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Abstract

State estimation plays a key role in the operation of power systems. This role becomes

more important considering the increasing demand of emerging power market.

Many methods have been proposed for power system state estimation, mostly based on

Weighted Least Squares (WLS) approach. However, it is well known that Least Abso-

lute Value (LAV) estimators are more efficient in terms of robustness and accuracy. For

these estimators there is no closed form solution and each LAV estimator has its own cri-

teria in choosing desired measurements. In this research, two novel LAV estimators are

introduced for power system state estimation. The first estimator employs contraction map-

ping concepts for rejecting redundant measurements. The second estimator is introduced

for systems where sparsity and ill-conditioning occur in the system matrix. In the sec-

ond estimator, Singular Value Decomposition (SVD) method is combined with contraction

mapping technique to find the appropriate equations for the estimation.

The application of the new estimator is studied on differentIEEE power systems for verifi-

cation. The estimator shows a robust performance in all the test systems, and the estimation

error remains comparatively small even in the presence of significant number of bad data

points.

Keywords: Power Systems, State Estimation, Least Absolute Value Estimator, Con-

traction Mapping, Singular Value Decomposition.
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Chapter 1

Introduction

1.1 State Estimation

State estimation is, by definition, the procedure in which values are assigned to unknown

state variables of a system such that bad measurements of thesystem are filtered out during

the process, and estimation error is minimized based on a specific criteria. As a result we

can have accurate estimations of the states even in the presence of bad measurements [9].

State estimation plays a key role as the initial step for analyzing and controlling power

networks. Contingency analysis, stability analysis, and optimal power flow all rely on the

quality of the network model obtained via state estimation [2]. With the increasing demand

for reliable electric energy in recent years, the growth of the size and complexity of power

networks has been significant. Therefore, there is a need formore accurate and precise

estimators in today’s energy market [43].

To enable the state estimation, a model is built based on the information obtained from

the network. In that model, if the ratio of the measurements from the system to the un-

known states has an appropriate rate, the process can reducethe effect of bad data and even

allow the temporary loss of measurements without affectingthe quality of the estimation.

Moreover, the measurements from those parts of network which are not directly metered

can be estimated.

1
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1.2 Power System Specifications

State variables in power networks are complex nodal voltages consisting of voltage mag-

nitudes and their respective phase angles. Measurements include active and reactive power

injections at network buses, and power flows in branches. In recent years, Phaser Measured

Units (PMUs) are available in some power networks and they can efficiently present power

angle measurements [45], although those types of measurements are not considered in this

research. The state estimation process is to assign values to the unknown states such that

erroneous measurements are filtered or have minor effects instate calculation.

Erroneous measurements or bad data, in this research, are referred to measurements,

within the set, which are either totally different from their true values, or include a certain

amount of noise in them. In real systems, these erroneous measurements are caused by

various sources: A monitoring failure of a communication link can corrupt the correct

value of measurement. Also it is known that some meters have intermittent fault and do not

show the true values of measured quantities. Other reasons are sudden change of operating

point of system and human error in some cases.

1.3 Literature Review

The most popular state estimation method in industry is Weighted Least Squares (WLS),

which minimizes the weighted sum of residual squares [38]. WLS estimator is not a ro-

bust estimator since it is sensitive to bad data. Also, if theassigned weights are relatively

large, the system may face numerical problems and even ill-conditioning [41]. Therefore,

various bad data detection and identification methods has been developed to enhance the

performance of estimator [40].

Bad data can be detected using the residuals method [1]. If the difference between the

calculated and measured quantities of one measurement is large compared to other mea-

surements, that measurement usually belongs to the bad dataset. Other famous statistical

tests such as chi-square and Hypothesis test can also be applied to detect bad data [6].

Other than the standard normal equations method, differentsolution approaches has
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been used to improve the numerical robustness of WLS estimator. These approaches in-

clude orthogonal methods, hybrid method, equality constrained method, Hatchel’s method

and sparse tableau method [39].

Least Absolute Value (LAV) estimator is an alternative estimator applied to power sys-

tems. The objective function of LAV estimators is to reduce the absolute norm of residuals.

In contrast to WLS method, there is no explicit solution for LAV estimator and each LAV

estimator has its own approach for finding the solution. ManyLAV estimators reformulated

the estimation problem as a Linear programming (LP) problemand obtained the solution

by solving a sequence of LP problems [37]. Some LAV estimators, used a sequence of

solutions to theL1-regression problem employing an iteratively re-weightedleast squares

method and avoid Linear Programming due to its large computational time [27]. Other re-

searchers claimed to obtain a Weighted Least Absolute Value(WLAV) estimate by applying

the Newton-Raphson method to the set of equations that includes critical measurements or

measurements essential for system observability and got test results competitive with stan-

dard estimators [25].

In general, methods based on Least Squares estimation are good for noise filtering when

the error is Gaussian, but they fail in the presence of other types of bad data or noise. Least

Absolute Value methods, on the other hand, have superior baddata suppression capability.

However, they are computationally more expensive and fail in cases where bad data is

associated with leverage points.

Leverage points are those measurements of a power system which have a stronger in-

fluence on the state estimation due to their location, the local measurement redundancy,

the network topology, and parameters. These measurements,can distort the solution of the

LAV estimation, when they carry bad data. There were LAV estimators that eliminate the

leveraging effects of injection measurements via matrix stretching [26]. Linear transforma-

tion was also used to reduce the effect of leverage points on WLAV estimation [24].Also, a

LAV estimator had been introduced that used integration with a sequence ofL1 regression

to eliminate leverage points [27]. Although these estimators are more robust in rejecting bad

data they have a poor computational time in comparison with LS based estimators. There-

fore, there is still a need to develop a robust state estimator that can satisfy the conflicting

requirements of speed, accuracy, and efficiency [28].
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1.4 Motivations

In the late 1980s, Christensen, Soliman and Rouhi introduced a technique for curve-fitting

based on Least Absolute Value (LAV) minimization technique[11]. The idea was originally

developed for power system state estimation. However, the technique could address other

linear/linearized systems; the advantage was being non-iterative and simple, with minimal

computational requirements. Later, due to claims that the introduced method does not

generally guarantee the existence of a solution or the clearrelationship between estimated

values [12], the authors generalized the method for cases ofrepeated measurements and

multi optimal solutions [13]. Eventually, the approach ledto a new algorithm for nonlinear

L1 norm minimization problem with applications in power systems [8]. Hence, all of these

LAV estimators partially employ Least Squares (LS) techniques in the estimation process.

In 2007, Christensen, Saif and Soliman developed another algorithm for LAV estima-

tion, without using LS techniques [7]. The methods used in this study are inspired by that

algorithm. The elimination criteria are based on contraction mapping, such that it initially

normalizes the matrices involved in estimation, and then eliminates the measurements with

larger absolute sum of coefficients on the columns. After selecting the proper equations,

the solution is found for the system and the Least Absolute Value of error is calculated

for all the residuals. The method is simple and non-iterative, and its computing time and

storage requirements are very small in comparison to other methods [7]. However, the men-

tioned algorithm has been applied for linear data-fitting applications only. For applying it

to nonlinear power systems, the method needs adjustments. For instance, the equations

driven from the system model should be approximated by a linearization technique and the

iteration should be applied to get an acceptable result. Theestimated states have a high ac-

curacy and low estimation error in small-scale power networks [15]. In contrast, the method

fails to provide an acceptable estimation in networks with more than five buses. For those

networks we improve the estimator by including the SingularValue Decomposition (SVD)

technique in the process [16]. As a result, the estimator enhances in estimation and provides

satisfactory results, even in the presence of large portions of bad data.

Different IEEE standard networks are considered for testing the estimators. These test

cases include IEEE 5 bus, IEEE 10 bus, IEEE 14 bus, IEEE 30 bus,IEEE 57 bus, and IEEE
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118 bus networks [18]. Also, different types and amounts of bad data are applied to each

network. The performance of suggested estimator is compared with LS estimator through

various tables and figures.

1.5 Thesis Content

The remainder of this thesis is organized as follows: In chapter two state estimation for

power systems is defined and the two, popular numerical approaches for a superior estima-

tion are discussed and compared. In chapter three, the basicconcepts for modeling a power

network and obtaining mathematical formulation of system are introduced. Chapter four

explains the suggested LAV estimators for related power networks in detail. In chapter five,

the method is applied for power system state estimation on IEEE standard buses. In the last

chapter, a summary of the developed methods and results is provided.



Chapter 2

The Problem and Proposed Methods

2.1 Introduction

State estimation is an essential and necessary part of powersystem analysis. In the real

time modeling of a power system, the necessary steps before state estimation are usually

data gathering, network topology processing and observability analysis. During this pro-

cess, the set of measurements are gathered by Supervisory and Control Data Acquisition

(SCADA) system and are transferred to the state estimator along with the pervious state

of the system. The output of the state estimator provides thecore information for making

control decisions including contingency selection and analysis, economic dispatch calcula-

tions, optimal power flow, security assessment and other related functions [31].

In measuring and modeling a power network, diverse types of errors can occur including

meter and communication errors, errors in mathematical models, and incomplete measure-

ments. A useful estimator, is designed to reduce the effect of bad data and provide a reliable

estimation of power system states. Since most of the state estimators currently used in the

power industry are based on the Least Squares approach, the techniques for obtaining the

solution of these estimators are presented in this chapter.In contrast to LS-based estima-

tors, the LAV estimators are well-known representative of non-quadratic estimators with

robust characteristics and are also introduced in this chapter.

6
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2.2 State Estimation Problem

The state estimation problem in general can be addressed in asystem with a number of

known measurements and unknown states, represented as follows:

Z = H(X) + Γ (2.1)

or similarly as:
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(2.2)

wherezk, k = 1, · · · , m represents the measurements obtained from the system andm

gives the number of measurements. The state variables are denoted byxk, k = 1, · · · , n

andn is the number of unknown states. The rational polynomial functions that relate the

states to the measurements are indicated byhk(x), k = 1, · · · , m. Therefore, matrixH(X)

shows the relationships between the measurements and the unknown states of system; these

can be linear or nonlinear. When the relationship is linear,H(X) will hereafter be shown

as anm× n matrixH. The measurement errors are presented byγk, k = 1, · · · , m. These

errors are usually modeled as Gaussian errors with zero mean(E(γk) = 0). Also, if the

measurement errors are independent and uncorrelated the covariance matrix of errors is a

diagonal matrix shown byW , (cov(Γ) = W ). In general, the measurement error matrix

varies for different types of bad data and will be introducedmore specifically in section 3.8.

Based on the ratio of measurements to unknowns, three cases can be defined: 1) If the

ratio is less than one, it means that the number of measurements is less than the number of

states. In this case the system is called underestimated. Itis not always possible to get a

unique estimate of states based on measurements for such systems. 2) If the ratio equals

one, the system is called a fully determined system and the estimated states are given by

solving (2.1) directly. Estimated states in such systems are usually of poor quality since all

the measurements, including the erroneous ones, should be used for estimation. 3) Finally,

if the ratio is larger than one, which means there are more measurements than unknown
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states, the system is overdetermined. The estimation problems addressed in this research

are related to overdetermined systems, and the goal is to reduce the effect of erroneous

measurements in the estimation process.

State estimation can reduce the effect of bad data, and allowthe temporary loss of some

measurements without significantly affecting the quality of the estimates. A well-known

example is power system state estimation, which is mainly applied to filter redundant data,

eliminate faulty measurements, and so produce a reliable state estimation [3]. The estimator

can even determine the power flow in parts of the network that are not directly metered.

Real-time models of power networks can also be constructed from online snapshots of

system measurements and physical properties of the networks [43]. These models, which

are obtained from state estimation, have a key role in various applications of the energy

market, such as optimal power flow and contingency analysis.

2.3 Observability Concept

Observability in a power network means that the estimator isable to determine the unknown

states based on the given measurements. If there are enough measurements and they are

well distributed throughout the network in such a way that state estimation is possible, then

the network is said to be observable. If a network is not observable, it is still useful to know

which sections have states that can be estimated, or to determine the observable sections.

Mathematically, in an observable network the system matrixis full-rank. If only some

parts of a network are observable (observable islands), their related matrices should be full-

rank. In the observable parts of a network, measurement redundancy is defined as the ratio

of the number of measurements to the number of states. In thisresearch, the underlying

assumption is that the given networks are observable in terms of the measurements.

2.4 Normal Equations Method and Quadratic Estimators

As previously mentioned, one of the most common approaches in power system state es-

timation is defining the objective function as the square sumof the difference between
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measured values and estimated values. This approach is based on a popular statistical crite-

ria of maximum likelihood for Gaussian distributions of measurement errors, as discussed

in the next section and is categorized az the normal equations method.

There are other estimation approaches introduced for powersystems. The orthogonal

methods is one of the famous ones based on the P-θ and Q-V decoupling in power flow. The

method is developed in order to minimize the required memoryand computational time,

however, the convergence rate is strongly influenced by the initial voltages [28]. Other

methods, such as sparse tableau formulation and equality constrained WLS are introduced

for extended problems in the field [6], however, the focus of this research is on normal

equations method.

2.4.1 Maximum Likelihood and Weighted Least Squares Estimator

Consider there arem observations (or measurements) from a system and that we arein-

terested in estimating an unknown parameter (or parameters) related to these observations.

The concept of maximum likelihood is usually used in this type of context to find the un-

known parameter such that it maximizes the joint probability density of observations; that

is, it maximizes the probability of occurrence of observed data.

A measurement in a power system can be expressed as follows:

zmeas = ztrue + γ (2.3)

whereγ represents the observation error. In most state estimationproblems there is a

prior knowledge of error patterns, including those for power systems. Typically, the nature

of measurement error in these systems is assumed to be Gaussian [1]. If the mean value of

γ is zero, the Probability Density Function (PDF) of measurementz1 can be written as:

f(z1meas) =
1√

2πσ1

exp

(

−(z1meas − z1true)
2

2σ2
1

)

(2.4)

whereσ1 represents the standard deviation ofz1meas. Considering allm measurements of

the system, the joint PDF of measurements is:

f(z) = f(z1)f(z2) · · ·f(zm) (2.5)
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f(z) =
1

(
√

2π)m
∏m

i=1σi

exp

(

m
∑

i=1

−(zimeas − zitrue)
2

2σ2
i

)

(2.6)

Instead of maximizing the joint PDF which is expressed in (2.6), we can maximize the log-

arithm of the joint PDF. This approach provides the same result, but is more mathematically

convenient [29].

log(f(z)) = −1

2

m
∑

i=1

(zimeas − zitrue)
2

(σi)2
− m

2
log(2π) −

m
∑

i=1

log(σi) (2.7)

Clearly, the maximization method results in minimizing theweighted sum of least squares

of difference between observed values and their true values. This is the well-known Weighted

Least Squares (WLS) minimization problem [2]. In an overdetermined system withm mea-

surements andn unknowns, usually there are measurements which are less accurate. Weight

is assigned to each measurement typically in proportion to the inverse of the variance of

each measurement, such that the weights are smaller for the less accurate measurements

(the ones with larger variances), and larger on the more accurate ones [29]. The objective

is to minimize the performance index:

J(X) =
m
∑

i=1

wiei
2 =

m
∑

i=1

wi (rowi(Z − HX))2 (2.8)

wherewi is theith diagonal element of weight matrix, such thatwi = 1/σ2
i . Hence, the

weighting matrixW is a diagonal matrix, which is the inverse covariance matrixfor the

measurements.

The solution to the minimization problem can be found by setting the gradient of objective

function (2.8) to zero, as shown below:

minJ(X) = min
(

(Z − HX)T W (Z − HX)
)

(2.9)

minJ(X) = min
(

ZT WZ − ZT WHX − XT HTWZ + XT HTWHX
)

(2.10)

∇XJ(X) = 0 − HTWZ − HT WZ + HTWHX + HT WHX = 0 (2.11)

2HTWH = 2HTWHX (2.12)

X = (HT WH)−1(HT WZ) (2.13)
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2.4.2 Least Squares Estimator

The Least Squares (LS) method has been used since the beginning of 18th century, and

still has many applications in data-fitting and linear regression. It can be considered to be

a special case of WLS with equal weights. This method is usually used in power-system

state estimation when the covariance matrix of measurements is unknown, or where it may

lead to singularity of product matrices in the system of equations [8].

Similar to the WLS, the LS method can be used for a linear system of overdetermined

equations, where the goal is finding the best estimate for minimizing the sum of squared

residuals. The approach is called LS linear, since the system is linear in its parameters and

the solution is linearly dependent on the data.

J(X) =

m
∑

i=1

ei
2 =

m
∑

i=1

(rowi(Z − HX))2 (2.14)

or

minJ(X) = min
(

(Z − HX)T (Z − HX)
)

(2.15)

Following the same method used for WLS, the solution to this problem can be calculated

as

X = (HTH)−1HT Z (2.16)

This solution is valid when the system matrixH is full rank, since in that caseHHT is

invertible.

2.4.3 Nonlinear Systems

In AC-power system state estimation, the relationships between the measured values and

states are nonlinear. The nonlinear WLS problem can be written as:

J(X) =
m
∑

i=1

wie
2
i =

m
∑

i=1

(zi − hi(x))2

σi
2

(2.17)

Although the linear WLS has a closed form solution, there is no closed form answer

for the nonlinear WLS. Instead, the solution can be obtainedthrough iterative methods.

If the relationship between the measurements and the statesis not linear, then we need to
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approximate the nonlinear system first, and use iterations to find an appropriate solution.

Two methods commonly used for solving the minimization problem are Gauss-Newton and

Newton-Raphson.

Gauss-Newton Method

To linearize a nonlinear system, we usually consider the equilibrium point of the system

and write the Taylor series expansion around the equilibrium point. In the Gauss-Newton

Method the first two terms of the series are considered in the linear model as follows:

h(x + △x) ≃ h(x) +
∂h(x)

∂x
△x (2.18)

Then the objective function (2.17) can be written as

J(△X) =

(

Z − H(X) − ∂H(X)

∂X
△X

)T

W

(

Z − H(X) − ∂H(X)

∂X
△X

)

(2.19)

Considering△Z = Z − H(X0), andA = ∂H(X)
∂X

|X0
,

minJ(△X) = min
(

(△Z − A△X)T W (△Z − A△X)
)

(2.20)

Since equation (2.20) now matches with the linear WLS equation (2.9), its solution can be

obtained by,

△X = (AT WA)−1AT W△Z (2.21)

During the iterative procedure, the value ofX is updated toX1 = △X + X0, andX1 is

considered as the new equilibrium point around which the linearization process is repeated.

Newton-Raphson Method

In approximating the nonlinear model of system, Gauss-Newton method ignores the deriva-

tive terms with order higher than one. On the other hand, Newton-Raphson method also

considers the derivatives of order two. This means that the Newton-Raphson method is

more precise in terms of approximating the nonlinear system. Recalling the objective func-

tion presented in (2.17), the gradient of the objective function is the non linearg(X), which

is expressed as:

g(X) = ∇XJ(X) = −
m
∑

i=1

zi − hi(X)

σi

∂hi(X)

∂X
(2.22)
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The nonlinear gradient functiong(x) can be approximated by Gauss-Newton method as:

g(x + △x) = g(x) + G(x)△x (2.23)

whereG(x) is the derivative ofg(x). Considering equation 2.22, and for the overdetermined

system of nonlinear equations,G(X) can be written as:

G(X) =
∂g(X)

∂X
=

∂2J(X)

∂2X
= −

(

m
∑

i=1

zi − hi(X)

σi

∂2hi(X)

∂X2
− ∂hi(X)

∂X

1

σi

(

∂hi(X)

∂X

)T
)

(2.24)

Considering the matrixZ andA mentioned in (2.20),G(X) can also be simplified to:

G(X) =
m
∑

i=1

△zi

σi

∂2hi(X)

∂X2
− AT WA (2.25)

To minimize the objective functionJ(X), the gradient function should be equal to zero.

Considering the nonlinear gradient functiong(X), its linear approximation can be set equal

to zero to minimize the objective function. Therefore,

g(X + △X) = g(X) + G(X)△X = 0 (2.26)

G(X)△X = −g(X) (2.27)

△X = −G−1(X)g(X) = G−1AT W△Z (2.28)

and finally

△X =

(

m
∑

i=1

△zi

σi

∂2hi(X)

∂X2
− AT WA

)−1

AT W△Z (2.29)

Obviously, if the second derivative term
∑m

i=1
1
σi
△zi

∂2hi(X)
∂X2 , is omitted from (2.29), it

will be equivalent to (2.21). The effect of this term in nonlinear estimation is related to the

difference between actual observations and their calculated values△Z. In power system

state estimation, this term is usually negligible since itseffect on convergence is normally

insignificant. There are exceptions in cases where strong nonlinearity of measurements

is combined with topology errors, but in most practical implementations of power system

state estimation, Gauss-Newton method leads to an acceptable estimation [2].
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2.5 Robust Estimators

As discussed in previous sections, one of the goals of each state estimator is to reduce the

influence of bad data on the estimation results. In LS-based methods, all the measurements

are considered for estimation. Despite the fact that WLS estimators assign high weights to

larger residuals, the estimator still considers all the measurements, including the erroneous

ones, for estimation. In contrast, the robust estimator hasthe ability of bad data elimination.

Consider an extreme case where all the measurements except one are correct and flaw-

less, and that the error on that one measurement tends towardbeing infinitely large. The

objective function in the LS-based estimator tends to infinity in this case, since the estima-

tor has to consider all the measurements, including the enormous erroneous measurement.

However, an ideal robust estimator would not be sensitive tothe error in a single measure-

ment, since it is able to totally eliminate the bad measurement.

2.5.1 Least Absolute Value Estimator

The Least Absolute Value (LAV) estimator is an estimator whose objective function is min-

imizing norm one of the residuals, as presented in (2.30) forlinear systems and in (2.31)

for nonlinear systems.

J(X) =
m
∑

i=1

|ei| =
m
∑

i=1

rowi|Z − HX| (2.30)

J(X) =

m
∑

i=1

|ei| =

m
∑

i=1

|zi − hi(x)| (2.31)

Similar to the LS estimator, Weighted Least Absolute Value (WLAV) estimator is also

defined as the absolute weighted sum of residuals.

J(X) =

m
∑

i=1

wi|ei| =

m
∑

i=1

wi (rowi|Z − HX|) (2.32)

J(X) =
m
∑

i=1

wi|ei| =
m
∑

i=1

wi|zi − hi(x)| (2.33)
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For an overdetermined system of equations, the LAV estimator only considersn mea-

surements among the total ofm measurements. Considering the previous example of only

one infinitely erroneous measurement, the LAV has the ability to ignore the bad measure-

ment completely and present a reasonable result, in contrast to LS estimator. Therefore,

LAV belongs to the group of robust estimators since it fits only then selected data.

The selection of data points is a critical issue in LAV estimation: when an unwanted

data point is selected as good data, it can affect the estimator. For larger and more complex

systems, the effect is more significant. In some cases, bad data can totally effect the robust-

ness of estimator, especially if leverage points are present in the data set. Leverage points

are the data points that have strong effects on estimation. In power system state estima-

tion, the leverage points are usually related to measurements from nodal injections and low

impedance branches [5]. Therefore, the LAV bad data rejection is not perfect in all cases,

and the selection criterion is a key issue in the performanceof the estimator.

LAV estimator has been used in power system state estimationsince the early 1970s

[20, 21, 22]. Unlike the LS-based estimators, there is no explicit formula for obtaining the

solution of a LAV estimator. Various LAV-based estimators were introduced, with different

approaches on data fitting and bad data rejection: modifyingthe system matrix of WLAV by

linear transformation to eliminate bad data [24], stretching the Jacobian matrix for reducing

the effect of leverage points [26], developing a WLAV estimator by minor adjustments to

WLS estimator to be used instead of standard Linear Programming (LP) [25], and a LAV

estimator to find the L1-regression solution for power systems [27]. However, there is still

a need to develop a robust state estimator that can satisfy the conflicting requirements of

speed, accuracy, and efficiency [28].

2.6 Detection and Identification of Bad Data

In real time applications of a power system, state estimation is usually followed by yet

another essential step: processing of bad data. The abilityto detect and identify bad mea-

surements is a valuable tool and it can enhance the performance of estimator especially in

the presence of bad data among the measured quantities. The statistical methods used for
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detection of bad data are Largest Residuals test, Chi-Square and Hypothesis test. The gen-

eral idea of these methods is that errors affecting the estimates are not usually compatible

with their standard deviations [44].

2.6.1 Largest Residuals Test

To detect the presence of bad data, the largest residual testcompares the residuals of state

estimation with their standard deviation. The residual of each measurement is defined as

the difference between its measured quantity and its calculated quantity based on state

estimation. The test is also named as Largest Normalized Residual (LNR) and in that

version it calculates the ratio of residual estimates to thestandard deviation of the residuals.

Considering the case where all the measurements are perfectexcept one measurement, it

can be proven that no other residual has a larger residual (ornormalized residual) compare

to the erroneous measurement [1]. Note that even when there exists other measurements

with same residual magnitude, none of them can have a larger residual.

The application of the largest residual test in not limited to the normal equations ap-

proach in state estimation. The largest residual method wasused in the blocked sparse

matrix approach and it was further extended to Lagrange multipliers associated with equal-

ity constraints [6].

2.6.2 Chi-Square and Hypothesis Test

Consider the performance index of the WLS as given in equation 2.17. If the measure-

ment errors are random numbers with Gaussian distribution and zero mean, the perfor-

mance index has a chi-square distribution and its degree of freedom isk = m (number of

measurements)−n (number of states).

When a number of measurements are erroneous, their errors are frequently much larger

than the assumed|3σ| error bound for the measurement. If a threshold,tJ , is set for the

performance index,J(X), it can be declared that bad measurements are present when

J(X) > tJ . The threshold test might be wrong in two situations. IftJ is set to a small

value, we would get many false alarms. The false alarm means that the test would indi-

cate the presence of bad measurements even when there were none. Also if tJ is set to a
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large value, the test would often detect no errors even when erroneous measurements were

present. The test can be written as the following equation:

Prob(J(X) > tJ |J(X)is a chi-square with k degrees of freedom) = β (2.34)

This type of testing is known as the Hypothesis testing and the parameterβ is called the

significance level of the test [1].

2.7 Summary

In this chapter, two popular numerical approaches to power system state estimation were

reviewed. First, the formulation process of LS method was explained for overdetermined

linear systems, and then extended to nonlinear systems, explaining the techniques for lin-

earizing the system.

Despite the popularity of LS and its wide spread applications in industry, the LS-based

estimator is not robust in the presence of bad data. Hence, the concept of LAV estimation

was briefly explained as an alternative.

The estimation solution for a LAV estimator is based on its own selection technique

and varies from one estimator to another. In chapter 4, a new LAV estimation approach for

power system estimation will be discussed in more detail.



Chapter 3

Power System Model Description and

Formulation

3.1 Introduction

This chapter reviews the fundamental components of a power network, and the nonlin-

ear model based on those components. Then the mathematical formulation of the power

system, relating the states and measurements of the system,is presented. The process of

linearizing the model and finding the exact solution of states for particular operating con-

ditions is also explained. Finally, to analyze the performance of different estimators on the

network in the presence of erroneous measurements, varioustypes of bad data points are

defined. These types of bad data will be considered in chapter4, in the process of state

estimation in power systems.

3.2 Network Components and Assumptions

In this research, we assume that the power system is operating in the steady state and under

balanced conditions. This assumption implies that all bus load and branch power flows are

three-phase and balanced, all transmission lines are fullytransposed, and all shunt devices

18
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and line charges are symmetrical in three-phase. Under these conditions, the use of single-

phase positive sequence equivalent circuits for modeling the entire system is allowed [3].

Moreover, network data as well as network variables are expressed in the per-unit scale.

3.2.1 Per-Unit System

The per-unit value representation of electrical variablesis a common standard in many

power system problems [19].

The numerical per-unit value of any quantity is its ratio to achosen base’s quantity of

the same dimension. Thus, a per-unit quantity is normalizedwith respect to the chosen base

value. The per-unit quantity of the value is defined as:

P.U. Value=
Actual Value

Reference or the Base Value of the same dimension
(3.1)

In an electrical network, the currenti, the complex voltagev, the complex powers and

the impedancez are the four quantities usually involved in the calculations. These four

quantities are completely described by knowledge of only two of them. In other words, an

arbitrary choice of two base quantities fixes the other base quantities [19]. The base units

considered in this study are 100 MW for active power and 100 MVAR for reactive power.

Impedance is measured in 100 MVA base.

3.2.2 Transmission Line

The equivalent two-portπ model of a transmission line is shown in Figure 3.1. This figure

represents the series impedance ofzij and total shunt impedance ofzsi andzjs at nodesi

andj. The relationship between the real and imaginary components of impedance can be

expressed as:

zij = rij + jxij

yij = z−1
ij = gij + jbij

gij =
rij

(r2

ij+x2

ij)

bij =
−xij

(r2

ij+x2

ij)
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Figure 3.1: Theπ model of a transmission line

In above formulas,zij is the series impedance shown in Figure 3.1. The resistance and reac-

tance of impedancezij are presented byrij andxij respectively. Similarly, the admittance

of a transmission line is represented byyij. The conductance and susceptance ofyij are

indicated bygij andbij .

The complex voltage at nodek is presented asek = vkexp(jθk), wherevk is the voltage

magnitude at nodek, andθk is the associated phase angle.

3.2.3 Transformer

The transformers in network branches can be modeled with an ideal transformer, with a

fixed tap ratio,aim, on the primary side. Also, a series impedance,zmj , is added to the

transformer to present resistive losses and leakage reactance. The model is shown in Figure

3.2.

Figure 3.2: The transformer in a transmission line

In this research, we consider the ideal in-phase transformers for the network with the

fixed tap ratioaim. Regarding Figure 3.2, the phase angle at nodei is equal to the phase

angle at pointm , θi = θm, and the tap ratio isaim = vi

vm
. Therefore, the relationship
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between the complex nodal voltages in the presence of transformer can be expressed as:

ei

em
=

viexp(jθi)

vmexp(jθm)
= aim (3.2)

3.2.4 Shunt Capacitor

A static or a shunt capacitor is represented by its per unit susceptance at the related buses

and is usually used for voltage/power control.

3.2.5 Loads and Generators

In modeling the network, loads and generators are considered as equivalent complex power

injections and have no effect on the structure of the networkmodel. The only exception

can be a constant impedance type load, which is included as shunt admittances at the cor-

responding bus [3].

3.3 Problem Variables

In the basic formulation for power systems, four variables are assigned to each bus in the

network:

• vk- Voltage magnitude

• θk- Phase angle

• pk- Net active power

• qk- Net reactive power

There are different types of measurements and depending on the information provided

for estimation, most commonly used measurements are: bus power injections, line power

flow, bus voltage magnitudes, and line current flow magnitudes [19]. These measurements

can be expressed in terms of the state variables.

The static state of an electric power system is defined as the vector of the voltage mag-

nitudes and phase angles at all system nodes, except one node[20]. Considering a system
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with nb buses, the size of the state vector is2(nb − 1), which includes voltage magnitude

and phase angles at all buses except the reference bus. The reference bus (or slack bus)

is a bus for which these variables are considered known. In the problem formulation, the

related lines for slack bus measurements and variables are eliminated during the estimation

process. Using the definitions and notations in Table 3.1 andconsidering the components

Table 3.1: The power system’s parameters and variables
pi Active power of the i-th bus MW
qi Reactive power of the i-th bus MVAR
ei Complex voltage at the i-th bus kV
vi Voltage magnitude of the i-th bus kV
θi Phase angle of the i-th bus rad
pij Active power flow between bus i and bus j MW
qij Reactive power flow between bus i and bus j MVAR
θij θi − θj rad
gij The real part of line admittance MVA
gsi The real part of shunt admittance MVA
bij The imaginary part of line admittance MVA
bsi The imaginary part of shunt admittance MVA

and assumptions described in section 3.2, the transmissionline power flow can be expressed

as:

sij = eii
∗
ij = ei (eiyis + (ei − ej)yij)

∗ = eie
∗
i y

∗
si + ei(ei − ej)

∗y∗
ij (3.3)

sij = v2
i (gsi − jbsi) + v2

i (gij − jbij) − vivjexp(θij)(gij − jbij) (3.4)

Sincesi = pi + jqi, the active and reactive power flows can be written separately as:

pij = −vivj (gijcos(θi − θj) + bijsin(θi − θj)) + v2
i (gsi + gij) (3.5)

qij = −vivj (gijsin(θi − θj) − bijcos(θi − θj)) − v2
i (bsi + bij) (3.6)

The net power flow at system nodei is:

si = eii
∗
i = ei

m
∑

k=1

y∗
ike

∗
k = viexp(jθi)

m
∑

k=1

(gik − jbik)vkexp(−jθk) (3.7)

si =

m
∑

k=1

vivk(gik − jbik)[cos(θi − θk) + jsin(θi − θk)] (3.8)
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Therefore active and reactive power at busi can be expressed as:

pi =
m
∑

k=1

vivk (gikcos(θi − θk) + biksin(θi − θk)) (3.9)

qi =

m
∑

k=1

vivk(giksin(θi − θk) − bikcos(θi − θk)) (3.10)

However, for finding the total power at each bus, we should also consider the generation or

load power on that bus. So the total active and reactive powerare given by:

ptotal(i) = pgen(i) − pload(i) −
p
∑

k=1

gikvivkcos(θi − θk) + bikvivksin(θi − θk) (3.11)

qtotal(i) = qgen(i) − qload(i) −
p
∑

k=1

gikvivksin(θi − θk) − bikvivkcos(θi − θk) (3.12)

wheregik andbik are theik-th real and imaginary elements of system admittance matrix

Ybus.

3.4 The Mathematical Formulation

As mentioned in the previous section, voltage magnitudes and phase angles are defined as

states in our study. The vector presentation of stateX therefore is given as:

X =

[

Θ

V

]

=



































θ1

θ2

...

θn

v1

v2

...

vn



































(3.13)
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Now considering the active and reactive power at network nodes and branches as our mea-

surements, we get

Z =

[

P

Q

]

=

























































p1

...

pn

q1

...

qn

p12

...

pnr

q12

...

qnr

























































(3.14)

Let us now represent the relationship between states and measurements as:

H(X) =

[

P (x)

Q(x)

]

=

























































p1(x)
...

pn(x)

q1(x)
...

qn(x)

p12(x)
...

pnr(x)

q12(x)
...

qnr(x)

























































(3.15)

The matrices in equations (3.13), (3.14), and (3.15) can nowbe mapped to the system

of overdetermined nonlinear equations (2.2), which will bediscussed in chapter 4. The
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remaining matrix in equation (2.2) is matrixΓ, known as measurement error that, in general,

can have different patterns (Measurement error is discussed in section 3.8.) The derivation

of Jacobian matrices, based on nonlinear equations from power systems, is explained in

section 3.5. The Jacobian matrix will be used in the linearization procedure of nonlinear

power systems in chapter 4 and 5.

3.5 Deriving the Jacobian Matrix

The Jacobian matrix contains partial derivatives of the mismatch vector (P and Q equations)

with respect to the variable vectorX.

A =













Jn11 Jn12

Jn21 Jn22

Jb11 Jb12

Jb21 Jb22













(3.16)

Matrix A is constructed on the Jacobian matrix of nodal measurementsJn, and power

flow measurementsJb.

Jn11 = ∂Ptotal

∂Θ

Jn12 = ∂Ptotal

∂V

Jn21 = ∂Qtotal

∂Θ

Jn22 = ∂Qtotal

∂V

Jb11 = ∂Pbranch

∂Θ

Jb12 = ∂Pbranch

∂V

Jb21 = ∂Qbranch

∂Θ

Jb22 = ∂Qbranch

∂V
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The elements of the Jacobian matrix for nodal power measurements are:

Jn =

[

Jn11 Jn12

Jn21 Jn22

]

=



































∂p1

∂θ1
· · · ∂p1

∂θn

∂p1

∂v1
· · · ∂p1

∂vn

∂p2

∂θ1

· · · ∂p2

∂θn

∂p2

∂v1

· · · ∂p2

∂vn

...
. . .

...
. . .

∂pn

∂θ1
· · · ∂pn

∂θn

∂pn

∂v1
· · · ∂pn

∂vn

∂q1

∂θ1
· · · ∂q1

∂θn

∂q1

∂v1
· · · ∂q1

∂vn

∂q2

∂θ1

· · · ∂q2

∂θn

∂q2

∂v1

· · · ∂q2

∂vn

...
. . .

...
. . .

∂qn

∂θ1
· · · ∂qn

∂θn

∂qn

∂v1
· · · ∂qn

∂vn



































(3.17)

Also, the elements of active and reactive power flow measurements can be written as:

Jb =

[

Jb11 Jb12

Jb21 Jb22

]

=

























∂p1p

∂θ1
· · · ∂p1p

∂θn

∂p1p

∂v1
· · · ∂p1p

∂vn

...
. . .

...
. . .

∂pnq

∂θ2

· · · ∂pnq

∂θn

∂pnq

∂v2

· · · ∂pnq

∂vn

∂q1p

∂θ1
· · · ∂q1p

∂θn

∂q1p

∂v1
· · · ∂q1p

∂vn

...
. . .

...
. . .

∂qnq

∂θ1
· · · ∂qnq

∂θn

∂qnq

∂v2
· · · ∂qnq

∂vn

























(3.18)

Hence, the elements of matricesJn and Jb can be calculated by taking the partial

derivatives of measurements with respect to the states, as shown in sections 3.5.1 to 3.5.8.

3.5.1 Elements of MatrixJn11

∂pi

∂θi
=

p
∑

k=1,k 6=i

−gikvivksin(θi − θk) + bikvivkcos(θi − θk) (3.19)

∂pi

∂θk

= −gikvivksin(θi − θk) + bikvivkcos(θi − θk) (3.20)

3.5.2 Elements of MatrixJn12

∂pi

∂vi
=

p
∑

k=1,k 6=i

−gikvkcos(θi − θk) − bikvksin(θi − θk) − 2vigii (3.21)
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∂pi

∂vj
= −gikvisin(θi − θk) − bikvicos(θi − θk) (3.22)

3.5.3 Elements of MatrixJn21

∂qi

∂θi
=

p
∑

k=1,k 6=i

−gikvivkcos(θi − θk) − bikvivksin(θi − θk) (3.23)

∂qi

∂θk
= gikvivkcos(θi − θk) + bikvivksin(θi − θk) (3.24)

3.5.4 Elements of MatrixJn22

∂qi

∂vi

=

p
∑

k=1,k 6=i

−gikvksin(θi − θk) + bikvkcos(θi − θk) + 2vibii (3.25)

∂qi

∂vj

= −gikvisin(θi − θk) + bikvicos(θi − θk) (3.26)

3.5.5 Elements of matrixJb11

∂pij

∂θi

= −vivj(−gijsin(θi − θj) + bijvivjcos(θi − θj) (3.27)

∂pij

∂θj

= −vivj(gijsin(θi − θj) − bijvivjcos(θi − θj) (3.28)

3.5.6 Elements of MatrixJb12

∂pij

∂vi
= −vj(gijcos(θi − θj) + bijsin(θi − θj) + 2vi(gsi + gij) (3.29)

∂pij

∂vj
= −vi(gijcos(θi − θj) + bijvisin(θi − θj) (3.30)
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3.5.7 Elements of MatrixJb21

∂qij

∂θi
= −vivj(−gijcos(θi − θj) + bijvivjsin(θi − θj) (3.31)

∂qij

∂θj
= vivj(−gijcos(θi − θj) + bijvivjsin(θi − θj) (3.32)

3.5.8 Elements of MatrixJb22

∂qij

∂vi
= −vj(gijsin(θi − θj) − bijcos(θi − θj)) − 2vi(bij + bsi) (3.33)

∂qij

∂vj
= −vi(gijsin(θi − θj) − bijcos(θi − θj)) (3.34)

3.6 Final Format of Matrices

In power system modeling, there exists a bus in each power network which is named as the

slack bus. The slack bus or the reference bus is one of the generation buses of the system,

whose phase angle is assumed zero. For the simplicity, the voltage magnitude of slack bus,

in this research, is also considered known.

The matrix formulation of the power system as described in the pervious sections results

in a system of equations withm measurements and2nb states wherenb is the number of

system buses. Since the number of states isn = 2(nb − 1), the columns of the Jacobian

matrix, which are related to derivatives of phase angle and voltage magnitude of the slack

bus, should be eliminated in the final format of matrices. Respective rows of the state vector

X should also be eliminated for the slack bus.

3.7 Newton-Raphson Method

To calculate the exact solution of the states, Newton-Raphson method is applied to the

network. In Newton-Raphson method, we consider only the nodal measurements for the
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system; hence, the overdetermined set of nonlinear equations are reduced to a completely

determined set which has an exact solution. To get the exact solution, the following steps

are followed:

• Calculate∆Z matrix using the following equation.

∆Zn(i) =

[

∆Pn(i)

∆Qn(i)

]

=

[

∆Pn − Pn[X(i)]

∆Qn − Qn[X(i)]

]

(3.35)

• Find Jacobian matrixJn, based on equation (3.17) in the previous section.

• Solve the linear set of fully determined equations:

[

Jn11 Jn12

Jn21 Jn22

][

∆Θ(i)

∆V (i)

]

=

[

∆Pn(i)

∆Qn(i)

]

(3.36)

• Update the value of states using

X(i + 1) =

[

Θ(i + 1)

V (i + 1)

]

=

[

Θ(i)

V (i)

]

+

[

∆Θ(i)

∆V (i)

]

. (3.37)

Regarding the operating conditions of the network, the voltage magnitudes at the gen-

eration buses are known. Therefore, their related entries in the state vector, measurement

vector, and Jacobian matrix are omitted. At the end of each iteration, the generated power

for generation buses should be calculated. If the calculated power at any of the genera-

tion buses exceeds the bus generation limit, that bus type ischanged to a load bus with

the power set at the limit [5]. Starting with initial valueX0, the procedure continues until

the convergence criterion is satisfied, or the maximum number of iterations is reached. For

power systems in this study, the convergence criterion for Newton-Raphson method is set

to 10−12, and the maximum number of iterations is set to50. The state values obtained from

this procedure are calledTrue Valuesof states, since they are calculated in the absence of

bad data and regarding the true measurements of the system.
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3.8 Bad Data Definition

The presence of bad data points may severely degrade the performance of the power sys-

tem static state estimators. Thus, to demonstrate the performance of state estimation, the

measurement set should contain bad data points. In this research, such measurements are

modeled either as outliers in the data set, or as erroneous measurements with error from a

known distribution. To simulate measurement errors, a random number generating algo-

rithm is used, with erroneous measurements obtained by adding the random errors to the

base case measurements of flows, loads, and generations [1].

3.8.1 Outliers in the Measurement

There are cases where the pattern of error is not well known inthe measurement set. These

case are usually modeled by considering some random measurements in the set as outliers.

These bad data points are significantly different from theirreal values. Even though the

number of these bad points is not substantial, they can effectively affect the estimation in

some cases.

3.8.2 Gaussian Error

The measurement errors are commonly assumed to have a Gaussian (Normal) distribution

[3]. Assumezmeas to be the value of a measurement received from a measurement de-

vice, whereztrue is the true value of the quantity being measured. Assigning symbol γ to

measurement error, we can then represent the measured values as:

zmeas = ztrue + γ (3.38)

The random quantity,γ, is introduced to model the uncertainty in the measurement.For

unbiased Gaussian error,γ is chosen from a normal distribution with zero mean. The

Probability Density Function (PDF) ofγ is given as,

f(γ) =
1

σ
√

2π
exp(

−γ2

2σ2
) (3.39)
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whereσ is the standard deviation andσ2 is the variance. The PDF given in (3.39) is a

function that describes the relative likelihood for the random variableγ to occur at a given

point. A plot off(γ) is shown in Figure 3.3.
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Figure 3.3: The Probability Density Function of Normal Distribution

The normal distribution is commonly used for modeling measurement errors in power

systems [1]. Assuming Gaussian error for measurements, theproblem of maximum like-

lihood estimation, or finding the most likely state of systembased on erroneous measure-

ments results in minimizing the Weighted Least Squares (WLS) error as discussed in sec-

tion 2.4.1. This characteristic is one of the reasons for thecommon use of LS estimators in

power system estimation problems.
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3.8.3 Rayleigh Error

The popularity of LS-based methods continued to grow, even though it was known that it

does not lead to the best possible estimates of unknown parameters when the distribution of

error is other than Gaussian [9]. To model a more complicatedcase of bad measurements,

the Rayleigh error is considered. In communication systems, the magnitude of a randomly

received signal can be modeled as a Rayleigh distribution. Also if γ1 and γ2 represent

two independent Gaussian errors in a measurement, their Euclidean norm has a Rayleigh

distribution [29]. When errorγ in the equation (3.38) belongs to a Rayleigh distribution, its

Probability Density Function (PDF) can be expressed as,

∀γ ≥ 0, f(γ) =
γ

σ2
exp(

−γ2

2σ2
) (3.40)

A plot of the PDF of a Rayleigh distribution is shown in Figure3.4.
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Figure 3.4: The Probability Density Function of Rayleigh Distribution
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3.9 Summary

The model of a power system, and the proper formulation of system equations as an overde-

termined system of nonlinear equations, were both presented in this chapter. Moreover,

based on the bus branch model, the derivation of the Jacobianmatrix was explained, to

alter the system matrices in the proper format for state estimators. The bad data points are

also defined for different types of measurement errors. Based on the information presented

in this chapter, different power system test cases are modeled in chapter 5, Experiments and

Results.



Chapter 3

The Modified Least Absolute Value

Estimator

3.1 Introduction

This chapter discusses the development of a method which uses contraction mapping to

address the problem of Least Absolute Value (LAV) static state estimation in nonlinear

power systems.

In the first section, theoretical background on contractionmapping for linear state esti-

mation is presented. The concepts are then extended to nonlinear estimation, explaining the

formulation of the problem at hand, linearization technique, and necessary conditions. Fi-

nally, an algorithm is introduced based on this procedure. However, as it will be discussed

later in the chapter, the proposed algorithm faces challenge when dealing with systems

containing sparse matrices. To alleviate this, the method is modified by applying Singu-

lar Value Decomposition (SVD), and then employing contraction mapping selection on the

resulting matrices to make it suitable for sparse systems.

34
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3.2 Literature Review

As mentioned in the previous chapter, the Least Absolute Value (LAV) estimator is a more

robust estimation approach for power systems, compared to LS-based estimator [3]. These

group of estimators are usually more complex and computationally more expensive than

LS estimators. However they are more robust and successful in eliminating bad data.

Unlike the LS estimator, there is no explicit solution for LAV estimators. Different

estimators employ different techniques for obtaining the states. These techniques cover a

wide range of methods: applying linear programming [37] andlinear regression techniques

[8], partial use of LS technique and weight matrix [30], employing residuals method [30],

applying decoupled methods [28] or QR block decomposition method [23]. The method

introduced in this research uses contraction mapping and singular value decomposition for

state estimation.

The accurate performance of estimator has been verified for nonlinear power systems

using a local linearization approach, and contraction mapping criteria [15]. However, when

the size of the system increases, another issue appears thatmakes the problem difficult to

solve. This issue arises from the sparse matrices in large scale power networks. As will be

discussed in section 3.6, for many systems with sparse matrices, system equations needed

for state estimation could not be correctly identified.

To deal with large systems with sparse matrices, a modified LAV estimator is intro-

duced. The set of nonlinear equations describing the systemis linearized by calculating

Taylor Series expansion and Jacobian matrix. The system matrices are then modified by

using Singular Value Decomposition (SVD) which makes it suitable for applying the LAV

algorithm. applied to eliminate redundant measurements, and obtain the accurate equations

essential for estimation. Finally, the estimated values ofsystem states are computed through

the iterative process of solving selected linear equations.
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3.3 Theory of Contraction Mapping and Linear Systems

The state estimation problem in overdetermined linear systems can be stated as a linear

relationship between system measurementsZ, and its unknown statesX, where the mea-

surement setZ is corrupted by disturbance or noiseΓ.
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(3.1)

Z = HX + Γ. (3.2)

The problem can be formulated as (3.1), or as the short form equation (3.2). The ob-

jective function of LAV estimation is to assign values to unknown statesX, such that the

absolute sum of error given by (3.3) becomes minimum.

J(X) =

m
∑

i=1

|ei| =

m
∑

i=1

rowi|Z − HX| (3.3)

The LAV estimator obtains the values for states based on the following theorem.

THEOREM 1 [7], If the column rank of the matrixH ∈ Rm×n is k ≤ n, then there

exists a best LAV approximationHXLAV which interpolates at leastk points of the set

Z = [z1, z2, ..., zm]T .

The theorem implies that the LAV estimator passes through atleastk points in the

measurement set, which makes the estimation error zero for at leastk points of the objective

function. This is in contrast to the LS estimator, which doesnot necessarily pass through

exact points of the measurement set.

The way thesek points are selected from the measurement set is the key difference

between different LAV estimators. As mentioned before, theestimator which is studied in

this research employs the contraction mapping principle soas to choose these points. To
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investigate features of this estimator, and the way it chooses interpolation points within the

set, some concepts from linear algebra which are related to the topic are first reviewed:

Norm: A normed linear vector space is a vector spaceX on which a real-valued function

called norm is defined. The norm function maps each elementX in X into a real number

‖X‖, satisfying the following axioms:

• ‖X‖ ≥ 0 for all X ∈ X, and‖X‖ = 0 if and only if X = 0.

• ‖X + Y ‖ ≤ ‖X‖ + ‖Y ‖ for eachX, Y ∈ X.

• ‖αX‖ = |α| · ‖X‖ for all scalarsα and eachX ∈ X.

In the vector spaceX with dimensionn, the p-norm can be defined as:

‖X‖p = (

n
∑

k=1

|xk|p)
1/p

(3.4)

The norm which is used for finding the absolute value of the error is simply obtained by

substitutingp = 1 in (3.4).

Cauchy sequence: A sequence{xn} in a normed space is said to be a Cauchy sequence

if ‖xn − xm‖ → 0 asn, m → ∞.

Complete Space: A normed linear vector space is complete if every Cauchy sequence

in space has its limit within the space.

Banach Space: A complete normed linear vector space is called Banach space.

Orthogonal Matrix : An n×n real matrixQ is called an orthogonal matrix if it satisfies

the following condition:

QQT = QT Q = In (3.5)

whereQT represents the transpose ofQ andIn is then × n identity matrix.

Unitary matrix : An n×n complex matrixU is called a unitary matrix if it satisfies the

following condition:

UU+ = U+U = In (3.6)
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whereU+ represents the conjugate transpose ofU andIn is then × n identity matrix. In

other words, a unitary matrix has an inverse which is equal toits conjugate transpose.

Right and Left Singular Vectors: The n eigenvectors ofA+A are called the right

singular vectors ofA, whereA is anm×n complex matrix andA+ is its complex conjugate

transpose. Them eigenvectors ofAA+ are called left singular vectors ofA.

Distance Function: Considering two elementsX andY from an n-dimensional Banach

space, the distance betweenX andY can be defined as:

d(X, Y ) =
n
∑

j=1

|xj − yj| = ‖X − Y ‖ (3.7)

The distance function can also be considered as a norm since it is the 1-norm for the

vectorX − Y from the space.

Fixed point: The solutionX for equationX = T (X) is said to be a fixed point of the

transformationT whenX leaves the transformation invariant.

Based on the above definitions, we can now introduce the contraction mapping condi-

tion for a Banach space with distance norm as follows,

THEOREM 2-Contraction mapping theorem [4]: Let S be a subset of a normed

spaceX and letT be a transformation mapping fromS into S. ThenT is said to be contrac-

tion mapping if there is anα, 0 ≤ α < 1 such that

∀X, Y ∈ S, ∃α : ‖T (X) − T (Y )‖ ≤ α‖X − Y ‖ (3.8)

Thus, a contraction mapping brings every two elements in spaceScloser together. Fur-

thermore, every contraction mapping in the Banach space hasone and only one fixed point

which is the unique solution of equation

X = T (X). (3.9)

Recalling the LAV estimator which interpolatesk points of measurement set, we know

that for these points the measurement error is considered zero since the estimator passes

through them directly. If these points are chosen such that their related rows of matrixH

forms a contraction mapping, thenX will become the fixed point of the transformation.
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The condition for the transformationH to become a contraction mapping can be derived

as:

d(HX, HY ) = ‖(HX, HY )‖
=
∑n

i=1 |
∑n

j=1 hij(xj − xj)|
≤∑n

i=1

∑n
j=1 |hij||xj − xj |

≤ maxj

∑n
i=1 |hij|d(X, Y )

So the condition obtained comparing the above formulas withthe contraction mapping

theorem is given as:

αj =

n
∑

i=1

|hij | ≤ α < 1 (3.10)

Furthermore, it is proved in [7] that the set which has the smallest α in H, leads to the

optimal solution of LAV estimation.

3.4 Extension to Non-Linear Systems

In this section it is further assumed that the system dynamicis nonlinear. The compact form

of (2.2) is given by

Z = H(X) + Γ. (3.11)

where,Z = [z1 z2 · · · zn]T , X = [x1 x2 · · ·xn]T , H(x) = [h1(x) h2(x) · · ·hn(x)]T

andΓ = [γ1 γ2 · · · γn]
T .

The objective of the LAV estimator for nonlinear systems is to minimize the total abso-

lute error,J(X), of all state variables as follows:

J(X) =

m
∑

i=1

|ei| =

m
∑

i=1

|zi − hi(x)| (3.12)

By using the Gauss-Newton linearization technique explained in section 2.4.3, matrixH(X)

is approximated around its equilibrium point,X0, by:

H(X) = H(X0) + A ∆X (3.13)
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whereA = ∂H(X)
∂X

|X=X0
is them× n Jacobian matrix ofH(X) atX0, and∆X = X −X0.

For power-system state estimation, the Jacobian matrix is calculated as discussed in section

3.5.

By substituting (3.13) into (3.11) and defining∆Z = Z −H(X0), the estimation error,

E, is given by:

E = ∆Z − A ∆X (3.14)

The equation (3.14) presents an approximation of the state estimation error around the

equilibrium point which consists ofm simultaneous locally linearized equations withn

state variables.

Regarding the contraction mapping condition in linear systems (3.10), for the linearized

system given by (3.14), the transformation is a contractionmapping if

αj =

n
∑

i=1

|aij | < 1 (3.15)

whereaij are the elements ofA, the Jacobian matrix, i.e.,A = [aij ]. If (3.15) is satisfied,

the estimation error converges to zero by the method of successive approximations, starting

from an arbitrary initial vector from the subspace.

Note that the selected set should include enough critical measurements from equation

(3.14), to make the system observable. In that case, the selectedn × n Aselected matrix

becomes full rank. Otherwise, we should select another set with the second smallestαj ,

and continue in this manner.

After selecting the desired set of equations from the linearized model, the estimation

errorE is set to zero for those equations. Then, the following expression for∆X can be

obtained by:

∆X = A−1
selected∆Zselected. (3.16)

The value of vectorX is also updated as:

X(i + 1) = X(i) + ∆X. (3.17)

For the nonlinear systems, the method should be iterated forthe new value ofX until

the desired convergence criterion or a certain number of iterations is reached.
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3.5 The Proposed Algorithm

In order to achieve a contraction mapping of (3.14), the condition (3.15) must be satisfied

for A. In this section, an algorithm is proposed which will be applied to nonlinear power

systems in chapter 5.

1. Consider the system equation (3.11), including nonlinear matrixH(X).

2. Read power system parameters and all the available measurements. Construct the

matrices in (3.11) based on the given system data, and the method explained in section

3.4.

3. Assign initial values to the state variables. In power-system state estimation, a flat

start is considered as the initial state, where all the voltage magnitudes have the value

of one per-unit, and all phase angles are zero.

4. Calculate the Jacobian matrixA, and construct the linearized model around the initial

state, based on equation (3.14).

5. Normalize the linearized equations such that all the elements of vector∆Z (the vector

of difference between actual and calculated measurements)are normalized, and the

absolute values of all elements in Jacobian matrixA become less than one .

6. Computeαi for each column of normalized matrixA. If any of theseαi’s are larger

than one, repeat the normalization process by dividing the equations by a power of

10 until the contraction mapping condition (3.15) is satisfied.

7. If there are identical equations, only consider one of them and disregard the rest.

Assuming that there are identical equations in the system, the number of equations is

reduced tom1.

8. In the final set, choosen equations that have the smallestαi’s, and make the system

observable. By choosing these equations, the corresponding Jacobian matrix is full

rank.
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9. Find∆X in (3.14) by assigning the measurement errorE equal to zero for the se-

lected equations and by using equation (3.16).

10. Update the value ofX by adding the estimated value of∆X to the previous value of

X, as stated in (3.17).

11. If the calculated∆X is smaller than the convergence criterion, or if the maximum

number of iterations is reached, continue, otherwise repeat steps 4 to 10. The con-

vergence criterion we considered for power-system state estimation is 0.001 p.u. The

maximum number of iterations is set 20 for the networks.

12. Calculate the final Least Absolute Error as stated in (3.12).

3.6 Challenges in Sparse Matrices

Definition: A sparse matrix is a matrix populated primarily with zeros.

In chapter 5, the algorithm introduced in section 3.5 is applied to power systems for state

estimation. It is shown there that the method results in satisfactory estimation for networks

with a few buses. However, when system dimensions increase,such as in the 10 bus power

system, the algorithm based on contraction mapping fails tosucceed, due to sparsity in the

system matrices.

Consider a system of nonlinear equations formulated as in (2.2). If a measurementzi

is only related to a few unknown states, partial derivativesfor a large number of states

becomes zero. Hence, the row related tozi in a Jacobian matrix has a significant number of

zeros in it. Now, as the number of measurements which have thesame nature aszi increases,

the number of rows in the Jacobian matrix that have many zerosin them increases. As a

result, the Jacobian matrix is primarily populated by zeros, or becomes sparse.

The above scenario commonly occurs in large-scale power networks. In those networks,

each bus is related to a limited number of other buses within the system [10]. Regarding

the huge size of such networks, the node and branch measurements are dependent on a few

states, and their partial derivatives for other states willbecome zero. Therefore, the physical

structure of the network gives the related Jacobian matrix asparse nature.
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Applying the proposed algorithm in section 3.5 to a linearized system with sparse Ja-

cobian matrix is challenging, since finding the desiredn equations for estimation is chal-

lenging. The algorithm suggests that we find the contractionmapping coefficients for the

columns of Jacobian matrix based on equation (3.15), and choose the set of equations which

is related to the smallest coefficient. Now, consider that for most of the columns in the Ja-

cobian matrix the number of states,n, is less than the number of non-zero elements. The

smallest contraction mapping coefficients for those columns can belong to different sets of

equations, since there is no preference between the zero elements. As a result, the estimator

gains a random feature in selecting the equations, which is not desired. To overcome this

problem and render the method precise, Singular Value Decomposition technique modifies

system matrices such that the contraction mapping can be applied.

3.7 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a matrix factorization with many applications in

data processing and statistics. This factorization can be looked upon as a method for trans-

forming correlated variables into a set of uncorrelated ones that better expose the various

relationships among the original data items. The SVD is based on a theorem from linear

algebra which proves that a rectangularm by n matrix (m > n) can be broken down into

the product of three matrices. Those are: an orthogonal matrix U , a diagonal matrix S and

the transpose of an orthogonal matrixD:

A = USDT (3.18)

In (3.18),S is a diagonalm × n matrix where the elements on its diagonal are called

singular values ofA. MatricesU andD arem×m andn×n unitary matrices respectively

whereUT U = I andDT D = I. Moreover, the columns ofU andD contain left and right

singular vectors of diagonal elements ofS respectively.
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3.8 Modified Contraction Mapping Estimator

Since the SVD technique deals with matrices and equations which are singular, or very

close to singularity [17], the technique can be used to resolve the issue of zero elements in

the Jacobian matrix.

When SVD factorization is applied to the sparse Jacobian matrix A, matrix B (which

is a non-sparsem × n matrix), can be constructed as the product of unitary matrixU and

singular value matrixS. Therefore, the non-sparse matrixB is closely related to the sparse

Jacobian matrixA in terms of including all of its singular values, and their related right

singular vectors.

B = US (3.19)

The linearized system equation (3.14) is then written as,

∆Z = A∆X + Γ = BDT ∆X + Γ (3.20)

Regarding the relevance between matricesA andB, the contraction mapping criteria can

be applied to matrixB to choose the desired set ofn equations.

By equalizing the measurement error to zero for selectedn equations from contraction

mapping criteria, the states can be estimated by,

∆X = (DST SDT )−1D(B)T
selected∆Zselected. (3.21)

In equation (3.21)Bselected represents ann × n matrix related to then system selected

equations and∆Zselected is ann×1 row-vector presenting the corresponding measurements.

3.9 The Modified Algorithm

In this section an algorithm is proposed regarding the modified contraction mapping con-

cept. The algorithm is developed for power-system state estimation, and it eliminates most

of the bad data points within the set.

1. Consider the system equation (3.11) with nonlinear matrix H(X).
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2. Read the power system data and all the available measurements that include redun-

dant measurements. Build matrices in (3.11), based on the given data and the method

explained in section 3.4.

3. Assign initial values to the state variables. The flat start which sets all the phase

angles equal to zero and all the voltage magnitudes equal to one, is considered.

4. Find the Jacobian matrixA and construct the linearized model (3.14) around the state

vector.

5. Use SVD factorization as stated in (3.18) to find matricesU , S andV for the Jacobian

matrixA.

6. ComputeB matrix by using (3.19).

7. Compute the contraction coefficients ,αj =
n
∑

i=1

|bij|, for then smallest elements of

each column in theB matrix.

8. Compare theαj s for different columns of matrixB: Pick upn equations related to

the smallestαj within the columns which result in a full rankBselected matrix, which

is of n × n order. By choosing these equations, we know that the relatedsystem is

observable.

9. Find∆X by using (3.21).

10. Update the value ofX by (3.17).

11. If the calculated∆X is larger than the convergence criteria and if the maximum

number of iterations is not reached, repeat steps 4 to 10.

12. Calculate the LAV estimation error given by (3.12).

3.10 Summary

Least Absolute Value estimator methodology, for selectingdesired data points in an overde-

termined state estimation problem, can rely on contractionmapping concepts such that the
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smallest contraction coefficients within the system matrices lead to the optimal solution of

estimation. For estimation problems with a sparse system matrix, the SVD should first be

applied to pre-process the system sparse matrix, and then the contraction mapping crite-

ria are applied to the processed matrices to find the desired set for LAV state estimation.

Two algorithms were introduced in sections 3.5 and 3.9, based on these concepts for non-

linear state estimation problems in power systems. The applications of these algorithms

are presented in chapter 5 through various examples of stateestimation in different power

networks.
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Figure 3.1: The proposed algorithm flowchart
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Figure 3.2: The modified algorithm flowchart



Chapter 4

Experiments and Results

4.1 Introduction

In this chapter, the proposed algorithms for modified LAV state estimation are verified on

power systems. The first set of experiments, includes small-scale power networks and LAV

estimation is obtained by applying the nonlinear contraction mapping algorithm. This al-

gorithm demonstrates satisfactory results; however, whenthe size of the network increases,

the algorithm loses its robustness due to its inability to omit bad data. Therefore, for the

large-scale systems discussed in section 4.4, the modified contraction mapping algorithm

is employed. Different sets of bad data are considered for each network, and the estimation

results are presented and evaluated. Finally the method is compared with a more developed

LS-based method which uses residuals analysis to eliminatebad data. The discussion of

advantages and disadvantages is also presented in the chapter.

4.2 Small-Scale Power Networks

A 5 bus and a 10 bus power network are examined in this section.For both examples,

the nonlinear dynamic is considered. The system information, i.e., the measurements, bad

data, as well as the systems operating conditions, are adopted from [9]. The true values

of states are calculated for each network. The measurementsconsidered for calculation of

49



CHAPTER 4. EXPERIMENTS AND RESULTS 50

true values, are nodal active power, and nodal reactive power at all the system buses, in the

absence of bad data. The true states are obtained by using Newton-Raphson’s method. The

maximum number of iterations is set to 50 and the convergencecriterion is 1×10−12. The

proposed LAV is then applied to each system to obtain an estimation of the states. The soft-

ware used for coding is MATLAB. Toolboxes used during simulation process are Symbolic

Math toolbox and Statistics toolbox. The accuracy of the proposed estimator is evaluated

by comparing the estimated states and the true states, and calculating the LAV error. For

comparative study, the estimation error of the proposed LAVestimation is compared with

the LS-based estimation, and the results are discussed.

4.2.1 The IEEE 5 Bus Power Network

The schematic of the IEEE 5 bus system is shown in Figure 4.1. The generation buses are

bus one and two, where bus one is considered as slack bus. The specification tables related

to the physical parameters and the working condition of network are given in appendix A.

Figure 4.1: The schematic diagram of the 5-bus power system.

The state estimation experiment, with basic contraction mapping algorithm, has been

tested on this network with different measurement sets A andB. For each set, three dif-

ferent groups of bad measurements are considered. The features of each set, in terms of

its measurement specifications, are expressed in section C.1.1 of appendix C. The LAV es-

timation technique, based on the local linearization approach, is applied to to all the data

sets. In the following, the estimation results for each testare presented and discussed.
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Set A

Set A is the first set considered for the experiments. The specifications of the set can be

expressed as:

• number of buses :nb = 5

• number of states :n = 2(nb − 1) = 8

• number of measurements:m = 23

• redundancy ratio:η = 2.875

In set A, the ratio of measurements to unknowns (redundancy ratio) is 2.875. As mentioned

earlier, three sets of bad data points are defined on set A, which can be named asA1, A2 and

A3. These sets, which include different bad data points, are employed for state estimation.

For data setA1, the bad data point is generated by reversingp2. This experiment is one of the

simple examples to check the outlier-rejection ability presented in the new LAV algorithm.

The error of estimated values for voltage magnitudes and phase angles are presented in

Figure 4.2(a) for each bus, which shows that the proposed method is more successful in

reducing the error in the presence of the bad data pointp2.

The next bad data set is generated by invertingp3−1, and halvingq5−4. These bad data

points influence the estimation at buses three, four, and five. The results of state estimation

are given in Figure 4.2(b). For setA3, bad data points are generated by invertingp3−1, halv-

ing q5−4 and equalizingp5−4 to zero, which affects almost all of the buses in the network.

The results are shown in Figure 4.3.

Figure 4.2 and 4.3 illustrate that the proposed LAV estimation technique results in bet-

ter estimation in comparison with the LS-based estimation technique. The difference be-

tween two estimators is more noticeable in phase estimation, especially for the last two

sets that have more inaccurate measurements. The estimation errors for each experiment

are presented in Table 4.1, expressing that the proposed estimator successfully shows less

estimation error.
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Table 4.1: The table of estimation error for 5 bus system - data set A

Bad data Estimation error Estimation error

Set of LAV estimator of LS estimator

A1 0.1323 0.3602

A2 0.2729 0.7361

A3 0.7877 1.1959

Set B

The second set of measurements tested on 5 bus system, is set B. For this set we have the

same number of buses and states, however the number of measurements and therefore the

redundancy ratio is different:

• number of measurements:m = 21

• redundancy ratio:η = 2.625

For set B, the redundancy ratio decreases to 2.625. The first group of bad data points,

B1, is generated by invertingp2 and p3−4. The value ofq3 is also halved. The second

bad data set,B2, is generated by settingq4 andq3−4 to zero, doublingp3−4, and halving

the value ofp5. The last bad data set,B3, is also produced by settingq4 andq34
to zero,

doublingp3−4 andp2−4, inverting the value ofq4−2, and halving the value ofp5.

The estimation errors on buses, shown in Figures 4.4 and 4.5,demonstrate that within

these data sets, the estimation results are more accurate for both estimators. However,

the calculated values of the proposed estimator exactly match the true state values where

LS estimator encounters minor errors in estimating states,such as the voltage magnitude

estimation errors in Figure 4.4(a).

Since the 5 bus system is a comparatively small network, and its Jacobian matrix in the

linearized model is not sparse, the algorithm is able to approximate the states precisely, and

obtain a smaller estimation error in comparison with the LS estimator.
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Table 4.2: The table of estimation error for 5 bus - data set B

Bad data Estimation error Estimation error

Set for proposed estimator for LS estimator

B1 0.4868 1.1156

B2 0.4843 0.9396

B3 0.4843 1.0840



CHAPTER 4. EXPERIMENTS AND RESULTS 54

1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

Bus Number

V
ol

ta
ge

 M
ag

ni
tu

de
 E

rr
or

 

 
The Proposed Estimator
The LS Estimator

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

Bus Number

P
ha

se
 A

ng
le

 E
rr

or

 

 
The Proposed Estimator
The LS Estimator

(a) Set A1

1 2 3 4 5
0

0.002

0.004

0.006

0.008

0.01

Bus Number

V
ol

ta
ge

 M
ag

ni
tu

de
 E

rr
or

 

 
The Proposed Estimator
The LS Estimator

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

Bus Number

P
ha

se
 A

ng
le

 E
rr

or

 

 
The Proposed Estimator
The LS Estimator

(b) Set A2

Figure 4.2: The Voltage and Phase Error for the 5-bus power system with measurement set
A1 and A2.
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Figure 4.3: The Voltage and Phase Error for the 5-bus power system with measurement set
A3.
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Figure 4.4: The Voltage and Phase Error for the 5-bus power system with measurement set
B1 and B2.
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Figure 4.5: The Voltage and Phase Error for the 5-bus power system with measurement set
B3.
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4.2.2 The IEEE 10 Bus Power Network

In Figure 4.6, the simplified graphic of the IEEE 10 bus systemis shown, with generation

buses one, two, and four. More detailed information about this system is given in appendix

A.

Figure 4.6: The schematic diagram of the 10-bus power system.

Similar to the state estimation experiments in section 4.2.1, the network is analyzed with

different sets of measurements and bad data. These measurements and their bad data points

are fully described in section C.1.2 of appendix C. The simulation results are obtained by

applying the original contraction mapping algorithm, and presented through related figures

and tables. The proposed estimator shows a different behavior in this network, and the

accuracy of estimation reduces in comparison to the 5 bus system.

Set A

The first set considered for experiments is set A. The basic specifications of the set are:

• number of buses :nb = 10

• number of states :n = 2(nb − 1) = 18

• number of measurements:m = 53
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• redundancy ratio:η = 2.944

Three sets of bad data points are investigated for state estimation inA, grouped as set

A1, setA2 and setA3. The results can be viewed through Figure 4.7 and Figure 4.8(a).

The first set of bad data points is produced by reversingP10−4 andQ5−6. The voltage

magnitude and phase angle at bus 10 are greatly affected by these bad data points, and the

error is significant on this bus when applying the proposed estimation algorithm.

The second set of bad data is generated by reversingQ5−6 andP10−4, and halvingQ7

andQ9. The measurementQ8−9 is set to zero, andQ1−3 is doubled. Here the estimation is

obviously affected by bad data points at buses 6, 7, 8, and 9. As shown in Figure 4.7(b), the

LS estimator has a better performance for this set, in terms of estimation errors on network

buses.

The last set of bad data points is obtained by doubling and reversingP3, settingP9 to

zero, and halvingP2−4. The estimation is more accurate here, compared to the second set,

however in the buses 2, 3, 4, and 9 that are affected by bad measurements, the results of the

proposed algorithm are very close to the those of LS estimator.

In power systems, each bus is connected to a limited number ofother buses, as can be

seen in Figure 4.6. Since each nonlinear relationship between measurements from each

bus is dependent upon buses connected to it, the number of zeros increases in the Jacobian

matrix as the network expands. As discussed in chapter 3, theproposed contraction map-

ping algorithm gains a random feature dealing with a sparse matrix, since the number of

states is larger than the number of nonzero elements in most of the columns. Therefore, the

estimator could not differ between these zero elements, anda larger estimation error occurs

in experiments within set A.

Set B

The next set considered for 10 bus network is described as setB. The measurements are

different in this set, and their redundancy ratio is larger,compared to set A.

• number of measurements:m = 54

• redundancy ratio:η = 3.00
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For the measurement set B, the redundancy ratio is 3.00. Bad data points are considered

such thatP2 andP5−7 are reversed,P6 is halved andQ4−9 is zero.

For this set, the bad measurements again affect the LAV estimation greatly, as shown

in Figure 4.8(b). However, applying the modified algorithm which uses SVD factorization

technique changes the estimation values, and resolves the issue in most of the buses. By

using SVD and following the steps of modified algorithm, the sparse Jacobian matrix is

factorized to non sparse matrices and transforms in the appropriate format for applying the

contraction mapping criteria. The modified estimator is also tested on larger networks in

the next section.

4.3 Discussion of Results for Small-Scale Systems

The performance of the proposed LAV estimator and the LS estimator were tested on IEEE

5 bus and IEEE 10 bus power systems as explained in sections 4.2.1 and 4.2.2. The true

states of these systems were computed by applying Newton-Raphson method in the absence

of bad data. The algorithms, employed for state estimation in the presence of bad data, were

Least Squares and Least Absolute Value using contraction mapping.

For the IEEE 5 bus system, the proposed LAV estimator illustrates low estimation error

and low average error in comparison with LS estimator. This better performance was visible

in both sets of measurements (set A and set B).

For the IEEE 10 bus system, the LS estimator established moreaccurate results. The

total estimation error of the proposed LAV estimator was high in both sets, and the esti-

mator lost its superior estimation accuracy for the larger network. The reason as explained

in section 3.6 is the inability of the contraction mapping algorithm to pick the accurate

measurements required for estimation.
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Figure 4.7: The Voltage and Phase Error for the 10-bus power system with measurement
set A2 and A2.
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Figure 4.8: The Voltage and Phase Error for the 10-bus power system with measurement
set A3 and B.
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4.4 Large-Scale Power Networks

In the next series of experiments, large scale power networks are considered as test bench-

marks. As explained for the 10 bus network in section 4.2.2, the proposed LAV estimation

technique fails to obtain accurate results when the size of the power network expands. This

failure is the reason for using a more developed LAV estimator for large-scale power sys-

tems, referred to as the modified LAV estimator in section 3.8. The nonlinear dynamic is

considered for each power network in the following. The system information including bus

data (network generation power and load power at nodes, bus types, and values of static

capacitors), and branch data (resistance, reactance and line charges between branches, and

transformer ratios), are given in Appendix B. Similar to Small-scale power networks, true

states are calculated using the Newton-Raphson method as explained in section 3.7. The

general measurement set is then constructed based on the true state values and system in-

formation, such that all the bus and branch measurements areconsidered.

The measurements obtained from a real system are not perfect. The measurement er-

rors can be larger on some of the buses in the network. To simulate the effect of these

measurement errors in the network,m1 elements of the total measurement set are corrupted

with noise. For corruption a random-generator algorithm has been used to produce random

errors. The errors were created so as to be the representative of values drawn from a set of

numbers having a Gaussian PDF (4.1) for thefirst experiment, and Rayleigh PDF (4.2) for

the second experiment. In equations (4.1) and (4.2),µ andσ present mean and variance,

respectively. These generated values have been added tom1 measurements in the original

set, to construct a new set of measurements with erroneous data. This set represents a situa-

tion where only some of the measurements in the network contain bad data. The properties

of bad data and measurement set are expressed in appendix C inmore details.

f(γ) =
1√

2πσ2
exp(

−(γ − µ)2

2σ2
) (4.1)

f(γ) =
−γ

σ2
exp(

−γ2

2σ2
) (4.2)

Since the measurement error is not consistent in all measurements, the traditional Weighted
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Least Squares method is not applicable. The LS estimation technique also leads to signifi-

cant estimation errors in buses for which the measurements contain noise.

State estimation using the modified LAV estimator is summarized as follows:

• Considering the related measurement set, system equationsare linearized around the

flat start, and the initial matrix format of the system is created.

• SVD factorization is applied to the Jacobian matrix to modify it for contraction-

mapping selection.

• The processed matrices are examined to find the observable set with the smallest

contraction mapping coefficient.

• The values of states are updated after solving the equationsrelated to the selected set.

• The procedure is iterated until it satisfies the estimation convergence criterion or ex-

ceeds the maximum number of iterations.

4.4.1 The IEEE 14 Bus Power Network

The schematic of IEEE 14 bus system is presented in Figure 4.9.

Figure 4.9: The schematic diagram of the 14 bus power system.
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The network specification tables are fully presented in Appendix B. The basic features

of network are:

• number of buses :nb = 14

• number of states :n = 2(nb − 1) = 26

• number of measurements:m = 68

• redundancy ratio:η = 2.615

In this network, bus number 1 is the slack bus and buses two, three, six, and eight

are system-generation buses. The redundancy ratio of the measurements is 2.615. The

Gaussian noise has been added to 1/5, 1/4 and 2/3 of data in themeasurement set (the

total number of 4,5, and 9 buses of network) during 100 independent trials. The corrupted

measurements are majorally placed on buses one to four (for the first experiment), one to

five (for the second experiment), and one to nine (for the lastexperiment) and their related

branches in the system. The average estimation results for state vector, containing the

voltage magnitudes and phase angles, are presented in Figure 4.10 and Figure 4.11. The

true states obtained from the original measurement set using the Newton-Raphson method

and estimated states using the LS estimator are also shown inthose figures.

LAV estimation error for actual measurements and their calculated values is compared

to the LS estimator in the Table 4.3. The average voltage magnitude error, and phase an-

gle error on each bus, are also given in Table D.1 of appendix D. The estimation error is

significantly less for the modified LAV estimator. The error does not change drastically for

different portions of Gaussian noise and it seems that the estimator is successful in elimi-

nating bad data within the measurement set. The simulation results show that even in the

case where two-thirds of the measurements are affected by noise, the modified estimator is

successful in calculating the states.

The convergence data, for both estimators, are provided in Table 4.4. We can conclude

from the table that the modified LAV estimator is converging faster than the LS estimator

and even provides a better convergence in fewer iterations.As a results, the estimation time

required by the modified LAV estimator is less than the time required by LS estimator.
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(a) Noise on 1/5 of measurement set
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(b) Noise on 1/4 of measurement set

Figure 4.10: The Voltage and Phase estimation for the 14-buspower system with Gaussian
noise.
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Figure 4.11: The Voltage and Phase estimation for the 14-buspower system - Gaussian
noise on 2/3 of measurement set.

Table 4.3: The estimation error of 14 bus system with Gaussian noise

Portion of Estimation error of modified Estimation error of

bad data LAV estimator LS estimator

1/5 24.1372 111.4573

1/4 24.2962 114.6033

2/3 25.3749 224.9231

To view the robustness of the estimator in the presence of other types of bad data,

the experiments are repeated using the measurement set which is corrupted by Rayleigh

noise. Regarding the nature of the Rayleigh distribution, the average value of noise is

larger compared to the Gaussian distribution. The estimation becomes inaccurate for both

estimators when the percentage of bad data increases. This change is more noticeable in the

modified LAV estimator with the PBD equal to 2/3. However, themodified LAV estimator

still predicts the states with less error compared to the LS estimator as shown in Table 4.5.
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Table 4.4: The estimation convergence of 14 bus system with Gaussian noise

Portion of Bad Data Modified LAV LS

PBD Iter1 Log of Time Iter Log of Time

convergence convergence

1/5 2 -3.4815 0.0180 20 -0.5811 0.0920

1/4 3 -3.2185 0.0247 20 -0.3945 0.0931

2/3 4 -3.3175 0.0318 20 1.3898 0.1100

Table 4.6 provides the information related to the convergence and simulation time for

the Rayleigh noise. For the smallest portion of bad data (PBDequals to 1/6) the modified

LAV estimator converges after five iterations and its simulation time is therefore three times

smaller than the LS estimator. As the portion of Rayleigh noise increases, the number of

iterations also increases for the LAV estimator. The commotional time required by the

LAV estimator to provide same number of iterations is more than the required time of LS

estimator. The modified LAV algorithm is more convergent though in comparison with the

LS estimator and considering similar number of iterations.

Table 4.5: The estimation error of 14 bus system with Rayleigh noise

Portion of Estimation error Estimation error

bad data for modified LAV estimator for LS estimator

1/6 41.6196 111.2667

1/5 51.5723 122.1543

2/3 280.2665 328.5404
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(a) Noise on 1/6 of measurement set
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(b) Noise on 1/5 of measurement set

Figure 4.12: The Voltage and Phase estimation for the 14-buspower system with Rayleigh
noise.
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Figure 4.13: The Voltage and Phase estimation for the 14-buspower system - Rayleigh
noise on 2/3 of measurement set.

Table 4.6: The estimation convergence of 14 bus system with Rayleigh noise

Portion of Bad Data Modified LAV LS

PBD Iter Log of Time Iter Log of Time

convergence convergence

1/6 5 -3.0008 0.0352 20 -0.4960 0.0920

1/5 20 -2.8357 0.1091 20 -0.4014 0.0931

2/3 20 0.0057 0.1312 20 1.6204 0.1226
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4.4.2 The IEEE 30 Bus Power Network

The next test system employed in this study is the IEEE 30 bus,which is shown in figure

4.14. The number of network states and measurements are described as:

• number of buses :nb = 30

• number of states :n = 2(nb − 1) = 58

• number of measurements:m = 142

• redundancy ratio:η = 2.448

The specification tables of network physical properties aregiven in appendix B. The

measurement set and bad data points are fully described in section C.2.2 of appendix C.

Figure 4.14: The schematic diagram of the 30-bus power system.

The redundancy ratio of this network is 2.448. The Gaussian noise corrupts 1/6, 1/5,

and 1/2 of measurement set for the first round of experiments.The noise has been added

to the middle buses of the system such that, when the portion of bad data is 1/6, noisy

measurements affect buses four to fourteen. For the ratio of1/5 bad data, buses four to

fifteen are involved. For the ratio of 1/2, most of the buses inthe system, from bus four to
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Table 4.7: The estimation error of 30 bus system with Gaussian noise
Portion of Estimation error of Estimation error of
bad data modified LAV estimator LS estimator

1/6 93.7931 223.6825
1/5 118.9552 221.1685
1/2 171.1282 298.5043

Table 4.8: The estimation convergence of 30 bus system with Gaussian noise

Portion of Bad Data Modified LAV LS

PBD Iter Log of Time Iter Log of Time

convergence convergence

1/6 8 -4.4738 0.1281 20 -1.2538 0.1707

1/5 8 -3.7564 0.1304 20 -0.0890 0.1736

1/2 20 -2.4146 0.2979 20 -0.0878 0.1828

twenty-four, are more or less affected. The average simulation results for 100 independent

trials are shown in Figures 4.15(a).

When 1/6 or 1/5 of the measurements are corrupted by noise, the modified estimator

faces minor challenges in predicting the states at bus thirteen. For the rest of the states, it is

quite superior to the LS estimator.

In case of half-noisy measurements, bad data points affect both estimators, because the

number of exact (non-corrupted ) measurements is now less than the number of states. The

modified estimator shows a larger error in this case, as a result of having some bad data

points in its selected set. However, it still presents a closer estimation to true values in

almost all of the states in comparison to LS estimator.

The estimation errors are compared in Table 4.7 for the threecases. Again, the modified

estimator has smaller error in all cases. Same results are obtained by comparing the average

voltage and phase errors in Table D.3 of appendix D. As expected, the average voltage

estimation error and average phase estimation error increase along with the ratio of bad
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(a) noise on 1/6 of measurement set
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(b) noise on 1/5 of measurement set
Figure 4.15: The Voltage and Phase estimation for the 30-buspower system with Gaussian
noise.
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Figure 4.16: The Voltage and Phase estimation for the 30-buspower system - Gaussian
noise on 1/2 of measurement set.

data. The modified LAV estimator illustrates a better performance, with approximately five

times smaller average error for smaller portions of bad data, and four times smaller average

error for larger portions, compared to LS estimator.

Table 4.8 compares the estimation results in terms of convergence rate of each method.

The parameters present in the table are the number of iterations used for 30 bus test case,

the logarithm of obtained convergence, and the overall timeof estimation. For portions

of bad data equal to 1/6 and 1/5, the modified LAV estimator converges faster than the

LS estimator, reaching the convergence criterion after eight iterations. The LAV estimator

also provides a smaller simulation time in both experiments. When the portion of bad

data increases to more than half, however, the simulation time of LAV estimator exceeds

the simulation time of LS estimator. The LAV estimator stillremains more convergent in

comparison to the LS estimator.
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In conclusion, the modified LAV estimator provides a fast convergent algorithm for

smaller portions of bad data in terms of simulation time, convergence value and number of

iterations. For larger portions of bad data, the LAV estimator has a more precise conver-

gence rate but needs more simulation time for the same numberof iterations.

Figures 4.17 and 4.18 show the results for different portions of bad data from a Rayleigh

distribution. The estimation errors are also demonstratedin Table 4.9. In Table D.4 of ap-

pendix D, the average error on each bus, regarding the voltage magnitude and phase angle,

are presented. During 100 independent trails for each set ofbad data points, corrupted mea-

surements are mainly placed at buses one to seven and their related branches, for the first

and second experiments (1/6 and 1/5 of set contains bad data), and buses one to eighteen

and their branches, for the last experiment (1/2 of set contains bad data).

In the first two experiments, as shown in Figure 4.17, with theexception of bus two, the

LAV estimator predicts the states better than the LS estimator. The robustness of the mod-

ified estimator is more noticeable in phase estimation. Evenfor the last experiment, where

more than half of the buses in the network are affected by noise, the modified estimator

remains closer to real states, as shown in Figure 4.18.

Table 4.9: The estimation error for 30 bus system with Rayleigh noise

Portion of Estimation error of Estimation error of

bad data modified LAV estimator LS estimator

1/6 188.6926 325.7247

1/5 209.5714 367.6843

1/2 597.8723 704.5947

The average estimation errors on each bus is shown in Table D.4 of appendix D. The

table indicates that the average errors with Rayleigh noiseare greater than their correspond-

ing values with Gaussian noise. The average phase estimation error increases significantly

for LS estimator due to large phase estimation errors on three buses of network. As a result,



CHAPTER 4. EXPERIMENTS AND RESULTS 76

5 10 15 20 25 30
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Bus Number

V
ol

ta
ge

 M
ag

ni
tu

de

 

 

True Voltages
Voltage Estimation using modified LAV
Voltage Estimation using LS

5 10 15 20 25 30
0

20

40

60

80

Bus Number

P
ha

se
 A

ng
le

 

 

True Phases
Phase Estimation using modified LAV
Phase Estimation using LS

(a) noise on 1/6 of measurement set
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(b) noise on 1/5 of measurement set
Figure 4.17: The Voltage and Phase estimation for the 30-buspower system with Rayleigh
noise.
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Figure 4.18: The Voltage and Phase estimation for the 30-buspower system - Rayleigh
noise on 1/2 of measurement set.

Table 4.10: The estimation convergence of 30 bus system withRayleigh noise

Portion of Bad Data Modified LAV LS

PBD Iter Log of Time Iter Log of Time

convergence convergence

1/6 20 -2.4675 0.2779 20 0.2494 0.1721

1/5 20 -0.7962 0.2968 20 0.8384 0.1827

1/2 20 0.9609 0.3206 20 1.9275 0.2051
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the average error of LS estimator exceeds the average error of LAV estimator, in all the

experiments.

The performance of both estimators in terms of convergence rate and simulation time

are shown in Table 4.10. The noise, in these experiments, hasa Rayleigh distribution.

As the ratio of noise increases in three different experiments, both estimators become less

convergent. Their simulation times, on the other hand, grows with more Bad data in the

measurement set. As a result, the estimation errors, shown in Table 4.9, are enlarged com-

paring the rows from top to bottom. In general, the convergence value is smaller in the

modified LAV estimator. Hence, the LS estimator provides a smaller simulation time.
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4.4.3 The IEEE 57 Bus Power Network

Another power network studied in this research is the IEEE 57bus system, as shown in

Figure 4.19. More detailed information about this system can be found in appendix B.

Section C.2.3 of appendix C describes the measurement set used in simulations.

Figure 4.19: The schematic diagram of the 57-bus power system.

The network states and measurements can be summarized as:

• number of buses :nb = 57

• number of states :n = 2(nb − 1) = 112

• number of measurements:m = 274

• redundancy ratio:η = 2.446

The redundancy ratio of this network is 2.446. The Gaussian noise corrupts 1/9 and

1/3 of the measurement set for the first round of experiments.The noise has been added

to the measurements of the system such that when the portion of bad data is 1/9, noisy

measurements involve buses one to six (half of the generatorbuses). The noise also affects

measurements related to branches between buses nineteen totwenty-eight. For the ratio of

1/3, buses thirty to forty-nine are involved, and related branch measurements between buses
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eighteen to forty-four, including bus seven and bus eleven.The average simulation results

for 50 independent trials are shown in Figure 4.20.

The phase estimation is smooth and almost flawless for the modified estimator com-

pared to the LS estimator. In the estimation of voltage magnitudes, the modified estimator

remains near the initial values of states where the LS estimator varies between 0.5 p.u. to

1 p.u. at the noisy section as shown in Figure 4.20(a). When the proportion of bad data

increases, the accuracy of estimation decreases for both estimators, as shown in Figure

4.20(b). However, the modified estimator still has a smallerestimation error, and smaller

average error, compared to the LS estimator, as described inTable 4.11 and Table D.5 of

appendix D.

The performance of estimators in terms of convergence rate and computation time are

compared in Table 4.12. As shown in the table, for the portionof noise equals to 1/9, the

modified LAV estimator converges after only four iterationsand therefore its computational

time becomes us reduced to half the time needed for LS estimation. For larger portion of

bad data (PBD equals to 1/3), the modified LAV estimator enhances in convergence after

similar number of iterations but it also has a greater computational time regarding the LS

estimator.

Table 4.11: Estimation error for 57 bus system with Gaussiannoise

Portion of Estimation error of Estimation error of

bad data modified LAV estimator LS estimator

1/9 217.9808 301.4502

1/3 408.6627 654.4023

The same arguments are true for the system with Rayleigh noise, as is shown in Figure 4.21.

Table 4.13 demonstrates the estimation error in the presence of Rayleigh noise. The average

voltage magnitude and phase angle errors on each bus are given in Table D.6 of appendix D.

The estimation error increases for Rayleigh noise. The average error also increases for both

estimators. The modified LAV estimator becomes more sensitive to noise for larger portion



CHAPTER 4. EXPERIMENTS AND RESULTS 81

5 10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Bus Number

V
ol

ta
ge

 M
ag

ni
tu

de

 

 

True Voltages
Voltage Estimation using modified LAV
Voltage Estimation using LS

5 10 15 20 25 30 35 40 45 50 55

−30

−25

−20

−15

−10

−5

0

Bus Number

P
ha

se
 A

ng
le

 

 

True Phases
Phase Estimation using modified LAV
Phase Estimation using LS

(a) Noise on 1/9 of measurement set
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(b) Noise on 1/3 of measurement set

Figure 4.20: The Voltage and Phase estimation for the 57-buspower system with Gaussian
noise.
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Table 4.12: The estimation convergence of 57 bus system withGaussian noise

Portion of Bad Data Modified LAV LS

PBD Iter Log of Time Iter Log of Time

convergence convergence

1/9 4 -3.0980 0.1932 20 -0.1276 0.3459

1/3 20 -0.5440 0.5808 20 2.0233 0.3511

of Rayleigh noise, however, its estimation error is almost half of the estimation error for

LS-based estimator in both cases.

Table 4.13: Estimation error for 57 bus system with Rayleighnoise

Portion of Estimation error of Estimation error of

bad data modified LAV estimator LS estimator

1/9 234.1623 471.5403

1/3 693.5311 1110

Table 4.14 demonstrates the convergence rate and the overall estimation time for both esti-

mators. The estimation time of modified LAV estimator exceeds the estimation time of LS

estimator. Hence, the convergence rate reached within the same number of iterations for

LAV estimator significantly improves in comparison to LS estimator.

Table 4.14: The estimation convergence of 57 bus system withRayleigh noise

Portion of Bad Data Modified LAV LS

PBD Iter Log of Time Iter Log of Time

convergence convergence

1/9 20 -2.8865 0.5998 20 1.0623 0.3508

1/3 20 -1.5604 0.600 20 1.8888 0.3532
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(a) Noise on 1/9 of measurement set
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(b) Noise on 1/3 of measurement set
Figure 4.21: The Voltage and Phase estimation for the 57-buspower system with Rayleigh
noise.
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4.4.4 The IEEE 118 Bus Network

The last power network tested in this study is the IEEE 118 bussystem, as shown in Figure

4.22, with specification tables given in appendix B.

• number of buses :nb = 118

• number of states :n = 2(nb − 1) = 234

• number of measurements:m = 606

• redundancy ratio:η = 2.5897

Figure 4.22: The schematic diagram of the 118-bus power system
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(a) Noise on 1/6 of measurement set
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(b) Noise on 1/3 of measurement set

Figure 4.23: The Voltage and Phase estimation for the 118-bus power system with Gaussian
noise.
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(a) Noise on 1/6 of measurement set
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(b) Noise on 1/3 of measurement set
Figure 4.24: The Voltage and Phase estimation for the 118-bus power system with Rayleigh
noise.
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For this network, the redundancy ratio is 2.5897. The Gaussian noise corrupts 1/6, and

1/3 of the measurement set for the first round of experiments.The noise has been added

to the measurements of the system such that when the portion of bad data is 1/6, noisy

measurements involve buses thirty to fifty . The noise also affects measurements related to

branches between buses twenty to forty-five. For the ratio of1/3, buses thirty to sixty-nine

are involved and related branch measurements between busestwenty-three to sixty-nine,

including bus seven, bus eight and bus nineteen. The averagesimulation results for 50

independent trials are shown in Figure 4.23.

As shown in Figure 4.23(a), the modified estimator is tolerant to Gaussian noise in

buses twenty to forty, and it only swings for buses forty to forty-five. With this portion of

Gaussian noise, the estimation error is approximately five times smaller for the modified

estimator regarding Table 4.15. With a higher amount of noise on the measurement set, as

seen in Figure 4.23(b), more states are getting further fromtheir true values. Nonetheless,

those related to the LAV modified estimator are always closerto true states in comparison

to the LS estimator. The only exception is bus number 55. The total estimation errors are

compared in Table 4.15. The average errors on buses are also compared in Table D.7 of ap-

pendix D. As expected, the average estimation errors for both voltage magnitude and phase

angle are also reduced employing the modified LAV estimator instead of LS estimator. This

argument is consistent in both test cases with different portions of bad data.

Table 4.16 provides the simulation time and convergence rate for both estimators. For

the smaller portion of Gaussian noise, the modified LAV estimator is approximately seven

times more convergent than the Ls estimator. On the other hand, LS estimator is almost 1.6

times faster in computing the estimation results. For the higher PBD, the simulation time

does not change drastically but both estimators become lessconvergent.

Same bad data points are considered for the second experiment, but the noise added to

the system comes from the Rayleigh distribution this time. The results can be viewed in

Figure 4.24. Hence the difference between the actual measurements and the noisy ones is

growing for Rayleigh noise; estimation error also increases, as stated in Table 4.17. The

average voltage magnitude errors and phase angle errors, asshown in Table D.8 of appendix

D, are greater than their values for Gaussian noise.
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Voltage estimation in the presence of Rayleigh noise also depends on the amount of

bad data. For the portion of 1/6, the modified estimator can exactly picks the flawless

measurements, and therefore the estimation is four times more precise than for the LS

estimator. For the portion of 1/3, where almost half the buses in the network are affected

with noise in some degrees, the noisy measurements affect the accuracy of estimation. As

it can be seen in Table 4.17, the error increases significantly. Yet it remains less than the

estimation error of the LS estimator.

For both types of noise, the phase estimation is significantly more robust in comparison

with the LS estimator, as shown in Figure 4.23 and Figure 4.24.

The last table of the section describes the convergence and time data of the experiment

with different portions of Rayleigh noise. The LAV estimator reaches the convergence

criterion in ten iterations and hence its estimation time isless than LS estimator. The

convergence rate is the reason for its better accuracy in terms of estimation error and average

error on each bus. For PBD equals to 1/3, the simulation time of LAV estimator increases

and it exceeds the time used by LS estimator. The convergencerate remains higher than the

LS estimator but it does not satisfy the convergence criterion for either one of the estimators.

Table 4.15: Table of estimation error for the 118 bus system with Gaussian noise

Portion of Estimation error of Estimation error of

bad data modified LAV estimator LS estimator

1/6 317.5387 1781.5

1/3 1286.5 3020.2



CHAPTER 4. EXPERIMENTS AND RESULTS 89

Table 4.16: The estimation convergence of 118 bus system with Gaussian noise

Portion of Bad Data Modified LAV LS

PBD Iter Log of Time Iter Log of Time

convergence convergence

1/6 20 -2.7309 1.3113 20 0.4592 0.8114

1/3 20 -0.6552 1.3263 20 0.2585 0.8134

Table 4.17: Table of estimation error for the 118 bus system with Rayleigh noise

Portion of Estimation error of Estimation error of

bad data modified LAV estimator LS estimator

1/6 519.4886 2159.9

1/3 2777.5 3721.5

Table 4.18: The estimation convergence of 118 bus system with Rayleigh noise

Portion of Bad Data Modified LAV LS

PBD Iter Log of Time Iter Log of Time

convergence convergence

1/6 10 -3.3256 0.8086 20 1.5034 0.8127

1/3 20 -0.0074 1.3211 20 2.5566 0.8161
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4.5 Discussion of Results for Large-Scale Systems

In the pervious sections of this chapter, different estimators were tested on IEEE large-scale

networks with various sets of measurements. As discussed insection 4.4 the measurements

are corrupted during independent experiments with two types of bad data: Gaussian noise,

and Rayleigh noise. The experiments involve 14 bus, 30 bus, 57 bus and 118 bus networks.

The true states of these systems were gained by applying Newton-Raphson method to the

systems in the absence of noise. The estimators used with redundant measurement sets,

were the LS estimator and the modified LAV estimator. The results were shown in various

figures and tables. The estimated states of selected experiments were given in Appendix E.

Both estimators gained smaller estimation errors when the ratio of noise was smaller.

The results is reasonable since we get a more precise estimation with a more accurate mea-

surement set. Also the estimation errors became larger for Rayleigh noise in comparison

with Gaussian noise. This result could be explained regarding the nature of Rayleigh noise

and the larger magnitude of noise caused by its distribution.

The two estimators had noticeable differences as well. The modified LAV estimator

had a superior performance in terms of estimation error and average error in all the test

cases. The modified LAV estimator also converged faster, especially in situations where

the portion of bad data was small. Even where the convergencecriterion was not satisfied,

the modified LAV estimator gained better convergence for thesame number of iterations.

The fact that the modified LAV estimator employs contractionmapping and SVD tech-

niques before selecting the requires measurements for estimation, enhances the estimation

in this regard. However, the more complex procedure effectsthe computational time of the

estimator.

The modified LAV estimator follows a more complex algorithm for selecting a number

of measurements for estimation but by selecting those equations the algorithm also reduces

the size of the problem. Therefore, if the modified LAV estimator reaches the convergence

criterion in a few iterations, its computational time is less than the LS estimator. As the

number of iterations increases, the effect of computational complexity factor overcomes

the effect of size reduction. As a result, the LS estimator provides a smaller simulation time

for the larger number of iterations.
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As an alternative, a more developed LS algorithm is tested with the IEEE 14 bus on the

next section.

4.6 The IEEE 14 bus Power Network - Another Approach

In this section the IEEE 14 bus power system with similar characteristics described in sec-

tion 4.4.1 is employed for experiments. A more developed LS estimator is used in the test

and the simulation results include the estimates provided by that estimator.

The new LS-based estimator uses a bad data processing technique in each iteration to

detect non critical erroneous measurements and remove themfor the next iteration. The

detection technique is based on the Largest Residual test explained in section 2.6.1. The

residuals of estimation are calculated. Their standard deviation is then computed and the

normalized ratio of each residual to standard deviation is obtained. In the end, the measure-

ments with larger ratio are eliminated in the next iteration. Note that these measurements

should not include critical measurements of system since removing the critical measure-

ments from the measurement set, makes the system unobservable.

The estimation results of the original LS estimator, the modified LAV estimator and the

modified LS estimator are presented in Figure 4.25 and Figure4.26 for different portions of

Gaussian noise. The estimation errors are given in Table 4.19. The figures clearly show that

the performance of the original LS estimator improves by applying the bad data processing

step. The modified LS estimation plot gets closer to the modified LAV estimator especially

for smaller portions of bad data. The estimation error follows the same pattern and it almost

matches the estimation error of the modified LAV for PBD equals to 1/5. In general though,

the modified LAV estimation still performs better in terms ofestimation error.

Table 4.19 also presents the convergence and time data of thesimulations. Comparing

this table with Table 4.4, the modified LS algorithm converges for all three portions of

Gaussian bad data, and its convergence rate is close to the modified LAV estimator. The

number of iterations before reaching the convergence criterion are also close to each other

for smaller portions of bad data. However, the estimation time of the modified LS is greater

than the estimation time needed by the modified LAV algorithm.
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(a) Noise on 1/5 of measurement set
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(b) Noise on 1/4 of measurement set

Figure 4.25: The Voltage and Phase estimation for the 14-buspower system with Gaussian
noise and three estimators.
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Figure 4.26: The Voltage and Phase estimation for the 14-buspower system with three
estimators- Gaussian noise on 2/3 of measurement set.

Figure 4.6 shows the simulation results for voltage magnitude and phase angle esti-

mation in 14 bus system which includes the results of the modified LS estimator in the

presence of Rayleigh noise. Similar to results obtained forthe Gaussian noise, the modified

LS estimator is close to the modified LAV estimator when the portion of bad data is smaller.

In the case when 2/3 of measurements are affected by Rayleighnoise, both estimators get

further from the true states. The estimation error of the LAVestimator remains smaller than

the relative value for the modified LS estimator as given in Table 4.20.

For Rayleigh noise, the modified LS estimator provides a better convergence compare

to the original estimator. The simulation time is however larger than the LS estimator or

even the LAV estimator. Similar to Gaussian noise, this feature is more noticeable for PBD

equals to 2/3. In conclusion, although the modified LS estimator is more accurate and

convergent than the original LS estimator, its accuracy andconvergence is still less than the

modified LAV estimator. The computational time of the estimator also exceeds the time

required by the two other estimators.
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(b) Noise on 2/3 of measurement set

Figure 4.27: The Voltage and Phase estimation for the 14-buspower system with Rayleigh
noise and three estimators.
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Table 4.19: The estimation convergence of 14 bus system withGaussian noise and the
modified LS estimator

Portion of Bad Data Modified LS

PBD Estimation Iter Log of Time

Error convergence

1/5 34.3959 3 -3.1079 0.0284

1/4 57.5984 5 -3.1953 0.0416

2/3 110.3498 12 -3.0803 0.0958

Table 4.20: The estimation convergence of 14 bus system withRayleigh noise and the
modified LS estimator

Portion of Bad Data Modified LS

PBD Estimation Iter Log of Time

Error convergence

1/5 81.2759 20 -1.9272 0.1572

2/3 289.1801 20 0.4933 0.1610
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4.7 Summary

In this chapter, the effectiveness of the suggested LAV estimation techniques have been

assessed on several IEEE power systems benchmarks. First, it was shown that the LAV

estimation technique based on the locally linearization concepts works well for small-scale

nonlinear power networks. However, it was practically shown that this LAV estimation

approach fails for power networks that include more than 5 buses, because of the sparse

conditions of the system matrices. It was then shown that theapplication of the proposed

modified LAV estimation technique can significantly addressthis issue. A comprehensive

comparative study confirms the better performance of the proposed LAV technique in com-

parison with the LS estimation, in the presence of differentnoise conditions.



Chapter 5

Conclusion

The primary focus of this thesis was to introduce a LAV estimator for power system state

estimation regarding the fundamentals of contraction mapping and Singular Value Decom-

position.An introduction to fundamentals of modeling and formulating power networks,

and state estimation in those networks using numerical methods, were the subjects of the

first three chapters. Chapter four discussed a method which uses contraction mapping to

address the problem of LAV static state estimation in nonlinear power networks. The novel

contributions can be listed as:

• Introducing an algorithm for LAV state estimation in nonlinear power systems using

the contraction mapping.

• Modifying the algorithm by SVD technique to extend the application to larger power

networks.

Simulations were carried out in chapter five to assess the performance of the new LAV es-

timator in different test cases and with different types andamounts of bad data. Significant

improvements were seen in all cases in terms of estimation error. The future work can be

extended in various ways and directions such as:

• Adjusting the algorithms to the Weighted LAV estimator.

• Analyzing the convergence rate.
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• Modifying the method for applications in real time state estimation problems.

• Extension to other state estimation problems with similar nature.



Appendix A

The Parameters of IEEE Small-Scale

Systems

A.1 The IEEE 5 Bus Test System

Table A.1: The 5-bus Power System Operating Conditions

Line Resistance(P.U) Reactance(P.U) Line Charging (P.U)

1-2 0.02 0.06 0.030

1-3 0.08 0.24 0.025

2-3 0.06 0.18 0.020

2-4 0.06 0.18 0.020

2-5 0.04 0.12 0.015

3-4 0.01 0.03 0.010

4-5 0.08 0.24 0.025
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Table A.2: The 5-bus Power System Parameters

Bus Number Active Power Net GenerationReactive Power Net Generation

MW MVAR

2 20.0 20.0

3 -45.0 -15.0

4 -40.0 -05.0

5 -60.0 -10.0
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A.2 The IEEE 10 Bus Test System

Table A.3: The 10-bus Power System Operating Conditions

Line Resistance(P.U) Reactance(P.U) Line Charging (P.U)

1-3 0.004 0.032 0.000

1-5 0.005 0.042 0.000

2-3 0.001 0.010 0.000

2-4 0.003 0.028 0.000

3-4 0.054 0.151 0.000

4-5 0.143 0.364 0.000

4-9 0.044 0.112 0.000

4-10 0.029 0.073 0.000

5-6 0.055 0.140 0.000

5-7 0.073 0.185 0.000

6-7 0.132 0.336 0.000

7-8 0.029 0.073 0.000

8-9 0.033 0.084 0.000

9-10 0.033 0.084 0.000

Table A.4: The 10-bus Power System Parameters

Bus Number Active Power Net GenerationReactive Power Net Generation

MW MVAR

2 380.0 -70.0

3 -90.0 55.0

4 160.0 -80.0

5 -50.0 25.0

Continued on the next page
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Table A.4 – continued from the previous page

6 -10.0 -15.0

7 -70.0 20.0

8 -50.0 25.0

9 -100.0 50.0

10 -40.0 -100.0



Appendix B

The Parameters of IEEE Large-Scale

Systems

B.1 The IEEE 14 Bus Test System

Table B.1: The 14-bus Power System Operating Conditions

Bus Number Bus Type P gen(p.u.) Qg(p.u.) Pl(p.u.) Ql(p.u.) Capacitor

1 3 2.324 -0.169 0 0 0

2 2 0.4 0.424 0.217 0.127 0

3 2 0 0.234 0.942 0.19 0

4 0 0 0 0.478 -0.039 0

5 0 0 0 0.076 0.016 0

6 2 0 0.122 0.112 0.075 0

7 0 0 0 0 0 0

8 2 0 0.174 0 0 0

9 0 0 0 0.295 0.166 0.19

10 0 0 0 0.09 0.058 0

11 0 0 0 0.035 0.018 0

Continued on the next page
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Table B.1 – continued from previous page

12 0 0 0 0.061 0.016 0

13 0 0 0 0.135 0.058 0

14 0 0 0 0.149 0.05 0

Table B.2: The 14-bus Power System Parameters

From Bus To Bus rij (p.u.) xij (p.u.) Line Charging (p.u.) Tap Ratio

1 2 0.01938 0.05917 0.0528 0

1 5 0.05403 0.22304 0.0492 0

2 3 0.04699 0.19797 0.0438 0

2 4 0.05811 0.17632 0.034 0

2 5 0.05695 0.17388 0.0346 0

3 4 0.06701 0.17103 0.0128 0

4 5 0.01335 0.04211 0 0

4 7 0 0.20912 0 0.978

4 9 0 0.55618 0 0.969

5 6 0 0.25202 0 0.932

6 11 0.09498 0.1989 0 0

6 12 0.12291 0.25581 0 0

6 13 0.06615 0.13027 0 0

7 8 0 0.17615 0 0

7 9 0 0.11001 0 0

9 10 0.03181 0.0845 0 0

9 14 0.12711 0.27038 0 0

10 11 0.08205 0.19207 0 0

12 13 0.22092 0.19988 0 0

13 14 0.17093 0.34802 0 0
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B.2 The IEEE 30 Bus Test System

Table B.3: The 30 Bus Power System Operating Conditions

Bus Number Bus Type Pg(p.u.) Qg(p.u.) Pl(p.u.) Ql(p.u.) Capacitor

1 3 2.602 -0.161 0 0 0

2 2 0.4 0.5 0.217 0.127 0

3 0 0 0 0.024 0.012 0

4 0 0 0 0.076 0.016 0

5 2 0 0.37 0.942 0.19 0

6 0 0 0 0 0 0

7 0 0 0 0.228 0.109 0

8 2 0 0.373 0.3 0.3 0

9 0 0 0 0 0 0

10 0 0 0 0.058 0.02 0.19

11 2 0 0.162 0 0 0

12 0 0 0 0.112 0.075 0

13 2 0 0.106 0 0 0

14 0 0 0 0.062 0.016 0

15 0 0 0 0.082 0.025 0

16 0 0 0 0.035 0.018 0

17 0 0 0 0.09 0.058 0

18 0 0 0 0.032 0.009 0

19 0 0 0 0.095 0.034 0

20 0 0 0 0.022 0.007 0

21 0 0 0 0.175 0.112 0

22 0 0 0 0 0 0

Continued on the next page
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Table B.3 – continued from the previous page

23 0 0 0 0.032 0.016 0

24 0 0 0 0.087 0.067 0.043

25 0 0 0 0 0 0

26 0 0 0 0.035 0.023 0

27 0 0 0 0 0 0

28 0 0 0 0 0 0

29 0 0 0 0.024 0.009 0

30 0 0 0 0.106 0.019 0

Table B.4: The 30-bus Power System Parameters

From Bus To Bus rij (p.u.) xij (p.u.) Line Charging (p.u.) Tap Ratio

1 2 0.0192 0.0575 0.0528 0

1 3 0.0452 0.1652 0.0408 0

2 4 0.057 0.1737 0.0368 0

3 4 0.0132 0.0379 0.0084 0

2 5 0.0472 0.1983 0.0418 0

2 6 0.0581 0.1763 0.0374 0

4 6 0.0119 0.0414 0.009 0

5 7 0.046 0.116 0.0204 0

6 7 0.0267 0.082 0.017 0

6 8 0.012 0.042 0.009 0

6 9 0 0.208 0 0.978

6 10 0 0.556 0 0.969

9 11 0 0.208 0 0

9 10 0 0.11 0 0

4 12 0 0.256 0 0.932

Continued on the next page
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Table B.4 – continued from the previous page

12 13 0 0.14 0 0

12 14 0.1231 0.2559 0 0

12 15 0.0662 0.1304 0 0

12 16 0.0945 0.1987 0 0

14 15 0.221 0.1997 0 0

16 17 0.0524 0.1923 0 0

15 18 0.1073 0.2185 0 0

18 19 0.0639 0.1292 0 0

19 20 0.034 0.068 0 0

10 20 0.0936 0.209 0 0

10 17 0.0324 0.0845 0 0

10 21 0.0348 0.0749 0 0

10 22 0.0727 0.1499 0 0

21 22 0.0116 0.0236 0 0

15 23 0.1 0.202 0 0

22 24 0.115 0.179 0 0

23 24 0.132 0.27 0 0

24 25 0.1885 0.3292 0 0

25 26 0.2544 0.38 0 0

25 27 0.1093 0.2087 0 0

28 27 0 0.396 0 0.968

27 29 0.2198 0.4153 0 0

27 30 0.3202 0.6027 0 0

29 30 0.2399 0.4533 0 0

8 28 0.0636 0.2 0.0428 0

6 28 0.0169 0.0599 0.013 0
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B.3 The IEEE 57 Bus Test System

Table B.5: The 57 Bus Power System Operating Conditions

Bus Number Bus Type Pg(p.u.) Qg(p.u.) Pl(p.u.) Ql(p.u.) Capacitor

1 3 1.289 -0.161 0.55 0.17 0

2 2 0 -0.008 0.03 0.88 0

3 2 0.4 -0.01 0.41 0.21 0

4 0 0 0 0 0 0

5 0 0 0 0.13 0.04 0

6 2 0 0.008 0.75 0.02 0

7 0 0 0 0 0 0

8 2 4.5 0.621 1.5 0.22 0

9 2 0 0.022 1.21 0.26 0

10 0 0 0 0.05 0.02 0

11 0 0 0 0 0 0

12 2 3.1 1.285 3.77 0.24 0

13 0 0 0 0.18 0.023 0

14 0 0 0 0.105 0.053 0

15 0 0 0 0.22 0.05 0

16 0 0 0 0.43 0.03 0

17 0 0 0 0.42 0.08 0

18 0 0 0 0.272 0.098 0.1

19 0 0 0 0.033 0.006 0

20 0 0 0 0.023 0.01 0

21 0 0 0 0 0 0

22 0 0 0 0 0 0

23 0 0 0 0.063 0.021 0

24 0 0 0 0 0 0

25 0 0 0 0.063 0.032 0.059

Continued on the next page
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Table B.5 – continued from the previous page

26 0 0 0 0 0 0

27 0 0 0 0.093 0.005 0

28 0 0 0 0.046 0.023 0

29 0 0 0 0.17 0.026 0

30 0 0 0 0.036 0.018 0

31 0 0 0 0.058 0.029 0

32 0 0 0 0.016 0.008 0

33 0 0 0 0.038 0.019 0

34 0 0 0 0 0 0

35 0 0 0 0.06 0.03 0

36 0 0 0 0 0 0

37 0 0 0 0 0 0

38 0 0 0 0.14 0.07 0

39 0 0 0 0 0 0

40 0 0 0 0 0 0

41 0 0 0 0.063 0.03 0

42 0 0 0 0.071 0.044 0

43 0 0 0 0.02 0.01 0

44 0 0 0 0.12 0.018 0

45 0 0 0 0 0 0

46 0 0 0 0 0 0

47 0 0 0 0.297 0.116 0

48 0 0 0 0 0 0

49 0 0 0 0.18 0.085 0

50 0 0 0 0.21 0.105 0

51 0 0 0 0.18 0.053 0

52 0 0 0 0.049 0.022 0

53 0 0 0 0.2 0.1 0.063

54 0 0 0 0.041 0.014 0

Continued on the next page
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Table B.5 – continued from the previous page

55 0 0 0 0.068 0.034 0

56 0 0 0 0.076 0.022 0

57 0 0 0 0.067 0.02 0

Table B.6: The 57-bus Power System Parameters

From Bus To Bus rij (p.u.) xij (p.u.) Line Charging (p.u.) Tap Ratio

1 2 0.0083 0.028 0.129 0

2 3 0.0298 0.085 0.0818 0

3 4 0.0112 0.0366 0.038 0

4 5 0.0625 0.132 0.0258 0

4 6 0.043 0.148 0.0348 0

6 7 0.02 0.102 0.0276 0

6 8 0.0339 0.173 0.047 0

8 9 0.0099 0.0505 0.0548 0

9 10 0.0369 0.1679 0.044 0

9 11 0.0258 0.0848 0.0218 0

9 12 0.0648 0.295 0.0772 0

9 13 0.0481 0.158 0.0406 0

13 14 0.0132 0.0434 0.011 0

13 15 0.0269 0.0869 0.023 0

1 15 0.0178 0.091 0.0988 0

1 16 0.0454 0.206 0.0546 0

1 17 0.0238 0.108 0.0286 0

3 15 0.0162 0.053 0.0544 0

4 18 0 0.555 0 0.97

4 18 0 0.43 0 0.978

Continued on the next page
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Table B.6 – continued from the previous page

5 6 0.0302 0.0641 0.0124 0

7 8 0.0139 0.0712 0.0194 0

10 12 0.0277 0.1262 0.0328 0

11 13 0.0223 0.0732 0.0188 0

12 13 0.0178 0.058 0.0604 0

12 16 0.018 0.0813 0.0216 0

12 17 0.0397 0.179 0.0476 0

14 15 0.0171 0.0547 0.0148 0

18 19 0.461 0.685 0 0

19 20 0.283 0.434 0 0

21 20 0 0.7767 0 1.043

21 22 0.0736 0.117 0 0

22 23 0.0099 0.0152 0 0

23 24 0.166 0.256 0.0084 0

24 25 0 1.182 0 1

24 25 0 1.23 0 1

24 26 0 0.0473 0 1.043

26 27 0.165 0.254 0 0

27 28 0.0618 0.0954 0 0

28 29 0.0418 0.0587 0 0

7 29 0 0.0648 0 0.967

25 30 0.135 0.202 0 0

30 31 0.326 0.497 0 0

31 32 0.507 0.755 0 0

32 33 0.0392 0.036 0 0

34 32 0 0.953 0 0.975

34 35 0.052 0.078 0.0032 0

35 36 0.043 0.0537 0.0016 0

36 37 0.029 0.0366 0 0

Continued on the next page
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Table B.6 – continued from the previous page

37 38 0.0651 0.1009 0.002 0

37 39 0.0239 0.0379 0 0

36 40 0.03 0.0466 0 0

22 38 0.0192 0.0295 0 0

11 41 0 0.749 0 0.955

41 42 0.207 0.352 0 0

41 43 0 0.412 0 0

38 44 0.0289 0.0585 0.002 0

15 45 0 0.1042 0 0.955

14 46 0 0.0735 0 0.9

46 47 0.023 0.068 0.0032 0

47 48 0.0182 0.0233 0 0

48 49 0.0834 0.129 0.0048 0

49 50 0.0801 0.128 0 0

50 51 0.1386 0.22 0 0

10 51 0 0.0712 0 0.93

13 49 0 0.191 0 0.895

29 52 0.1442 0.187 0 0

52 53 0.0762 0.0984 0 0

53 54 0.1878 0.232 0 0

54 55 0.1732 0.2265 0 0

11 43 0 0.153 0 0.958

44 45 0.0624 0.1242 0.004 0

40 56 0 1.195 0 0.958

56 41 0.553 0.549 0 0

56 42 0.2125 0.354 0 0

39 57 0 1.355 0 0.98

57 56 0.174 0.26 0 0

38 49 0.115 0.177 0.003 0

Continued on the next page
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Table B.6 – continued from the previous page

38 48 0.0312 0.0482 0 0

9 55 0 0.1205 0 0.94
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B.4 The IEEE 118 Bus Test System

Table B.7: The 118 Bus Power System Operating Conditions

Bus Number Bus Type Pg(p.u.) Qg(p.u.) Pl(p.u.) Ql(p.u.) Capacitor

1 2 0 0 0.51 0.27 0

2 0 0 0 0.2 0.09 0

3 0 0 0 0.39 0.1 0

4 2 -0.09 0 0.3 0.12 0

5 0 0 0 0 0 -0.4

6 2 0 0 0.52 0.22 0

7 0 0 0 0.19 0.02 0

8 2 -0.28 0 0 0 0

9 0 0 0 0 0 0

10 2 4.5 0 0 0 0

11 0 0 0 0.7 0.23 0

12 2 0.85 0 0.47 0.1 0

13 0 0 0 0.34 0.16 0

14 0 0 0 0.14 0.01 0

15 2 0 0 0.9 0.3 0

16 0 0 0 0.25 0.1 0

17 0 0 0 0.11 0.03 0

18 2 0 0 0.6 0.34 0

19 2 0 0 0.45 0.25 0

20 0 0 0 0.18 0.03 0

21 0 0 0 0.14 0.08 0

22 0 0 0 0.1 0.05 0

23 0 0 0 0.07 0.03 0

24 2 -0.13 0 0 0 0

25 2 2.2 0 0 0 0

Continued on the next page
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Table B.7 – continued from the previous page

26 2 3.14 0 0 0 0

27 2 -0.09 0 0.62 0.13 0

28 0 0 0 0.17 0.07 0

29 0 0 0 0.24 0.04 0

30 0 0 0 0 0 0

31 2 0.07 0 0.43 0.27 0

32 2 0 0 0.59 0.23 0

33 0 0 0 0.23 0.09 0

34 2 0 0 0.59 0.26 0.14

35 0 0 0 0.33 0.09 0

36 2 0 0 0.31 0.17 0

37 0 0 0 0 0 -0.25

38 0 0 0 0 0 0

39 0 0 0 0.27 0.11 0

40 2 -0.46 0 0.2 0.23 0

41 0 0 0 0.37 0.1 0

42 2 -0.59 0 0.37 0.23 0

43 0 0 0 0.18 0.07 0

44 0 0 0 0.16 0.08 0.1

45 0 0 0 0.53 0.22 0.1

46 2 0.19 0 0.28 0.1 0.1

47 0 0 0 0.34 0 0

48 0 0 0 0.2 0.11 0.15

49 2 2.04 0 0.87 0.3 0

50 0 0 0 0.17 0.04 0

51 0 0 0 0.17 0.08 0

52 0 0 0 0.18 0.05 0

53 0 0 0 0.23 0.11 0

54 2 0.48 0 1.13 0.32 0

Continued on the next page
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Table B.7 – continued from the previous page

55 2 0 0 0.63 0.22 0

56 2 0 0 0.84 0.18 0

57 0 0 0 0.12 0.03 0

58 0 0 0 0.12 0.03 0

59 2 1.55 0 2.77 1.13 0

60 0 0 0 0.78 0.03 0

61 2 1.6 0 0 0 0

62 2 0 0 0.77 0.14 0

63 0 0 0 0 0 0

64 0 0 0 0 0 0

65 2 3.91 0 0 0 0

66 2 3.92 0 0.39 0.18 0

67 0 0 0 0.28 0.07 0

68 0 0 0 0 0 0

69 3 5.164 0 0 0 0

70 2 0 0 0.66 0.2 0

71 0 0 0 0 0 0

72 2 -0.12 0 0 0 0

73 2 -0.06 0 0 0 0

74 2 0 0 0.68 0.27 0.12

75 0 0 0 0.47 0.11 0

76 2 0 0 0.68 0.36 0

77 2 0 0 0.61 0.28 0

78 0 0 0 0.71 0.26 0

79 0 0 0 0.39 0.32 0.2

80 2 4.77 0 1.3 0.26 0.1

81 0 0 0 0 0 0

82 0 0 0 0.54 0.27 0

83 0 0 0 0.2 0.1 0

Continued on the next page
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Table B.7 – continued from the previous page

84 0 0 0 0.11 0.07 0

85 2 0 0 0.24 0.15 0

86 0 0 0 0.21 0.1 0

87 2 0.04 0 0 0 0

88 0 0 0 0.48 0.1 0

89 2 6.07 0 0 0 0

90 2 -0.85 0 0.78 0.42 0

91 2 -0.1 0 0 0 0

92 2 0 0 0.65 0.1 0

93 0 0 0 0.12 0.07 0

94 0 0 0 0.3 0.16 0

95 0 0 0 0.42 0.31 0

96 0 0 0 0.38 0.15 0

97 0 0 0 0.15 0.09 0

98 0 0 0 0.34 0.08 0

99 2 -0.42 0 0 0 0

100 2 2.52 0 0.37 0.18 0

101 0 0 0 0.22 0.15 0

102 0 0 0 0.05 0.03 0

103 2 0.4 0 0.23 0.16 0

104 2 0 0 0.38 0.25 0

105 2 0 0 0.31 0.26 0.2

106 0 0 0 0.43 0.16 0

107 2 -0.22 0 0.28 0.12 0.06

108 0 0 0 0.02 0.01 0

109 0 0 0 0.08 0.03 0

110 2 0 0 0.39 0.3 0

111 2 0.36 0 0 0 0

112 2 -0.43 0 0.25 0.13 0

Continued on the next page
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Table B.7 – continued from the previous page

113 2 -0.06 0 0 0 0

114 0 0 0 0.08 0.03 0

115 0 0 0 0.22 0.07 0

116 2 -1.84 0 0 0 0

117 0 0 0 0.2 0.08 0

118 0 0 0 0.33 0.15 0

Table B.8: The 118-bus Power System Parameters

From Bus To Bus rij (p.u.) xij (p.u.) Line Charging (p.u.) Tap Ratio

1 2 0.0303 0.0999 0.0254 0

1 3 0.0129 0.0424 0.01082 0

4 5 0.00176 0.00798 0.0021 0

3 5 0.0241 0.108 0.0284 0

5 6 0.0119 0.054 0.01426 0

6 7 0.00459 0.0208 0.0055 0

8 9 0.00244 0.0305 1.162 0

8 5 0 0.0267 0 0.985

9 10 0.00258 0.0322 1.23 0

4 11 0.0209 0.0688 0.01748 0

5 11 0.0203 0.0682 0.01738 0

11 12 0.00595 0.0196 0.00502 0

2 12 0.0187 0.0616 0.01572 0

3 12 0.0484 0.16 0.0406 0

7 12 0.00862 0.034 0.00874 0

11 13 0.02225 0.0731 0.01876 0

12 14 0.0215 0.0707 0.01816 0

Continued on the next page
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Table B.8 – continued from the previous page

13 15 0.0744 0.2444 0.06268 0

14 15 0.0595 0.195 0.0502 0

12 16 0.0212 0.0834 0.0214 0

15 17 0.0132 0.0437 0.0444 0

16 17 0.0454 0.1801 0.0466 0

17 18 0.0123 0.0505 0.01298 0

18 19 0.01119 0.0493 0.01142 0

19 20 0.0252 0.117 0.0298 0

15 19 0.012 0.0394 0.0101 0

20 21 0.0183 0.0849 0.0216 0

21 22 0.0209 0.097 0.0246 0

22 23 0.0342 0.159 0.0404 0

23 24 0.0135 0.0492 0.0498 0

23 25 0.0156 0.08 0.0864 0

26 25 0 0.0382 0 0

25 27 0.0318 0.163 0.1764 0

27 28 0.01913 0.0855 0.0216 0

28 29 0.0237 0.0943 0.0238 0

30 17 0 0.0388 0 0

8 30 0.00431 0.0504 0.514 0

26 30 0.00799 0.086 0.908 0

17 31 0.0474 0.1563 0.0399 0

29 31 0.0108 0.0331 0.0083 0

23 32 0.0317 0.1153 0.1173 0

31 32 0.0298 0.0985 0.0251 0

27 32 0.0229 0.0755 0.01926 0

15 33 0.038 0.1244 0.03194 0

19 34 0.0752 0.247 0.0632 0

35 36 0.00224 0.0102 0.00268 0

Continued on the next page
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Table B.8 – continued from the previous page

35 37 0.011 0.0497 0.01318 0

33 37 0.0415 0.142 0.0366 0

34 36 0.00871 0.0268 0.00568 0

34 37 0.00256 0.0094 0.00984 0

38 37 0 0.0375 0 0.935

37 39 0.0321 0.106 0.027 0

37 40 0.0593 0.168 0.042 0

30 38 0.00464 0.054 0.422 0

39 40 0.0184 0.0605 0.01552 0

40 41 0.0145 0.0487 0.01222 0

40 42 0.0555 0.183 0.0466 0

41 42 0.041 0.135 0.0344 0

43 44 0.0608 0.2454 0.06068 0

34 43 0.0413 0.1681 0.04226 0

44 45 0.0224 0.0901 0.0224 0

45 46 0.04 0.1356 0.0332 0

46 47 0.038 0.127 0.0316 0

46 48 0.0601 0.189 0.0472 0

47 49 0.0191 0.0625 0.01604 0

42 49 0.0715 0.323 0.086 0

42 49 0.0715 0.323 0.086 0

45 49 0.0684 0.186 0.0444 0

48 49 0.0179 0.0505 0.01258 0

49 50 0.0267 0.0752 0.01874 0

49 51 0.0486 0.137 0.0342 0

51 52 0.0203 0.0588 0.01396 0

52 53 0.0405 0.1635 0.04058 0

53 54 0.0263 0.122 0.031 0

49 54 0.073 0.289 0.0738 0

Continued on the next page
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Table B.8 – continued from the previous page

49 54 0.0869 0.291 0.073 0

54 55 0.0169 0.0707 0.0202 0

54 56 0.00275 0.00955 0.00732 0

55 56 0.00488 0.0151 0.00374 0

56 57 0.0343 0.0966 0.0242 0

50 57 0.0474 0.134 0.0332 0

56 58 0.0343 0.0966 0.0242 0

51 58 0.0255 0.0719 0.01788 0

54 59 0.0503 0.2293 0.0598 0

56 59 0.0825 0.251 0.0569 0

56 59 0.0803 0.239 0.0536 0

55 59 0.04739 0.2158 0.05646 0

59 60 0.0317 0.145 0.0376 0

59 61 0.0328 0.15 0.0388 0

60 61 0.00264 0.0135 0.01456 0

60 62 0.0123 0.0561 0.01468 0

61 62 0.00824 0.0376 0.0098 0

63 59 0 0.0386 0 0.96

63 64 0.00172 0.02 0.216 0

64 61 0 0.0268 0 0.985

38 65 0.00901 0.0986 1.046 0

64 65 0.00269 0.0302 0.38 0

49 66 0.018 0.0919 0.0248 0

49 66 0.018 0.0919 0.0248 0

62 66 0.0482 0.218 0.0578 0

62 67 0.0258 0.117 0.031 0

65 66 0 0.037 0 0.935

66 67 0.0224 0.1015 0.02682 0

65 68 0.00138 0.016 0.638 0

Continued on the next page
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Table B.8 – continued from the previous page

47 69 0.0844 0.2778 0.07092 0

49 69 0.0985 0.324 0.0828 0

68 69 0 0.037 0 0.935

69 70 0.03 0.127 0.122 0

24 70 0.00221 0.4115 0.10198 0

70 71 0.00882 0.0355 0.00878 0

24 72 0.0488 0.196 0.0488 0

71 72 0.0446 0.18 0.04444 0

71 73 0.00866 0.0454 0.01178 0

70 74 0.0401 0.1323 0.03368 0

70 75 0.0428 0.141 0.036 0

69 75 0.0405 0.122 0.124 0

74 75 0.0123 0.0406 0.01034 0

76 77 0.0444 0.148 0.0368 0

69 77 0.0309 0.101 0.1038 0

75 77 0.0601 0.1999 0.04978 0

77 78 0.00376 0.0124 0.01264 0

78 79 0.00546 0.0244 0.00648 0

77 80 0.017 0.0485 0.0472 0

77 80 0.0294 0.105 0.0228 0

79 80 0.0156 0.0704 0.0187 0

68 81 0.00175 0.0202 0.808 0

81 80 0 0.037 0 0.935

77 82 0.0298 0.0853 0.08174 0

82 83 0.0112 0.03665 0.03796 0

83 84 0.0625 0.132 0.0258 0

83 85 0.043 0.148 0.0348 0

84 85 0.0302 0.0641 0.01234 0

85 86 0.035 0.123 0.0276 0

Continued on the next page
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Table B.8 – continued from the previous page

86 87 0.02828 0.2074 0.0445 0

85 88 0.02 0.102 0.0276 0

85 89 0.0239 0.173 0.047 0

88 89 0.0139 0.0712 0.01934 0

89 90 0.0518 0.188 0.0528 0

89 90 0.0238 0.0997 0.106 0

90 91 0.0254 0.0836 0.0214 0

89 92 0.0099 0.0505 0.0548 0

89 92 0.0393 0.1581 0.0414 0

91 92 0.0387 0.1272 0.03268 0

92 93 0.0258 0.0848 0.0218 0

92 94 0.0481 0.158 0.0406 0

93 94 0.0223 0.0732 0.01876 0

94 95 0.0132 0.0434 0.0111 0

80 96 0.0356 0.182 0.0494 0

82 96 0.0162 0.053 0.0544 0

94 96 0.0269 0.0869 0.023 0

80 97 0.0183 0.0934 0.0254 0

80 98 0.0238 0.108 0.0286 0

80 99 0.0454 0.206 0.0546 0

92 100 0.0648 0.295 0.0472 0

94 100 0.0178 0.058 0.0604 0

95 96 0.0171 0.0547 0.01474 0

96 97 0.0173 0.0885 0.024 0

98 100 0.0397 0.179 0.0476 0

99 100 0.018 0.0813 0.0216 0

100 101 0.0277 0.1262 0.0328 0

92 102 0.0123 0.0559 0.01464 0

101 102 0.0246 0.112 0.0294 0

Continued on the next page
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Table B.8 – continued from the previous page

100 103 0.016 0.0525 0.0536 0

100 104 0.0451 0.204 0.0541 0

103 104 0.0466 0.1584 0.0407 0

103 105 0.0535 0.1625 0.0408 0

100 106 0.0605 0.229 0.062 0

104 105 0.00994 0.0378 0.00986 0

105 106 0.014 0.0547 0.01434 0

105 107 0.053 0.183 0.0472 0

105 108 0.0261 0.0703 0.01844 0

106 107 0.053 0.183 0.0472 0

108 109 0.0105 0.0288 0.0076 0

103 110 0.03906 0.1813 0.0461 0

109 110 0.0278 0.0762 0.0202 0

110 111 0.022 0.0755 0.02 0

110 112 0.0247 0.064 0.062 0

17 113 0.00913 0.0301 0.00768 0

32 113 0.0615 0.203 0.0518 0

32 114 0.0135 0.0612 0.01628 0

27 115 0.0164 0.0741 0.01972 0

114 115 0.0023 0.0104 0.00276 0

68 116 0.00034 0.00405 0.164 0

12 117 0.0329 0.14 0.0358 0

75 118 0.0145 0.0481 0.01198 0

76 118 0.0164 0.0544 0.01356 0



Appendix C

Simulation Conditions

C.1 Small-Scale Networks

C.1.1 The IEEE 5 Bus Power Network

Two measurement sets are considered for experiments on the 5bus network. The redun-

dancy ratio on set A is 2.875 and the redundancy ratio in Set B is 2.625. Each set contains

three sets of bad data points, which mostly includes outliers of the measurement set.

Tables C.1 and C.3, present the number of measurements used in simulations for each type.

Tables C.2 and C.4, show the type and place of bad measurements.

Table C.1: The 5-Bus System-Measurement Set A

Set Measurement Type Measurement

Active Power Injection 3

A Active Power Flow 8

Reactive Power Injection 3

Reactive Power Flow 9
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Table C.2: The 5-Bus System-Bad Data in Set A

Sub Set Bad Data Type Description

A1 Active Power Injection p2 is reversed

A2 Active Power Flow p3−1 is inverted

Reactive Power Flow q5−4 is halved

A3 Active Power Flow p3−1 is inverted

Active Power Flow p5−4 is set to zero

Reactive Power Flow q5−4 is halved

Table C.3: The 5-Bus System-Measurement Set B

Set Measurement Type Measurement

Active Power Injection 4

B Active Power Flow 7

Reactive Power Injection 4

Active Power Flow 6

Table C.4: The 5-Bus System-Bad Data in Set B

Sub Set Bad Data Type Description

B1 Active Power Injection p2 is inverted

Active Power Flow p3−4 is inverted

Reactive Power Injection q3 is halved

B2 Active Power Injection p5 is halved

Active Power Flow p3−4 is doubled

Continued on the next page
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Table C.4 – continued from the previous page

Reactive Power Injection q4 is set to zero

Reactive Power Flow q3−4 is set to zero

B3 Active Power Injection p5 is halved

Active Power Flow p3−4 is doubled

Active Power Flow p2−4 is doubled

Reactive Power Injection q4 is set to zero

Reactive Power Flow q3−4 is set to zero

Reactive Power Flow q4−2 is inverted
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C.1.2 The IEEE 10 Bus Power Network

The measurement sets A and B are used for 10 bus system that have the redundancy ratios

of 2.94 and 3.00 accordingly. The network is tested with the original LAV algorithm (the

proposed algorithm), and the LS-based algorithm. The results are compared to show the

inefficiency of proposed algorithm for larger networks. Themore developed version of the

original LAV algorithm ( the modified algorithm) is tested for one of the measurement sets.

The advantage to the LS-based estimator is shown through related figures.

Table C.5 and C.7 express the specifications of measurement set. The place and type of

bad data is also shown in tables C.6 and C.8.

Table C.5: The 10-Bus System-Measurement Set A

Set Measurement Type Measurement

Active Power Injection 9

A Active Power Flow 15

Reactive Power Injection 9

Reactive Power Flow 20

Table C.6: The 10-Bus System-Bad Data in Set A

Sub Set Bad Data Type Description

A1 Active Power Flow p10−4 is reversed

Reactive Power Flow q5−6 is reversed

A2 Active Power Flow p10−4 is reversed

Reactive Power Injection q7 is halved

Reactive Power Injection q9 is halved

Reactive Power Flow q1−3 is doubled

Reactive Power Flow q5−6 is reversed

Continued on the next page
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Table C.6 – continued from the previous page

Reactive Power Flow q8−9 is set to zero

A3 Active Power Injection p3 is doubled and reversed

Active Power Injection p9 is set to zero

Reactive Power Flow q2−4 is halved

Table C.7: The 10-Bus System-Measurement Set B

Set Measurement Type Measurement

Active Power Injection 7

B Active Power Flow 23

Reactive Power Injection 7

Reactive Power Flow 17

Table C.8: The 10-Bus System-Bad Data in Set B

Sub Set Bad Data Type Description

B Active Power Injection p2 is reversed

Active Power Injection p6 is halved

Active Power Flow p5−7 is reversed

Reactive Power Flow q4−9 is set to zero
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C.2 Large-Scale Networks

In these series of experiments and for large networks, bad data points are measurements

corrupted with noise. This noise can either be Gaussian or Rayleigh. The measurement

error variance,σ2, is presented for different types of measurements and noises, to reflect

the expected accuracy of the meter used.

The measurements included in simulations, are active and reactive power injections and

active and reactive power flows. A portion of each type of measurements is corrupted with

noise. These noisy measurements are generated first by calculating true measurements of

system based on the true states. Then the noise is added to thetrue measurements to produce

bad data. For Gaussian noise, mean is set to zero and varianceis set to one. For Rayleigh

noise, unit variance is considered.

C.2.1 The IEEE 14 Bus Power Network

The important features of measurement sets and bad data, used in 14 bus network simu-

lations, are given in Table C.9. In simulations, noise is mainly placed on the generation

buses of the system and their related branches. For PBD equals to 1/6, bad data set includes

buses one to three and their related branches. For PBD equalsto 1/5, bad data set includes

buses one to four and their connected branches. For PBD equals to 1/4, the set consists of

noisy measurements from buses one to five and their related branches. PBD equals to 2/3,

involves the first nine buses of the system and their branches.

Table C.9: The 14-Bus System-Measurement Set

PBD Measurement Total Num of σ2 Noise

Type Meas Bad Meas Type

Active Power Injection 14 3 1 × 10−3

1/5 Active Power Flow 20 4 1 × 10−4 Gaussian

Reactive Power Injection 14 3 1 × 10−3

Reactive Power Flow 20 4 1 × 10−4

Continued on the next page
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Table C.9 – continued from the previous page

Active Power Injection 14 3 1 × 10−3

1/4 Active Power Flow 20 5 1 × 10−4 Gaussian

Reactive Power Injection 14 3 1 × 10−3

Reactive Power Flow 20 5 1 × 10−4

Active Power Injection 14 9 1 × 10−3

2/3 Active Power Flow 20 13 1 × 10−4 Gaussian

Reactive Power Injection 14 9 1 × 10−3

Reactive Power Flow 20 13 1 × 10−4

Active Power Injection 14 2 1 × 10−3

1/6 Active Power Flow 20 3 1 × 10−4 Rayleigh

Reactive Power Injection 14 2 1 × 10−3

Reactive Power Flow 20 3 1 × 10−4

Active Power Injection 14 3 1 × 10−3

1/5 Active Power Flow 20 5 1 × 10−4 Rayleigh

Reactive Power Injection 14 3 1 × 10−3

Reactive Power Flow 20 5 1 × 10−4

Active Power Injection 14 9 1 × 10−3

2/3 Active Power Flow 20 13 1 × 10−4 Rayleigh

Reactive Power Injection 14 9 1 × 10−3

Reactive Power Flow 20 13 1 × 10−4
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C.2.2 The IEEE 30 Bus Power Network

Table C.10 shows the main features of measurement set and baddata for the IEEE 30 bus

system. The network size is approximately twice the size of IEEE 14 bus system, and so

is the number of measurements and bad data points. The Gaussian noise mostly affects the

buses four to fourteen and their branches for smaller portions of bad data (1/6 and 1/5).

However, for PBD equals to 1/2, most of the buses in the system, from bus four to twenty-

four are affected. Rayleigh noise is placed slightly different within the set. For the smaller

portions, measurements from buses one to seven are affected. For the measurement set

with half noisy measurements, all the generation buses (buses number 1, 2, 5, 8, 11, 13),

and their related branches, are affected.

Table C.10: The 30-Bus System-Measurement Set

PBD Measurement Total Num of σ2 Noise

Type Meas Bad Meas Type

Active Power Injection 30 5 1 × 10−3

1/6 Active Power Flow 41 7 1 × 10−4 Gaussian

Reactive Power Injection 30 5 1 × 10−3

Reactive Power Flow 41 7 1 × 10−4

Active Power Injection 30 6 1 × 10−3

1/5 Active Power Flow 41 8 1 × 10−4 Gaussian

Reactive Power Injection 30 6 1 × 10−3

Reactive Power Flow 41 8 1 × 10−4

Active Power Injection 30 15 1 × 10−3

1/2 Active Power Flow 41 21 1 × 10−4 Gaussian

Reactive Power Injection 30 15 1 × 10−3

Reactive Power Flow 41 21 1 × 10−4

Active Power Injection 30 5 1 × 10−3

1/6 Active Power Flow 41 7 1 × 10−4 Rayleigh

Reactive Power Injection 30 5 1 × 10−3

Continued on the next page
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Table C.10 – continued from the previous page

Reactive Power Flow 41 7 1 × 10−4

Active Power Injection 30 6 1 × 10−3

1/5 Active Power Flow 41 8 1 × 10−4 Rayleigh

Reactive Power Injection 30 6 1 × 10−3

Reactive Power Flow 41 8 1 × 10−4

Active Power Injection 30 15 1 × 10−3

1/2 Active Power Flow 41 21 1 × 10−4 Rayleigh

Reactive Power Injection 30 15 1 × 10−3

Reactive Power Flow 41 21 1 × 10−4
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C.2.3 The IEEE 57 Bus Power Network

The main characteristics of measurement set and the generated bad data for the IEEE 57

bus are presented in Table C.11. In this set, two different scenarios are tested, for each

type of noise. In both cases, the noise is widely distributedwithin the measurement set,

corrupting power injection and power flow measurements in different parts of the network.

For PBD equals to 1/9, power injections at the first six buses of system are considered noisy.

But noise also corrupts power flow measurements from branches between buses nineteen

to twenty-eight. For PBD equals to 1/3, power injection measurements gained from buses

thirty to forty-nine are affected by noise. Also power flow measurements related to branches

between buses eighteen to forty-four are corrupted.

Table C.11: The 57-Bus System-Measurement Set

PBD Measurement Total Num of σ2 Noise

Type Meas Bad Meas Type

Active Power Injection 57 6 1 × 10−3

1/9 Active Power Flow 80 9 1 × 10−4 Gaussian

Reactive Power Injection 57 6 1 × 10−3

Reactive Power Flow 80 9 1 × 10−4

Active Power Injection 57 6 1 × 10−3

1/3 Active Power Flow 80 8 1 × 10−4 Gaussian

Reactive Power Injection 57 19 1 × 10−3

Reactive Power Flow 80 27 1 × 10−4

Active Power Injection 57 6 1 × 10−3

1/9 Active Power Flow 80 9 1 × 10−4 Rayleigh

Reactive Power Injection 57 6 1 × 10−3

Reactive Power Flow 80 9 1 × 10−4

Active Power Injection 57 19 1 × 10−3

1/3 Active Power Flow 80 27 1 × 10−4 Rayleigh

Continued on the next page
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Table C.11 – continued from the previous page

Reactive Power Injection 57 19 1 × 10−3

Reactive Power Flow 80 27 1 × 10−4

C.2.4 The IEEE 118 Bus Power Network

Table C.12 describes the features of measurement set used insimulation on 118 bus system.

The Gaussian noise corrupts 1/6, and 1/3 of the measurement set for the first round of

experiments. The noise has been added to the measurements ofthe system such that when

the portion of bad data is 1/6, noisy measurements involve buses thirty to fifty . They also

affect measurements related to branches between buses twenty to forty-five. For the ratio of

1/3, buses thirty to sixty-nine are involved and related branch measurements between buses

twenty-three to sixty-nine, including bus seven, bus eightand bus nineteen.

Table C.12: The 118-Bus System-Measurement Set

PBD Measurement Total Num of σ2 Noise

Type Meas Bad Meas Type

Active Power Injection 118 20 1 × 10−3

1/6 Active Power Flow 186 31 1 × 10−4 Gaussian

Reactive Power Injection 118 20 1 × 10−3

Reactive Power Flow 186 31 1 × 10−4

Active Power Injection 118 39 1 × 10−3

1/3 Active Power Flow 186 62 1 × 10−4 Gaussian

Reactive Power Injection 118 39 1 × 10−3

Reactive Power Flow 186 62 1 × 10−4

Active Power Injection 118 20 1 × 10−3

1/6 Active Power Flow 186 31 1 × 10−4 Rayleigh

Continued on the next page
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Table C.12 – continued from the previous page

Reactive Power Injection 118 20 1 × 10−3

Reactive Power Flow 186 31 1 × 10−4

Active Power Injection 118 39 1 × 10−3

1/3 Active Power Flow 186 62 1 × 10−4 Rayleigh

Reactive Power Injection 118 39 1 × 10−3

Reactive Power Flow 186 62 1 × 10−4



Appendix D

Average Errors for Large-Scale Power

Networks

It is noted that PBD stands for Portion of Bad Data.

D.1 The IEEE 14 Bus Test System with Gaussian Noise

Table D.1: Average Voltage Magnitude and Phase Angle Er-

rors for IEEE 14 bus with Gaussian Noise

PBD1 LS Estimator LAV Estimator LS Estimator LAV Estimator

∆Vavg ∆Vavg ∆θavg ∆θavg

1/5 0.1849 0.0353 4.0195 0.0982

1/4 0.2491 0.0352 2.7664 0.0515

2/3 0.5418 0.0379 10.72340 0.0934

1Portion of Bad Data
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D.2 The IEEE 14 Bus Test System with Rayleigh Noise

Table D.2: Average Voltage Magnitude and Phase Angle Er-

rors for IEEE 14 bus with Rayleigh Noise

PBD LS Estimator LAV Estimator LS Estimator LAV Estimator

∆Vavg ∆Vavg ∆θavg ∆θavg

1/6 0.1593 0.0385 3.6014 0.3213

1/5 0.3045 0.0467 0.7942 0.5289

2/3 0.7220 0.5206 19.8397 15.3305

D.3 The IEEE 30 Bus Test System with Gaussian Noise

Table D.3: Average Voltage Magnitude and Phase Angle Er-

rors for IEEE 30 bus with Gaussian Noise

PBD LS Estimator LAV Estimator LS Estimator LAV Estimator

∆Vavg ∆Vavg ∆θavg ∆θavg

1/6 0.3714 0.2357 1.0295 0.1092

1/5 0.3717 0.2415 3.8169 0.5197

1/2 0.4051 0.2556 5.4841 0.6095

D.4 The IEEE 30 Bus Test System with Rayleigh Noise
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Table D.4: Average Voltage Magnitude and Phase Angle Er-

rors for IEEE 30 bus with Rayleigh Noise

PBD LS Estimator LAV Estimator LS Estimator LAV Estimator

∆Vavg ∆Vavg ∆θavg ∆θavg

1/6 0.3548 0.2779 17.4558 2.1448

1/5 0.3981 0.3400 32.0206 2.4806

1/2 0.7745 0.6482 67.325 7.9797

D.5 The IEEE 57 Bus Test System with Gaussian Noise

Table D.5: Average Voltage Magnitude and Phase Angle Er-

rors for IEEE 57 bus with Gaussian Noise

PBD LS Estimator LAV Estimator LS Estimator LAV Estimator

∆Vavg ∆Vavg ∆θavg ∆θavg

1/9 0.2049 0.0595 5.7228 0.0558

1/3 0.3018 0.1620 4.1333 1.6884

D.6 The IEEE 57 Bus Test System with Rayleigh Noise

Table D.6: Average Voltage Magnitude and Phase Angle Er-

rors for IEEE 57 bus with Rayleigh Noise

PBD LS Estimator LAV Estimator LS Estimator LAV Estimator

∆Vavg ∆Vavg ∆θavg ∆θavg
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1/9 0.2562 0.0701 8.5619 0.1431

1/3 0.6406 0.3706 67.4604 23.9899

D.7 The IEEE 118 Bus Test System with Gaussian Noise

Table D.7: Average Voltage Magnitude and Phase Angle Er-

rors for IEEE 118 bus with Gaussian Noise

PBD LS Estimator LAV Estimator LS Estimator LAV Estimator

∆Vavg ∆Vavg ∆θavg ∆θavg

1/6 0.2938 0.0570 24.5846 0.1273

1/3 0.3966 0.2063 51.3523 0.5538

D.8 The IEEE 118 Bus Test System with Rayleigh Noise

Table D.8: Average Voltage Magnitude and Phase Angle Er-

rors for IEEE 118 bus with Rayleigh Noise

PBD LS Estimator LAV Estimator LS Estimator LAV Estimator

∆Vavg ∆Vavg ∆θavg ∆θavg

1/6 0.4388 0.0384 16.1060 0.5111

1/3 0.6231 0.4591 77.7831 4.9641



Appendix E

Selected Tables of Simulation Results

E.1 5 Bus Power System - Measurement Set A2

LS-based Exact Solution Proposed LAV

V1 1.06 1.06 1.06

V2 1.0428 1.0474 1.0472

V3 1.0156 1.0242 1.0167

V4 1.019 1.0236 1.022

V5 1.0169 1.0179 1.017

θ1 0 0 0

θ2 -0.0307 -0.049 -0.0484

θ3 -0.0207 -0.0872 -0.099

θ4 -0.0301 -0.093 -0.131

θ5 -0.0672 -0.1073 -0.188
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E.2 5 Bus Power System - Measurement Set B1

LS-based Exact Solution Proposed LAV

V1 1.06 1.06 1.06

V2 1.04658 1.0474 1.0476

V3 1.02823 1.0242 1.0243

V4 1.02802 1.02374 1.0237

V5 1.02063 1.01797 1.0179

θ1 0 0 0

θ2 -0.05459 -0.04897 -0.0485

θ3 -0.0867 -0.08728 -0.0866

θ4 -0.08908 -0.09305 -0.0924

θ5 -0.10329 -0.1073 -0.1067



APPENDIX E. SELECTED TABLES OF SIMULATION RESULTS 143

E.3 10 Bus Power System - Measurement Set A3

LS-based Exact Solution Proposed LAV

V1 1.03 1.03 1.03

V2 0.9703 1.045 0.9497

V3 0.9836 1.04397 0.9687

V4 0.8934 1.03637 0.9076

V5 1.0337 1.03967 1.0276

V6 1.0336 1.04649 1.0121

V7 1.0154 1.03046 1.0455

V8 0.9762 1.03059 1.0479

V9 0.8571 1.02807 0.8199

V10 0.5593 1.02028 0.8082

θ1 0 0 0

θ2 0.0772 0.0889 0.1102

θ3 0.0539 0.06145 0.0749

θ4 0.0846 0.06834 0.0902

θ5 -0.0466 -0.03899 -0.0542

θ6 -0.0858 -0.07894 -0.1007

θ7 -0.1419 -0.12617 -0.1974

θ8 -0.1231 -0.21839 -0.2126

θ9 -0.0118 -0.06047 -0.0628

θ10 0.4521 -0.00472 0.0227
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E.4 14 Bus Power System-Gaussian Noise on 1/4 data set

LS-based Exact Solution Modified LAV

V1 1.06 1.06 1.06

V2 0.123018322 1.045 0.998365407

V3 1.002056944 1.01 1.007297028

V4 1.034184131 1.026092698 0.999708854

V5 0.909500579 1.032597949 0.994262162

V6 1.065420325 1.07 1.035057704

V7 1.060359366 1.044811975 0.998964849

V8 1.055077042 1.09 0.995736548

V9 1.035146468 1.027630894 1.007310227

V10 1.026217803 1.027543353 1.031256369

V11 1.067581224 1.044943317 1.035933452

V12 1.075339119 1.05301731 1.051048064

V13 1.077311388 1.046234106 1.046615712

V14 1.02493943 1.017433253 1.034779609

θ1 0 0 0

θ2 2.544934562 -0.086507559 -0.065529681

θ3 2.598956643 -0.220484417 -0.118353168

θ4 2.559592865 -0.180919937 -0.143322038

θ5 2.548491682 -0.156149826 -0.137595588

θ6 2.671272905 -0.25969414 -0.249429692

θ7 2.659363602 -0.234752199 -0.181448263

θ8 2.682356734 -0.234752199 -0.180758846

θ9 2.66906461 -0.263019004 -0.192682027

θ10 2.673524361 -0.267351867 -0.210873809

θ11 2.672412738 -0.265524606 -0.225649602

θ12 2.663699199 -0.274360116 -0.234984493

θ13 2.669344089 -0.274684504 -0.232935488
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θ14 2.67807589 -0.286129123 -0.211183421

E.5 14 Bus Power System-Rayleigh Noise on 1/5 data set

LS-based Exact Solution Modified LAV

V1 1.06 1.06 1.06

V2 -0.072402145 1.045 0.936886244

V3 0.828729474 1.01 1.033244339

V4 1.023520108 1.026092698 0.999857482

V5 0.916122277 1.032597949 0.947298551

V6 1.069528387 1.07 1.060526049

V7 1.061631515 1.044811975 1.007273654

V8 1.052797284 1.09 0.99910137

V9 1.035877477 1.027630894 1.007350414

V10 1.02547623 1.027543353 1.027797159

V11 1.064234474 1.044943317 1.045571184

V12 1.071973449 1.05301731 1.052428895

V13 1.074370579 1.046234106 1.05255677

V14 1.02243525 1.017433253 1.029665848

θ1 0 0 0

θ2 0.205302141 -0.086507559 -0.360656364

θ3 0.869085007 -0.220484417 -1.010651886

θ4 0.483504552 -0.180919937 -0.746740777

θ5 0.506675747 -0.156149826 -0.678540027

θ6 0.57965485 -0.25969414 -0.788954054

θ7 0.604985505 -0.234752199 -0.798836471

θ8 0.636949877 -0.234752199 -0.796326541
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θ9 0.61077309 -0.263019004 -0.80948628

θ10 0.612595373 -0.267351867 -0.811810231

θ11 0.594566873 -0.265524606 -0.805216097

θ12 0.564848904 -0.274360116 -0.800893487

θ13 0.576330353 -0.274684504 -0.798618226

θ14 0.608969466 -0.286129123 -0.807021386

E.6 30 Bus Power System-Gaussian Noise on 1/2 data set

LS-based Exact Solution Modified LAV

V1 1.06 1.06 1.06

V2 1.049511641 1.043 1.034099277

V3 1.045740302 1.024830371 1.009289913

V4 1.012161288 1.016826096 0.986372979

V5 1.04992021 1.01 1.02564211

V6 0.818174834 1.011194194 1.00202704

V7 1.086933919 1.002936554 0.966032808

V8 0.138875193 1.01 1.00603183

V9 0.269945333 1.023775239 1.002162128

V10 0.953550233 1.000932447 0.982767924

V11 -0.054548444 1.082 1.050593778

V12 0.388288354 1.026077684 0.42061883

V13 0.066654001 1.071 0.075906453

V14 0.69663625 1.008640225 0.707887821

V15 0.72390057 1.002086652 0.754092722

V16 0.41701829 1.007627307 0.838613731

V17 0.959449134 0.997746168 1.053439379
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V18 0.455496594 0.98904376 0.504078586

V19 0.944988511 0.984580269 0.919405332

V20 1.074613107 0.98785947 1.04831807

V21 0.990972077 0.987570317 1.001106777

V22 0.99245921 0.988002551 1.00323024

V23 1.016942098 0.986437097 1.393859865

V24 0.99459182 0.974280764 1.046260617

V25 0.963589703 0.974551204 0.972594308

V26 0.88356075 0.956065253 0.976058974

V27 1.088982249 0.983686075 0.981228343

V28 1.018566965 1.006808871 1.006149879

V29 0.931576674 0.962956394 0.961928092

V30 0.906682204 0.950970371 0.969303116

θ1 0 0 0

θ2 -0.037547029 -0.09329216 -0.086085469

θ3 9.64E-05 -0.132485069 -0.152820606

θ4 0.01180972 -0.163229133 -0.161581198

θ5 -0.098121668 -0.247028312 -0.111658982

θ6 0.082677491 -0.193153261 -0.118680802

θ7 -0.069713299 -0.224467749 -0.150033693

θ8 6.509819095 -0.20596692 -0.134215772

θ9 1.536216426 -0.249366218 0.230350957

θ10 1.35233135 -0.279387696 0.494648703

θ11 -388.9557864 -0.249366218 0.183058303

θ12 -0.31824857 -0.271529508 -0.801522052

θ13 30.62299937 -0.271529508 0.582467279

θ14 -0.083392277 -0.287507314 -0.712290231

θ15 0.496189917 -0.287795622 -0.268102929

θ16 0.760498736 -0.279288537 0.325292558
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θ17 1.33167163 -0.283605355 0.495809239

θ18 0.863933455 -0.297927113 0.558204514

θ19 1.381998055 -0.300355653 1.423405957

θ20 1.403587198 -0.296174488 1.433421363

θ21 1.324387856 -0.287545739 0.448416249

θ22 1.315154608 -0.287181315 0.428643731

θ23 0.880345946 -0.292707744 -0.201346292

θ24 1.156774468 -0.292757965 0.047142462

θ25 1.126386803 -0.286277964 -0.193167647

θ26 1.216770436 -0.294272601 -0.200908904

θ27 1.01664893 -0.277267582 -0.186816005

θ28 0.14951535 -0.203901876 -0.138292524

θ29 1.233004228 -0.300534844 -0.197419791

θ30 1.277196628 -0.31728093 -0.191930222
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E.7 30 Bus Power System-Rayleigh Noise on 1/2 data set

LS-based Exact Solution Modified LAV

V1 1.06 1.06 1.06

V2 -0.085174554 1.043 -0.271350549

V3 0.026211018 1.024830371 0.607743569

V4 -0.151807364 1.016826096 0.696716379

V5 -0.044051781 1.01 -0.148479317

V6 -0.014656585 1.011194194 0.953664392

V7 0.025790772 1.002936554 0.652155007

V8 0.11501933 1.01 1.106844112

V9 -0.037803981 1.023775239 0.685554021

V10 0.818735519 1.000932447 0.993407295

V11 0.606140407 1.082 -0.014394381

V12 0.112669405 1.026077684 -0.107136523

V13 -1.018337759 1.071 -0.422064679

V14 -0.058854624 1.008640225 0.714369287

V15 -0.228829231 1.002086652 0.071158298

V16 0.004052401 1.007627307 0.124115334

V17 0.850445551 0.997746168 1.1096753

V18 0.960947167 0.98904376 0.982882667

V19 0.977588771 0.984580269 1.005273745

V20 1.035769662 0.98785947 0.950161081

V21 0.996628049 0.987570317 0.997257108

V22 0.98891326 0.988002551 0.991651819

V23 0.819693434 0.986437097 2.554704967

V24 0.64637948 0.974280764 0.739284628

V25 0.918282323 0.974551204 0.957674212

V26 0.90095127 0.956065253 1.023975695

V27 0.882193401 0.983686075 0.953512974
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V28 0.890108833 1.006808871 1.15596

V29 0.949405622 0.962956394 0.960467203

V30 0.939474722 0.950970371 0.966747372

θ1 0 0 0

θ2 3.534627825 -0.09329216 0.117575919

θ3 3.899774757 -0.132485069 2.467113428

θ4 -3.885327412 -0.163229133 1.380438853

θ5 -10.89941153 -0.247028312 -8.192657847

θ6 26.06667759 -0.193153261 1.661360953

θ7 4.053029642 -0.224467749 1.3108623

θ8 5.830064824 -0.20596692 1.861725028

θ9 -7.635678256 -0.249366218 0.918425707

θ10 8.68323403 -0.279387696 0.25425659

θ11 105.2024265 -0.249366218 -5.179947473

θ12 31.41993615 -0.271529508 -5.101674401

θ13 603.1683508 -0.271529508 -3.684004867

θ14 -4.202732641 -0.287507314 -37.25833456

θ15 4.937120622 -0.287795622 12.34431467

θ16 50.82071191 -0.279288537 14.28540991

θ17 6.942991351 -0.283605355 0.050279129

θ18 8.794855045 -0.297927113 -0.334142088

θ19 8.912285803 -0.300355653 -0.084932426

θ20 8.942795392 -0.296174488 -0.001021665

θ21 8.662305974 -0.287545739 0.251088677

θ22 8.657703461 -0.287181315 0.252870004

θ23 8.629899908 -0.292707744 -1.558534891

θ24 7.381752159 -0.292757965 1.474728396

θ25 7.75019645 -0.286277964 1.572670169

θ26 9.406911361 -0.294272601 1.548010269
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θ27 6.720081665 -0.277267582 1.671027844

θ28 5.94420317 -0.203901876 1.886257937

θ29 5.481022656 -0.300534844 1.667413574

θ30 5.457677931 -0.31728093 1.674132387

E.8 57 Bus Power System-Gaussian Noise on 1/3 data

LS-based Exact Solution Modified LAV

V1 1.04 1.04 1.04

V2 0.980757908 1.01 0.973851414

V3 0.993319198 0.985 0.989328628

V4 1.005503415 0.978030655 1.002647629

V5 1.01337006 0.975586 1.01027367

V6 1.006518738 0.98 1.001027896

V7 0.741543836 0.979898193 0.734829101

V8 1.003349995 1.005 1.097822496

V9 1.004034128 0.98 1.018228082

V10 0.985636921 0.982966137 0.981335602

V11 0.975258524 0.972328182 0.966949029

V12 0.992628534 1.015 0.994021474

V13 0.982003513 0.98070898 1.001161388

V14 0.969268052 0.972578287 1.000269353

V15 0.988468862 0.986526095 0.999000127

V16 1.01568326 1.013341786 0.976374644

V17 0.991439214 1.01742339 0.884936207

V18 0.961686332 0.946354595 0.971612892

V19 0.166141643 0.915210221 0.889052161
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V20 0.429707834 0.909254583 0.989450537

V21 0.079211938 0.913916791 1.01304506

V22 0.54054952 0.915508548 1.003330861

V23 0.552116602 0.913445339 0.986277958

V24 0.134294014 0.895132992 0.980648215

V25 0.411153399 0.838468271 0.647499089

V26 0.01771532 0.89750851 1.043177005

V27 0.611447065 0.930278477 0.834375154

V28 0.620877222 0.949505685 0.681247316

V29 0.435484078 0.965768673 0.419264952

V30 0.466655973 0.81703591 0.482481732

V31 0.214465961 0.790535149 0.349875003

V32 0.63192878 0.814960146 0.625495795

V33 0.617211514 0.812283873 0.634817073

V34 0.609686832 0.865156145 1.016320005

V35 0.619917299 0.87406903 0.984672785

V36 0.571961614 0.885533817 0.999547694

V37 0.583850412 0.894314049 1.00061978

V38 0.832346528 0.919923531 1.002151413

V39 0.579868427 0.892801041 0.998441173

V40 0.647091082 0.884432635 1.001386472

V41 0.38324955 0.930880734 0.331001368

V42 0.82049151 0.887935295 0.734312893

V43 0.906310175 0.959303509 0.751649114

V44 0.998793777 0.933222087 0.999757749

V45 1.000056253 0.973171437 1.015737566

V46 0.953344515 0.957676066 1.002617604

V47 0.938624579 0.934138475 1.000498743

V48 0.936347379 0.93005649 0.998383293
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V49 0.97814934 0.936874996 1.008771681

V50 0.94150029 0.928827667 0.992815845

V51 0.972891473 0.971370537 0.974059754

V52 0.907170261 0.921228418 0.908331456

V53 0.958434634 0.904362618 0.960814652

V54 0.91612761 0.930742426 0.907296229

V55 1.043868406 0.966923491 1.006168773

V56 0.814170383 0.879165235 0.930228316

V57 0.912720966 0.870121684 0.871311099

θ1 0 0 0

θ2 -0.030310526 -0.020899268 -0.031622022

θ3 -0.112288283 -0.105193273 -0.136922883

θ4 -0.129349166 -0.128226607 -0.141780976

θ5 -0.139505554 -0.150529003 -0.14387996

θ6 -0.134788451 -0.153302238 -0.151159841

θ7 -0.226320847 -0.134428539 -0.252190529

θ8 -0.221752345 -0.079901504 -0.294920502

θ9 -0.205719198 -0.168543573 -0.29613915

θ10 -0.209211216 -0.201818494 -0.292129612

θ11 -0.188963364 -0.178815195 -0.268070793

θ12 -0.151501072 -0.183454586 -0.245241677

θ13 -0.177969299 -0.171625151 -0.253784966

θ14 -0.179045442 -0.163126247 -0.243327822

θ15 -0.135036675 -0.125659078 -0.179063497

θ16 -0.117252655 -0.15511647 -0.155936309

θ17 -0.062642523 -0.094435404 -0.055909414

θ18 -0.186718143 -0.211641945 -0.176011798

θ19 -2.068718037 -0.241634038 -0.33038684

θ20 -9.352675991 -0.246355127 -0.390657547
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θ21 9.645847794 -0.236120803 -0.458694717

θ22 -0.905938525 -0.235077181 -0.476312746

θ23 -0.083392396 -0.236061874 -0.510823722

θ24 0.309200992 -0.236907045 -1.93630895

θ25 0.454134752 -0.348019436 -2.049483154

θ26 26.42323232 -0.230610874 -2.041582385

θ27 -3.458654496 -0.207050223 -3.325573891

θ28 -2.598296699 -0.188981257 -2.98123736

θ29 -1.427607263 -0.176621005 -1.833321709

θ30 -0.22096704 -0.362441303 10.77925072

θ31 5.822813328 -0.381813513 -1.955307164

θ32 -1.604061396 -0.365841904 0.213365266

θ33 -1.016966517 -0.366783324 0.772459458

θ34 -3.233538455 -0.263271936 -0.236344744

θ35 -2.419114625 -0.258776887 -0.317524685

θ36 -1.262347489 -0.253612228 -0.348138585

θ37 -0.466559899 -0.249096533 -0.366071137

θ38 -0.423529736 -0.232921358 -0.420013051

θ39 0.437282139 -0.250115671 -0.361639796

θ40 -0.636648085 -0.254966904 -0.342279902

θ41 0.485181706 -0.26146603 -0.579393537

θ42 0.216837895 -0.287315638 -0.209254959

θ43 -0.20221832 -0.20290602 -0.29703105

θ44 -0.298111619 -0.216955401 -0.384124283

θ45 -0.209054341 -0.169634061 -0.265777613

θ46 -0.242221504 -0.197870981 -0.304990659

θ47 -0.290355168 -0.226502547 -0.366196324

θ48 -0.313324968 -0.229007633 -0.383134426

θ49 -0.276130054 -0.23345252 -0.3586404
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θ50 -0.247748856 -0.243682181 -0.35291974

θ51 -0.22774512 -0.22555181 -0.319525266

θ52 -1.492653558 -0.203054381 -1.609934993

θ53 -1.369303681 -0.214102228 -1.489379361

θ54 -0.830985245 -0.206573564 -0.959766893

θ55 -0.352371245 -0.191502946 -0.458978231

θ56 -0.01598398 -0.294323326 -0.275780237

θ57 -0.081296934 -0.304977679 -0.223969984

E.9 57 Bus Power System-Rayleigh Noise on 1/3 data

LS-based Exact Solution Modified LAV

V1 1.04 1.04 1.04

V2 1.026755836 1.01 1.024154742

V3 0.987509069 0.985 0.987349733

V4 0.980315281 0.978030655 0.987172294

V5 0.990991596 0.975586 0.990091562

V6 0.992295513 0.98 0.989285246

V7 0.633911479 0.979898193 0.643488868

V8 0.992403312 1.005 1.064148494

V9 1.012418866 0.98 1.035344327

V10 0.985992577 0.982966137 0.980832257

V11 0.881353947 0.972328182 0.881457504

V12 1.012261348 1.015 1.002620595

V13 0.985761444 0.98070898 1.032879555

V14 0.965725506 0.972578287 0.996521836

V15 0.986347388 0.986526095 0.993705321
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V16 1.041117436 1.013341786 1.008868555

V17 1.04363284 1.01742339 1.024966919

V18 0.930847271 0.946354595 0.940829468

V19 -0.027494321 0.915210221 0.318143683

V20 -0.0423557 0.909254583 0.405957309

V21 0.050363939 0.913916791 0.932598319

V22 0.21322869 0.915508548 0.997457763

V23 0.483286588 0.913445339 1.003056211

V24 -0.0066921 0.895132992 0.979909966

V25 0.127570707 0.838468271 0.055143994

V26 -0.093811119 0.89750851 0.866667197

V27 -0.114203251 0.930278477 0.210659217

V28 -0.008770279 0.949505685 0.272572437

V29 0.088819866 0.965768673 0.031679478

V30 -0.024337054 0.81703591 -0.135777261

V31 0.057753042 0.790535149 -0.019100585

V32 0.050025883 0.814960146 -0.08441519

V33 -0.074872279 0.812283873 0.284543489

V34 -0.419721125 0.865156145 0.331948418

V35 0.028916834 0.87406903 0.939213572

V36 0.083933239 0.885533817 0.94440997

V37 0.058606736 0.894314049 0.93253764

V38 0.188773177 0.919923531 0.985605702

V39 -0.010949902 0.892801041 0.955954865

V40 -0.204217797 0.884432635 0.94780675

V41 -0.455500866 0.930880734 0.503404671

V42 0.431648092 0.887935295 0.057079585

V43 0.009546674 0.959303509 0.150527566

V44 0.27527402 0.933222087 1.00211356



APPENDIX E. SELECTED TABLES OF SIMULATION RESULTS 157

V45 0.040447921 0.973171437 0.940150698

V46 0.428819104 0.957676066 0.986714286

V47 0.83478092 0.934138475 0.996789772

V48 0.798724689 0.93005649 0.996537896

V49 -0.029494239 0.936874996 0.991343321

V50 0.829056332 0.928827667 0.97149464

V51 0.93971364 0.971370537 0.969648908

V52 0.890652017 0.921228418 0.892774673

V53 0.942938729 0.904362618 0.941555671

V54 0.870240271 0.930742426 0.874635204

V55 0.9799895 0.966923491 0.832741988

V56 0.467261995 0.879165235 0.626846745

V57 0.287938218 0.870121684 0.765872113

θ1 0 0 0

θ2 -0.028376141 -0.020899268 -0.027169108

θ3 -0.118491414 -0.105193273 -0.113465148

θ4 -0.124140409 -0.128226607 -0.145797239

θ5 -0.115606744 -0.150529003 -0.187349461

θ6 -0.106015252 -0.153302238 -0.198111051

θ7 -0.070154767 -0.134428539 -0.23783265

θ8 -0.192013469 -0.079901504 -0.321085286

θ9 -0.191825875 -0.168543573 -0.31839792

θ10 -0.196585983 -0.201818494 -0.263028294

θ11 -0.252589637 -0.178815195 -0.665325899

θ12 -0.156406128 -0.183454586 -0.19264803

θ13 -0.222282059 -0.171625151 -0.236343103

θ14 -0.251677232 -0.163126247 -0.161731702

θ15 -0.179339443 -0.125659078 -0.126527598

θ16 -0.114432782 -0.15511647 -0.125570875
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θ17 -0.058451692 -0.094435404 -0.063741125

θ18 -0.206522279 -0.211641945 -0.218094917

θ19 -128.0378551 -0.241634038 -13.86684951

θ20 -222.459545 -0.246355127 -0.907808851

θ21 142.4216111 -0.236120803 -0.20052634

θ22 -369.7359284 -0.235077181 -0.182327198

θ23 -0.705626688 -0.236061874 -0.220236774

θ24 6.36554139 -0.236907045 -0.927225371

θ25 53.94683378 -0.348019436 -3.280963171

θ26 -24.06581294 -0.230610874 -0.848311508

θ27 4.563029938 -0.207050223 -3.011886909

θ28 16.89858911 -0.188981257 17.8936808

θ29 17.81708307 -0.176621005 7.86115018

θ30 16.61594421 -0.362441303 -33.33968646

θ31 6.697726457 -0.381813513 -164.4568277

θ32 -85.95740061 -0.365841904 46.74582322

θ33 80.86191874 -0.366783324 -0.238246971

θ34 38.52621842 -0.263271936 4.035466737

θ35 -29.13176207 -0.258776887 2.404360143

θ36 21.32718109 -0.253612228 0.930388684

θ37 -11.06155709 -0.249096533 -0.762546303

θ38 8.936480413 -0.232921358 -0.135661667

θ39 -0.784529365 -0.250115671 -1.110960017

θ40 10.51715134 -0.254966904 -0.158409742

θ41 2.963589287 -0.26146603 2.690781947

θ42 -10.03008807 -0.287315638 -43.37701414

θ43 -28.65924268 -0.20290602 6.09824557

θ44 -118.5807419 -0.216955401 -0.15612551

θ45 3.858535183 -0.169634061 -0.154874604



APPENDIX E. SELECTED TABLES OF SIMULATION RESULTS 159

θ46 3.689466391 -0.197870981 -0.161738967

θ47 0.415039878 -0.226502547 -0.158535606

θ48 1.015605704 -0.229007633 -0.157474706

θ49 12.484887 -0.23345252 -0.178230513

θ50 -0.75724557 -0.243682181 -0.220593859

θ51 -0.230544529 -0.22555181 -0.281705319

θ52 -0.530311704 -0.203054381 -0.50489944

θ53 -0.474218489 -0.214102228 -0.494410817

θ54 -0.365464677 -0.206573564 -0.404436678

θ55 -0.236523778 -0.191502946 -0.369011922

θ56 8.237614749 -0.294323326 1.186412565

θ57 5.459241928 -0.304977679 6.469110284
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E.10 118 Bus Power System-Gaussian Noise on 1/6 data

LS-based Exact Solution Modified LAV

V1 0.997395104 1 0.999999032

V2 0.994366653 0.994841533 1.00000441

V3 1.007067549 0.996538035 0.999993899

V4 1.002165545 1 0.999994334

V5 1.002147741 1.002289624 1.000017224

V6 1.001542787 1 0.999997638

V7 0.999019132 0.999336917 1.000000621

V8 0.929005942 1 1.000039832

V9 1.028508173 1.009180031 0.999989771

V10 1.031072637 1 0.999986112

V11 0.99648226 0.992799715 0.999996589

V12 0.996265046 1 0.999996769

V13 1.018969603 0.98135513 0.999934204

V14 1.035466496 0.99896324 0.999935216

V15 0.976474755 1 1.000008694

V16 1.054558303 0.994405011 0.999944443

V17 0.913790169 1.006285752 1.000169187

V18 1.03973333 1 0.999914308

V19 1.010375949 1 0.999860218

V20 0.99856299 0.985261032 0.999940496

V21 0.994950462 0.978786897 1.000028048

V22 0.964852507 0.981467787 1.000026235

V23 0.384320293 0.997601169 0.999756579

V24 0.630826953 1 1.001776005

V25 0.156212266 1 0.999407474

V26 0.031827925 1 1.000283263

V27 0.654068902 1 0.999994758
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V28 -0.060996461 0.994277782 1.000031662

V29 0.378562826 0.996238628 1.000008461

V30 0.075236719 1.009114636 1.000467039

V31 0.51531387 1 0.999970111

V32 0.891433297 1 0.999980022

V33 0.157931763 0.993558137 1.002008924

V34 0.354221806 1 0.999190968

V35 0.26409611 0.99938369 1.00013742

V36 0.371043653 1 0.99953546

V37 0.312423751 1.004239965 1.004545686

V38 0.441225238 1.009042539 0.997873962

V39 0.309801402 0.994093869 1.057246881

V40 0.170804392 1 0.96260647

V41 0.390458833 0.993092208 0.391558539

V42 0.818945447 1 0.911390856

V43 0.07464292 0.97727436 0.935123343

V44 0.909506598 0.961432203 0.956999845

V45 1.006242711 0.964055407 0.979175344

V46 0.991651586 1 0.984718848

V47 1.002096257 0.996138427 1.014637317

V48 0.999779341 0.993479906 1.005985147

V49 0.996012747 1 1.002283233

V50 1.006379383 0.99321852 0.991652942

V51 0.982470267 0.980799366 0.97955225

V52 0.975802807 0.976373108 0.978954156

V53 0.986332628 0.980645253 0.986248637

V54 1.000068108 1 0.998014771

V55 1.000387699 1 1.002682595

V56 0.999302234 1 1.000486004
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V57 0.999622084 0.993988772 1.000748895

V58 0.986847463 0.986732548 0.990806335

V59 1.004736842 1 1.009516794

V60 0.998937129 0.998315192 0.998856742

V61 0.998655444 1 0.999086816

V62 0.997798355 1 0.999437158

V63 0.999085949 0.999464417 1.000567708

V64 0.999478114 1.001239905 1.00014195

V65 1.0042035 1 0.999361543

V66 0.994004072 1 1.003478283

V67 1.000047661 0.993395183 0.999318053

V68 1.002862409 1.003274483 1.000042062

V69 1.035 1 1.035

V70 0.999430343 1 0.999187399

V71 1.002694992 1.00048439 1.000421139

V72 1.088954465 1 0.998598885

V73 0.990236461 1 1.000803047

V74 0.995177794 1 1.000104905

V75 0.997405886 0.992506749 0.999220053

V76 0.996648509 1 1.000871012

V77 0.996987899 1 0.999533922

V78 0.996328594 0.991675598 1.001055266

V79 0.990437911 0.986287303 1.006731112

V80 0.997679828 1 0.997180458

V81 1.003210586 1.007889227 0.999828714

V82 0.976658668 0.973736576 0.980455845

V83 0.973299852 0.976123762 0.982127073

V84 0.990958519 0.987266035 0.991565176

V85 0.990444037 1 0.990709846
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V86 1.00490723 0.990628769 1.004499478

V87 0.98191084 1 0.981668139

V88 0.997219428 0.990587404 0.997182696

V89 0.998251248 1 0.998236265

V90 1.00330258 1 1.003345446

V91 1.002127942 1 1.002143445

V92 0.996104685 1 0.99610176

V93 0.985735771 0.984205884 0.985674432

V94 0.979655999 0.978662495 0.979748731

V95 0.968574913 0.965589554 0.96877599

V96 0.973698296 0.973399732 0.976640681

V97 0.985263912 0.981773147 0.982329051

V98 1.006744243 0.991700754 1.002070453

V99 1.003618246 1 1.002888811

V100 0.994070113 1 0.99374439

V101 0.994065095 0.986103729 0.994314569

V102 1.000429344 0.994120909 1.000522721

V103 1.001378334 1 1.001533973

V104 1.000562131 1 1.000595318

V105 0.998107387 1 0.998131828

V106 1.001776601 0.9907116 1.001818922

V107 0.989525094 1 0.989563145

V108 0.99786526 0.998164241 0.99786078

V109 0.998423516 0.997678348 0.998424383

V110 1.000686826 1 1.000720683

V111 0.997478602 1 0.997458501

V112 0.997217379 1 0.997165429

V113 1.169658211 1 0.999719779

V114 0.999124078 0.995217672 1.000000112
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V115 0.987298264 0.994806449 1.000002402

V116 1.001156013 1 0.999911525

V117 0.963018327 0.9840504 1.000045397

V118 0.994806231 0.989790679 1.002277875

θ1 -2.800314481 -0.346942794 -0.376928132

θ2 -2.808934801 -0.33244518 -0.376967452

θ3 -2.790554597 -0.32758539 -0.376893838

θ4 -2.750211975 -0.257542568 -0.376607498

θ5 -2.744313511 -0.249476925 -0.376557265

θ6 -2.77615012 -0.298703714 -0.376865013

θ7 -2.786950639 -0.306304318 -0.37692855

θ8 -2.683875063 -0.159323822 -0.375802963

θ9 -2.630097683 -0.025100185 -0.376438421

θ10 -2.612682399 0.11979921 -0.376662066

θ11 -2.781584444 -0.303145224 -0.376969263

θ12 -2.795828266 -0.312428613 -0.377029731

θ13 -2.801514783 -0.328049143 -0.377603364

θ14 -2.805261838 -0.326136037 -0.377796634

θ15 -2.806340456 -0.335185915 -0.382658507

θ16 -2.788500514 -0.317793004 -0.377043409

θ17 -2.810618327 -0.287334257 -0.376053076

θ18 -2.82908242 -0.329112247 -0.379646582

θ19 -2.82560912 -0.339998816 -0.383406113

θ20 -2.863934725 -0.324802945 -0.369568151

θ21 -2.855979739 -0.297781393 -0.361383878

θ22 -2.832543395 -0.253902919 -0.351512352

θ23 -3.057797946 -0.167667708 -0.330852491

θ24 -1.502219746 -0.172231804 -0.300686808

θ25 261.4790657 -0.033445792 -0.350692405
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θ26 49.60557529 -0.000711098 -0.357128189

θ27 -3.684050459 -0.270885166 -0.35513261

θ28 -4.819832712 -0.298649716 -0.357773011

θ29 -5.121416381 -0.31436343 -0.360260315

θ30 4.513421647 -0.197287832 -0.371584641

θ31 -4.031076509 -0.312282958 -0.360970913

θ32 -3.587520594 -0.280685968 -0.354177939

θ33 -0.477933949 -0.343575933 -0.410008181

θ34 -3.723275081 -0.331242472 -0.448599378

θ35 -4.401877173 -0.339678764 -0.450634702

θ36 -3.596568736 -0.339980353 -0.450364168

θ37 -2.401235232 -0.322767015 -0.452935799

θ38 -1.294923027 -0.23066925 -0.363629298

θ39 -5.603962051 -0.385010082 -0.651954966

θ40 -3.001717701 -0.405887114 -0.722748382

θ41 -1.984774014 -0.412945687 -1.099695644

θ42 -0.473129382 -0.38531827 -0.329626735

θ43 -10.43552033 -0.332556559 -0.368539423

θ44 -0.304421285 -0.288807851 -0.245945572

θ45 -0.213712122 -0.257969572 -0.159883999

θ46 -0.179023713 -0.21403429 -0.122494855

θ47 -0.148672109 -0.170003123 -0.094194296

θ48 -0.188223525 -0.181479439 -0.122533915

θ49 -0.184383116 -0.163921055 -0.111951433

θ50 -0.189132059 -0.204411005 -0.122167637

θ51 -0.212964162 -0.254361477 -0.157591872

θ52 -0.222570738 -0.271835064 -0.169859333

θ53 -0.2195477 -0.290301572 -0.18906785

θ54 -0.180264663 -0.276966208 -0.195760388
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θ55 -0.180162701 -0.282057505 -0.19048719

θ56 -0.179805314 -0.278928889 -0.195803014

θ57 -0.202606992 -0.254596737 -0.167023967

θ58 -0.213149134 -0.269885069 -0.176255693

θ59 -0.100958648 -0.196453108 -0.107539344

θ60 -0.067396212 -0.128534675 -0.059242251

θ61 -0.072534348 -0.112840458 -0.055355579

θ62 -0.050500428 -0.123760008 -0.047206194

θ63 -0.081832595 -0.135136036 -0.06529688

θ64 -0.072367553 -0.103293746 -0.054763587

θ65 -0.088390749 -0.043777251 -0.069389659

θ66 -0.11809979 -0.041424131 -0.069226048

θ67 -0.021388615 -0.094502569 -0.020753199

θ68 -0.049025891 -0.046018061 -0.046671115

θ69 0 0 0

θ70 -0.17835689 -0.145823361 -0.100764793

θ71 -0.214559634 -0.152462808 -0.114200455

θ72 -0.494605858 -0.173840533 -0.208982188

θ73 -0.205749485 -0.155192917 -0.111856271

θ74 -0.127746386 -0.169493203 -0.09425263

θ75 -0.111379336 -0.144026551 -0.082336955

θ76 -0.111667222 -0.171378132 -0.082119131

θ77 -0.037977922 -0.070408802 -0.031330739

θ78 -0.039900658 -0.073974231 -0.034840347

θ79 -0.039234645 -0.065824752 -0.035309913

θ80 -0.045277557 -0.019563862 -0.02764318

θ81 -0.039622015 -0.036910324 -0.043884196

θ82 0.03421474 -0.056990754 0.014627637

θ83 0.07327771 -0.037146182 0.050021682
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θ84 0.152445092 0.002245626 0.117462271

θ85 0.171093273 0.026478738 0.131051611

θ86 0.217229789 0.006256778 0.177442097

θ87 0.229930874 0.013493552 0.190233774

θ88 0.183418629 0.082726591 0.133401044

θ89 0.069431977 0.155443041 0.014788729

θ90 0.106278084 0.039755831 0.050154315

θ91 0.07128853 0.038681819 0.014426282

θ92 0.053856292 0.050968267 -0.003399119

θ93 0.031635587 0.001985967 -0.025910333

θ94 0.014086665 -0.033254176 -0.041151598

θ95 0.018616533 -0.049498343 -0.031211946

θ96 0.019919395 -0.050978271 -0.016655648

θ97 0.011224174 -0.04191227 -0.023373541

θ98 0.012938974 -0.050828706 -0.038492195

θ99 -0.000134123 -0.062114934 -0.065285104

θ100 -0.036281774 -0.042969946 -0.10276097

θ101 0.014631048 -0.0180183 -0.050647298

θ102 0.037305923 0.026401239 -0.022550141

θ103 -0.060777939 -0.110964581 -0.133070139

θ104 -0.053214873 -0.165586758 -0.12901931

θ105 -0.064528832 -0.18568229 -0.141179532

θ106 -0.060195019 -0.188306014 -0.136879766

θ107 -0.067928646 -0.238566462 -0.14650056

θ108 -0.094255646 -0.204274004 -0.171798381

θ109 -0.100917639 -0.21128549 -0.178512363

θ110 -0.10636046 -0.224144295 -0.1834922

θ111 -0.11957207 -0.194777896 -0.197105152

θ112 -0.118287987 -0.274660309 -0.19577115
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θ113 -2.861907292 -0.28653782 -0.374634695

θ114 -3.677206657 -0.285737006 -0.354896423

θ115 -3.682257251 -0.285806918 -0.354950991

θ116 -0.048007896 -0.053226333 -0.047112288

θ117 -2.823721745 -0.33879035 -0.376887641

θ118 -0.123593425 -0.1643856 -0.081041546

E.11 118 Bus Power System-Rayleigh Noise on 1/6 data

LS-based Exact Solution Modified LAV

V1 0.997337164 1 1.000006719

V2 0.992134803 0.994841533 1.000100505

V3 1.00756903 0.996538035 1.000002278

V4 1.002592958 1 1.000012978

V5 1.001634675 1.002289624 0.999953099

V6 1.00189928 1 1.00000265

V7 0.99831291 0.999336917 0.999992167

V8 0.911020905 1 0.999988722

V9 1.030986648 1.009180031 0.99999215

V10 1.037581057 1 1.000003813

V11 0.996316685 0.992799715 1.000003912

V12 0.995139209 1 1.000004928

V13 1.041560935 0.98135513 0.999973352

V14 1.055741729 0.99896324 0.999936077

V15 0.93748537 1 1.000414987

V16 1.07197752 0.994405011 0.999927356

V17 0.897617556 1.006285752 1.000092278
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V18 1.050238374 1 1.000277396

V19 0.97226271 1 0.999051626

V20 1.005719744 0.985261032 1.006620297

V21 1.001819881 0.978786897 1.011759985

V22 0.925846859 0.981467787 1.005379536

V23 -0.002183541 0.997601169 1.000323519

V24 0.533100656 1 1.000443446

V25 0.018809815 1 1.003225513

V26 -0.108184706 1 0.998997381

V27 0.387087768 1 1.000211303

V28 0.054379607 0.994277782 1.000049421

V29 -0.062460452 0.996238628 1.000063218

V30 -0.07457776 1.009114636 0.999861162

V31 0.041507638 1 0.999885741

V32 0.665815657 1 0.999132207

V33 -0.022059985 0.993558137 1.011552468

V34 0.042955889 1 1.000943593

V35 -0.024364228 0.99938369 1.000018461

V36 0.055435278 1 1.00003553

V37 -0.144798431 1.004239965 0.992445879

V38 0.079167175 1.009042539 1.006442848

V39 -0.028031526 0.994093869 0.99910991

V40 0.189284077 1 0.945992098

V41 0.265630648 0.993092208 0.699529825

V42 -0.085138934 1 0.956599817

V43 -0.408745115 0.97727436 1.023112902

V44 -0.012349817 0.961432203 0.973100951

V45 0.150823218 0.964055407 0.993065388

V46 0.026550427 1 0.772390591
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V47 0.449402968 0.996138427 1.120033989

V48 0.393364123 0.993479906 1.029586052

V49 0.919738533 1 1.065153158

V50 1.106892879 0.99321852 0.985268167

V51 0.993661805 0.980799366 0.980275921

V52 0.982367261 0.976373108 0.975351729

V53 0.987642295 0.980645253 0.984243697

V54 0.999608322 1 0.99976891

V55 0.999999266 1 0.99970164

V56 1.001519405 1 0.997457241

V57 1.042170054 0.993988772 0.999022992

V58 0.995747046 0.986732548 0.987370301

V59 1.003125556 1 1.000678685

V60 0.998686331 0.998315192 0.998018339

V61 0.998758324 1 0.999309156

V62 1.006863255 1 0.99892063

V63 0.999415419 0.999464417 0.999886626

V64 1.000940313 1.001239905 1.000035331

V65 0.998531192 1 0.998410298

V66 1.041825806 1 0.985453187

V67 1.067603783 0.993395183 0.968196919

V68 1.002946433 1.003274483 1.000081507

V69 1.035 1 1.035

V70 0.997855129 1 1.001171763

V71 1.001312133 1.00048439 0.998871812

V72 0.991340304 1 0.98193783

V73 1.001565719 1 1.001569083

V74 0.99571802 1 0.995369931

V75 0.997785066 0.992506749 0.996471557



APPENDIX E. SELECTED TABLES OF SIMULATION RESULTS 171

V76 0.996652808 1 0.99762445

V77 0.997013223 1 0.999886573

V78 0.996310077 0.991675598 0.992085356

V79 0.990458592 0.986287303 0.985390287

V80 0.997466599 1 0.998434658

V81 1.004111856 1.007889227 1.000314487

V82 0.976648928 0.973736576 0.973851486

V83 0.973286648 0.976123762 0.978571193

V84 0.990942976 0.987266035 0.991770363

V85 0.990442042 1 0.990740288

V86 1.0048986 0.990628769 1.004819983

V87 0.98192168 1 0.981706873

V88 0.997218353 0.990587404 0.997245041

V89 0.998251545 1 0.998232178

V90 1.003301688 1 1.003330041

V91 1.00212615 1 1.002145

V92 0.996104277 1 0.996180622

V93 0.9857332 0.984205884 0.986155743

V94 0.979655979 0.978662495 0.980119423

V95 0.968571538 0.965589554 0.970708072

V96 0.973711846 0.973399732 0.966144918

V97 0.985393771 0.981773147 0.989576016

V98 1.006860557 0.991700754 0.998741736

V99 1.003633786 1 1.00363984

V100 0.994078466 1 0.993786822

V101 0.994063886 0.986103729 0.994313148

V102 1.00042783 0.994120909 1.000475735

V103 1.001373639 1 1.001577004

V104 1.000561917 1 1.00059471
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V105 0.998107017 1 0.998130769

V106 1.001776483 0.9907116 1.001829535

V107 0.989524668 1 0.989547403

V108 0.997865255 0.998164241 0.997861092

V109 0.998423554 0.997678348 0.998423758

V110 1.000686614 1 1.000716937

V111 0.997478871 1 0.997456573

V112 0.997217389 1 0.997171777

V113 1.167666228 1 0.999424252

V114 1.001531787 0.995217672 0.999852363

V115 0.980367415 0.994806449 0.999908478

V116 1.001586153 1 0.999879691

V117 0.926011758 0.9840504 1.000221794

V118 0.994865166 0.989790679 0.992808586

θ1 -1.66916851 -0.346942794 0.443346468

θ2 -1.681248407 -0.33244518 0.443077365

θ3 -1.660055501 -0.32758539 0.443299192

θ4 -1.625107346 -0.257542568 0.442583801

θ5 -1.619985885 -0.249476925 0.442444253

θ6 -1.649255421 -0.298703714 0.443138311

θ7 -1.660595879 -0.306304318 0.443122817

θ8 -1.573986885 -0.159323822 0.440433801

θ9 -1.515897768 -0.025100185 0.442722661

θ10 -1.497517561 0.11979921 0.443528092

θ11 -1.657904436 -0.303145224 0.442668099

θ12 -1.672069235 -0.312428613 0.442706012

θ13 -1.687838431 -0.328049143 0.441968782

θ14 -1.694077143 -0.326136037 0.441828185

θ15 -1.789571556 -0.335185915 0.441153657
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θ16 -1.669555885 -0.317793004 0.439816008

θ17 -1.703606179 -0.287334257 0.422034904

θ18 -1.742035725 -0.329112247 0.427945033

θ19 -1.772886156 -0.339998816 0.431062016

θ20 -1.746338629 -0.324802945 0.322940555

θ21 -1.717204923 -0.297781393 0.311499528

θ22 -1.683288149 -0.253902919 0.311576155

θ23 -3.290244382 -0.167667708 0.181769944

θ24 0.429697139 -0.172231804 0.074300513

θ25 7.872399923 -0.033445792 0.274141871

θ26 5.824088382 -0.000711098 0.315114413

θ27 -2.985983309 -0.270885166 0.279903761

θ28 21.87761978 -0.298649716 0.293182375

θ29 -9.056494227 -0.31436343 0.310518677

θ30 -1.429334544 -0.197287832 0.426532491

θ31 -41.92338027 -0.312282958 0.316740879

θ32 -1.949416431 -0.280685968 0.279691833

θ33 -13.51940372 -0.343575933 0.537743369

θ34 18.88823324 -0.331242472 0.630987598

θ35 11.966264 -0.339678764 0.655394704

θ36 27.23422809 -0.339980353 0.653915381

θ37 -14.85307969 -0.322767015 0.642910369

θ38 -24.43711007 -0.23066925 0.464256317

θ39 -38.12676674 -0.385010082 1.105916574

θ40 44.86204955 -0.405887114 1.099746027

θ41 -40.54424463 -0.412945687 0.860941131

θ42 -91.53911111 -0.38531827 -0.669155748

θ43 -9.839551557 -0.332556559 0.097389474

θ44 110.4510754 -0.288807851 -0.590872809
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θ45 -11.40874823 -0.257969572 -1.195575154

θ46 -2.515315465 -0.21403429 -1.629555009

θ47 3.120100283 -0.170003123 -0.855544743

θ48 -0.952463779 -0.181479439 -0.843739161

θ49 -0.426536618 -0.163921055 -0.476416845

θ50 -0.190174758 -0.204411005 -0.242519077

θ51 -0.109145196 -0.254361477 -0.228852132

θ52 -0.075149166 -0.271835064 -0.224677212

θ53 -0.0756135 -0.290301572 -0.228645474

θ54 -0.10722499 -0.276966208 -0.236340791

θ55 -0.100349671 -0.282057505 -0.220455096

θ56 -0.100865935 -0.278928889 -0.228760178

θ57 -0.10977037 -0.254596737 -0.224718167

θ58 -0.090158312 -0.269885069 -0.224920227

θ59 -0.081664135 -0.196453108 -0.150168164

θ60 -0.077160333 -0.128534675 -0.117892586

θ61 -0.083567618 -0.112840458 -0.116071607

θ62 -0.069592622 -0.123760008 -0.120088918

θ63 -0.086137361 -0.135136036 -0.120289012

θ64 -0.088916757 -0.103293746 -0.106576716

θ65 -0.138008842 -0.043777251 -0.069544344

θ66 -0.204500478 -0.041424131 -0.222751305

θ67 -0.072744108 -0.094502569 -0.154683495

θ68 -0.080113026 -0.046018061 -0.062698874

θ69 0 0 0

θ70 -0.113809598 -0.145823361 -0.05364428

θ71 -0.135469281 -0.152462808 -0.071990863

θ72 -0.214563296 -0.173840533 -0.091501547

θ73 -0.137108948 -0.155192917 -0.07801662
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θ74 -0.106882093 -0.169493203 -0.067056067

θ75 -0.096800477 -0.144026551 -0.063459101

θ76 -0.110165564 -0.171378132 -0.081425292

θ77 -0.054082544 -0.070408802 -0.077406363

θ78 -0.057130663 -0.073974231 -0.083189234

θ79 -0.057616877 -0.065824752 -0.075440361

θ80 -0.066589958 -0.019563862 -0.071981431

θ81 -0.067339223 -0.036910324 -0.069463464

θ82 0.012505382 -0.056990754 -0.024231667

θ83 0.050806462 -0.037146182 0.01229025

θ84 0.129385804 0.002245626 0.080109245

θ85 0.14804226 0.026478738 0.093726147

θ86 0.193953775 0.006256778 0.140201064

θ87 0.20653112 0.013493552 0.153071278

θ88 0.160416016 0.082726591 0.096016593

θ89 0.046513423 0.155443041 -0.022776519

θ90 0.083353773 0.039755831 0.012754763

θ91 0.048366866 0.038681819 -0.022897178

θ92 0.031014461 0.050968267 -0.04132224

θ93 0.008894352 0.001985967 -0.064713804

θ94 -0.008462472 -0.033254176 -0.082327925

θ95 -0.003885524 -0.049498343 -0.073876954

θ96 -0.002298178 -0.050978271 -0.064665618

θ97 -0.010633206 -0.04191227 -0.070239382

θ98 -0.008650649 -0.050828706 -0.080110474

θ99 -0.022280606 -0.062114934 -0.11281118

θ100 -0.058700708 -0.042969946 -0.143162898

θ101 -0.008052979 -0.0180183 -0.088720393

θ102 0.014472767 0.026401239 -0.060124958
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θ103 -0.083241431 -0.110964581 -0.172032556

θ104 -0.075705043 -0.165586758 -0.167107903

θ105 -0.087025361 -0.18568229 -0.179058191

θ106 -0.082691278 -0.188306014 -0.174750841

θ107 -0.09043843 -0.238566462 -0.183904128

θ108 -0.116759904 -0.204274004 -0.209452197

θ109 -0.123422574 -0.21128549 -0.216152395

θ110 -0.128862594 -0.224144295 -0.221245491

θ111 -0.142077641 -0.194777896 -0.234757214

θ112 -0.140793105 -0.274660309 -0.233435631

θ113 -1.708392207 -0.28653782 0.412780667

θ114 -1.759488113 -0.285737006 0.276724575

θ115 -1.749180533 -0.285806918 0.275930759

θ116 -0.078967602 -0.053226333 -0.064054242

θ117 -1.699255359 -0.33879035 0.444878223

θ118 -0.115813469 -0.1643856 -0.080626657
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