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Abstract

Kloosterman sums are exponential sums on finite fields with important applications

in Cryptography and Coding Theory. Of particular importance are those field elements at

which the Kloosterman sum attains the value 0, which are called Kloosterman zeros. They

exist only in fields of characteristic 2 and 3.

We prove an upper bound on the density of the classical modular polynomial when it

is considered as a polynomial over GF(2). We develop an algorithm to list exhaustively

Kloosterman zeros in a given field of characteristic 2. Using this algorithm we list all

Kloosterman zeros in fields of order 2m for m ≤ 63, whereas this has been done only

for m ≤ 14 in the literature.

We develop an algorithm to discover relations satisfied by coefficients of minimal poly-

nomials of Kloosterman zeros in characteristic 2. We rediscover five such relations that

have been proved in the literature and we conjecture two new relations.
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Chapter 1

Classical Modular Polynomials

1.1 Introduction

In this thesis, we show mathematical concepts and computational methods for classical

modular polynomials, Kloosterman zeros, and coefficients of the characteristic polynomi-

als of Kloosterman zeros in characteristic 2. Since our goals are computing Kloosterman

zeros for large extension fields of GF (2) and discovering their properties through compu-

tation, we heavily rely on the computational perspective. We have successfully improved

computational results through different approaches. We prove new theorems about the den-

sity of classical modular polynomials over GF (2). For Kloosterman zeros, we are only

concerned with that part of the theory that is needed for our algorithms.

Our approach to computing Kloosterman zeros over extension fields ofGF (2) in Chap-

ter 2 makes a novel use of classical modular polynomials in characteristic 2, which are

presented in this chapter. These polynomials have been used recently in elliptic curve cryp-

tography [32] but they have a rich history in many research areas originating in the middle

of the 19th century.

Throughout this thesis, we only focus on characteristic 2; however, we realize that

Kloosterman sums over extension fields of GF (3) have similar properties. For example,

Kloosterman sums over GF (pm) where p ∈ {2, 3} are integers whereas others may not

be. Moreover, no Kloosterman zero belongs to a subfield of Fpm where p ∈ {2, 3} except

pm = 16 as proved by Lisoněk and Moisio [25]. We strongly believe that methods that we

will introduce throughout this thesis for characteristic 2 will apply for characteristic 3 as

1



CHAPTER 1. CLASSICAL MODULAR POLYNOMIALS 2

well (due to restriction of time, we do not pursue for characteristic 3).

In this chapter, we explain what the j-invariant and the l-th classical modular poly-

nomial are and how they are computed over Z2. Then, we analyze properties of modular

polynomials in characteristic 2 and plot graphs of their exponents to make conjectures about

their density. We start by presenting classical modular polynomials over integers in order

to allow for a reduction modulo 3 as well, which is a possible research topic as explained

in previous paragraphs; however we do not pursue this topic in our thesis.

1.2 j-invariant and Modular Polynomials

In this section, we describe the j-invariant and the l-th classical modular polynomial

(for prime l only). We recommend [1] as an accessible reference for these topics.

We rephrase the concepts from a preprint by Vercauteren [32]. This paper has never

been published and we attach missing proofs along with correcting some errors. Further-

more, the use of modular polynomials in [32] is for point counting on elliptic curves

whereas we use them for computing Kloosterman zeros.

We say S is a Laurent series if we can write

S =
∑
n∈Z

snx
n. (1.1)

For this thesis, we limit ourselves to Laurent series with finitely many terms with negative

exponents.

Let H = {z ∈ C|=(z) > 0} denote the upper half of the complex plane. For τ ∈ H ,

the j-invariant j(τ) and the discriminant ∆(τ) are defined in all books on elliptic curves

and elliptic functions, for example in [1]. The function j(τ) is a holomorphic function on

H , hence for τ ∈ H the value of j(τ) can be defined using its Laurent series. Denote

q = e2πiτ . (1.2)

If τ ∈ H , then 0 < |q| < 1. Thus, let us emphasize that from now on, we can view j as a

function of τ or as a function of q. The q-expansion for j then is given as follows.

We describe the discriminant and the j-invariant as q-series. We recommend [1] as an
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accessible reference for these topics. The discriminant ∆(τ) is given by

∆(τ) = q
∏
n≥1

(1− qn)24. (1.3)

Applying Euler’s identity for partitions, we get

∆(τ) = q(1 +
∑
n≥1

(−1)n(qn(3n−1)/2 + qn(3n+1)/2))24. (1.4)

Furthermore, the relation between j(τ) and ∆(τ) is

j(τ) =
(256f(τ) + 1)3

f(τ)
where f(τ) =

∆(2τ)

∆(τ)
. (1.5)

From equation (1.5), we get j(τ) as the q-expansion Laurent series

j(τ) =
1

q
+ 744 +

∞∑
n≥1

cnq
n where cn ∈ Z. (1.6)

For prime number l we now define the l-th classical modular polynomial using the

j-invariant introduced above. The definition for nonprime l also exists, but it is more com-

plicated.

Definition 1.2.1. (Section III.8 of [1]) Let l be a prime. We define the l-th classical modular

polynomial to be

Φl(x, j(τ)) = (x− j(lτ))
l−1∏
i=0

(x− j(τ + i

l
)). (1.7)

We say that l is the level of Φl.

It is not quite obvious from this definition that Φl is a polynomial in x and j; this will

be asserted in Proposition 1.2.4.

Example 1.2.2. There are some examples of Φl for l = 2, 3:

Φ2(x, y) = x3 + y3 − x2y2 + 1488(x2y + xy2) − 162000(x2 + y2) + 40773375xy +

8748000000(x+ y)− 157464000000000

Φ3(x, y) = x4 + y4− x3y3 + 2232(x3y2 + x2y3)− 1069956(x3y+ xy3) + 36864000(x3 +

y3) + 2587918086x2y2 + 8900222976000(x2y + xy2) + 452984832000000(x2 + y2) −
770845966336000000xy + 1855425871872000000000(x+ y)
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First, from Definition 1.2.1, we can derive the following proposition.

Proposition 1.2.3. We have

Φl(j(lτ), j(τ)) = 0. (1.8)

From equation (1.2) and (1.6), we can obtain j(lτ) by substituting ql for q in j(τ).

Proposition 1.2.4. (Section III.8 of [1]) The l-th modular polynomial Φl(x, y) for prime l

satisfies

Φl(x, y) = xl+1 − xlyl + yl+1 +
∑

i,k≤l, i+k<2l

aikx
iyk, aik ∈ Z (1.9)

Moreover, Φl(x, y) is symmetric so that aik = aki and Φl(x, y) = Φl(y, x).

Furthermore, for later use let us also define a(l+1)0 = a0(l+1) = 1 and all = −1. Now we

present an algorithm that computes all coefficients aik. This algorithm has been considered

by many authors; our presentation follows [32].

Using Propositions 1.2.3 and 1.2.4, we have the equality of Laurent series in q

jl+1(lτ) + jl+1(τ) = −
l∑

i=0

l∑
k=0

aikj
i(lτ)jk(τ). (1.10)

by defining all = −1 (to remove term −jl(lτ)jl(τ) from the left hand side). By equation

(1.6), the left side of equation (1.10) is a Laurent series in q of the form

jl+1(lτ) + jl+1(τ) =
1

ql(l+1)
+

∑
n > −l(l+1)

cnq
n where cn ∈ Z. (1.11)

Due to symmetry of Φl(x, y), we only need to consider the pairs (i, k) where 0 ≤ k ≤ i ≤ l.

By equation (1.6), we have

ji(lτ)jk(τ) =
1

qil+k
+

∑
n > −(il+k)

tnq
n where tn ∈ Z. (1.12)

Also we have

−l(l + 1) ≤ −(il + k) ≤ 0 for 0 ≤ k ≤ i ≤ l.

Starting from equation (1.10), in each iteration of Algorithm 1.1 the variable L contains

the left side of the modified equation (1.10) as we move terms from the right side to the left
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side. Let p(L) denote the least exponent of q in L. We compute i and k such that ji(lτ)jk(τ)

contains a term cqp(L) such that c ∈ Z and 0 ≤ k ≤ i ≤ l. Note that these integers i and

k are defined uniquely by the division algorithm when we divide −p(L) by l. Note that we

do not have exactly the conditions of the Euclidean division, since we may allow k = l.

Now k = l forces i = l by the previous inequalities, then −p(L) = l(l + 1) and there is

no other pair (i, k) satisfying all previous conditions. This shows the uniqueness of (i, k)

in all cases.

By the uniqueness of (i, k), we obtain aik = −c where c is as above. By the symmetry

of Φl we also obtain aki = −c if i 6= k.

Thus, in each iteration we determine one coefficient of Φl (up to symmetry, possibly).

Since each series ji(lτ)jk(τ) contains a term with a non-positive exponent of q, it is enough

to perform the iterations while p(L) ≤ 0.

As before we denote by c the coefficient at qp(L) at the left side of the modified equation

(1.10). After computing aik and aki as above, we add

−c(ji(lτ)jk(τ) + jk(lτ)ji(τ))

to both sides of (1.10). If i = k, then we only add −cji(lτ)ji(τ) to both sides of (1.10). In

any case, the least exponent of q in the modified equation (1.10) increases. This together

with the condition p(L) ≤ 0 ensures termination of the algorithm.

For example, the monomial with the least exponent of q at the left side of equation

(1.10) is q−l(l+1). This implies that the right side of the equation must contain the monomial

q−l(l+1). This monomial is only obtained when i = l and k = l so that we have all = −1.

By adding −jl(lτ)jl(τ) to both sides, we have

jl+1(lτ) + jl+1(τ)− jl(lτ)jl(τ) = −
l∑

i=0

l∑
k=0

aikj
i(lτ)jk(τ) where i+ k < 2l. (1.13)

In addition, the least exponent of q of the left side is now greater than −l(l + 1).

If we start the algorithm from equation (1.13) as opposed to starting from (1.10), then

in each iteration we can compute the unique pair (i, k) using formulas i = b−p(L)
l
c and

k = −p(L)− il. This is the version that is shown in the pseudocode in Algorithm 1.1.

Example 1.2.5. For l = 3 we set a40 = a04 = 1 and a33 = −1.

j4(3τ) + j4(τ)− j3(3τ)j3(τ) = −2232q−11 − 2251260q−10 − 1355201496q−9 + . . .



CHAPTER 1. CLASSICAL MODULAR POLYNOMIALS 6

We let L be the right side. We set p(L) = −11 and compute (i, k) = (3, 2) so that −(il +

k) = −11. Then we set a32 = a23 = 2232 and add 2232(j3(3τ)j2(τ) + j2(3τ)j3(τ)) to

both sides. We have

j4(3τ)j4(τ)− j3(3τ)j3(τ) + 2232(j3(3τ)j2(τ) + j2(3τ)j3(τ))

= 1069956q−10 + 759183264q−9 + 208069299018q−8 + 10248720528384q−7 + . . .

We update L and set p(L) = −10. We get (i, k) = (3, 1) and a31 = a13 = −1069956. Then

add −1069956(j3(3τ)j(τ) + j(3τ)j3(τ)) to both sides. We iterate until the right side has

positive exponent terms only. Then we obtain the coefficients of Φ3. As a result, we have

Φ3(x, y) = x4 + y4 − x3y3 + 2232(x3y2 + x2y3)− 1069956(x3y + xy3)

+ 36864000(x3 + y3) + 2587918086x2y2 + 8900222976000(x2y + xy2)

+ 452984832000000(x2 + y2)− 770845966336000000xy

+ 1855425871872000000000(x+ y).

We can not compute the infinite q-series ji(lτ)jk(τ) exactly. However, since the while

loop of Algorithm 1.1 is driven only by the non-positive exponents of q, it is enough to en-

sure that ji(lτ)jk(τ) have correct terms with non-positive exponents of q. As an easy con-

sideration shows, to achieve this goal it is possible to truncate ji(lτ), jk(τ) and ji(lτ)jk(τ)

(as q-series) after the power ql(l+1), which gives a finite representation that we can com-

pute with. Moreover, in the while loop it is enough to compute with the terms having

non-positive exponents for all the series involved.

As mentioned earlier, in later chapters we do not use Algorithm 1.1 directly; rather

we use its reduction modulo 2. Nonetheless, we include this algorithm so that it can be a

guideline to compute modular polynomials over Z3 if desired. Notice that the algorithm

for modular polynomials over Z2 and Z3 is just the same algorithm (with all computations

performed modulo 2 or modulo 3, respectively), because all power series computed by the

algorithm have integer coefficients and the modulo operation is well-defined over integers.

Note that Algorithm 1.1 is not useful for computing modular polynomials in charac-

teristic 0 or in large prime characteristic. There are other methods to compute modular

polynomials in those cases. However, we believe that it is useful in characteristic 2 or 3.
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Algorithm 1.1 Classical Modular Polynomial over Z
Input: Prime l

Output: lth classical modular polynomial Φl(x, y) over Z.

All power series computations are truncated after the exponent l(l + 1).

1: Determine j(τ) using equation (1.5) as q-expansion Laurent series

2: Compute ji(τ) for 2 ≤ i ≤ l + 1 with setting j0(τ)← 1

3: Determine ji(lτ) for 0 ≤ i ≤ l + 1 by substituting ql for q in ji(τ) for 1 ≤ i ≤ l + 1

4: A← 0, where A[i, k] = aik as introduced in Proposition 1.2.4

5: L← jl+1(lτ) + jl+1(τ)− jl(lτ)jl(τ)

6: A[l + 1, 0]← 1, A[0, l + 1]← 1, A[l, l]← −1

7: while p(L) ≤ 0, where p(L) is the least exponent of q with nonzero coefficient in L

do
8: i← b−p(L)

l
c, k ← −p(L)− il; thus p(L) = −(il + k)

9: c← the coefficient of qp(L) in L

10: A[i, k]← −c, A[k, i]← −c
11: if (i = k) then
12: L← L− cji(lτ)ji(τ)

13: else
14: L← L− c(ji(lτ)jk(τ) + jk(lτ)ji(τ))

15: end if
16: end while
17: return Φl(x, y) =

∑l+1
i=0

∑l+1
k=0 A[i, k]xiyk
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1.3 Arithmetics of Reduced Power Series over Z2

In this section, we introduce a reduced power series and its arithmetics over Z2. This

representation and arithmetic operations are used in our C++ implementation of Algo-

rithm 1.2 in Appendix A.1.

As mentioned earlier, we work with Laurent series only of the form

∞∑
n=s

anx
n where s ≤ 0.

For any series S over Z2, consider its representations as

S = q−vs
∑
n≥0

snq
msn where vs ∈ Z,ms ∈ N, sn ∈ Z2 and s0 = 1. (1.14)

In general, there is more than one such representation. The representation (1.14) can be

made unique by requiring that ms has to be the largest possible integer. If this condition is

satisfied, then we call (1.14) a power series in the reduced representation. This representa-

tion utilizes memory space efficiently. Note that ms is the greatest common divisor of all

differences of exponents in S. Note that each power series in the reduced representation

contains at least two nonzero coefficient terms, otherwise ms is not well defined.

Throughout this section, we let

A = q−va
∑
n≥0

anq
man, B = q−vb

∑
n≥0

bnq
mbn and C = q−vc

∑
n≥0

cnq
mcn

be three power series in the reduced representation over Z2.

The following propositions are taken from a paper by Vercauteren [32], where they ap-

pear without proofs. We provide proofs in order to ensure the arithmetic over Z2 is correct.

In fact, we correct the errors of properties in [32].

Proposition 1.3.1. If C = A+B, then vc ≤ max(va, vb) and gcd(va − vb,ma,mb) |mc.

Proof. We may assume A 6= B; otherwise C = 0. Suppose C = A+B. Rewrite

A =
∞∑

i=min(−va,−vb)

a′iq
i and B =

∞∑
i=min(−va,−vb)

b′iq
i
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where a′i = 0 if i 6≡ −va (mod ma) and b′i = 0 if i 6≡ −vb (mod mb). Thus, we have

C =
∞∑

i=min(−va,−vb)

c′iq
i.

This implies vc ≤ max(va, vb). Moreover, c′k = 1 if either a′k = 1 or b′k = 1 but not both.

Assume that for some m,m′ ∈ Z, we have c′m = 1 and a′m = 1 and b′m = 0, and c′m′ = 1

and a′m′ = 0 and b′m′ = 1. Then, we have

m = −va +maz for some z ∈ Z

m′ = −vb +mbz
′ for some z′ ∈ Z.

It follows that the difference of any two exponents inC is either−(va−vb)+maz−mbz
′ for

some integers z, z′ or maz
′′ or mbz

′′′ for some integers z′′, z′′′. We denote mg = gcd(va −
vb,ma,mb). Then, mg divides the difference of any two exponents in C. We have

C = q−vc

∞∑
n=0

c′′nq
mgn.

Therefore, gcd(va − vb,ma,mb) divides mc.

Proposition 1.3.2. If C = AB, then vc = va + vb and gcd(ma,mb) |mc.

Proof. Suppose C = AB.

AB = q−(va+vb)

∞∑
i=0

aiq
mai

∞∑
i=0

biq
mbi.

Thus, vc = va + vb.

Let A′ = qvaA, B′ = qvbB and C ′ = A′B′. It is clear that C ′ = qva+vbC = qvcC. We

denote mg = gcd(ma,mb) for simplicity. We can rewrite

A′ =
∞∑
i=0

a′iq
mgi and B′ =

∞∑
i=0

b′iq
mgi
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where a′k = 0 if mgk 6≡ 0 (mod ma) and b′k = 0 if mgk 6≡ 0 (mod mb). Then, we have

A′B′ =
∞∑
i=0

a′iq
mgi

∞∑
k=0

b′kq
mgk

=
∞∑
k=0

a′0b
′
kq
mgk +

∞∑
k=0

a′1b
′
kq
mg(k+1) +

∞∑
k=0

a′2b
′
kq
mg(k+2) + · · ·

=
∞∑
k=0

c′kq
mgk.

Therefore, gcd(ma,mb) divides mc.

Proposition 1.3.3. If C = A2, then vc = 2va and mc = 2ma.

Proof. We know (X + Y )2 = X2 + Y 2 in characteristic 2.

A2 = (q−va
∑
n≥0

anq
man)2 = q−2va

∑
n≥0

anq
2man

Thus, vc = 2va and mc = 2ma.

Proposition 1.3.4. If C = A−1, then vc = −va and mc = ma.

Proof. Suppose AC = 1. We have

AC = q−(va+vc)(
∑
n≥0

anq
man)(

∑
n≥0

cnq
mcn).

We have q−(va+vc) is the least power of q inAC with nonzero coefficient, which is a0c0 = 1.

Then, we must have vc = −va.
For k ≥ 0 let c′k ∈ Z2 be defined as follows: c′0 = 1 and for k > 0, set c′k such that∑k
i=1 aic

′
k−i = 0. Then we have

1 = a0c
′
0

0 = a0c
′
1 + a1c

′
0

...

0 = a0c
′
l + a1c

′
l−1 + · · ·+ alc

′
0

...

Let C ′ = q−vc
∑

k≥0 c
′
kq
mak. Then AC ′ = 1. It follows that ma|mc. Using a symmetric

argument we show mc|ma. Hence mc = ma.
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We use these propositions to write the q-expansion Laurent series for the j-invariant

as a power series in the reduced representation over Z2. This series occurs in the proof

of Lemma 1.4.2. Moreover, the propositions that we just proved are utilized in Algorithm

1.2 which computes with power series in the reduced representation over Z2. Our C++

implementation of this algorithm using NTL library [31] can be found in Appendix A.1.

1.4 Algorithm for Modular Polynomials over Z2

Now we provide an algorithm for computing modular polynomials over Z2. This is just

a slight modification of Algorithm 1.1. As was mentioned earlier already, our presentation

follows [32].

We have introduced the j-invariant j(τ) and discriminant ∆(τ) in Section 1.2. We de-

fine

j̄(τ) = j(τ) mod 2 and ∆̄(τ) = ∆(τ) mod 2.

Note that j(τ) and ∆(τ) have Laurent series with integer coefficients as given above, hence

the reduction modulo 2 is well defined and it should be understood at the power series level.

The following proposition and lemma appear in a paper by Vercauteren [32] without proofs.

We include the proofs to check the correctness of them.

Proposition 1.4.1. In characteristic 2, we compute the j-invariant j̄(τ) as follows:

j̄(τ) = q−1
1 +

∑
n≥1 q

4n(3n−1) + q4n(3n+1)

1 +
∑

n≥1 q
16n(3n−1) + q16n(3n+1)

. (1.15)

Proof. Let f be as defined in equation (1.5). Note that f has a Laurent series with integer

coefficients, since the leading coefficient in the series for ∆(τ) is 1. Define f̄ = f mod 2.

Rewriting equation (1.5) over Z2, we have

j̄(τ) =
(256f̄(τ) + 1)3

f̄(τ)
=

1

f̄(τ)
=

∆̄(τ)

∆̄(2τ)
. (1.16)

By applying reduction modulo two on equation (1.4), we get

∆̄(τ) = q(1 +
∑
n≥1

(q4n(3n−1) + q4n(3n+1)))3

= q(1 +
∑
n≥1

(q4n(3n−1) + q4n(3n+1)))(1 +
∑
n≥1

(q8n(3n−1) + q8n(3n+1)))
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and using equation (1.2)

∆̄(2τ) = q2(1 +
∑
n≥1

(q8n(3n−1) + q8n(3n+1)))(1 +
∑
n≥1

(q16n(3n−1) + q16n(3n+1))).

We have j̄(τ) = ∆̄(τ)

∆̄(2τ)
. Thus we have

j̄(τ) =
q(1 +

∑
n≥1(q4n(3n−1) + q4n(3n+1)))(1 +

∑
n≥1(q8n(3n−1) + q8n(3n+1)))

q2(1 +
∑

n≥1(q8n(3n−1) + q8n(3n+1)))(1 +
∑

n≥1(q16n(3n−1) + q16n(3n+1)))

= q−1
(1 +

∑
n≥1(q4n(3n−1) + q4n(3n+1)))

(1 +
∑

n≥1(q16n(3n−1) + q16n(3n+1)))
.

Using propositions from Section 1.3, we show j̄(τ) as a reduced power series.

Lemma 1.4.2. We have

j̄(τ) = q−1
∑
n≥0

snq
8n, si ∈ Z2. (1.17)

Proof. Let us consider the numerator of equation (1.15). We claim that

1 +
∑
n≥1

(q4n(3n−1) + q4n(3n+1))) =
∑
n≥0

anq
8n.

Since 4n(3n− 1) + 8n = 4n(3n+ 1), it suffices to show 12n2− 4n = 8n2 + 4n(n− 1) ≡
0 (mod 8) (since n(n − 1) ≡ 0 (mod 2)). Thus, 1 +

∑
n≥1(q4n(3n−1) + q4n(3n+1)) =∑

n≥0 anq
8n. By arithmetic operations on power series over Z2 from Section 1.3, we con-

clude

j̄(τ) = q−1
1 +

∑
n≥1(q4n(3n−1) + q4n(3n+1))

1 +
∑

n≥1(q16n(3n−1) + q16n(3n+1))

= q−1

∑
n≥0 anq

8n

1 + (
∑

n≥1 q
4n(3n−1) + q4n(3n+1))4

= q−1

∑
n≥0 anq

8n

(
∑

n≥0 anq
8n)4

= q−1

∑
n≥0 anq

8n∑
n≥0 anq

32n
(by Proposition 1.3.3)

= q−1
∑
n≥0

anq
8n
∑
n≥0

cnq
32n (by Proposition 1.3.4)

= q−1
∑
n≥0

snq
8n (by Proposition 1.3.2).
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Notice that j̄(τ) has only one term with a negative exponent. We can get the first few

terms using the jInvariant function in Magma [2]. We get:

j̄(τ) = q−1 + q7 + q15 + q31 + q47 + · · ·

It follows that equation (1.17) is a power series for j̄(τ) in the reduced representation, since

the integer 8 in the exponent in (1.17) is the largest possible.

Recall that for prime number l, the l-th classical modular polynomial Φl(x, y) was

introduced in Definition 1.2.1.

Definition 1.4.3. Let l be prime. We define Φ̄l(x, y) = Φl(x, y) mod 2, the l-th modular

polynomial over Z2.

Example 1.4.4. There are examples of Φ̄l for l = 2, 3:

Φ̄2(x, y) = x3 + x2y2 + xy + y3

Φ̄3(x, y) = x4 + x3y3 + y4

Proposition 1.4.5. Let l be prime. We have

Φ̄l(x, y) = xl+1 + xlyl + yl+1 +
∑

i,k≤l, i+k<2l

aikx
iyk, aik ∈ Z2 (1.18)

where aik = aki for all i and k. The polynomial Φ̄l(x, y) is symmetric.

Proof. These properties immediately follow from the properties of Φl over Z given in

Proposition 1.2.4.

For prime l, Algorithm 1.2 computes the l-th modular polynomial over Z2. As in Algo-

rithm 1.1, in the while loop it is enough to consider terms with non-positive exponents of q

in all power series.

We have used Algorithm 1.2 to compute all classical modular polynomials Φ̄l for prime

levels l < 2000 on a Pentium(R) D 3.00 GHz with 2 GB memory in C++ with NTL library

[31]. In preprint [32] modular polynomials are computed also up to l < 2000. Our main

goal was storing modular polynomials so that we can develop our algorithms for Chapter

2. We found that we do not require higher levels of modular polynomials. For this reason,

we did not pursue computing modular polynomials of higher levels.
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Algorithm 1.2 Classical Modular Polynomial over Z2

Input: Prime l

Output: lth classical modular polynomial Φ̄l(x, y) over Z2

All power series computations are truncated after the exponent l(l + 1).

1: Determine j̄(τ) using equation (1.15) as q-expansion Laurent series.

2: Compute j̄i(τ) for 2 ≤ i ≤ l + 1 with setting j̄0(τ)← 1

3: Determine j̄i(lτ) for 0 ≤ i ≤ l + 1 by substituting ql for q in j̄i(τ) for 1 ≤ i ≤ l + 1

4: A← 0, where A[i, k] = aik as introduced in Proposition 1.4.5

5: L← j̄l+1(lτ) + j̄l+1(τ) + j̄l(lτ)j̄l(τ)

6: A[l + 1, 0]← 1, A[0, l + 1]← 1, A[l, l]← 1

7: while p(L) ≤ 0, where p(L) is the least exponent of q with nonzero coefficient in L

do
8: i← b−p(L)

l
c, k ← −p(L)− il; thus p(L) = −(il + k)

9: A[i, k]← 1, A[k, i]← 1

10: if (i = k) then
11: L← L+ j̄i(lτ)j̄i(τ)

12: else
13: L← L+ j̄i(lτ)j̄k(τ) + j̄k(lτ)j̄i(τ)

14: end if
15: end while
16: return Φ̄l(x, y) =

∑l+1
i=0

∑l+1
k=0 A[i, k]xiyk
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B 250 500 750 1000 1500 2000

Precompute j̄(τ) 0 0 1 2 5 11

Precompute j̄i(τ) for i = 2, · · · , B 0 1 3 9 58 161

Compute Φ̄l(x, y) for all prime l < B 11 417 6150 29064 374835 1853030

Total Time 11 418 6154 29075 374898 1853202

Table 1.1: Running time (in seconds) on a Pentium(R) D 3.00GHz for Algorithm 1.2

Table 1.1 presents the running times (in seconds) for computing the l-th classical mod-

ular polynomial over Z2 using Algorithm 1.2, for all l < B, with reduced power series

representation from Section 1.3. Our C++ code can be found in Appendix A.1.

NoticeB represents the upper bound of the prime level l as the input of the implementa-

tion; the program generates all modular polynomials with prime level l < B. We compute

all modular polynomials simultaneously because we only have to compute the powers of j̄

once.

For given B defined as above, the exponents in j̄(τ) range from−B2 to B2 because we

need to compute j̄i(τ) for i = 2, · · · , B. Thus, as we double B, we end up with quadruple

size of j̄(τ).

Magma stores Φl over Z for prime l ≤ 59. We have verified that our Φ̄l(x, y) from

Algorithm 1.2 and those stored in Magma are equal for each prime l ≤ 59.

1.5 Analysis of the Exponents of Φ̄l(x, y)

In this section, we analyze the exponents of classical modular polynomial Φ̄l(x, y) over

Z2. In particular we are interested in the number of non-zero coefficients of Φ̄l(x, y) for

given l. That is because in Chapter 2 we develop an algorithm that often performs substitu-

tions of elements of F2m for y in Φ̄l(x, y), and the number of terms of Φ̄l(x, y) influences

the running time for this part of the algorithm. The results of this section are new.

Throughout this section, we let l be an odd prime. Let L be the truncated Laurent se-

ries in q that is initialized on line 5 and updated on either line 11 or 13 through iterations

of Algorithm 1.2. Notice that L changes in each iteration. Eventually, when the algorithm

terminates, L only has positive exponent terms. We let p(L) be the least exponent with
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nonzero coefficient of L for each iteration as on line 7 of Algorithm 1.2. Hence p(L) in-

creases in each iteration by adding j̄i(lτ)j̄k(τ) where the leading term of this product is

qp(L) (so that qp(L) will vanish).

Theorem 1.5.1. In each iteration of Algorithm 1.2, all terms of L have degree congruent

to −(l + 1) (mod 8).

Proof. For brevity, we often skip the words “congruent to” when no confusion will arise.

For example, we abbreviate “X is congruent to 5 (mod 8)” as “X is 5 (mod 8).”

First, we examine

L = j̄l+1(lτ) + j̄l+1(τ) + j̄l(lτ)j̄l(τ)

on line 5 of Algorithm 1.2. By Lemma 1.4.2 and equation (1.2), we have

j̄(τ) =
1

q

∑
n≥0

snq
8n and j̄(lτ) =

1

ql

∑
n≥0

snq
8ln.

The degree of each term of j̄(τ) and j̄(lτ) is −1 (mod 8) and −l (mod 8), respectively.

Then, each term of j̄l+1(τ), j̄l+1(lτ) and j̄l(τ)j̄l(lτ) has degree−(l+1) (mod 8),−l(l+1)

(mod 8) and −l(l + 1) (mod 8), respectively. This shows all terms of L have degree a

(mod 8) when L is initialized.

We have l2 ≡ 1 (mod 8) for odd l. Therefore,

(l − 1)(l + 1) ≡ 0 (mod 8) and

−(l + 1) ≡ −l(l + 1) (mod 8).

Suppose all terms of L have degree −(l + 1) (mod 8) at the start of the n-th iteration

for some n ≥ 0. We want to show all terms of L have degree −(l + 1) (mod 8) at the

start of the (n + 1)-st iteration. By line 11 or 13 of Algorithm 1.2, L is updated in the

n-th iteration, and the least exponent term of L, whose degree is p(L), is cancelled after

updating L because p(L) = −(il + k) from line 8. To reduce ambiguity, we denote by

newL the value of L after updating in the n-th iteration. Thus, newL is the value of L at

the beginning of the (n+ 1)-st iteration.

Case i) When i = k on line 10 in the n-th iteration, we have

newL = L+ j̄i(τ)j̄i(lτ)
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by line 11. Each term of j̄i(τ) and j̄i(lτ) has degree −i (mod 8) and −il (mod 8), re-

spectively. Then, all terms of j̄i(τ)j̄i(lτ) have degree −(il + i) (mod 8). We know L and

j̄i(τ)j̄i(lτ) have term qp(L) and all terms of L have degree −(l + 1) (mod 8) by inductive

hypothesis. Thus, −(il + i) ≡ −(l + 1) (mod 8). This shows that each term of newL has

degree −(l + 1) (mod 8).

Case ii) When i 6= k on line 10 in the n-th iteration, we have

newL = L+ j̄k(τ)j̄i(lτ) + j̄i(τ)j̄k(lτ)

by line 13. We apply the same reasoning as in the case i = k. Then, we conclude all terms

of j̄k(τ)j̄i(lτ) and j̄i(τ)j̄k(lτ) have degree −(il + k) (mod 8) and −(kl + i) (mod 8),

respectively. Since p(L) = −(il + k) = −(l + 1) (mod 8) from line 8, we conclude that

all terms of j̄k(τ)j̄i(lτ) have degree −(l + 1) (mod 8). If we show −(kl + i) = −(l + 1)

(mod 8) for given −(il + k) = −(l + 1) (mod 8), then all terms of newL have degree

−(l + 1) (mod 8). As mentioned earlier we have il + k ≥ kl + i for all i, k because

0 ≤ k ≤ i ≤ l.

Now, we show that −(il + k) = −l(l + 1) (mod 8) implies −(kl + i) = −(l + 1)

(mod 8) for each possible l (mod 8).

We have −(il + k) ≡ −(l + 1) (mod 8). Therefore,

1− k ≡ l(i− 1) (mod 8)

l(1− k) ≡ l2(i− 1) ≡ i− 1 (mod 8) (since l2 ≡ 1 (mod 8) for odd l)

−(kl + i) ≡ −(l + 1) (mod 8).

We have shown that−(il+k) ≡ −(kl+ i) ≡ −(l+1) (mod 8). This implies all terms

newL have degree −(l + 1) (mod 8).

Therefore, we conclude that L only has terms with degree −(l + 1) (mod 8) for all

iterations by the principle of induction.

Let us state the following special cases of Theorem 1.5.1 as separate statements, since

they will be used to make the first main statement of this section (Corollary 1.5.4).

Theorem 1.5.2. We have

p(L) ≡ −(l + 1) (mod 8) (1.19)

for all iterations.
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Theorem 1.5.3. Let i and k be as defined on line 8 of Algorithm 1.2. We have

il + k ≡ l + 1 (mod 8). (1.20)

Recall that by Proposition 1.4.5, the l-th modular polynomial Φ̄l(x, y) over Z2 where l

is prime has the form

Φ̄l(x, y) = xl+1 + xlyl + yl+1 +
∑

i,k≤l, i+k<2l

aikx
iyk, aik ∈ Z2. (1.21)

Using Theorems 1.5.2 and 1.5.3 and Algorithm 1.2, we derive our first statement about

the coefficients aik in (1.21).

Corollary 1.5.4. Let l be a prime. If aik = 1, then il + k ≡ (l + 1) (mod 8).

After testing all prime levels l < 2000, we state the following conjecture:

Conjecture 1.5.5. If 0 ≤ i+ k < l + 1, then aik = 0.

The conjecture is illustrated in Figures 1.1 through 1.4. In each figure, each dot rep-

resents the coefficient 1 in Φ̄l(x, y). On the horizontal axis, exponents of x range from 0

to l + 1. On the vertical axis, exponents of y range from 0 to l + 1. Thus, for example,

Conjecture 1.5.5 corresponds to the white triangle below the main diagonal in each figure.

We also observe a fractal-like structure of the white triangles in these figures. The sec-

ond white triangle begins approximately at the lines i = l − 2m and k = l − 2m where

m = blog2 lc and i, k denote the two coordinates of the plane. We observe that aik = 0 if

i, k ∈ (l − 2m, l + 1] and i+ k < l + 1 + 8n for some positive integer n except the points

(2m, l + 1 − 2m) and (l + 1 − 2m, 2m). We have tried to find a formula for n but we were

not able to obtain one.

Throughout the rest of this section we continue using aik to denote the coefficient of

xiyk in Φ̄l(x, y).

1.5.1 Prime Level l with l ≡ 1 (mod 8)

Theorem 1.5.6. Assume that l ≡ 1 (mod 8). If aik = 1, then i+ k ≡ 2 (mod 8).

Proof. Proof immediately follows from Corollary 1.5.4 with l ≡ 1 (mod 8).
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Figure 1.1: The coefficients of Φ̄l(x, y) for l = 593, the l ≡ 1 (mod 8) case

We plot the coefficients of Φ̄593(x, y) in Figure 1.1. (The rules for plotting were ex-

plained several paragraphs above.) Because of Theorem 1.5.6, we see that dots in the figure

belong to lines with slope −1 that are at vertical distance 8 apart.

1.5.2 Prime Level l with l ≡ 3 (mod 8)

Theorem 1.5.7. Assume that l ≡ 3 (mod 8). If aik = 1, then 3i+ k ≡ 4 (mod 8).

Proof. Proof immediately follows from Corollary 1.5.4 with l ≡ 3 (mod 8).

Theorem 1.5.8. Assume that l ≡ 3 (mod 8). If aik = 1, then either i − k ≡ 0 (mod 8)

and i+ k ≡ 2 (mod 4), or i− k ≡ 4 (mod 8) and i+ k ≡ 0 (mod 4).
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Proof. By Theorem 1.5.7, we have 3i+ k ≡ 4 (mod 8). Then

i+ k ≡ 4− 2i (mod 8)

i− k ≡ 4i− 4 (mod 8)

Case 1) When i is even, we have

i+ k ≡ 0 (mod 4) and i− k ≡ 4 (mod 8).

Case 2) When i is odd, we have

i+ k ≡ 2 (mod 4) and i− k ≡ 0 (mod 8).

We plot the coefficients of Φ̄587(x, y) in Figure 1.2.

1.5.3 Prime Level l with l ≡ 5 (mod 8)

Theorem 1.5.9. Assume that l ≡ 5 (mod 8). If aik = 1, then 5i+ k ≡ 6 (mod 8).

Proof. Proof immediately follows from Corollary 1.5.4 with l ≡ 5 (mod 8).

Theorem 1.5.10. Assume that l ≡ 5 (mod 8). If aik = 1, then either i + k ≡ 2 (mod 8)

and i− k ≡ 0 (mod 4), or i+ k ≡ 6 (mod 8) and i− k ≡ 2 (mod 4).

Proof. By Theorem 1.5.9, we have 5i+ k ≡ 6 (mod 8). Then

i+ k ≡ 6− 4i (mod 8)

i− k ≡ 6i− 6 (mod 8)

Case 1) When i is even, we have

i− k ≡ 2 (mod 4) and i+ k ≡ 6 (mod 8).

Case 2) When i is odd, we have

i− k ≡ 0 (mod 4) and i+ k ≡ 2 (mod 8).

We plot the coefficients of Φ̄557(x, y) in Figure 1.3.
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Figure 1.2: The coefficients of Φ̄l(x, y) for l = 587, the l ≡ 3 (mod 8) case
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Figure 1.3: The coefficients of Φ̄l(x, y) for l = 557, the l ≡ 5 (mod 8) case
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Figure 1.4: The coefficients of Φ̄l(x, y) for l = 599, the l ≡ 7 (mod 8) case

1.5.4 Prime Level l with l ≡ 7 (mod 8)

Theorem 1.5.11. Assume that l ≡ 7 (mod 8). If aik = 1, then i− k ≡ 0 (mod 8).

Proof. Proof immediately follows from Corollary 1.5.4 with l ≡ −1 (mod 8).

We plot the coefficients of Φ̄599(x, y) in Figure 1.4. Because of Theorem 1.5.11, we see

that dots in the figure belong to lines with slope 1 that are at vertical distance 8 apart.

1.6 Density of Φ̄l(x, y)

Originally we defined the l-th modular polynomial Φl(x, y) as a polynomial over Z.

These polynomials are dense and their coefficients grow very quickly with l. They are also
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expensive to compute. For that reason, Magma stores Φl(x, y) over Z only for prime levels

l ≤ 59 and for composite levels l ≤ 16. On the other hand, modular polynomials Φ̄l(x, y)

become very manageable when considered over Z2. Not only are the coefficients limited to

one bit, but also the vast majority of terms in Φl(x, y) are 0 modulo 2. By observing patterns

in plots of coefficients of Φ̄l(x, y) for prime l < 2000, we conjectured some properties of

coefficients of Φ̄l(x, y), resulting in claims about the density of Φ̄l(x, y). We proved some

of the results in the previous section, and in this section we derive a density result from

them.

We show Φ̄p(x, y) and Φp(x, y) where p ∈ {2, 3, 5}. These polynomials can be obtained

by using Magma.

Example 1.6.1. Φ̄2(x, y) = x3 + x2y2 + xy + y3

Φ2(x, y) = x3 + y3 − x2y2 + 1488(x2y + xy2)− 162000(x2 + y2) + 40773375xy

+ 8748000000(x+ y)− 157464000000000

Example 1.6.2. Φ̄3(x, y) = x4 + x3y3 + y4

Φ3(x, y) = x4 + y4 − x3y3 + 2232(x3y2 + x2y3)− 1069956(x3y + xy3)

+ 36864000(x3 + y3) + 2587918086x2y2 + 8900222976000(x2y + xy2)

+ 452984832000000(x2 + y2)− 770845966336000000xy

+ 1855425871872000000000(x+ y)

Example 1.6.3. Φ̄5(x, y) = x6 + x5y5 + x4y2 + x2y4 + y6

Φ5(x, y) = x6 + y6 − x5y5 + 3720(x5y4 + x4y5)− 4550940(x5y3 + x3y5)

+ 2028551200(x5y2 + x2y5)− 246683410950(x5y + xy5) + 1963211489280(x5 + y5)

+ 1665999364600x4y4 + 107878928185336800(x4y3 + x3y4)

+ 383083609779811215375(x4y2 + x2y4) + 128541798906828816384000(x4y + xy4)

+ 1284733132841424456253440(x4 + y4)− 441206965512914835246100x3y3

+ 26898488858380731577417728000(x3y2 + x2y3)

− 192457934618928299655108231168000(x3y + xy3)

+ 280244777828439527804321565297868800(x3 + y3)

+ 5110941777552418083110765199360000x2y2

+ 36554736583949629295706472332656640000(x2y + xy2)

+ 6692500042627997708487149415015068467200(x2 + y2)

− 264073457076620596259715790247978782949376xy



CHAPTER 1. CLASSICAL MODULAR POLYNOMIALS 25

l (mod 8) Results

1 i+ k ≡ 2 (mod 8)

3
i− k ≡ 0 (mod 8) and i+ k ≡ 2 (mod 4),

or i− k ≡ 4 (mod 8) and i+ k ≡ 0 (mod 4)

5
i+ k ≡ 2 (mod 8) and i− k ≡ 0 (mod 4),

or i+ k ≡ 6 (mod 8) and i− k ≡ 2 (mod 4)

7 i− k ≡ 0 (mod 8)

Table 1.2: Summary of relations between i and k for each l

+ 53274330803424425450420160273356509151232000(x+ y)

+ 141359947154721358697753474691071362751004672000

Recall that, by Proposition 1.4.5, for prime l the l-th modular polynomial Φ̄l(x, y) over

Z2 has the form

Φ̄l(x, y) = xl+1 + yl+1 +
∑
i,k≤l

aikx
iyk, aik ∈ Z2. (1.22)

Notice that we treat xlyl as a special case on line 6 of Algorithm 1.2 in order to simplify

the algorithm.

Definition 1.6.4. We define the density of Φ̄l(x, y) defined in Proposition 1.4.5 as

the number of nonzero aik in equation (1.22)
(l + 1)2 = the maximum number of terms of aik

.

Theorem 1.6.5. For prime l the density of Φ̄l(x, y) is at most
1

8
+

14

l + 1
.

Proof. Table 1.2 shows the summary of results from Section 1.5. For each possible residue

class l mod 8, it shows necessary conditions that i and k must satisfy if aik = 1. (See

Theorems 1.5.6, 1.5.8, 1.5.10 and 1.5.11.)

Let s be the largest integer such that 8s ≤ l + 1. Let us consider the 8× 8 square

Q = [8t, 8t+ 7]× [8u, 8u+ 7] where t, u ∈ {0, 1, . . . , s− 1}.

By Theorems 1.5.6, 1.5.8, 1.5.10 and 1.5.11, if a8t+v,8u+w = 1 and v, w ∈ {0, . . . , 7}, then

(v, w) must be one of the pairs listed in Table 1.3. Hence, Q contributes at most 8 nonzero

coefficients aij . The square [0, l] × [0, l] splits into s · s = s2 squares Q as introduced
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l ≡ 1 (mod 8) l ≡ 3 (mod 8) l ≡ 5 (mod 8) l ≡ 7 (mod 8)

(0, 2) (0, 4) (0, 6) (0, 0)

(1, 1) (1, 1) (1, 1) (1, 1)

(2, 0) (2, 6) (2, 4) (2, 2)

(3, 7) (3, 3) (3, 7) (3, 3)

(4, 6) (4, 0) (4, 2) (4, 4)

(5, 5) (5, 5) (5, 5) (5, 5)

(6, 4) (6, 2) (6, 0) (6, 6)

(7, 3) (7, 3) (7, 3) (7, 7)

Table 1.3: All possible pairs (v, w) in Theorem 1.6.5

above and two overlapping rectangular regions (outside this big square) that cover l + 1

lattice points in one direction and 7 lattice points in the other direction. Because we have

8s ≤ l + 1, we get 8s2 ≤ (l+1)2

8
. This gives the upper bound on the density of Φ̄l as

8s2 + (2)(7)(l + 1)

(l + 1)2
≤ 1

8
+

14

l + 1
.

Asymptotically this gives the upper bound of
1

8
on the density of Φ̄l(x, y).

If Conjecture 1.5.5 holds, then it implies the following result:

Conjecture 1.6.6. The density of a modular polynomial with prime level l over Z2 is at

most
1

16
asymptotically.

Based on data computed for prime l < 2000 it appears that the density of the modular

polynomial with prime level l settles around the value
1

48
. However, it is not clear if we

have enough evidence to make a stronger statement about this. Figure 1.5 shows density of

Φ̄l where l is a prime between 500 and 2000.
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Figure 1.5: Density of Φ̄l for 500 < l < 2000



Chapter 2

Kloosterman Zeros

Kloosterman sums have recently enjoyed much attention. Some of this interest is due to

their applications in cryptography and coding theory. For instance, a Kloosterman zero can

be used to construct one hyperbent (bent) function in even (odd) characteristic, respectively.

Since the bent and hyperbent functions also have to satisfy some other criteria required in

applications, it is desired to have a large set of bent functions to choose from. This motivates

the task of listing all Kloosterman zeros in the given field.

In this chapter, we recall what Kloosterman zeros are and how we compute one Kloost-

erman zero and the total number of Kloosterman zeros in the field F2m for some fixed m.

Moreover, we develop algorithms that list all Kloosterman zeros and all minimal polyno-

mials of binary Kloosterman zeros for this field.

For a nonzero element in Fpm where p ∈ {2, 3} it is known that there is a relation

between Kloosterman sum of this element and the number of points with coordinates in

Fpm on a certain elliptic curve [20, 27].

We developed our algorithms by combining concepts involving Kloosterman sums,

elliptic curves and modular polynomials. We use classical modular polynomials which

are precomputed in Algorithm 1.2. Applying our new algorithms, we have computed all

Kloosterman zeros in F2m up tom ≤ 63. This is a significant improvement because this list

is known only up to m ≤ 14 in the literature (see paper [5] by Charpin and Gong). Since

there are no known efficient algorithms for listing all Kloosterman zeros in larger fields,

our novel algorithms can be blueprints for listing them.

28



CHAPTER 2. KLOOSTERMAN ZEROS 29

Throughout this chapter, we let Fq be the finite field of order

q = pm

where p is a prime and m is a positive integer. Let Fp be the subfield of Fq of order p and

F∗q = Fq\{0}.

2.1 Background and Definitions

In this section, we give definitions and background information which will be used in

later sections. We recommend [28] as an accessible reference for these topics.

Throughout this section, we let a ∈ Fq and use n to denote the smallest positive integer

such that apn
= a (so that api 6= a for 1 ≤ i < n). Notice that n dividesm because apm

= a.

Lemma 2.1.1. We have

ap
j 6= ap

k

for 1 ≤ j < k < n.

Proof. Suppose apj
= ap

k and 1 ≤ j < k < n. We have

a = ap
n

= ap
k+(n−k)

= (ap
k

)p
n−k

= (ap
j

)p
n−k

= ap
j+n−k

.

This contradicts the minimality condition for n because 1 ≤ j + n− k < n.

Definition 2.1.2. We define the minimal polynomial f(x) ∈ Fp[x] of a over Fp to be the

monic polynomial of the smallest degree over Fp such that f(a) = 0.

We know that the minimal polynomial of a over Fp is unique [28].

Theorem 2.1.3. [28] Any polynomial g(x) ∈ Fp[x] with g(a) = 0 is a multiple of the

minimal polynomial of a over Fp.

Definition 2.1.4. We define the algebraic conjugate(s) of a over Fp to be the root(s) of the

minimal polynomial of a over Fp.

Notice that conjugate(s) may not in Fp.

Definition 2.1.5. The Frobenius automorphism on Fq is the map φ : Fq → Fq defined by

φ(a) = ap for all a ∈ Fq. (2.1)
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Proposition 2.1.6. The Frobenius automorphism φ : Fq → Fq is a field automorphism.

Proof. For all a, b ∈ Fq, we have

φ(0) = 0p = 0,

φ(1) = 1p = 1,

φ(a+ b) = (a+ b)p = ap + bp = φ(a) + φ(b) and

φ(ab) = (ab)p = apbp = φ(a)φ(b).

Now we show φ is bijection.

Let a, b ∈ Fq be arbitrary. Suppose φ(a) = φ(b). Then ap = bp and (ap)p
m−1

=

(bp)p
m−1 . Thus a = b. Therefore, φ is one-to-one.

Let b ∈ Fq be arbitrary. Let a = bp
m−1 ∈ Fq. Then φ(a) = φ(bp

m−1
) = bp

m
= b.

Therefore φ is onto. Thus φ is bijection.

Therefore, φ is a field automorphism.

Corollary 2.1.7. [28] All conjugates of a over Fp are obtained through repeating the

Frobenius automorphism on Fq.

Proof. Let f(x) ∈ Fp[x] be the minimal polynomial of a over Fp with degree l. Then, we

have f(a) = 0. We can write

f(x) = clx
l + cl−1x

l−1 + · · ·+ c1x+ c0 where ci ∈ Fp.

Because (α + β)p = αp + βp for all α, β ∈ Fq, we have

0 = f(a)p = cpl (a
p)l + cpl−1(ap)l−1 + · · ·+ cp1(ap) + cp0.

Since ci ∈ Fp and cpi = ci, we have

0 = cl(a
p)l + cl−1(ap)l−1 + · · ·+ c1(ap) + c0 = f(ap).

Thus, ap is a root of f .

By definition of n, we have api 6= ap
j for 1 ≤ i < j < n and apn

= a. We conclude that

a, ap, · · · , apn−1 are distinct roots of f by applying Frobenius automorphism n− 1 times.



CHAPTER 2. KLOOSTERMAN ZEROS 31

We need to show that

f(x) =
n−1∏
i=0

(x− api

).

Let g(x) =
∏n−1

i=0 (x− api
). It is clear that g(x)|f(x) over Fq by above. We can write

g(x) = d0 + d1x+ · · ·+ dn−1x
n−1 + xn

where di ∈ Fq. Then, we have

(g(x))p =
n−1∏
i=0

(x− api

)p =
n−1∏
i=0

(xp − api+1

) =
n−1∏
i=0

(xp − api

) = g(xp).

On the other hand, we have

(g(x))p = (d0 + d1x+ · · ·+ dn−1x
n−1 + xn)p

= dp0 + dp1x
p + · · ·+ dpn−1x

p(n−1) + xpn,

and

g(xp) = d0 + d1x
p + · · ·+ dn−1x

p(n−1) + xpn.

Since (g(x))p = g(xp), all di ∈ Fp. Therefore, g(x) is a polynomial over Fp. Since both

f(x) and g(x) are both monic polynomials, g(x) is the minimal polynomial of a over Fp
by definition of the minimal polynomial.

Theorem 2.1.8. The minimal polynomial f(x) of a over Fp can be written as

f(x) =
n−1∏
i=0

(x− api

). (2.2)

Proof. Proof follows from the Corollary 2.1.7.

Definition 2.1.9. We define Tr : Fq → Fp, the absolute trace function, as

Tr(x) = x+ xp + xp
2

+ · · ·+ xp
m−1

. (2.3)

Proposition 2.1.10. [22] For all α, β ∈ Fq, we have

Tr(−α) = −Tr(α),

T r(αp) = Tr(α),

T r(α + β) = Tr(α) + Tr(β),
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Theorem 2.1.11. [22] For each γ ∈ Fp, there are exactly pm−1 elements u ∈ Fq such that

Tr(u) = γ.

Definition 2.1.12. Let q = pm where p is prime. The Kloosterman sum on Fq is the mapping

Kq : Fq → R defined by

Kq(a) = 1 +
∑
x∈F∗q

ζTr(x
−1+ax)

p (2.4)

where ζp = e2πi/p is a primitive p-th root of unity.

In some references, the same mapping is defined by Kq(a) =
∑

x∈Fq
ζ
Tr(x−1+ax)
p with

the proviso that Tr(0−1) = 0.

For all x ∈ F∗q , we have

Tr((−x)−1 + a(−x)) = −Tr(x−1 + ax).

Then, we have for all x ∈ F∗q

Tr(x−1 + ax) = b ∈ Fp if and only if Tr((−x)−1 + a(−x)) = −b.

Since ζbp + ζ−bp ∈ R, we have

Kq(a) = 1 +
∑
x∈F∗q

ζTr(x
−1+ax)

p ∈ R.

Definition 2.1.13. We say a is a zero of the Kloosterman sum Kq, or a Kloosterman zero

if a ∈ F∗q and Kq(a) = 0.

Proposition 2.1.14. We have

Kq(0) = 0 for all q.

Kpm(a) ∈ Z where p ∈ {2, 3}.

Proof. We have

Kq(0) =
∑
x∈Fq

ζTr(x
−1)

p with Tr(0−1) = 0

= pm−1(ζ0
p + ζ1

p + · · ·+ ζp−1
p ) = 0.



CHAPTER 2. KLOOSTERMAN ZEROS 33

by Theorem 2.1.11. We have ζ2 = −1 and ζ3 = −1+
√

3i
2

. For p = 2, we have

K2m(a) = 1 +
∑
x∈F∗2m

(−1)Tr(x
−1+ax) ∈ Z.

For p = 3, we have

ζ
Tr(x−1+ax)
3 = ζ3 if and only if ζTr((−x)−1+a(−x))

3 = ζ2
3 .

We know ζ3 + ζ2
3 = −1. Thus,

K3m(a) = 1 +
∑
x∈F∗3m

ζ
Tr(x−1+ax)
3 ∈ Z.

Applying the Frobenius automorphism with the properties of the trace map, we can

derive following lemma and corollary.

Lemma 2.1.15. We have

Kq(a) = Kq(ap) for all a ∈ Fq. (2.5)

Proof. We know x 7→ xp is bijective on Fq and let y = xp ∈ Fq. Then, we have

Tr(x−1 + ax) = Tr((x−1 + ax)p) = Tr((xp)−1 + apxp) = Tr(y−1 + apy).

Therefore, Kq(ap) = Kq(a) by definition.

Corollary 2.1.16. We have

Kq(a) = Kq(ap) = Kq(ap
2

) = · · · = Kq(ap
m−1

) for all a ∈ Fq. (2.6)

Theorem 2.1.17. If a is a Kloosterman zero, then ap
i

is also a Kloosterman zero for 1 ≤
i ≤ m− 1.

Proof. Proof immediately follows from Corollary 2.1.16.
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Kloosterman zeros have a significant role in cryptography because they are used in the

construction of highly nonlinear functions. Binary Kloosterman zeros are used in the con-

struction of a distinguished family of bent functions, which have some additional favorable

properties (high algebraic degree).

Dillon conjectured [8] the existence of Kloosterman zeros in all fields of characteristic 2

except for F2, and he showed the construction of a bent function using a Kloosterman zero.

Dillon’s conjecture was proved by Lachaud and Wolfmann in [20]. Furthermore, Youssef

and Gong [33] and Carlet and Gaborit [3] have shown that the bent functions constructed

by Dillion in fact are hyperbent functions. A complete list of binary Kloosterman zeros in

F2m for m ≤ 14 is presented in Table 1 in [5]. We will give a more detailed discussion of

binary Kloosterman zeros later in this chapter.

A Boolean function is any function from F2n to F2. The Hadamard transform of a

Boolean function f is defined as

f̂(a) =
∑
x∈F2n

(−1)f(x)+Tr(ax)

where a ∈ F2n . A Boolean function f is a bent function if |f̂(a)| = 2n/2 for all a ∈ F2n;

notice that n must be even for binary bent functions. The extended Hadamard transform of

f is defined as

f̂(a, k) =
∑
x∈F2n

(−1)f(x)+Tr(axk)

where a ∈ F2n and gcd(k, 2n − 1) = 1. A Boolean function f is a hyperbent function if

|f̂(a, k)| = 2n/2 for all a ∈ F2n and gcd(k, 2n − 1) = 1. Note that any hyperbent function

must be bent (take k = 1).

Define a Boolean function from F2n to F2 to be

fλ(x) = Tr(λx2m−1), λ ∈ F∗2m .

Dillion [8] proved that fλ is bent if and only if K2m(λ) = 0. Moreover, Charpin and Gong

[5] proved that fλ is hyperbent if and only if K2m(λ) = 0.

Kononen, Rinta-aho and Väänänen [19] proved that no Kloosterman zero exists in a

field of characteristic greater than 3. Moreover, Lisoněk and Moisio [25] proved that there

is no Kloosterman zero in Fq that belongs to a proper subfield of Fq except when q = 16
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(this case occurs only if p = 2 and m = 4) with K16(1) = 0. These results give the

following corollary and theorem.

Corollary 2.1.18. Let q = pm 6= 16. If a is a Kloosterman zero in Fq, then ap
i

are distinct

Kloosterman zeros in Fq for 1 ≤ i ≤ m− 1.

Theorem 2.1.19. Let q = pm 6= 16. Let a be a Kloosterman zero in Fq. The degree of the

minimal polynomial f(x) of a over Fp is m, and we can obtain f(x) as

f(x) =
m−1∏
i=0

(x− api

).

2.1.1 Root Finding

For the case of finding all zeros in Fq of a given polynomial f ∈ Fq[x], we only need to

consider linear factors of f over Fq. Thus, it is enough to first compute g = gcd(xq−x, f).

We only apply the equal-degree factorization algorithm to g instead of the whole distinct-

degree decomposition of f , see [12].

The following theorem shows the running time of finding root.

Theorem 2.1.20. [12, Corollary 14.16] The cost of finding all roots in Fq for a polynomial

of degree n with coefficients in Fq is O(M(n) log n log(nq)) or O∼(n log q) where M(n) is

the number of operations in the field needed for multiplying two polynomials of degree less

than n over Fq. (See Definition 8.26 in [12] for the meaning of M(n).)

2.2 Elliptic Curves and Modular Polynomials

We follow concepts and ideas from [23]. Throughout this section, we use standard defi-

nitions and results on elliptic curves over finite fields and on the Abelian groups associated

with them. We recommend [1], [26] as accessible references for these topics.

An elliptic curve E over Fpm is a non-singular curve given by an equation of the general

form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (2.7)

where ai ∈ Fpm . We denote by E(Fpm) the set of points (x, y) ∈ F2
pm on the curve E ,

together with one extra point which is called “the point at infinity,” which we will denote by
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O. The set E(Fpm) is called the set of Fpm-rational points on E . It is well known that on the

set E(Fpm) we can define a binary commutative operation, usually called “point addition”

and denoted P + Q where P,Q ∈ E(Fpm). Then it is well known that (E(Fpm),+) is an

Abelian group associated with the ellitpic curve E over Fpm , with the identity element O.

Throughout this chapter we denote this group simply by E(Fpm). The group law (definition

of the + operation) can be found in all books on this topic, for example in [1].

We denote by #E(Fpm) the order of the group E(Fpm), that is, the number of Fpm-

rational points on E .

The order of a point P on an elliptic curve is the smallest r such that

rP = P + P + · · ·+ P (r times) = O

(so that sP 6= O for 0 < s < r).

For this thesis, we only consider characteristic 2. However, we include the terminology

and results in characteristic 3 because Kloosterman sums in both characteristics have sim-

ilar interesting properties, and bent functions can also be constructed from Kloosterman

zeros in characteristic 3. The property of elliptic curves that is the most interesting to our

applications is that the number of Fpm-rational points on a certain elliptic curve is related

to the Kloosterman sum Kpm(a) for a ∈ F∗pm and p ∈ {2, 3}. This is asserted in the next

two theorems.

Theorem 2.2.1. [20] Let a ∈ F∗2m and let Ea2 be the elliptic curve

Ea2 : y2 + xy = x3 + a.

Then #Ea2 (F2m) = 2m +K2m(a).

Theorem 2.2.2. [27] Let a ∈ F∗3m and let Ea3 be the elliptic curve

Ea3 : y2 = x3 + x2 − a.

Then #Ea3 (F3m) = 3m +K3m(a).

Example 2.2.3. When the field is F4 = {0, 1, β, β2}, we have #Ea2 (F4) = 4 +K4(a). Note

that β is a primitive element in F4. Table 2.1 shows K4(a) and #Ea2 (F4) for each a. For
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a 0 1 β β2

#Ea2 (F4) – 8 4 4

K4(a) 0 4 0 0

Table 2.1: K4(a) and #Ea2 (F4) for each a ∈ F4

instance, when a = β:

Eβ2 : y2 + xy = x3 + β

Eβ2 (F4) = { (β, 1), (β, β2), (0, β2), O}

K4(β) = 1 + (−1)1 + (−1)0 + (−1)1 = 0

Notice that the direct computation of Kloosterman sum from Definition 2.1.12 is not

practical for larger fields. Instead of that, we compute Kq(a) using Theorems 2.2.1 and

2.2.2 in combination with fast point counting algorithms [21] that count the number of ra-

tional points on elliptic curves over finite fields, such as variants of the Schoof-Elkies-Atkin

(SEA) algorithm. The SEA algorithm [1] has complexity O(log8 q) = O(m8) assuming no

fast multiplication routines are used and O(log5+ε q) = O(m5+ε) with fast multiplication

routines. Note that Magma contains an efficient implementation of the SEA algorithm for

computing the number of points on an elliptic curve over a finite field [2].

The discriminant ∆(E) and j-invariant j(E) for any elliptic curve E are defined, for

example, at pages 30 and 31 in [1]. They are given by formulas in terms of the coefficients

ai of E defined in equation (2.7). ∆(E) is a polynomial in ai and j(E) is a rational function

in ai.

Lemma 2.2.4. Let Ea2 and Ea3 be the curves defined in Theorems 2.2.1 and 2.2.2. We have

∆(Ea2 ) = a,

j(Ea2 ) = a−1,

∆(Ea3 ) = a3 and

j(Ea3 ) = a−3.

Definition 2.2.5. We define the trace of Frobenius at q of E to be the integer t where

#E(Fq) = q + 1− t.
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Thus, an equivalent characterization of a Kloosterman zero a ∈ F∗q is that the corre-

sponding elliptic curve has trace of Frobenius at q equal to t = 1, that is, #Eap (Fq) = q

where p ∈ {2, 3}.
Isogeny is a relation between the groups of rational points on elliptic curves. A detailed

description is beyond the scope of this thesis, however we will give precise references for

the statements that we will use. We recommend to read section III.6 and III.8 of [1] for

more detailed information. We will now list the statements that are important to us.

Lemma 2.2.6. [1, Lemma III.12] Two isogenous elliptic curves over a finite field have the

same number of rational points.

Recall that Φn is the n-th classical modular polynomial, which was defined for the case

of prime n in Section 1.2. These polynomials can be defined for all positive integers n.

We did not pursue Φn for non-prime n, as the computation of it is then more complicated,

and the prime values of n are sufficient for our applications in this chapter and in the next

chapter.

Lemma 2.2.7. [1, page 51] There is an isogeny of degree n from E ′ to E ′′ if and only if

Φn(j(E ′), j(E ′′)) = 0.

Notice that the modular polynomials Φl(x, y) are symmetric and have integer coeffi-

cients, thus it can be interpreted over any field. Recall Φ̄l(x, y) = Φl(x, y) mod 2.

Corollary 2.2.8. [24] Let q = 2m and a be a Kloosterman zero in Fq.
Suppose Φ̄n(a−1, b−1) = 0 for some positive integer n and some b ∈ F∗q . Then b is also a

Kloosterman zero in Fq.

Proof. By Theorem 2.2.1, Kq(c) = #Ec2(Fq) − q. By assumption #Ea2 (Fq) = q, and we

need to show that #Eb2(Fq) = #Ea2 (Fq). By Lemma 2.2.4, j(Ea2 ) = a−1 and j(Eb2) = b−1.

By the assumption Φ̄n(a−1, b−1) = 0 and Lemma 2.2.7, the curves Ea2 and Eb2 are isogenous.

We now apply Lemma 2.2.6 to finish the proof.

Corollary 2.2.8 is a key ingredient for our algorithm that lists Kloosterman zeros. It

tells us that, given an arbitrary Kloosterman zero a, we may produce more Kloosterman

zeros in the same field by substituting y = a−1 in Φn(x, y) and finding root(s) in Fq of



CHAPTER 2. KLOOSTERMAN ZEROS 39

the resulting univariate polynomial in x. This is a novel idea by combining concepts from

modular polynomials, elliptic curve groups and Kloosterman sums.

Now we are interested in the number of roots in Fq of this univariate polynomial. Hap-

pily, there is a formula for this number of roots:

Proposition 2.2.9. [1, Proposition VII.2] Let p ∈ {2, 3}, q = pm. Let ` be a prime. Let E
be an elliptic curve over Fq such that j(E) 6= 0 and the trace of Frobenius of E at q is t.

Consider Φ`(x, j(E)) ∈ Fq[x]. The number of roots of Φ`(x, j(E)) in Fq is:

1 or `+ 1 if ` divides t2 − 4q,

2 if t2 − 4q is a non-zero square modulo `,

0 if t2 − 4q is a non-square modulo `.

By the remark after Definition 2.2.5, we have t = 1 for the trace of Frobenius. Applying

Proposition 2.2.9 with t = 1, we summarize the relation between the Legendre symbol

(1−4q
l

) and the number of root(s) of Φ̄l(x, z
−1) in Fq as follows:

(
1− 4q

l

)
=


0, there are 1 or l + 1 root(s) of Φ̄l(x, z

−1) in Fq
1, there are 2 roots of Φ̄l(x, z

−1) in Fq
−1, there are no roots of Φ̄l(x, z

−1) in Fq.

Recall that the Legendre symbol (u
l
) represents the quadratic character modulo a prime

number l for u ∈ Z. Notice that an integer u is called a quadratic residue modulo l if it is

congruent to a perfect square modulo l, i.e., if there exists an integer v such that v2 ≡ u

(mod l). Otherwise, u is called a quadratic non-residue modulo l.

The algorithm that lists all Kloosterman zeros in a given binary field needs the total

number of them as a stopping condition. This number is given in Theorem 2.2.10 below.

First we need some definitions. For an integer δ < 0 such that δ ≡ 0, 1 (mod 4), the class

number for discriminant δ is an integer denoted by h(δ). This function is computed by

the ClassNumber function in Magma [2]. We refer to [30] for a detailed presentation

on the class number. By H(δ) we denote the Kronecker class number for δ, which can be

computed as follows [30, Proposition 2.2]:

H(δ) =
∑
d

h

(
δ

d2

)
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where the summation range consists of those positive integers d for which d2|δ and δ/d2 ≡
0, 1 (mod 4). Magma code for computing H(δ) is given in Appendix A.4.

Theorem 2.2.10. [20, Proposition 9.1] Let q = 2m. The number of Kloosterman zeros in

Fq is H(1− 4q).

The statements given in Sections 2.1 and 2.2 play a significant role in computing all

Kloosterman zeros in a given field F2m (Algorithm 2.2), and computing all minimal poly-

nomials over F2 of Kloosterman zeros in a given field F2m (Algorithm 2.3).

2.3 Computation of Binary Kloosterman Zeros

Throughout this section, let

q = 2m where m 6= 4

because of Corollary 2.1.18 and Theorem 2.1.19. Let a be an arbitrary Kloosterman zero

in F2m . For prime l let Φ̄l be the classical modular polynomial of level l over F2 as defined

in Section 1.2. By Theorem 2.1.19 the minimal polynomial f(x) of a Kloosterman zero a

over F2 is

f(x) =
m−1∏
i=0

(x− a2i

) m 6= 4.

2.3.1 Algorithm for One Kloosterman Zero

Our approach to listing all Kloosterman zeros in a given field is to obtain one intial

Kloosterman zero in that field and then repeatedly apply Corollary 2.2.8 until all Klooster-

man zeros are listed. Thus, first we need an algorithm that finds one (arbitrary) Klooster-

man zero in a given field. In this section, we introduce such an algorithm. This method is

sketched (without giving details) in [23].

We have mentioned that we can use the SEA algorithm to compute the value of Kloost-

erman sum. However, since in this thesis we are only interested in Kloosterman zeros, we

are only interested in deciding whether K2m(a) = 0 or K2m(a) 6= 0. For this, we do not

need to run the complicated SEA algorithm. In this section we provide a yes-biased Monte

Carlo probabilistic algorithm that tests whether an element of F2m is a Kloosterman zero.
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This algorithm was just sketched in [23] but we provide pseudocode and the complexity

analysis. We show that this algorithm is faster than the SEA algorithm.

Recall that #E(Fq) denotes the number of Fq-rational points on E . By Theorem 2.2.1,

for a ∈ F∗2m , the elliptic curve Ea2 defined by Ea2 : y2 + xy = x3 + a satisfies #Ea2 (F2m) =

2m +K2m(a). Hence a is a Kloosterman zero if and only if #Ea2 (F2m) = 2m.

We start by giving statements needed in our algorithm.

Theorem 2.3.1. Let G be a cyclic group of order 2m written additively. Let P be a genera-

tor of G and let k be a positive integer. Then kP is a generator of G if and only if k is odd.

Hence there are 2m−1 distinct generators in G.

Proof. Let k be odd. Then gcd(k, 2m) = 1. By the extended Euclidean algorithm, there

exist s, t ∈ Z such that

sk + t2m = 1.

Then we have

P = (sk + t2m)P = skP = s(kP ).

This shows P ∈ 〈kP 〉 and 〈P 〉 ⊆ 〈kP 〉. Thus, kP is a generator of G. There are 2m−1

possible odd values for k, and 〈kP 〉 6= G if k is even. Therefore, there are 2m−1 generators

in G.

Theorem 2.3.2. [1, page 36] For any elliptic curve E , the group E(Fpm) is isomorphic to

Zn1 × Zn2 with n1|n2 and n1|pm − 1 and #E(Fpm) = n1n2.

Corollary 2.3.3. Assume K2m(a) = 0 where a ∈ F∗2m . Then Ea2 (F2m) is isomorphic to Z2m

and Ea2 (F2m) has 2m−1 generators.

Proof. Let a be a Kloosterman zero. Then #Ea2 (F2m) = 2m. Let n1 and n2 be as in Theorem

2.3.2. Since we have n1n2 = 2m and n1|2m − 1 by Theorem 2.3.2, we have n1 = 1 and

n2 = 2m. Thus, Ea2 (F2m) is isomorphic to Z2m . Since Z2m is a cyclic group with order 2m,

there are 2m−1 distinct generators in Ea2 (F2m) by Theorem 2.3.1.

Theorem 2.3.4. [1, Theorem III.3] (Hasse Interval) We have

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q.
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Theorem 2.3.5. Let m ≥ 3. If E(F2m) contains a point of order 2m, then #E(F2m) = 2m.

Proof. We have

2m + 1− 2
√

2m ≤ #E(F2m) ≤ 2m + 1 + 2
√

2m

by Theorem 2.3.4. Suppose there is an element of E(F2m) whose order is 2m. By Lagrange’s

Theorem 2m|#E(F2m). Hence we have #E(F2m) = s2m for some positive integer s, thus

2m + 1− 2
√

2m ≤ s2m ≤ 2m + 1 + 2
√

2m

1− 2
√

2m ≤ (s− 1)2m ≤ 1 + 2
√

2m.

When m ≥ 3, the only s satisfying the last two inequalities is s = 1. Thus, the order of the

group is 2m.

As there is little known about characterizing Kloosterman zeros by means other than

their very definition (see Chapter 4 for more details on this), for getting the first Klooster-

man zero in the given field we choose a ∈ F∗q randomly and subject it to the testKq(a) = 0.

Our algorithm needs a point on the associated curve Ea2 . As we choose random a, we may

as well start from a random point P = (x, y) ∈ F2
q and compute a = x3 +xy+ y2 from the

curve equation to avoid solving the equation.

Please consult the description of Algorithm 2.1 now. As mentioned earlier this algo-

rithm was only sketched in [23] without details. We provide the pseudocode and the cor-

rectness of the Algorithm as well as the complexity analysis. Notice that in lines 3 and 8,

the symbol + denotes the group operation in Ea2 (Fpm) (point addition operation).

We now show the correctness of Algorithm 2.1. If the algorithm returns True, then the

order of P is 2m, and #Ea2 (F2m) = 2m for m ≥ 3 by Theorem 2.3.5. Thus, K2m(a) = 0 by

Theorem 2.2.1. By a contrapositive, if K2m(a) 6= 0, then the algorithm returns False.

Now let us look at what happens in the case when K2m(a) = 0. With probability 1
2

the

point P is a generator for Ea2 (F2m) because there are 2m−1 generators by Corollary 2.3.3.

The algorithm returns True exactly if P is a generator for Ea2 (F2m).

We use Algorithm 2.1 to compute one Kloosterman zero in F2m because it is much

faster than the SEA algorithm. (As was mentioned earlier, the SEA algorithm returns the

number of Fpm-rational points on elliptic curve E over Fpm , which is 2m if and only if a is

a Kloosterman zero.) Notice that Algorithm 2.1 only uses the elliptic curve point addition
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Algorithm 2.1 Testing a Kloosterman Zero in F2m

Input: A random point P = (x, y) where x, y ∈ F2m (m ≥ 3) and an element a ∈ F2m

such that a = x3 + xy + y2.

Output: If K2m(a) 6= 0, return False.

If K2m(a) = 0, return True with probability 1
2
, and return False with probability 1

2
.

1: T ← P

2: for i = 1 to m− 1 do
3: T ← T + T

4: if T = O then
5: return False

6: end if
7: end for
8: T ← T + T

9: if T = O then
10: return True

11: else
12: return False

13: end if
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Our probabilistic algorithm The SEA algorithm

Output Kq(a) = 0? (T/F ) Kq(a)

Type
probabilistic with
error probability 1

2
deterministic

Implementation easy complicated

Complexity
O(m3)

O(m2+ε)

O(m8)

O(m5+ε)

Table 2.2: Our probabilistic algorithm versus the SEA algorithm

operation which only involves a constant number of addition, multiplication and division

operations in F2m . (The formulas can be found, for example, in Section III.3.2 of [1].)

Assuming classical arithmetic operations in F2m , their time complexity is O(m2). As there

are O(m) iterations of the for loop in the algorithm, the overall complexity of Algorithm

2.1 is O(m · m2 + m2) = O(m3) with classical methods and this can be improved to

O(m2 logm) when fast arithmetic operations are used. On the other hand, the complexity

of the SEA algorithm isO(m8) with classical methods andO(m5+ε) with fast multiplication

routines. This information is summarized in Table 2.2.

Theorem 2.3.6. Suppose that a is a Kloosterman zero in F2m . The expected number of runs

of Algorithm 2.1 (with different inputs P ) to prove that a is a Kloosterman zero is 2.

Proof. The number of runs is k if and only if the algorithm outputs False k − 1 times and

then it outputs True in the k-th run. Thus the expected number of runs is

∞∑
k=1

k

(
1

2

)k−1(
1

2

)
= 2.

Notice that for computing one Kloosterman zero using Algorithm 2.1 we only run once

for each choice of the random point P . If a certain choice of P does not produce a Kloost-

erman zero, then we choose another point P which in general will correspond to a different

field element a.

By Theorem 2.2.10, there are H(1− 4 · 2m) Kloosterman zeros in the field F2m . For the

range m ≤ 63, we can find using Magma that 0.51 · 2m/2 < H(1− 4 · 2m) < 2.38 · 2m/2.
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Appendix A.2 is our Magma implementation of Algorithm 2.1. Using Magma with

m = 32, it took 33.32 seconds to find one Kloosterman zero. Notice that for larger fields,

we need to implement this algorithm in C++ using NTL library [31].

For each m ≤ 63, we obtained one Kloosterman zero from Lisoněk using his C++ im-

plementation of Algorithm 2.1 and this Kloosterman zero became the initial Kloosterman

zero for our later algorithms.

2.3.2 Algorithm for All Kloosterman Zeros

Up to now, there has been no known efficient method to list all Kloosterman zeros in

fields of very large order. Moreover, the known listings of them are in [5] and they are

only up to m ≤ 14 for F2m . In this section, we develop novel algorithms that compute all

Kloosterman zeroes and their minimal polynomials in Fq. We have used these algorithms

to compute lists of Kloosterman zeros and minimal polynomials over F2 of Kloosterman

zeros for all fields F2m up to m ≤ 63. This is significant improvement compared to the

previous known results in [5]. Some statistics (including timings) for our computations are

shown in Section 2.3.3.

In order to proceed to the algorithms, we require m where

q = 2m for m ≥ 6,

one precomputed Kloosterman zero (which in our computations is found using Algorithm

2.1, which is applied to random field elements) and the total number of Kloosterman zeros

in Fq as the inputs. We set m ≥ 6 because small cases are easy to work out, and avoiding

the small cases simplifies our algorithm.

Recall that Φ̄l(x, y) is the l-th classical modular polynomial over F2, which for prime

l is defined in Section 1.4. By Lemma 2.2.4, the j-invariant of Ea2 is a−1 for all a ∈ F∗q .
Listing all Kloosterman zeros can be done by listing the inverses of all Kloosterman zeros

in Fq.

Theorem 2.3.7. If z is a Kloosterman zero in Fq, then b ∈ F∗q is also a Kloosterman zero if

Φ̄l(b
−1, z−1) = 0 for some prime l.

Proof. Proof immediately follows from Corollary 2.2.8.
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Consequently, our algorithms apply the root finding algorithm on evaluated modular

polynomials Φ̄l(x, z
−1) to obtain the inverses of other Kloosterman zeros. Notice that

Φ̄l(x, z
−1) is a univariate polynomial over Fq in x whose degree is l + 1.

We observed through experiments that most of Φ̄l(x, z
−1) ended up having only one

root when the case (1−4q
l

) = 0 occurs as prime l varies. This gives options whether we

restrict to the case (1−4q
l

) = 0 or 1 or only the case (1−4q
l

) = 1. We choose (1−4q
l

) = 0 or

1 because searching Kloosterman zeros when we restrict to the case (1−4q
l

) = 1 requires

higher prime levels l for Φ̄l and it costs on evaluation and root finding of Φ̄l(x, z
−1). How-

ever, searching Kloosterman zeros in (1−4q
l

) = 1 could possibly reduce the number of root

finding iteration steps because it ensures Φ̄l(x, z
−1) has exactly 2 roots over Fq. We com-

pared the overall time and we found that the case (1−4q
l

) = 0 or 1 is faster than the other

case.

Recall that our algorithms require one Kloosterman zero a and the total number of

Kloosterman zeros in F2m , which is given by Theorem 2.2.10.

We suggest to read the pseudocode for Algorithms 2.2 and 2.3 at this time. These al-

gorithms compute all Kloosterman zeros and all minimal polynomials of Kloosterman ze-

ros for a certain field F2m for m ≤ 63. The procedure is as follows: We let invKLZ to

be the container where the inverses of Kloosterman zeros are stored during the iterations

of the while loop and invKLZ contains a−1 when it is initialized. We let #invKLZ to

be the number of the inverses of Kloosterman zeros stored in invKLZ. First, we set the

prime level l to be the smallest prime such that (1−4q
l

) 6= −1. Then, we find b−1 by solv-

ing Φ̄l(x, a
−1) = 0 as a univariate polynomial in x by Theorem 2.3.7 and store b−1 to

invKLZ. Keep finding the inverse(s) of Kloosterman zero(s) by finding root(s) of the uni-

variate polynomial Φ̄l(x, z
−1) where z−1 ∈ invKLZ. As soon as #invKLZ is equal to

the total number of Kloosterman zeros, the algorithm terminates. If #invKLZ is less than

the total number of Kloosterman zeros when we use all z−1 in invKLZ, then we set l to

be the next prime number greater than l such that (1−4q
l

) 6= −1.

On line 2 of Algorithms 2.2 and 2.3, foundPoly is the number of minimal polynomials

found through iterations and n is the number of minimal polynomials before we increase

prime level l. We use n to distinguish the inverses of Kloosterman zeros into those on which

we need to perform the root finding algorithm only for Φ̄l(x, jinv) and those on which we

have to perform the root finding algorithm for Φ̄ll(x, jinv) for all prime ll ≤ l.
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Algorithm 2.2 Computing All Kloosterman Zeros in Fq
Input: m where q = 2m,m ≥ 6, a Kloosterman zero a, totalKLZ the total number

of Kloosterman zeros over Fq, and all modular polynomials Φ̄l upto some bound B

computed by Algorithm 1.2.

Output: Listing of all Kloosterman zeros in Fq.
1: invKLZ[i]← (a−1)2i

, 0 ≤ i ≤ m− 1

2: foundKLZ ← m, foundPoly ← 1, n← 1, jinv ← a−1, totalPoly ← totalKLZ
m

3: Set H be a table whose size is the next prime number greater than 2 ∗ totalPoly
4: Choose the max bit-string among (a−1)2i

, 0 ≤ i ≤ m− 1 and insert it into H

5: Set l to be the smallest prime such that (1−4q
l

) 6= −1

6: while ((1−4q
l

) 6= −1) and (foundPoly < totalPoly) do
7: k ← 0

8: while (k < foundPoly) do
9: if (k < n) then

10: ll← l

11: else
12: Set ll be the smallest prime such that (1−4q

ll
) 6= −1

13: end if
14: while ll ≤ l do
15: Compute b−1 from the root finding algorithm applied to Φ̄ll(x, jinv) as a uni-

variate polynomial in x

16: if the max bit-string among (b−1)2i
, 0 ≤ i ≤ m− 1 is not in H then

17: invKLZ[foundKLZ + i]← (b−1)2i
, 0 ≤ i ≤ m− 1

18: foundPoly ← foundPoly + 1, foundKLZ ← foundKLZ +m

19: end if
20: Set ll to be the next prime number greater than ll such that (1−4q

ll
) 6= −1

21: end while
22: k ← k +m, jinv = invKLZ[k]

23: end while
24: n← foundPoly, l to be the next prime number greater than l such that (1−4q

l
) 6= −1

25: end while
26: return (invKLZ[index])−1, 0 ≤ index < totalKLZ
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Using the algorithms we have found all Kloosterman zeros in F2m up to m ≤ 57 on

a Pentium(R) D 3.00GHz with 2GB memory. We are strongly positive that with a larger

memory machine, we can go to higher m. In fact, we have computed all Kloosterman zeros

for m ≤ 63 and some of Kloosterman zeros up to m ≤ 70 on Intel Core i7 CPU at 2.6

GHz with 12 GB RAM. The polynomials Φ̄l with prime levels l ≤ 61 were sufficient for

all m ≤ 63.

Theorem 2.3.8. To list all Kloosterman zeros in F2m using Algorithm 2.2, the polynomials

Φ̄l with prime levels l ≤ 61 are sufficient for all m ≤ 63.

Algorithms 2.2 and 2.3 are implemented in C++ with NTL library [31]. Algorithm 2.2

computes all Kloosterman zeros in Fq and Algorithm 2.3 lists all minimal polynomials of

Kloosterman zeros in Fq. Both of them compare a newly computed minimal polynomial

of a Kloosterman zero to the previously found minimal polynomials (stored in memory) in

order to determine whether the new polynomial needs to be stored or not.

Before developing this version, we first stored Kloosterman zeros in the memory. How-

ever, the total number of Kloosterman zeros becomes larger as we increasem, which causes

the memory shortage problem. Moreover, the number of minimal polynomials is exactly

the number of Kloosterman zeros divided bym since each polynomial representsm distinct

Kloosterman zeros by Corollary 2.1.18 and Theorem 2.1.19. For this reason, we decided to

store minimal polynomials of Kloosterman zeros to utilize memory more efficiently.

We use the balanced binary tree, provided by standard C library search, to store the

minimal polynomials in memory to achieve better performance. The data type of the node

of the tree is either 64-bit integer (or 128-bit integer if m > 64) as a bit-string of coeffi-

cients. However we found that using binary tree consumed too much memory space. Thus

to make the algorithm more efficient in terms of space, we choose to use the hash table.

Using the hash table we consumed only half of memory space compared to the binary tree.

Then we realize that instead of minimal polynomials, we can simply compare the in-

verses of Kloosterman zeros. First, we compute all inverses of conjugates of a new Kloost-

erman zero, which is obtained by line 15. Then, choose the one whose bit-string value is

the largest and store it in the hash table. Using this method, each minimal polynomial is

computed only once when it is output. Moreover, the minimal polynomial over F2 of the

inverse of a Kloosterman zero is the reciprocal polynomial of this Kloosterman zero over
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F2. This implies we simply output the minimal polynomial of z over F2 by the reciprocal

polynomials of z over F2. Because using this method saves the multiplication and inverse

operations, we have improved the overall running time about 25 − 35% from the version

that stores minimal polynomials on the binary tree.

Algorithm 2.3 Computing All Minimal Polynomials of Kloosterman Zeros in Fq
Input: m where q = 2m,m ≥ 6, a Kloosterman zero a,

totalKLZ the total number of Kloosterman zeros over Fq, and

all modular polynomials Φ̄l upto some bound B computed by Algorithm 1.2.

Output: List of all minimal polynomials of Kloosterman zeros in Fq.
1: invKLZ[0]← a−1, recipPoly[foundPoly]←

∏m−1
i=0 (x− (a−1)2i

)

2: foundKLZ ← 1, foundPoly ← 1, n← 1, jinv ← a−1, totalPoly ← totalKLZ
m

3: Run line 3 through line 26 of Algorithm 2.2 with modification of lines 17, 18, 22, 26.

Line 17: invKLZ[foundPoly]← b−1, recipPoly[foundPoly]←
∏m−1

i=0 (x−(b−1)2i
)

Line 18: foundKLZ ← foundKLZ + 1

Line 22: k ← k + 1

Line 26: return recipPoly[index], 0 ≤ index < totalPoly

Note that the termination of the algorithms is not obvious from the pseudocode. This

requires a deeper work in the theory that is beyond the scope of our thesis. Bounds on

the largest prime l that is needed for a given field F2m require assumptions such as the

Generalized Riemann Hypothesis.

More positively, we note that our computations (see Section 2.3.3) already cover most

fields F2m for which our algorithms can run in the memory of today’s computers (m ≤ 63),

and we give the precise values of l needed for those fields in the tables below. Interestingly,

we only need primes l ≤ 53 when m ≤ 63 and m 6= 49 from Table 2.4 and 2.6 for 30 ≤
m ≤ 63. The modular polynomials Φ̄l up to prime level l ≤ 59 are available in Magma

[2]. Hence anyone who wishes to repeat these computations does not need to compute the

modular polynomials.

Appendix A.3 is our C++ implementation of Algorithm 2.3. This implementation re-

turns a set S where S[i] = (KLZ[i], recipPoly[i]) for 0 ≤ i < totalPoly, where KLZ

and recipPoly are introduced and computed through Algorithm 2.3.
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m
Running Time

in Seconds m
Running Time

in Seconds m
Running Time

in Seconds m
Running Time

in Seconds

30 1 31 4 32 5 33 7

34 5 35 20 36 15 37 128

38 24 39 38 40 17 41 737

42 2 43 340 44 871 45 173

46 738 47 211 48 199 49 12457

50 6933 51 7 52 4353 53 16172

54 7748 55 34224

Table 2.3: Running time (in seconds) on Intel Core i7 CPU at 2.6 GHz to obtain one Kloost-

erman zero in F2m using Algorithm 2.1

2.3.3 Timings and Results

In Table 2.3 we show the running time to obtain one Kloosterman zero in F2m using

Algorithm 2.1 for 30 ≤ m ≤ 55 on Intel Core i7 CPU at 2.6 GHz. These timings are

provided by Lisoněk.

In Tables 2.4, 2.5 and 2.6 we show results of Algorithm 2.3. Tables 2.4 and 2.5 show the

running times and results for Algorithm 2.3 for 30 ≤ m ≤ 57 on a Pentium(R) D 3.00GHz

with 2GB memory running C++ implementation that store the inverse of Kloosterman zeros

on the hash table. Table 2.6 shows those for 58 ≤ m ≤ 63 on an Intel Core i7 CPU at 2.6

GHz with 12 GB RAM running C++ implementation that store the minimal polynomials of

Kloosterman zeros on the binary tree. Thus the overall running time for listing Kloosterman

zeros for 58 ≤ m ≤ 63 will be faster 25− 35% than those given in Table 2.6.

In Tables 2.4 and 2.5, 2.6, Roots per second represents how many Kloosterman zeros

are found in one second by Algorithm 2.3 on average, which are computed as follows:

Roots per second =
Total number of roots that are found

Running T ime
. (2.8)

Moreover, Repetition factor represents how many times Algorithm 2.3 discovers a minimal

polynomial on average. We have

Repetition factor =
Total number of roots that are found

Total number of minimal polynomials
. (2.9)
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m

Number of
Kloosterman

Zeros

Number of
Minimal

Polynomials
Primes l

used

Running
Time in
Seconds

Roots
per

Second
Repetition

Factor

30 42240 1408
{3, 5, 7,

23, 41, 47} 12 704 6.00

31 55056 1776 {5, 7, 11} 3 2047 3.46

32 63424 1982 {3, 13} 4 1483 2.99

33 57024 1728 {7, 31, 53} 20 292 3.39

34 243712 7168
{3, 5, 7,

11, 13, 17} 37 1103 5.70

35 213780 6208 {5, 11} 3 2715 1.33

36 354888 9858 {3, 7} 19 1555 3.00

37 278832 7536 {7, 17, 23, 31} 42 564 3.15

38 687040 18080
{3, 5, 11,
17, 19} 42 1399 3.25

39 951600 24400 {5, 7} 20 2928 2.40

40 1202400 30060 {3, 7, 23, 31} 97 1009 3.26

41 1179816 28776 {11, 13, 19, 23} 115 909 3.64

42 3384192 80576 {3, 5, 7, 19, 23} 355 1021 4.50

43 3558336 82752
{5, 7, 13,

31, 37, 41} 1128 439 5.99

44 3532496 80284 {3, 11} 122 1974 3.00

45 6751620 150036 {7, 17} 488 1269 4.13

46 19942656 433536
{3, 5, 7,

11, 17, 19} 1775 1190 4.87

47 12773754 271782 {5, 19} 640 1132 2.67

48 19184640 399680
{3, 7, 11,
13, 23} 1388 1116 3.88

49 12211584 249216 {7, 29, 47, 61} 4802 181 3.49

50 30566400 611328
{3, 5, 17,
31, 43} 8027 374 4.92

51 63977664 1254464 {5, 7, 11, 47} 22115 382 6.75

52 82353440 1583720 {3, 7, 19, 23} 11415 816 5.88

Table 2.4: Running time (in seconds) on Pentium(R) D 3.00GHz for Algorithm 2.3
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m

Number of
Kloosterman

Zeros

Number of
Minimal

Polynomials
Primes l

used

Running
Time in
Seconds

Roots
per

Second
Repetition

Factor

53 70065152 1321984
{13, 17, 23,

37, 41} 20083 326 4.96

54 195810048 3626112
{3, 5, 7,

11, 17, 19} 45500 522 6.55

55 251110200 4565640 {5, 7, 11, 17} 21418 1151 5.40

56 274240512 4897152 {3, 11, 13, 19} 15797 966 3.12

57 330426378 5796954 {7, 23} 18101 640 2.00

Table 2.5: Running time (in seconds) on Pentium(R) D 3.00GHz for Algorithm 2.3

m

Number of
Kloosterman

Zeros

Number of
Minimal

Polynomials
Primes
used

Running
Time in
Seconds

Roots
per

Second
Repetition

Factor

58 957324800 16505600
{ 3, 5, 7, 11,

13, 17, 37, 41 } 314189 331 6.30

59 740609005 12552695 { 5 } 31853 789 2.00

60 1336863480 22281058 { 3, 7 } 88324 757 3.00

61 1147564208 18812528 { 7, 11, 17, 47 } 242283 307 3.95

62 2020442112 32587776
{ 3, 5, 17,

23, 29, 37 } 781372 308 7.36

63 3685539312 58500624 { 5, 7, 17 } 309789 539 2.85

Table 2.6: Running time (in seconds) on Intel Core i7 CPU at 2.6 GHz for Algorithm 2.3
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Example 2.3.9. From Table 2.4, for m = 30 it takes 12 seconds to discover 42240 Kloost-

erman zeros and 1408 minimal polynomials and only l = 3, 5, 7, 23, 41, 47 are used for Φ̄l

finding new minimal polynomials. In one second, 704 roots are found and we found new

Kloosterman zero in every 6 roots on average.

By Theorem 2.2.1 we can use the SEA algorithm to check whether field elements com-

puted by Algorithm 2.2 are Kloosterman zeros independently. The SEA algorithm is easily

accessible in Magma [2] and we performed these checks for all m ≤ 40.

2.3.4 Optimization Suggestions

We have improved our algorithm by first storing the minimal polynomials of Klooster-

man zeros instead of Kloosterman zeros; then we store the inverse of Kloosterman zeros to

speed up. Moreover we substitute the hash table for the binary tree to store the inverse of

Kloosterman zeros to be more efficient in terms of memory usage.

We figured out that the bottleneck of our algorithm is the root finding. At least 83% of

total running time is used in the root finding procedure. If we find an improvement root

finding method, we believe that we can fasten overall computation.

Also we have plotted the running time with respect to the percentage of Kloosterman

zeros computed by the algorithm. Figures 2.1, 2.2, and 2.3 show these graphs for m =

50, 51 and 52 respectively. We can improve the running time if we try to reduce idle time

as we increase prime level earlier. For example, for m = 50 and 51 there are huge idle

times when 50% of Kloosterman zeros are found. Notice that for m = 52 it appears that

the algorithm is more stable (having not much idle time) than m = 50 or 51. We suggest

that if we reduce the idle time, then the graphs for m = 50 and 51 will be closer to linear.
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Figure 2.1: The running time respect to the percentage of Kloosterman zeros for m = 50
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Figure 2.2: The running time respect to the percentage of Kloosterman zeros for m = 51
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Figure 2.3: The running time respect to the percentage of Kloosterman zeros for m = 52



Chapter 3

Coefficients of Characteristic
Polynomials of Kloosterman Zeros

Characterization of Kloosterman zeros appears to be very hard. Hence, necessary con-

ditions for them are of interest. Various divisibility conditions for a Kloosterman sum

Kpm(a) ∈ Z where p ∈ {2, 3} by small integers can be investigated. The first condi-

tion appeared in a paper by van der Geer and van der Vlugt [14]. More such conditions

appeared in papers by Helleseth and Zinoviev [18], Charpin, Helleseth, and Zinoviev [7],

Lisoněk [23], and Garaschuk and Lisoněk [10], [11]. Then Göloğlu, Lisoněk, McGuire and

Moloney [16] introduced divisibility conditions using the coefficients of the minimal poly-

nomials over F2 of Kloosterman zeros. We conjecture two new relations for coefficients of

the minimal polynomials of Kloosterman zeros over F2 later this chapter.

Since we obtained the minimal polynomials of all Kloosterman zeros in F2m form ≤ 63

using Algorithm 2.3, we started by verifying the known results from [18], [14] and [16].

We provide two algorithms, one of which finds relations among coefficients and the other

algorithm checks whether the relation we have found is implied by previous results or not.

We have found two new results which are independent of the known ones and of each other.

Throughout this chapter, let q = 2m. Recall Definition 2.1.12, Kq(a) denotes the binary

Kloosterman sum on Fq:

Kq(a) = 1 +
∑
x∈F∗q

(−1)Tr(x−1+ax).

57
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In some references the same mapping is defined by Kq(a) =
∑

x∈Fq
(−1)Tr(x−1+ax) with

Tr(0−1) = 0.

3.1 Previous Results

Recall that by Corollary 2.1.8, the minimal polynomial f(x) over F2 of a ∈ Fq is

f(x) =
n−1∏
i=0

(x− a2i

)

where n is the smallest positive integer such that a2n
= a.

Definition 3.1.1. Let q = 2m and a ∈ Fq. We define the characteristic polynomial g(x) ∈
Fp[x] of a over F2 to be

g(x) =
m−1∏
i=0

(x− a2i

) = xm + e1x
m−1 + e2x

m−2 + · · ·+ em. (3.1)

We set ei = 0 for i > m.

We call e1 the trace of a and e2 the subtrace (or quadratic trace) of a.

Since a2m
= a for all a ∈ F2m , n divides m where n is the smallest positive integer

such that a2n
= a. Then we have the following corollary.

Corollary 3.1.2. Let q = 2m and a ∈ Fq. Let n be the smallest positive integer such that

a2n
= a. Then the relation between the minimal polynomial f(x) of a over F2 and the

characteristic polynomial g(x) of a over F2 is g(x) = f(x)d where d = m
n
.

Hence ei ∈ F2 for all i in Definition 3.1.1, which justifies the part “over F2” in that

definition.

Corollary 3.1.3. Let q = 2m and a ∈ Fq. Let n be the smallest positive integer such that

a2n
= a. The characteristic polynomial of a over F2 is equal to the minimal polynomial of

a over F2 if and only if n = m.

Recall that no Kloosterman zero belongs to any subfield of F2m except for m = 4

[16]. Thus, the characteristic polynomial over F2 of any Kloosterman zero a in F2m is the

minimal polynomial of a over F2 except for m = 4 by Corollary 3.1.3.
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Definition 3.1.4. Let a ∈ Fq. We define the Z-characteristic polynomial of a over Z to be

m−1∏
i=0

(x− a2i

) = xm + ē1x
m−1 + ē2x

m−2 + · · ·+ ēm (3.2)

where ēi ∈ {0, 1} considered as integers.

We restrict the integers ēi to the set {0, 1} is so that we can identify ē2
i with ēi. This

restriction allows us to eliminate exponents and reduce the length of certain expressions in

ēi that will follow later in this chapter.

Example 3.1.5. Let a = x+ x8 ∈ F210 and K210(a) = 0. We have

9∏
i=0

(x− a2i

) = x10 + x7 + 1.

Thus ē3 ≡ ē10 ≡ 1 (mod 2) and ēi ≡ 0 (mod 2) for all i and i 6∈ {3, 10}.

In this section we rephrase the known results. Let a ∈ Fq. These results are evaluation

of Kq(a) mod 8, mod 16, mod 32, mod 64 and mod 128 and in terms of ēi, the coefficients

of the Z-characteristic polynomials of a (see [18], [14], [16]). There are also known di-

visibility conditions of the values Kq(a) by 3 and 24 (see [10], [7]). All these conditions

are necessary but not sufficient for Kq(a) = 0. Checking these conditions is faster than

computing the value of Kq(a).

The first result is a congruence for Kloosterman sums mod 8. A congruence for Kloost-

erman sums mod 8 is usually attributed to Helleseth and Zinoviev [18]. It also can be

derived from an earlier paper by van der Geer and van der Vlugt [14].

Theorem 3.1.6. [18], [14] Let q = 2m, q ≥ 8 and a ∈ Fq. Let ē1, . . . , ēm ∈ {0, 1} be

the coefficients of the Z-characteristic polynomial of a as given in equation (3.2). Then we

have

Kq(a) ≡ 4ē1 (mod 8).

Corollary 3.1.7. [16] Let q = 2m, q ≥ 8 and a ∈ Fq. Let e1, . . . , em ∈ F2 be the coef-

ficients of the characteristic polynomial of a over F2 as given in equation (3.1). Then we

have Kq(a) ≡ 0 (mod 8) if and only if

e1 = 0.
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We have a congruence for Kloosterman sums modulo 16.

Theorem 3.1.8. [17] Let q = 2m, q ≥ 16 and a ∈ Fq. Let ē1, . . . , ēm ∈ {0, 1} be the

coefficients of the Z-characteristic polynomial of a as given in equation (3.2). Then we

have

Kq(a) ≡ 12ē1 + 8ē2 (mod 16).

Corollary 3.1.9. [16] Let q = 2m, q ≥ 16 and a ∈ Fq. Let e1, . . . , em ∈ F2 be the

coefficients of the characteristic polynomial of a over F2 as given in equation (3.1). Then

Kq(a) ≡ 0 (mod 16) if and only if

e1 = 0 and e2 = 0.

We can see divisibility conditions for Kloosterman sums by 24 in [7].

All following results are proved by Göloğlu, Lisoněk, McGuire and Moloney in [16].

Now, we present a congruence for Kloosterman sums modulo 32.

Theorem 3.1.10. [16] Let q = 2m, q ≥ 32 and a ∈ Fq. Let ē1, . . . , ēm ∈ {0, 1} be the

coefficients of the Z-characteristic polynomial of a as given in equation (3.2). Then we

have

Kq(a) ≡ 28ē1 + 8ē2 + 16(ē1ē2 + ē1ē3 + ē4) (mod 32).

Corollary 3.1.11. [16] Let q = 2m, q ≥ 32 and a ∈ Fq. Let e1, . . . , em ∈ F2 be the

coefficients of the characteristic polynomial of a over F2 as given in equation (3.1). Then

Kq(a) ≡ 0 (mod 32) if and only if

e1 = 0, e2 = 0 and e4 = 0.

Next, we present a congruence for Kloosterman sums modulo 64.

Theorem 3.1.12. [16] Let q = 2m, q ≥ 64 and a ∈ Fq. Let ē1, . . . , ēm ∈ {0, 1} be the

coefficients of the Z-characteristic polynomial of a as given in equation (3.2). Then we

have

Kq(a) ≡ 28ē1 + 40ē2 + 16(ē1ē2 + ē1ē3 + ē4)

+ 32(ē1ē4 + ē1ē5 + ē1ē6 + ē1ē7 + ē2ē3 + ē2ē4 + ē2ē6

+ ē3ē5 + ē1ē2ē3 + ē1ē2ē4 + ē8) (mod 64).
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Corollary 3.1.13. [16] Let q = 2m, q ≥ 64 and a ∈ Fq. Let e1, . . . , em ∈ F2 be the

coefficients of the characteristic polynomial of a over F2 as given in equation (3.1). Then

Kq(a) ≡ 0 (mod 64) if and only if the conditions of Corollary 3.1.11 are satisfied, and

furthermore,

e8 = e3e5.

We have a congruence for Kloosterman sums modulo 128.

Theorem 3.1.14. [16] Let q = 2m, q ≥ 128 and a ∈ Fq. Let ē1, . . . , ēm ∈ {0, 1} be the

coefficients of the Z-characteristic polynomial of a as given in equation (3.2). Then we

have

Kq(a) ≡ 92ē1 + 40ē2 + 16(ē1ē2 + ē4) + 80ē1ē3 + 32(ē1ē2ē3 + ē1ē7 + ē2ē6 + ē8)

+ 96(ē1ē2ē4 + ē1ē4 + ē1ē5 + ē1ē6 + ē2ē3 + ē2ē4 + ē3ē5)

+ 64(ē1ē2ē3ē4 + ē1ē2ē3ē5 + ē1ē2ē5 + ē1ē2ē6 + ē1ē2ē10 + ē1ē2ē11 + ē1ē2ē12

+ ē1ē3ē7 + ē1ē3ē11 + ē1ē4ē6 + ē1ē4ē7 + ē1ē4ē8 + ē1ē4ē10 + ē1ē5ē7 + ē1ē5ē9

+ ē1ē6ē8 + ē1ē8 + ē1ē9 + ē1ē10 + ē1ē11 + ē1ē12 + ē1ē13 + ē1ē14 + ē1ē15 + ē2ē3ē5

+ ē2ē3ē8 + ē2ē3ē9 + ē2ē4ē5 + ē2ē4ē6 + ē2ē4ē8 + ē2ē5ē7 + ē2ē7 + ē2ē8 + ē2ē10

+ ē2ē12 + ē2ē14 + ē3ē4ē5 + ē3ē4ē6 + ē3ē4 + ē3ē7 + ē3ē10 + ē3ē13 + ē3 + ē4ē6

+ ē4ē8 + ē4ē12 + ē5ē6 + ē5ē11 + ē6ē10 + ē7ē9 + ē16) (mod 128).

Corollary 3.1.15. [16] Let q = 2m, q ≥ 128 and a ∈ Fq. Let e1, . . . , em ∈ F2 be the

coefficients of the characteristic polynomial of a over F2 as given in equation (3.1). Then

Kq(a) ≡ 0 (mod 128) if and only if the conditions of Corollary 3.1.13 are satisfied, and

furthermore,

e16 = e3 + e3(e7 + e10 + e13) + e5(e6 + e11) + e6e10 + e7e9.

3.2 An Algorithm for Discovering Relations among Coef-
ficients of the Characteristic Polynomial

In this section, we look for relations of the form

0 =
∑

ciei +
∑

cijeiej + · · · (3.3)
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by plugging in ei values for the minimal polynomials obtained in Chapter 3 and solving for

unknown coefficients ci, cij, . . . over F2.

From Chapter 3, we have obtained lists of minimal polynomials over F2 of Kloosterman

zeros over F2m for m ≤ 63 using Algorithm 2.3. We have invented an algorithm that

discovers relations among the coefficients of characteristic polynomials of Kloosterman

zeros over F2. This algorithm is the topic of the present section. Our algorithm utilizes the

M4RI library [29]. This library is also used in Sage, but we use it as a standalone library.

In its simple form, this algorithm requires an r × m matrix C over F2 where q = 2m.

The matrix C stores values of e1, . . . , em of r distinct minimal polynomials over F2 of

Kloosterman zeros in F2m where ei is defined in equation (3.1). Each row of C represents

one minimal polynomial of a Kloosterman zero over F2 and each column of C represents

one ei. The entry C[i][j] equals ej of the i-th minimal polynomial. Notice that the number

of rows r can be varied.

Definition 3.2.1. The kernel of a matrix A is the vector space consisting of precisely those

vectors x for which Ax = 0.

Algorithm 3.1 requires an nrows × m matrix C over F2 (C stores the coefficients ei
of nrows minimal polynomials for Kloosterman zeros in F2m as its rows). Moreover, our

algorithm needs a positive integer n which is the number of the ei that will be used (That

is, relations among e1, e2, . . . , en and their products are sought.)

Our algorithm returns "No Relations Found" if there are no relations among the ei and

their products; otherwise, return a basis for conjectured relations.

Our algorithm computes a basis for the kernel of a matrix A over F2. The matrix A

is obtained by setting its column vectors to be column vectors of C or product of column

vectors of C. Since the kernel of A represents the relations among the coefficients and we

only want to find independent relations, we decide to compute X a basis of the kernel of

A. Since we need to find the relations among ei and products eiej and so on, we need to

store "ei" and "eiej" as string values in vector N which are labels for the columns of A. For

example, we have N [12] = "e3e6" if and only if the 12-th column of A stores e3e6 for each

minimal polynomial used in the computation.

At line 25 of Algorithm 3.1, the rows of matrix X give a basis for the kernel of matrix
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A and vector N is as defined above. For example, if the algorithm finds

X =

 1 0 0 0

0 1 0 0

0 0 0 1

 and N =


e1

e2

e3

e4

 then XN =

 e1

e2

e4


which means that we have discovered three linearly independent relations e1 = 0, e2 = 0

and e4 = 0. (See Corollary 3.1.11.)

We denote n to be the number of eis. Then we can set maxCols for given n as follows

maxCols =
k∑
j=1

(
n

j

)
where k = 1 if we are interested in finding relations with single ei and k = 2 if we search

for relations of single ei and products eiej and so on.

We observe that maxCols is an upper bound of the number of columns of A. To obtain

new relations, we have to remove the relations that are implied by previous results. For

example, we have e8 = e3e5 by Corollary 3.1.13. Then we get e3e8 = e3e5 and e5e8 = e3e5

by multiplying by e3 and e5, respectively. We have

e8 = e3e5 = e3e8 = e5e8. (3.4)

Thus, we have to remove columns that store e3e5, e3e8 and e5e8 from the matrix A in order

to prevent rediscovery of these relations (and their multiples) in later runs of the algorithm.

It is clear that the number of columns of A becomes less than maxCols.

Let us consider how many rows of A are needed for the success of the algorithm. (This

number is stored in the nrows variable in the description of the algorithm.) If we set nrows

too low, we may get bogus relations. For instance, if we set nrows = maxCols, then A

becomes a square matrix and the probability of a square matrix over F2 to be singular is

high (in fact it approaches 0.288... for large square matrices).

The probability of a random r × c binary matrix to have rank s where s ≤ min(r, c)

denoted by Pr,c(s) is given in [15]:

Pr,c(s) = 2s(r+c−s)−rc
s−1∏
i=0

(1− 2i−r)(1− 2i−c)

1− 2i−s
. (3.5)
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Note that equation (3.5) holds for random matrices. In order to avoid bogus relations with

high probability, we use the following heuristic. We will use an r × c matrix A where

r > c if Pr,c(c) is close 1. That, is a random matrix A would produce a bogus relation with

probability close to 0.

For r = c = s = n, we have

Pn,n(n) =
n−1∏
i=0

(1− 2i−n),

which approaches 0.288788... as n grows to infinity.

Appendix A.5 is our C++ implementation for Algorithm 3.1 with the M4RI library [29]

with single ei and products eiej for 1 ≤ i < j ≤ 32 on F270 .

After running our C++ implementation for Algorithm 3.1 on several fields, we have

obtained Results 3.2.2 through 3.2.6, which have been proved in the literature (see Section

3.1) and Conjectures 3.2.7 and 3.2.8. Note that we have no proofs but only conjectures.

Result 3.2.2. Let a ∈ F∗q and Kq(a) = 0. Let e1, . . . , em ∈ F2 be the coefficients of the

characteristic polynomial of a over F2 as given in equation (3.1) for m ≥ 4. We have

0 = e1

0 = e2

0 = e4

as expected from Corollary 3.1.11.

We insert a random bit on the e1, e2 and e4 columns of A to remove Result 3.2.2.

After removing Result 3.2.2, we could not find any linear relations of ei for i ≤ 70.

Thus, we decided to include the products eiej for 1 ≤ i < j ≤ 8. We have the following

result.

Result 3.2.3. Let a ∈ F∗q and Kq(a) = 0. Let e1, . . . , em ∈ F2 be the coefficients of the

characteristic polynomial of a over F2 as given in equation (3.1) form ≥ 8. After removing

Result 3.2.2, we have

0 = e3e5 + e8

0 = e3e5 + e3e8

0 = e3e8 + e5e8
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Algorithm 3.1 Discovering New Relations among eis
Input: An nrows×m matrix C over F2 and the number of eis, n.

Output: "No Relations Found" or a basis for conjectured relations.

1: Set A to be nrows×maxCols
2: Set N to be a vector whose length is maxCols, which will contain the names of

columns

3: ncols← 1

4: for j = 1 to n do
5: for i = 1 to nrows do
6: A[i][ncols]← C[i][j]

7: end for
8: N [ncols]← ”ej”, ncols← ncols+ 1

9: end for
10: for j = 1 to n do
11: for k = j + 1 to n do
12: for i = 1 to nrows do
13: A[i][ncols]← C[i][j] · C[i][k]

14: end for
15: N [ncols]← ”ejek”, ncols← ncols+ 1

16: end for
17: end for

{We use the same approach for eiejek and eiejekel if desired.}

18: Set A to be the submatrix of A from A[1, 1] to A[nrows, ncols] so that A becomes a

nrows× ncols matrix

19: Row-echelonize A

20: if rank(A) = ncols then
21: return No Relation Found

22: else
23: X ← basis for the kernel of A

24: Set N to be N [1] . . . N [cols]; then the size of N becomes ncols

25: return XN

26: end if
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as expected from Corollary 3.1.13.

We have shown that e8 = e3e5 implies e3e5 = e3e8 and e3e8 = e5e8 by equation (3.4).

We also provide an algorithm that checks whether a relation is independent of a set of

relations. This is given as Algorithm 3.2.

Algorithm 3.2 Checking Dependence of Relations
Input: F = {f1, . . . fr} where fi ∈ F2[e1, . . . , en] and g ∈ F2[e1, . . . , en]

Output: If ∀e ∈ Fn2 ((f1(e) = 0) & (f2(e) = 0) & . . .& (fr(e) = 0)) ⇒ (g(e) = 0),

return True. Otherwise return False.

1: Set KnownV ariety be the set of vectors e ∈ Fn2 that satisfy fi(e) = 0 for each

i = 1, . . . , r

2: Set NewV ariety be the set of vectors e ∈ Fn2 that satisfy g(e) = 0

3: if KnownV ariety ⊆ NewV ariety then
4: return True

5: else
6: return False

7: end if

Example 3.2.4. From Result 3.2.3, we have 3 relations 0 = e3e5 + e8, 0 = e3e5 + e3e8,

and 0 = e3e8 + e5e8. We will show 0 = e3e5 + e8 implies 0 = e3e5 + e3e8 by Algorithm

3.2. We have F = {e3e5 + e8} and g = e3e5 + e3e8. Without loss of generality, we can only

consider coordinates e3, e5, e8 for the vectors e. Then we have

KnownV ariety = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 1)},

NewV ariety = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 1)}.

We have KnownV ariety ⊆ NewV ariety, thus 0 = e3e5 + e8 implies 0 = e3e5 + e3e8.

There is also Magma code for Example 3.2.4 running Algorithm 3.2 in Appendix A.6.

We deleted the columns e3e5, e3e8 and e5e8 from matrix A and successfully removed

Result 3.2.3. After removing Result 3.2.3 and running Algorithm 3.1 with single ei and

products eiej for 1 ≤ i < j ≤ 16, we have the following result.
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Result 3.2.5. Let a ∈ F∗q and Kq(a) = 0. Let e1, . . . , em ∈ F2 be the coefficients of the

characteristic polynomial of a over F2 as given in equation (3.1) for m ≥ 16. We have

0 = e3 + e3e7 + e3e10 + e3e13 + e5e6 + e5e11 + e6e10 + e7e9 + e16

as expected from Corollary 3.1.15.

We decided to remove the column of e3e7 from matrixA to get rid of this relation. After

removing Result 3.2.5, we have tested up to n ≤ 70; nonetheless, we have not found any

new relation in ei and eiej . We started searching for relations on ei, eiej and eiejek.

Result 3.2.6. Let a ∈ F∗q and Kq(a) = 0. Let e1, . . . , em ∈ F2 be the coefficients of the

characteristic polynomial of a over F2 as given in equation (3.1) form ≥ 16. Then we have

0 = e8 + e5e6 + e5e11 + e5e16 + e7e8 + e8e10 + e8e13 + e5e6e10 + e5e7e9

0 = e16 + e3e9 + e3e16 + e5e6 + e5e11 + e6e8 + e6e10 + e8e11 + e9e16 + e3e6e10

+ e3e9e10 + e3e9e13 + e5e6e9 + e5e9e11 + e6e9e10

0 = e5e6 + e5e11 + e5e16 + e6e8 + e8e11 + e8e16 + e5e6e10 + e5e7e9 + e6e8e10 + e7e8e9

0 = e6e10 + e7e9 + e7e16 + e10e16 + e13e16 + e5e6e7 + e5e6e10 + e5e6e13 + e5e7e11

+ e5e10e11 + e5e11e13 + e6e7e10 + e6e10e13 + e7e9e10 + e7e9e13.

We have tested these results by Algorithm 3.2 and it shows the previous results from

Corollaries 3.1.13 and 3.1.15 imply Result 3.2.6. We removed all columns that represent

multiples of e5e6 and e6e8 to get rid of these results. We have not found any new relations

in ei, eiej and eiejek when n ≤ 70. We started searching for relations in ei, eiej , eiejek and

eiejekel and we found two new relations. By Algorithm 3.2, we have checked that these

new results are independent of known corollaries in Section 3.1 and also independent of

each other.

Conjecture 3.2.7. Let a ∈ F∗q and Kq(a) = 0. Let e1, . . . , em ∈ F2 be the coefficients of

the characteristic polynomial of a over F2 as given in equation (3.1) for m ≥ 32. Then we

have

0 = e8(e10e11e13 + e10e13 + e10e12 + e10e11e21 + e10e12e14 + e10e11 + e10e12e20 + e10e12e7 +

e10e11e16 + e10e13e16 + e10e13e19 + e13 + e10e13e7 + e10e11e15 + e10e14e18 + e10e14e9 +
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e10e15e17 + e23e9 + e10e16e9 + e10e17e9 + e10e18e7 + e10e19e7 + e10e17 + e10e18 + e23 +

e10e23e9 +e10e19 +e10e20 +e10e21 +e10e22 +e10e23 +e11e13e9 +e10e24 +e10e25e7 +e10e27 +

e10e29 +e10e32 +e11e12e7 +e11e12 +e11e16e9 +e11e7e9 +e11e13e7 +e12e13e7 +e12 +e11e17 +

e11e21 +e11e26 +e11e7 +e11e9 +e12e13 +e12e14 +e13e16 +e12e16 +e12e20 +e12e7 +e13e15 +

e13e16e7 + e12e16e7 + e13e17 + e13e19 + e13e26 + e13e7e9 + e13e7 + e14e18 + e14e9 + e15e16 +

e15e17 + e15e7e9 + e15e7 + e16e17 + e16e26 + e16e9 + e17e7e9 + e17e7 + e17e9 + e17 + e18e7 +

e18 + e19e7 + e19 + e20 + e21 + e22 + e24 + e25e7 + e26e7e9 + e26e7 + e27 + e29 + e32).

Conjecture 3.2.8. Let a ∈ F∗q and Kq(a) = 0. Let e1, . . . , em ∈ F2 be the coefficients of

the characteristic polynomial of a over F2 as given in equation (3.1) for m ≥ 32. Then we

have

0 = e10e11e13e3 + e10e11e13e8 + e10e11e15e3 + e10e11e15e5 + e10e11e16 + e10e11e19e5 +

e10e11e21 + e10e11e6e9 + e10e11e7e9 + e10e11e7 + e10e12e14e3 + e10e12e20 + e10e12e5 +

e10e12e6e7 + e10e13e15e3 + e10e13e19e3 + e10e13e19 + e10e13e5e7 + e10e13e5e9 + e10e13e6e7 +

e10e13e6 +e10e13e7e8 +e10e14e18 +e10e14e3e6 +e10e14e3 +e10e14e6 +e10e14e8 +e10e14e9 +

e10e15e16+e10e15e17+e10e15e3+e10e15e5e7+e10e15e7e9+e10e15e8+e10e16e19+e10e16e7e8+

e10e16e7e9 + e10e16 + e10e17e3e6 + e10e17e3e9 + e10e17e3 + e10e17e5 + e10e18e7 + e10e18e8 +

e10e19e3 + e10e19e7e9 + e10e20e3e6 + e10e20e3 + e10e20e6 + e10e21e8 + e10e22e5 + e10e23e3 +

e10e23e9 +e10e24e8 +e10e25e7 +e10e26e3 +e10e26e6 +e10e27e5 +e10e29e3 +e10e3 +e10e32 +

e10e5e7 + e10e5e9 + e10e5 + e10e6 + e10e7e8 + e10e8e9 + e10e8 + e11e12e8 + e11e13e3 +

e11e15e3 + e11e15e5 + e11e16e5 + e11e16 + e11e21 + e11e6e9 + e11e7e9 + e11e7 + e11e8e9 +

e11e8 + e12e13e8 + e12e14e3 + e12e16e8 + e12e20 + e12e5 + e12e6e7 + e12e7e8e9 + e12e7e8 +

e13e15e3 + e13e19e3 + e13e19e8 + e13e19 + e13e5e7 + e13e5e9 + e13e6e7 + e13e6 + e13e7e8e9 +

e13e8e9 + e14e18 + e14e3e6 + e14e3 + e14e6 + e14e8 + e14e9 + e15e16 + e15e17 + e15e3 +

e15e5e7 + e15e7e9 + e15e8 + e16e19e5 + e16e19 + e16e5e7e9 + e16e5 + e16e7e9 + e16e8e9 +

e16e8 + e16 + e17e3e6 + e17e3e9 + e17e3 + e17e5 + e18e7 + e18e8 + e19e3 + e19e5e7e9 +

e19e7e8 +e19e7e9 +e20e3e6 +e20e3 +e20e6 +e21e8 +e22e5 +e23e3 +e23e9 +e24e8 +e25e7 +

e26e3 + e26e6 + e27e5 + e29e3 + e3 + e32 + e5e7 + e5e9 + e5 + e7e8e9 + e8e9 + e8.

Due to memory shortage problem, we only used n ≤ 40 for eiejekel. Later, we can run

on a bigger machine up to n = 63 or higher.

Notice that Conjecture 3.2.7 and 3.2.8 are not the shortest output. Combining with
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other previous known relations, they might be given in a shorter form. However, we did not

pursue that task in this thesis.

We have checked that Conjectures 3.2.7 and 3.2.8 hold for Kloosterman zeros in F2m

for 32 ≤ m ≤ 42.



Appendix A

Implementations

A.1 Computing Classical Modular Polynomials over Z2

/* This implimentation computes j-invariant as q-series up to q^(B*B) */

#include <NTL/GF2X.h>

#include <cstdio>

#include <cstdlib>

#include <list>

#include <ctime>

NTL_CLIENT

// series = q^(-v)\sum (q^m)(j)

struct series

{

long long v;

long long m;

GF2X j;

};

// Phi = sum(all e in Entry) X^(first)*Y^(second) + X^(second)*Y^(first)

struct Entry{

unsigned long long first;

unsigned long long second;

};

70
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// B should be even

# define B 2000

# define SIZE (B*B)

long long gcd(const long long &a, const long long &b);

bool isprime(const unsigned long long& l);

series J[B+1];

void j_series();

void compute_jseries();

void update_jlseries(series& x,

const series& a, const unsigned long long& l);

void print_series(const series& S);

void print_reverse(const series& S);

void sqr_series(series& x, const series& a);

void mul_series(series& x, const series& a, const series& b);

void getL(series& L, const series& j, const series& jl,

const unsigned long long& l);

void updateL(series& L, const series& a);

void updateL2(series& L, const series& jl,

const unsigned long long& l);

int main() {

unsigned long long l, pointCount;

long long i;

lldiv_t ik;

clock_t start, end, begin;

double cpu_time_used;

l = 1501;

if (l%2 == 0)

l++;

while (!(isprime(l)))

l = l+2;
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start = clock();

SetCoeff(J[0].j, 1); // J[0] = 1;

J[0].v = 0;

J[0].m = 1;

j_series(); // update J[1];

compute_jseries();

while (l<B){

printf("%llu\n", l);

// Determine j^i(l\tau) from 0 <= i <= l+1

series JL[l+2];

SetCoeff(JL[0].j, 1); // JL[0] = 1;

JL[0].v = 0;

JL[0].m = 1;

for (i=1; i<l+2; i++)

update_jlseries(JL[i], J[i], l);

// set L = J[l+1] + JL[l+1]

// since each powers of all terms of L is (-l*(l+1)) mod 8

series L, temp;

getL(L, J[l+1], JL[l+1], l);

// L = L + J[l]JL[l];

mul_series(temp, J[l], JL[l]);

updateL(L, temp);

list<Entry> A;

list<Entry>::iterator it;

Entry ent;

ent.first = l+1;

ent.second = 0;

A.push_back(ent);

ent.first = l;

ent.second = l;

A.push_back(ent);

pointCount = 3;
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while (deg(L.j) >= 0) {

long long d;

d = L.m*deg(L.j)+L.v;

ik = lldiv(d, l);

ent.first = ik.quot;

ent.second = ik.rem;

A.push_back(ent);

if (ent.first == ent.second)

pointCount++;

else

pointCount+=2;

if (ik.rem == 0) {

updateL(L, J[ik.quot]);

updateL2(L, JL[ik.quot], l);

}

if (ik.quot == 0) {

updateL(L, J[ik.rem]);

updateL2(L, JL[ik.rem], l);

}

else {

mul_series(temp, J[ik.rem], JL[ik.quot]);

updateL(L, temp);

d = L.m*deg(L.j)+L.v;

if ((ik.quot != ik.rem)) {

mul_series(temp, J[ik.quot], JL[ik.rem]);

updateL(L, temp);

}

}

}

printf("%llu\n", pointCount);

for (list<Entry>::iterator it = A.begin(); it != A.end(); it++)

if ((it->first)==(it->second))

printf("%lld %lld\n", it->first, it->second);

else {
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printf("%lld %lld\n", it->first, it->second);

printf("%lld %lld\n", it->second, it->first);

}

printf("-1\n\n");

// printf ("Phi[%lld] := ", l);

// for (list<Entry>::iterator it = A.begin(); it != A.end(); it++)

// if ((it->first)==(it->second))

// printf("+X^(%lld)*Y^(%lld) ", it->first, it->second);

// else

// printf("+X^(%lld)*Y^(%lld) + X^(%lld)*Y^(%lld) ",

// it->first, it->second, it->second, it->first);

// printf(":\n\n");

l = l+2;

while (!(isprime(l)))

l = l+2;

}

return 0;

}

void j_series() {

// later we need to use in mpz_int

long long n, temp1, temp2;

GF2X Num(0, 1);

GF2X Den(0, 1);

GF2X Jbar;

n = 1;

temp1 = 4*n*(3*n+1);

temp2 = 16*n*(3*n+1);

while (temp2 <= SIZE) {

SetCoeff(Num, temp1);

SetCoeff(Num, temp1-8*n);

SetCoeff(Den, temp2);

SetCoeff(Den, temp2-32*n);

n++;
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temp1 = 4*n*(3*n+1);

temp2 = 16*n*(3*n+1);

}

temp2 -= 32*n;

if (temp2 <= B^2)

SetCoeff(Den, temp2);

while (temp1 <= SIZE) {

SetCoeff(Num, temp1);

SetCoeff(Num, temp1-8*n);

n++;

temp1 = 4*n*(3*n+1);

}

temp1 -= 8*n;

if (temp1 <= SIZE)

SetCoeff(Num, temp1);

InvTrunc(Jbar, Den, SIZE);

MulTrunc(Jbar, Jbar, Num, SIZE);

for (long long i=0; 8*i<=SIZE; i++)

if (coeff(Jbar, 8*i)==1)

SetCoeff(J[1].j, i);

J[1].v = 1;

J[1].m = 8;

trunc(J[1].j,J[1].j, (SIZE+J[1].v)/J[1].m + 1);

}

// computed (J(tau))^i, 2 <= i <= B

void compute_jseries() {

for (long long i=2; i<B; i=i+2) {

sqr_series(J[i], J[i/2]);

mul_series(J[i+1], J[i], J[1]);

}

sqr_series(J[B], J[B/2]);

}
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// this uses for printing J[i] or JL[i] where 1 <= i <= l+1

void print_series(const series& S) {

for (long long i=0; i <= deg(S.j); i++)

if (coeff(S.j, i) == 1)

printf (" + q^(%lld)", -(S.v)+S.m*i);

printf (":\n");

}

// this uses for printing L

void print_reverse(const series& S){

for (long long i = 0; i<= deg(S.j); i++)

if (coeff(S.j, i) == 1)

printf (" + q^(%lld)", -(S.v)-S.m*i);

printf(":\n");

}

// x = a^2

void sqr_series(series& x, const series& a){

x.m = a.m;

x.v = 2*a.v;

SqrTrunc(x.j, a.j, (SIZE+x.v)/x.m + 1);

}

// x = a*b

void mul_series(series& x, const series& a, const series& b){

x.v = a.v + b.v;

x.m = gcd(a.m, b.m);

MulTrunc(x.j, a.j, b.j, (SIZE+x.v)/x.m +1);

}

// this uses compute JL[i], 1 <= i <= l+1

void update_jlseries(series& x, const series& a,

const unsigned long long& l){

x.v = l*a.v;

x.m = a.m;

for (long long i=0; i< (SIZE+x.v)/(l*x.m) +1; i++)

if (coeff(a.j, i)==1)

SetCoeff(x.j, l*i);



APPENDIX A. IMPLEMENTATIONS 77

}

// this sets L = J[l+1] + JL[l+1]

void getL(series& L, const series& j, const series& jl,

const unsigned long long& l){

series Rev;

long long diffM;

L.m = 8;

L.v = -(-j.v % 8);

// L = J[l+1]

reverse(L.j, j.j, j.v/j.m);

Rev.v = -(-jl.v % 8); // tempRev

Rev.m = jl.m;

reverse(Rev.j, jl.j, jl.v/jl.m);

if ((Rev.v % Rev.m)==0)

SetCoeff(Rev.j, 0, 0);

// L = L + J[l+1]

add(L.j, L.j, Rev.j);

}

// update L <- L + a

void updateL(series& L, const series &a){

series Rev;

Rev.v = -((-a.v) % (a.m));

Rev.m = a.m;

reverse(Rev.j, a.j, a.v/a.m);

trunc(Rev.j, Rev.j, deg(L.j)+1);

if ((Rev.v % Rev.m)==0)

SetCoeff(Rev.j, 0, 0);

add(L.j, L.j, Rev.j);

}

// this only uses when i=0 or k=0

// update L <- L + JL[i] or L <- L + JL[k]
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void updateL2(series& L, const series& jl,

const unsigned long long& l){

series Rev;

long long diffM;

Rev.v = -(-jl.v % jl.m);

Rev.m = jl.m;

reverse(Rev.j, jl.j, jl.v/jl.m);

if ((Rev.v % Rev.m)==0)

SetCoeff(Rev.j, 0, 0);

add(L.j, L.j, Rev.j);

}

// return true if l is prime

bool isprime(const unsigned long long& l){

// finding primes l < B

for (long long d = 3; (d*d) <= l; d += 2)

if ((l%d) == 0)

return false;

return true;

}

// return gcd(a, b)

long long gcd(const long long &a, const long long &b){

long long c, d, r;

c = a;

d = b;

while (d != 0) {

r = c % d;

c = d;

d = r;

}

return c;

}

A.2 Verifing a Kloosterman Zero
m:=21;
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F := GF(2^m);

found_KlZ:=false;

while not found_KlZ do

x := Random(F);

y := Random(F);

a := x^3+x*y+y^2;

while (a eq 0) do

x := Random(F);

y := Random(F);

a := x^3+x*y+y^2;

end while;

E := EllipticCurve([1, 0, 0, 0, a]);

P := E![x, y];

T := P;

i := 0;

while ((i lt m) and not(IsZero(T))) do

// T = 2^i * P

T := T+T;

i := i+1;

end while;

if (i eq m) and (IsZero(T)) then

assert (#E - 2^m) eq 0;

found_KlZ:=true;

printf P;

end if;

end while;

A.3 Listing All Minimal Polynomials of Kloosterman Ze-
ros

// trying to implement array of pointer that stores (i, j) for Phi_l

// implementing BFS searching lower level l first
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// We assume m >= 6

#include <NTL/ZZ.h>

#include <NTL/GF2X.h>

#include <NTL/GF2XFactoring.h>

#include <NTL/GF2E.h>

#include <NTL/GF2EX.h>

#include <NTL/GF2EXFactoring.h>

#include <NTL/vec_GF2E.h>

#include <cstdio>

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <vector>

#include <list>

#include <algorithm>

#include <ctime>

using namespace std;

NTL_CLIENT

#define lSize sizeof(long)

#define S (sizeof(unsigned long long))

struct Power {

long powerx;

long powery;

};

static long n = 98;

static long Primes[50];

static long NumCoeff[50];

static unsigned long long BitMask[64];

typedef Power* ModPoly;

long m;

long minM=51, maxM=60; // mimM <= m <= maxM

ModPoly *Mcoeff;
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// this returns the Legendre Symbol (a/n)

long Legendre(const ZZ& a, const long& n);

// this returns 64-bit unsigned long long

// when IsOne(coeff(z, i)) then

// return value contain ith position contains 1

unsigned long long convertGF2X(const GF2X& z);

// same as convertGF2X

// even if it shows as GF2EX,

// this is in fact GF2X because of the properties of conjugates

unsigned long long convertGF2EX(const GF2EX& z);

// Create Bitmask B[i] represent 2^i

void createBitMask();

// this print Minimal Polynomial whose roots are Kloosterman zeros

void printPoly(const GF2EX& z);

void printrecipPoly(const GF2EX& z) ;

// print GF2X, GF2E, GF2EX,

// the output can be readable by magma

void printGF2X(const GF2X& z);

void printGF2E(const GF2E& a);

void printGF2EX(const GF2EX& z);

unsigned long long FindMaxString(const vec_GF2E& z);

unsigned long long nextprime(unsigned long long x);

unsigned long long hash(unsigned long long x,

unsigned long long p) {

unsigned long long h;

h = x % p;

if (h < 0)

h+=p;

return h;

}
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bool insert(unsigned long long x,

unsigned long long *H, unsigned long long p ){

unsigned long long h;

h = hash(x,p);

for(int i=1; H[h]!=0 && H[h]!=x; i++ )

h = (h+i) %p; // quadratic probe

if (H[h] == x)

return false;

else {

H[h]=x;

return true;

}

}

int main() {

fstream fin;

long i, j, c, numPrimes=0;

ModPoly *Mcoeff = new ModPoly[n/2];

time_t start, end, mstart, mend, lstart, lend;

bool finished = false;

double cpu_time_used;

createBitMask();

// store modular polynomial on memory

fin.open("ModPolyData100.txt", ifstream::in);

while ((!(fin.eof())) && (!(finished))) {

fin >> Primes[numPrimes] >> NumCoeff[numPrimes];

Mcoeff[numPrimes] = new Power[NumCoeff[numPrimes]];

for (int i=0; i < NumCoeff[numPrimes]; i++)

fin >> Mcoeff[numPrimes][i].powerx

>> Mcoeff[numPrimes][i].powery;

fin >> c;

numPrimes++;

if (Primes[numPrimes] == 97)

finished = true;

}
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fin.close();

finished = false;

fin.open("get_IrrPoly_with_Random_KLZ.txt", ifstream::in);

while ((!(fin.eof())) && (!(finished))){

// IrrPoly is irreducible polynomial degree m

// so it will generate GF(2^m)

// totalKLZ = total number of Kloosterman zeros over GF(2^m)

// totalPoly = total number of minimal polynomials,

// which contain m Kloosterman zeros as roots

// countKLZ = number of Kloosterman zeros that are found

// countPoly = number of minimal polynomials that are found

GF2X IrrPoly;

long totalKLZ, totalPoly, countKLZ = 1, countPoly = 1;

// ignore m < minM

fin >> m;

while (m < minM) {

for (i=0; i<m; i++)

fin >> c;

fin >> totalKLZ;

for (i=0; i<m; i++)

fin >> c;

fin >> c >> m;

}

// get Irreducible polynomial from disk

SetCoeff(IrrPoly, m);

for (i=0; i<m; i++) {

fin >> c;

if (c)

SetCoeff(IrrPoly, i);

}

fin >> totalKLZ;

totalPoly = totalKLZ/m;

cout << "#m = " << m << endl;
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// construct hash table

unsigned long long *H;

unsigned long long HashSize;

HashSize = nextprime(2*totalPoly);

H = (unsigned long long *) malloc(

sizeof(unsigned long long)* HashSize );

for (i = 0; i<HashSize; i++)

H[i] = 0;

// print magma code

cout << "\n// _____ GF(2^" << m << ") _____\n";

cout << "P<X> := PolynomialRing(GF(2));\n";

cout << "p := ";

printGF2X(IrrPoly);

cout << ";\n";

cout << "F := ext< GF(2) | p >;\n";

cout << "PE<X> := PolynomialRing(F);\n";

cout << "printf \"m = " << m << "\\n\";\n";

// initialize GF(2^m) using GF2 mod IrrPoly

GF2E::init(IrrPoly);

GF2E KLZ, ZERO; // ZERO = 0

// invKLZs will contains the one of roots of minimal polynomials

// that are inserted into tree

// invzeros contains m inverse of Kloosterman zeros

// in order to compute its minimal polynomial

// invzeros[i] is assigned as inverse of

// Kloosterman zero KLZ^(2^(i)), 0 <= i < m

GF2EX recipPoly;

vector<GF2E> invKLZs(totalPoly);

vec_GF2E invzeros;

invzeros.SetLength(m);

// getting information of one random Kloosterman Zero

// data is m-sequence of 0 or 1’s

// if c = 1 then set X^i
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for (i=0; i<m; i++){

fin >> c;

if (c)

SetCoeff(KLZ._GF2E__rep, i);

}

fin >> c; // this is getting -1

// invKLZs[0] = 1/KLZ

inv(invKLZs[0], KLZ);

invzeros[0] = invKLZs[0];

cout << "KLZ" << m << " := { \n";

cout << "< ";

printGF2E(inv(invzeros[0]));

cout << ", ";

// insert first minimal polynomial

// whose roots are (KLZ^(2^i)) 0 <= i < m to tree

// Assume there is no memory allocation error

for (i = 1; i < m; i++)

sqr(invzeros[i], invzeros[i-1]);

insert(FindMaxString(invzeros), H, HashSize);

// recipPoly = (X-invKLZ)(X-invKLZ^2)...(X-invKLZ^(2^(m-1)))

// recipPoly belongs to GF2X not GF2EX \

// because of the properties of conjugates

BuildFromRoots(recipPoly, invzeros);

printrecipPoly(recipPoly);

cout << " >";

// now getting classical modular polynomial l <= n-2

// LegendValue = t^2 - 4*q = 1 - 2^(m+2)

ZZ LegendValue;

LegendValue = 1;

LegendValue = 1 - (LegendValue << (m+2));
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// x = X in GF2EX

GF2EX x(1, 1);

bool found = false, done = false;

// posKLZ is used for indicate the position of KLZ in invKLZs

// posP is used for indicate the position of current prime

// newLoc is where newKLZ is found after increase of the level.

// need to start from small prime

long posKLZ, posP = 0, currP, n1, newLoc;

list<unsigned long long> l;

list<unsigned long long>::iterator it;

while ((posP < numPrimes) && (!(done))) {

long k;

if (Legendre(LegendValue, Primes[posP]) == -1)

posP++;

else {

posKLZ = 0;

currP = Primes[posP];

n1 = currP+2;

vector<GF2E> JINVPower(n1);

set(JINVPower[0]);

// precompute powers of invKLZ

while (posKLZ < countPoly) {

JINVPower[1] = invKLZs[posKLZ];

for (i=2; i<n1; i++)

if (i & 0x01)

mul(JINVPower[i], JINVPower[i-1], JINVPower[1]);

else

sqr(JINVPower[i], JINVPower[i/2]);

if (posKLZ < newLoc)

k = posP;

else

k = 0;

while ((k <= posP) && (!(done))) {

long r, DEG = Primes[k]+2;
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GF2EX f, h, g; // all f, h, g are initializes as 0

if (Legendre(LegendValue, Primes[k]) != -1) {

// cout << "Prime = " << Primes[k] << "\n";

// evaluation

// COEFF store the coefficients of ModPoly(JINV, X);

// COEFF[i] = 0, 0 <= i <= Primes[k]+1

vector<GF2E> COEFF(DEG, ZERO);

for (i=0; i<NumCoeff[k]; i++)

COEFF[Mcoeff[k][i].powerx]

+= JINVPower[Mcoeff[k][i].powery];

for (i=0; i<DEG; i++)

SetCoeff(f, i, COEFF[i]);

// applying root finding algorithm

// h = X^(2^m) mod f

FrobeniusMap(h, f);

g = GCD(h-x, f);

r = deg(g);

if (r) {

vec_GF2E Rts;

FindRoots(Rts, g);

for (int index = 0;

((index < Rts.length()) && (!(done))); index++){

countKLZ++;

invzeros[0] = Rts[index];

for (i = 1; i < m; i++)

sqr(invzeros[i], invzeros[i-1]);

if (insert(FindMaxString(invzeros),

H, HashSize )) {

invKLZs[countPoly] = Rts[index];

countPoly++;

l.push_back(Primes[posP]);

BuildFromRoots(recipPoly, invzeros);

cout << ",\n";

cout << "< ";
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printGF2E(inv(invzeros[0]));

cout << ", ";

printrecipPoly(recipPoly);

cout << " >";

if (countPoly == totalPoly) {

cout << "\n};\n";

free(H);

H = NULL;

done = true;

l.sort();

cout << "#l = { ";

it = l.begin();

long ll = *it;

it++;

cout << ll;

while (it != l.end()) {

if (ll != *it) {

ll = *it;

cout << ", " << ll;

}

it++;

}

cout << " };\n";

}

}

}

}

}

k++;

}

posKLZ++;

}

posP++;

newLoc = countPoly;

}

}
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if (m==maxM)

finished = true;

}

fin.close();

for (long i=0; i<numPrimes; i++)

delete(Mcoeff[i]);

delete(Mcoeff);

return 0;

}

void createBitMask(){

BitMask[0] = 1;

for (int i=1; i<64; i++)

BitMask[i] = (BitMask[i-1] << 1);

}

void printGF2X(const GF2X& z) {

int plus = 0, tms = 0;

for(int i=0;i<=deg(z);i++)

if(coeff(z,i)!=0) {

++tms;

if((tms%10)==0)

printf("\n");

if(plus==1)

cout << "+";

if(i==0)

cout << "1";

if(i==1)

cout << "X";

if(i>1)

cout << "X^" << i ;

plus=1;

}

}

void printGF2EX(const GF2EX& z) {
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int plus =0, tms = 0;

for(int i=0;i<=deg(z);i++) {

if(coeff(z, i) != 0) {

++tms;

if((tms%20)==0)

printf("\n");

cout << "+";

printGF2E(coeff(z, i));

if(i==1)

cout << "*X";

if(i>1)

cout << "*X^" << i ;

plus=1;

}

else

cout << "+F![ 0 ]*X^"<<i;

}

}

void printGF2E(const GF2E& b) {

GF2X a;

long i, da;

GF2 c;

a = b._GF2E__rep;

da = deg(a);

cout << "F![ ";

if (da < 0)

cout << 0 ;

for (i = 0; i <= da; i++) {

c = coeff(a, i);

if (c == 1)

cout << "1";

else

cout << "0";
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if (i < da) cout << ", ";

}

cout << " ]";

}

void printPoly(const GF2EX& z) {

//if (IsOne(coeff(z, 0)))

cout << "1";

if (IsOne(coeff(z, 1)))

cout << "+X";

for (int i=2; i<m; i++)

if (IsOne(coeff(z, i)))

cout << "+X^" << i;

cout << "+X^" << m;

}

void printrecipPoly(const GF2EX& z) {

//if (IsOne(coeff(z, 0)))

cout << "1";

if (IsOne(coeff(z, m-1)))

cout << "+X";

for (int i=m-2; i> 0; i--)

if (IsOne(coeff(z, i)))

cout << "+X^" << m-i;

cout << "+X^" << m;

}

long Legendre(const ZZ& a, const long& n) {

ZZ aa, nn;

aa = a;

nn = n;

aa %= nn;

return Jacobi(aa, nn);

}

unsigned long long convertGF2X(const GF2X& z) {

unsigned long long x = 0;

for (int i=0; i<m; i++)
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if (coeff(z, i) == 1)

x ^= BitMask[i];

return x;

}

unsigned long long convertGF2EX(const GF2EX& z) {

unsigned long long x = 0;

for (int i=0; i<m; i++)

if (IsOne(coeff(z, i)))

x ^= BitMask[i];

return x;

}

unsigned long long FindMaxString(const vec_GF2E& z) {

unsigned long long x, y;

x = convertGF2X(z[0]._GF2E__rep);

for (int i=1; i<m; i++) {

y = convertGF2X(z[i]._GF2E__rep);

if (y > x)

x = y;

}

return x;

}

unsigned long long nextprime(unsigned long long x) {

unsigned long long d;

if( x&1 ) x += 2; else x += 1;

for(; ; x+=2) {

for( d=3; d*d < x && x%d != 0; d+=2 );

if( d*d > x ) return x;

}

}
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A.4 Magma Code for the Kronecker Class Number
Z:=Integers();

H:=function(m)

Del:=1^2-4*2^m;

d2div := [ d : d in Divisors(-Del) | (Del mod d^2) eq 0 ];

d2div01 := [ d : d in d2div | (Z!(Del/d^2) mod 4) in {0,1} ];

return &+[ ClassNumber( Z!( (1^2-4*2^m)/d^2 ) )

: d in d2div01 ];

end function;

for m:=1 to 64 do

printf "%o %o\n",m, H(m);

end for;

A.5 Discovering New Relations among ei and eiej
// ei*ei = ei

// e1 = e2 = e4 = 0

// e1ei = e2ei = e4ei = 0

// e8 = e3e5 = e3e8 = e5e8

#include <cstdlib>

#include <iostream>

#include <fstream>

#include <m4ri/m4ri.h>

#include <cmath>

using namespace std;

// en is the number of e_i’s used

#define en 32

// max number of cols

#define MAXcols 42000

// max number of rows that can be handled in memory

#define MAXrows 50000
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#define charPolyData_FILE "charPolyData70.txt"

#define true (0==0)

#define false (!true)

int ncols;

int nrows;

char names[MAXcols][20];

int do_comma;

// this function prints the matrix

// with basis of columns are names[cols]

void print_basis_for_relations(mzd_t* X);

int main() {

fstream fin;

unsigned long long m, n, pos, loc;

unsigned int c;

int i, j, k, full;

int j1, j2;

// m is the degree of the char. polynomials

// n is the number of the char. polynomials

// open data file that contains

// characteristic polynomials of KLZ over GF(2^m)

fin.open(charPolyData_FILE, fstream::in);

fin >> m >> n;

cout << "// m = " << m << "\n//_______________\n\n\n";

printf( "en:=%d;\n", en );

cout << "P<e1" ;

for(i=2; i<= en ; i++)

printf( ",e%d" , i );

cout << ">:=PolynomialRing( GF(2), en );\n\n" ;

cout << "\n// MAXrows = " << MAXrows << "\n";

cout << "\n// MAXcols = " << MAXcols << "\n";
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if (n>MAXrows)

nrows=MAXrows;

else

nrows=n;

// A will be nrows x m matrix

// nrows = the number of characteristic polynomials used

// m = the degree of the polynomial

// en = the number of e_i’s

// A needs to be truncated before calling the kernel routine,

// to reduce cols to ncols.

mzd_t* A = mzd_init(nrows, MAXcols);

for(i=0; i<nrows; i++) {

for (j=0; j<en; j++) {

fin >> c;

mzd_write_bit(A, i, j, c);

}

for (j=en; j<m; j++)

fin >> c;

}

fin.close();

// Destroy the relations e1=0, e2=0, e4=0.

for(i=0; i<nrows; i++)

{

mzd_write_bit(A, i, 0, 1 );

mzd_write_bit(A, i, 1, rand()%2 );

mzd_write_bit(A, i, 3, rand()%2 );

}

sprintf( names[0] , "1" );

// for ei

for (i=1; i<en; i++)

sprintf( names[i] , "e%d" , i+1 );

pos = en;
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// ei*ej

for (j1 = 2; j1 < en; j1++)

for (j2 = j1+1; j2 < en; j2++)

if (

( !((j1 == 2) && (j2 == 3)) ) // e3e4

&& ( !(j1 == 3) ) // e4

&& ( !((j1 == 2) && (j2 == 4)) ) // e3e5

&& ( !((j1 == 2) && (j2 == 6)) ) // e3e7

&& ( !((j1 == 2) && (j2 == 7)) ) // e3e8

&& ( !((j1 == 4) && (j2 == 5)) ) // e5e6

&& ( !((j1 == 4) && (j2 == 7)) ) // e5e8

&& ( !((j1 == 5) && (j2 == 7)) ) // e6e8

)

{

sprintf( names[pos] , "e%d*e%d" , j1+1 , j2+1 );

for(i=0;i<nrows;i++)

mzd_write_bit(A, i, pos,

mzd_read_bit(A,i,j1) * mzd_read_bit(A,i,j2) );

pos++;

assert(pos< MAXcols);

}

ncols = pos;

printf ("// nrows=%d\n",nrows);

printf ("// ncols=%d\n",ncols);

fflush(stdout);

// NOW TRUNCATE A to ncols columns.

A = mzd_submatrix(NULL, A, 0, 0, nrows, ncols);

printf ("// A truncated\n");

fflush(stdout);

int rankA = mzd_echelonize( A , full );

printf ("// rank A = %d\n",rankA);

fflush(stdout);

if (rankA < ncols) {

mzd_t* X = mzd_transpose(NULL, mzd_kernel_left_pluq(A, 0));

printf ("// kernel computed\n");
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mzd_echelonize(X, full);

printf ("// X echelonized\n");

do_comma=false;

print_basis_for_relations(X);

printf("];\n\n");

mzd_free(X);

}

mzd_free(A);

return 0;

}

void print_basis_for_relations(mzd_t* X) {

cout << "basis_for_relations := [ \n";

for (int i=0; i<X->nrows; i++){

int count = -1;

if(do_comma)

printf(",\n");

else

do_comma=true;

for (int j=0; j<X->ncols; j++) {

if (mzd_read_bit(X, i, j)) {

if (count == -1)

cout << names[j] << " ";

else

cout << "+ " << names[j] << " ";

count++;

if (count == 10) {

count = 0;

cout << "\n";

}

}

}

}

cout << "\n";

}
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A.6 Dependency Test
// this is Magma code for dependency test

load "RELATIONS-FOR-THESIS.txt";

rel1 := basis_for_relations[1];

rel2 := basis_for_relations[2];

published_relations := [ e3*e5+e8 ,

// checked against the IEEE IT paper:

e3 + e16 + e3*e7 + e3*e10 + e3*e13

+ e5*e6 + e5*e11 + e6*e10 + e7*e9 ];

E := VectorSpace( GF(2), en );

W := { e : e in E |

( Evaluate( published_relations[1] ,

[ e[i] : i in [ 1 .. en ] ] ) eq 0 )

and

( Evaluate( published_relations[2] ,

[ e[i] : i in [ 1 .. en ] ] ) eq 0 )

};

V1 := { e : e in E | Evaluate( rel1 ,

[ e[i] : i in [ 1 .. en ] ] ) eq 0 }

V2 := { e : e in E | Evaluate( rel2 ,

[ e[i] : i in [ 1 .. en ] ] ) eq 0 }

W subset V1;

W subset V2;

V1 subset V2;

V2 subset V1;
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