuitive segmentations. The random walker seg-

mentation method demonstrates those qualities[18]. Therefore, we choose to extend it to

segment DT-MR images.

Segmentation tends to be the first essential and crucial step of most medical image

analysis tasks, since once a region of interest is segmented, one can deduce shape, appearance

and structural features about the region. These qualities in turn can be used for diagnosis

aid or treatment evaluation. There are many applications of segmentation. For example,

we develop a segmentation method for detecting the breast region in mammograms, which

is the first step in a Computer-Aided Detection (CADe) process. Detecting the breast

region allows the radiologist to automatically zoom in on the breast, hence removing the

background and confining the area of which the radiologist should look at and diagnose.

1



CHAPTER 1. INTRODUCTION 2

Most segmentation techniques focus on providing automatic and unsupervised segmen-

tations, by grouping elements according to a predefined criteria such as image intensity

distribution or homogeneity. However, supervised segmentation has gained much attention

in the field of computer vision. The reasoning is that these methods give users the abil-

ity to obtain the segmentation result as necessary for the application on hand. There are

three general types of supervised segmentation methods: (i) The user provides points of the

desired boundary which the algorithm completes. (ii) The user provides an entire contour

or boundary that is close to the object’s real boundary. The algorithm then evolves the

boundary supplied by the user to include the object. (iii) The user provides an initial label-

ing of some pixels as belonging to the desired object to be segmented or to the background.

The algorithm then labels the rest of the pixels appropriately. Correction of an inaccurate

segmentation could be remedied by asking the user to supply more initial seed points.

The random walker segmentation algorithm can be classified under the third type of

supervised segmentation algorithms. Although supervised segmentation algorithms have

attractive qualities since they involve the user, they do tend to be more time consuming for

the user and are not really practical when performing segmentation on a large number of

images. Moreover, they can’t be incorporated in automatic programs that require no user

input, especially when the end user is a radiologist that needs to diagnose and view as many

images as possible in a short time frame. It would be very impractical to involve such a

user in a segmentation process.

1.1 Thesis Contribution

In this thesis we focus on the research and development of two segmentation approaches.

One is a supervised segmentation approach applied to DT-MR images, and another is fully

automatic and unsupervised, which is applied to mammograms. Moreover, we investigate

the ability of anisotropy measures to distinguish between different types of brain tissue. Our

contributions are as follows: (i) We propose a novel approach to apply the random walker

segmentation method to segment non-scalar diffusion tensor magnetic resonance image (DT-

MRI) data. We also extend the implementation by including a non-parametric probability

density model to enable the random walker method to successfully segment disconnected

objects. (ii) We apply the random walker method to both 2nd and 4th order DT-MR data

and compare the results of both segmentation approaches. We demonstrate the advantages
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of performing segmentations on higher order data. (iii) We use a DTI segmented atlas to

investigate tissue discrimination in the brain, which serves to evaluate a measure of diffusion

anisotropy. (iv) Finally, we propose a novel method for the segmentation of the breast area

from mammograms.



Chapter 2

Background

2.1 Diffusion Tensor Magnetic Resonance Imaging

Conventional MRI allows us to identify the major functional centers of the brain (such as

the cortex and nuclei). However, the white matter region in the brain appears homogeneous

and provides no information about the complex arrangement of fiber tracts. On the other

hand, DT-MRI allows the demonstration of anisotropic water diffusion in the brain and

makes it possible to visualize the more complex arrangement of fibers and white matter

structure.

A DT-MRI image voxel reflects the displacement distribution of the water molecules

present within the voxel. The study of this displacement provides information about the

structure and geometric organization of tissues. Molecular mobility and diffusion in tissues

may not be the same in all directions. This anisotropic diffusion could be attributed to tissue

structure or the presence of obstacles that limit molecular diffusion in a certain direction.

In particular, axonal cell membranes and myelin sheaths can restrict the mobility of water.

Thus, the measured DT becomes highly anisotropic and oriented in areas of compact nerve

fiber organization [8]. This anisotropic nature of diffusion of water molecules in tissue can be

described mathematically by a rank-2 tensor. Therefore each voxel of the imaging volume

is a 2nd order 3x3 symmetric positive definite matrix (diffusion tensor) which depicts the

anisotropy within the tissue. The approximated diffusivity function is given by [20]

d (g) = gTDg (2.1)

where g=[g1, g2, g3]
T is the magnetic gradient direction and D is the estimated 2nd order

4



CHAPTER 2. BACKGROUND 5

tensor. In DT-MRI the diffusion weighted echo intensity image (DWI) Sl for different

directions l are measured. These are related to the 3x3 diffusion tensor D through the

Stejskal-Tanner equation

Sl = S0e
−bl:D = S0e

−
∑3

i=1

∑3

j=1
bl,ijDij (2.2)

where bl is a diffusion weighting variable that corresponds to the lth magnetic gradient, ”:” is

a generalized inner product for matrices. D can be estimated using multivariate regression

techniques . Anisotropic diffusion can be described by the equation

∂C

∂t
= ∇ · (D∇C) (2.3)

where C is the concentration of the water molecules and D is a diffusion coefficient which is

the 3x3 symmetric second order tensor. The tensor fully describes molecular mobility along

each direction:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.4)

Fig. 2.1 shows a ”slice” of the diffusion tensor volume data of a human brain data set

used in our experiments (from a publicly available DTI atlas (JHU MNI SS) downloaded

from Johns Hopkins Medical Institute Laboratory of Brain Anatomical MRI

(http://lbam.med.jhmi.edu/)). Each of the six independent components of the symmetric

positive definite diffusion tensor presented in equation 2.4 is shown as a scalar image.

Anisotropic diffusion is best visualized as an ellipsoid where the radius defines the diffu-

sion in a particular direction [34]. Fig. 2.2 shows a graphical representation of a hypothetical

diffusion ellipsoid. The three axes of the ellipsoid (D1,D2,D3) represent the eigenvectors of

the diffusion tensor, whereas the lengths of the axes (E1,E2,E3) are the eigenvalues.

The DT is interpreted by calculating its eigenvalues and eigenvectors. The eigenvector

corresponding to the highest eigenvalue describes the direction of the principle diffusion.

The eigenvalues (λ1, λ2, λ3) and the corresponding eigenvectors (ê1, ê2, ê3) can be obtained

by diagonalizing the 3x3 diffusion tensor. A tensor D can be formulated by its eigenvalues

and eigenvectors [34].

D = (ê1, ê2, ê3)


λ1 0 0

0 λ2 0

0 0 λ3

 (ê1, ê2, ê3)
T (2.5)
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Figure 2.1: Slice of a tensor volume. Each sub-image in the image matrix corresponds to
one component of the tensor D described in equation 2.4

The eigenvalues and eigenvectors of a diffusion tensor can be used to compute scalar

diffusion anisotropy measures. These measures provide a scalar representation of the DT-

MR images and describe the diffusion anisotropy. The significance of these measures is that

they provide the ability to monitor changes in the anisotropic properties of white matter

fiber bundles which could be caused by neurological diseases such as Multiple Sclerosis.

Invariant indices are made of combinations of the diffusion tensor’s eigenvalues. The most

commonly used scalar diffusion anisotropy measure is fractional anisotropy (FA), which is

used to approximate the diffusivity of water in tissue in vivo. FA values have a range of

[0, 1]. Areas that are highly anisotropic have a larger value than areas that are isotropic.

2.2 Existing DTMRI Segmentation Methods

What makes the segmentation of DT-MR images a challenge is the use of an appropriate

metric that can capture the difference or distance between diffusion tensors. When deal-

ing with scalar images, the subtraction of one intensity value from another is sufficient to

quantify the difference between two pixels. Such a metric should incorporate the whole
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Figure 2.2: Graphical representation of a diffusion ellipsoid.

tensor information. Meaning, it should utilize both the eigenvalues and eigenvectors of the

diffusion tensors.

Another challenge with the segmentation of DT-MRI data is the nature of the diffusion

tensors. The diffusion matrix is not rotationally invariant so that the elements in the matrix

do change with different orientations of the sample or field gradient. Therefore an invariant

representation of a tensor that is independent of the frame of reference and the direction of

the field’s gradient is needed.

The method proposed by Zhukov et al[38] focuses on segmenting white matter regions

in DT-MR images. They present an anisotropy measure that is rotationally invariant by

only incorporating the eigenvalues, since the eigenvalues do not change after the rotation of

the tensor’s frame of reference. The anisotropy measure proposed Ca is defined as

Ca =
1

6

[
λ2 + λ3
λ1

+
λ1 + λ3
λ2

+
λ1 + λ2
λ3

]
(2.6)

Two scalar volumes are then calculated. One, represents the total diffusivity within

a voxel which is formed by calculating the trace of the tensor matrix. The second scalar

volume is formed by using the anisotropy measure presented above. The segmentation is

performed on these scalar volumes using a level set segmentation method. Therefore, the

segmentation is performed on the scalar images and not on the full DT-MR images. The

directional information contained in the tensors (eigenvectors) is ignored and is not part

of the segmentation solution. Therefore, the algorithm fails to distinguish between regions

which have the same diffusion anisotropy magnitude but different directions.

Wang and Vemuri [31] present a tensor distance that is invariant to rotation and uses

both directions and magnitude of diffusion. This tensor distance is incorporated into the
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active contour model ”without edges”. The tensor distance metric defined follows the phys-

ical phenomenon of diffusion, is affine invariant and computationally tractable. By using

this metric instead of of relying only on either the eigenvalues or eigenvectors, their method

makes use of all the information contained in the tensor. The metric is incorporated in a

level set framework to perform the segmentations. However, the nature of the active contour

method that is used makes this segmentation approach unattractive. Active contours tend

to be very sensitive to parameter initialization and runs into the risk of finding suboptimal

solutions.

Weldeselassie and Hamarneh[33] also use the whole tensor information to perform seg-

mentation on DT-MRI using a graph cuts approach. They use the affine invariant metric

proposed by Wang and Vermuri. They also use the Log Euclidean distance metric to cap-

ture the difference between diffusion tensors. These measures are then incorporated in the

graph cuts segmentation method. However, the graph cuts segmentation method suffers

from the small cut problem. Since the method tries to minimize the sum of the edge weight

in the cut, very small segmentations could be produced. Moreover, it doesn’t extend easily

to more than two labels.

2.3 Brain Tissue Discrimination

The anisotropy of the diffusion tensor can be described as the degree to which the tensor de-

viates from the isotropic case. Measures of diffusion anisotropy reduce the shape description

of the 3D tensor to a scalar value that can be used to describe the tensor’s anisotropy[3].

The degree of diffusion tensor anisotropy is associated with the structure of brain tis-

sue. For instance, white matter in the brain is anisotropic whereas gray matter displays

no anisotropy and can be described as isotropic. There are several measures of diffusion

anisotropy that have been proposed, such as fractional anisotropy (FA), relative anisotropy

(RA) or shape anisotropy (SA). These measures provide us with the ability to distinguish

between different types of tissue. Recent studies have shown that diffusion anisotropy can

be used to investigate white matter morphology, white matter trauma and the development

of white matter tracts in infants.

The measures of diffusion anisotropy all behave differently. Although, they all include

various combinations of orthogonal diffusion measurements and rotationally invariant mea-

sures based upon the eigenvalues of the tensor. Thus, it is important to investigate the



CHAPTER 2. BACKGROUND 9

relationship between these anisotropy measures and their ability to distinguish between

brain tissue.

2.4 Breast Segmentation from Mammograms

Breast cancer is a major health problem in Western countries. It accounts for approximately

30% of all new cancer cases each year. Mammography is still the most commonly used

method for detecting breast cancer. Detection of breast cancer at an early stage is a critical

issue for a high survival rate [36].

Radiologists interpret the mammograms and attempt to identify areas of potential ab-

normalities. Therefore, the effectiveness of this screening method is dependent on the radiol-

ogist’s ability to detect areas of subtle irregular abnormalities. It is estimated that between

10-30% of women diagnosed with breast cancer have false-negative mammograms [36]. Most

of the false-negative cases can be attributed to the radiologist’s failure to detect a cancer

which could be due to misinterpretation, or simply that the radiologist overlooked the area.

It has been demonstrated that an independent second reading can significantly improve the

detection rate and decrease the number of false positive cases.

Computerized tools and analysis can act as an independent secondary reading. The tools

can be described as a supplement or a ”second reader” to assist the physician in detecting

and diagnosing breast cancer. These tools can be classified into two different processes:

Computer-Aided Detection (CADe) and Computer-Aided Diagnosis (CADi). Detection is

the ability to identify abnormal areas in the breast, and diagnosis follows the detection

process to identify those regions as being benign or malignant. Before these processes can

perform their roles a really important pre-processing step has to take place which is the

detection or segmentation of the breast region from the background.

The segmentation of the breast region is an important pre-processing step since it allows

the search for abnormalities to be constricted to the breast region without influence from the

background of the mammogram. However, the segmentation of the breast in mammograms

can be a challenging problem because of several issues:

1. The breast air interface is a very low gradient that can be obscured with noise which

makes edge detection a hard task.

2. Uncompressed fat near the breast air interface is a gradient, growing as the fat nears
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the center of the breast. So there are no big areas of uniform intensity.

3. The background of the mammograms can be noisy especially if the mammograms are

scanned in.

4. Some mammograms contain artifacts such as labels, wedges and scratches that can be

hard to separate from the breast area.

2.5 Thesis Outline

The rest of the thesis is organized as follows,

• In Chapter 3, we present the introduction, methods, results and discussion of the

extension of the random walker segmentation algorithm to 2nd order DT-MR images.

• In Chapter 4, we present the introduction, literature review, results and discussion on

the comparison between segmentations performed on 2nd and 4th order DT-MRI data.

• In Chapter 5, we present the introduction, methods, results and discussion on the

discrimination of brain tissue.

• In Chapter 6, we present the introduction, methods, results and discussion on the

developed novel segmentation framework for mammograms.

• In Chapter 7, we conclude and summarize our thesis and contributions.



Chapter 3

DT-MRI Segmentation Using

Random Walker

3.1 Introduction

Tissue segmentation and classification performed on DT-MRI has several advantages over

other modalities such as conventional MRI. Diffusion data provides us with physical infor-

mation about the internal structure of the tissue scanned. Existing segmentation approaches

on DT-MR images suffer from several problems. For instance, ignoring the directional in-

formation contained in the tensors leads to the failure to distinguish between regions which

have the same diffusion magnitude but different directions. To obtain a meaningful and

robust segmentation, all of the information provided by the tensor should be considered.

Meaning, both the diffusion magnitude (eigenvalues) and direction (eigenvectors) should be

incorporated in the segmentation approach.

The random walker segmentation technique has been successfully applied to scalar im-

ages. It is a segmentation technique that provides fast computation, avoids over segmen-

tation and provides accurate and intuitive segmentations. The algorithm is an interactive

segmentation technique, meaning it requires user input. Random walker provides a K-way

image segmentation given user labeled voxels called seeds. Each seed is used to specify a

region of interest which needs to be segmented [18].

A segmentation is produced on a weighted graph representation of the image. Nodes

of the graph correspond to voxels in the image and edges are placed between neighboring

11
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nodes. The edge weights are determined by a similarity measure so that a large weight

corresponds to two very similar voxels and vice versa. The segmentation is produced on the

graph by computing the probability that a random walker starting its walk at a voxel first

reaches a seed with a label. Each voxel in the image is assigned the label with the greatest

probability. What makes the random walker formulation especially attractive, is that the

probabilities can be computed by solving a sparse, symmetric, positive-definite, system of

linear equations instead of performing an actual random walk, since actually simulating

random walks on images would be completely infeasible.

In [18] Grady demonstrates that the probability a random walker first reaches a seed

point exactly equals the solution to the Dirichlet problem with boundary conditions at the

locations of the seed points. Therefore when performing the segmentation, the seed points

in question can be assigned to unity while all the other seed points can be assigned a value of

zero. This establishes the concept of assigning voxels with a probability, where the seeds in

question have the highest probability (one), the seeds of other labels have lowest probability

(zero) and the rest of the voxels have values between one and zero.

Recently, the computer vision community has preferred spatial segmentation algorithms

such as random walker, normalized cuts, graph cuts, active contours and level sets. This

is because traditional statistical pattern recognition segmentation techniques could lead to

small scattered, fragmented, noisy segmentations, since they don’t take advantage of the

spatial relationships between the pixels. However, sometimes the objects of interest can in

fact be described by an appropriate feature distribution. Therefore, incorporating feature

information into a spatial algorithm such as random walker, would lead to more accurate

segmentations.

The random walker algorithm has been shown to have the following properties: (i) The

solution for the probabilities is unique. (ii) It is guaranteed that each segment is connected

to a seed point with some label. (iii) Only intensity gradients are used instead of considering

feature informations. The second and third properties of the algorithm can be problematic

for certain segmentation situations, specifically for the segmentation of images with many

disconnected objects. To obtain a meaningful segmentation the user would have to seed

each object individually.

The originally proposed random walker segmentation algorithm fails to segment regions

of interest that are disconnected since, the algorithm is spatial and doesn’t take advantage

of any feature distribution. For many segmentation tasks this is sufficient and desirable.
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Ignoring feature information removes the risk of having small scattered segmentations of

small regions. However, incorporating probabilistic models of objects of interest allows the

segmentation of disconnected objects. This results in an extended random walker algorithm

that utilizes feature models obtained using a density estimation from seeds provided by the

user [17].

Other algorithms have incorporated statistical information into a spatial approach. For

instance, methods of segmentation that are based on minimizing an energy function add

energy terms to the function that describe feature distribution. The graph cuts method has

a ”data term” which represents a prior distribution model [11]. The random walker and

graph cuts algorithms obtain a segmentation by minimizing the same functional. However,

the random walker algorithm minimizes the functional over a space of real numbers where

the graph cuts approach minimizes over a space of integers. The segmentations obtained

from the two algorithms have different properties and may produce different segmentation

results on the same image.

The graph cuts method treats the foreground/background seeds as source/sink nodes

for a max-flow/min-cut operation. A max-flow/min-cut algorithm is used to find a set of

edges with a minimum weight which is then returned as the object’s boundary. A common

problem with the graph cuts approach is the ”small cut” behavior. The reason behind this

behavior is that the graph cuts will find the smallest cut between the seeds which results

in a cut that doesn’t fully enclose an area of defined seeds. This is especially the case with

boundaries that are weakly defined, or when few seeds are placed. The method minimizes

the total edge weights in the cut which could lead to very small segmentations. In [28]

the authors present a segmentation framework that unifies both approaches and they show

that the general algorithm can be made to behave like either the graph cuts method or the

random walker by changing one parameter.

3.2 Contribution

In this chapter, we extend the random walker segmentation method using prior models

to DT-MRI data. This work has been published as[15]. The DT-MRI data is converted

to a graph where each tensor is a vertex and is connected to neighboring tensors by a

weighted edge. Tensor distance metrics are used to asses the similarity between tensors and

calculate the weights, since simply taking the Euclidean difference between the two tensors
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doesn’t give satisfactory results. Euclidean computations allow the presence of matrices

with null or negative eigenvalues which physically don’t make sense. Moreover, the euclidean

averaging of tensors can lead to a tensor swelling effect which introduces dispersion to the

computations. The two metrics used in our method are the Log-Euclidean and J-divergence

tensor distance measures. The Log Euclidean tensor distance metric is also used to establish

the tensor prior models.

Section 3.3.1 provides an overview of the random walker formulation and its extension to

segment DT-MR images. In section 3.3.2 the incorporation of prior models into the random

walker segmentation method is presented. Section 3.3.3 presents the tensor distance metrics

used. Section 3.3.4 explains how the weights on the graph are calculated. The experimental

segmentation results on both synthetic and real DT-MRI data is presented in section 3.4.

A discussion and concluding remarks are made in section 3.5.

3.3 Methods

3.3.1 Random Walker Formulation

The segmentation is carried out on a weighted graph which is constructed from the image

to be segmented. Each node represents a tensor voxel (Ti) from the DT-MR image. A

graph consists of a pair G=(V,E) with vertices v ∈ V and edges e ∈ E. An edge between

two vertices vi and vj is referred to as eij . Let n = |V | and m = |E| where | · | denotes

cardinality. Each edge is assigned a weight and is referred to as wij . The weights of the edges

are computed using the tensor distance measures. The degree of a vertex is di =
∑
w (eij)

for all the edges eij incident to the vertex vi.

The user provides a set of labeled voxels VL with K labels which are referred to as seeds.

For instance, the user can provide two types of labels (K=2): object and background,

where the object label consists of the tensors that belong to the object to be segmented

and the background label corresponds to the tensors that make up the background of the

DT-MR image. The seeds are provided by asking the user to paint over a scalar image

calculated from the original DT-MR image. The scalar image is formed using the trace of

the DT-MRI dataset.

Given the graph and a set of labeled vertices, the goal of the random walker algorithm is

to label each unlabeled vertex VU in the graph with a label s provided by the user. Fig. 3.1

provides an illustration of how the graph is constructed from a DT-MR image. Ellipsoids
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are used to visualize the diffusion tensors (voxels).

For each vertex vi ∈ VU a probability xsi is calculated which represents the probability

that a random walker starting from that vertex first reaches a labeled vertex vj ∈ VL

assigned to label s. The segmentation is then produced by labeling each vertex with the

label for which it has the highest probability. To find the probability xsi that a random

walker starting from a vertex vi first reaches a labeled node, the following energy functional

has to be minimized [18]

E = xsTU LxsU (3.1)

xs is a nx1 vector defined over the set of all nodes. It gives the probability xsi that a random

walker starting from node vi first reaches a labeled node with label s. This labeled node

has a value of xsi = 1. L represents the combinatorial Laplacian matrix defined as

Lvi,vj =


degvi if i = j

−wij if vi and vj are adjacent vertices

0 otherwise

(3.2)

where degvi is the degree of the vertex vi. The Laplacian matrix can be partitioned into

labeled (L) and unlabeled (U) vertices

L =

 LL B

BT LU

 (3.3)

The minimization of the energy function defined in equation 3.1 can then be achieved by

solving the following system of equations

LUx
s
U = −Bf s (3.4)

where fs is a |VM |x1 indicator vector for the labeled vertices that defines the segmentation

boundary.

fsj =

 1 if yj = s

0 if yj 6= s
(3.5)

where yj = maxsv
s
j .

3.3.2 Incorporating Prior Models

Without incorporating prior models, the random walker formulation fails to segment discon-

nected objects since, each segment must be connected to a seed. To remedy this problem,
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(a) Graph with seed points (b) Probability that a random walker starting from
each node first reaches seed L1

(c) Probability that a random walker starting from
each node first reaches seed L2

(d) Segmentation result

Figure 3.1: Illustration of the approach to segmentation with two seed points representing
two labels (L1, L2). (a) shows the initial seed points where each node is a diffusion tensor.
Ellipsoids are used to visualize the diffusion tensors where the directions and lengths of the
major axes correspond to the eigenvectors and eigenvalues of the diffusion tensors. (b),(c)
show the probabilities that a random walker starting from each node first reaches a seed.
(d) shows the expected segmentation result.
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the probability P si that each node vi belongs to each label s based on the label’s tensor dis-

tribution is calculated. From the user initialized seed regions, a tensor distribution can be

estimated using a kernel density estimation. So that, for each tensor a nodewise prior (P si )

is calculated. The prior P si represents the probability that the tensor at vertex vi belongs

to the tensor distribution of label s. Each label is assumed to be equally likely, therefore

using Baye’s theorem the probability that a node vi belongs to a label s is given as [17]

xsi =
P si∑k
s=1 P

s
i

(3.6)

The equation above can be rearranged to solve for the nodewise priors (in vector notation)(
k∑
s=1

Λs
)
xs = P s (3.7)

where Λs is a diagonal matrix with the values of P s on its diagonal. This leads to the

introduction of the priors into the system of equations given in 3.1 which are used to find

the probabilities xsU . The new system of equations can be defined as(
LU + γ

k∑
r=1

diag (P rU )

)
xsU = γP sU −Bf s (3.8)

where γ is a free parameter. The aim is to solve for the unknown probabilities (xsU ). Using

Matlab the system of equations can be solved using the backslash command (\).

xsU =

(
LU + γ

k∑
r=1

diag (P rU )

)
\γP sU −Bf s (3.9)

A Gaussian kernel is used to produce the probability density estimation of the tensors

in each user supplied label. Given a set of n labeled tensors (seeds) Rs = {Rs1, Rs2, ..., Rsn}
for each user defined label s, the probability P si that a tensor Ti is generated from the seeds

distribution corresponding to label s is given by

P si =
n∑
q=1

exp

(
(d (Ti, Rq))

2

σ2

)
(3.10)

where d(Ti, Rq) is the tensor distance between a pair of tensors Ti and Rq, σ is a free

parameter.
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3.3.3 Tensor Distance Metrics

The weights on the edges between the verticies on the graph represent how similar or

dissimilar two vertices are. When dealing with scalar images, the intensity difference of two

vertices (pixels) is sufficient to indicate the similarity between the two verticies. However,

when dealing with diffusion tensors appropriate tensor distances have to be used. A proper

distance metric should incorporate both diffusion magnitudes (eigenvalues) and directions

(eigenvectors) in the DT-MR image.

The simplest and most straight forward distance between two tensors T1,T2 can be

calculated using a Euclidean metric. This distance is given by the ”Frobenious distance”

which is simply

dF = Trace (T1 − T2)2 (3.11)

Euclidean distances tend to be unsatisfactory for tensors, since they allow the presence

of null or negative eigenvalues, which is physically infeasible and doesn’t make sense for

diffusion tensors. The second problem with taking the Euclidean difference, is that the

euclidean averaging of tensors can lead to a tensor swelling effect because the determinant

of the Euclidean mean can be larger than the determinant of the original matrices, which

introduces more dispersion to the computations and hence, more diffusion which is an

unwanted effect. The third and last issue, also involves the Euclidean mean. The Euclidean

mean, is an arithmetic mean which fails to represent the tensor’s identity or inverse. The

geometric mean is a better choice when modeling tensor variability.

The Log-Euclidean[5] and J-divergence[31] are both affine invariant tensor distance mea-

sures that take advantage of both diffusion magnitude and direction, which makes them a

good choice for finding the edge weights of the constructed graph for the segmentation.

With affine invariant metrics, symmetric matrices with negative or null eigenvalues are at

an infinite distance from any tensor and there is no swelling effect.

The Log-Euclidean tensor distance DLE performs classical Euclidean calculations in

the domain of matrix logarithms. A tensor Ti has a unique symmetric matrix logarithm

LT = log (Ti), where LT can be calculated in three steps:

1. Diagonalize Ti to obtain two matrices. A rotation matrix R (eigenvectors) and a

diagonal matrix E with the eigenvalues on it’s diagonal.

2. Take the natural logarithm of each diagonal element in E to obtain a new matrix Ẽ
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3. Recompose Ẽ and R to obtain the logarithm of the tensor. log (Ti) = RT · Ẽ ·R

The Log Euclidean tensor distance satisfies several invariance properties. For instance,

distances are unaffected by inversion. Since, the inversion of system of matrices results in

the multiplication of -1 of their logarithms. This does not change the value of the distance.

Moreover they are invariant to logarithmic multiplication which makes them invariant to

translation. The Log Euclidean distance metric is given by [5]

dLE (Ti, Tj) =

√
Trace

(
(log (Ti)− log (Tj))

2
)

(3.12)

On the other hand, the J-divergence dJD uses the distance measure between Gaussian

distributions to find the distance between tensors. Since, the direction of water diffusion

can be locally modeled by a Gaussian probability density function. A diffusion tensor D is

related to the displacement r of water molecules at each lattice point in an image at time t

by

p (r|t,D) =
1√

(2π)n |2tD|
e

−rTD−1r
4t (3.13)

where n is the tensor’s dimension. Therefore, one can find the distance between two tensors

using a Gaussian distribution distance measure. The Kullback-Leibler (KL) divergence is

the most widely used measure for Gaussian distributions

KL (p||q) =

∫
p (x) log

p (x)

q (x)
dx (3.14)

However, the KL divergence is not symmetric, therefore the J-divergence is used to make it

symmetric. The proposed J-divergence tensor distance is the square root of the J-divergence

[31]

dJD (Ti, Tj) =

√
tr
(
T−1i Tj + T−1j Ti − 2I

)
(3.15)

where I is a 3x3 identity matrix.

3.3.4 Calculating the Weights

For scalar images the following equation is used for mapping vertex intensities (Ii, Ij) to

connecting weights

wij = e−β(Ii−Ij)
2

+ ε (3.16)

The equation is modified to find the weights between tensors

wij = e−β d (Ti,Tj)
2

+ ε (3.17)
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where ε is a small constant, and β is a free scaling parameter. d(Ti, Tj) is the distance

between two tensors Ti, Tj . Both the Log Euclidean (dLE) and J-divergence distance

(dJD) metrics are used to calculate two different sets of weights. The tensor distances

(dLE and dJD) are normalized to a range of [0,1].

3.4 Results

Various segmentations were performed using the above technique. Segmentation results

using both tensor distance metrics (Log Euclidean and J-divergence) are presented for com-

parison purposes. Moreover, the advantage of incorporating prior models is demonstrated.

For our experiments the β parameter in equation 3.17 had a significant effect on the

results of the segmentations. A different value had to be used for the two different tensor

distance metrics to achieve a similar segmentation result. This is expected since both

measures have a different scale and return different values for the same graph.

The β parameter also had an effect on the quality and the smoothness of the segmenta-

tion result. The optimal β parameter in our experiments was determined by trial and error.

Multiple values were tested until a qualitatively satisfactory segmentation was achieved.

The other free parameter σ in equation 3.10 was also determined the same way, and it also

had an effect on the quality of the segmentation.

Standard hard constraints were used in all the examples. Both background and object

seeds were provided as user input. For all the segmentation results, the object seeds are

shown in green and the background seeds in yellow.

The segmentations are performed on selected slices from the DT-MRI data sets using

all the information provided by the tensors. The slices are visualized by taking the trace

which are painted with seeds by the user. The location of the seeds is then extracted from

the scalar images and are used in the random walker segmentation method. Note that

the segmentation is carried on the DT-MRI data set and not on the scalar images used to

visualize the segmentation results. Performing segmentations on the scalar images would

produce comparable results, however the advantage of using all the information provided

by the tensors is lost. Especially that scalar metrics only take into account a tensor’s

eigenvalues and don’t take the eigenvectors into consideration.
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3.4.1 Synthetic Data Sets

The first experiment is that of an object made of several disconnected parts in Fig 3.2. The

data set is a synthetic noisy DT-MRI slice containing an object with several disconnected

parts. Noise was added to the data set by adding random Gaussian noise independently

to the three eigenvalues of the DT-MR image, in addition to random rotation perturbing

the three eigenvectors by the same amount to retain orthogonality. Segmenting the image

without the incorporation of prior models fails to detect all three disconnected objects. Only

the object that was seeded was the result of the segmentation. Fig 3.2 additionally shows

the effect of changing the β parameter on the result of the segmentation. Using the same β

parameter for both Log Euclidean and J-Divergence metrics lead to different segmentation

results.

Fig 3.3 shows the same data set used in Fig 3.2. However, the segmentation result was

reached by incorporating the prior models. Again, only one of the disconnected objects was

seeded. However, all three disconnected objects are detected and make up the result of the

segmentation. Also, less seeds were needed as an input to obtain a correct segmentation.

Only the Log Euclidean distance metric was used for the segmentations with prior models.

In Fig 3.4, the synthetic data set is constructed in a way to demonstrate that full tensor

information is needed for DT-MRI segmentation techniques. The data set contains two

different tensor fields with the same magnitude (eigenvalues) but pointing in two different

directions (eigenvectors).The inner dark disk contains tensor pixels with eigenvectors (1, 0,

0), (0, 1, 0), (0, 0, 1) and eigenvalues of (10, 1, 1). The outer disk contains tensors with

eigenvectors (0, 1, 0), (1, 0, 0), (0, 0, 1) and eigenvalues of (10, 1, 1). Gaussian noise

was added independently to the three eigenvalues of the DT-MR image. A segmentation

algorithm that only takes the tensors magnitude into account would fail to produce a proper

segmentation. However, since our proposed technique takes into account both diffusion

direction and magnitude the result of the segmentation was accurate and as expected.

3.4.2 Real Data Sets

The proposed segmentation technique was also tested on real medical data sets. Fig 3.5,

shows the application of the segmentation technique on a brain data set. The brain DT-MRI
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(a) Initial image with foreground
seeds placed only in the lower rect-
angle

(b) Segmentation using the Log Eu-
clidean metric leads to the correct
segmentation of the lower rectangle
(β = 40)

(c) Segmentation using the J-
Divergence metric with a β=40
leads to an incorrect segmentation
result

(d) Segmentation using the J-
Divergence metric with a different
β value (β=790) leads to a correct
segmentation of the lower rectangle

Figure 3.2: Segmentation of a noisy synthetic 2D DT-MRI slice which contains disconnected
objects without priors. Demonstrating the effect of the β parameter on the segmentation
result.

data set was provided by Dr. Mirza Faisal Beg, School of Engineering Science at Simon

Fraser University. In this experiment the corpus callosum is segmented from the remaining

parts of the brain. The corpus callosum area in the brain constitutes of white matter which

is highly anisotropic compared to the surrounding isotropic gray matter.

Fig 3.6 shows the segmentation result of a cardiac wall from a DT-MRI slice of the heart.

The data set is publicly available by the Center for Cardiovascular Bioinformatics and Mod-

eling at The John Hopkins University (http://www.ccbm.jhu.edu/research/DTMRIDS.php).

Without using prior models, the random walker segmentation technique failed to segment

the cardiac wall accurately. A more satisfactory segmentation without using prior models
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(a) Initial image with seeds (b) Segmentation using the Log Eu-
clidean metric (β = 90, σ =4)

Figure 3.3: Segmentation of a noisy synthetic 2D DT-MRI slice which contains disconnected
objects with the incorporation of priors. All three rectangles are identified and segmented
from the background.

for this data set was achieved by increasing the number of supplied seeds as displayed in

Fig 3.7. However, when prior models were incorporated a satisfactory and expected seg-

mentation was achieved as shown in Fig 3.8. This demonstrates that using prior models can

also be of an advantage when dealing with noisy data sets. Fig 3.7 shows that even with

the increased number of supplied hard constraints (seeds), the segmentation result isn’t as

accurate as the one produced when the prior models are used.
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(a) Initial image with seeds (b) Segmentation result using the
Log Euclidean metric (β = 19)

Figure 3.4: Segmentation of a noisy synthetic 2D DT-MRI slice. The inner seeded disk is
correctly segmented from the noisy background.

(a) Initial image with seeds (b) segmentation result using the
Log Euclidean metric (β = 50)

(c) the shape of the segmented
corpus callosum

Figure 3.5: Segmentation of the corpus callosum from a real brain DT-MRI dataset.

The segmentation result of the white matter from a DT-MRI slice of the brain is shown

in Fig 3.9. This example shows the advantage of using prior models for brain segmentation.

The user only needs to supply one set of seeds to completely segment the white matter in

the brain. To achieve a similar segmentation result without using prior models the user

would have to supply many more seeds and manually select multiple areas where the white

matter is present.

3.4.3 A Comparison between Random Walker and Graph Cuts

To demonstrate the differences between applying different segmentation methods on DT-

MRI data, we compare segmentation results obtained by using the random walker and
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(a) Initial image with seeds (b) Segmentation result without prior
models (β=40)

Figure 3.6: Cardiac wall segmentation from a DT-MRI slice of the heart with no prior
models.

graph cuts segmentation methods. Segmentation results obtained by applying the random

walker method are qualitatively compared to segmentation results obtained on the same

set of images using the graph cuts segmentation method. For the random walker results

the segmentation result is displayed as a red outline, whereas the graph cuts segmentation

results are shaded in green. As before, foreground seeds are shown in green and background

seeds on the initial images are shown in yellow. Both the random walker and graph cuts

approaches in this implementation incorporate the user initialized seeds as hard constraints.

The graph cuts approach also has a free parameter (λ) that affects the segmentation results.

Fig 3.10 shows the results of applying both segmentation methods on a DT-MRI slice

of the heart. The random walker segmentation method (Fig. 3.10(b)) returned a much

accurate result than the application of the graph cuts segmentation method (Fig. 3.10(c)).

The result returned using the graph cuts leaked outside of the heart region and included

the noise present at the top edge of the DT-MRI slice.

Fig 3.11 shows the result of the segmentation of the corpus callosum from a DT-MRI

slice of the brain. No prior models were incorporated in the random walker formulation to

obtain the result. The random walker returned a more accurate result than the graph cuts.

Again, the graph cuts result included areas which should not be part of the segmentation.
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(a) Initial image with seeds (b) Segmentation result without prior
models (β=40)

Figure 3.7: Cardiac wall segmentation from a DT-MRI slice of the heart with additional
seeds and no prior models.

3.5 Discussion

The random walker segmentation technique has previously only been applied to scalar im-

ages. We have shown in this work that the random walker segmentation algorithm can be

extended to segment DT-MR images. Moreover, prior models were incorporated into the

energy minimization function. The incorporation of prior models overcomes the problems

associated with the original formulation of the random walker technique. For instance, with-

out using prior models the algorithm fails to segment images that contain disjoint objects.

This means that the user would have to seed each disjoint object individually which can be

time consuming and unpractical.

A Gaussian kernel was used to produce the densities corresponding to each of the user

supplied K labels. Moreover, tensor dissimilarity metrics were used to define the edge weights

and to compute the prior models. More specifically, both the Log euclidean and J-divergence

metrics were used. Both distance metrics lead to accurate and intuitive segmentations. The

only difference is that the β parameter in equation 3.17 had to be set differently for both

distance metrics for the same image. The fact that the two different distance metrics

gave similar segmentation results is no surprise since both metrics provide two different

generalizations to tensors of the geometric mean of positive numbers. The determinants

of both Log-Euclidean and J-divergence means of tensors are equal to the scalar geometric

mean of the determinants of the data.
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(a) Initial image with seeds (b) Segmentation result with prior models
(β = 700, σ =10)

Figure 3.8: Cardiac wall segmentation from a DT-MRI slice of the heart with prior models.

(a) Initial image with seeds (b) Segmentation result with prior
models (β = 100,σ = 1)

Figure 3.9: White matter segmentation from a DT-MRI slice of the brain.

The proposed approach was tested on both real and synthetic DT-MR images. The

synthetic images have Gaussian noise added to them, to demonstrate the robustness of

the algorithm. Qualitatively, the segmentation results appear accurate and satisfactory.

The advantages of using the random walker with prior models is demonstrated in several

examples. Using prior models lead to better results when disjoint objects are present and

also when the data sets are very noisy. Our segmentation results were very sensitive to the

free beta parameter that is used in equation 3.17 to calculate the weights of the graph’s

edges. Also, the two tensor distance metrics give different segmentation results for the same

parameter values. Future work will investigate how to select a suitable value for β and the
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(a) Initial image with seeds (b) Segmentation using Ran-
dom walker (β = 700, σ =10)

(c) Segmentation using
Graph cuts (λ = 900)

Figure 3.10: Comparison of the cardiac wall segmentation from a DT-MRI slice of the heart

(a) Initial image with seeds (b) Segmentation using Random
walker (β = 50)

(c) Segmentation using Graph
cuts (λ = 5)

Figure 3.11: Segmentation of the corpus callosum from a DT-MRI slice of the brain.

validation of the segmentation results using quantitative measures.The segmentation results

were also compared to those produced by applying the graph cuts segmentation method.

The random walker returned more accurate segmentations than the graph cuts on all the

data sets it was tested on.



Chapter 4

4th Order Versus 2nd Order

DT-MRI Segmentations

4.1 Introduction

In DT-MRI processing, a 2nd order tensor has been commonly used to approximate the

diffusivity function at each voxel in a DT-MRI dataset. This tensor approximation can

be used to calculate scalar quantities such as Fractional Anisotropy. Such scalar measures

are used for monitoring many neurological disorders such as encephalopathy, sclerosis and

ischemia.

The scalar measures are computed using the 2nd order diffusion tensor, which is sufficient

for simple tissue structures. However, it fails to approximate more complex tissue geometry

with multi lobed diffusivity profiles. This is demonstrated by the drop in FA values in areas

of fiber crossings although these areas are anisotropic [6].

The 2nd order tensor models fail to correctly represent complex tissue structures because

2nd order tensors possess only a single orientational direction (the major eigenvalue of the

diffusion tensor). It is important to be able to represent such areas correctly since, the

cerebral white matter contains considerable areas that demonstrate intravoxel orientational

heterogeneity (IVOH). Given the widespread divergence and convergence of fascicles and

fiber tracts in white matter.

Diffusion tensors can be visualized as ellipsoids, where the radius defines the diffusion

in a particular direction. Since, 2nd order diffusion tensors are only capable of representing

29
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one direction the ellipsoid resulting from areas of crossing fibers is oblate (pancake-shaped)

i.e. a diffusion tensor in which the first eigenvalue is comparable to the second and both are

much larger than the third. This can be explained using the analogy of adding two rank

1 tensors with different directions (Fig 4.1). The result of the addition is a rank 2 tensor

[34]. The resulting tensor has more degrees of freedom than the input tensors and can only

describe the plane in which the diffusion is present.

(a) (b) (c)

Figure 4.1: Two diffusion tensors of rank 1 and their summation which gives a rank 2 tensor.
The tensors are visualized as ellipsoids with the eigenvectors forming the principle axes.

Several approaches have been proposed to overcome the limitation of 2nd order tensors.

Tuch et al.[30] proposed a method that uses diffusion imaging with diffusion-weighting

gradients supplied along many directions, distributed isotropically on the surface of a unit

sphere. This method is called high angular resolution diffusion imaging (HARDI). The

method uses high angular resolution, high b-value diffusion gradient sampling. The high b-

values are used to enhance the contrast between the fast diffusion component of one fiber and

the slow diffusion component of another. The diffusion imaging is performed with diffusion

weighted gradients along many directions that are distributed isotropically on the surface

of a unit sphere. Multiple fiber components are identified by calculating the probability

distribution function (PDF) of the diffusion process in each voxel. However, this method is

time and computationally intensive and therefore, is impractical for clinical use.

Frank [16] introduced an improvement to the HARDI method that provides the ability

to transform the distribution of diffusivities into components of a higher order tensor. This

is accomplished by calculating the spherical harmonic transform of the diffusivity profile
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and the resulting Laplace series is truncated. However, the truncation is not consistent with

Stejskal’s modification for anisotropic media.

Ozarslan et al.[26] propose a method that provides a Cartesian representation of higher

order diffusion tensors. The method resolves the problem with the process of calculating

the spherical harmonic transform of the diffusivity profile and the truncation of the Laplace

series. The expression resulting from the method corresponds to the Stejskal-Tanner relation

which allows for the calculation of all the components of a higher-rank diffusion tensor by

using a least-squares fitting routine. Therefore, the evaluation of the spherical harmonic

transform is unnecessary, which is computationally intensive. The higher order tensors

have the ability to generalize the 2nd order tensors and can represent more complex tissue

geometry with multi-lobe diffusivity profiles. This approach is especially attractive because

the algorithms and metrics developed for 2nd order tensors can be extended to higher order

tensors.

A general order-k Cartesian tensor has 3k terms, which results in a large number for

higher order tensors. A 4th order tensor has 81 components whereas a 2nd order tensor only

has 9. However, symmetries provide a significant reduction in the number of the tensor’s

components. The diffusion tensor’s total symmetry property reduces the number of distinct

elements (Nk) to [7]

Nk =
(k + 1) (k + 2)

2
(4.1)

which means that a 4th order tensor has 15 unique elements.

4.2 Contribution

In this chapter, we extend the random walker segmentation algorithm proposed for the

segmentation of scalar images to segment both 2nd and 4th order DT-MR image data,

published in[14]. The DT-MRI data is converted to a graph where each tensor is a vertex

and is connected to neighboring tensors by a weighted edge. The edges are evaluated using

appropriate distance metrics that quantify the similarity between two tensors. The metric

used for 2nd order tensors is the Log-Euclidean [5] whereas the L2 distance [6] is used for

the 4th order tensors.The advantages of performing segmentation on higher order data is

demonstrated.

Section 4.3.1 presents the tensor distance metrics used, section 4.3.2 explains how the
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weights on the graph are calculated. The experimental segmentation results on both syn-

thetic and real DT-MRI data is presented in section 4.4. Concluding remarks are made in

section 4.5.

4.3 Methods

Please refer to Chapter 3 section 3.1 for a review of the random walker segmentation method

and section 3.2 for details on the 2nd order distance metric used in the method presented

here.

4.3.1 Tensor Distance Metrics

The edge weights of the constructed graph represent how similar or dissimilar two vertices

are. When dealing with diffusion tensors appropriate tensor distance metrics have to be

used. More specifically, the metrics should utilize all the information provided by the ten-

sors. So both the diffusion magnitude (eigenvalues) and direction (eigenvectors) should be

incorporated.

The Log-Euclidean tensor distance (dLE) performs Euclidean calculations in the domain

of matrix logarithms and can be used to find the distance between two 2nd order tensors

(Ti, Tj) [5]

dLE (Ti, Tj) =

√
Trace

(
(log (Ti)− log (Tj))

2
)

(4.2)

On the other hand, a distance measure between 4th order diffusion tensors (Di, Dj) can

be computed using the normalized L2 norm between the corresponding diffusivity functions

d1 (g) and d2 (g). The diffusivity function is first represented using a 4th order tensor as [6]:

d (g) =
∑

i+j+k=4

Di,j,kg
i
1g
j
2g
k
3 (4.3)

where g = [g1, g2, g3]
T is the magnetic field gradient direction. Diffusion is symmetric

therefore, the 4th order model results in voxels that are 3× 3× 3× 3. The diffusion tensors

are totally symmetric positive definite matrix with 15 unique coefficients; whereas the 2nd

order model results in a 3× 3 symmetric positive definite matrix with 6 unique coefficients.

The normalized L2 distance between two 4th order diffusivity functions is computed

using the following equation [6]
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d2L2 (D1, D2) =
1

4π

∫
s2

[d1 (g)− d2 (g)]2dg (4.4)

=
1

315
[(∆4,0,0 + ∆0,4,0 + ∆0,0,4 + ∆2,2,0 + ∆0,2,2 + ∆2,0,2)

2

+4[(∆4,0,0 + ∆2,2,0)
2 + (∆4,0,0 + ∆2,0,2)

2 + (∆4,0,0 + ∆2,2,0)
2

+ (∆0,4,0 + ∆0,2,2)
2 + (∆0,0,4 + ∆0,2,2)

2 + (∆0,0,4 + ∆2,0,2)
2]

+24
(
∆2

4,0,0 + ∆2
0,4,0 + ∆2

0,0,4

)
− 6

(
∆2

2,2,0 + ∆2
0,2,2 + ∆2

2,0,2

)
+2 (∆4,0,0 + ∆0,4,0 + ∆0,0,4)

2 + (∆2,1,1 + ∆0,3,1 + ∆0,1,3)
2

+ (∆1,2,1 + ∆3,0,1 + ∆1,0,3)
2 + (∆1,1,2 + ∆3,1,0 + ∆1,3,0)

2

+2[(∆3,1,0 + ∆1,3,0)
2 + (∆3,0,1 + ∆1,0,3)

2 + (∆0,3,1 + ∆0,1,3)
2]

+2
(
∆2

3,1,0 + ∆2
3,0,1 + ∆2

1,3,0 + ∆2
0,3,1 + ∆2

1,0,3 + ∆2
0,1,3

)
] (4.5)

where the integral is over all unit vectors and the coefficients ∆i,j,k are computed by sub-

tracting the coefficients Di,j,k of the tensor Di from the corresponding coefficients of the

tensor Dj . In this work, we denote the coefficients of the 4th order diffusion tensor using

the notation used in [6], i.e., Di,j,k , where i + j + k = 4. For example, D4,0,0 refers to

Dxxxx. The integral in equation 4.4 can be computed analytically and the result can be

expressed as a sum of squares of the terms ∆i,j,k as shown in equation 4.5. This makes

the implementation of the distance measure between 4th order tensors efficient. Note that

the distance measure is invariant to rotations since the integral is defined over all gradient

directions.

4.3.2 Calculating the Weights

Using the distance metrics the edge weights on the graph can be calculated using the fol-

lowing equation,

wij = e−βd(Ti,Tj)
2

+ ε (4.6)

where ε is a small constant and β is a free scaling parameter set by the user. d is dLE (Ti, Tj)

when performing segmentation on 2nd order tensors and dL2 (Di, Dj) when performing seg-

mentation on 4th order tensors. The tensor distances are normalized to a range of [0,1].
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4.4 Results

Segmentations were performed on both 2nd and 4th order DT-MR images using the above

methodology. Positive definite tensors of 2nd and 4th order were estimated using the method

proposed by Barmpoutis et al. [6]. Segmentation results of both 2nd and 4th order datasets

are presented for comparison purposes. The advantage of performing segmentation on 4th

order datasets instead of 2nd order is demonstrated.

Standard hard constraints were used in all the examples. Both background and object

seeds were provided as an input. For all the segmentation results, the object seeds are shown

in green and the background seeds in yellow. Moreover, the DT-MR images sets are visual-

ized using the trace. For our experiments the β parameter in equation 4.6 had a noticeable

effect on the results of the segmentations. The optimal β parameter in our experiments was

determined by trial and error. Multiple values were tested until a qualitatively satisfactory

segmentation was achieved.

4.4.1 Synthetic Data Sets

Our synthetic dataset presented here is of size 100x100 and contains a 40x40 box which is

composed of simulated crossing fibers with orientations of [0.7071 0.7071 0] and [0.7071 -

0.7071 0]. The box is surrounded by simulated crossing fibers with orientations of [1 0 0] and

[0 1 0]. Fig. 4.2 shows both the 2nd and 4th order diffusion tensor fields reconstructed from

the same synthetic image slice and are visualized via a spherical visualization technique 1.

The 2nd order approximation did recognize that the two types of crossing fibers are different

(demonstrated by the difference in color in the visualization) however, the approximation

shows all the tensors as being planar and no crossing is depicted. It fails to distinguish

the inner box from the surrounding fibers. Whereas, the 4th order approximation can

differentiate between both regions and correctly displays the crossing fibers. Note that to

avoid tensor cluttering, we plot the tensors at intervals of 10.

Fig. 4.3 shows the segmentation result of the synthetic dataset, where the aim is to

segment the middle black box from the white background. The segmented result is shown

by the red outline. Fig. 4.3(b) clearly shows that the 2nd order model fails to segment

the middle box because the 2nd order tensor model lacks the ability to distinguish between

1The visualization is performed using a computer program implemented by Barmpoutis and is available
at: http://www.cise.ufl.edu/ abarmpou/lab/
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(a) 2nd order tensors (b) 4th order tensors

Figure 4.2: Spherical visualization of the synthetic data set.

crossing fibers, whereas the 4th order model accurately segments the middle box as shown

in fig. 4.3(c). This also serves to demonstrate that the normalized L2 distance metric takes

into account both the direction and the magnitude of the 4th order diffusion tensors.

(a) Initial image with
seeds

(b) 2nd order tensors seg-
mentation

(c) 4th order tensors seg-
mentation

Figure 4.3: Segmentation result of the synthetic data set.

4.4.2 Real Data Sets

The proposed segmentation technique was also tested on a real medical data set. We would

like to acknowledge Jennifer Campbell of the McConnell Brain Imaging Centre, Montreal
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Neurological Institute, McGill University for the fourth order data set. The dataset pre-

sented here consists of a human brain where 99 Diffusion Weighted (DW) volumes are ac-

quired in 99 gradient directions.There is one S0 volume acquired with no gradient direction

and the B-value is 3000.

Region of interest to segment

Fig. 4.4 describes the region of interest chosen to demonstrate the advantage of using fourth

order tensors for the segmentation of DT-MRI data. A region where fiber tracts are present

is chosen as an area of interest to demonstrate that using a fourth order dataset results in

a better segmentation result. Note that the second order dataset is reconstructed from the

fourth order dataset using Barmpoutis and Vemuri’s method presented in [1]. The trace

of the second and fourth order slice is calculated to visualize the selected slice. This is to

confirm that the same slice is selected from both the 2nd and 4th data sets. The top right

corner of the slice is selected as a region of interest because of the presence of white fiber

tracts. The selected region of interest is shown on both the trace of the 2nd (fig. 4.4(a))

and 4th (fig. 4.4(b)) order slices. To visualize the fibers and demonstrate their presence

in the selected area, the Fractional Anisotropy (FA) is calculated for the second order slice

(fig. 4.4(c)) whereas the Generalized Anisotropy (GA) is calculated for the fourth order slice

(fig. 4.4(d)).

Fig. 4.5 shows the segmentation result of the fibers performed on both the 2nd and 4th

order slices. The 4th order model resulted in a much more accurate segmentation than the

2nd order model. This demonstrates the advantage of performing segmentations on higher

order data especially in the areas of crossing fibers.

Fig. 4.6 displays the segmentation result of the corpus callosum from the lateral view.

Many seeds were initialized to demonstrate that the 2nd order model can produce an ac-

curate segmentation when additional seeds are placed. The 2nd order model produced a

segmentation result similar to the 4th order model. However, the 4th order model still

produced a qualitatively more accurate segmentation.

4.5 Discussion

The random walker segmentation algorithm can be extended to segment both 2nd and 4th

order DT-MR images by utilizing appropriate tensor distance metrics. The segmentation
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(a) Selected region of interest
shown on the 2nd order slice

(b) Selected region of interest
shown on the 4th order slice

(c) FA of the 2nd order slice (d) GA of the 4th order slice

Figure 4.4: The selected slices and region of interest chosen for the segmentation

is carried out on a weighted graph, where tensor distance metrics that use the full tensor

information are used to define edge weights. The normalized L2 tensor distance is used

to define the weights on the graph for the 4th order tensor field segmentation whereas the

Log-Euclidean is used for the 2nd order tensor field segmentation.

The proposed approach is applied on both real and synthetic DT-MR images. The

synthetic data set was constructed to demonstrate the limitation of the 2nd order tensors

to correctly represent fiber crossings. In all the experiments carried out, the 2nd order

tensor model lead to inaccurate and poor segmentation results in regions with complex fiber

structures as compared to the segmentation results obtained from the 4th order tensor data.

This demonstrates the advantage of performing segmentation on higher order tensors.

Our segmentation results were very sensitive to the free β parameter that is used in

Eq. 4.6 and also to the number of seeds initially placed by the user. This is especially

the case for the 2nd order tensor field segmentation where the placement of more seeds

resulted in more accurate segmentations. This is a limitation of the underlying random

walker segmentation technique. Future work will investigate how to automatically select a



CHAPTER 4. 4TH ORDER VERSUS 2ND ORDER DT-MRI SEGMENTATIONS 38

(a) Original image with seeds (b) 2nd order segmentation result (c) 4th order segmentation result

Figure 4.5: Segmentation result of the fibers performed on both the 2nd and 4th order slices.

(a) Initial image with seeds (b) 2nd order tensors segmenta-
tion

(c) 4th order tensors segmenta-
tion

Figure 4.6: Segmentation result of the corpus callosum from the lateral view. Demonstration
of segmentation result when more seeds are initialized

suitable value for β and test the segmentation technique on more real datasets in addition

to quantitatively compare the segmentation results obtained from 2nd order and 4th order

tensor fields.



Chapter 5

Brain Tissue Discrimination

5.1 Introduction

DT-MRI has been used to describe the structural geometry of many types of tissue such as,

muscle tissue, bone marrow, the heart and the brain. A 3x3 diffusion tensor can describe

the degree and principle directions of anisotropic diffusion. Several scalar measures have

been proposed that attempt to describe the diffusion anisotropy information provided by

the tensors. The measures are useful for discriminating between healthy and damaged tissue

micro structure [3].

A tensor D can be visualized as an ellipsoid with lengths of the three orthogonal principle

axes proportional to the tensor’s eigenvalues λ1, λ2, and , λ3 (in decreasing order). The sum

of the eigenvalues is equal to the trace of the diffusion tensor (tr (D) = λ1 + λ2 + λ3). The

tensor’s eigenvectors ê1, ê2 and ê3 describe the direction of the diffusion in the tensor.

Using symmetry properties of the ellipsoid the diffusion tensor can be decomposed into

three basic geometric measures and can be represented using a combination of basis shapes.

There are three different cases of diffusion [34],

1. Linear case (λ1 � λ2 ∼= λ3). Diffusion in this case is mainly in the direction of the

largest eigenvalue,

D = λ1ê1ê
T
1 (5.1)

2. Planar case (λ1 ∼= λ2 � λ3). Diffusion is restricted to a plane spanned by two

eigenvectors corresponding to the two largest eigenvalues

D = λ1
(
ê1ê

T
1 + ê2ê

T
2

)
(5.2)

39
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3. Spherical case (λ1 ∼= λ2 ∼= λ3). Diffusion in this case is isotropic

D = λ1
(
ê1ê

T
1 + ê2ê

T
2 + ê3ê

T
3

)
(5.3)

The classification of diffusion into these three distinct types allows for the description of

a diffusion tensor according to its geometry. Three shape measures are derived from these

diffusion cases that describe how close the tensor is to the cases of line, plane and sphere.

The measures quantitatively describe the geometrical shape of the diffusion tensors. The

measures for linear(Cl) , planar (CP ) and spherical (CS) are defined as follows[34],

CL =
λ1 − λ2
tr (D)

(5.4)

CP =
2 (λ2 − λ3)

tr (D)
(5.5)

CS =
λ3

tr (D) /3
(5.6)

The measures range between 0 and 1 and their sum is 1. Therefore, only two of the measures

for each tensor need to be calculated. Each of the measures when applied to brain tissue

will reflect a different type of diffusion. For instance, when applied to white matter CL

accentuates the uniformity of tract direction within a voxel. Therefore, it will return a high

value when diffusion is restricted to two orthogonal directions.

Several methods have been proposed to described diffusion anisotropy and relate it to

the geometrical structure of tissue. The relative and the fractional anisotropy measures are

two widely used anisotropy measures. The relative anisotropy (RA) is defined as follows,

RA =

√
(λ1 − tr (D))2 + (λ2 − tr (D))2 + (λ3 − tr (D))2

√
6 tr (D)

(5.7)

The Fractional anisotropy (FA) is another measure that is similar to RA and is defined as

follows,

FA =

√
3 (λ1 − tr (D))2 + (λ2 − tr (D))2 + (λ3 − tr (D))2

2
(
λ21 + λ22 + λ23

) (5.8)

FA is the most commonly used scalar diffusion anisotropy measure. It is a common metric

used to describe the degree of diffusion directionality. A high FA value signifies that diffusion

occurs predominantly along a single axes. On the other hand, a low FA value indicates

diffusion along all three cardinal axes.
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FA has been widely used for the diagnosis and assessment of degenerative brain dis-

eases such as Multiple Sclerosis (MS) . It has been shown in [32] that FA is derived using

a generalized tensor dot product in Euclidean space. However, recent studies have demon-

strated that the space of diffusion tensors does not form a Euclidean vector space. Therefore

Weldeselassie et al.[32] derive two new anisotropy measures that take into account the correct

representative space of diffusion tensors. Just like FA they are based upon the eigenvalues

of the diffusion tensor. The proposed metrics provide a measure of the tensor shape differ-

ence between the diffusion tensor and its closest isotropic tensor. Therefore, the anisotropy

measures are referred to as the Shape Anisotropy Index (SA). The two measures differ in

the distance metrics that they are derived from. The first measure is derived from the

J-Divergence distance measure and is defined as follows,

SAJD = tanh


√√√√ 3∑
i=1

(
λi − λ̄

)2
λiλ̄

 (5.9)

where λ̄ is the mean of the eigenvalues. The second measure is derived from the Log

Euclidean distance measure and is defined as follows,

SALE = tanh


√√√√ 3∑
i=1

log 2
(
λi
λ̄

) (5.10)

The hyperbolic tangent scales the range of the measure to [0,1), which makes it possible to

compare the results of the measure to FA and RA. It is apparent from the definitions of all

the anisotropy measures that they behave differently, yet they all depend on the same set

of parameters (λ1, λ2 and λ3).

5.2 Contribution

In this chapter we compare the anisotropy measures FA, RA, SAJD, SALE and the shape

measure CL to determine which measure can provide the best discrimination between dif-

ferent types of brain tissue. This work was published in SPIE 2011 [32]. The comparison

is performed by calculating a detectability index for different regions in the brain from a

segmented DT-MRI brain atlas. Moreover, we investigate the relationship between tissue

architecture and MR frequency shifts using numerical simulations.

Section 5.3.1 explains the detectability index used to evaluate the different anisotropy

measures and presents the DT-MRI segmented atlas used. The tissue discrimination results
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are presented in section 5.4.1. Finally, the discussion and concluding remarks are made in

section 5.5

5.3 Methods

5.3.1 Tissue Discrimination

For the task of discriminating between two tissue classes in the brain i.e. between gray and

white matter, we use a measure of diffusion anisotropy A, which can be evaluated using a

detectability index [3],

d =
< A1 > − < A2 >√

σ21 − σ22
(5.11)

where (< A1 >, σ
2
1) and (< A2 >, σ

2
2) are the means and variances of the anisotropy values

for the two tissue classes. The anisotropy measure with the greatest detectability index

indicates that it can discriminate between two tissue classes the best. The variances depend

upon a combination of tissue and subject variability, measurement noise, the encoding axes,

the diffusion weighting and the pulse sequence parameters. In this case we compare the

anisotropy measures FA, RA, SAJD, SALE and the shape measure CL.

Fig. 5.1 shows FA, RA, SAJD and CL maps for a selected DT-MR brain image slice.

This dataset is publicly available by the John Hopkins Medical Institute Laboratory of

Brain Anatomical MRI (http://Ibam.med.jhmi.edu/). We don’t show SALE since, it is

very similar to SAJD. The four different maps look quite different, therefore it is expected

that each anisotropy measure will discriminate between different tissue types differently.

Segmented Atlas

The detectability indicies for FA, RA, SAJD, SALE and CL are calculated for various types

of tissue in the brain. We chose the following regions of interest to calculate the indicies:

• Corpus callosum (CC).

• Internal capsule (IC).

• Thalamus (TH).

• Gray matter (GM).
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(a) FA (b) RA

(c) SAJD (d) CL

Figure 5.1: FA,RA,SAJD and, CL of a chosen DT-MR brain image slice

• Subcortical white matter (SCW).

We obtained a DTI atlas (JHU MNI SS) from John Hopkins Medical Institute Labora-

tory of Brain Anatomical MRI 1 which is registered to a white matter parcellation map

(JHU MNI SS WMPM TypeI). The parcellation map is a hand-segmented map, in which

known white matter structures are manually segmented based on FA and color (fiber orien-

tation) information. Peripheral white matter regions (beneath the cortex) that are difficult

to define manually were defined by white matter probability in some atlases. The entire

brain is parcellated to 56 core and 46 peripheral white matter regions, in addition to 10

subecortical gray matters, hippocampi, and others (total 130 structures). Fig. 5.2(a) shows

a single slice of FA with the parcellation map superimposed on it. From the parcellation

1http://Ibam.me.jhmi.edu/
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map the 5 regions of interest (fig. 5.2(b)) were identified.

(a) Single slice of FA with the parcellation
map superimposed on it

(b) Single slice of FA with the Regions of inter-
est highlighted

Figure 5.2: A single slice of FA with corresponding regions of interest.

5.4 Results

Our tissue detectability results are presented in Table 5.1 where the highlighted values of

d indicate that the anisotropy index given on that row performs best in discriminating

tissue classes on the corresponding column. Since, the ability to distinguish between the

tissue groupings by a specific anisotropy measure should increase with the magnitude of the

detectability index.

None of the measure returned a highest detectability index across all of the tissue group-

ings. This shows that each anisotropy measure can be used according to the application

at hand. For instance, FA showed higher detectability index values when discriminating

between areas that are both within white matter. Whereas, SA showed higher detectability

index values when discriminating between white matter and gray matter regions. The shape

measure CL showed the highest values in areas that are characterized with linear shaped

areas (highly anisotropic).
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Table 5.1: Estimated detectabilites, d, between selected tissue groups for the selected mea-
sures. The anisotropy measure with the greatest separability is highlighted.

CC vs CC vs CC vs CC vs IC vs IC vs IC vs TH vs TH vs GM vs
IC TH GM SCW TH GM SCW GM SCW SCW

CL 0.02 1.19 1.69 0.67 1.42 2.01 0.79 1.32 0.67 1.46

RA 0.16 0.96 1.76 0.56 1.40 2.37 0.85 1.99 0.48 1.69

FA 0.24 0.95 2.01 0.52 1.46 2.69 0.86 2.07 0.45 1.82

SAJD 0.39 0.74 2.12 0.36 1.35 2.89 0.81 2.10 0.36 1.90

SALE 0.38 0.73 2.10 0.37 1.33 2.87 0.82 2.11 0.34 1.89

5.4.1 Tissue Discrimination Results

5.5 Discussion

Diffusion tensor measurements of brain tissue provide us with a wealth of information about

the tissue’s structure. The eigenvalues of a diffusion tensor can be used to explain the shape

of the tensor. Several measures of tensor anisotropy have been proposed where each mea-

sure is a function of the three eigenvalues. From our experimental results, it is clear that

each of the anisotropy measures emphasize different tensor features. We chose to exam-

ine four measures of diffusion tensor anisotropy and one shape measure. The experiment

can be extended to any anisotropy measure. Some measures were better than others in

discriminating between different tissue types. In general, FA performs better in detecting

differences among tissues within the white matter whereas, SA detects differences between

white matter and gray matter. Therefore, anisotropy measures should be chosen according

to the application they are used for.



Chapter 6

A Novel Segmentation Approach

for Mammograms

6.1 Introduction

The segmentation of the breast area from mammograms is a crucial and initial pre-processing

step for computer aided diagnostic tools. Existing segmentation approaches on mammo-

grams suffer from several problems and have specific modes of failure. Most existing ap-

proaches fail on images that exhibit a large amount of noise and on images where the breast

edge isn’t well defined and has low contrast with the background.

There are several proposed techniques that have been used to segment mammograms

[27]. In many cases histogram techniques are used to segment the breast region from the

background. These techniques involve a global basic thresholding of the mammogram and

are the simplest of all the segmentation techniques. A threshold value can be either au-

tomatically estimated or supplied by the user. This approach has many modes of failure

especially when artifacts are present or when the background is noisy. Masek et al.[22] use

local thresholding instead of a global thresholding technique and have shown promising and

improved results. On the other hand, Abdel-Mottaleb et al.[2] use a system of masking

images with different thresholds to find the breast edge. They calculate the gradients from

the images to estimate the approximate location of the skin edge. This method is restricted

to the number of mask images created and the number of thresholds used. Of the 500

mammograms tested, an ”acceptable” boundary was found 98% of the time.

46
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Gradient based methods have also been used to detect the breast edge. Such approaches

involve the usage of spatial or edge detection filters such as Sobel or Laplacian. A global

thresholding technique is used to obtain the preliminary region which is then processed

using a filter. This approach does not tend to be robust since, the edge of the breast

has low contrast with the background which makes it a challenge to detect the skin edge

using a filter. Moreover, the breast edge is a contour and does not have a strict horizontal or

vertical orientation. Mendez et al.[23] find the breast contour using a gradient based method.

A thresholding technique is used to isolate the breast region of the mammogram. The

mammogram is then divided into three regions using a number of automatically determined

reference points and a tracking algorithm that tracks changes in the gradient in those regions

is applied. The algorithm was tested on 156 mammograms and an ”acceptable” boundary

was found 89% of the time.

Bick et al.[10] propose an approach that involves thresholding, region growing and mor-

phological filters. The mammogram is initially filtered to reduce noise and then a texture

operator is applied. Morphological filters are used to eliminate irregularities along the breast

contour and contour tracing extracts the breast contour. The algorithm was tested on 740

mammograms with a 97% ”acceptable” rate.

A promising and intuitive approach to the segmentation of mammograms is the usage of

polynomial modeling based techniques[12]. A histogram threshold is performed to enhance

the response of non dark pixels, then the boundary is smoothed using cubic B-splines.

Samples at fixed intervals are extracted and a smooth curve is generated through cubic

polynomial calculations [29]. This approach relies heavily on the initial detection of the

curve and requires user input to define the initial point of the boundary. Therefore, it can’t

be incorporated in a fully automatic segmentation approach.

Active contours (snakes) have also been used for the detection of the breast contour [36],

where an evolving curve starts from an initial point and evolves to include the whole edge

of the breast. Active contours tend to be sensitive to noise and weak edges, which make

them a poor candidate for the segmentation of the breast region. They also rely heavily on

the initialization point of the snake.

Oliver et al [24] present a statistical approach which also incorporates spatial information

for the segmentation of the breast area. The approach is based on modeling a set of patches

of either fatty or dense parenchyma using statistical techniques. The modeling is performed

using principle component analysis (PCA) and linear-discriminant based (LDA) techniques.
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After the models are created, each pixel of a new mammogram is classified as being fatty

or dense tissue.

A major difference between all the approaches listed above lies in the domains on which

the hypothesis, tests and decisions are based. The approaches all have certain drawbacks.

The usage of filters, only makes use of local information and doesn’t always produce con-

nected closed edge contours. Snake models make use of only the information along the

boundary and require accurate initialization points. Region growing techniques have the

advantage of evaluating the statistics inside a confined region. However, the result of the

segmentations sometimes suffer from irregular boundaries and small holes.

6.2 Contribution

In this chapter, we present a novel statistical framework for the segmentation of the breast

area from mammograms. It is derived by automatically identifying intensity values that can

be used to define a probability distribution that describes the breast area. This, in turn is

used as a classifier to determine if a pixel belongs to the breast area. The algorithm incor-

porates both local and global information and it takes into account the intensity variability

of the breast area. The mammogram is first thresholded using a clustering thresholding

algorithm that serves to separate the image into four non overlapping clusters, therefore

returning three threshold values. The regions can be identified as: background, low inten-

sity, medium intensity and high intensity. The purpose behind performing this multi level

thresholding is because of the inherent nature of mammograms. The four clusters resulting

from the thresholding method can be described as follows: (i) The background (ii) A low

intensity region which includes the breast’s skin line. (iii) The medium intensity region con-

tains the majority of breast tissue. (iv) The high intensity region contains noise artifacts,

external labels, implants, external devices and the high intensity regions in the breast such

as calcifications.

The three regions (excluding the background) are then used to automatically calculate

three separate ”seed” values that are used to create three different probability distributions.

The distributions are visualized as images (kernel images) where each value in the image

represents a degree of membership to a seed. A higher value means a higher probability

of belonging to the seed. As a post processing step the largest connected component is

detected which is assumed to be the breast region. This is a safe assumption since the
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breast is always the largest component in a mammogram. Fig. 6.1 graphically displays the

steps of the algorithm.

Section 6.3.1 presents the thresholding part of the algorithm. Section 6.3.2 describes

the process of determining the seed values. Section 6.3.3 explains how the kernel images are

calculated and produced. The connected component detection used is described in section

6.3.4. The segmentation results are presented in section 6.4. Finally, concluding remarks

are made in section 6.5.

6.3 Methods

6.3.1 Histogram Clustering Thresholding

The purpose of thresholding is to separate an image into multiple non overlapping segments.

The task of thresholding mammograms tends to be challenging because mammograms lack

large areas of uniform intensity especially when the background is noisy. Otsu’s thresholding

method [25] uses discriminant analysis to separate an image’s histogram into distinct classes.

The method evaluates the goodness of every possible threshold value by maximizing a

criterion function. The criterion function is maximized if the means of two classes are

separated as far as possible and their variance is as minimum as possible.

The multi-level thresholding algorithm implemented in our framework is based on Otsu’s

thresholding method and was proposed by Arifin and Asanao [4]. The proposed method

is based on the idea of histogram bin clustering. Since, thresholding can be viewed as a

clustering problem. The method can be visualized as developing a dendrogram of gray

levels in the histogram of an image based on a similarity measure. The measure takes into

account the inter variance, intra variance and means of clusters. Fig. 6.2 shows a histogram

of a 11x11 sample image that contains 43 gray levels. The dendrogram in Fig. 6.2(b)

provides a visualization of the clustering process. The numbers on the horizontal axis of

the dendrogram are the indices of the gray levels (1 to 43), whereas the height of the links

between the clusters represent the order of the clustering. Finally, the threshold value is

the index that separates the t−clusters from each other. The dendrogram in Fig. 6.2(b) is

a result of a 2−level thresholding hence, there are 2 clusters. Whereas, the thresholding

performed on the mammograms is a 4−level thresholding, resulting in four clusters and

three thresholding values.

Arifina and Asano’s t-level thresholding algorithm can be detailed as the following:
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Figure 6.1: A graphical description of the algorithm, showing its steps.
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(a) (b)

Figure 6.2: Histogram of a 11x11 sample image with 43 gray levels and a visualization of
its corresponding dendrogram. This figure was obtained from [4]

1. Initially every non empty gray level is regarded as a cluster. i.e. if a histogram has K

initial non empty gray levels then there are K initial clusters.

2. The following two steps are repeated until t-clusters are obtained.

(a) The similarities between adjacent clusters are computed using a distance measure.

(b) The pair with the smallest distance are merged into one cluster.

3. The intensity values separating the clusters are identified as the thresholding values.

Distance Measurement

The distance between two adjacent clusters provides a measure of how similar two clusters

are. The smaller the distance, the higher the similarity between the two clusters. The

measurement is based on both the difference between the means of the two clusters and the

variance of the resulting cluster.

The histogram is viewed as a probability density function. Let h (z) be the histogram of

the target image where z indicates the gray level. The histogram h (z) gives the occurrence

frequency of the pixel with gray level z. So we can define p (z) = h (z) /N where N is the

number of pixels in the image. p (z) is then the probability of the occurrence of the pixel

with gray level z. Another function is defined which indicates the occurrence probability of
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pixels belonging to a cluster Ck

P (Ck) =

Tkn∑
z=Tk1

p (z) ,
k∑
k=1

P (Ck) = 1 (6.1)

where Tk is the intensity value in the cluster Ck. So basically the function P (Ck) is the

sum of the occurrence probability of each intensity value in a cluster k.

The distance function used is defined as follows[4]:

Dist (Ck1 , Ck2) = σ2a (Ck1 ∪ Ck2)σ2I (Ck1 ∪ Ck2) (6.2)

where σ2a (Ck1 ∪ Ck2) is the intra class variance of two merged clusters, σ2I (Ck1 ∪ Ck2) is the

inter class variance, m (Ck) is the mean of the cluster Ck. The inter-class variance takes into

account the probability occurrence of both clusters and the difference between their means.

It is defined as follows:

σ2I (Ck1 ∪ Ck2) =
P (Ck1)P (Ck2)

(P (Ck1) + P (Ck2))2
(m (Ck1)−m (Ck2))2 (6.3)

m (Ck) is the mean of cluster Ck, defined as follows:

m (Ck) =
1

P (Ck)

Tkn∑
z=Tk1

z ∗ p (z) (6.4)

The intra-class variance σ2a (Ck1 ∪ Ck2) is the variance of all the pixel values in the merged

cluster and is defined as follows:

σ2a (Ck1 ∪ Ck2) =

Tkn∑
z=Tk1

(
(z −M (Ck1 ∪ Ck2))2 p (z)

)
(6.5)

In our implementation a 4-level histogram clustering is used. Therefore, separating

the histogram into four clusters and returning three threshold values. The first cluster is

assumed to contain the background pixels, the second cluster contains the low-intensity

range of the breast, whereas the third cluster contains most of the breast tissue and the

fourth cluster contains the high intensity regions of the breast and external objects.

6.3.2 The Determination of the Seed Values

The seeds are three automatically determined intensity values that will later serve to cal-

culate a probability density distribution. Each seed represents a region of the breast tissue.
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The first seed is a low intensity value representing the breast’s skin line, the second seed

is a medium intensity value representing the main breast tissue and the third seed is a

high intensity value that takes into account the high intensity regions of the breast such as

calcifications.

The output of the thresholding algorithm is three threshold values which separate the

image’s histogram into four regions. The first threshold value separates the breast from the

background. The first region of interest constitutes of all the pixels that have an intensity

value less than the second threshold intensity value and greater than the first. The first

seed is defined as the center value of the region as demonstrated in equation 6.6. This seed

value is used represent the low intensity region of the breast.

Seed 1 = Threshold value 1 + (Threshold value 2 - Threshold value 1)/2 (6.6)

The second region of the histogram constitutes of all the pixels that have an intensity value

greater than the second threshold intensity value and less than the third threshold level.

The second seed is simply the second threshold intensity value. This is the intensity area

where most of the breast tissue is present in and is free from any background or artifact

pixels.

The third region of the histogram constitutes of all the pixels that have an intensity

value greater than the third threshold value. Labels, wedges and noise are present in this

area of the histogram. Such artifacts have very high intensity values that are not present in

the breast tissue and are present at the end of the histogram. The presence of artifacts in

a mammogram corresponds to the presence of a peak at the end of the histogram. Fig. 6.3

shows a mammogram and it’s corresponding histogram. Note the large peak at the end of

the histogram corresponding to the wedge and label’s present on the mammogram. The

seed value for this region is calculated as the following,

Seed 3 = Threshold value 3 + (256- Threshold value 3)/2 (6.7)

The result of this is a set of three intensity values referred to as seeds: low intensity,

medium intensity and high intensity. All three of the seeds are detected automatically with

no user specified parameters involved.
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(a) Original Mammogram (b) Histogram of the mammogram sectioned into
the corresponding intensity regions

Figure 6.3: A mammogram with it’s corresponding histogram segmented into the intensity
regions used to calculate the seed values.

6.3.3 Kernel images

The seeds are used to produce a ”kernel” image, which is the result of applying a Gaussian

probability distribution kernel on the image:

h(x, y) = P (I (x, y)| (seed, σ)) =
1√
2πσ

exp −0.5
(I (x, y)− seed)2

σ
(6.8)

where σ is the variance and I (x, y) is a pixel at position x,y. The function describes the

probability that a pixel I (x, y) can be generated by a Gaussian distribution N
(
seed, σ2

)
.

A more sophisticated probability could be used, but for our purposes this Gaussian kernel

is sufficient. The purpose of performing this is to create a membership metric. If the pixels

are close in intensity value to the seed, they will have a high kernel value whereas, if they

are different the kernel value will be close to zero. By creating three kernel images, we are

capturing the membership of the three different regions in the image.

The first distribution is centered around the first seed represents the pixels corresponding

to the skin line. The distribution’s variance (σ1) is calculated as follows,

σ1 = (Seed 1 - Threshold value 1)/2 (6.9)
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The second distribution centered around the second seed represents the pixels corresponding

to the bulk of the breast tissue. The variance in this region (σ2) is the largest since we assume

that all the pixels in this region belong to the breast.

σ2 = (Seed 2 - Threshold value 2)/2 (6.10)

The third and final distribution centered around the third seed represents the pixels cor-

responding to the high intensity regions in the breast. The variance (σ3) in this region is

calculated as follows

σ3 = (Seed 3 - Threshold value 3)/2 (6.11)

An example of three kernel images is displayed in Fig 6.4. The three seed values used

to produce the three kernel images are 20, 62 and 91 respectively. Each pixel in the three

images has a kernel value, however the pixels with the higher kernel values have a higher

intensity value and appear as bright pixels. Note how the first kernel image (Fig 6.4(b))

captures the skin line accurately and distinguishes it from the background and the rest of

the breast tissue.

6.3.4 Largest Connected Component

As a post processing step to reach to the final segmentation solution we detect the largest

connected component and return that as the breast region.

Connected component detection

The final segmentation result is returned by detecting the biggest connected component in

the sum of the kernel images (the resulting image from adding the three kernel images).

Since, the algorithm does not incorporate any spatial information there is a chance that

some noisy areas could be classified as regions belonging to the breast tissue. An example

of this case is displayed in Fig. 6.5 where the labels on the mammogram were classified as

part of the breast.

A connected component labeling algorithm is used to detect the largest component.

This approach consists of assigning a unique label to each maximal connected region of

foreground pixels.
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(a) Original image (b) Low intensity kernel image

(c) Medium intensity kernel im-
age

(d) High intensity kernel image

Figure 6.4: A mammogram and its corresponding kernel images.

Connected components labeling

Stedano and Bulgarelli [13] propose a simple and efficient connected components labeling

algorithm which we use in our implementation.

Let I be the binary image resulting from the segmentation and F,B the non overlapping

subsets of I corresponding to foreground and background respectively. A connected compo-

nent C of I is a subset of F such that all the pixels in C are connected. Note that instead

of iterating on all the pixels in the binary image we treat each region block as a pixel which

reduces the computational complexity significantly. However, each region will be referred

to as pixel in this section.

The algorithm generates a new image in which a unique label is assigned to pixels

belonging to the same connected component. The background pixels remain untouched and

only the foreground pixels are assigned labels. The labels are assigned by performing two

raster scans. During the first scan, labels are assigned to each pixel based on the values of

its neighbors. In this implementation a 4-connectivity neighborhood is used where x is the
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(a) Original Image (b) Sum of the kernel images (c) Result of the largest con-
nected component detection

Figure 6.5: A mammogram, sum of the kernel images and the largest connected component
detection result.

pixel to be labeled (Fig. 6.6). The algorithm can be described using the following cases. For

Figure 6.6: Demonstrating a 4-connectivity neighborhood where x is the pixel to be labeled.

all the foreground pixels in the image where x is the pixel to be labeled and its neighbors

are p, q:

1. If the neighbors of the pixel x are both background pixels then x is assigned a new

label.

2. If the neighbors both have the same label, then assign x that label.

3. If one of the neighbors is a background and the other has a label assign x that label.

4. If both neighbors have a different label then x is assigned either label and the two labels
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are regarded as equivalent. This equivalence is stored in an array and is constantly

updated during the scan. For instance (Fig. 6.7), if p had a label value of 1, and q had

a label value of 2 then a common label needs to be decided upon to label x. This is

done by setting one of the labels to be a survivor and the other is deleted (in this case

assume p′s label is retained). The equivalence of the two labels is saved in a simple

data structure such as an array which can keep track of the labels that are merged

into one. During the second raster scan the equivalences that are stored in the array

are applied to the labeled image, so that in the second scan q′s label would change

from 2 to 1.

(a) Example image (b) Labeling result of the first
scan

(c) Labeling result of the second
scan

Figure 6.7: An example of the labeling process. The circles in Fig. 6.7(a) represent the
foreground pixels.

6.4 Results

The algorithm was tested on 300 mammograms which were reduced in resolution to 8-bit

to make the segmentation process faster. The dataset consists of a wide range of cases i.e:

digitized images, scanned images, images with labels and images with foreign objects such as

clips and breast implants. The algorithm failed on two specific cases that will be described

in the next section.
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6.4.1 Segmentation Results

In this section, a subset of the results of applying the segmentation algorithm on the mam-

mogram images are displayed. For each result four images are displayed:(i) The original

mammogram. (ii) The summation of all three kernel images after the largest connected

area is detected (iii) The detected breast region, where a yellow box is used to display the

region detection result.

Fig. 6.8 shows the detection of the breast region from a scanned mammogram film. The

breast region is a challenge to detect in scanned mammograms because they have noisy

backgrounds and contain foreign labels. The intensity range of the labels is similar to the

breast tissue and therefore it can be a challenge to distinguish them from the breast tissue.

Our implementation detected the breast region accurately and didn’t include the labels and

foreign objects as part of the segmentation result.

(a) Original Image (b) Addition of kernel im-
ages (biggest connected area
detected)

(c) Detected breast region

Figure 6.8: Segmentation of the breast region from a scanned mammogram.

Some mammograms contain external objects that overlap the area of the breast such

as clips. Fig. 6.9 displays the breast area detection from such a mammogram image. The

segmentation approach detected the breast region accurately and did not include the clips

as part of the segmentation result.

Fig. 6.10 shows the segmentation result on another mammogram that contains an ex-

ternal clip. Again the segmentation approach detected the breast region accurately and did

not include the clip as part of the segmentation result.

Fig. 6.11 displays the segmentation result on a mammogram that is inverted. This is
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(a) Original Image (b) Addition of kernel im-
ages (biggest connected area
detected)

(c) Detected breast region

Figure 6.9: Segmentation of the breast region from a mammogram with external objects
(clips).

the case for some mammograms where the background is assigned a high intensity value

and the breast tissue has a low intensity range. The breast area was detected accurately.

This demonstrates the robustness of the segmentation approach and its ability to handle

inverted images.

Fig. 6.12 displays the segmentation result on a mammogram of a breast which con-

tains an implant. The breast tissue is accurately distinguished from the implant. This

again demonstrates the effectiveness of the algorithm in excluding external objects from the

segmentation result and differentiating them from breast tissue.

6.4.2 Failure Cases

There were two specific cases in which the algorithm failed to detect the breast region

correctly. The first case is demonstrated in Fig. 6.13. In this case, the breast tissue is

separated by a clip which leads to the failure of the biggest connected component detection

to correctly return the whole breast area as a result.

Whereas the second mode of failure is on mammograms where the whole of the image

represents breast tissue and there is no background. Therefore the thresholding of the image

into multiple regions and disregarding the background intensities is meaningless since there

is no background. This case is demonstrated in Fig. 6.14.
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(a) Original Image (b) Addition of kernel im-
ages (biggest connected area
detected)

(c) Detected breast region

Figure 6.10: Segmentation of the breast region from a mammogram with external objects
(clips).

6.5 Discussion

The segmentation of the breast area from mammograms can be a challenge because of the

lack of uniform intensity regions, noisy backgrounds, presence of foreign objects and the

low contrast nature of mammograms. The proposed novel segmentation approach for the

detection of the breast area in mammograms overcomes those challenges. The segmentation

is arrived at by automatically identifying intensity values that can be used to define a prob-

ability distribution that describes the breast area. The probability distribution is treated as

a membership metric to distinguish breast tissue from the background and external foreign

objects.

The breast region was tested on 300 mammograms and failed on two specific cases. In

some instances, the labels are detected as breast tissue and therefore a post processing step

that detects the largest connected component is implemented as part of the segmentation

framework. The approach requires no pre-processing steps or any filtering operations which

are computationally intensive. Moreover, it is completely automatic and requires no pre

knowledge about the orientation of the breast images or the intensity levels in the images.
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(a) Original Image (b) Addition of kernel im-
ages (biggest connected area
detected)

(c) Detected breast region

Figure 6.11: Segmentation of an inverted mammogram.

(a) Original Image (b) Addition of kernel images (c) Detected breast region

Figure 6.12: Segmentation of the breast region from a mammogram of a breast containing
an implant.

(a) Original Image (b) Addition of kernel images (c) Detected breast region

Figure 6.13: Segmentation of the breast region from a mammogram where a clip overlaps
the breast and separates it into multiple sections.
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(a) Original Image (b) Addition of kernel images (c) Detected breast region

Figure 6.14: Segmentation of the breast region from a zoomed in view on the breast tissue



Chapter 7

Conclusion and Future Work

7.1 Conclusion and Summary

We have successfully extended the random walker segmentation algorithm to both 2nd and

4th order DT-MRI data. Moreover, we investigate the ability of different anisotropy measures

to distinguish between various tissue in the brain. We also propose a novel segmentation

framework for the detection of the breast area in mammograms. Our specific contributions

are as follows:

• We applied the random walker segmentation algorithm to DT-MRI data, and we

incorporated prior models in its formulation to allow the segmentation of disconnected

objects. We used two DT-MRI distance metrics to evaluate the difference between

tensors on the constructed graph which the segmentation is applied to. The two

distance metrics are the Log euclidean and the J-Divergence. The advantage of using

these two metrics is that they use the whole information contained in the tensors (both

direction and magnitude). The segmentation results were compared to segmentation

results obtained from using the graph cuts segmentation method. We show that the

random walker returns more accurate results than the graph cuts.

• The random walker segmentation algorithm is also applied to higher (4th order DT-

MRI data. For 4th order data we use the normalized L2 distance to evaluate the

difference between tensors. The goal was to investigate if performing segmentations

on higher order data has any advantages over 2nd order data segmentations. The
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results confirmed that 4th order segmentations are more accurate especially in areas

where fiber crossing is present.

• There are several different anisotropy measures that attempt to capture the geometric

nature of tissue’s micro structure. We investigate how each measure behaves differently

with respect to distinguishing between different types of tissues in the brain. We

compare FA,RA,SA and a shape measure CL by computing a detectability index for

different regions in the brain. The regions in the brain are identified from a segmented

DTI brain atals. We arrive to the conclusion that FA performs better in detecting

differences among tissue within the white matter where as SA detects differences

between white matter and gray matter. The results show that each anisotropy measure

should be chosen according to the applications to which it could be applied.

• Finally, a novel segmentation framework for the detection of the breast area in mam-

mograms is developed. The segmentation algorithm automatically identifies intensity

values that can be used to define a probability distribution that describes the breast

area. This probability distribution is used as a classifier to determine if a pixel belongs

to the breast area.

7.2 Future Work

There are multiple avenues of future work that may improve the results of this thesis and

further validate our conclusions. Some of the more significant one are as follows,

• Extend the random walker implementation to produce 3D segmentations. The results

of the 3D segmentations could be used to study the shape of the object segmented.

This could also be used to validate the results of the segmentations. The extension

would involve seeding the desired foreground object in all the slices in the DT-MRI

data set and selecting an appropriate β parameter.

• The segmentation results from the random walker segmentation on DT-MRI data can

be quantitatively validated if ground truth segmentations were obtained. This would

give a better estimation of the performance of the segmentation algorithm. Moreover,

the role of the free parameters could be further investigated, and ways of minimizing

their effects on the segmentation result.
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• Extend the random walker segmentation algorithm so that user supplied seeds are not

required. Therefore, making it a fully automated segmentation technique which would

extend the number of applications in which it could be applied to.

• Apply the random walker segmentation technique to track fibers in the brain. Fiber

tracking is a new emerging area where the random walker segmentation method could

be used to identify different types of fibers in the brain.

• It would be interesting to investigate whether the different anisotropy measures could

be advantageous to different clinical applications. For instance, investigating if using

SA in a certain clinical application would be better than using FA.

• Our current breast detection algorithm does not provide a contour outlining the skin

line it just returns the region of the breast. Extending the algorithm to detect the skin

line could be an advantage since it is a more concise segmentation result. Moreover,

an spatial information could be incorporated into the algorithm to eliminate the final

post processing step. This would remedy the problem that the algorithm encounters

when there is an object seperating the breast tissue.
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