
ROLE-BASED SECURE GROUP COMMUNICATION

AND DATA SHARING SYSTEM

by

Lei Sun

B.Eng., Zhejiang University, 2008

a Project submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c© Lei Sun 2011

SIMON FRASER UNIVERSITY

Summer 2011

All rights reserved. However, in accordance with the Copyright Act of

Canada, this work may be reproduced without authorization under the

conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law, particularly

if cited appropriately.

APPROVAL

Name: Lei Sun

Degree: Master of Science

Title of Project: Role-based Secure Group Communication and Data Sharing

System

Examining Committee: Dr.Ted Kirkpatrick

Chair

Dr.Jiangchuan Liu, Senior Supervisor

Dr.Qianping Gu, Supervisor

Dr. Jie Liang, SFU Examiner

Date Approved:

ii

lib m-scan11
Typewritten Text
15 July 2011

Partial Copyright Licence

Abstract

During the recent explosive developments of the internet and massive information availabil-

ity in the air, moving data into the cloud can bring the opportunity of great convenience

to the users. With the cloud, it costs less for the users to access data just in their web

browsers.

However, it will also bring several new challenges: for instance, the users might lose

control of their data because they have no idea where their data is hosted; or their personal

data might be in risk, for other people with higher privileges in the cloud might access to their

private information. Privacy protection is therefore necessary under such circumstances.

We designed a Role-based Secure Group Communication and Data Sharing System(RGCS)

which enables the users to secure their data by encryption locally, and to flexibly control

the access of data so that only selected authorized group of users can decrypt based on

their corresponding role and group in a pre-defined manner. Our new mechanism provides

full encryption on data, and also file protection that prevents data from being accessed by

any unauthorized party, even the storage host or service provider itself. Our RGCS also

applies Identity-based Key Agreement Protocol to prevent group-secure key from suffering

man-in-middle attack. It achieves a desirable tradeoff between security and efficiency of the

group secure communication.

iii

Acknowledgments

This project would not have been possible without the support of many people. I wish to

express my gratitude to my supervisor, Dr. Jiangchuan Liu who was abundantly helpful

and offered invaluable assistance, support and guidance.

Deepest gratitude is also due to my the supervisory Dr. Qianping Gu and my thesis

examiner Dr. Jie Liang, for reviewing this report and providing suggestions to improve the

quality of the report. Also, I want to thank Dr.Ted Kirkpatrick for taking the time to chair

my project defence. I would like to extend my appreciation to the faculty and staff in the

School of Computing Science of Simon Fraser University.

Thank my parents for their selfless love and unlimited support.

iv

Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Secure Issue in Cloud Computing . 2

1.2 Problem Statement . 3

2 Related Work 6

2.1 Security Algorithm Analysis . 6

2.1.1 Symmetric Cryptosystem . 6

2.1.2 Asymmetric Cryptosystem . 7

2.1.3 Digital Authentication . 7

2.2 Secured Communications Managements . 8

2.2.1 Key-agreement Protocols . 10

2.2.2 Key-transfer Protocols . 11

3 RGCS System Module 15

3.1 System Architecture . 16

v

3.2 Role-based Access Permission Control . 17

3.3 Secure Group Communication and Data Sharing 18

4 Implementation Details and System Demo 21

4.1 Programming Modules . 21

4.2 Database Structures . 22

4.3 System Demo . 23

4.3.1 An Example Scenario . 23

4.3.2 User Login Interface . 23

4.3.3 Group Member Information Editing Interface 23

4.3.4 Secure Data Sharing Management Interface 24

5 Conclusions and Future Work 28

Bibliography 29

vi

List of Tables

1.1 Features of Cloud Storage service providers 4

4.1 ’Userkey’ table structure and sample tuples 22

vii

List of Figures

2.1 Model of Symmetric Encryption . 7

2.2 Model of asymmetric encryption: Alice wants to send a confidential message

to Bob. Alice encrypts the message using the encryption algorithm with Bobs

public key. Bob receives and decrypts it using his private key. 8

2.3 Man-in-the-Middle Attack . 9

2.4 Digital authentication process . 9

2.5 Diffie-Hellman key exchange protocol . 11

2.6 Secure multicast tree . 12

2.7 KEKs effected when a new member joins the tree 12

2.8 The tree structure for hierarchical multi-group multicast 14

3.1 The over all architecture of RGCS . 16

3.2 Private file uploading dataflow to RGCS . 19

3.3 Private file retrieving dataflow from RGCS 20

4.1 Interface for user login . 23

4.2 Judy is locked, she cannot access the data of Alice group 24

4.3 Judy Join the group as the role of member 25

4.4 The process of user Judy join the group . 25

4.5 Interface of uploading file . 26

4.6 Group member Judy’s main interface . 26

4.7 The process of retrieving file from server . 27

viii

Chapter 1

Introduction

With the explosive development of the Internet and massive information’s availability in the

air, Cloud Storage can provide users more convenient and efficient resources to fulfill their

increasing storage requirements. It costs less with the deployment of Cloud solution for

users to access data just in their web browsers; and enables small and medium companies

to deploy their products with less complexity. The increased high-speed bandwidth makes

computer usage rise significantly. Cloud Storage is not just connecting the service providers

over Internet[8], but also enables the feature that any users who have devices, browsers and

Internet connections can access the service Cloud they have required, and have access to

them from anywhere at anytime.

By moving users’ data from local devices to the Cloud, it enables the data details to

be abstracted from the end users, who no longer have needs for expertise in, or control

over, seemingly putting the data in the Cloud. Typical Cloud computing providers deliver

common business applications online that can be accessed from other web services or soft-

wares, while the application and data are stored on servers[4], and thus the Cloud resources

among multiple users can improve the utilization of resources. There have been a lot of

research conducted on Cloud storage networks. While the most valuable asset of an orga-

nization is the online-stored data, there are various challenges encountered for shared data

communications through the Clouds.

1

CHAPTER 1. INTRODUCTION 2

1.1 Secure Issue in Cloud Computing

Moving data into the Clouds will offer great convenience to users; however, it also brings

new challenges. Companies increasingly use storage network to store sensitive data. With

the increasing bandwidth and decreasing cost of accessing the Internet, people are more

willing to share experiences and communicate over the Internet; therefore, privacy protection

is necessary in such circumstances. Cloud storage thus faces new privacy and security

challenges for several reasons. First, users might lose control of their data because they

don’t know where their data is hosted. Second, users’ data might be in risk by the people

who has privileges to access their sensitive information[3]. Last but not the least, in Clouds,

data is usually shared with others, thus the existing simple encryption is not an efficient way

in the scenario of group communication. Group communication is one of the Cloud’s new

features. It enables group administration and management of the shared data. Therefore the

storage of data and communications shared by different servers and users might bring along

a series of problems: for instance, the synchronization of various users accessing control

for multiple group communications; or the management of group communication keys for

securing multimedia multicasts; or even the replica of stored data for sharing with multiple

groups. Applying secured group communication solutions into Cloud Computing seems an

necessity, in order to generate an effective yet secured architecture for data communication

and sharing in the Clouds.

In most Cloud storage Services, users might not be able to figure out the storing status

of their data. They don’t know how their service providers deal with their personal data,

which may suffer from being used by someone else for other purposes[2]. Therefore, it is

necessary for us to ask: How do we share our data securely? How do we ensure our data

is only received by the intended recipient? Do we require the Internet to continuously

access our data? Can we control who is accessible to the data? The stored data might

suffer from being stolen or inappropriate management. Therefore, techniques for Cloud

Storage to ensure secured data communication are required. Such protected communication

mechanisms should also support secured communications towards the stored data between

different users and applications within Clouds, or services running across different Clouds.

CHAPTER 1. INTRODUCTION 3

1.2 Problem Statement

With increasing people willing to share data over the Internet, privacy protection is necessary

and thus we should avoid transmitting plain-text of users’ information through Internet.

Therefore, it is intuitive to design a secure mechanism in storing and sharing data in Clouds.

So far as we have concerned, a series of third-party data storage and sharing services are

provided to users. The following Table 1.1 compares the services of 4 classical Cloud Storage

services.

The Amazon web service provides simple storage mechanisms and simple databases to

enable a semi-structured data storage. It uses Type II certificate and firewalls to prevent

attacks from outside the Clouds, which is the same as what Openbula offers. GoGrid on

the other hand does not provide any guarantees on security checkups. Other than that,

the firewall-based techniques, such as what Amazon and Openbula provide, suffers from

well-known security issues which all firewalls have. None of them provides specific securing

techniques for data sharing in group communications or between different Clouds. Such sce-

narios are more severe when comparing with simple security issues, which is because they

often require the Key Re-assignment and Multiple Privilege Managements during commu-

nications across different Clouds.

Therefore, as shown above, we have shown that less focus has been paid attention to

towards the shared data communications. Moreover, all of the above Cloud services have

the same disadvantage that:

The Cloud service provider always know what the stored data are, and how the data

are shared. That is the key reason why people do not always trust the Cloud providers.

Though some security techniques have been used within the Clouds, they can not be sure

whether the Cloud service provider itself will glimpse their data without permission for

various purposes such as economical benefits? For example, the Cloud provider might want

to push advertisements to users based on different kinds of data stored in Clouds. For

instance, it may push tutor advertisement if the data stored is about math or physics.

In this reprot, we propose a Role-based Secure Group Communication and Data Sharing

System(RGCS) in which users can encrypt data in their local machine and store their

encrypted data to the Cloud server. The system provides flexible Role-based group access

control so that users can share their encrypted data only to authorized group members

efficiently and securely.

CHAPTER 1. INTRODUCTION 4

Table 1.1: Features of Cloud Storage service providers
Features Amazon web GoGrid Eucalyptus Openebula

service

Computing Elastic computer Data center ability to Cluster into an
architecture cloud allow architecture configure IaaS cloud

uploading XEN which is multiple Forcus in the
virtual machine designed to clusters, each efficient
image to the deliver a with private dynamic and
infrastructure guaranteed internal scalable
and give client QoS level network management of
APIs to for the address in VMs within
instantiate and exported to a single datacenters
manages them. services. cloud

storage simple storage storage is Walrus(the Database,
services and a two-step front end for persistent
simple database process: the storage storage for
provides a i)connecting subsystem) one data
semi-structured each server structure
data store with to private
querying Network
capability ii)transfer

protocols to
transfer data.

security Type II don’t provide WS security firewall,
certification, a guarantee for virtual private
firewall X.509 of security authentication, network tunnel
certification. tunneling Cloud controller
access control generates the

public/private
key

CHAPTER 1. INTRODUCTION 5

This paper is organized as follows: Chapter 2 will introduce the background and related

works about the secure communications and networked storage. In Chapter 3 I will present

the system architecture and the secure algorithm I used in my project, and later in Chapter

4 I will present the implemented functions and system demonstration. Chapter 5 then

concludes the paper and claims the potential future works.

Chapter 2

Related Work

2.1 Security Algorithm Analysis

Encrypted messages or data are sent to group of authorized users on the sender’s demand;

and if it is intercepted by any unauthorized users or malicious machines, such intercepted

message will not be readable. Therefore, other than the user himself and the permitted

group of users, no one else will be able to figure out what the data really is. In most secure

communications, the following two security issues are commonly addressed[14]:

• Message confidentiality: Message confidentiality ensures the message can be read only

by an intended receiver.

• Message authentication: Message authentication ensures the message is sent by a

specified sender, and is not modified during transmissions.

To resolve the above issues, several encryption algorithms are commonly used in data trans-

missions:

2.1.1 Symmetric Cryptosystem

Symmetric-key algorithms are conventional algorithms for cryptography, in which one cryp-

tographic key is used for both decryption and encryption. Figure 2.1 shows the model of

symmetric encryption. Both sender and recipient must have the same secret key and must

keep the key secured. Data Encryption Standard(DES) is one of the famous algorithm. It

was developed at IBM, as a standard for encryptions in 1977. DES utilizes a 56-bit key to

6

CHAPTER 2. RELATED WORK 7

Security key shared

by sender and

recipient

Plaintext

input

Transmitted

ciphertext

Encryption algorithm

Security key shared

by sender and

recipient

Decryption algorithm

(reverse of encryption algorithm)
Plaintext

Output

Figure 2.1: Model of Symmetric Encryption

encrypt 64-bit data block. However, with the development of high speed computers, brute

force attack is now possible on DES. DES has been proofed to be not secure because a 56-bit

key is too short; therefore now, it has been replaced by the Advanced Encryption Standard

(AES), with a key length of 128-bit.

2.1.2 Asymmetric Cryptosystem

Asymmetric cryptosystem is also called Public-key cryptosystem. The algorithm consists of

a pair of keys one of which is used for encryption and another for decryption. In applications

they are called accordingly, a public key, which is used for encryption, and a private key,

for decryption. The public key is available to everyone, so anyone can encrypt the plaintext

but only the holders of the private key corresponding to the public key used for encryption

can decrypt the ciphertext. The RSA(which stands for Rivest, Shamir and Adleman who

first publicly described it) cryptosystem is the most famous Public-Private key algorithm.

Figure 2.2 shows the model of asymmetric cryptosystem. The public key and private key

are both derived from two large prime number, and the security of RSA is based on the

computational complexity of discrete logarithm.

2.1.3 Digital Authentication

When using an untrusted network, such as the Internet, even if the cryptosystem itself is

difficult to attack, it is still vulnerable when there is an attacker between the communicating

parties. The attacker is able to communicate with one or both parties, or block the data

stream in one or both directions. Figure 2.3 shows the situation of Man-in-the-Middle

Attack[1]. To solve this problem, Digital Authentication will allow users to verify whether

CHAPTER 2. RELATED WORK 8

Plaintext

input

Transmitted

Ciphertext to

Bob

Encryption algorithm

Bob’s private key

Decryption algorithm Plaintext

Output

Alice’s

 public key ring

Mike

Bob Candy

Ted

Bob’s public key

Figure 2.2: Model of asymmetric encryption: Alice wants to send a confidential message to
Bob. Alice encrypts the message using the encryption algorithm with Bobs public key. Bob
receives and decrypts it using his private key.

the document received was sent by the identified party claiming to be the sender. Following

is the processes of Digital Authentication:

• Step1: Sender generates the message digest using message digest algorithm(MD5 or

SHA1);

• Step2: Sender encrypts the message digest with his/her private key as digital signature;

• Step3: Receiver also generates the message digest using the same message digest

algorithm when he/she GETS the message from the sender;

• Step4: Receiver decrypts the digital signature using the sender’s public key and checks

if the message digest is the same with the one in step 3.

The details of Digital Authentication is shown in Figure 2.4:

2.2 Secured Communications Managements

In the beginning of this chapter, it is shown that communications of shared data are in-

evitable in Cloud storage, either between different applications within one piece of service,

or between different customers and servers, or even between different Clouds. Therefore

CHAPTER 2. RELATED WORK 9

Attacker

 man in the middle

Original

message

Original

message

Spoofed

message

Spoofed

message

Figure 2.3: Man-in-the-Middle Attack

Message digest algorithm

(e.g.MD5, SHA1)
Message digest

Encrypted using

sender’s private keymessage

message

Encrypted

message digest

Decrypted using

sender’s public key

Message digest

Message digest algorithm

Message digest

=?

Yes,

transmitted

correctly

No, data has

been

modified

Sender

Receiver

Figure 2.4: Digital authentication process

CHAPTER 2. RELATED WORK 10

secured communications are required in Cloud Computing. In group secured communica-

tions, the challenge is providing an effective method for controlling access of the group and

preventing attackers overhearing for the encryption and decryption keys. Assuming that a

malicious machine can overhear the messages when the intended group members share the

secret key so the attacker might know the secret key. How to share the secret key safely

is important in secured communication since those encryption algorithms can provide uses’

data with high security from being attacked in communication. However, distributing the

secret key to valid members is a complex problem. There are two types of key establishment

protocols: key agreement protocols and key transfer protocols.

2.2.1 Key-agreement Protocols

Diffie-Hellman (DH) key agreement protocol is a classic two entities secret key exchange

protocol. This protocol enables two computer users to generate a shared secret key which

they can then exchange information across an insecure channel. The security of DH key

agreement algorithm is based on the computing difficulty of discrete logarithm, which is

what the security of the RSA cryptosystem relies on. In DH algorithm, a secret key is

consisted of 3 parts. Firstly, the sender and receiver agree on two numbers p and g, p is

a large prime number and g is primitive root, an integer that is smaller than the prime

number. p and q are pubic to everyone. Secondly, user A chooses a power number x and

send the result of gx mod p to user B and user B then chooses a power number y and send

the result of gy mod p back to A. Thirdly, both A and B can compute out the share key

K = gxy mod p [6]. Figure 2.5 shows the process of DH key exchange algorithm. In this

algorithm, both the users do not send out the power numbers x or y but they agree on the

share key with gxy mod p. It is difficult to compute out the key K from gx mod p or gymod

p. The basic Diffie-Hellman protocol however suffers from the Man-in-the-Middle Attack

because it does not attempt to authenticate the communicating parties. A simple solution

would be to combine a key agreement protocol with a digital signature scheme to obtain an

authenticated key agreement protocol.

However, Diffie-Hellman public key distribution algorithm can provide a session key

for only two entities, but not for a group with more than two members. Over the years,

several papers, such as [16][9][13] have attempted to extend the well-known Diffie-Hellman

key exchange to the multi-party setting. Multiple users’ scenario requires a single pass of

communication and allows the construction of a common secret key K. Assume there are n

CHAPTER 2. RELATED WORK 11

Figure 2.5: Diffie-Hellman key exchange protocol

participants. Firstly, they need to agree on p and g, then each of them randomly chooses a

number(a1, a2,· · · an−1, an). Secondly, they respectively compute (P1 = ga1 mod p, P2 = ga2

mod p, · · ·Pn = gan mod p) and broadcast these values. Thirdly, they respectively compute

K = (
∏

j Pj(j ∈ n, j 6= i))ai mod p [16].

In many environments, group Diffie-Hellman public key distribution algorithm is not

flexible, because once a member joins or leaves the group, the overhead of re-keying is

significantly high, so group Diffie-Hellman algorithm is not an efficient way for large group

in which members leave or join frequently.

2.2.2 Key-transfer Protocols

Key transfer protocols rely on a mutually trusted key generation center (KGC) to select

session keys and transport session keys to all communication entities secretly. the trusted

KGC broadcasts group key information to all group members at once. Access control

to multiple users’ communications is typically provided by encrypting the data using a

key that is shared by group members. The shared key, which is called session Key, will

change with time, depending on the change of the group membership and security level of

data protection[23]. In order to update the session Key, a group center is responsible for

multicasting the key securely, which is the most challenging part in group key management.

One approach is group key management protocol(GKMP)[10]. In this scheme, each group

has a Key Encrypting Key (KEK). The group center sends out the session Key encrypted by

CHAPTER 2. RELATED WORK 12

KEK to group members. However, this scheme cannot handle the situation of group member

leaving. To solve this problem, [5] proposed another scheme to distribute the session key. In

[5]’s scheme, the key management is based on a tree structure. Each user is represented as

one leaf node, with each node knows all the KEKs from itself to the root, as figure shown in

2.6. For example, as shown in Figure 2.7, member u1 knows the values of k1, k12, k14 and

k. The depth of the tree is log2N , while N is the number of users in the group. A joining

member is associated with a leaf node and the leaf node is included in the tree. All KEKs

in the nodes from the new leafs parents to the root are compromised and should be changed

(Backward Secrecy) in the path. In figure 2.7 the darker nodes represent the nodes that

need to change their keys. A rekey message is generated containing each of the new KEKs

separately. Once a member leaves the tree, the session key K and the KEK associated with

the user must change. This prevents the left member from listening to future messages.

The main drawbacks of this scheme is:

• It is not suitable for large scale dynamic groups because for the members, the com-

plexity of receiving all the KEKs and session keys is O(NlogN), which is an expensive

operation[23].

• Once a group member joins or leaves, only the members in that subgroup can receive

the updated key messages. As mentioned above, the overhead of receiving those

messages is expensive, this is not feasible for high dynamic groups[19].

• Every member in the sub-group must receive all the updated messages from group

center.

K

K14 K58

K12 K4
K56 K78

K1 K2 K4 K5 K6 K7 K8

U1 U2 U4 U5 U6 U7 U8

Figure 2.6: Secure multicast tree

K3

K

K14 K58

K12 K4
K56 K78

K1 K2 K4 K5 K6 K7 K8

U1 U2 U4 U5 U6 U7 U8U3

Figure 2.7: KEKs effected when a new
member joins the tree

CHAPTER 2. RELATED WORK 13

[18] presented an improved approach that divides the large group with n members into

clusters of size m, while each cluster, instead of one user, becomes a leaf node of the tree,

then the depth of the tree is log(n/m). Each member in the cluster shares the same cluster

Key, and recursively each cluster constructs a sub tree. The overhead for each receiver is

O(log(n/m)). [17] proposed an algorithm of new approaches for achieving large scalable

security key managements. Instead of generating new keys and sending them to members

in the group, all keys affected by the membership changes are passed through a one way

function. Every member that already knew the old key can calculate the new one. Hence,

the new keys do not need to be sent and every member can calculate them locally.

Many storage networks which contain multiple group members have different accessing

privileges. Consider the scenario of a law firm, the lawyers (high-privileges) in the firm share

resources of the cases they handled, while each client (low-privilege) can only access to the

files associated to his own case. In this scenario, group members are authorized to access

to different files, and thus the access control scheme needs to support multi-level accessing

privileges[22]. This scheme constructs two groups, one is Data Group(DG), which is a group

of data resources a user can access to. The DGs may be overlapped because users can access

to multiple data resources. Another is Service Group, which is a user group who can exactly

access to the same data group. Then using the algorithm in [18], for each SG, it constructs

a cluster of sub-tree; for each DG, it constructs a sub-tree whose root is the DG Key, then

merges those sub-trees by connecting the leaf nodes of the DG trees and roots of the SG

trees, as Figure 2.8 shows. Because of the overlap of DGs, some duplicated branches will

exist in DG tree, but they can be merged in the last step.

One of the drawbacks of this scheme is the overhead of renewing the keys. Since the

users’ departure and join is used by the same algorithm in [18], there’s another issue that it

has to face: User switching. Users can switch from service group A to service group B. In

this case, all the keys associated with SG A and SG B must be renewed. Using this scheme,

a user need to first leave the group, then join in the new SG. Moreover, in this scheme, the

key server must maintain multiple redundant key trees (DG trees), which may cause the

key management inefficient[21]. [15] proposed a mechanism that minimizes the number of

keys in each single access class. in order to keep a non-leaf node’s key space small, a node’s

key is computable from any of its ancestors keys by a secured hash function. When it needs

to rekey, only a small part of keys at the roots need to be changed.

To sum up, several encryption algorithms and group key management protocols can be

CHAPTER 2. RELATED WORK 14

K3

SK1

K
D

1

K12 K34 K56 K78

K1 K2 K4 K5 K6 K7 K8

SK2 SK3

K
D

2

K
D

3
K

S
1 K

S
2

(K
S

3)

K90

K9 K0

Cluster A

Cluster B

Cluster C

Figure 2.8: The tree structure for hierarchical multi-group multicast

used in secure data storage Clouds. However, it is better to design a mechanism in storing

and sharing data in Clouds, such that except for the user itself and others with permits, no

one else will be able to figure out what the data really are.

Chapter 3

RGCS System Module

A secure group communication system should provide authentication of participants and

access control of the group resources. A role-based access control architecture is an effi-

cient solution for achieving secured services in an open, distributed environment. Thus,

we design a flexible framework which can add application components on and is capable

of providing key managements and role based access controls. Based on this framework,

we implement a data sharing system: Role-based Secure Group Communication and Data

Sharing system(RGCS) which can enable users to encrypt the data in their local machine

and to store in server. Even the Cloud storage host or the service provider will not know

what the data is. RGCS also provides the authentication of participants and Role-based

flexible access controls of the group resources, so that the users could create a group of

people who can share the encrypted data. In RGCS, there are 2 features that guarantee

security communications.

• Local key generator and key encryption component. The new encryption function

provides full encryption on data that will be stored on Cloud servers, protecting files

from being accessed by any unauthorized party. Since the key will not be sent out to

the server, even the Cloud storage host will not know what the data is. The decryption

key is only saved on each user’s local database(SQLite, a popular tight database).

• Role-based access permission control. User accounts may have a few different levels

offering different privileges. All privileges are derived from roles, so the permissions

to perform certain operations are assigned to specific roles. Staff members (or other

system users) are assigned with particular roles, and those role assignments acquire

15

CHAPTER 3. RGCS SYSTEM MODULE 16

Data sharing

BrowserClient

authentication

Role-based access

control framework

User group

authorizationManagement

system

Services
Group key

generator

Figure 3.1: The over all architecture of RGCS

permissions to perform particular system functions. Since the users are not assigned

with permissions directly. The permissions are only acquired through their roles.

3.1 System Architecture

The overall architecture of RGCS is presented in Figure 3.1. Each user has different privi-

leges on specific services based on its role. Users must be authenticated to access services,

thus the users who can access to the specific services and resources consist a user group,

user groups may be overlapped because users can access multiple resources. Each group

have one group administrator who can authorize other members’ accessing permissions to

its services and resources (to browse, edit, delete, and etc.). Once there is a new authorized

member joining or existing member leaving, the group will renew the sharing key and store

it in a local database, which guarantees the key never to be derived by any third parties.

Data will be encrypted by the secure data sharing component in local machine before it is

uploaded to the server.

CHAPTER 3. RGCS SYSTEM MODULE 17

3.2 Role-based Access Permission Control

In RGCS, permissions are associated with roles, and users are granted with memberships and

appropriate roles, thereby acquiring the rolespermissions. For any group there is a number

of basic operations that can be performed; this mapping between group operations and roles

means that all permissions are translated to group operations[20]. In RGCS, administrators

on the server is also a special group. This way, instead of having every individual application

deal with access control issues, we can have applications defining specific access controls to a

role-group. We want to distinguish between the role-group and user-group. A Role-group is

a group of users who can have the same operations or permissions. In RGCS, there are three

role groups: system administrator group, group administrator group and member group.

While user-group is create by the users to share data and resources, in which the number

of the user group is unlimited.

Operations in Groups

In RGCS, we define the following sensitive operations in groups that need access controls.

• join new member in group.

• eject a member from a group.

• edit shared data.

• delete shared data.

• uploading new data.

• downloading shared data.

the operation list does not include the operations of creating and leaving a group, because

any user can create an empty group or leaving a group. Thus it is not necessary to have

access controls on it.

Roles in Groups

We have two kinds of roles: system roles and client roles. System roles is predefined

by system, in which every group have a system role called group administrator that have

pre-authorized full access permissions on the group. RSGS support 2 kinds of system roles:

CHAPTER 3. RGCS SYSTEM MODULE 18

• System Administrator: this role is used to manage site applications and user group

access permission settings of these applications; for example, system administrator

authorizes group A with permission to access to the data sharing component.

• Group Administrator: this role has full controls over a group, including changing the

group member permissions and deleting a group.

When a user (with client role) creates a group, it is automatically made the administrator of

the group. Any user who joins the group has to be authenticated by the group administrator.

For the system management, we authorize the following operations which are not acces-

sible by the client group:

• Role Authorization: System administrators may perform these operations related to

roles: assign a user to a role, or remove a user from a role.

• User Group Permission Settings: This is to define the operations that each role (mem-

ber) is allowed to carry out.

3.3 Secure Group Communication and Data Sharing

The secure data sharing component has two layers of security schemes: key agreement

protocol and data pre-encryption. RGCS focuses on preventing the users’ sensitive data

from being accessed or attacked by unauthorized parties. In this paper, we assume that the

clients’ local machines are safe. Once the group members agree on a shared secret key, data

will be encrypted before uploaded to the server.

Key Agreement Protocol

In RGCS, we apply key agreement protocol for the symmetric (DES) group communi-

cation setting. The shared key will be stored in group members’ local database (Sqlite). As

mentioned in 2.2.1 and 2.1.3, the basic Diffie-Hellman protocol is vulnerable from the Man-

in-The-Middle Attack. Combining a key agreement protocol with a digital signature scheme

is expensive because message lengths are now much longer than those in the standard DH

protocol. In RGCS, the natural approach is an Identity-based Group DH key agreement

protocol. Instead of broadcasting over IP multicast, the messages will be authenticated by

the Cloud servers to make sure they are generated from the group members. With this

protocol, RGCS can easily check the senders’ Identities because every user needs to login

CHAPTER 3. RGCS SYSTEM MODULE 19

RGCS

Database

File server
D
ata flow

Query

Client

Encrypted
data

Figure 3.2: Private file uploading dataflow to RGCS

before it uses such components. Considering the RGCS as a file sharing application, the

members will not join and leave group frequently, thus the overhead of renewing the shared

key is feasible. The reason why we choose the DES as encryption algorithm is that our

system is required to perform in realtime while DES is a fast algorithm. Another reason is

the key length of DES is short so that the system could support larger group of members.

Secure Data Sharing

RGCS applies DES symmetric cryptosystem 2.1.1, in which the shared key is used for

both decryption and encryption. This algorithm achieves a desirable tradeoff between secu-

rity and the efficiency of the group secure communication. In RGCS, once a member leaves

or joins a group, the shared key will be renewed. However, the file lists is not realtime to

such a member. A newly joined member will not see the data uploaded previously.

Figure 3.2 displays the private file uploading dataflow. All files are uploaded with as-

sociated meta data such as the owners’ identifications, shared groups, encrypted names,

creating times, and users’ browser sessions and etc. All meta information is saved in the

database for management, while the exact files are stored in a file server.

Figure 3.3 shows the group member file retrieving dataflow from RGCS, in which the

user first submits a request to RGCS server. The system will then perform a query through

database to retrieve the target information. After authenticating the user’s permission, the

corresponding encrypted data will be sent to the user. The user will then query its local

CHAPTER 3. RGCS SYSTEM MODULE 20

RGCS

Database

File server
D
ata flow

Query

Client Decrypted

data

Sqlite

Query

Authentic
atio

n
Query

Figure 3.3: Private file retrieving dataflow from RGCS

database (Sqlite) to get the decrypted key, in which case, the group-secure key to decrypt

data and the user will then get the content of the file.

All the data is stored and managed by separate server clouds or stand-alone services.

For the sake of simplicity, we use only one server to offer databases and file services in this

prototype.

Chapter 4

Implementation Details and

System Demo

Our RGCS is built under ASP.NET web application framework with Visual Studio 2008

development platform. First I designed the group communication and the role-based access

control components. Then I set up and configured the web site, the Database server, and

the file server. I then developed all other components and the group key agreement function.

In this section, I will discuss some implementation details that follows with a system demo.

4.1 Programming Modules

There are two major programming modules within the RGCS: Client side application and

the Server site. The main function of client side application is to provide the users with

the computation of the group shared key, encrypt data, and decrypt data from server. The

client application is installed as a dll file on local machines and called by an Asp webpage.

On the server side, the development tool I used is the Microsoft Visual Studio 2008 Web

Developer. The server site is used to offer users authorization, role authentication, data

uploading and downloading. I also integrated other web developing technologies AJAX

and Javascript to make the interface more friendly and intuitive. In turns of programming

languages, the code running on server is programmed by C#, and the application running

on client is programmed by C++.

21

CHAPTER 4. IMPLEMENTATION DETAILS AND SYSTEM DEMO 22

Table 4.1: ’Userkey’ table structure and sample tuples

KeyID Username GroupName ShareTree key

1 Alice Alice Group Alice-game1 0XAFE443BBBB75A000

2 Alice Alice Group Alice-game1-Bob 0X53FE2F76D9703000

3 Alice Alice Group Alice-game1-Bob-Judy 0X4E8A3371CC18C000

4.2 Database Structures

The database in current server consists of 9 tables. The tables’ names and their descriptions

are listed as the follows:

1. ’Authority’ The list of all operations that can be performed.

2. ’User’ Every user’s profile including ID, password, Role, user-group, status, Login

session, etc.

3. ’UserRole’ Every role in RGCS.

4. ’RoleGroup’ 3 role-groups information.

5. ’RoleAuthorityList’ Every role’s permission list.

6. ’UserGroup’ Including Usergroup ID, description and the size of the group.

7. ’File’ Every File’s information including ID, name(encrypted), size, creating time,

directory, owner’s ID and user-group ID, etc.

8. ’FileAuthorityList’ Every file’s operation list.

9. ’FolderTree’ Every user’s folder tree including group ID, folder ID and name.

The local database in client side maintains 1 table, ’UserKey’, which is the table that

shows the keys used by one client.

CHAPTER 4. IMPLEMENTATION DETAILS AND SYSTEM DEMO 23

Figure 4.1: Interface for user login

4.3 System Demo

4.3.1 An Example Scenario

We have a user Alice, who is the group administrator of user-group ’Alice group’. We

will show the interfaces of sharing data with her group members and the access permission

managements intra the user-group.

4.3.2 User Login Interface

The main interface for opening the system is shown in Figure 4.1. We used MD5 hash

function to process users’ passwords. For keeping the users’ information from automated

bot attacking, we also used image verification codes in the system.

4.3.3 Group Member Information Editing Interface

In GRCS, when a new user registers, he could choose to be a member of any of the existing

user-groups. The group administrator could decide if or not to allow the user to access the

group resources later. Consider the scenario that there is a new user Judy wants to be a

member of Alice’s group. The Figure 4.2 shows Judy’s status before Alice authorized its

CHAPTER 4. IMPLEMENTATION DETAILS AND SYSTEM DEMO 24

Figure 4.2: Judy is locked, she cannot access the data of Alice group

joining. Figure 4.3 shows the group administrator Alice authorizes Judy to be a member of

the group. Figure 4.4 shows the status of Judy Joining in the group as a role of member.

4.3.4 Secure Data Sharing Management Interface

If Alice wants to share a new file with her group members, she may click on the ”upload

new file” button, figure 4.5. The local encryption component is launched, and then the new

file will be encrypted and uploaded to the server. Once Judy logs in to RGCS, she is able

to access the secure data of Alice’s group. Judy can retrieve her data from the server by

clicking the download button (the arrow shown in figure 4.6) (as a group member, Judy

does not have the user management permission control panel on her interface). Besides,

Judy cannot see the files uploaded before she joined in the group. The decryption process

is the last step of the downloading operations, which is shown in Figure 4.7.

CHAPTER 4. IMPLEMENTATION DETAILS AND SYSTEM DEMO 25

Figure 4.3: Judy Join the group as the role of member

Figure 4.4: The process of user Judy join the group

CHAPTER 4. IMPLEMENTATION DETAILS AND SYSTEM DEMO 26

Figure 4.5: Interface of uploading file

Figure 4.6: Group member Judy’s main interface

CHAPTER 4. IMPLEMENTATION DETAILS AND SYSTEM DEMO 27

Figure 4.7: The process of retrieving file from server

Chapter 5

Conclusions and Future Work

In RGCS, it enables secure group communications, data sharing and defines a framework for

supporting Role-based access control for groups. RGCS has two main mechanisms to ensure

the security: First, the identification of the set of possible group operations can be controlled

and defined by the group policy as a mapping between roles and operations. Second, moving

the encryption and decryption procedures from server to client prevents data transmissions

through insecure channel. Several issues remain to be addressed in future works, such as,

to improve the interface for creating a user account at the client side so that the accessing

control policies can be generated in an automatic way, based on the user’s specifications.

For instance, in the current version of RGCS, if a new client wants to get access to specific

data resources, he needs to register first. After being approved by the group administrator,

the client can then start to share data. We want to add the component with which the

group administrator could create a new account for a user who is automatically signed up

as the group member. Another improvement will be for data sharing, as we will also provide

version controls in the case that multiple users might edit one file at the same time.

Our ultimate goal is to have a dynamic framework that supports large group of people

communications. Not only for data sharing, but also for other applications that need group

secret keys and access permission controls, such as video conferences. For large group

secure communications, our current key agreement algorithm requires that every user to be

connected with every other user. This creates a complete graph. If one of the nodes is not

secured, the rest are not secured too. We can later improve the key management algorithm

by using tree structures with a trusted key generation center.

28

Bibliography

[1] Man-in-the-middle attack. http://en.wikipedia.org/wiki/Man-in-the-middle_

attack, 2011.

[2] I. Lumb B. P. R. Eunmi Choi. A taxonomy and survey of cloud computing systems.
the Fifth International Joint Conference on INC, IMS and IDC, 2009.

[3] Jon Brodkin. Gartner: Seven cloud-computing security risks. network word, 2008.

[4] T. C.Jepsen. Distributed Storage networks. John Wiley Sons, 1th edition, 2003.

[5] M.Gouda C.Wong and S. Lam. secure group communications using key graph.
IEEE/ACM Trans.on Networking, 2000.

[6] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. Info., 1976.

[7] O. Chevassut E. Bresson and D. Piontcheval. Provably authenticated group diffie-
hellman key exchange. Provably Authenticated Group Diffie-Hellman Key Exchange,
2001.

[8] G.Fenu F.M. Aymerich and S.Surcis. An approach to a cloud computing network.
ICADIWT, 2008.

[9] M. Steiner G. Ateniese and G. Tsudik. Multiparty authentication services and key
agreement protocols. Journal ofSele cted Areas in Communications, IEEE, 2000.

[10] H.Harney and C. Muckenhirn. Gkmp specification, internet request for comments 2094.
1997.

[11] J.Albanses and W. sonnenreich. J.Albanses and W. sonnenreich. McGraw Hill, 2004.

[12] M.A. Sirbu J.C. Chuang. Distributed network storage service with quality-of-service
guarantees.

[13] J. katz and M. Yung. Scalable protocols for authenticated group key exchange. Journal
of Cryptollogy, 2007.

[14] L.harn and C. Lin. Authenticated group key transfer protocol based on secret sharing.
IEEE TRANSACTIONS ON COMPUTERS, 2010.

29

BIBLIOGRAPHY 30

[15] N. Fazio M. Atallah, M. Blanton and K. Frikken. Dynamic and efficient key manage-
ment for access hierarchies. ACM TISSEC, 2009.

[16] G. Tsudik M. Steiner and M. Waidner. Diffie-hellman key distribution extended to
group communication. Third ACM Conf. Computer and Comm. Security (CCS 96),
1996.

[17] D. Sun N. Weiler M. Waldvogel, G. Caronni and B. Plattner. The versakey framework:
Versatile group key management. . IEEE Journal on Selected Areas in Communica-
tions, 1999.

[18] R.Poovendran M.Li and C. Berenstein. Optimization of key storage for secure. In
Proceedings of the 35th Annual Conference on Information Sciences and Systems, 2001.

[19] D. Sun N. Weiler M.Waldvogel, G. Caronni and B. Plattner. The versakey frame-
work:versatile group key management, selected areas in communications. IEEE Jour-
nal, 1999.

[20] C.Rotaru N. Li. A framework for role-based access control in group communication
systems. CERIAS Tech Report 2003-31, 2003.

[21] Y. Wang Q. Zhang. A centralized key management scheme for hierarchical access
control. GLOBECOM ’04. IEEE, 2004.

[22] Y.Sun and K.J.R. Liu. dynamic key graph for hierarchical access control in secure
group communications. IEEE/ACM Trans. on Networking, 2008.

[23] W. trappe Y.Sun and K.J.R. Liu. Network-Aware Security for Group Communications.
Springer, 2008.

