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Abstract

Large traders in financial markets care a lot about the supply of liquidity - factors that allow

them to trade quickly without incurring a significant cost - since the size of their trading

can cause a large market impact if they demand more liquidity than is currently available.

The first study examines an important and recurring cause of liquidity shocks in futures

markets - the accumulation of extreme and opposing positions by hedgers and speculators.

These two classes of traders are found to differ in the impact their trades have on mar-

ket prices and their response to market-relevant news and past returns. As their positions

diverge sufficiently, these differences affect the number and heterogeneity of available coun-

terparties, and can cause increased volatility, high bid-ask spreads, and return regularities.

The second study examines the limits of anonymity available to large block traders.

In addition to the trade-off between price risk and price impact that block-traders face,

this paper introduces an additional, strategic, consideration: by trading with large volume

for several periods, block traders risk losing their anonymity and attracting opportunistic

strategic traders who want to ‘ride’ the block traders’ market impact. In simulated markets,

block traders lose their anonymity under several parameter configurations and strategic

traders are able to profitably exploit the knowledge of their presence.

The third study examines the recent ‘flash crash’ episodes that rose to the public’s

attention on May 6th, 2010, when within only a few minutes, the Dow Jones Industrial

Average experienced its second largest point swing and the biggest one-day point decline in

its history. This study examines whether these flash-type events which induce large intraday

volatility are becoming more common since the big flash crash of May 6th. Over a 14-month

sample period around May 6th, this paper finds that there have been more flash-type events

with shorter inter-flash durations since May 6th, however, survival analysis of these events

does not establish the significance of these different frequencies.
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Chapter 1

Large Traders and Liquidity in

Futures Markets

1.1 Introduction

While market liquidity is a multifaceted concept, it generally refers to the ability to easily

buy or sell a security without causing a significant change in the market price. An essential

requirement of liquidity is the ample availability of counterparties who are willing to sell

when others want to buy and who are willing to buy when others want to sell. Finance

theory often assumes perfect market liquidity where market participants can trade any

amount of a security without affecting the price. This implicitly requires the unlimited

presence of counterparties. While this assumption is clearly false, it is usually a reasonable

simplification in large and active markets. There are, however, occasions where, even in the

largest and most active markets, liquidity dries up because of the scarcity of counterparties.

Essentially, these are times when, for the current market price, everyone who wants to

be long is already long, or everyone who wants to be short is already short. When this

occurs, someone wanting to trade will be unable to do so unless the market price adjusts to

induce someone to trade. While the existence of liquidity shocks has been firmly established,

understanding how such occurrences develop is still an important and open question.

This paper presents an empirical microstructural analysis of these liquidity-induced price

adjustments in futures markets. The market chosen for this study is that for the New York

Mercantile Exchange’s light sweet crude oil futures contracts. This is the most liquid market

1
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for trading crude oil which is itself the world’s most actively traded physical commodity.

Because of its liquidity, this market is taken to be very efficient, with the market prices

reflecting the value of crude oil. As such, the futures price is used as an international pric-

ing benchmark and an indicator of world energy prices. Despite this overall liquidity, this

paper discovers that there are fairly regular occasions where price dynamics, as investigated

through returns, realized volatilities and bid-ask spreads, are dominated by the low-liquidity

effects resulting from the demographics of available counterparties. These effects are signif-

icant and can persist for up to 15 weeks. This paper identifies the underlying mechanism

that causes these effects, and isolates its three main components: (1) significant differences

between the dominant classes of traders (i.e. hedgers and speculators), (2) the bounded

and mean-reverting nature of trader positions, and (3) the various conditions that cause

speculators to enter and exit the market.

Futures markets are designed with many unique features that differentiate them from

equity and fixed income markets. One of the most prominent differences is the extensive

use of futures markets in risk reduction strategies for those involved in businesses related to

the underlying commodity. This feature results in a partition of market participants into

two classes of traders: hedgers and speculators. There are large and small traders of both

classes, however market activity is dominated large speculators and hedgers. For this study,

a trader is considered large if they hold more than 350 futures contracts - the reporting

threshold set by the Commodity Futures Trading Commission (CFTC). In the crude oil

futures market, large hedgers and speculators hold, on average, 84% of the outstanding

futures contracts. While futures markets are anonymous in the sense that information on

who is involved in any given trade is not publicly available, the CFTC provides a weekly

snapshot of the holdings of these classes of traders.

At any given time, the number of traders in the crude oil market, as well as the ag-

gregated positions held by each class of trader, is bounded. These bounds arise from the

number of market participants as well as the constraints faced by these participants. Hedgers

participate in futures markets to reduce the price risk that they face in their business activ-

ities, and so the number of contracts they hold is determined by the size of their business

interests. To use more futures contracts than this bound would be to over-hedge and would
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increase the price risk they face1. Speculators, on the other hand, participate in futures mar-

kets to earn profit by accepting additional risk. They too face constraints on their position

sizes, but these constraints arise from factors such as available capital, trading strategies,

as well as leverage and risk limits. While these differences between hedgers and speculators

are well-documented, it is not well understood what, if any, observable market regularities

result from these differences. If there are no clear differences between the market impact

of these classes of traders, or if there is too much heterogeneity within the classes, then

examining opposing positions of hedgers and speculators would not be a useful exercise.

This study rejects the hypothesis of no systematic differences between these classes, and

establishes reliable differences both in the impact of their trades on market prices and in

their response to past market action and market-relevant news.

By examining trade between hedgers and speculators using the net long measure of their

positions, large speculators are found to increase prices with their purchases and to engage

in trend-following behavior. Large hedgers, on the other hand, decrease prices through their

purchases and exhibit contrarian-type behavior. Further, using textual analysis techniques,

speculators and hedgers are found to respond differently to market-specific news. These

regularities are consistent with the notion that large speculators are informed traders who

bring new information to the market through orders that are placed more aggressively than

hedgers.

Under liquid market conditions, there are many hedgers and speculators who are not

trading near their position limits, and so when a trader wishes to trade, it is highly likely

that a counterparty will be available to trade with. Further, the available counterparties

on either side of a trade include a mix of both speculators and hedgers. Thus, the sys-

tematic differences between the classes of traders effectively gets washed out of the price

dynamics. However, when the net long positions of these trader classes significantly diverge,

the likelihood of one class of trader dominating the long side of each trade, as the other

class dominates the short side, increases. Under such conditions, the differences between

trader classes are no longer washed out and begin to significantly impact price movements.

1There are many examples of hedgers taking speculative risks. For example, Metallgesellschaft AG,
formerly one of Germany’s largest industrial conglomerates, lost over 1.4 billion dollars in 1993 through its
trading activities in derivatives. [28] and [61] argue that the 1:1 hedge strategy that Metallgesellschaft used
was significantly oversized given its underlying oil exposure and increased its oil price risk instead of reduced
it. Despite such examples, the distinction between hedgers and speculators in the oil market is empirically
significant as is shown in Section II. This distinction is not always apparent, as is seen in Section IV for the
Eurodollar market.
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Returns, volatilities, and spreads all demonstrate systematic regularities around these times

of extreme and opposing positions held by large hedgers and speculators.

Of course, the bounded nature of trader positions prohibits unlimited divergence of

trader positions. Consequently, as divergence ends and mean reversion begins, the estab-

lished concurrent relationship between position accumulation and returns generates sharp

changes in price dynamics. The trend following and aggressive order placement of specula-

tors generates persistence in these dynamics for several weeks before and after the divergence

of positions reaches its local maximum. For example, when speculators have acquired ex-

tremely short net positions and hedgers have acquired extremely long net positions, the price

tends to follow a v-shaped reversal pattern, the bid-ask spreads are higher than normal, and

the average realized volatility at its 79th percentile. Such liquidity effects are found to be

largely determined by the entry and exit of large speculators from the market. In particular,

speculators facing increasing losses exit the market using orders that are significantly more

aggressive than typical orders, thereby pushing up return volatility. The notion of direc-

tional realized volatility is introduced to capture the difference in contributions to volatility

from periods of positive and negative returns. Disaggregating the realized volatility in this

manner permits the identification of a significant asymmetry in the cause of high volatility

before and after these liquidity shocks.

Within the literature, aside from some theoretical studies (e.g. [72]), the study of liq-

uidity has focused mainly on equity [45, 21] and fixed income markets [22, 50, 15]. Trader

positions have been related to returns [66] and volatility [73] in futures markets, however,

this paper extends the methodology of these studies in three important ways. First, this

paper studies futures market microstructure, showing that unique features of these markets

can have substantial impacts on market liquidity. Second, the notion that trader positions

are bounded is captured by transforming the net long measure into an index that expresses

the current position in relation to recent maximum and minimum values. Finally, rather

than examining the overall influence of trader positions, this paper focuses on what happens

when the position index approaches its bounds.

The paper is organized as follows. Section I discusses the market and CFTC data.

Section II examines the empirical regularities that differentiate hedgers from speculators.

Section III analyzes ex post market dynamics around extreme holdings of these two classes

of traders. Results of robustness checks are described in Section IV and a brief summary

concludes the paper in Section V.
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1.2 The Market and CFTC Data

The market under study in this paper is the New York Mercantile Exchange’s Light Sweet

Crude Oil futures market. This futures contract is the most liquid instrument for trading

crude oil, which is the world’s most actively traded physical commodity. Approximately

500, 000 contracts are traded per day in this market, with 1.5 million contracts in open

interest. This level of daily trading volume represents almost seven times the daily world

production of crude oil2. The light sweet variety of crude oil is popular among refineries

because of its low sulfur content and its high yield of gasoline, diesel, and other petroleum

products. This market is chosen because of its high overall liquidity, as well as the fact that

the speculator-hedger distinction is not as fuzzy as in other markets such as financial futures

markets where contracts can be used as a speculative and hedging instrument by the same

fund manager.

Data from three sources are integrated for the analysis: futures market trade data3,

textual news articles on the crude oil market4, and Commitments of Traders Report (CoT)

data from the Commodity Futures Trading Commission (CFTC). The following sections

describe these datasets and the construction of the variables of interest.

1.2.1 Futures Market Data

Futures price data for the NYMEX light sweet crude oil market is collected for the same

period for which weekly CoT data is available, namely September 30, 1992 until February

28, 2006 (698 weeks). The data is sampled at the tick level (5, 487, 792 observations) and

aggregated to the scales required for variable construction. Since there is trade in several

contracts, each with different expiration dates and market prices, a sensible method of

constructing a single price series over this period is needed. Since the front contract -

the contract with the closest expiration date - usually has the highest trade volume and

open interest, the constructed price series is composed almost entirely of prices from the

front contract. As the front contract approaches expiration, most traders begin to close

out positions in the front contract and enter position in the first-back-month contract. On

2Data on trading activity is from the New York Mercantile Exchange, and data on oil production is from
the Energy Information Administration.

3The data provider for the crude oil futures market tick data is TickData, www.tickdata.com.
4The data provider for the news articles is Dow Jones Factiva, www.factiva.com.
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the first day that the daily number of price ticks, a proxy for the volume of trade, of

the first-back-month exceeds that of the front contract, the constructed price series uses the

prices from the first-back-month contract from that point onwards. The standard backward-

adjustment process corrects the series for price jumps that are only due to the switching of

contracts.

The returns analyzed in this paper are weekly returns, calculated from prices on the

close of each Tuesday - the ‘as of’ date of the CoT report which is released three days later

on Friday. In addition to returns, realized volatility [24, 6] is analyzed as a proxy for the

true volatility of this return series. Realized volatility is sampled on a weekly basis and

constructed from 5-minute intraday return data. The choice of 5-minute data sampling is

consistent with the literature on optimal sampling in the presence of microstructure effects

(e.g. [9]). Let there be h five-minute intervals during which the market is open in one

week. The current day trading hours for NYMEX crude oil futures is from 10:00 until 14:30

EST. Thus, one trading day has 54 five-minute intervals, and one trading week has h = 270

five-minute intervals. Then realized volatility is calculated as

RVt =
h∑
i=1

(
r

(h)

t−1+i( 1
h

)

)2

(1.1)

where r
(h)
t is the five-minute return at time t. Figure 1 presents plots of the price series, the

weekly returns, and the realized volatility.

[FIGURE 1 ABOUT HERE]

1.2.2 Directional Realized Volatility

Realized volatility is a measure of the size of price movements, but it says nothing of the

direction of those movements. Yet, the ups and downs of prices might not equally contribute

to the return volatility in any given period. During a swiftly rising market, one might expect

that the numerous buyers would make selling easy, but buying may be difficult in the sense

that it would induce significant slippage. Similarly, during a market crash, selling would

be difficult, but buying would be easy. To investigate the notion that liquidity shocks may

be asymmetric in this sense, the concept of directional realized volatility is introduced.
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Directional realized volatility disaggregates the realized volatility into a component that

measures the contribution of positive returns to the realized volatility, denoted DRV P
t , and

another component that measures the contribution of negative returns, denoted DRV N
t .

The two components, which are additive variance-preserving transformations of realized

volatility, are defined as follows:

DRV P
t =

h∑
i=1

[
I
(
r

(h)
t−1+i(1/h) ≥ 0

)
· r(h)
t−1+i(1/h)

]2
(1.2)

DRV N
t =

h∑
i=1

[
I
(
r

(h)
t−1+i(1/h) < 0

)
· r(h)
t−1+i(1/h)

]2
(1.3)

where r
(h)
t−1+i(1/h) is the five-minute return as defined above and I(·) is an indicator function

taking the value 1 if the condition in the brackets is satisfied, and 0 otherwise. The positive

(negative) directional realized volatility sums the squared five-minute returns that are posi-

tive (negative). The directional realized volatility is very similar to the realized semivariance

[10], which is a recently proposed measure of donwside market risk.

1.2.3 Estimating the Bid-Ask Spread

While returns and realized volatility are informative when investigating liquidity dynamics,

there is a growing literature that has developed many liquidity measures to quantify specific

liquidity related factors. One of the most popular liquidity measures is the bid-ask spread

[65] which is often used as a liquidity benchmark for evaluating other liquidity measures

[35]. As liquidity dries up, trade can only be induced by offering better prices to potential

buyers and sellers resulting in a larger bid-ask spread. Conversely, when there are many

willing buyers and sellers, the bid-ask spread will be smaller.

A spread proxy can be constructed from transaction data using the tick test [59] to

partition the transactions into those likely to have originated from market buy orders and

those likely to have originated from market sell orders. A transaction is identified as one

likely to have originated as a market buy (sell) order if the previous transaction price was

below (above) the current transaction price. If the previous transaction price was the same

as the current transaction price, then the previous distinct transaction price is used instead.

A critical assumption here is that transactions occur only at the bid or ask prices, thus at
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each transaction price is either an observation of the bid or of the ask price. If the bid (ask)

is known at time t, to get a proxy of the spread at that time, we must estimate the ask (bid)

price at time t. This estimate is taken to be the most recently identified ask (bid) price

constrained to be at least one tick above the observed bid price. Figure 2 shows a sample

of the bid and ask estimates given the transaction prices.

[FIGURE 2 ABOUT HERE]

This procedure gives an estimated series of bid-ask spreads at the same high frequency

as transactions. As pointed out by Lee and Ready (1991), the tick test becomes less precise

when the time between transactions increases. Given the high level of activity in the crude

oil futures markets, this issue is much less significant then in other less active markets.

With these estimates of the bid-ask spreads, the percentage spread for each transaction

is defined to be the ratio of the estimated bid-ask spread to the midpoint between the bid

and the ask. These percentage spreads are averaged over each day, t, giving,

St =
1

Nt

Nt∑
i=1

Spreadt,i
Midpointt,i

(1.4)

where Nt is the number of transactions on day t, Spreadt,i is the ith estimated bid-ask

spread, and Midpointt,i is the midpoint between the ith estimated bid and ask.

1.2.4 Textual News Data

To examine potential differences between hedgers and speculators, their response to news

articles related to the crude oil markets is analyzed. Since the electronic news database is

relatively sparse before 2001, a more recent sample period, between July 25, 2001 and April

28, 2009, is used for this analysis. Approximately 58, 000 news articles related to the crude

oil markets were extracted from the Dow Jones Factiva database. These articles were all

from the publications used by the Energy Information Administration (EIA) to form their

Annual Oil Market Chronology5 which lists all of the significant world events that have

impacted the crude oil markets. The specific uses of this data are detailed in Section II.

5http://www.eia.doe.gov/cabs/AOMC/Sources.html
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1.2.5 CFTC Trader Data

The Commodity Futures Trading Commission (CFTC) has been releasing weekly Commit-

ments of Traders (CoT) Reports6 since September 30, 1992, and at various lower frequencies

since 1924. The earliest predecessor of the CoT reports were prepared by the U.S. Depart-

ment of Agriculture’s Grain Futures Administration and were released yearly. Currently,

these reports provide a breakdown of the open interest in the American futures markets as

of each Tuesday. Open interest refers to the total number of futures contracts that have

been entered into and not yet exited through a transaction or delivery. One of the main

reasons for collecting this data is to detect and deter attempts at market manipulation (such

as the cornering of markets) by large traders. More generally, the CoT reporting system

allows the CFTC staff to identify large positions that could pose a threat to orderly trading.

In each CoT report, total open interest is broken down according to the type of trader

and by the type of positions (long or short) that each type of trader holds. There are three

types of traders identified by the CFTC: reporting commercial, reporting non-commercial,

and non-reporting. A trader is classified as a reporting trader if they hold positions in

excess of the CFTC-determined threshold of 350 contracts. This threshold varies across

time and markets in an effort to capture between 70 and 90 percent of the open interest in

the market. While the reporting threshold is quite high, the average reporting traders hold

much larger positions. For example, in July of 2007, the average reporting trader held over

9000 contracts. A commercial trader is one who self-identifies as being engaged in business

activities hedged by use of the futures and options markets. The non-reportable positions

are all positions that are held by traders whose total position size is below the CFTC’s

threshold. In what follows, reporting commercial traders are considered large hedgers, re-

porting non-commercial traders are considered large speculators, and non-reporting traders

are considered small traders who may be hedging or speculating.

Thus, the disaggregation of open interest performed by the CFTC occurs along three

dimensions: reporting versus non-reporting, hedging versus speculating, and long versus

short. For noncommercials, the CoT report also identifies how much of their position is

held in a spread. The spread number measures the extent to which a speculator holds equal

long and short positions. For example, if a speculator was long 100 contracts and short

70 contracts of a different expiration, then the spread contribution will be 70 and the long

6The CoT Reports are published on the CFTC website at http://www.cftc.gov/cftc/cftccotreports.htm.
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contribution will be 30. The seven components of the total open interest (TOI) that are

detailed in the CoT reports are related in the following manner:

reporting︷ ︸︸ ︷
speculators︷ ︸︸ ︷

[SLong + SShort + 2(SSpread)] +

hedgers︷ ︸︸ ︷
[HLong +HShort] +

nonreporting︷ ︸︸ ︷
[NRLong +NRShort]= 2(TOI) (1.5)

where S, H and NR refer to positions, measured in the number of contracts, held by large

speculators, large hedgers and non-reporting traders, respectively, with subscripts (long,

short, and spread) indicating the type of positions. On the left side of equation (5), each

contract is counted twice since both long and short positions are counted even though a long

and a short position constitute only one contract. Consequently, the total open interest is

doubled on the right side of the equation.

As can be seen from the sample CoT report7 in Figure 3, the report also lists the number

of traders in each category. Note that the sum of the numbers of traders from each category

exceeds the total number of traders due to the fact that a single trader, such as a spreading

speculator, can be counted in more than one category. A trader is counted in each category

in which the trader holds a position. For example, a hedger who is long December 2008 crude

oil while also being short June 2009 crude oil will be counted only once for the number of

total traders, but will be counted in both the ‘commercial long’ and the ‘commercial short’

categories. Also of note is that the CoT is available in two versions: a futures-only version,

and a futures and options version that converts options positions into equivalent number

of futures positions. Since the current study is interested in the microstructure of futures

markets, the futures-only version is used.

[FIGURE 3 ABOUT HERE]

Various measures of trader positions are constructed to illuminate the relationships

between trader classes and market dynamics. These measures are defined as they are

introduced in the next two sections.

7See [18] for a history of the CoT reports and a full description of CoT variables.
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1.3 Hedgers and Speculators

The large majority of open interest is held by large hedgers and speculators. In the sample

under study, an average of 84% of open interest is held by large traders that must report

their holdings to the CFTC. Of the reportable holdings, large hedgers dominate the large

speculators by holding, on average, 68% of the total open interest compared with 16% for

the speculators. Equation (6) demonstrates the calculation of the percent of open interest

(POI) held by large speculators. The POI for hedgers is calculated similarly, but without

the spread component.

POISt =
SLong,t + SShort,t + 2(SSpread,t)

2(TOIt)
POIHt =

HLong,t +HShort,t

2(TOIt)
(1.6)

where S refers to positions held by large speculators with the subscripts (long, short, and

spread) indicating the type of positions. From the time series of POI presented in Figure

4, the larger size of the positions of hedgers relative to speculators is clear - hedgers hold

between 60% and 80% of the outstanding positions, speculators hold between 5% and 35%

of the outstanding positions, and small traders hold the remaining positions.

[FIGURE 4 ABOUT HERE]

Another feature of POI evident in Figure 4 is the inverse relationship between move-

ments in positions of hedgers and speculators. Within the sample, the percent of open

interest held by large speculators and hedgers, POISt and POIHt , have a correlation coeffi-

cient of −0.40, indicating that when one trader is entering a position, there is a tendency

for a trader of another class to be closing a position. This observation is consistent with the

proposition that different trader types provide each other with liquidity.

The main variable of interest in this study is the net long measure of trader positions,

denoted NLCt for trader class C. The net long measures for speculators and hedgers are

calculated by

NLSt = SLong,t − SShort,t and NLHt = HLong,t −HShort,t. (1.7)

These measures indicate the number of contracts held as long positions that are not offset

by short positions. A negative net long position indicates that, within the trader class, more

contracts are held in short positions than in long positions. A key feature of this measure
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is that it emphasizes trade between hedgers and speculators since trade within each class

cannot change its net long position.

Summary sample statistics for the net long positions by trader types are presented in

Table I. The positive mean, median, and skewness of the net long positions of specula-

tors indicates a tendency of speculators to go long, while hedgers tend to go short. This

observation reinforces the proposition that multiple trader types increase market liquidity

since if speculators were not in the market, hedgers would have a harder time finding coun-

terparties for their short positions. A second observation can be made from the sample

kurtosis measures, both of which indicate thinner than Gaussian tails. If trader positions

are bounded due to some budgetary or risk constraints, the distribution of their positions

would be expected to be finite or, at most, thin.

[TABLE I ABOUT HERE]

As can be seen in Figure 5, the net long position of large hedgers and speculators tend

to move in opposing directions. The strong sample correlation of −0.96 is not unexpected

since a net change for one trader type requires another trader type to take an opposing

position. A measure of −1 is not seen because of a small amount of trade between large and

small traders. What is interesting, however, is that the relationship between small traders

and large traders is significantly weaker, with correlations of ρ(NLS , NLsmall) = 0.543 and

ρ(NLH , NLsmall) = −0.755. Since the small trader class is a mix of small speculators and

hedgers, the behaviorial regularities associated with trader classes are weaker, though the

signs of the correlations indicate that a position taken by small traders is more likely a

speculation than a hedge.

[FIGURE 5 ABOUT HERE]

1.3.1 Trader Positions and Market Prices

It is well-understood that hedgers and speculators face different constraints and participate

in futures markets for different purposes. However, it is unclear how these differences impact

price dynamics in these markets. This section tests the null hypothesis that, despite their

differences, hedgers and speculators are similar in their impact on prices through their
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trades, as well as in their response to market action. This hypothesis is rejected and several

regularities are found that differentiate hedgers and speculators.

To evaluate any potential differences in the relationship between trader positions and

market prices for hedgers and speculators, three models are estimated:

NLSt = α1 + β1
1NL

S
t−1 + β1

2rt + β1
3rt−1 + ε1

t (1.8)

NLHt = α2 + β2
1NL

H
t−1 + β2

2rt + β2
3rt−1 + ε2

t (1.9)

rt = α3 + β3
1rt−1 + β3

2NL
S
t + β3

3NL
S
t−1 + ε3

t (1.10)

where the error terms are assumed to be conditionally heteroskedastic. In order to account

for potential endogeneity of returns and positions, continuous updating efficient generalized

method of moments [39] was used to estimate the models. Changes in the number of traders

holding long and short positions in each trader class were used as instruments for returns

while levels of these variables were used as instruments for positions. The results, presented

in Table II, indicate several significant differences between hedgers and speculators. First,

by examining the concurrent relationship between trader positions and returns, speculators

are found to increase prices with their purchases whereas hedgers tend to decrease prices

through their purchases. This difference is consistent with the notion that speculators place

more aggressive orders than hedgers. Hedgers may employ less aggressive limit orders in

order to reduce their costs of hedging.

[TABLE II ABOUT HERE]

Another difference is found in the relationship between trader positions and lagged

returns. The significant positive coefficient of lagged returns in the model of speculative net

long positions indicates a tendency for speculators to engage in trend-following behavior.

Large hedgers, on the other hand, have a tendency towards following contrarian strategies.

1.3.2 Trader Positions and Market News

A second area in which hedgers and speculators may differ is in their response to news about

the crude oil market. In the more traditional equity and bond markets, one might expect

that most participants would respond similarly to positive or negative news. However, this

may not hold in futures markets where hedgers are not primarily seeking to profit from price
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changes. To test the relationship between trader positions and market news, this section

employs two methods of textual analysis: (i) a reduced dimensionality regression, and (ii)

a high dimensionality binary classification.

These quantitative methods are chosen rather than an event-by-event chronological anal-

ysis of relevant world events for several reasons. While these methods do not capture the

subtleties of complex political and economic news stories, they are objective, consistent,

and reproducible methods that have been successfully used in other settings. Additionally,

the regularities studied in the remainder of this paper have strong persistence over time,

with some lasting more than 15 weeks. These long periods contain many events that are

relevant to oil markets, and isolating specific effects would be difficult. Finally, given that

many observations are collected for this study, we can abstract from the peculiarities of a

single event and identify the underlying microstructural issues.

The first technique is similar to that used by [69] to reduce the typically high-dimensional

character of textual data. They create a measure of news sentiment by identifying the

fraction of positive and negative words in market-specific news stories. Positive and negative

words are identified using the Harvard-IV-4 classification dictionary. Using the a traditional

regression methodology, they find that the information captured by this simple variable

has predictive power for earnings and equity returns. For the current study, approximately

58, 000 crude oil related news stories were used to construct following variables,

Negt =
# of negative words in week t

# of total words in week t
and negt = g

(
Negt − µNegt

σNegt

)

where µNegt and σNegt are the mean and standard deviation of Neg for the six months prior

to time t, and where g is an exponential moving average8 with a smoothing parameter of

0.9. Similarly, Post and post are created for positive words.

Using these proxies for the news content, the following model is estimated.

NLSt = α+ β1negt + β2post + β3NL
S
t−1 + εt (1.11)

where εt is assumed to be a white noise process. Results for this estimation are listed in

Table III. Note that NLHt was not included because of its strong correlation to NLSt and

8The results of this section is robust to a wide variety of smoothing operators and parameters.



CHAPTER 1. LARGE TRADERS AND LIQUIDITY IN FUTURES MARKETS 15

the potential for multicollinearity. [69] found that for equity markets the negative words

contained in news articles contained significant information about firm earnings, beyond

what analysts’ forecasts and historical accounting data did. Interestingly, for crude oil

markets, it is often positive news that will put downward pressure on prices, while bad news

drives prices up. After accounting for this difference, similar results are found in crude oil

futures markets as speculators significantly decrease their net long positions in the presence

of high levels of positive words. Hedgers on the other hand increase their net long positions

during such periods.

[TABLE III ABOUT HERE]

Given its large number of words and linguistic relationships, textual data is naturally

very highly dimensional. This high dimensionality cannot be maintained in most economet-

ric techniques, however there are some more recent classification and regression frameworks

which can accommodate such high dimensionality. The most successful technique in textual

studies is the support vector machine (SVM) binary classifier [52, 17]. The basic SVM is

a binary classifier that finds a hyperplane with the maximum margin between positive and

negative training documents. The three key features of SVMs that reduce the likelihood of

over-fitting and make them useful for textual classification are

• Not all training documents are used to train the SVM. Instead, only documents near

the classification boarder are used.

• Not all features from the training documents are used, so excessive feature reduction

is not needed.

• SMVs can construct irregular boarders between positive and negative training docu-

ments.

To confirm the systematic response of trader classes to market news, a binary SVM

is used to classify whether the net long positions of trader classes will increase (+1) or

decrease (-1). Weekly news is aggregated and the frequency of each unique word (there are

59, 323 unique words in the sample) per week is calculated. These frequency vectors are

used as input to train the classifier9. Using cross-validation techniques, 300 out-of-sample

9The SVM used in this study is available at http://svmlight.joachims.org/.
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classifications of whether speculative net long positions increased or decreased in response

to market news gave the following results10:

Accuracy = TP+TN
TP+FP+TN+FN = 56%∗∗

Precision = TP
TP+FP = 54%∗

= The proportion of obs. classified as +1 that are truely +1

Recall = TP
TP+FN = 81%∗∗∗

= The proportion of obs. that truely are +1 that are classified as +1

where TP , FP , TN , and FN denote the number of true positives, false positives, true

negatives, and false negatives produced by the classifier, respectively. When this classifier,

trained on data of speculative positions, is applied to out-of-sample data on the positions of

hedgers, significant misclassifications are observed indicating that hedgers and speculators

are responding to news in significantly different ways.

While both of the techniques used in this section capture only a coarse level of linguistic

sophistication, they do indicate a clear difference in the response of hedgers and speculators

to market news. Results support the notion that speculators respond to news in a similar way

to traders in equity markets. That is, with news that puts downward pressure on prices,

speculators decrease the net long positions, while hedgers increase their long positions.

Combined with the previous results, this section supports the notion that large speculators

are informed traders who bring new information to the market through orders that are

placed more aggressively than hedgers.

These differences between hedgers and speculators will become particularly pronounced

when the net long positions of these two classes of traders diverge and approach their

bounds. At such times, the available counterparties for a trade become less heterogeneous,

and particular traits of a trader class may temporarily change the price dynamics. The

remainder of this paper examines specifically how and why the price dynamics change during

these times of extreme and opposing positions.

10Note that ∗ indicates p < 0.10, ∗∗ indicates p < 0.05, and ∗ ∗ ∗ indicates p < 0.01.
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1.4 Extreme Positions and Market Dynamics

To study the market dynamics as trader positions approach their bounds, an event study

methodology is used. The first step in this methodology is to define the extreme events that

are being studied. To do this, the notion of trader positions, as expressed by the net long

measure described in the previous section, must be extended to capture the notion that the

positions that trader classes can achieve are bounded. Since the true bounds of positions

taken by large hedgers and speculators would be difficult to determine, locally realized limits

are used as a proxy for this true limit.

The market under study has been growing over the sample period, so an absolute value

of the position bounds for all times is inappropriate. Instead, a local measure, PCt (τ) is

employed which uses the maximum and minimum NLCt values achieved by trader class C

within a moving window of τ periods. In this study, a centered window is used, thereby

using information from the recent past and future. Consequently, in this ex post study, we

can study return regularities, but no claim of predictability can be made from the results.

The advantage of an ex post analysis is that a better proxy for position bounds is permitted.

That is, extreme positions are easier to identify when future information is used, whereas

in an ex ante setting, a large position may get labeled as extreme and then be dwarfed by

an even larger position a few periods later. This trader position measure is expressed as

PCt (τ) =
NLCt −min{NLCt′ }

max{NLCt′ } −min{NLCt′ }
(1.12)

where t′ ∈ {t − (τ − 1)/2, · · · , t − 1, t, t + 1, · · · t + (τ − 1)/2} for an odd-valued τ . In an

ex ante form, using only past information, this variable is similar to the market sentiment

indicator of [16]. However, rather than relying on notions of sentiment, the current study

argues that the resulting dynamics are the consequence of structural constraints imposed by

the bounded size of the market which induces mean-reverting behavior when these bounds

are approached.

For the current study, τ is taken to be around nine months (39 weeks), but the results

are robust across many window sizes as is shown in Section IV. Clearly, values of PCt (τ) take

values between 0 and 1, with values achieving 1 when net long positions exceed all values

within the nine month centered moving window. Figure 6 plots this position index for large

speculators and hedgers.
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[FIGURE 6 ABOUT HERE]

The events of interest occur when one trader class is extremely long and the other

class is extremely short. To identify the times of these events, two indicator variables are

constructed. SLt identifies times when speculators (S) are extremely long (L) and hedgers

are extremely short, and HLt identifies times when hedgers (H) are extremely long (L) and

speculators are extremely short. These variables are defined to be

SLt =

{
1 if PSt (τ)− PHt (τ) = max[PSt′ (τ)− PHt′ (τ) : t′ ∈ [t− (τ−1)

2 , t+ (τ−1)
2 ]]

0 otherwise

(1.13)

HLt =

{
1 if PSt (τ)− PHt (τ) = min[PSt′ (τ)− PHt′ (τ) : t′ ∈ [t− (τ−1)

2 , t+ (τ−1)
2 ]]

0 otherwise

(1.14)

An SL-type event occurs when the difference between the position indices of speculators

and hedgers is larger than at any other time within a centered window of length τ . For

example, if PSt (τ) = 1 and PHt (τ) = 0, then speculators are extremely long and hedgers are

extremely short, and so SLt = 1 captures the extreme opposition of the positions of these

two classes of traders. Within the sample period there are 20 events of each type.

Such extreme positions do not develop without reason and are clearly dependent on world

events related to the crude oil markets. However, it is not within the scope of this paper

to identify the specific causes of these extreme positions. That said, Section II.A identified

divergent position accumulation by hedgers and speculators in response to market related

news. Therefore, if news variables have temporal persistence, then extreme positions would

regularly result from the chance occurrence of many news innovations of the same type (i.e.

either a ‘good’ or ‘bad’ cluster of news events). Such persistence in news variables is in fact

observed, with significant first order autocorrelations of ρ1(Negt) = 0.54, ρ1(negt) = 0.97,

ρ1(Post) = 0.45, and ρ1(post) = 0.96.

1.4.1 Extreme Positions and the Number of Traders

The argument that bounded trader positions can induced liquidity shocks is based on the

limited heterogeneity of counterparties when extreme positions are taken. Of course, the

number of traders of each class in the market is another determinant of the heterogeneity of
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available counterparties. As is shown below, the number of traders in the market and the

acquisition of extreme positions is not independent. In the case of HL-type events, both

factors move in conjunction and result in strong liquidity induced dynamics. In the case

of SL-type events, the two factors more in opposition to each other thereby decreasing the

strength of the liquidity-induced dynamics.

Up until this point in the analysis, no consideration has been given to the demographics

of the groups of large hedgers and speculators. The Commitments of Traders Reports list

the number of large traders in each of these groups, thereby allowing an analysis of their

composition around the times that they acquire extreme positions. For the class of SL-type

events, where speculators are extremely long and hedgers extremely short, the left panel of

Figure 7 shows that, on average, traders are entering the market before the event date and

then leave the market afterwards. Conversely, the right panel of the same figure shows that

for the class of HL-type events, where hedgers are extremely long and speculators extremely

short, traders tend to leave the market before the event date and then return afterwards.

[FIGURE 7 ABOUT HERE]

Two questions arise from the observation that traders leave or enter the market before

and after extreme positions are taken: Who is it that is leaving the market, and why are

they leaving? A partial answer to the first question is seen in Figure 8 which shows that

the majority of the traders that systematically leave and enter the the market around the

event dates are speculators, and not hedgers. The fact that hedgers do not enter or exit the

market in a regular fashion around these extreme position events is due to the fact that their

positions are not dependent on the profitability of their trades, but are rather determined

by their business interests.

[FIGURE 8 ABOUT HERE]

The number of speculators can be further disaggregated into the number of speculators

who are long and the number that are short. Figure 9 shows these numbers, thereby giving

a fuller answer to the question of who is leaving the market and why they are leaving.

The right panel of the figure indicates that virtually all of the traders that are leaving the

market before the HL-type events are speculators that were long. Similarly, the majority of

speculators who enter the market leading up to an SL-type event are also those speculators

that were long. In the following sections the set of speculators that enter and exit long
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positions are shown to be significant determinants of the market dynamics around these

extreme events.

[FIGURE 9 ABOUT HERE]

1.4.2 Extreme Positions and Returns

It was shown in Section II that a strong relationship exists between trader positions and

market returns. Purchases by speculators, and sales by hedgers, tend to push prices higher.

Sales by speculators, and purchases by hedgers, tend to push prices lower. This relationship

implies that extreme events are often preceded by periods of trending prices. Once trader

positions are near their upper or lower bounds, they inevitably move back towards their

average since they cannot become much more extreme than they currently are. When

trader positions revert away from their extremes, the price trend often reverses.

In the case of SL-type events, where speculators are extremely long and hedgers ex-

tremely short, there is a significant increase in prices that begins around seven weeks before

the extreme event resulting, on average, in an 8.8% cumulative abnormal return by the

event date, where the abnormal return is defined to be the return minus the sample mean

weekly return of r = 0.36%. More formally, the cumulative abnormal return between times

t− τ and t is

CAR(t− τ, t) =
τ∏
i=0

(1 + rt−i − r)− 1. (1.15)

After the event, the upward trend is reversed and prices tend to fall for the next eight

weeks. Thus, SL-type events tend to coincide with local price maximums. In the case of

HL-type events, where speculators are extremely short and hedgers extremely long, there

is a significant decrease in prices that begins around six weeks before the extreme event

resulting, on average, in a −9.3% cumulative abnormal return by the event date. The price

trend reverses after the event date and tends to rise for the next seven weeks. Thus, HL-

type events tend to coincide with local price minimums. Both of these cases are seen in

Figure 10.

[FIGURE 10 ABOUT HERE]
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To evaluate the effect of trader positions on returns for the week before and after those

positions become extreme, the following model is estimated

rt = α+ β1SLt + β2SLt−1 + γ1HLt + γ2HLt−1 + εt (1.16)

where εt is assumed to be a white noise process, SLt is an indicator variable for times when

large speculators are extremely long and large hedgers are extremely short, and HLt is an

indicator variable for times when large speculators are extremely short and large hedgers

are extremely long. The result of this estimation is found in Table IV. All of the estimated

variable coefficients except for γ1 are significant. Since the return, rt, measures the price

change between times t and t− 1, β1 is the change in price leading up to an SL-type event

occurring at time t. Similarly, β2 is the change in price that occurs when the SL-event

occurred at time t− 1, that is, the change in price after such an event. Estimates of β1 and

β2 are positive and negative, respectively, indicating that prices tend to rise during the week

before an SL-type event and fall the following week. Conversely, estimates of γ1 and γ2 are

negative and positive, respectively, indicating that prices tend to fall during the week before

an HL-type event and rise the following week. The low R2 of this and other regressions in

the paper are low, as expected, since there are only 20 events of each type. Clearly, there is

a lot more going on in the return dynamics than just those resulting from extreme trader

positions. However, when such events occur, the effects are significant, both economically

and statistically. These results are consistent with the price trends and reversals around

extreme events seen in Figure 10.

[TABLE IV ABOUT HERE]

This relationship between positions and returns can be explained through the bounded

and mean reverting nature of extreme positions, but there is also an influence from the entry

and exit of speculators around these event dates. Recall from the right panel of Figure 9

that virtually all of the traders that are leaving the market before the HL-type event are

speculators who are long. Given the returns during this time, these traders were long in

a falling market, so it is likely that they were leaving the market to avoid further losses.

At the same time leading up to the event date, the number of speculators that are short

is actually increasing. These traders who are selling short in a falling market are realizing

significant profits, and immediately after the event date they begin to take their profits by
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closing their short positions. This is seen in Figure 9 where the number of speculators who

are short after the HL-type event dates steadily falls. Also after the event date, the traders

who were long and had left the market begin to re-enter the market establishing new long

positions. Thus, there are regularities in the entry and exit of traders around the event

dates that are consistent with speculative profit-taking and with capital constraints forcing

traders to exit losing trades. A similar argument can be made to explain the regularities

around SL-type events in the left panel of Figure 9.

To check whether these regularities in the entry and exit of speculators plays a role in

the microstructure of returns the following model is estimated,

rt = α+ β1 4 T speclong,t + β2 4 T specshort,t + εt (1.17)

where 4T speclong,t is the change since the previous period in the number of speculators who are

long, 4T specshort,t is the change in the number of speculators who are short, and εt is a white

noise process. The estimation results in Table V indicate that an increase in the number of

long speculators is associated with a significantly higher return.

[TABLE V ABOUT HERE]

An interesting observation arises when market demographics are examined around the

price reversals associated with SL and HL-type events. If a speculative trader were aware

of the date of a significant reversal of price movements, then they would take positions that

would profit from this price action. An informed trader11 would therefore want to be long

on an HL-event date and short on an SL-event date. However, these events are essentially

defined to be times when large speculators are on the wrong side of the market. On average,

at SL-event dates, only 36% of large speculators are short, and only 38% are long on HL-

event dates. Thus, an essential feature of these liquidity shocks is that a significant number

of traders be uninformed in their timing.

Figure 9 shows that the majority of new speculative bets are made in the ‘correct’

direction with respect to the price trends both before and after the event dates. The longer

the trend has been in effect, the more speculators trade in that direction. However, some

11Since a hedger’s trading behavior is determined by business interests and risk management strategies,
their actions would be independent of knowledge of these event dates. In this sense, hedgers act as if they
are uninformed traders.
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traders enter the trend too late as is indicated by the spike at time zero. Since only aggregate

trader numbers are reported in the CoT reports, it is impossible to tell when a specific trader

both enters and exits the market. Consequently, the distribution of profits within a class of

traders is unknown.

With the majority of large speculators being on the wrong side of the market at SL and

HL-event dates, some conclusions about uninformed traders can be drawn. First, it would

be inappropriate to model these uninformed traders as being equally likely to take long or

short positions, since that would imply that on average the majority of speculators would

be on the right side of the market12. Second, uninformed trades appear to be dependent on

past trades since they appear to want to follow a trend that is about to end. Finally, the

number of speculators trading in the direction of a trend tends to increase with the duration

of the trend. This seems to indicate that there are varying degrees to which traders are

informed, with well informed traders entering a trend early, other informed traders entering

as the trend develops, and the uninformed traders entering too late as the trend ends.

1.4.3 Extreme Positions and Realized Volatility

So far in the analysis, significant differences in the behavior of hedgers and speculators, as

well as the bounded nature of trader positions, have been found to drive return regularities

around dates of extreme and opposing trader positions. These dates also coincide with

systematic entries and exits of large speculators from the market, primarily by those holding

long positions. In both SL and HL-type events, the changes in the number of speculators

who are short moves in opposition to the changes in the number of speculators who are long,

however the magnitude of the latter changes are more than twice as large. Since speculators

facing losses may leave a market through orders placed more aggressively than other orders,

there is reason to suspect that return volatility may differ between SL-type and HL-type

events.

As was shown earlier in Figure 10, HL-type events are characterized by first falling and

then rising prices. As prices initially fall, a significant number of speculators holding long

12If uninformed traders are equally likely to take long or short positions, then in expectation half of the
uninformed traders are on the right side of the market. Since informed traders would be on the right side
of the market as well, then overall there are more traders on the right side of the market than on the wrong
side.
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positions leave the market (see the right panel of Figure 9). These speculators were long in a

falling market, and hence exited the market while they were facing increasing losses. Under

such circumstances, orders to exit a losing trade may well be placed more aggressively than

would ordinarily be observed. Such aggressive orders would be observed as an increase in

the return volatility. After the price trend reverses at the event date, and speculators return

to the market, volatility is expected to return to normal levels.

Around SL-type events, a similar argument would suggest that speculators holding

long positions who leave the market after the event date would also drive up the return

volatility. To examine the conjecture that speculators facing losses leave the market using

aggressive orders thereby causing high return volatilities, this section examines the behavior

of the realized volatility around both types of extreme position events. Realized volatilities

are sampled weekly and constructed with five-minute returns, as described in Section I.

Figure 11 plots the average realized volatility around the event dates. There is a clear

difference between the two classes of extreme events. The average realized volatility before

and immediately after type-SL extreme positions, where speculators are long and hedgers

are short, is significantly lower than the overall sample average13. The sharp increase in

volatility after SL-event dates is consistent with the ‘leverage effect’ where volatility is rising

in falling markets ([7]). In contrast, it is significantly higher before and just after HL-type

extreme positions, where speculators are short and hedgers are long. In this case, the average

realized volatility on the event date is at the 79th percentile of the entire sample and is even

higher for several weeks before the event date. Both panels of Figure 11 are consistent with

the notion that traders facing losses can significantly increase return volatility as they exit

the market.

[FIGURE 11 ABOUT HERE]

To quantify the increase in volatility around HL-type events, the following model is

estimated:

ln(RVt) = α+ β ln(RVt−1) + γHL∗t + εt (1.18)

where RVt is the realized volatility at time t, and εt is assumed to be a white noise process.

13For Figure 11 and the following estimations, a single outlier realized volatility value was removed from
the series. The outlier was on 24 March 1998 and was over 19 standard deviations away from the sample
mean. The value was replaced with an average of the preceding and following values. After examining the
high-frequency price data, the outlier appears to have been caused by an incorrect price entry.
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HL∗t is an indicator variable for whether a HL-type extreme event occurs at time t or during

the next five weeks following t. The five week window captures the fact that volatility builds,

and in fact peaks, during the several weeks leading up the the event date. This new indicator

is defined more formally as

HL∗t =

{
1 if HLt ∨HLt+1 ∨HLt+2 ∨HLt+3 ∨HLt+4 ∨HLt+5

0 otherwise
(1.19)

where ∨ is the logical ‘OR’ operator. The results of this estimation are found in Table

VI. The estimated coefficient of HL∗t indicates realized volatility is expected to rise by

6.6% five weeks prior to an HL-type event and remain higher until the event date. Since

HL∗t dates occur in groups of six consecutive weeks, and since the model (19) accounts for

previous weeks, the realized volatility at the event date will tend to be 17% higher than it

was six weeks prior to the event date, indicating that HL-type extreme events can be an

economically important cause of high-volatility periods.

[TABLE VI ABOUT HERE]

The different volatility effects that are observed before and after HL and SL-type events,

as well as the trend reversals seen at these times, it is likely that realized volatilities are

not symmetrically composed of positive and negative returns. Figure 12 plots the average

positive and negative directional realized volatilities for the weeks around HL-type events,

when hedgers are extremely long and speculators extremely short. It is clear that the realized

volatilities before and after the event date are composed of two nonsymmetric components.

Before the event, the majority of the volatility comes from negative returns as is seen

from the increase in DRV N
t before the event date in Figure 12(a). After the event date,

DRV N
t falls sharply, but DRV P

t , in Figure 12(b), peaks thereby keeping the overall realized

volatility higher than average. This asymmetric composition of return volatility indicates

that the potential ill-effects of liquidity shocks do not affect all market participants equally.

High negative directional volatility would be bad for sellers, while high positive directional

volatility would be bad for buyers. Further, a significant difference between the negative

and positive volatilities indicates trending prices.

[FIGURE 12 ABOUT HERE]
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1.4.4 Extreme Positions and Bid-Ask Spreads

The significance of these dynamic regularities around extreme position dates can be further

verified using the prominent percentage bid-ask spread measure of liquidity. Figure 13

plots the average daily percentage bid-ask spread around both types of event dates. The

pattern of larger than average spreads around HL-type events and lower than average

spreads around SL-type events are similar to the patterns of realized volatility around

these dates. With fewer speculators in the market at HL-type event dates, trade can only

be induced by offering better prices to potential buyers and sellers resulting in a larger

bid-ask spreads. On SL-type event dates, there are more speculators in the market and

finding willing counterparties is easier, resulting in smaller bid-ask spreads. These findings

indicate that, despite the fact that speculators can raise return volatility as they close losing

positions, their increase presence in the market during SL-type events improves liquidity.

While this study is concerned with the movement of large speculators into and out of a

single market, if these movements actually constitute movements from or into other futures

markets, then in addition to impacting liquidity within the crude oil futures market, these

movements of traders may also account for some of the time-varying cross-market liquidity

variation [68] in futures markets.

[FIGURE 13 ABOUT HERE]

To quantify the effects of these events on the bid-ask spread, the following model is

estimated:

St = α+ β(HLt−1 +HLt +HLt+1) + γ(SLt−1 + SLt + SLt+1) + εt (1.20)

where St is the estimated daily percentage bid-ask spread described in Section I, and εt

is assumed to be a white noise process. Since extreme events cannot occur in consecutive

weeks, (HLt−1 +HLt +HLt+1) and (SLt−1 + SLt + SLt+1) are indicator functions taking

the value 1 when the time t is within one week of an extreme event and taking the value

0 otherwise. Table VII contains the estimation results where we see that both β and γ are

significant. The coefficient β has the expected positive sign since the spreads are higher

on HL-type event dates when there are fewer speculators in the markets, and γ has the

expected negative sign since there are more speculators in the market during SL-type events

resulting in smaller spreads.
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[TABLE VII ABOUT HERE]

1.5 Robustness Checks

The results of this study depend largely on the identification of dates during which hedgers

and speculators are holding extreme and opposing positions. The extremity of trader po-

sitions is defined by their size relative to positions held within a centered window of width

τ weeks. Thus, τ is a critical parameter in the study and the results should be robust to

changes in its value.

Return and realized volatility regularities are central results of this study, and models

(17) and (19) were used to quantify these regularities. The estimation of these models used

a centered moving window of τ = 39 weeks. The results were also checked for window sizes

τ = 31, 33, 35, 37, 41, 43, 45, and 47 weeks. The coefficient estimates and their p-values for

models (16) and (18) for each of these window lengths are listed in Table VIII. For robustness

to hold, the sign, magnitude, and significance of these estimates should be reasonably close

to each other and to the values reported in this paper for τ = 39. Of the 45 coefficient

estimates for the crude oil market in Table VIII, all have the same sign as those listed in

the paper, all are of the same order of magnitude as those listed in the paper, and all but

four are significant or not, as listed in the paper.

[TABLE VIII ABOUT HERE]

Similar results should be found in other futures markets where the distinction between

hedgers and speculators is clear. The lower portion of Table VIII lists the estimates of

models (16) and (18) for three additional markets: Soybeans from the Chicago Board of

Trade, Live Cattle and 3-Month Eurodollars, both from the Chicago Mercantile Exchange.

All estimated coefficients from the model of returns have the same sign as those of crude

oil, though several are not significant. The model for Eurodollars returns has no significant

estimates, and this is likely because of the fuzzy distinction between hedgers and speculators

in financial futures markets. When a trader uses a market for both hedging and speculating,

as is common in interest rate and equity markets, they are identified as hedgers in the

Commitments of Traders data even if their dominant activity is speculative. This reporting

standard causes the identifiable systematic differences between hedgers and speculators to

disappear. In agricultural markets, on the other hand, the classes of hedgers and speculators

are much more distinct, and consequently more estimates are significant.
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Cross-sectional differences across markets are more pronounced in the volatility regular-

ities around event dates. For example, as seen in the top panels of Figure 14, there is a clear

rising of volatility around SL-type events and a clear falling of volatility around HL-type

events in the Soybean market. This is the opposite of the effect found in crude oil futures,

and is due to the confounding effects of the differing systematic movements of speculators

into and out of the market around these dates.

[Figure 14 ABOUT HERE]

There is a large literature on the market equilibrium approach to futures pricing [33, 30]

which use fundamental market factors to model prices. For crude oil, prominant examples

of such factors include convenience yields, crude oil inventories, and crude oil production

measures. Data for crude oil inventories, production and spot prices are available from the

Energy Information Administration14 (E.I.A.), and 1-month Treasury bill rates are available

from Kenneth French’s website15. While several event studies of these factors did not reveal

any systematic regularities around extreme position accumulations, a full incorporation of

these variables is difficult due to different release dates and frequency of observations. Given

the current focus on the microstructural mechanism of liquidity shocks, investigating the

relationship between extreme positions and market fundamentals is left for future study.

In summary, the central results of this study are robust within the crude oil futures

market across several neighboring parameter values, and supporting evidence is found in

agricultural futures markets where the hedger-speculator distinction is clear. There appear

to be some cross-sectional differences between markets that induce differing regularities

around event dates. Since these results depend on reliable differences in the behavior of

hedgers and speculators, supporting results are not found in financial futures markets where

the distinction between hedgers and speculators is not always clear. Finally, there may be

fundamental factors at play which drive position accumulation, however the relationship

between trader positions and these factors is not simple and will be pursued in a future

study.

14http://www.eia.doe.gov/
15http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
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1.6 Conclusion

Liquidity is a complex notion that captures the impact and costs of trading in a market. In

liquid markets, trades are executed with low costs and result in little impact on the market

price. Yet even in large and active markets, there are periods of illiquidity characterized

by high volatility and bid-ask spreads, and even directional return regularities. This paper

presents an empirical microstructural study of such liquidity-induced dynamics in the New

York Mercantile Exchange’s crude oil futures market, a very large and active market which

is usually considered a very liquid market.

The paper’s results suggest that during times when large hedgers and speculators ac-

quire large and opposing positions, with one group going extremely long and the other going

extremely short, liquidity-induced dynamics temporarily dominate price action. These dy-

namics can include price trend reversals, high volatility, and high bid-ask spreads. The

underlying mechanism that cause these effects has three components: (1) significant dif-

ferences between hedgers and speculators, (2) the bounded and mean-reverting nature of

trader positions, and (3) the various conditions that cause speculators to enter and exit the

market.

Large hedgers and speculators are the dominant participants in futures markets, and

each group have different constraints as well as different reasons for participating in the

market. Their impact on prices through their trades are also found to be significantly

different. Large speculators are found to increase prices with their purchases, to engage in

trend-following behavior, and to react to market-related news. Large hedgers, on the other

hand, decrease prices through their purchases and exhibit contrarian-type behavior.

Speculators and hedgers are also found to differ in their response to news about the

crude oil market. In two distinct analyses using over 58,000 news stories relating to crude

oil markets, we found that news variables have temporal persistence and that traders sys-

tematically accumulate positions (with positions of hedgers and speculators diverging) in

response to news. Combined with the previous results, these results support the notion that

large speculators are informed traders who bring new information to the market through

orders that are placed more aggressively than hedgers.

While positions of hedgers and speculators can diverge in response to news, there are

bounds on how far they may diverge. When the positions held by hedgers and speculators
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diverge and approach their limits, one class of traders begins to dominate the set of avail-

able counterparties for purchases, and the other class dominates that for sales. When this

happens, the differences between trader classes, which are usually ‘washed out’ when the

set of counterparties is well mixed, begin to have a pronounced impact on price changes.

Prices trend strongly until position bounds are approached, and then reverse as positions

revert towards normal levels.

The impact on liquidity during these episodes is found to be largely determined by

the entry and exit of large speculators from the market. In particular, speculators facing

increasing losses exit the market using orders that are significantly more aggressive than

typical orders, thereby pushing up return volatility. On the other hand, speculators entering

the market tend to improve market liquidity.

The asymmetry of liquidity shocks is also investigated. Both before and after speculators

are extremely short and hedgers extremely long, realized volatility is significantly higher than

its average. However, while these positions are being accumulated the volatility is dominated

by negative returns. As these positions are being unwound, the volatility is dominated by

positive returns. These effects are captured by a directional realized volatility measure

and indicate that liquidity shocks can affect different market participants in opposing ways.

That is, an illiquid market for a seller can be a liquid market for a buyer, and liquidity

measures should be able to capture such asymmetries.
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Trader Class Min Max Median Mean Std Dev Skewness Kurtosis
Speculators −71, 928 88, 712 8, 361 8, 471 30, 544 0.06207 2.777
Hedgers −103, 854 94, 868 −8, 103 −7, 804 39, 144 −0.05284 2.617

Table 1.1: Summary Sample Statistics for the Net Long Measure of Position Holdings for Large Hedgers and
Speculators. Statistics are calculated from 698 weekly observations from September 30, 1992 until February 28, 2006,
as reported in the CFTC Commitments of Traders Reports.

NLS
t = α1 + β1

1NL
S
t−1 + β1

2rt + β1
3rt−1 + ε1t

Intercept NLS
t−1 rt rt−1

Coefficient −1388.58 0.89 417, 665 90, 670
t-stat −2.20 44.20 14.75 5.94
p-value 0.03 0.00 0.00 0.00
R2 0.91

NLH
t = α2 + β2

1NL
H
t−1 + β2

2rt + β2
3rt−1 + ε2t

Intercept NLH
t−1 rt rt−1

Coefficient 1991.80 0.88 −549, 829 −124, 626
t-stat 2.55 46.25 −14.60 −6.55
p-value 0.01 0.00 0.00 0.00
R2 0.91

rt = α3 + β3
1rt−1 + β3

2NL
S
t + β3

3NL
S
t−1 + ε3t

Intercept rt−1 NLS
t NLS

t−1

Coefficient 0.0020 −0.23 0.0000026 −0.0000023
t-stat 1.39 −5.89 12.57 −11.45
p-value 0.17 0.00 0.00 0.00
R2 0.35

Table 1.2: Trader Positions and Returns. Estimation is through continuous updating GMM. Statistics are calculated
from 698 weekly observations from September 30, 1992 until February 28, 2006. Trader positions are reported in
the CFTC Commitments of Traders Reports and the weekly returns are calculated from tick-level price data from
TickData, www.tickdata.com.
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NLS
t = α+ β1negt + β2post + β3NL

S
t−1 + εt

Intercept negt post NLS
t−1

Coefficient 27, 524 312, 887 −1, 263, 992 0.90
Std Error 20, 187 410, 409 551, 890 0.02
t-stat 1.36 0.76 −2.29 44.08
p-value 0.17 0.45 0.02 0.00
R2 0.84

Table 1.3: Impact of Positive and Negative Words on Trader Positions. Statistics are calculated from 405 weekly
observations from July 25, 2001 until April 28, 2009. The pos and neg variables represent the frequency of positive
and negative words in news articles from each week. Trader positions are reported in the CFTC Commitments of
Traders Reports.

rt = α+ β1SLt + β2SLt−1 + γ1HLt + γ2HLt−1 + εt

Intercept SLt SLt−1 HLt HLt−1

Coefficient 0.000 0.019 −0.031 −0.018 0.024
Std Error 0.002 0.007 0.007 0.012 0.011
t-stat 0.095 2.530 −4.331 −1.465 2.130
p-value 0.924 0.012 0.000 0.143 0.034
R2 0.025

Table 1.4: Regression Model of the Effect of Current and Past Extreme Trader Positions on Weekly Returns.
The variable SLt is an indicator variable for times when large speculators are extremely long and large hedgers are
extremely short, and similarly HLt is an indicator variable for times when large speculators are extremely short and
large hedgers are extremely long. Heteroskedasticity robust standard errors and p-values are reported. The error term
is assumed to be from a white noise process. Statistics are calculated from 698 weekly observations from September
30, 1992 until February 28, 2006. Trader positions are reported in the CFTC Commitments of Traders Reports and
the weekly returns are calculated from tick-level price data from TickData, www.tickdata.com.

rt = α+ β1 4 T spec
long,t + β2 4 T spec

short,t + εt

Intercept 4T spec
long,t 4T spec

short,t

Coefficient 0.000 0.003 −0.001
Std Error 0.002 0.000 0.000
t-stat −0.080 10.771 −1.524
p-value 0.937 0.000 0.128
R2 0.173

Table 1.5: Regression Model of the Effect of Changes in the Number of Speculators on Weekly Returns. The
variable 4T spec

short,t is the change in the number of speculators who are short, and 4T spec
long,t is the change in the number

of speculators who are long. Heteroskedasticity robust standard errors and p-values are reported. The error term is
assumed to be from a white noise process. Statistics are calculated from 698 weekly observations from September 30,
1992 until February 28, 2006. Trader positions are reported in the CFTC Commitments of Traders Reports and the
weekly returns are calculated from tick-level price data from TickData, www.tickdata.com.
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ln(RVt) = α+ β ln(RVt−1) + γHL∗
t + εt

Intercept ln(RVt−1) HL∗
t

Coefficient −2.254 0.629 0.066
Std Error 0.712 0.116 0.027
t-stat −3.167 5.434 2.464
p-value 0.002 0.000 0.014
R2 0.465

Table 1.6: Regression Model of the Effect of Extreme Trader Positions on Weekly Realized Volatility. RVt is the
realized volatility at time t, HL∗t is an indicator variable for whether a HL-type event occurs within the next five
weeks, and εt is assumed to be a white noise process. HLt-type events occur when large speculators are extremely
short and large hedgers are extremely long. Heteroskedasticity robust standard errors and p-values are reported. The
error term is assumed to be from a white noise process. Statistics are calculated from 698 weekly observations from
September 30, 1992 until February 28, 2006. Trader positions are reported in the CFTC Commitments of Traders
Reports and the weekly returns are calculated from tick-level price data from TickData, www.tickdata.com.

St = α+ β(HLt−1 +HLt +HLt+1) + γ(SLt−1 + SLt + SLt+1) + εt

Intercept β γ
Coefficient 0.112 0.012 −0.009
Std Error 0.001 0.004 0.004
t-stat 96.05 3.258 −2.351
p-value 0.000 0.001 0.025
R2 0.025

Table 1.7: Regression Model of the Effect of Extreme Trader Positions on Average Daily Percentage Bid-Ask
Spreads. The variable SLt is an indicator variable for times when large speculators are extremely long and large
hedgers are extremely short, and similarly HLt is an indicator variable for times when large speculators are extremely
short and large hedgers are extremely long. Statistics are calculated from 698 weekly observations from September
30, 1992 until February 28, 2006. Trader positions are reported in the CFTC Commitments of Traders Reports and
the weekly returns are calculated from tick-level price data from TickData, www.tickdata.com.
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rt = α+ β1SLt + β2SLt−1 + γ1HLt + γ2HLt−1 + εt

ln(RVt) = α+ β3 ln(RVt−1) + δHL∗t + εt

τ β̂1 β̂2 γ̂1 γ̂2 δ̂

31 0.025 −0.034 −0.015 0.020 0.117
(0.000) (0.002) (0.155) (0.038) (0.010)

33 0.026 −0.024 −0.016 0.029 0.118
(0.000) (0.002) (0.099) (0.001) (0.011)

35 0.026 −0.024 −0.017 0.023 0.093
(0.000) (0.002) (0.547) (0.036) (0.057)

37 0.021 −0.028 −0.012 0.021 0.122
(0.007) (0.000) (0.370) (0.064) (0.029)

39 0.019 −0.031 −0.018 0.024 0.132
(0.012) (0.000) (0.143) (0.034) (0.014)

41 0.021 −0.027 −0.016 0.024 0.126
(0.007) (0.001) (0.246) (0.043) (0.020)

43 0.026 −0.031 −0.015 0.023 0.141
(0.000) (0.000) (0.296) (0.050) (0.012)

45 0.026 −0.034 −0.008 0.018 0.140
(0.000) (0.000) (0.627) (0.132) (0.020)

47 0.026 −0.034 −0.011 0.017 0.146
(0.001) (0.000) (0.486) (0.182) (0.018)

Soybeans 0.004 −0.013 −0.012 0.011 −0.102
τ = 39 (0.658) (0.076) (0.017) (0.050) (0.033)

Live Cattle 0.008 −0.013 −0.002 0.007 0.137
τ = 39 (0.013) (0.000) (0.795) (0.260) (0.002)

Eurodollar 0.000 −0.000 −0.000 0.000 0.106
τ = 39 (0.119) (0.600) (0.768) (0.680) (0.109)

Table 1.8: Robustness Check on the Size of the Centered Window Size and on Other Markets. A potentially critical
parameter in the determination of extreme event dates is the size of the moving window τ . Throughout the paper
τ = 39 weeks is used. This table shows that the sign, magnitude, and significance of the critical regression coefficients
are reasonably close for 8 other window lengths. Statistics are calculated from 698 weekly observations from September
30, 1992 until February 28, 2006. Trader positions are reported in the CFTC Commitments of Traders Reports and
the weekly returns are calculated from tick-level price data from TickData, www.tickdata.com.
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Figure 1.1: Weekly Prices (top frame), Returns (middle frame), and Realized Volatility (bottom frame) for NYMEX
Light Sweet Crude Oil Futures. Prices are the closing price on each Tuesday. Returns are based on an unleveraged
investment of the value of the underlying commodity at the futures price of the previous Tuesday. Realized volatility
is also sampled each Tuesday, and is constructed by summing the squared five-minute returns over the previous
week. The sample period is from September 30, 1992 to February 28, 2006 with 698 observations. Source: TickData,
www.tickdata.com.
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Figure 1.2: Transaction Prices with Estimated Bids and Asks. Transaction prices are shown by the solid line, with
the estimated bids for each transaction at the ‘b’ markers and the estimated asks at the ‘a’ markers. The estimated
bid-ask spread is at − bt. Source: TickData, www.tickdata.com.
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Figure 1.3: Example of a CFTC Commitments of Traders (CoT) Report. Released every Friday, the CoT
report summarizes the positions of various classes of traders as of the previous Tuesday. The commercial class
refers to large hedgers, and the non-commercial class refers to large speculators. Non-reportable positions are those
held by small traders. The Commitments of Traders Reports are published every Friday on the CFTC website at
http://www.cftc.gov/cftc/cftccotreports.htm.



CHAPTER 1. LARGE TRADERS AND LIQUIDITY IN FUTURES MARKETS 38

Figure 1.4: Percent of Open Interest for Large Hedgers and Speculators. Information is from 698 weekly observa-
tions from September 30, 1992 until February 28, 2006. Trader positions are reported in the CFTC Commitments of
Traders Reports.
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Figure 1.5: Net Long Positions of Large Hedgers and Speculators. The net long positions are the number of
long positions minus the number of short positions within the trader class. Values are calculated from 698 weekly
observations from September 30, 1992 until February 28, 2006, as reported in the CFTC Commitments of Traders
Reports.
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Figure 1.6: Trader Position Index, PC
t (τ), for Hedgers and Speculators with τ = 39 Weeks. The position index is

a measure of how long a trader class relative to the maximum and minimum net long positions of that class over the
centered window of length τ weeks. A value of 1 indicates that a new τ -period net long maximum has been reached.
A value of 0 indicates that a new τ -period net long minimum (a net short maximum) has been reached. The upper
panel is the position index for large hedgers, and the lower panel is the position index for large speculators. Values are
calculated from 698 weekly observations from September 30, 1992 until February 28, 2006, as reported in the CFTC
Commitments of Traders Reports.
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Figure 1.7: Averaged Cumulative Change in the Number of Large Traders Around Dates when Speculators and
Hedgers Have Extreme and Opposing Positions. SL-type events are when speculators are extremely long and hedgers
extremely short. HL-type events are when speculators are extremely short and hedgers extremely long. The dashed
line is a smoothed version of the series, computed by using a method of running medians known as 4(3RSR)2H with
twicing. Times relative to the event date, measured in weeks, are on the horizontal axis from 10 weeks before traders
take an extreme position until 10 weeks after. The left panel shows that traders are entering the market before an
SL-type event, and then leave the market afterwards. The right panel shows that traders are leaving the market before
and slightly after an HL-type event, and then begin entering again. The statistics are calculated from 698 weekly
observations from September 30, 1992 until February 28, 2006. The number of traders in the market is reported in
the CFTC Commitments of Traders Reports.
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Figure 1.8: Averaged Cumulative Change in the Number of Speculators and Hedgers Around Dates when Specula-
tors and Hedgers have Extreme and Opposing Positions. SL-type events are when speculators are extremely long and
hedgers extremely short. HL-type events are when speculators are extremely short and hedgers extremely long. The
solid and dashed lines represent the cumulative change in the number of speculators and hedgers, respectively. Times
relative to the event date, measured in weeks, are on the horizontal axis from 10 weeks before traders take an extreme
position until 10 weeks after. The left panel shows that traders are entering the market before an SL-type event,
and then leave the market afterwards. The right panel shows that traders are leaving the market before and slightly
after an HL-type event, and then begin entering again. The statistics are calculated from 698 weekly observations
from September 30, 1992 until February 28, 2006. The number of traders in the market is reported in the CFTC
Commitments of Traders Reports.
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Figure 1.9: Averaged Cumulative Change in the Number of Speculators who are Long Versus who are Short Around
Dates when Speculators and Hedgers have Extreme and Opposing Positions. SL-type events are when speculators are
extremely long and hedgers extremely short. HL-type events are when speculators are extremely short and hedgers
extremely long. The solid and dashed lines represent the cumulative change in the number of speculators long and
short, respectively. Times relative to the event date, measured in weeks, are on the horizontal axis from 10 weeks before
traders take an extreme position until 10 weeks after. The dotted vertical line indicates the event time. The averaged
cumulative change in the total number of large hedgers. The statistics are calculated from 698 weekly observations
from September 30, 1992 until February 28, 2006. The number of traders in the market is reported in the CFTC
Commitments of Traders Reports.
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Figure 1.10: Averaged Cumulative Abnormal Returns. Returns are assumed to have a constant mean. Time
relative to the event date, measured in weeks, are on the horizontal axis. Events at time zero (indicated by a vertical
dotted line) are extreme opposing positions by large hedgers and speculators. When speculators are long and hedgers
are short (solid line), the event date coincides with a local price top. When speculators are short and hedgers long, the
event date coincides with a local price bottom. Statistics are calculated from 698 weekly observations from September
30, 1992 until February 28, 2006. Within the sample period, there are 20 extreme events of each type for a total of 40
extreme events. Trader positions are reported in the CFTC Commitments of Traders Reports and the weekly returns
are calculated from tick-level price data from TickData, www.tickdata.com.
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Figure 1.11: Average Realized Volatility Around Type SL-Type Event Dates and Type HL-Type Event Dates.
SL-type events are when speculators are extremely long and hedgers extremely short. HL-type events are when
speculators are extremely short and hedgers extremely long. The dashed lines are a smoothed versions of the average
realized volatility computed by using a method of running medians known as 4(3RSR)2H with twicing. The dotted
horizontal line is the average realized volatility over the entire sample. Times relative to the event date, measured in
weeks, are on the horizontal axis from 10 weeks before traders take an extreme position until 10 weeks after. Statistics
are calculated from 698 weekly observations from September 30, 1992 until February 28, 2006. Trader positions are
reported in the CFTC Commitments of Traders Reports and the weekly returns are calculated from tick-level price
data from TickData, www.tickdata.com.
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(a)

(b)

Figure 1.12: Average Directional Realized Volatility Around Type HL-Type Event Dates. HL-type events are
when speculators are extremely short and hedgers extremely long. Panel (a) plots the average negative directional
realized volatility, and panel (b) plots the positive directional realized volatility. The dashed lines are a smoothed
versions of the average realized volatility computed by using a method of running medians known as 4(3RSR)2H with
twicing. The dotted horizontal lines in the respective panels are the average negative and positive directional realized
volatility over the entire sample. Times relative to the event date, measured in weeks, are on the horizontal axis from
10 weeks before traders take an extreme position until 10 weeks after. Note that the spike in panel (a) at time -1
week is spurious and is caused by a single large value. Statistics are calculated from 698 weekly observations from
September 30, 1992 until February 28, 2006. Trader positions are reported in the CFTC Commitments of Traders
Reports and the weekly returns are calculated from tick-level price data from TickData, www.tickdata.com.
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Figure 1.13: Averaged Daily Percentage Bid-Ask Spread Around Event Dates. Spreads were estimated from
transaction price data. Time relative to the event date, measured in weeks, are on the horizontal axis. Events at time
zero (indicated by a vertical dotted line) are extreme opposing positions by large hedgers and speculators. The dotted
horizontal line indicates the average daily percentage bid-ask spread from all observations. The dashed lines are a
smoothed versions of the average daily percentage bid-ask spread computed by using a method of running medians
known as 4(3RSR)2H with twicing. Statistics are calculated from 698 weekly observations from September 30, 1992
until February 28, 2006. Trader positions are reported in the CFTC Commitments of Traders Reports and the weekly
returns are calculated from tick-level price data from TickData, www.tickdata.com.
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Figure 1.14: Average Realized Volatility Around Type SL-Type Event Dates and Type HL-Type Event Dates for
Three Markets. SL-type events are when speculators are extremely long and hedgers extremely short. HL-type events
are when speculators are extremely short and hedgers extremely long. The dashed lines are a smoothed versions of
the average realized volatility computed by using a method of running medians known as 4(3RSR)2H with twicing.
The dotted horizontal line is the average realized volatility over the entire sample. Times relative to the event date,
measured in weeks, are on the horizontal axis from 10 weeks before traders take an extreme position until 10 weeks
after. Statistics are calculated from weekly observations from September 30, 1992 until February 28, 2006. Trader
positions are reported in the CFTC Commitments of Traders Reports and the weekly returns are calculated from
tick-level price data from TickData, www.tickdata.com.



Chapter 2

The Limits of Anonymity:

Identifying Large Block Trades in

Real-Time

2.1 Introduction

Financial markets are not perfectly liquid trading environments, and as a result, trading is

costly. An important component of the cost of trading is referred to as market impact - the

impact of the traders own actions on the market price. For a small trader, the market impact

may only be the movement between the best bid and ask prices, but for a trader needing to

buy or sell a large number of shares (referred to as a block) the market impact can be the

most important component of the cost of trading [5]. Because of this practical importance,

there has been considerable academic and industrial research into understanding market

impact and how to trade optimally in its presence. This paper adds to this literature

by addressing the question: can market participants detect the market impact of a block

trader and infer his or her presence even when transactions are anonymously matched?

Under certain size and market characteristics, the answer to this question is yes, and this

has strategic implications for optimal trading which have thus far not been considered in

the published literature.

The market impact of a block trade is a function of the size of the trade (or the rate

of trading) and various market attributes. If a large block trade were to be executed very

49
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quickly, it would ‘consume’ liquidity faster than it was replaced and prices would have to

move in favor of potential counterparties, and against the block trader. A vivid example

of a ‘liquidity shock’ caused by a trade too large for the market to accommodate was the

‘flash crash’ of May 6th, 2010, where, within only minutes, the Dow Jones stock market

index experienced and recovered from its biggest intraday point decline in its history. The

SEC and CFTC found this crash to have originated from a single algorithmic trader selling

75, 000 E-Mini stock index futures contracts too quickly and without regard for market

impact.

To avoid causing excessive market impact, block traders typically spread their trades

over time to allow liquidity to be replenished at a rate close to its rate of consumption

from the block trade executions. Slow execution, however, is also costly since it increases

the uncertainty of the average execution price for the block. The block trader must decide

on the optimal sequence of trades by trading off his concern for market impact and price

uncertainty.

For an illustrative and motivating example, we can look to the French stock market

in January of 2008. Since exchange-based trading is anonymous, identifying block traders

typically requires access to private brokerage data (e.g. see [5]). However, on January

19th of 2008, Societe Generale discovered that one of their traders, Jerome Kerviel, had

accumulated massive unauthorized equity positions worth 49.9 billion Euros, an amount

that was larger than the bank’s total market capitalization. Over the three days of January

21 - 23, Societe Generale sold off Kerviel’s positions thereby giving us an excellent example

of a large block trade in action. Public disclosure of the block trade was made on January

24th, the day after the trade was completed. One of main components of the French CAC

40 index is Total SA, a large French multinational oil company. Since this company was

almost surely a part of Kerviel’s portfolio, we can examine its stock for characteristics of a

large block trade during that period.

[FIGURE 1 ABOUT HERE]

Figure 1 shows the behavior of Total SA’s stock between January 15th and the 25th,

and indicates Societe General’s sell-off period. This figure demonstrates several common

features of block trades. First, in the top panel, we see a fairly steady fall in the stock price

during the block sale period. This is consistent with market impact from a large sale causing

downward price pressure. The bank’s liquidation of Kerviel’s portfolio reportedly cost 4.9
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billion Euros. Second, in the middle panel, we see that the filtered absolute hourly price

range jumps to a higher level during the block trade and then reverts back to it’s earlier

level. This is consistent with higher volatility during a block trade due to wider spreads and

order imbalances. Third, in the bottom panel, we see that the deseasonalized hourly volume

is consistently above typical volumes throughout the block sale, consistent with the block

trader adding to liquidity demand. Finally, we see that these effects in price, volatility, and

volume all revert, or decay, after the block trade is completed.

Given that these characteristics develop and persist in real-time during block trades, this

paper investigates whether another market participant with no insider information about

block trades (i.e. only using public market data) can accurately infer when a block trade is

actively present in the market. To formally test this hypothesis, a state-switching methodol-

ogy is used to identify times when a block trader is present, and its performance on simulated

data is measured using precision and recall measures from the classification literature. The

answer to this question of whether such methodologies work is, in certain environments, yes,

and so a second question is asked: Could this market participant who is capable of inferring

block trading strategically exploit this information to extract profit? This hypothesis is

tested using a simple trading strategy based on the classifier’s output. Such a capacity to

earn profits from the market impact of block trading will impose additional costs to block

traders, and would make optimal block trading a strategic interaction.

This investigation proceeds by first developing a formal framework for simulating a

market environment with block trading. Within this environment, a Markov state switching

model is proposed as an option for identifying the times when a block trader is present.

This choice was inspired by the work of James Hamilton [36] on business cycles. This

model is then implemented on the simulated data over various block trading parameters to

determine under what conditions block traders can be identified using such approaches. A

simple heuristic is introduced to distinguish block purchases from block sales, and a trading

strategy based on this classification system is then tested. The paper ends with a discussion

of the results and their implications for trader anonymity and optimal trading. Throughout

the paper, the relevant literature streams are reviewed to provide context and additional

information.
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2.2 The Simulation Environment

While the Societe Generale block trade lasted for three days because of its size, most block

trades have a much shorter duration. In the empirical study by [5], their sample of block

trades of at least 0.25% of average daily volume took an average of 0.39 days to complete

(minimum = 0.00, median = 0.32, and max = 1.01). With core trading hours between

9:30am and 4:00pm on the New York Stock Exchange, most of these block trades were

completed in just over two hours1. Although many of these trades would be too small

to interest a strategic trader, these sample statistics demonstrate the need for very high-

frequency sampling in order to generate useful estimates of important quantities without

depending on too long of a temporal history. A long temporal history will bias estimates

shortly after the entry or exit of a block trader since true values will jump to a new level

but estimates will be based on data generated before the jump.

For this simulation study, high frequency data will be generated from a model of prices

with a market impact component. A very general market impact model is presented by [32]

and is adapted for the current study. The stock price Pt at time t is given by

Pt = P0 +

∫ t

0
f(
·
xs)G(t− s)ds+

∫ t

0
σ
√
PtdZs

where
·
xs is the rate of trading (

·
xs > 0 for a purchase and

·
xs < 0 for a sale) used by the

block trader at time s < t, f(
·
xs) is the instantaneous market impact of this trading, G(t−s)

is a decay factor, and Zs is a standard Brownian motion. Notice that as long as f(0) = 0

the market impact component only plays a role when the block trader is actively present in

the market. The other component of the price is a random walk component with volatility

σ
√
Pt that increases and decreases with Pt.

Of course, trading is a discrete process, and this continuous time process can be viewed

as the limit of the following discrete time process:

Pt = P0 +
∑
i<t

f(δxi)G(t− i) + εt

where δxi is the amount of stock traded by the block trader in the ith time interval, f is the

1While most block trades appear to be completed intraday, some large block trades involve thousands of
individual transactions and can take weeks to complete [20, 71]
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discrete market impact function (with apologies for the abuse of notation), G is the decay

factor, and εt is a zero-mean i.i.d. Gaussian innovation with variance σ2Pt.

This general framework encompasses several specific functional forms for the market

impact and decay functions that have been proposed in the literature. For example, [5]

define the temporary market impact as f(v) = ησvβ where v is a measure of the rate of

trading, σ is volatility, and where β and η are estimated empirically (β ≈ 0.6 and η ≈ 0.14).

In their model, temporary market impact decays instantaneously and so G is simply an

indicator function with the value 1 when t − s = 0 and is equal to 0 otherwise. This

temporary component of market impact would not leave any opportunity for a strategic

trader, however the authors also include a permanent market impact component that does

not decay at all.

Another specific model of market impact that can be captured by this general framework

includes that by [63]. They define market impact to be proportional to the trading rate,

f(v) = αv, and to decay exponentially, G(t− s) = e−ρ(t−s). The model of [14] also fits into

this framework with a market impact that is concave in the trading rate, f(v) = α log(v),

and a power-law decay function, G(t − s) = α(l0 + t − s)−γ . [32] points out that the

market impact function, f , and the decay function, G, should be related to avoid statistical

arbitrage in ‘round trip’ trading. That is, we should not unconditionally expect to earn

positive profits simply by buying and selling an equal number of shares, regardless of the

rates at which we trade.

For this study the popular power-law functional form is used for both the market impact

and decay functions. There has long been empirical evidence that the market impact of small

transaction volumes (relative to the overall volume of the particular market) is a concave

function of the trading rate [42, 46, 53]. The square-root and logarithmic functions have

been used, but a general market impact function that can capture differences across markets

and aggregation levels is the following power-law formulation [14]:

f(v) =
αvψ

λ

where λ is a liquidity parameter which can be dependant on the market capitalization of

the stock. The exponent ψ can also be a function of the rate of trade, but for aggregated

transaction data, ψ is commonly found to be about 0.5 for various markets and aggregation

levels [70, 49, 31]. [5] estimates the exponent for temporary market impact to be ψ = 0.6
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with a coefficient α = 0.142 and since they use U.S. data, as this study uses, their estimates

are used in the following simulations.

The power-law formulation of market impact is a simplification of the true function

which is dependent on the available liquidity in the order book and the particular way that

liquidity is replenished as it is consumed. The power-law function will clearly fail to describe

the market impact of very large orders for which market impact should become convex in

the trading rate. The market impact would theoretically be unbounded if a market order

was placed for more that the total liquidity being offered. This aspect of the market impact

function is not considered in this study.

As with the market impact function, the decay function used in this study has a power-

law specification.

G(t− s) = (t− s)−γ

This specification was argued for by [14] and they estimate that γ = 0.4. Given the chosen

specification of market impact, the choice of decay function is more restricted in order

to avoid building statistical arbitrage opportunities into the simulation environment. [32]

provides a lemma describing the ‘dynamic-no-arbitrage’ condition for small trading rates

under power-law market impact and decay functions with exponents ψ and −γ, respectively.

This condition requires that α+γ ≥ 1. The estimates of [5] and [14] of ψ = 0.6 and γ = 0.4

satisfy this condition and are used in this study.

Given the cost of trading, captured by the market impact function, and the uncertainty

of the transaction price of future orders, captured by the volatility of the market, a block

trader has two problems to solve: (1) how to schedule their trading over time, and (2)

what type of trades to use. The second question asks whether the trader will use market

or limit orders, and if limit orders, what limit price should be used. This question of

order placement has been studied theoretically by [8] and [40] among others, and has been

empirically studied by [41], [60] and [43]. The simple market impact model used in this

study does not differentiate order types, and so this component of block trading is ignored

in the simulation.

While we can ignore order placement, the trading schedule of the block trader must

be specified in order to complete the simulations. Optimal block trading has been exten-

sively studied, with one of the classic references being [11]. More recent and sophisticated
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approaches have been developed by [3], [1], [4], [2] and [13]. The general approach is to

trade off market risk (i.e. the risk of prices changing before the block trade is complete)

and market impact (i.e. the implicit cost of trading quickly) by minimizing a mean-variance

criteria. Usually, this will result in a convex trading trajectory (the broken line in Figure 2)

where the trade rate is initially high, but decelerates throughout the trade. To simplify the

simulation environment, this paper uses a simple constant rate trading schedule (the solid

line in Figure 2) throughout the block trades.

[FIGURE 2 ABOUT HERE]

Given the above discussion, we can now summarize the simulation environment used in

this study. The discrete price process used is:

Pt = P0 +
∑
i<t

sign(δxi)ασ

(
|δxi|
V i

)ψ 1

(t− i)γ
+ εt

with market impact parameters α = 0.142 and ψ = 0.6, market impact decay parameter

γ = 0.4, and where εt is a zero-mean i.i.d. Gaussian innovation with variance σ2Pt. Artificial

days have 1000 periods and the daily volatility is set to 0.01. The block trade is carried out

at a constant rate δxt per period and the expected volume per period is constant at V t. The

trade rate and expected volume are constant, but are subscripted with t to remain general

enough for future use with real market data. Since only a single asset is being simulated,

no liquidity factors, λ, are included in the model.

[FIGURE 3 ABOUT HERE]

Figure 3 shows an example of this simulation. In this example, a block purchase repre-

senting 10% of the typical trade rate occurs between periods 400 and 600. The top panel

shows the stock price between periods 0 and 1000 under the block trade (solid line) and

under the counterfactual where the block trade never occurred. The middle panel shows the

extracted cumulative market impact where we see the monotonically rising market impact

component of the price during the block trade, followed by a period of decay after the block

trade is complete. The bottom panel shows the demeaned trade volume throughout this

period, with a slightly higher trade rate during the block trade. This simulation implicitly
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assumes that there are no sizeable strategic traders identifying the block trader and ‘piggy-

backing’ their trades. The simulation also does not explicitly model any order-flow outside

of the block trade.

In order to train and test classification schemes, a sequence of such simulations will be

constructed. Simulations and testing will be done under various block trading rates and

durations to determine how these factors influence the performance of the identification

algorithms.

The algorithms will take as input, variables that seem to be useful in distinguishing

block-trading episodes from non-block-trading episodes. From looking at the Total SA

example (Figure 1) and the simulation example (Figure 3), volume is the clear candidate

since it jumps to a new level during a block trade. Volatility could also be indicative of

a block trade. Returns will be important for distinguishing purchases from sales, but this

is likely to be the most difficult component of the exercise since return predictability is

notoriously difficult. The specific use of these variables will be further described in the

following sections where the identification algorithms are described in detail.

2.3 A Markov State Switching Model

Whether or not a strategic trader can identify the presence of a large block trader hinges on

how block trading impacts the market. The hypothesis being investigated is that markets

behave in measurably different ways when a block is being traded compared to when no

blocks are being traded. In the simulation environment, this difference has been built into

the environment by adding a market impact component to the price model. So we know

the difference is there, so the question is really whether we can detect it in real-time. To

formalize this idea, we can think of the market as being in one of two (or more) states:

(1) a block trader is present, and (2) no block trader is present. The market has different

dynamics in each of these states, but the difficulty is that we cannot directly observe which

state the market is in using public information. As a result, the state of the market, as well

as the state-dependent parameters, must be inferred from the observable data.

In the econometric literature, one of the first studies to model two separate regimes for

a single economic time series was by [64]. The use of an unobserved Markov process to

model regime changes was introduced by [34]. [36] popularized the use of discrete Markov

processes when he proposed a simple Markov state switching autoregressive model, which
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he subsequently generalized [37] and used to model U.S. real Gross National Product. In his

study, one state corresponded to periods of economic expansion, and the other corresponded

to periods of recession. It is this type of Markov model that is used in this section to model

financial time series in the presence and absence of large block traders.

There is substantial heterogeneity in the size, duration, and strategy of large block

trades, so to assign a small number of states to capture the differences induced by block

traders requires a degree of simplification. There are several choices for the number of states,

including:

• Two States: A block trader are either present or absent.

• Three States: A block traders is buying, or selling, or absent.

• Five States: A block trader is buying, or is selling, or the market impact of a prior

block purchase is decaying, or the market impact of a prior block sale is decaying, or

there is no substantial influence of block trading in the market.

• K States: Block traders of multiple size categories may be influencing the market.

This section develops the most basic model with only two states in order to generate

a base case for block trading identification that can be extended by future research. This

allows us to measure the potential identification of block trading, but not to distinguish

between block purchases and sales. Since a strategic trader will need to know whether

a block trader is buying or selling, a simple heuristic is added to the the Markov model.

A further simplification comes in the Markov model by using only the volume series to

identify block trading, and using the return series after a block trade has been identified

to distinguish purchases from sales. The choice to begin model development using volume

data rather than return data is made because changes in volume are a stronger and less

noisy signal. Both of these components are described below.

A discrete state Markov process (often called a Markov chain) classifies the state of the

world, St, (often called regimes) at any time t as one of a set of discrete types. In the current

model there are two possible states,

St ∈ {1, 2}.

One state, St = 0, corresponds to normal market conditions when there are no block traders

present, and the other, St = 1, corresponds to market conditions when a block trader is
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present. These different states are associated with different dynamics which are modeled as

having different parameter values or functional relationships. Transitions from one state to

another is governed by the Markov property (i.e. that the next state depends only on the

current state and not on the past). State transition probabilities are given by

Pr(St = 0|St−1 = 0) = P00 ≥ 0

Pr(St = 0|St−1 = 1) = P01 ≥ 0

Pr(St = 1|St−1 = 0) = P10 ≥ 0

Pr(St = 1|St−1 = 1) = P11 ≥ 0

with the usual probabilities requirement that

2∑
j=1

Pr(St = j|St−1 = i) = 1 (2.1)

for i = 1, 2. These probabilities are usually collected in a state transition matrix,

P =

[
P00 P01

P10 P11

]

Within this two-state environment, volume (Vt) is modeled using a state-dependent

intercept model:

Vt = αSt + εt, t = 1, 2, . . . , T,

εt ∼ N(0, σ2
St

),

αSt = α0(1− St) + α1St,

σ2
St

= σ2
0(1− St) + σ2

1St,

St = 0 or 1.

Volume was transformed by the natural logarithm for the estimation to avoid having to

constrain it to be greater than zero and to improve the symmetry of the distribution.

Other constrained parameters were transformed with monotonic functions for similar rea-

sons. Since each σ2
St

is constrained to be within (0, inf), we can estimate y = log σ2
St

and

then get our wanted parameter back using the transformation σ2
St

= ey. Similarly, the

transition probabilities are constrained to be in (0, 1), so the unconstrained transformation

yij = log[Pij/(1 − Pij)] was estimated, and our desired probabilities were restored using

Pij = 1/(1 + e−yij ). Finally, in order to ensure that α0 ≤ α1, so that we know that state
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1 is the block trading state, the equation α1 = α0 + eβ1 was used and β1 = log(α1 − α0)

was estimated. In the results throughout the paper, all transformations have been reversed

after the estimation and the results are reported in their intuitive form.

If the St, t = 1, 2, . . . , T , were observable (so we knew a priori when the block trader was

present), then the above would simply be a dummy variable model. Unfortunately for the

strategic trader, the states are not directly observable. By assuming that the states follow

a (first-order) Markov switching process, we can estimate the parameters of the model as

well as the likelihood of each state Pr[St = i|Ψt−1] for i = 0, 1 and each time t.

The econometric details of this maximum likelihood estimation can be found in [55] and

a discussion of its implementation can be found in [57] and [74]. The estimation process is

iterative, and directly programming it in S-Plus or other interpreted languages can result

in slow and inefficient computation. Fast optimization code written in C for this kind of

iterative estimation has been included in the S-Plus package S+FinMetrics/SsfPack. This

package can be adopted for Markov switching models, however the models must be formatted

as state space models. A brief description of state space models and how to write the above

model in state space form has been included in Appendix I at the end of this paper.

2.3.1 Estimation and Classification Results

Two behaviorial variables can impact the identifiability of a block trader: (1) how fast they

trade relative to typical trade volume, and (2) how long they continue to trade at that rate

(i.e. the duration of the block trade). In this section, these two factors are varied to see

how easily the Markov-based identification scheme can find the block traders under varying

conditions.

While classification performance will be described for all variable pairs, full estimation

results are only given for a single case. This case will illustrate several stylized facts of the

estimated models. This base case uses the simulated environment described in the previous

section with block trades lasting 0.20 days each and have a high trade rate of 30% of normal

trade volume per period. This long duration, high rate example should be easy for the

model to capture. Following this example, trade durations and rates are lowered to find

how classification performance falls with these factors.

[TABLE I ABOUT HERE]

Table I shows the estimation results of the two-state Markov switching model run on
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simulated data for this base case. The estimated intercepts of 99 and 129 are very close

to the true values of 100 and 130, respectively. [55] derives a simple equation to infer the

duration of each state from the estimated transition probabilities. The average duration of

a block trade is:
1

1− P11
= 189.3 ≈ 0.19days

An alternative measure of the persistence of the block trading state are the ergodic probabil-

ities for a stationary Markov chain presented by [38]. Let πt = (P0, P1) be the probabilities

of being in each state at time t. Then given the state transition matrix P , the probability

of being in each state at time t + 1 is πt+1 = P ′πt. The ergodic probabilities, π, are those

that satisfy π = P ′π. From the estimated transition probabilities,

π = (0.803, 0.197),

which are very close to the true unconditional probabilities of being in a normal market

state (80%) and being in a block-trading state (20%).

Using a filtering algorithm developed by [54], SsfPack approximates the probabilities

Pr(St = j|Γt) of being in a state conditional on all information available at time t, denoted

Γt. These probabilities for the block trading state, St = 1, are shown in Figure 4. In this

example, the block trades occur every day between the 400th and 600th period. A close up

of the time around the transition period from normal trading to block trading at time 400

is shown in the bottom panel. Within only a few periods after the block trade begins, the

probability of a block trade is near 100% indicating that a block trade of this size should

be easy to spot.

[FIGURE 4 ABOUT HERE]

A simple probability threshold rule is used to classify times as being in state 0 or 1.

If Pr(St = 1|Γt) > ρ∗ then time t is classified as a time when a block trade is likely to be

occurring (i.e. state 1), otherwise it is classified as a time without a block trade (i.e. state 0).

For this study, ρ∗ = 0.50 was chosen, however, depending on the costs of misclassifications,

the threshold probability can be adjusted.

With this classification rule, we generate a sequence of predicted states which we can then

compare with the true states using classification performance measures. Appendix II at the

end of this paper provides a brief introduction of classification and provides formal definitions



CHAPTER 2. THE LIMITS OF ANONYMITY 61

of the performance measures that are used in this paper. To evaluate the binary classification

performance of the Markov model with the threshold probability classification rule, the

accuracy, precision, and recall measures are reported. Accuracy is a popular classification

measure defined as the proportion of correct classifications. This measure has a severe

problem for cases where the class of interest, like block trading times, is very infrequent

since a useless rule of always predicting the frequent class will have a high accuracy, but be

useless in practice.

To overcome this problem with accuracy, two other classification performance measures,

precision and recall, have been developed and are reported in this paper. Precision, with

respect to the block trading state, is the proportion of periods predicted to be block trading

periods which truly belong to that class. So a classifier with a high precision will have a low

proportion of ‘false positives.’ The other measure, recall, is the proportion of periods that

are truly block trading periods which are classified as belonging to that class. So a classifier

with a high recall will have a low proportion of ‘false negatives.’ These two performance

measures, along with accuracy, are reported for 20 different pairs of block trading rates and

durations in Table II.

[TABLE II ABOUT HERE]

Table II shows that as expected, accuracy results are consistently high, even when preci-

sion and recall measures are low. Also, as expected, precision and recall fall with decreases

in either the block trading rate or duration. It is interesting that even with a very short

duration of 0.02 days, a high trading rate easily identifies a block trader. However, even

long duration block trades are difficult to identify if their trade rate is low enough.

It is possible that a strategic trader could take advantage of the knowledge that a block

trader is trading without knowledge of whether the block is a purchase or a sale. This

could be done through convergence or pairs trading strategies, or by trading volatility in

the options market. However, the primary question of this paper is whether a strategic

trader can directly take advantage of the market impact of a block trade, and for this it is

important to know whether a block is being purchased or sold.

There are many options in constructing a heuristic to distinguish a purchase from a sale.

Signed order flow could be estimated in order to determine whether the excess volume is

likely from purchases or sales. Since the simulated data was of a market price without a bid-

ask spread component, this strategy cannot be used here. Another option is to use recent
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return data and rely on the cumulative market impact to reveal whether it is positive (for

purchases) or negative (for sales). This option has its weaknesses for pure classification since,

for example, a block purchase could be occurring during a falling market where negative price

innovations are dominating positive market impact, thereby causing the strategic trader to

classify the period as a block sale. This problem will become more pronounced for smaller

block trades. Despite this drawback, this is the option chosen for this paper.

To implement this heuristic based on a window of past returns, the natural choice for the

beginning of the window is the beginning of the block trade. Since the strategic trader only

has an estimate of the start of the block trade, and the bottom panel of Figure 4 shows that

this estimated start time of a block trade lags the true start by a few periods. To account

for this lag and provide a stronger return signal, this study uses the price from five periods

before the first block trading signal to calculate cumulative returns. If the cumulative return

based on this price is positive for a time that is identified as having an active block trade,

the rule for distinguishing block purchases from sales is to label the period a purchase. If the

cumulative return is negative, then the period is labeled a sale. In order to avoid resetting

the reference price too often when a time in the middle of a block trade is misclassified (see,

for example, the middle panel of Figure 4), the probabilities of states are filtered with an

exponential moving average for the purposes of finding the first time of the block trade.

This signal weakens over time since the price impact is decaying. Figure 5 shows the

decaying cumulative market impact for a 30% and a 10% block trade. The block purchase in

this figure begins at time zero, and time at time t the cumulative market impact is calculated

as:

MIt(
δxi
Vi

) =
∑
i<t

sign(δxi)ασ

(
|δxi|
Vi

)ψ 1

(t− i)γ

Although the price process used in the simulation has price dependent volatility, for short

horizons without any block trades, the process can be approximated by a Wiener process

for which variance increases linearly with the length of the time interval. That is,

V ar(wt − w0) =

T∑
i=1

∆t = T∆t = t

for a Wiener process {wt}. This means that the percentiles for price innovations scale

linearly with time. The straight broken lines in Figure 5 show the 70th and 90th percentiles

for the cumulative price innovations. We can see that as time passes, the variance of the
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underlying price process eventually dominates the decaying market impact.

[FIGURE 5 ABOUT HERE]

Used in conjunction with the Markov model and binary classification rule described

above, this heuristic for distinguishing purchases from sales provides a three-state classifier.

The accuracy, precision and recall performance of this classifier is reported in Table III. Since

purchases and sales are equally present in the simulation sample, the reported statistics are

averaged with equal weights for purchases and sales.

[TABLE III ABOUT HERE]

The three-state classification problem is more difficult than the binary case since it in-

volves identifying temporary trends in non-stationary prices. As a result, the classification

performance measures are worse compared to those in Table II. When the trade rate is

high, classification performance is still good even for short duration block trades. How-

ever, since the market impact impact of low trading rates is a smaller component of price

changes relative to the exogenous price innovations, performance falls quickly as trading

rate decreases.

In addition to classification performance, Table III lists trading performance from a

long/short trading strategy based on the three-state classifications. If a period was classified

as a block-purchase time, then a long position was taken in the next period. Similarly, if

a period was classified as a block-sale time, then a short position was taken in the next

period. When no block trading was predicted, then no position was taken in the following

period. Figure 6 shows the cumulative return for periods when a long or short position was

taken for the long-duration (0.20 days), high-trade-rate (30% of typical volume) case. This

strategy does fairly well compared with the passive case of holding a long-only position for

the same periods. No trading costs were accounted for in these calculations.

[FIGURE 6 ABOUT HERE]

In order to compare the trading performance across parameter pairs, a Sharpe multiplier

is listed in Table III. The Sharpe multiplier is defined as:

SM({rTSt }) =
SR({rTSt })
|SR({rLongt })|
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where {rTSt } is the sequence of returns from the trading strategy, and {rLongt } is the sequence

of returns from the long-only strategy for the same times, and SR({rt}) = E[rt]/σrt is the

Sharpe ratio. This measure is a conservative measure of the performance of the trading

strategy since it compares it against the best of either the pure long-only or pure short-only

strategies.

Interestingly, the trading strategy does not do the best for the longest duration and

highest trading rate parameter pair, even though this case produces the best buy/sell preci-

sion and recall statistics. This is due to the fact that the measure is constructed for periods

when the strategy takes a position, and shorter duration block trades have a higher average

cumulative market impact since there is less time for decay to occur. However, the shortest

duration and highest trading rate parameter pair does not produce good trading results

either. This is because of the sharp decay of cumulative market impact after the block

trade ends, and for short duration block trades, the classifier spends a longer portion of it’s

invested time producing false positive signals after the block trade has ended.

2.4 Limits of Anonymity

The results of the previous section indicate that it is indeed possible for a strategic trader

to identify the presence of a block trader in the market. Of course, these results are for

the simplified simulation environment and require further research to test their validity in

real markets. Nevertheless, the results do shed light on the limits of anonymity in financial

markets. Block traders lose their anonymity by trading in large volumes for extended

periods.

Block traders may not be concerned about their loss of anonymity unless they face

higher trading costs as a result. This paper introduced a hypothetical strategic trader who

was on the look out for block traders with the hope of ‘riding’ the market impact of their

block trades. Of course, if this strategic trader was also trading in significant volumes, he

would himself have market impact which would likely increase the cost to the block trader.

Looking back at the motivating example of the block trade of Societe Generale (Figure 1),

while their block trade ended at the close of January 23rd, the trade volume for January

24th was also high, indicating that the activity of Societe Generale may have induced others

to trade who were then exiting their position after they realized that the block trade was

finished.
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The ability to identify a block trader can be profitable for a strategic trader, as we saw in

Figure 6. However, classifiers with lower precision and recall for identifying block purchases

and sales can generate trading strategies that perform quite poorly. Low precision and recall

performance have quite different impacts on a trading strategy. A low recall classifier will

have a high proportion of ‘false negatives’, that is, it will predict no block trader when there

is in fact one present. These false negatives will be most prevalent at the beginning of a

block trade where the classifier must use lagged data that is from before the block trade.

On the other hand, a low precision classifier will have a high proportion of ‘false positives’

where it predicts a block trade when there is not one occurring. This is likely to be prevalent

after a block trade has just ended, and the classifier again lags the true state.

To understand the impact of these classification lags, and the importance of precision

and recall, we can imagine a classifier that has an equal number of false negatives (FNs)

and false positives (FPs), and where all of the false negatives occur at the beginning of a

block trade in the form of a classification lag, and all of the false positives occur just after

the block trade has entered. This situation is illustrated in Figure 7.

[FIGURE 7 ABOUT HERE]

The true and predicted probabilities of block trading are displayed in the top panel, and

the bottom panel shows how much of the market impact a strategic trader can capture using

the lagging classifier. It is clear that as the lags increase, a smaller and smaller portion of the

market impact is captured. Eventually, at a lag of about 50% of the block trade duration,

the purchase and sale price received by the strategic trader will be equal and he will earn

zero expected profit. Any increase in the lag after this will result in expected losses. This

relationship between lags and expected profit by the strategic trader is displayed in Figure

8.

[FIGURE 8 ABOUT HERE]

Given a block trader’s time horizon and block size, he should be able to decide whether he

will lose his anonymity and attract strategic traders. If this is the case, and he may want to

trade strategically rather than continuously as most optimal trading strategies recommend.
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2.5 Conclusion

In a simulated market environment, a hypothetical strategic trader attempted to use a

simple Markov state switching model to identify the presence of block trades of various size

and duration. For sufficiently large and extended block trades, the strategic trader was able

to identify the block trader sufficiently well so that he could earn positive profits from a

simple long-short trading strategy that attempted to ‘ride’ the market impact of the block

trades. The block-trading strategies, as well as the identification schemes used in this paper

have been fairly simple, and certainly more sophisticated methods are employed by real

agency and proprietary trading algorithms. However, as a baseline case, the identifiability

of block trades from publicly available data is certainly a possibility, and this adds an

important strategic consideration to block trading that is typically ignored in the optimal

trading literature.
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2.6 Appendix I: State Space Models

The unknown parameters of the Markov state switching models used in this paper are

estimated by maximum likelihood estimation in S-Plus. Since the estimation process is

iterative, directly programming it in S-Plus can result in slow and inefficient computation.

The S-Plus package S+FinMetrics/SsfPack has estimation procedures using fast C code for

optimization that can be adopted for Markov switching models, however the models must

be formatted as state space models.

A state space model is a model of the form:

αt+1 = dt + Tt · αt +Ht · ηt
yt = ct + Zt · αt +Gt · εt

where α1 ∼ N(a, P ), ηt ∼ iidN(0, Ir), εt ∼ iidN(0, IN ), and E[εtη
′
t] = 0. The first equation

is called the transition equation and describes the motion of the state vector αt. The

second equation is called the measurement equation and describes the dynamics of the

observed variables yt. This general format can capture many of the time series models

used in economics including ARMA models, time-varying regression models, unobserved

component models, stochastic volatility models, and non-parametric models, among others.

Detailed descriptions of state space methods can be found in [55] and [26], and descriptions

of their implementation with SsfPack can be found in [57] and [74].

SsfPack requires state space models to be described in a compact form:(
αt+1

yt

)
= δt + Φt · αt + ut

where ut ∼ iidN(0,Ωt) and

δt =

(
dt
ct

)
,Φt =

(
Tt
Zt

)
, ut =

(
Htηt
Gtεt

)
,Ωt =

(
HtH

′
t 0

0 GtG
′
t

)

To represent a Markov state switching model, some of the parameters are state-dependent

and need to be specified: δt = δSt , Φt = ΦSt , Ωt = ΩSt . For the simple, two-state intercept

models used for modeling the volume trade, much of the state space model structure is not
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needed. The model can be specified using:

δSt =

{ (
0
c1

)
if St = 1(

0
c2

)
if St = 2

, ΦSt =

(
0

0

)
, ΩSt =



(
0 0

0 σε1

)
if St = 1(

0 0

0 σε2

)
if St = 2

with a two-by-two transition matrix and some initial value parameters.
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2.7 Appendix II: Classification Performance Measures

In the simulations created for this study, we know the exact times when simulated block

trading is occurring which allows us to determine how well the block-trading classifiers

perform. The purpose of the identification scheme (i.e. the Markov state switching model) is

to identify when this block trading is occurring and when it is not. In the computing science

literature, this is referred to as a clustering problem (also referred to as an unsupervised

learning task) since we want to group (or cluster) each trading period into sets corresponding

to block-trading periods or normal-trading periods. Clustering problems are distinct from

classification problems (also referred to as supervised learning) since the true classes are

not available for learning or estimation under clustering, but are for classification. In this

paper, we have aspects of both clustering and classification: we do not use the true classes

for learning or estimation, like a clustering task, but we do know the true classes, like a

classification task. So although we are using clustering methods, we can use classification

performance measures after the fact to determine how well the clustering methods work.

While the notion of clustering is developed throughout this paper, this appendix reviews

the formal definition of a classification problem and several useful performance measures

that are used in this paper. Classification is a very general task, but it is presented in this

appendix in the context of our trading problem.

Classification is the task of assigning each period in our time series T = {t1, ..., t|T |} to

predefined classes (or states) C = {c1, ..., c|C|}. Thus, a classifier is a function

F : T × C → {T, F}

where F(ti, cj) = T if and only if period ti belongs to class cj . Under this general specifica-

tion, a period may simultaneously belong to multiple classes, as may be appropriate under

certain definitions of the states. Such a problem is usually broken down into |C| simpler

binary classification problems. That is, for each class ci ∈ C, we define a binary classifier

Fi : T → {T, F}

where Fi(tj) = T if and only if period tj belongs to class ci. When exactly one class can be

assigned to each document, as in the case of ‘BLOCK TRADE’ and ‘NO BLOCK TRADE’,



CHAPTER 2. THE LIMITS OF ANONYMITY 70

the classifier will be of the form

F : T → C

As before, depending on the classification algorithm chosen, this type of problem may be

reduced to a set of binary classifiers with rules for dealing with multiple class assignments.

If F is the correct or authoritative classifier, then we wish to approximate this function

with F̂ . Approximating classifiers has been extensively studied in the field of machine

learning [62]. The specific classification scheme of F̂ is determined by a set of training

documents for which the correct classifications are known. These training documents can be

classified by a domain expert according to their specific properties, or they can be classified

according to some specific data which is aligned with the time series. As discussed above,

the task of this paper is not a classification task, but rater a clustering task. However, since

we do know the true classes for our simulated date, we can use the evaluation measures that

are traditionally applied to classifiers.

Recall that the classifier F maps T × C into the {T, F} such that F(ti, cj) = T if and

only if period ti belongs to class cj . In this case, we call ti a positive example of class cj .

When F(ti, cj) = F then period ti is not a member of the class cj and so we call ti a negative

example of cj . To capture the correctness of classifications from a trained classifier F̂ , we

introduce the following four basic evaluation functions:

TPF̂ (ti, cj) =

{
1 if F̂(ti, cj) = T and F(ti, cj) = T

0 otherwise

TNF̂ (ti, cj) =

{
1 if F̂(ti, cj) = F and F(ti, cj) = F

0 otherwise

FPF̂ (ti, cj) =

{
1 if F̂(ti, cj) = T and F(ti, cj) = F

0 otherwise

FNF̂ (ti, cj) =

{
1 if F̂(ti, cj) = F and F(ti, cj) = T

0 otherwise

Thus, every classification by F̂ will either be a true positive (TP ), a true negative (TN), a

false positive (FP ), or a false negative (FN). The TP s and TNs indicate correct classifi-

cations, and the FP s and FNs indicate incorrect classifications.
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A simple, and sometimes overused, performance measure of classifiers is accuracy (A)

measured as the proportion of correct classifications.

A =

|T |∑
i=1

|C|∑
j=1

(
TPF̂ (ti, cj) + TNF̂ (ti, cj)

)
|T |∑
i=1

|C|∑
j=1

(
TPF̂ (ti, cj) + TNF̂ (ti, cj) + FPF̂ (ti, cj) + FNF̂ (ti, cj)

)
The converse of accuracy is the error rate (E) measured as

E = 1−A

Accuracy, and error, are often useful performance measures, but they do not always capture

the intended notion of correctness. For example, when trying to classify rare events, positive

and negative examples will be strongly imbalanced with far more negative than positive

examples. In this case, a universal rejector (i.e. F̂(ti, cj) = F , ∀ti, cj) will have a high

accuracy while being of no practical use.

To address such concerns, two other performance measures have become popular: pre-

cision and recall. Precision, with respect to a class cj , is the proportion of periods assigned

to class cj which actually belong to that class.

PF̂ (cj) =

|T |∑
i=1

TPF̂ (ti, cj)

|T |∑
i=1

(
TPF̂ (ti, cj) + FPF̂ (ti, cj)

)
So, given a particular class, precision is the ratio of correct positive classifications to the

total number of positive classifications. Precision can be aggregated across classes in two

ways. First, microaveraged precision averages the precision of F̂ for each class, weighted by

the number of positive examples.

PMicro
F̂ =

|C|∑
j=1

|T |∑
i=1

TPF̂ (ti, cj)

|C|∑
j=1

|T |∑
i=1

(
TPF̂ (ti, cj) + FPF̂ (ti, cj)

)
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Alternatively, macroaveraged precision averages the precision for each class with equal

weights.

PMacro
F̂ =

|C|∑
j=1

PF̂ (cj)

|C|

The second performance measure is recall. Recall, for a given class cj , is the proportion

of periods that truly belong to cj which are classified as belonging to that class by F̂ .

RF̂ (cj) =

|T |∑
i=1

TPF̂ (ti, cj)

|T |∑
i=1

(
TPF̂ (ti, cj) + FNF̂ (ti, cj)

)
So, given a particular class, precision is the ratio of the number of correct positive classifi-

cations by the total number of truly positive class examples. As with precisions, we can use

microaveraging to define a measure of recall across all classes.

RMicro
F̂ =

|C|∑
j=1

|T |∑
i=1

TPF̂ (ti, cj)

|C|∑
j=1

|T |∑
i=1

(
TPF̂ (ti, cj) + FNF̂ (ti, cj)

)
Alternatively, we may define a macroaverage measure of recall.

RMacro
F̂ =

|C|∑
j=1

RF̂ (cj)

|C|

Most classifiers can be set up to tradeoff precision for recall, or vice-versa. Consequently,

it is useful to present a combined measure of performance, the F1 score, which is the har-

monic mean of precision and recall:

F1 =
2× P ×R
P +R

where P and R are either micro- or macroaveraged.
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Vt = α0(1− St) + α1St + εt, εt ∼ N(0, σ2
0(1− St) + σ2

1St)

Model Parameter Estimated Value p-Value
α0 99.43 0.000
α1 129.45 0.000
σ2
0 0.0101 0.000
σ2
1 0.0059 0.000

P12 0.0013 0.000
P21 0.0053 0.000

P11 = 1− P12 0.9987 0.000
P22 = 1− P21 0.9947 0.000

Table 2.1: Estimates of a Markov state switching model. Data is from simulated volume data with 1000 periods
per day for 20 days, with a block trade each day lasting 200 periods with a trade rate of 30% of normal volume.
True values for α0 and α1 are 100 and 130, respectively. The model was estimated on volume data that had been
transformed by the natural logarithm function, but intercept estimates are presented after being untransformed by
the exponential function. Variance estimates are for the log-transformed data. Pij is the probability of switching from
state i to state j.
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Block Trade Classification Block Trade Rate
Duration Measure 0.30 0.20 0.10 0.05 0.02

Accuracy 0.998 0.994 0.978 0.945 0.825
0.20 Precision 0.996 0.989 0.962 0.885 0.565

Recall 0.993 0.980 0.926 0.831 0.539

Accuracy 0.997 0.995 0.978 0.943 0.894
0.10 Precision 0.984 0.976 0.895 0.824 0.439

Recall 0.984 0.970 0.889 0.552 0.227

Accuracy 0.997 0.995 0.982 0.956 n/a
0.05 Precision 0.979 0.971 0.868 0.664 n/a

Recall 0.970 0.932 0.748 0.275 n/a

Accuracy 0.998 0.994 0.985 n/a n/a
0.025 Precision 0.968 0.900 0.712 n/a n/a

Recall 0.920 0.808 0.420 n/a n/a

Table 2.2: Binary classification performance. The block trade duration is the fraction of a trading day that the
block trade takes to execute. Block trade rate is the percentage of the expected volume that the block trade adds to
the market volume. Accuracy, Precision and Recall are classification performance measures. Accuracy is measured as
the proportion of correct classifications. Precision is the proportion of periods predicted to be block trading periods in
which a block trade is truly executing. Recall is the proportion of periods that are truly block trading periods which
are classified as belonging to that class. Entries marked with an ‘n/a’ are not available because the estimator would
not converge for simulations with block trades of low trading rate and short duration.
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Block Trade Performance Block Trade Rate
Duration Measure 0.30 0.20 0.10 0.05 0.02

Accuracy 0.995 0.978 0.948 0.911 0.851
0.20 Precision 0.974 0.895 0.750 0.558 0.238

Recall 0.971 0.886 0.721 0.524 0.232
Sharpe Multiplier 6.81 3.66 0.08 −0.09 −5.02

Accuracy 0.992 0.986 0.964 0.948 0.936
0.10 Precision 0.926 0.864 0.641 0.466 0.224

Recall 0.923 0.857 0.636 0.311 0.120
Sharpe Multiplier 13.51 4.61 1.11 −1.02 −5.03

Accuracy 0.994 0.987 0.977 0.972 n/a
0.05 Precision 0.877 0.752 0.558 0.356 n/a

Recall 0.869 0.717 0.475 0.164 n/a
Sharpe Multiplier 4.41 3.51 −1.13 −0.96 n/a

Accuracy 0.995 0.994 0.990 n/a n/a
0.025 Precision 0.777 0.725 0.480 n/a n/a

Recall 0.738 0.650 0.283 n/a n/a
Sharpe Multiplier −0.08 −16.27 −6.52 n/a n/a

Table 2.3: Three-state classification and trading performance. The block trade duration is the fraction of a trading
day that the block trade takes to execute. Block trade rate is the percentage of the expected volume that the block
trade adds to the market volume. Accuracy, Precision and Recall are classification performance measures. Accuracy
is measured as the proportion of correct classifications. Precision is the proportion of periods predicted to be block
trading periods in which a block trade is truly executing. Recall is the proportion of periods that are truly block
trading periods which are classified as belonging to that class. The Sharpe multiplier is an investment performance
measure that compares a strategic trader’s performance resulting from identifying block trades to the better of a
long-only or short-only strategy. Entries marked with an ‘n/a’ are not available because the estimator would not
converge for simulations with block trades of low trading rate and short duration.
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Figure 2.1: Example of a block trade. Over the three days of January 21 - 23, 2008, Societe Generale had to
sell the the large positions (approximate value of 49.9 billion Euros) accumulated by rogue trader Jerome Kerviel.
The figure shows data on Total SA stock which is a significant part of the CAC 40 index of French stocks. The top
panel shows the stock price, the middle panel shows the filtered absolute hourly range (a proxy for volatility), and the
bottom panel shows deseasonalized hourly volume. Source: Bloomberg.
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Figure 2.2: Two block trading trajectories. The solid line represents a constant trading rate throughout the
block trade. The broken line represents a block trade that is more aggressively traded early in the trade but with a
decelerating trading rate.
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Figure 2.3: Example of simulated block trade. In this example, a block purchase is executed between times 400 and
600, during which time the block trade adds 10% to the expected volume. The top panel shows the stock price with
the block trade present (solid line) and absent (broken line), the middle panel shows the cumulative market impact of
the block trade, and the bottom panel shows the demeaned transaction volume.
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Figure 2.4: Estimated probabilities of block trading. Each panel shows the estimated probability of block trading
(St = 1) from the Markov state switching model. The top panel shows the full sample of 20 days with a 0.20-day-long
block trade occurring each day, the middle panel shows the first day of the sample when a block trade occurs between
times 400 and 600, and the bottom panel shows the transition period around time 400.
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Figure 2.5: Cumulative market impact and price innovation percentiles after a block trade begins. The cumulative
market impact figures are for block trades of 30% and 10% of typical volumes. Percentiles of cumulative price
innovations increase linearly with the time interval.
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Figure 2.6: Simulated trading returns. Simulations are for an environment with a block trader trading at a rate of
20% of typical volume and for a duration of 0.20 days for 20 days. Block trades alternate between days that contain a
block purchase and days that contain a block sale. The cumulative returns are shown only for days that the strategic
trader is invested. The upper line is the cumulative noncompounded returns for being long when a block seller is
predicted to be present, and being short when a block seller is predicted to be present. The lower line is the long-only
strategy for the same periods.
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Figure 2.7: Potential trading gains from block trade identification scheme with lags. The top panel shows when a
block purchase occurs and the identification scheme’s estimated probability. The classifier predicts a block purchase
when the probability is greater than 0.50. The scheme has an identification lag which causes ‘false negative’ classifi-
cations (FNs) at the beginning of the block trade, and ‘false positive’ classifications (FPs) after the block trade. The
expected gains from trading using the classifier to signal when to take a long position are shown in the bottom panel.
The trading scheme captures the cumulative market impact of the block trade, less the market impact during the FNs,
and less the decay during the FPs.
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Figure 2.8: Decay of trading performance as identification lag increases. The horizontal axis represents the delay
(as a percentage of the block trade duration) after a block trade begins or ends that a classifier requires to identify
the changed state. The vertical axis represents the portion of the total market impact that the trader can capture. As
the identification lag increases, the expected trading gain decreases and eventually becomes negative. Identification
lags at the beginning and end of a block trade are assumed to be equal.



Chapter 3

Mini Flash Crashes and High

Frequency Trading

3.1 Introduction

On May 6th, 2010, an historic financial event occurred which immediately was named the

Flash Crash. This crash was unique in comparison to other historical market crashes in how

quickly prices fell and then recovered. In a matter of minutes, U.S. stocks, stock indices,

futures, options, and exchange-traded funds experienced a rapid drop in value of more than

5%, and a few minutes later, markets rebounded to near pre-crash levels. For those few

minutes, approximately $1 trillion in market value disappeared. This was purely a liquidity

shock resulting from the new high-speed electronic market structure that has evolved over

the past few years. Researchers, policy makers, and market participants are concerned with

the question of how likely flash crashes are to be in the future.

This paper contributes to our understanding of the likelihood of future flash crashes

by examining the frequency of ‘flash-type’ events before and after the big Flash Crash of

May 6th. These ‘mini flash crashes’ are of a smaller scale than the big crash, but are

still substantial enough to be considered serious liquidity shocks. Since they have similar

characteristics to the big crash, any change in frequency of these mini flash crashes may tell

us about the increasing or decreasing likelihood of another big one.

The financial media has been reporting occurrences of miniature flash crashes since May

6th, and within the data used in this paper there have been more flash-type events with

84
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shorter inter-flash durations. Despite this suggestive evidence however, survival analysis of

these events does not establish the significance of these differences from before and after the

big Flash Crash.

This paper proceeds by first detailing the essential features of the big Flash Crash of May

6th, and then discusses the new high-speed market structure in which the crash occurred.

Next, the data that is used in this study is described and mini flash crashes are characterized.

Tests are performed to determine the relative frequency of these liquidity shocks and the

results are discussed, along with avenues for future research.

3.2 The Flash Crash of May 6th

To get a sense of the pace of events on May 6th, consider the following rough time line of

price moves for the June 2010 E-Mini S&P 500 futures contract. Between 13 : 32 : 00 and

13 : 45 : 38 (CT), the futures price fell from 1127.45 to 1056.00 - a 6.3% fall in under 15

minutes. At certain points in the descent, prices fell at a rate of more than 1% in a second,

triggering the CME Globex Stop Logic Functionality which paused trading for 5 seconds.

Between 13 : 45 : 38 and 14 : 06 : 00, the futures price rapidly rose to 1123.75 - a 6.4%

rise in just over 20 minutes. Prior to this, the market was experiencing “unusually high

volatility and thinning liquidity” [67], and the price had already fallen more than 2%. To

illustrate the magnitude and velocity of the price changes during the Flash Crash, Figure

1 shows how the SPDR S&P 500 ETF behaved during the crash. This extreme intraday

volatility also saw the Dow Jones Industrial Average suffer its largest one-day point decline

of 998.5 in it’s history. Additionally, many individual equities suffered extreme drops, with

some large firms seeing their shares briefly trading for pennies.

[FIGURE 1 ABOUT HERE]

Immediately, theories emerged to explain the cause of the crash. These theories included

‘fat finger’ theories whereby a trade was mistakenly submitted with price and quantity that

immediately consumed all of the available liquidity. Other theories pointed to predatory

practices by high-frequency trading firms. In truth, many diverse factors converged to create

this market dislocation. The joint investigation by the Securities and Exchange Committee

(SEC) and the Commodity Futures Trading Commission (CFTC) led to a report [67] that

investigated the causes and circumstances that led to the crash. They identified a large sell
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order of 75, 000 E-Mini S&P 500 futures contracts (with a nominal value of approximately

$4.1 billion) placed at 13 : 32 : 00 from a mutual fund complex as the precipitating cause of

the crisis.

This large block trade was intended as a hedge against the funds’ equity position. It

was performed through a trading algorithm that was set to execute at a rate of 9% of

the market’s volume from the previous minute. Given the large volumes that were seen

during the flash crash, with peak minute-volume reaching approximately 80, 000 contracts

compared to a normal rage of approximately 5, 000 to 20, 000, this trade would have had

significant market impact. It should be noted that the CME Group disputes this trade as

the primary cause [23], noting that the trade was executed over a 20 minute period and that

half of the block’s volume executed as the market rallied following the crash. [56] points

out that this trader had a history of executing very large trades in a short amount of time,

but that it’s last trade of that size took more than 5 hours to execute.

While large trades have long been known to have significant market impact [12, 58],

the fund complex’s large trade is not the full story since it does not explain how the Flash

Crash immediately spread to so many markets. In the investigations by regulators, as well

as in the small but growing academic literature [56, 27], the behavior of other traders is

believed to have led to turning the market impact of a large trade into a market wide crash.

In particular, a new class of high-frequency traders, who have become the de facto market

makers in recent years, have come under close scrutiny. The next section describes this class

of trader, and explores their role in the Flash Crash.

3.3 The High-Frequency Trading Environment

Due to regulatory restrictions, prior to 1999, stock exchanges in the U.S. had a monopoly

in the provision of liquidity for most stocks. In that year, Regulation ATS opened up

the exchanges to competition from alternative trading venues. At that time, the low cost

of technology enabled the establishment of markets to compete directly with the more

traditional exchanges. One of the ways that trading venues competed for market share was

by offering faster access to market data and lower latency for order submissions. The traders

who exploited this fast trading technology the most are called high-frequency traders.

Currently, a high-frequency trader can place thousands of orders per second, and when

these orders are executed, securities may be held for just a fraction of a second. Once at
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the exchange these trades can be processed in less than 500 microseconds. The general

aim of these traders is to make tiny profits per trade, but make an enormous number of

trades. Consequently, the average daily volume on the NYSE has increased by more than

160% since 2005, with high-frequency traders participating in more than 70% of equity

transactions. Of course, no human is fast enough to make such trades, so these traders use

trading algorithms executed on the fastest computers available, usually located as close to

the exchange’s computers as possible in order to shave microseconds off of the time it takes

to receive information and transmit orders.

Since fundamental information about a company is not likely to change in a matter of

milliseconds, the majority of orders submitted by high frequency traders are in response to

information generated by the market itself. One way that high-frequency traders exploit

this information is by acting as the de facto market makers in many markets. This activity

is particularly profitable because of the liquidity rebates that almost all trading venues pay

to liquidity providers. Since trading venues earn profits from transaction fees, there is keen

competition among them to attract high-frequency traders and their large number of trades.

One way that exchanges do this is by offering small payments to its largest and most active

traders for ‘adding liquidity’ by placing nonmarketable orders. These payments are made

per share transacted and are currently around the $0.0025 level. On the other hand, similar

fees are charged to those traders who ‘take liquidity’ by placing marketable orders which

remove orders from the order book. Exchanges cover the commission costs and exchange

fees of these high-volume traders, thus rebate traders can earn half a cent per share that

they buy and sell.

While the market making activities of high-frequency traders is not a contentious issue,

other forms of high-frequency proprietary trading has generated a lot of concern. Oppo-

nents of high-frequency trading claim that these traders are so quick and influential that

they can manipulate prices and volatilities, thereby creating (rather than discovering) prof-

itable trading opportunities. However, such claims are difficult to verify since the details of

their trading strategies are closely guarded secrets. The power of these trading secrets, as

well as the desire to keep them secret, is exemplified by the case of Sergey Aleynikov - a

former Goldman Sachs employee - who was arrested for leaving the company with parts of

it’s high frequency trading algorithm. At the bail hearing, the federal prosecutor wanted Mr.

Aleynikov held without bail since the code he possessed could “unfairly manipulate” stock
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prices. There have been cases of charges brought against high-frequency traders for manip-

ulative practices such as ‘quote stuffing.’ For example, in 2007, FINRA brought charges

against Trillium Trading LLC for using non-bona fide orders to improve executions on other

orders on more than 46, 000 occasions over a three-month period.

While their volume of trade is very high, the actual number of high frequency trading

firms is very low. Only approximately 2% of the 20, 000 trading firms in the U.S. employ

high-frequency trading [51]. In the detailed study of the E-Mini S&P 500 futures market

during the Flash Crash by [56], audit-trail data revealed that only 15 of the almost 12, 000

traders were high-frequency traders, yet they were involved in approximately 30% of the

transactions. With such a large portion of trading volume concentrated in a small number

of trading firms, there is concern that they represent a significant source of systemic risk.

Despite this risk and the manipulative behavior of some traders, the bulk of the empirical

evidence indicates that high-frequency trading, in general, improves market quality [48,

47, 19]. [43, 44] investigate the order dynamics in this new high-speed environment, and

while the order submissions and cancelations of high-frequency traders can be erratic and

occur in high-volume bursts, these episodes do not significantly increase the number of

transactions or volatility. Their typical behavior, which usually improves market quality,

can sometimes lead to their withdrawal of their liquidity provision, and can even lead to

their becoming liquidity demanders. This was the case during the flash crash as buy-side

liquidity dramatically fell just as it was needed.

[27] explains the Flash Crash as the consequence of three features of the new market

structure: (i) the concentration of liquidity provision into a small number of high-frequency

trading firms, (ii) the reduced participation of retail investors, leading to more informed

trading and therefore more persistence in net liquidity demand, and (iii) the high sensitivity

of high-frequency traders to intraday losses. The high-frequency traders depend on high

capital turnover and aim to keep inventories very close to zero. Having provided significant

liquidity for a large part of the 75, 000 contract order placed by the mutual fund complex,

their inventories were substantially large, and in their attempt to lower these inventories,

they reduced their liquidity to the buy-side of the market. Eventually, as prices fell, their

aversion to intraday losses led them to become buy-side liquidity demanders just as prices

were falling.

These dynamics are established features of the market, and consequently, the consensus

is that it is just a matter of time before another flash crash happens.
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3.4 The Rise of the Mini Flash Crash?

Since the Flash Crash, the financial media has been on the look out for signs of further flash-

crash-like activity. With headlines like “The apparent rise of the mini flash crash”1, “The

Flash Crash, in Miniature”2, and “Plunge in 10 ETFs triggers ’flash crash’ memories”3, one

might think that the new ‘flash-type’ liquidity shocks are more common since May 6th.

These mini flash crashes are happening on a regular basis in individual markets. For

example, Figure 2 shows two mini flash crashes in Apple and Citigroup stocks that were

reported in the financial media.

[FIGURE 2 ABOUT HERE]

Yet, the media can selectively focus it’s attention (see for example [29]). Since the phrase

‘flash crash’ was not in use before May 6th, the media coverage is not a good indicator of

the frequency of such events. In fact the higher awareness of the risks of flash crashes may

be making market participants, trading venues, and regulators take steps to reduce their

frequency. On the other hand, algorithms being trained on historical data may lead to even

quicker withdrawal of liquidity, resulting in more flash crashes. This study is an attempt to

formally study the question of the relative frequency of flash crashes before and after May

6th, 2010.

3.5 The Data and Characterization of Flashes

The data used in this study is U.S. equity transaction data for seven months before the

Flash Crash (Oct 5th, 2009, to May 5th, 2010) and seven months afterwards (May 7th,

2010, to Dec 7th, 2010). The stocks chosen for the study are the 30 stocks that constitute

the Dow Jones Industrial Average and are listed in Appendix A at the end of this paper.

These are large, closely watched companies, and their shares are heavily traded. While

considered very liquid, all of the Dow 30 stocks fell substantially during the Flash Crash.

1By Izabella Kaminska on September 28, 2010 on ft.com and available at http://ftalphaville.ft.com/
blog/2010/09/28/354876/the-apparent-rise-of-the-mini-flash-crash/

2By Graham Bowley on November 8, 2010, on nytimes.com and available at http://www.nytimes.com/

2010/11/09/business/09flash.html
3By Reuters on Apr 01, 2011, and available on http://www.moneycontrol.com/news/market-news/

plunge10-etfs-triggers-flash-crash-memories_533355.html
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Thus, these stocks are suspectable to flash-like liquidity shocks, but they are considered to

be relatively stable stocks.

In order to determine whether mini-flashes are more or less frequent since the Flash

Crash, a formal definition is required that captures the essence of a flash crash and allows

us to search for them in the data. The essential character of the flash crash was it’s size,

speed, and the extent of its reversion. The reversion is important in identifying flash crashes

since it captures the liquidity-shock aspect of the flash and distinguishes them from fast

permanent adjustment of price in response to fundamental information. To capture these

features, three parameters are needed: (i) a time limit within which a flash episode must be

completed, (ii) a minimum size for the fall, and (iii) a minimum amount of recovery after

the fall within the time window.

For this study, a window of 30 minutes was used since this was the time frame within

which the Flash Crash of May 6th was completed. The choice of the minimum price change

to characterize a mini flash crash requires consideration of several factors. First, the size

should not be too large so that there are insufficient observations to perform statistical

tests. Second, since different stocks experience different levels of intraday volatility, the

price change threshold needs to be adjusted for each stock’s volatility. Since crashes are

often described as ‘N -Sigma’ moves, this was the strategy chosen for this study. Daily price

data, adjusted for dividends and stock splits, were used to calculate the standard deviation

of daily returns of each stock, σi,day, over the full 14-month sample period. These were

then scaled by
√

1
13 to get an estimate of the 30-minute volatility, σ̃i,30 min. This scaling

is not technically correct as noted by [25], but is widely used in practice and accepted

by regulators. For the purposes of generating a price change threshold that can be used

for cross-stock comparisons, the estimation errors should not make a significant difference.

Table I lists the daily standard deviations and the 5-sigma thresholds for the stocks in the

sample.

[Table I ABOUT HERE]

With this 30-minute sigma value, the price change threshold for each stock was set at

5× σ̃i,30 min. That is, a stock must fall at least this much to be considered a mini flash crash.

5-Sigma price changes are substantial moves. For example, under the normally distributed

innovations of a Brownian motion which is common in financial modeling, a 5-sigma price

move would be expected only once every 1, 744, 278 intervals (once every 530 years under
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the assumption of 250 6.5-hour trading days per year). Clearly, the normal distribution

does not describe intraday financial returns very well.

In addition to a 5-sigma price change, a flash crash requires a quick reversion since it is

essentially a short-lived liquidity shock, and once liquidity is restored, prices should return

to levels more reflective of fundamental value. A minimum reversion move of 2.5-sigma from

the crash’s minimum is used for this study. The 5-sigma fall and 2.5-sigma reversion must

be completed within the 30-minute window to be counted as a mini flash crash.

The 5-sigma threshold value is based on an unconditional estimate of stock return volatil-

ity. Since return volatility is known to change over time, a time-varying threshold might be

considered a more consistent threshold. For this study, a time-varying threshold was not

used for two reasons. First, if flash crashes were more frequent since May 6th, then this

would likely increase the time-varying threshold thereby making the flashes more difficult

to identify. Second, a flash may temporarily increase the threshold, and if flashes cluster

in time, subsequent flash crashes may not be detected. So while the constant threshold is

based on a crude measure of volatility, its simplicity allows for easy comparison without the

inconsistent identification of equal sized mini-crashes in different times in the sample.

While flash crashes are more likely to generate public concern because of the long-bias

of their portfolios, inventory and intraday loss pressures are equally likely to be felt by

high-frequency market makers from both the long and short sides of the market. Therefore,

we may observe flash spikes (price increases followed by downward reversion) in addition

to flash crashes (price dips). Tables II lists the 5-sigma flash dips and spikes experienced

during the seven months before and after the flash crash of May 6th by each of the 30 DJIA

components.

[Table II ABOUT HERE]

3.6 Survival Analysis

An appropriate framework to examine the likelihood of flash spikes and dips before and after

May 6th is survival analysis. Survival analysis has been developed to deal with ‘time-to-

event’ data. These techniques are used extensively in medical research (e.g. time-to-death

under treatment and control conditions) and electronic component testing (e.g. time-to-

failure of a component). In finance research, survival analysis has been used to model

company defaults as well as transaction durations. A key aspect of this data that survival
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analysis deals with is censoring - where a sample period may end before an event occurred

or may start after the interval began. For example, in a medical context, a measurement of

time-to-death will be ‘right censored’ if the patient is still alive at the end of the experiment.

Prior to modern survival analysis, censored data resulted in data loss and biased estimates.

In the context of this study, the events studied are the mini flash crashes and spikes

described in the previous section. The time-to-event observations are the lengths of time

between two adjacent flash events (either a dip or a spike) for a single stock. This results

in 445 interval measurements that are split into two groups: the first group are those flash

events that occurred in the seven months before May 6th, and the second group are those

that occurred in the seven months after. In the sample before May 6th, the first intervals

for each stock are left-censored. There are no right-censored observations in this group

since all stocks experienced a flash crash on May 6th. Similarly, there are no left-censored

observations in the later group, however, the last interval for each stock in the later group

is right-censored.

If one flash-event makes another much more (or much less) likely in the near future, then

this kind of temporal dependency can easily be handled by the nonlinear nature of survival

analysis. However, if flash-events in one stock make flash-events in other stocks more likely,

then this would have to be accounted for for any hypothesis testing. This is a substantial

possibility since contagion of this kind occurred during the big flash crash of May 6th. For

the smaller flash crashes and spikes studied here, this does not appear to be a problem. A

visual inspection of the data found very few occurrences of multiple flashes at the same time

across different stocks.

There were 206 intervals between flash events (or sample end points) in the seven months

before May 6th, and 239 in the seven months afterwards. While these counts are supportive

of the claim of more flash events since the big Flash Crash, further analysis is required. To

get a sense of the distribution the time-to-flash data for the two groups, Figure 3 shows the

empirical survival function for each of the groups.

[Figure 3 ABOUT HERE]

The solid line, representing the period before May 6th, tends to lie above the dotted line

representing the later group. This indicates longer periods between flashes in the earlier

group, and this is confirmed in Table III.

[Table III ABOUT HERE]
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Despite this evidence that supports the media’s claim that flashes are becoming more

frequent, the Mantel-Haenszel test (a.k.a. the log-rank test) fails to reject the null hypothesis

that the survival functions are significantly different4.

3.7 Conclusion

Despite the occurrence of more mini flash events since the May 6th Flash Crash, survival

analysis of these events in the Dow 30 stocks does not establish the significance of these

differences. Wider time samples over more stocks may improve confidence in these results,

or may demonstrate that the small differences in frequency are in fact significant. Addition-

ally, only a single characterization of flash events (a 5-sigma move followed by a 2.5-sigma

reversion within 30 minutes) was considered. For a robustness test, other characterizations

could be examined. Future research could also examine the order and trade activity around

these mini flash events to determine whether toxic order flow is at play in these mini events

as it was on May 6th, as established by [27].

4The null hypothesis that the survival functions are different is not rejected for nearby parameterizations
of flash events including changing the window size to 20 minutes or changing the threshold to 4-sigma (with
a 2-sigma reversion).
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Appendix: Dow Jones Industrial Average Components

Ticker Company Ticker Company

AA Alcoa JPM JP Morgan Chase & Co.

AXP American Express KFT Kraft Foods

BA Boeing Company KO Coca-Cola

BAC Bank of America MCD McDonald’s

CAT Caterpillar MMM 3M Company

CSCO Cisco Systems MRK Merck & Co

CVX Chevron MSFT Microsoft

DD E.I. du Pont de Nemours PFE Pfizer

DIS Walt Disney PG Procter & Gamble

GE General Electric T AT&T Inc.

HD Home Depot, Inc. TRV The Travelers Co.

HPQ Hewlett-Packard UTX United Technologies

IBM IBM VZ Verizon Communications

INTC Intel Corporation WMT Wal-Mart

JNJ Johnson & Johnson XOM Exxon Mobil



CHAPTER 3. MINI FLASH CRASHES AND HIGH FREQUENCY TRADING 95

Company σ̃day 5× σ̃30min Company σ̃day 5× σ̃30min

AA 0.025 0.035 JPM 0.019 0.027
AXP 0.021 0.029 KFT 0.011 0.015
BA 0.019 0.026 KO 0.010 0.013
BAC 0.023 0.033 MCD 0.010 0.013
CAT 0.020 0.028 MMM 0.013 0.018
CSCO 0.020 0.028 MRK 0.014 0.019
CVX 0.013 0.018 MSFT 0.014 0.019
DD 0.017 0.023 PFE 0.014 0.019
DIS 0.015 0.021 PG 0.009 0.012
GE 0.017 0.024 T 0.010 0.014
HD 0.015 0.021 TRV 0.013 0.018
HPQ 0.016 0.022 UTX 0.013 0.018
IBM 0.012 0.016 VZ 0.010 0.015
INTC 0.016 0.022 WMT 0.009 0.012
JNJ 0.008 0.011 XOM 0.012 0.016

Table 3.1: Daily and 30-minute standard deviation estimates for the 30 components of the DJIA index. The
daily estimate is from returns calculated on daily end-of-day prices, adjusted for any splits and dividends, from Oct

5th, 2009, to Dec 7th, 2010. The 30-minute estimates are derived from the daily estimates by scaling by
√

1
13

. The

30-minute estimates are then multiplied by 5 to get the 5-Sigma threshold for the stock.
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Before May 6th After May 6th
Company Dips Spikes Total Dips Spikes Total
AA 5 0 5 0 2 2
AXP 3 1 4 1 2 3
BA 1 1 2 4 3 7
BAC 9 8 17 0 3 3
CAT 2 2 4 1 1 2
CSCO 0 1 1 1 4 5
CVX 2 3 5 5 6 11
DD 1 3 4 2 2 4
DIS 2 0 2 4 3 7
GE 0 3 3 2 5 7
HD 0 0 0 3 2 5
HPQ 0 1 1 4 5 9
IBM 0 3 3 2 0 2
INTC 7 7 14 3 5 8
JNJ 2 7 9 4 7 11
JPM 3 2 5 6 9 15
KFT 1 6 7 3 1 4
KO 3 4 7 3 4 7
MCD 6 0 6 3 6 9
MMM 2 0 2 4 4 8
MRK 5 0 5 4 4 8
MSFT 3 2 5 11 12 23
PFE 5 1 6 2 4 6
PG 3 3 6 1 2 3
T 13 13 26 2 5 7
TRV 2 0 2 1 3 4
UTX 0 2 2 0 3 3
VZ 4 6 10 5 5 10
WMT 5 3 8 0 7 7
XOM 5 1 6 4 3 7
Total 94 83 177 85 122 207

Table 3.2: Number of 5-Sigma 30-minute dips and spikes during the seven months before and after May 5th, 2010.
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Before May 6th After May 6th
Number of Intervals 206 239
Mean Interval Length 346 295
(Std. Dev.) 34.3 28.0
Median 142 122
LogRank 1.07
(p-value) (0.301)

Table 3.3: Kaplan-Meier survival estimates and the Mantel-Haenszel test (log-rank).
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Figure 3.1: SPDR S&P 500 ETF on May 6th, 2010, during the Flash Crash. The SPDR SPY ETF generally
corresponds to the price and yield performance of the S&P 500 Index. Prices are the closing price at five-second
intervals. Source: NYSE TAQ.
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Figure 3.2: Two examples of mini flash crashes in Apple and Citigroup stock. The dotted vertical line on the Apple
chart indicated the day’s market opening. Prices are from the minimum price seen on 30-second intervals. Source:
NYSE TAQ.
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Figure 3.3: Empirical survival function for time to flash events (dips or spikes) before May 6th (solid line) and
after (dotted line). The + signs represent censored data.
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