
 

 
 
 

 
ADAPTIVE DOCUMENT DISCOVERY 
FOR VERTICAL SEARCH ENGINES 

 
by 
 

Wojciech Piaseczny 
B.A.Sc., Simon Fraser University, 2005 

 
 
 
 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 
THE REQUIREMENTS FOR THE DEGREE OF 

 
MASTER OF APPLIED SCIENCE 

 
 

in the 
School of Engineering Science 

Faculty of Applied Sciences 
 
 

© Wojciech Piaseczny 2011 

SIMON FRASER UNIVERSITY 

Summer 2011 

 
 
 

All rights reserved. However, in accordance with the Copyright Act of Canada, 
this work may be reproduced, without authorization, under the conditions for Fair 
Dealing. Therefore, limited reproduction of this work for the purposes of private 

study, research, criticism, review and news reporting is likely to be in accordance 
with the law, particularly if cited appropriately. 



 

 ii 

APPROVAL 

Name: Wojciech Piaseczny 

Degree: Master of Applied Science  

Title of Thesis: Adaptive Document Discovery for Vertical Search 
Engines 

 

Examining Committee: 

  Dr. Marek Syrzycki 

Chair 
Professor of Engineering Science, SFU 

 

  _____________________________________  

 Dr. Bozena Kaminska 

Senior Supervisor 
Professor of Engineering Science, SFU 

 

  _____________________________________  

 Dr. Lesley Shannon 

Supervisor 
Assistant Professor of Engineering Science, SFU 

 

  _____________________________________  

 Dr. Anoop Sarkar 

Examiner 
Assistant Professor of Computing Science, SFU 

 

Date Defended/Approved:       April 20, 2011

 



Last revision: Spring 09 

 

Declaration of 
Partial Copyright Licence 

The author, whose copyright is declared on the title page of this work, has granted 
to Simon Fraser University the right to lend this thesis, project or extended essay 
to users of the Simon Fraser University Library, and to make partial or single 
copies only for such users or in response to a request from the library of any other 
university, or other educational institution, on its own behalf or for one of its users.  

The author has further granted permission to Simon Fraser University to keep or 
make a digital copy for use in its circulating collection (currently available to the 
public at the “Institutional Repository” link of the SFU Library website 
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing 
the content, to translate the thesis/project or extended essays, if technically 
possible, to any medium or format for the purpose of preservation of the digital 
work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies.  

It is understood that copying or publication of this work for financial gain shall not 
be allowed without the author’s written permission. 

Permission for public performance, or limited permission for private scholarly use, 
of any multimedia materials forming part of this work, may have been granted by 
the author.  This information may be found on the separately catalogued 
multimedia material and in the signed Partial Copyright Licence. 

While licensing SFU to permit the above uses, the author retains copyright in the 
thesis, project or extended essays, including the right to change the work for 
subsequent purposes, including editing and publishing the work in whole or in 
part, and licensing other parties, as the author may desire.  

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the 
Simon Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 



 

 iii 

ABSTRACT 

Vertical search engines attempt to aggregate all available online data for a 

specific vertical into a normalized and structured data model. There are two 

common strategies for aggregating data: 1) data feeds, and 2) web crawling. 

Data feeds use source-specific translation rules to collect structured data, but 

require the source to specifically expose the data. Web crawling collects data 

through the same interface that users view it, which requires additional work to 

identify and extract the relevant content from unstructured or semi-structured 

text. Generalizing these tasks across many websites is difficult because each 

website presents content in its own arbitrary way. This thesis proposes a strategy 

for identifying relevant content across many websites with improved accuracy. 

Many well known statistical document classification algorithms can 

distinguish between classes of documents with high accuracy. These algorithms 

fail when test data is significantly different than training data, as is often the case 

in the vertical search context. This thesis adaptively builds website-specific 

document classifiers to avoid common classification failure conditions. Training 

data is selected dynamically by exploiting common user interface patterns. The 

results obtained here demonstrate that using adaptive document classifiers 

improves accuracy with minimal performance costs. 
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GLOSSARY 

Document 
Classification 

Assigning a document to one or more categories using 
supervised or unsupervised learning. 

Entity Extraction  Identifying atomic elements in text into a predefined data 
model. 

Indexed Data  A representation of any data that improves search or 
lookup performance. 

Rich Document The content that users target in a vertical search engine. 
E.g., real estate listings on a real estate listing search 
website.   

Structured Data Data organized into structure so that it can be identified. 

Supervised 
Learning 

Machine learning algorithms that infer a function from 
labelled input training data. 

Unstructured Data  Data with no identifiable structure. 

Unsupervised 
Learning 

Machine learning algorithms that determine how data is 
organized without the use of labelled training examples. 

Vertical  Specific industry, topic, or type of content. 
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1: INTRODUCTION 

The internet has grown into a vast collection of information on most 

imaginable subjects (Murray et al., 2000). Finding information relevant to one‟s 

specific needs is manageable using tools like Google‟s search engine when the 

relevance of the data is the same for all web users. Data publishers gain trust 

within a community by producing high quality data and search engines recognize 

this trust and use it to influence relevance. For highly structured data, relevance 

is user-specific rather than community based. For example, a student and a 

retiree would likely purchase very different vehicles even though they may go to 

the same dealership to buy them. Much of the internet‟s richest data is highly 

structured and is not indexed effectively by large-scale search engines for 

several reasons relating to the data‟s structure:  

1) the structure is obvious to a human user but not to a program that 

indexes the web,  

2) the structure is vertical-specific, and  

3) the structure is website specific, even when dealing with a single 

vertical. 

Vertical search engines expose subsets of these rich documents in useful 

ways for their chosen domain. Unlike general purpose search engines, most 

vertical search engines do not crawl the web to find their data. Even with the 



 

 2 

simplifications of being within a single vertical, it is very difficult to find and then 

index rich documents using static algorithms. Each website presents its 

documents with varying amounts of verboseness and unique terminology. 

However, simplifying this problem to a single website presents an obvious 

solution to finding these rich documents. Document classification is a well studied 

and understood application of machine learning algorithms. Good training 

conditions are the key to building high precision and high recall classifiers. Within 

a single website, there is significant similarity between one rich document and 

the next. The structure (order of elements, terminology, etc.) will be consistent 

because: 

1) human users have to use the website and understand what they are 

looking at, and  

2) for sites with a large number of documents, each document is 

templated.  

This scenario is ideal for building a high precision, high recall classifier to identify 

rich documents.  

Generalizing this solution requires some observations about modern 

websites. Every website with a large number of documents provides some 

search interface to find documents. For example, a real estate listings search 

interface typically allows a user to specify their location, price range, home size, 

and some home features. The result of a search provides a summary view of the 

data, listing only key elements for several documents at a time, as well as a link 

to deeper information for each document. Note that the summary view will have a 
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high frequency of key data fields (one for each document). Continuing the real 

estate listings example, the summary view will likely include the address, price, 

and size for each home that matches the search criteria. The summary view 

would likely not include information about each home‟s garage because this is 

not considered a key data field. If a website does contain summary views, then 

the links to the deep document views will share significant structural similarities. 

Again using the real estate listings example, one home‟s detail page may have a 

URL like: example.com/properties/details?listing_id=1234, while another could 

be: example.com/properties/details?listing_id=4321. Just as deep documents 

within a single website share significant structural similarity, summary documents 

across all websites (within the vertical) share a small set of high frequency data 

elements and labels. This creates another scenario that is ideal for building high 

accuracy classifiers.  

The objective of this work is to develop a high accuracy document 

classifier for rich documents across all websites within a vertical. Certainty about 

a document‟s classification simplifies the task of indexing the document, both 

when the data is structured and unstructured. In the case of wanting structured 

data, entity extraction also benefits by knowing a document‟s classification and 

can make otherwise unsafe assumptions about data elements. For example, a 

document classified as a real estate listing likely includes a price. If there is only 

one price in the document, it can safely be assumed to be the listing‟s price. 

Without knowing the classification, this assumption cannot be made. 
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Traditional static document classifiers work well when the training context 

is consistent with the “real world” the classifier later lives in. This is not the case 

for rich documents due to their variability between across websites. This thesis 

proposes a novel strategy named adaptive document classification for identifying 

domain-specific structured data by exploiting consistency requirements both 

within a single website, and across all websites within a vertical. Adaptive 

document classification uses two levels of document classifiers: 1) a general-

purpose summary view classifier (whose training examples are manually 

collected by a domain expert), and 2) an adaptive, website-specific rich 

document classifier trained with dynamically collected examples. Once the data 

is identified, it can be indexed using traditional strategies or more intelligent 

domain-specific entity extraction. The strategy is demonstrated using real estate 

as the example domain. 

The remainder of this thesis is organized into five chapters. Chapter 2 

presents prior work related to this thesis, starting with an introduction to 

supervised, unsupervised, and active machine learning algorithms. Document 

classification is introduced next as an application of machine learning. Finally, 

works similar to this one are discussed. Chapter 3 details this thesis‟ system 

design for a vertical search engine powered by crawled data. The focus of the 

design discussion is on adaptive document classification, which is the novel 

piece introduced here. Chapter 4 presents the subset of the design that is 

included in this thesis‟ sample implementation. The sample implementation 

demonstrates the novelty introduced by this thesis, adaptive document 
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classification, but does not implement entity extraction or search/indexing. While 

the design chapter includes general items like “machine learning algorithm”, the 

implementation chapter lists the specific algorithms used. Chapter 5 discusses 

the set of experiments used to test the implementation, including all results. 

Chapter 6 summarizes this thesis, including its successes, limitations and future 

work. 
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2: RELATED WORK 

The goal of this thesis is to produce high accuracy, context-sensitive 

document classifiers for rich documents where traditional classifiers do not 

perform well. This chapter introduces the necessary background and prior 

research relevant to this thesis. 

2.1 Statistical Learning 

Statistical learning commonly refers to learning from data (Nilsson, 1998; 

Hastie et al., 2001). In the computing science domain, this is also called machine 

learning (ML). An ML algorithm is given a set of input data from which it derives 

relationships that it applies to future input. The opposite of ML (in the context of 

computing science) is an explicit encoding of a problem and instructions for how 

to solve it. This opposite is impossible (or at least highly impractical) to 

implement in many real world applications, resulting in the need for ML. Some 

tasks cannot be defined well except by example. Some tasks involve data that 

has deep correlations that are difficult for a human to extract, understand, and/or 

describe. Some tasks change over time due to changes in their environments, 

new information becoming available, new expertise being acquired, and/or 

changes to the inputs. A statistical approach assumes that these difficulties are 

all encoded in a set of training data, or can be included in a future set. Current 

research indicates that this is a very good assumption (Cortes and Vapnik, 1995; 

Joachims, 1998).  
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ML accuracy is often measured with two metrics: precision and recall (van 

Rijsbergen, 1979). Precision is defined as: 

          
                        

                                                  
 

And recall: 

       
                        

                                                  
 

These metrics require the number of true and false positives and negatives to be 

known, so are only applicable in training situations. Unfortunately, training is 

always done with a subset of the data, so the results are only as representative 

as the data itself. Subsets are used for two reasons:  

1) subsets are usually all that is known, and  

2) there are practical performance implications to using too much training 

data.   

2.1.1 Learning Context 

ML has a simple task: given some input, predict the output. This can be 

represented as learning a function  . The learner proposes a solution    →   

from all possible solutions  , which maps    →    , where   is the set of all 

possible inputs and   is the set of all possible outputs. The difference between   

and   results in some loss:     (   ( )  ), where    ( ). The ultimate goal is 

to minimize this loss function for all inputs. For some algorithms it is more 

convenient to represent the learning problem in the form of a conditional 
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probability model  ( )   ( | ), or   as the joint probability model  (   )  

 (   ).  

2.1.1.1 Supervised Learning 

Learning based on training data is called supervised learning (Vapnik, 

2000; Hastie et al., 2001). The training data is a set of pairs of the form 

*(     )   (     )+, where both   and   can be vectors, and each (     ) pair is 

an example of the desired input-output mappings. The learning algorithm 

attempts to generalize the relationship between input-output pairs and infers 

some function,  , as a result. When   is discrete the learning task is called 

classification, and when continuous it is called regression. The strict 

distinguishing factor of a supervised learning algorithm is that it requires training 

data. Training data has several important implications:  

1) all classes of outputs must be known ahead of time, and 

2) unseen classes of inputs must be handled in reasonable ways.  

The size and quality of training data has significant effects on the accuracy 

of an algorithm. Given a reasonably good algorithm with some training data, the 

fastest (and often easiest) way to improve accuracy is to choose a better training 

set. Some algorithms have tuning parameters that can be optimized. These 

optimizations usually affect the variance and bias of an algorithm. Given an 

algorithm with several sets of training data, it is said to be biased against some 

input   if it systematically predicts the wrong output value for   regardless of 

which training set was used. Conversely, an algorithm that makes a different 
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prediction for   using different training sets is said to have high variance. The 

ideal algorithm has low bias and low variance, and fittingly, the error rate of an 

algorithm is related to the sum of these two values.  

There is a trade off between flexible (low bias, high variance) and 

inflexible (high bias, low variance) either set by parameters or built into each 

algorithm. Flexible algorithms can adapt to data well, but sometimes so well that 

the underlying concept is not generalized. This is called over-fitting. Inflexible 

algorithms avoid the over-fitting problem, but risk missing good information from 

the training set. Simple problems can be solved by inflexible algorithms with even 

a small amount of data. More complex problems need flexible algorithms and a 

lot more examples to extract relationships from the training data.  

Some problems can appear to be more complex than they really are. Input 

training data is a collection of samples, where each sample,  , can be a vector. 

High dimensionality of   can introduce a lot of data that does not contribute to  , 

the function we are trying to discover. As a domain expert preparing the training 

data one might know this, but to an algorithm, all dimensions of the input are 

equally likely to contribute to the output. 

2.1.1.1.1 Semi-Supervised Learning 

Semi-supervised learning learns how to act given an observation (Zhu and 

Goldberg, 2009). Every action has some impact, and a supervisor provides 

feedback about the impact that guides the learning algorithm. The learner is 

allowed to choose which data to use for training, which usually results in needing 



 

 10 

fewer labelled examples overall at the risk of focusing on the wrong, irrelevant, or 

even invalid examples.  This type of learning is useful when there is an 

abundance of unlabelled data that is expensive to label. 

A popular (and effective) class of semi-supervised learning algorithms 

uses Minimum Marginal Hyperplane methods, including Transductive Support 

Vector Machines (SVMs). The distance between each unlabeled example and a 

separating hyperplane is measured, and the examples closest to the hyperplane 

are assumed to be the strongest indicators so are chosen for labelling. This 

creates a new hyperplane and the process repeats iteratively. SVM is discussed 

in depth later in this chapter. 

2.1.1.2 Unsupervised Learning 

Learning without training data is called unsupervised learning (Hofmann et 

al, 1999). Unlike supervised learning, the class of outputs is unknown at training 

time. From a theoretical point of view, supervised learning defines the effect a set 

of inputs has on a set of outputs. Unsupervised learning assumes that all 

observations are caused by a set of latent variables. This distinction is shown in 

Figure 1. 
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Figure 1: (a) In Supervised Learning all outputs are assumed to be caused by a set of 
inputs. (b) In Unsupervised Learning all outputs are caused by a set of latent 
variables. (Valpola, 2000) 

As with supervised learning, the quality of input data is essential to learn 

useful relationships. A practical advantage of unsupervised learning over 

supervised learning is the complexity of relationships that it can learn. 

Supervised learning tries to find the relationship between two sets of data (input 

and output), and the difficulty of this task increases exponentially with each 

hierarchical step between the sets. In unsupervised learning, an algorithm can 

learn one hierarchical step at a time, making the cost per step linear rather than 

exponential. Unsupervised learning can be used to solve supervised problems by 

assuming that a set of latent variables causes both the input and the output, as 

shown in Figure 2. 
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Figure 2: Unsupervised learning can discover hierarchical relationships (Valpola, 2000) 

 

Data mining is among the practical applications of unsupervised learning 

(Chakrabarti, 2000; Berkhin, 2002). When used to „discover‟ new relationships 

within some data set, it is difficult to judge an algorithm‟s effectiveness (other 

than „good‟ or „bad‟). Many applications of unsupervised learning are equally 

difficult to evaluate, which has led to the introduction of many algorithms based 

on many different heuristics, with none provably better than others. 

2.1.2 Learning Algorithms 

This section introduces a selection of supervised and unsupervised 

learning algorithms that lead up to the academic community‟s current standard. 

Much of the current research focuses on optimizing and improving existing 

methods rather than introducing entirely new methods. Both classes of 

algorithms are used in this thesis‟ system design. 
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2.1.2.1 Supervised Learning Algorithms 

2.1.2.1.1 Linear Least Squares Fit 

Linear classifiers create a model to fit a given vector of inputs   

(          ) to predict the output   based on a linear combination of the input 

(Lawson, 1974). The model takes the form 

 ̂   ̂  ∑   ̂ 

 

   

 

where  ̂  is known as the bias. Combining the bias (and    ) into vector of 

coefficients  ̂, we can rewrite the model as 

 ̂     ̂. 

There are two broad classes of algorithms for determining the parameter  ̂ of a 

linear classifier: 1) discriminative models and 2) generative models. 

Discriminative models attempt to maximize the quality of the output of a training 

set, and generative models use probability density functions to estimate a given 

input‟s likelihood of belonging to a particular output class. Linear least squares fit 

(LLSF) is a discriminative model that picks  ̂, which characterizes the entire fitted 

surface, to minimize the sum of squares 

  ( )  ∑(     
  ) 

 

   

 

This quadratic always has at least one minimum that can be demonstrated by 

writing the sum in matrix notation, then differentiating with respect to    
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  ( )  (    ) (    ) 

Setting the derivative to zero, we get: 

  (    )    

If a unique solution exists, it is given by 

 ̂  (   )      

where   is an     input vector and   is  -vector of outputs from the training 

data. The prediction of an unknown input    is  ̂(  )    
  ̂. Linear decision 

boundaries produced by LLSF assume that such boundaries are appropriate for 

the problem, making it a low variance and potentially high bias learning 

algorithm. Despite its relative simplicity, LLSF has been shown to perform 

comparably to some of today‟s best classifiers (Yang, 1999). 

2.1.2.1.2 k-Nearest Neighbour 

The idea of   Nearest Neighbour ( -NN) classification in based on simple 

intuition: new input that is „close‟ to some training input is likely to have the same 

output as said training input (Yang, 1994). A single input may have several 

similar training inputs, so an average of these training outputs can be used: 

 ̂( )  
 

 
∑   

     ( )

 

Where   ( ) is the set of similar training documents, or neighbourhood. A 

common definition of this neighbourhood for inputs represented as vectors is 

cosine similarity:  
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   (     )  
∑         

√∑    
 

 √∑    
 

 

 

where    is a vector and     is the weight of the  th element in input   . Unlike 

LLSF,  -NN does not build a fitted model at training time. Instead, every new 

input is compared to the training data at classification time. There are two main 

parameters for  -NN:  

1) the size of the neighbourhood,  , and  

2) the definition of distance to collect neighbouring items.  

Optimizing the selection of   is meaningless at training time, since using 

    will always minimize the error for the training set. The error on the training 

set to roughly an increasing function of  . The decision boundaries produced by 

 -NN can be non-linear and are independent of assumptions about their 

appropriateness for the problem. Any subset of the decision boundary depends 

only on   inputs, making  -NN a high variance, low bias learning algorithm. 

 Current  -NN research focuses on runtime performance optimizations. 

Since this algorithm has no training, runtime depends entirely on speed of 

discovering and evaluating neighbours. There are two classes of optimizations:  

1) better search strategies, and  

2) reducing search space by combining neighbours.  

There is no decrease in classification accuracy associated with 1), but 

start-up and runtime memory usage increases. Search space reduction methods 
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trade classification accuracy for runtime performance. Runtime savings can be 

significant (up to a factor of 10) at an accuracy cost of about 1%. 

2.1.2.1.3 Naïve Bayes 

Naïve Bayes is a generative classifier that models the conditional 

probability density function  ( |     ), and is based on Bayes‟ Theorem (Ng, 

2002): 

 ( | )  
 ( | ) ( )

 ( )
 

  is a collection of characteristics about the input, so the conditional probability 

can be rewritten as: 

 ( |       )  
 ( ) (       | )

 (       )
 

The denominator  (       ) is effectively a constant because it does not 

depend on   and the    values are given. The numerator portion of the 

probability can be rewritten using the definition of conditional probability as 

follow: 

 ( ) (       | ) 

=  ( ) (  | ) (       |    ) 

=  ( ) (  | ) (  |    ) (       |       ) 

which generalizes to: 

=  ( ) (  | ) (  |    )   (  |              ) 
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At this point the „naive‟ assumption is made. The distinguishing idea behind 

Naïve Bayes classification is that presence or absence of one input is 

independent of the presence or absence of any other input. Mathematically 

speaking, this means: 

 (  |    )   (  | ) 

for all inputs where    . This simplifies our previous generalization to: 

=  ( ) (  | ) (  | )  (  | ) 

The entire conditional distribution simplifies to: 

 ( |       )  
 

 
 ( )∏ (  | )

 

   

 

where   is a constant. To classify an input   we can calculate the probability that 

it belongs to each possible class: 

 (       )         
 

 (   )∏ (     |   )

 

   

 

The desired output is a classification, not a probability, so this algorithm will be 

correct if the actual classification is the most likely, regardless of how accurate 

the class probabilities turn out to be. By assuming independence between all 

inputs, Naïve Bayes remains a one-dimensional problem. This simplifies 

computation, implementation, and analysis while working well for many real world 

problems.  
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Naïve Bayes classifiers are commonly used in commercial applications 

and in benchmarking state-of-the-art research, but are no longer a popular topic 

among the latest research. The methods introduced next are more widely 

researched. 

2.1.2.1.4 Support Vector Machines 

A support vector machine (SVM) creates a hyperplane in an n-

dimensional space to separate a set of training points, as shown in Figure 3 (a) 

(Joachims, 1998; Brown, 2010). More precisely, SVM chooses the hyperplane 

whose sum of distances to the nearest data points on each side is maximized, as 

shown by the solid line in Figure 3 (b). 

 

Figure 3: (a) Many possible hyperplanes can separate this data. (b) SVM chooses the 
maximum margin line of separation. 

This section shows the formalization of SVM for the simplest case in which the 

data is linearly separable. SVM training data is of the form 

  {(     )|    
     *    +}   
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where    is a   -dimensional data point, and    is the classification for    which 

can be either -1 or 1. A hyperplane dividing the points      and       can be 

written as the set of points   that satisfy the equation        , where   is 

the normal vector perpendicular to the hyperplane and 
 

‖ ‖
 is the hyperplane‟s 

offset along  . SVM chooses   and   to maximize the distance between the 

hyperplane and each class‟ nearest points through which parallel hyperplanes 

run. These parallel hyperplanes are characterized by         and     

    , and are represented by the dotted lines in Figure 3(b). The distance 

between these two hyperplanes is  
 

‖ ‖
. The goal is to minimize ‖ ‖ while 

keeping all data points outside of the margin, formalized as   (      )     

for all data points. This optimization problem can be solved with a linear 

combination of training vectors:  

  ∑      

 

   

 

where    is the set of Lagrange multipliers, most of which will be zero to satisfy 

the KKT conditions (Kuhn et al., 1951). Each non-zero    corresponds to a 

support vector     which lies on the margin. 

 This formalization makes several simplifying assumptions. The first 

assumption is that the training set is linearly separable. There are several 

methods for dealing with non-separable data, including: 

1) the use of slack variables to maximize the boundary while allowing 

some data to be on the wrong side of the margin, and  
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2) transforming the data into a linearly separable set using kernel 

methods, which will be discussed in the next section.  

A second assumption is two-class classification. A single hyperplane 

separates data into two classes. Multi-class SVM classification generally reduces 

to several binary classifiers.  

Current SVM research focuses on reducing runtime computational 

requirements (memory and processing time), and on improving the efficiency of 

multi-class classification (Hsu et al., 2002; Shao et al., 2008; Dong et al., 2008). 

Computational gains are generally achieved by using approximations that do not 

affect the relative output of an SVM. The most common multi-class SVM 

methods are:  

1) one vs. one, and  

2) one vs. all.  

In 1), every unique combination of classes is used to build an SVM. 

Similar to Naïve Bayesian methods, an input document is tested against every 

SVM and the classification is based on which class has the most votes. In 2), 

only one SVM is built for every class, in which the positive training documents 

are examples from the target class and the negative training documents are 

examples from all other classes. Similar to the previous method, a new document 

is tested against each SVM and the highest scoring class indicates the 

classification. 
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2.1.2.1.5 Kernel Methods 

Linear SVMs are powerful but their applications are limited. Many real 

world problems are not linearly separable so SVM cannot be applied directly. 

However, transforming the input data to a higher dimensional space might make 

it linearly separable, as shown in Figure 3 (Rodriguez, 2004).  

 

Figure 4: (a) Non-linearly separable data in two-dimensional space. (b) Transformation to 
three-dimensional space makes it linearly separable.  

Using a linear classifier on the transformed input space will result in linear 

classification in the new space, but non-linear classification in the original space. 

SVM has a convenient application of this method: replacing the dot product with 

a kernel function   results in a boundary between classes:  (   )     . The 

resulting formalization is similar and enables non-linear classification. 

2.1.2.2 Unsupervised Learning Algorithms 

Clustering is a common form of unsupervised learning that groups items 

based on some measure of similarity. There are three classes of clustering 
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algorithms: hierarchical, partitional, and spectral. This section focuses on 

clustering because it is the only type of unsupervised learning algorithm used in 

this thesis‟ design. 

2.1.2.2.1 Hierarchical Clustering 

Hierarchical clustering is an iterative approach that, given some set of 

clusters, refines them to a better set of clusters (Hastie et al., 2001). This is 

repeated until some convergence (or termination) criterion is met. Hierarchical 

clustering algorithms are iterative and either divisive or agglomerative. Divisive 

algorithms initially assume that all examples form a single cluster and clusters 

are divided at each iteration. Conversely, agglomerative algorithms initially 

assume that each example is in its own unique cluster and clusters are merged 

at each iteration. A similarity function measures the distance between any two 

given examples. Merging or dividing sets is determined by the pair-wise distance 

between examples. Common forms of the similarity function include Euclidean, 

Manhattan, and Hamming distance.   

2.1.2.2.2 Partitional Clustering 

Hierarchical algorithms require several iterations to reach a useful state. 

Partitional algorithms attempt to separate the examples all at once, although they 

can also iterate to improve results (MacQueen, 1967). Partitional clustering starts 

with   randomly generated clusters from the training set. Next, the centroid of 

each cluster is calculated and all examples are re-clustered by being place in the 

cluster whose centroid each is nearest to. Repeating the previous two steps can 
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refine the choice of clusters, and as with hierarchical clustering, any similarity 

metric can be used. The initial randomization plays a significant role in 

determining the final clusters. Including a heuristic into the randomization 

scheme can help guide clustering in a desired direction.  

2.1.2.2.3 Spectral Clustering 

Accurate pair-wise similarity between examples is the key to good 

clustering. Spectral clustering represents the similarity between all examples in a 

matrix  , where     is the similarity between examples   and   (Bach et al., 2003). 

Dimensionality reduction simplifies  , then another method (a partitional 

clustering algorithm for example) is applied to cluster the examples. Similar to 

previously discussed non-linear classification implementation, dimensionality 

reduction can introduce non-linear transformations to produce non-linear 

clustering. 

2.2 Document Classification 

A machine learning algorithm applied to the contents of a document is 

called document classification. Learning algorithms take a collection of vectors as 

input. In document classification, each vector represents a single document, and 

each element of the vector represents some word, or more generally, feature in 

the document (Joachims, 1998). Machine learning algorithms have been 

introduced in 2.1.2, so this section focuses on methods for converting input 

documents to vectors. 
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2.2.1 Pre-processing 

A feature set is the collection of all possible features that a document can 

contain. In the simplest case, each document in the training set is converted to a 

set of features, and the superset of all document features makes up the feature 

set. A problem with this approach is the high dimensionality caused by 

considering every possible feature in each document (Yang, 2002). The goal of 

pre-processing is to reduce the size of the feature set without reducing the 

amount of information contained in it. Language lends itself well to this goal 

because the same information can be communicated in many different ways. 

Three common strategies are:  

1) stemming,  

2) synonyms, and  

3) grouping.  

Each strategy benefits from heuristics. A more domain-specific heuristic will lead 

to better results. 

2.2.1.1 Stemming 

Stemming is the process of reducing inflected words to their base form 

(van Rijsbergen et al., 1980). For example, the base form of the word ‘swimming’ 

is ‘swim’. In document classification, the form of the word usually does not 

matter. A document that contains any of the words ‘swim’, ‘swimming’, ‘swims’, or 

‘swimmer’ might be about swimming. The form of the word it contains does not 

change this probability, so reducing all forms to the base form reduces the size of 
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the feature set. The base form is chosen out of convenience rather than 

necessity. There are two classes of stemming algorithms: one that stems based 

on a lookup table, and one that stems based on patterns. As the name implies, 

lookup table methods must know the relationships between all root forms and 

inflected forms ahead of time. This has the benefit of always producing the 

correct result, but is a difficult requirement. Pattern-based methods are language 

specific, and attempt to generalize how inflected forms are allowed to relate to 

base forms. The key benefit is that no lookup table is required, but there is no 

guarantee that output will be valid. An inflected might produce the wrong base 

form (e.g. „ran‟ reducing to itself instead of the correct „run‟), or the base form 

might not be a valid word (e.g. „friendliest‟ reducing to „friendl‟). The first form of 

error limits the effectiveness of stemming for document classification, but the 

second form of error is a negligible concern. Document classification requires 

consistent features, not necessarily grammatically correct features. 

2.2.1.2 Synonyms and Grouping 

Synonyms are different words that have the same or similar meanings. 

Their application to document classification is similar to stemming: reducing the 

size of the feature set. Synonyms also help highlight important dimensions in the 

feature set. For example, if n training documents each contained a different 

version of the same synonym, a machine learning algorithm will see n different 

dimension, each with very little data. A synonym list reduces these to a single 

dimension, making it a stronger indicator for learning algorithms. Note that 

stemming provides a similar benefit. 
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Grouping takes similar features and reduces them to a common form. For 

example, the presence of a phone number might be an important indicator for a 

class of documents. However, the exact phone number is unlikely to matter. 

Grouping recognizes patterns, like phone numbers, and represents them with a 

common symbol. Another practical use of grouping is for prices. As with phone 

numbers, the precise value rarely matters, but unlike phone numbers, orders of 

magnitude may be good indicators. For example, $0.29 might be an insignificant 

indicator for documents about cars for sale, but $13,299 could be a very 

significant indicator. 

2.2.2 Feature Extraction 

Converting a document into a list of features (or at least potential features) 

is called feature extraction, and is done using tokenization (Weston et al., 2000). 

Tokenization is the process of breaking up a collection of words into tokens, 

where each token can be any subset of the original set, including a word, phrase, 

sentence, paragraph, or even the original set. The simplest tokenization 

algorithm uses whitespace to split a document into multiple tokens, where each 

word becomes a token. This works reasonably well for some languages (e.g. 

English) but fails for others (e.g. Japanese). Language-specific techniques such 

as part-of-speech tagging and parsing can function on any language, but are 

considerably more complicated. The order of tokens is often ignored; the set is 

treated as an unordered bag of words. A grouping pre-processor can handle 

order-dependant tokens by converting them into a single token. Another way to 
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impose token order is with n-grams, where each token    is combined with up to n 

trailing tokens to form the following tokens: “  ”, “       ”, ..., “             ”.  

2.2.3 Feature Selection 

Feature extraction converts a document to a collection of features. 

Feature selection chooses a subset of these features to form the feature set 

based on training documents. At runtime, a document is converted to a collection 

of features in exactly the same way, but only its features that are in the feature 

set are used for classification. Feature selection as a dimensionality reduction 

technique is optional. Using the superset of all training features is possible, but 

has some limitations including: 1) high dimensionality, 2) potential over-training to 

the training set, and 3) obscuring intuitive interpretation of a classifier‟s 

performance. Feature selection algorithms assign a predictive weight to each 

feature, and then choose the top features based on some threshold. 

Document frequency (DF) counts the number of training documents that 

contains each feature (Salton et al., 1988). The features with the highest counts 

form the feature set. Similarly, term frequency (TF) counts each feature‟s 

occurrence in the training set (can occur multiple times per document), 

normalizes against the size of each document, and then applies the same 

threshold method for choosing the feature set. TF incorrectly emphasizes 

common words (e.g. ‘the’). Term frequency-inverse document frequency (TF-

IDF) attempts to overcome this emphasis by penalizing frequently occurring 

features‟ weight. More formally, the TF of term    in document    is 
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∑      
 

where      is the number of times    occurs in    and ∑       is the number of 

features in   . The inverse document frequency is 

        
| |

|*      +|
 

where | | is the size of the training set and |*      +| is the number of training 

documents that contain   . TF-IDF is 

(      )               

Frequency alone is not always a good indicator the predictive power of a 

feature. Chi-squared (  ) identifies features that are highly dependent and 

assumes these features are the best classification indicators (Rogati et al., 

2002). For a feature    in class   ,  
  is: 

      
  

( (     )   (     ))
 

 (     )
 
( (  ̅   ̅)   (  ̅    ̅))

 

 (  ̅   ̅)
 
( (  ̅   )   (  ̅   ))

 

 (  ̅   )

 
( (     ̅)   (     ̅))

 

 (     ̅)
 

where  (     ) is the number of training documents of category    in which 

contain   ,  (  ̅    ̅) is the number of training documents not of category    which 

do not contain   ,  (  ̅   ) is the number of training documents of category    in 

which do not contain   , and  (     ̅) is the number of training documents not of 

category    which contain   .   is the expected value of similarly defined pair 
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assuming that the feature and category are independent. For independent 

feature-category pairs    is zero.    is averaged over all categories for every 

feature to find each feature‟s marginal    value. The feature set is formed of the 

  features with largest marginal    value, where   is the desired size of the 

feature set. 

 Information theory measures the amount of new knowledge provided by 

some evidence as a probability that this evidence will alter the current result 

(Mitchell, 1997). In a binary classification case, evidence that is equally likely to 

predict either class contains no information. Information gain (IG) measures the 

number of bits of new knowledge toward predicting a class: 

  (     )   (     )     (
 (     )

 (  )   (  )
)   (  ̅   )     (

 (  ̅    )

 (  )   (  ̅)
) 

where  (     )   
 (     )

| |
⁄  is the probability that a document   contains 

feature    and belongs to class   . The ̅  notation is consistent with the 

explanation of Chi-squared. The probabilities are computed based on 

occurrences in the training set and, as in Chi-squared, each feature‟s information 

gain is averaged over all classes to calculate a marginal value. The feature set is 

made up of the   most informative features. 

2.3 Adaptive Document Classification 

As document collections evolve, the context of the classification problem 

also evolves. One goal of automatic document classification is to classify a 
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document as a human would. If a human‟s preferences change over time then 

their classification decision can also change. Terminology and content are 

perpetually changing aspects of language (Kroch, 1989), so using linguistic 

features for classification is time-sensitive. Classifiers need to evolve with the 

language. Domain changes can make the original document classes obsolete. 

As the logical lines between document classes begin to blur, new classes should 

be created. The document classification techniques described in 2.2 work well 

with consistent data, but do not adapt to changes. Using non-adaptive methods 

on a changing data set leads to accuracy degradation over time until new training 

sets are built (to reflect changes in the data), and new classifiers are trained 

against said sets. Many real-world document classification problems have 

evolving data. For example, an English language spam classifier would have to 

understand new slang and nomenclature that is added to the language every 

year. Rather than waiting for performance to drop below some threshold, there 

are classification methods that absorb new information as it becomes available. 

The methods presented in the remainder of this chapter will be used to evaluate 

the motivations for this thesis rather than for functional or performance 

comparison. 

2.3.1 Adapting to User Interests 

(Potamias, 2001) proposes an adaptive classification system for web 

documents that tailors results to user preferences. Web document classification 

is a specialization of document classification that takes advantage of structured 

data in web documents. Web documents contain tags that indicate the relative 
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important of some words or phrases in a document, allowing feature selection to 

treat these features preferentially. Potamias‟s adaptive approach is described in 

the following steps. 

1. A non-adaptive, supervised classification model is built using 

techniques described in 2.2. All output classes are known ahead of 

time. 

2. Users create profiles that indicate classes and keywords of interest. 

Profiles do not contribute to classifier training therefore can be updated 

dynamically by users.  

3. Incoming documents are classified against the generated models using 

non-adaptive techniques.  

4. Classification output is compared against user preferences, and any 

document that is un-interesting based on the user profile is removed 

from the result set.  

5. Users can also specify which web document tags they trust most, and 

if specified, the output set is refined further based on these tags. 

Steps 4 and 5 implement this algorithm‟s adaptiveness, allowing each user to 

see results specific to their own preferences. As user preferences change, their 

profiles are updated and their result sets immediately reflect the change. 

However, changes to relevant features in the taxonomy are not detected or 

consumed. 
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2.3.2 Incremental Context Mining 

Every class of documents has a key set of distinguishing features. 

Incremental context mining maintains a set of features per class, which the 

authors call a class‟ contextual requirement (Liu et al., 2002). This feature set is 

updated by every incoming training document, as shown in Algorithm 1.  

Algorithm 1: Incremental Context Mining 

Inputs A text hierarchy  . 
A training document   and the most specific category   that   
belongs to. 

Output Update the feature set of   and its related categories in   

Algorithm 
1.  ← * |                                        + 

2. While (  is not the root of  ) do 

2.1. For each feature   in   do 

2.1.1. If   is not in feature set of  , add to feature set 

2.2. For each of  ‟s features   do 

2.2.1. Update strength of   

2.2.2. For each sibling category   of   do 

2.2.2.1. If   is in  ‟s feature set, update strength 

2.3.  ←             

Dynamic feature sets require a classification algorithm that does not regenerate 

its model as feature sets change.  -NN, which was introduced earlier, is an 

example of such an algorithm. The authors propose a similar algorithm whose 

distance measure is called degree of acceptance. Incremental context mining 

addresses the problem of vocabulary and context change with a class of 

documents assuming that it is presented with new training documents. 
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2.3.3 Dynamic Class Creation 

The growth of the internet, including most subsets of documents within it, 

makes it impossible for a fixed class set to provide accurate classification of its 

documents. To maintain accuracy, an algorithm either needs to be re-trained, or 

it needs to be able to expand the class set. Dynamic class creation represents 

the category set as a hierarchy, and new categories can be added as leaf nodes 

in the tree (Choi et al., 2004).  

Dynamic class creation consists of two stages: the first stage is to create a 

category tree that defines the current state of knowledge, and the second stage 

is to classify documents and update the category tree when needed. The choice 

of categories is dependent on the domain and is up to the user. As with other 

classification assumptions, the better the input, the better the generated class 

structure will be. Each category is used to generate a set of features that best 

predict its members. Next, the features are propagated from child nodes to 

parent nodes recursively, so that any node includes the union of all of its own 

features and all features of all its children. The importance of the features 

decreases as they move up the hierarchy to maintain each node‟s core 

relevance. Unique features among sibling nodes are considered key features, 

and are the basis of the search algorithm used for classification in the second 

stage.  

Each node in the classification tree has a classifier that answers the 

question: “what is the probability that the input document belong in this class”. 

Starting at the root node, an input document is classified against the root. If it 
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passes, the same process it then classified against each of the root‟s children, 

and at most one child is chosen to continue the path. Passing means exceeding 

some probabilistic threshold based on statistics about each class‟ members. This 

process is repeated until classification does not pass, or it passes on a leaf node. 

Since each leaf node‟s feature were propagated upwards, a document belonging 

anywhere in the tree will have sufficient features along the path from the root to 

ensure correct classification, similar to how decision trees propagate conditions. 

There are two special cases where action is taken even when classification does 

not pass. When a document fails at any level in the tree, a new subclass is 

created under the class that the document had the highest probability of 

belonging to. This is called a deeper expansion. The second expansion occurs 

when a document is much more likely to belong to a parent node than to any of 

this parent‟s children. A new sibling node to the parent is created, called wider 

expansion. Once a document is assigned to a class, the features that most 

distinguish the document are incorporated into the class, and propagated 

upwards, allowing the class itself to further distinguish itself from other classes.  

Creating dynamic classes ensures that classes remain distinct. The 

challenge becomes doing something useful with the generated classes. Similar 

to unsupervised learning, the output is statistically valid but highly subjective.  

2.4 Summary 

This chapter has introduced the current state of research in both static and 

adaptive document classification. The stated problem is to develop a 

classification system that works well across all web documents, where some 
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subsets of documents are related by belonging to the same website. Data 

diversity and change over time makes this problem impossible to solve with a 

single document classifier, so an adaptive approach is required.  

Adapting to user preferences is analogous to adapting to each website. 

The presented algorithm requires user preferences to be manually entered, so in 

the context of the stated problem, would require manual input for each website, 

which is an unreasonable requirement. Incremental context mining is a similar 

problem because just as two documents can represent the same information 

using different vernacular, so can two websites present the same documents 

using different templates. This algorithm requires labelled incremental training 

data, which would again require manual work per website in context of the stated 

problem. Creating dynamic classes theoretically allows each website to consist of 

a subset of classes. However, it is more likely that subsets across websites 

would collide, making it difficult to distinguish which classes contain the sought-

after rich data (assuming that this data was correctly clustered, an unlikely 

assumption). The prior works do not address the problem of identifying rich data 

across web documents. Rich data is constantly changing, but summary data is 

concise and therefore much more consistent across all corpora. The solution 

proposed by this thesis is the first to take advantage of this consistency to solve 

the stated problem. 
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3: SYSTEM DESIGN 

Vertical search engines provide a search service focused on a specific 

subset of internet content, such as research articles or classified ads. Their goal 

is to discover all relevant information available online, understand it, and make it 

searchable to their users. To achieve this goal there are three functional 

components that all search engines implement:  

1) web crawling,  

2) document classification, and  

3) data extraction and indexing,  

as shown in Figure 5 (Bialecki, 2009). 
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Figure 5: Vertical Search Engine System Design 

Adaptive document classification uses the same general system design as 

shown in Figure 5 with several important distinctions to allow for feedback 

between the crawling and classification components to create site-specific 

classifiers. This chapter explains each of the core components involved, with 

special focus given to designs unique to this thesis. 

3.1 Crawling 

Crawling is the time consuming process of scouring the internet for 

content. While general-purpose (or whole-web) crawling might take several 

weeks or more on many computers, vertical crawling focuses on a subset of the 

internet so is much quicker (although it may still take days or weeks). A single 
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cycle of crawling is shown below in Figure 6, which includes more details than 

the summary version presented earlier.  

Web DB

Fetchers

Fetch List

Updater

Seed URLs

Internet

Scheduler

Shared Components

 

Figure 6: Crawling Design 

A crawl starts with a seed list of Universal Resource Locators (URLs) that tell the 

crawler where to start. These URLs are stored in Web DB, which contains just 

URLs for pages to be visited, and complete information after a page has been 

visited including timestamps of when each document was downloaded and link 

structure of the document space. Each URL is then placed into a queue of items 

to be downloaded. A collection of Fetchers is responsible for monitoring this 

queue and fulfilling its requests. A Fetcher downloads the contents of a URL, and 

then passes it on to an Updater that is responsible for determining future URLs to 
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visit and updating Web DB‟s content and context relating to the downloaded 

URL. This cycle continues until all desirable URLs have been visited. 

Future URLs are based on outgoing links from a page, and for vertical 

search applications, are usually restricted to links within the current domain. 

Such crawlers are bounded by the set of domains provided in the seed set. The 

content of a page is used in a downstream collection of processes that will 

convert it into something searchable for a user. The context of a page is used to 

indicate relevance, or trust-worthiness, of its content. A page that has many 

incoming links means that many internet users find its content interesting and link 

to it from their blog, social networking medium or other form of website. In 

general, a web page with more incoming links has better information than one 

with fewer incoming links, so in cases where their content disagrees, the more 

popular page should be trusted. Google calls this trust system PageRank.  

There are several important considerations to make crawling practical. 

Some websites want to be crawled so their content is more widely available, but 

others want to remain hidden (with more certainty than using voluntary crawl 

restrictions such as robots.txt). Such sites may set crawler traps that makes 

static content across an infinite number of pages appear unique. This will cause 

an infinite crawling loop. Some sites create crawler traps accidently by exposing 

the same content through several different URLs. The simplest way around such 

a trap is to restrict the depth that a crawler can visit, where depth is measured as 

the length of the link path away from a seed URL. The Updater is responsible for 

tracking depth and ignoring links that exceed that maximum allowed.  
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As soon as a URL is visited, its downloaded version becomes stale. Its 

author will not notify all crawlers when the URL content changes, so it is up to the 

crawler to determine how stale a URL is allowed to become. The rate of content 

change is highly variable from one website to another, but often consistent within 

a single website. Measuring this rate over several crawls of a single website 

gives a good indication of how frequently the website needs to be visited. The re-

crawl frequency of a website can be controlled by a feedback system (e.g. PID 

controller) to maintain some acceptable level of staleness. As shown in Figure 6, 

the Scheduler is logically between the Updater and Web DB because in addition 

to scheduling re-crawl tasks, it is also responsible for scheduling real-time 

crawling tasks. 

Crawlers access a website through the same interface as the websites 

users. Every website has some finite set of resources powering it, meaning that 

its concurrency rates are also finite. Aggressive crawlers can eat up a significant 

portion of these resources to the detriment of users visiting the same website. 

Polite crawling restricts where on a website a crawler is allowed to go, and the 

maximum bandwidth per unit time that a crawler can consume. The robots.txt 

standard allows webmasters to broadcast how they want their website crawled. 

The most time consuming process in web crawling is downloading content 

from the internet. After the content is retrieved, the required series of tasks to 

process the content executes relatively quickly. Crawl parallelization allows 

multiple crawls and disjoint parts of the same crawl to run simultaneously across 

multiple machines. A key goal of crawl parallelization is to minimize the amount 



 

 41 

of overhead introduced from parallelization control while maximizing the 

download rate. Parallel crawling requires coordination to ensure the disparate 

crawlers do not download the same page, and that polite rules are obeyed 

across the superset of crawlers, not just within each individual crawler. A 

singleton model is used per domain to ensure politeness to that domain‟s 

resources by running all processing for a single domain on one logical machine. 

This simplifies de-duplication of newly discovered URLs by keeping all relevant 

data per domain in a single memory space. 

A common set of utilities are used by several functional blocks, shown in 

Figure 6 as Shared Components. These components include URL content-type 

parsers, which translate specific content types like HTML and PDF into text, link 

parsers, which extract links from specific content types, URL filters, which have 

rules for acceptability of URLs, URL normalizers, which translates relative or 

partial URLs into a common form, and rendering engines, which render content 

and styles the same way a user would see them. 

3.2 Adaptive Document Classification 

This thesis‟ proposed adaptive document classification algorithm 

distinguishes it from other data gathering strategies for vertical search engines. 

Most websites that have many documents related to a single vertical have the 

same user flow for finding these documents: 

1) a user enters some search criteria (either in a form or by selecting a 

pre-defined set),  
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2) the website presents the user many results showing summary 

information for each result, and  

3) selecting a summary view takes the user to a detailed document about 

the entry.  

Adaptive document classification creates a details page (DP) classifier per 

website. After the classifier is created, each page found by the crawler is 

classified using the classifier. Creating the classifier is described here, and 

shown in Figure 7. Each page found by the crawler is checked for usefulness as 

a training example. For each crawled page, the general purpose search result 

page (SRP) classifier is used to check if the page contains summary information 

about multiple detail pages. Note that this classifier is assumed to be an input to 

the algorithm. If the page is not an SRP then it is collected as a negative DP 

example. If the page is an SRP then it is mined for links to detail pages using a 

clustering algorithm on all the links on the page. If a cluster of links to detail 

pages cannot be found then the page is not used as a training example. 

Otherwise, each DP link is downloaded and its content is added to the collection 

of positive training examples, and the SRP is added to the list of negative 

examples. If a sufficient number of training examples are collected, then the site-

specific DP classifier is trained. Otherwise, the crawler continues to its next 

location. After the DP classifier is trained, all pages visited within the website up 

to that point are classified. This thesis empirically found that five positive and five 

negative examples are sufficient to create a high accuracy classifier. 
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Figure 7: Adaptive Document Classification Flowchart 
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As an example of how this works, assume a very simple website with a 

search box on its home page which takes users to a search result page, which 

contains links to detail pages. The crawler would first see the home page, and 

ADC would classify it as not being an SRP, so it would be collected as a negative 

DP training example. Next, the crawler would get to an SRP page, and ADC 

would recognize this fact (using the input SRP classifier). Next, ADC would find a 

cluster of links pointing to the DPs, download each link, and then add each to the 

collection of positive training examples. The SRP would be collected as a 

negative training example. The crawler would continue until at least five positive 

and five negative training examples were collected, at which point ADC would 

train a site-specific DP classifier, classify all pages visited within the website up 

to that point, and then continue crawling and classifying each new page using the 

DP classifier. A more realistic example would include pages within the website 

that are not in the search path. ADC would treat these similarly to the home page 

in the example. 

The URL structure of all DP is assumed to be consistent within a single 

website. For example, the real estate listings website realtor.ca uses URLs like 

http://www.realtor.ca/propertyDetails.aspx?propertyId=10067266 and 

http://www.realtor.ca/propertyDetails.aspx?propertyId=9915829 to distinguish 

between two specific real estate listing detail pages. The only difference between 

these URLs is an identifier specific to each real estate property. When a 

document is classified as an SRP, a clustering algorithm is used to group all links 

from the document by similarity to each other. If the website fulfils the similarity 

http://www.realtor.ca/propertyDetails.aspx?propertyId=10067266
http://www.realtor.ca/propertyDetails.aspx?propertyId=9915829
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assumption, then one of the resulting clusters will be a set of URLs that point to 

detail pages. The size of each cluster, statistics about the URL similarities, and 

domain-specific heuristics allow ADC to select the cluster containing the DP 

URLs. Each link from this cluster is downloaded, and its content is blindly added 

to the list of positive training examples for the DP classifier. Once a minimum 

threshold of training document size is met, a DP classifier is created for the 

website. All past documents are run through this classifier in a batch to find any 

DPs that have already been missed, and future documents are all classified in 

real time. The flowchart presented above includes several uses of the same 

logical components, but this may not be clear from the labels used. A similar 

flowchart is shown in Figure 8, but using common component names wherever 

applicable.  
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Figure 8: Adaptive Document Classification with Functional Components 
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Feature selection, supervised learning, and unsupervised learning are the core 

reusable components of ADC. The remainder of this section will describe the 

design of these components, regardless of where in the system they are used. 

3.2.1 Pre-Processing 

Pre-processing is intended to reduce dimensionality of the feature-space 

by normalizing input. At both training and classification time pre-processing is 

applied before anything else is done to a document. At training time this means 

before generating the feature set, and at classification time this means before 

converting an input document to a feature vector. The same pre-processing 

steps must be applied to preserve the relevance of the machine learning model. 

There are three common cases that normalization is intended to handle: 1) 

inconsistent word or phrase usage, 2) rogue documents skewing feature counts, 

and 3) mark-up overwhelming the content.  

3.2.2 Feature Selection 

Feature selection is the process of converting a document into a vector in 

a feature space. In the case of supervised learning, a feature set is calculated at 

training time, and defines the feature space. In the case of unsupervised 

learning, the feature set is infinite. This section focuses on the supervised case, 

as it will become clear that the unsupervised case is a simplified form of the 

supervised case.  



 

 48 

Feature selection has two distinct phases. The training-time phase 

determines the feature space and the classification-time phase determines the 

feature space vector for each input document. At training-time a feature 

extraction method (like those presented in 2.2.3) is applied to select the strongest 

indicators of each document class. The features are aggregated into a feature 

set, and then refined by retaining only the top positive and negative indicators. 

This sequence is shown in Figure 9.  

Feature Selector Feature Extractor Feature Set

Training Set

loop
[For each training document]

Get all possible features

features

Add features to feature set

Aggregate features

Select top features

Refined feature set

 

Figure 9: Training Time Feature Selection 

Classification-time feature selection uses the feature set as a filter for 

input documents, as shown in Figure 10. In this context, classification-time 
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means any time the system needs to convert a document into a feature vector. In 

the context of supervised learning, this needs to happen at both training-time and 

classification time.  

Feature Selector Feature Extractor Feature Set

Input Document

Get all possible features

features

Filter features

filtered features

 

Figure 10: Classification Time Feature Selection 

3.2.3 Supervised Learning 

Supervised learning is used for both SRP and DP classification, with the 

SRP classifier provided as an input to the system, and the DP classifier trained 

dynamically per website. In both cases, the sequence of tasks performed is 

identical. The training-time tasks are shown in Figure 11.  
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Learner Feature Selector Feature Set

Training Set

Get feature set for training documents

feature set

Convert training documents to feature vectors

feature vectors

Machine Learning Algorithm

Build classification model

 

Figure 11: Training-Time Supervised Learning 

The learner receives a training set as input, consisting of positive and 

negative training examples. The training set is passed to the feature selector to 

generate an appropriate feature set. Next, each training example is converted to 

a feature-space vector using the feature set, and finally, the vector representation 

of all training data is passed to the supervised machine-learning algorithm to 

generate a classification model. Generating this model is the purpose of training. 

At this point, the classifier is ready to handle new (unclassified) data. The 

sequence of tasks at classification-time is shown in Figure 12.  



 

 51 

Learner Feature Set

Input Document

Convert document to feature vector

feature vector

Machine Learning Algorithm

Classify document

classification score

 

Figure 12: Classification-Time Supervised Learning 

The same feature set must be used at both training and classification time 

to generate consistent feature-space vectors. At classification-time, a classifier 

logically deals with one document at time. The document is converted to a 

feature-space vector using the feature set, then the vector is compared against 

the classification model to generate a score. Depending on the algorithm used, 

the score can either be a discrete value indicating membership in some class, or 

a probability of inclusion in some class. 

3.2.4 Unsupervised Learning 

Unsupervised learning is used to cluster URLs on Search Result Pages to 

find a set of Detail Page documents. Detail Page URLs share patterns that allow 

them to be clustered with high accuracy. Unsupervised learning algorithms are 
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not trained using labelled data so the only computation is at runtime, which is 

shown in Figure 13.  

Learner Feature Set

Documents to cluster

Convert training documents to feature vectors

feature vectors

Machine Learning Algorithm

Build clusters

loop
[While cluster quality threshold not met]

clusters

Refine clusters

 

Figure 13: Unsupervised Learning 

Unsupervised learning deals with documents, and in this solution each 

document is a URL. A set of documents is passed to the learner to be clustered. 

A feature set is used to convert each document into a feature space vector. In 

this case the feature space is set of all possible URLs, so each URL is converted 

to a vector containing itself. In other solutions, the feature set can be optimized 

using the approach described in 3.2.2. The collection of URL vectors is passed to 

the unsupervised machine learning algorithm for clustering. The beginning state 

of unsupervised algorithms is implementation-dependant, but all algorithms share 
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the flow of iteratively improving the existing cluster set until some exit criteria is 

achieved. 

This thesis includes two uses of unsupervised learning. URL clustering is 

consistent with traditional unsupervised learning applications, and is the obvious 

first example. The second example is more subtle. The flowchart in Figure 7 

shows that for every website a site-specific DP classifier is created. At a high 

level, the input to this algorithm is:  

1) a target website (while simplifies to a collection of documents), and  

2) an SRP classifier (a domain-specific heuristic).  

Note that the input does not include DP training data. The output of this 

algorithm is two sets, or clusters, of documents:  

1) a set of DP documents, and  

2) a set of non-DP documents.  

The implementation details include supervised learning to generate these 

output sets, but the supervised learner‟s training data is generated at runtime 

rather than being passed as input. This differs from traditional unsupervised 

learning algorithms because the classes of the output clusters are known ahead 

of time (DPs and non-DPs). Traditional algorithms cluster the input documents 

based on how the data itself is most obviously separable, and the classes of the 

output clusters are unknown. 
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3.3 Data Extraction and Search 

The content of online documents can be categorized in two ways: 

unstructured and structured. Unstructured data is a collection of text with no 

logical distinction between any subsets of the text. The core content of an article 

about importing cars from the United States to Canada is an example of 

unstructured data. Structured data is a collection of name – value pairs, where 

both names and values are arbitrary strings. The career statistics of a 

professional athlete are an example of structured data. There is a middle ground 

in data categorization called semi-structured data, which contains the same 

information as structured data, but the presentation of the data does not conform 

to any formal standard. An HTML page showing the career statistics of a 

professional athlete in a table is an example of semi-structured data. For vertical 

search, structured data is needed but generally not available to crawlers. 

However, DPs contain semi-structured data that can be converted to structured 

data. This is called data extraction. 

The end goal of data extraction is to obtain structured data to present is 

some domain-specific product, so data extraction is inherently a domain-specific 

task and implementations rely heavily on rules or heuristics. One of the key 

challenges in data extraction is ambiguity. A word or phrase can have different 

meaning and relevance depending on its context. Continuing a previous 

example, a document with an athlete‟s statistics may also include a date. This 

date might be the current date, the date on which the statistics were compiled, or 

a date indicating statistics of a subset of the athlete‟s career. In the first two 
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cases the date would be irrelevant, and in the third case the date would be 

relevant, and its meaning would be necessary to understand. Accurate document 

classification helps alleviate (but not eliminate) the ambiguity problem. The 

richest semi-structured data on a website will reside on DPs. Other pages within 

the site will also contain semi-structured data, sometimes relevant to the desired 

subject, but also irrelevant data that looks indistinguishable from the relevant 

data. Document classification eliminates the irrelevant non-DP documents from 

ever getting to data extraction. Ambiguity within a single DP is handled within the 

extraction implementation. The sequence diagram of such an implementation is 

shown below in Figure 14.  

Data Extractor Document Normalizer Extraction Patterns

DP document

loop
[For each interesting attribute]

Normalize document

Apply extraction patterns

structured attribute values

 

Figure 14: Data Extraction 

Each interesting attribute has two sets of inputs: 1) normalization rules, 

and 2) extraction patterns. Normalization rules eliminate the variation of attribute 

names and values between sources. Using the athlete example again, an 
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athlete‟s point total may be indicated by any of the following strings: “pts”, 

“points”, “pt”, etc. Extraction patterns identify relationships between normalized 

name-value pairs in text, and extract the values. Extraction patterns can 

sometimes be generalized, and sometimes need to be website specific. 

Structured data needs to be exposed after it has been collected. A search 

interface (similar to the one whose structured is taken advantage of to build the 

adaptive document classifier) is built to allow users to browse whatever subset of 

the data interests them. A search service is the empowering component of such 

an interface, the design of which is shown in Figure 15. 

Content Index

Search Service

Query Engine

Extracted Content

Index Engine

 

Figure 15: Search Design 

The extracted data is fed to an index engine to build an index. Search 

indexes store data in a way that makes search fast. Traditional data stores 

persist entries as key-value pairs, where the key is the document‟s identifier (for 

example, title) and the value is the content of the document. An index engine 

inverts this relationship and stores the content as the key because user queries 
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are run against content, not identifiers. A single document will have many entries 

in an index, one for each token in the document, where a token is some subset of 

the document. This structure allows query engines to accept query trees of 

Boolean logic and perform set operations on document identifiers to fulfill each 

query. 
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4: IMPLEMENTATION 

The sample implementation focuses on the novel algorithms proposed in 

this thesis, including relevant comparisons to existing methods. Adaptive 

document classification proposes a method for creating high-accuracy, website-

specific detail page classifiers to capture rich and relevant data. Of the three 

main components introduced earlier, only crawling and classification are 

implemented. Crawling is required to find and download web pages, and 

classification includes the novel solution. Data extraction and search are 

excluded from this implementation. There are well known patterns for their 

implementations, and their exclusion here does not change this thesis‟ ability to 

evaluate the proposed methods. A revised system design is shown in Figure 16 

that strikes out the excluded components. Real estate listings are chosen as the 

target data, and a Search Result Page classifier for real estate listings is built and 

passed to the system as input. 
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Figure 16: Implemented System Design. Shaded area is not implemented. 

4.1 Crawling 

This implementation‟s crawler uses the open source framework called the 

Smart and Simple Web Crawler (SSWC) (Torunski, 2009). This crawler is written 

in Java and implements most of the design shown in Figure 16. This section 

presents key features of this crawler, its limitations, and implementation details of 

this project‟s customizations. 

SSWC controls the lifespan of a crawl in two ways: 1) maximum depth of a 

crawl and 2) maximum crawl iterations. Crawling generates a link (or page) graph 

by following links from one page to the next. Maximum depth restrictions prevent 

the crawler from traversing more than n links away from a seed URL, where n is 

the specified limit. The link graph‟s depth is restricted to this same maximum, but 

the total size of the link graph is unbounded. The memory footprint of maximum 
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depth restrictions is considerable since the full link graph must be maintained. 

Maximum crawl iteration restrictions limit the total size of the link graph, but do 

not constrain its depth. The memory footprint of crawl iteration restrictions is 

minimal since a link graph is not necessary. 

Some links are undesirable to crawl for a variety of reasons including 

unknown content types, irrelevant data, and recognized crawler traps. SSWC 

provides a filter interface that allows the implementer to specify acceptable URL 

patterns. Each filter is constructed with a user-specified list of acceptable links, 

but this list has a different meaning in the context of each filter. The Beginning 

Path Filter accepts links that begin with the same substring as any one of 

acceptable links. This restricts a crawler to a sub-tree of the link structure within a 

website. The File Extension Filter accepts links that have the same extensions as 

any of the acceptable links. This eliminates unknown content types and can 

protect against some crawler traps. The Regular Expression Filter treats each 

acceptable link as a pattern, and incoming links must match one of these 

patterns to be accepted. These filters implement heuristics when targeting a 

subset of URLs on a specific website or when avoiding specific crawler traps, 

and do not generalize well. The Server Filter limits a crawl to the collection of 

domains present in the acceptable links list. These filters can be combined using 

arbitrary Boolean logic. ADC uses the server and regular expression filters to 

restrict crawls to individual domains, and to exclude known bad content types like 

Portable Document Format (PDF) and Flash (SWF), where bad content simply 

means that this crawler does not know how to treat the content as plain text. 
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SSWC supports single and multi-threaded modes. Network bandwidth is a 

single-threaded crawler‟s bottle neck, so multi-threaded crawling allows 

concurrent downloading of several web pages. Starting from an input seed list (of 

an arbitrary number of URLs), multi-threaded begins by downloading each seed, 

then waiting for events to continue the crawl. SSWC exposes two events: 1) 

download complete, and 2) link graph parser events. The first event is well 

described by its name. The link graph parsing event is triggered after basic 

parsing and processing has been applied to a downloaded web page, including 

updating the link graph to include new page and parsing its links to trigger 

subsequent downloads. SSWC uses the same event-based model for single-

threaded, but limits the total number of threads to one. 

The event-driven design allows for simple integration of ADC-specific 

components into the crawling flow. ADC uses the link graph parsing event to 

include itself in the data flow. Every downloaded document triggers the sequence 

of events shown in Figure 7. If a Site-Specific Classifier (SSC) already exists 

then new documents are treated strictly as candidates to be Detail Pages, and 

are classified using the SSC. If a SSC does not yet exist then new documents go 

through several processes. First the document is classified using the Search 

Result Page Classifier to check if it contains training data for the SSC. Next, the 

document is marked as needing to be classified by the SSC when it is eventually 

built. Finally, if sufficient training data exists after including new training data from 

this document then the SSC is built, and all documents marked as needing to be 
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classified are classified in a one-time batch process. Once the SSC is built, new 

documents are classified immediately.  

SSWC does not implement the full crawling design described earlier. 

Specifically, it excludes scheduling and only optionally tracks link graphs. The 

exclusion of these components does not affect this thesis‟ ability to demonstrate 

ADC and measure its effectiveness. 

4.2 Document Classification 

Document classification involves three distinct functional components: 1) 

document pre-processing, 2) feature selection, and 3) machine learning. Pre-

processing applies normalization rules to generate consistent documents from 

inconsistent sources. Feature selection computes a feature set, and then 

converts text to feature-space vectors.  

4.2.1 Pre-Processing 

Document classification benefits from pre-processing by producing a 

smaller and more relevant feature set. This section lists the specific pre-

processors used. 

4.2.1.1 HTML Decoding and Filtering 

Web pages contain mark-up (i.e. HTML), advertising, navigation, and 

other irrelevant content that does not contribute to the core content of the 

document. The visible content of a web page is typically a small subset of its 

underlying HTML code. The additional HTML code includes structural and meta-
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data for the page. For example, displaying content in tabular form requires the 

use of the table, tr, and td HTML tags. Structural HTML code is quite consistent 

across all types of web pages, so in general it is not useful for web page 

classification. Meta-data is supposed to represent a page‟s content, but because 

the author has complete freedom to add arbitrary meta-data, the containers are 

frequently abused for the purpose of enhancing a page‟s rank in a search index. 

It has been empirically shown that classifying a page using its meta-data actually 

reduces accuracy (Chekuri et al., 1997).  

HTML decoding and filtering has two objectives: first to translate any 

encoded data into its symbolic representation, and second to keep just the 

relevant portion of the marked-up web page. Most mark-up (including meta-data 

and other invisible elements) should be removed from the document, but some 

may be desirable when it corresponds to visual elements that are emphasized to 

the user, such as a document‟s title. This implementation uses the Jericho HTML 

Parser (Jericho, 2009) to convert web pages into object model instances, and 

allows ADC‟s start-up parameters to specify which HTML elements are desirable. 

4.2.1.2 Part of Speech Selection  

The English language has many words that are ambiguous without 

context. Words can have different meanings depending on whether they are 

acting as nouns or verbs, preceded by adjectives or adverbs, or separated by an 

indicator like a quote or comma. This implementation uses a Part of Speech 

tagger called OpenNLP (Baldridge et al., 2003) to tag every word in each input 

document, allowing ADC‟s start-up parameters to choose which tags are 
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important. The implementation demonstrates several different choices and 

compares their performance.  

4.2.1.3 Stemming 

As described in 2.2.1.1, stemming reduces all forms of a single word to its 

base form. This implementation uses the Porter stemming algorithm (van 

Rijsbergen, 1980), a pattern based algorithm originally introduced more than 20 

years ago. Porter stemming does not produce the paradigm form of every word, 

but does produce consistent stems.  

4.2.1.4 Synonym Lists 

Section 2.2.1.2 describes two classes of synonyms:  

1) several different words (or abbreviations) with the same meaning, and 

 2) a specific value where only the type of the value matters.  

This implementation includes many synonyms of each type. For example, 

the United States Postal Service‟s official list of abbreviations is used to equate 

state/provinces with their abbreviations, street suffixes with their common and 

abbreviated forms, and unit designators with their abbreviated forms (USPS, 

1998). Table 1 below presents a sample of the grouping synonyms that help 

identify real estate listings. 
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Table 1: Grouping Examples 

Group Name Synonyms 

MonthOfYear January, February, March, …, December 

Remodel  Renovate, new paint, fresh paint 

Neighbourhood Neighborhood, community, location 

Price10^6 $[1-9][0-9]{5}(\.[0-9]{2})? 

NorAmPhoneNum [0-9]{3}-[0-9]{3}-[0-9]{4} 

City Vancouver,Surrey,Richmond,… 

4.2.1.5 Other Text Normalization 

Several other normalization techniques are used here that do not fit into 

any of the preceding headings, and do not warrant in-depth discussion. A case 

filter is used to consistently case all incoming text, with lower case arbitrarily 

chosen here. A length filter is used to limit the maximum number of characters in 

an incoming document. Web pages must are meant to display information to a 

human, and it is unlikely for a real estate listing to exceed several pages of text. 

Other legitimate content (e.g. research articles) may exceed this length, but hurts 

the computational performance of feature selection and machine learning. Similar 

to how structural information does not contribute to HTML pages, the English 

language contains many words that do not contribute significantly to the meaning 

of a sentence (at least from a bag-of-words document classification perspective). 

A stop word filter eliminates these words from all input documents.  

4.2.2 Feature Extraction and Selection 

Feature extraction and selection work together to solve two problems: 1) 

converting all training documents to collections of features and selecting the top 

n as the feature set, and 2) converting classification-time documents to feature 

vectors by filtering their features through the feature set. Both operations begin 
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by converting input documents into a collection of features, as shown in Figure 

17. 

Feature Extractor Tokenizer Analyzer

Input document

Convert text to tokens

tokens

Convert tokens to features

features

 

Figure 17: Feature Extraction 

The first step is to tokenize the input document‟s text into an ordered list of 

tokens. This implementation includes two different tokenizers: a whitespace 

tokenizer, which splits text by whitespace, and a non-alpha-numeric-character 

tokenizer, which splits text by any non-letter, non-number character. A more 

intelligent tokenizer might have knowledge of English grammar. Tokens form the 

basis for features, but are not necessarily features themselves. To include 

contextual meaning, it can help to combine contiguous (or nearby) tokens into a 

single feature. For example, “New York” as a single feature would likely 

contribute very differently to a document classifier than two individual features 

“New” and “York”. Analyzers convert the token stream into an unordered 
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collection of features, where each feature contains one or more tokens and a 

count for the number of times it occurs in the document. This implementation 

includes several different analyzers. 

4.2.2.1 Word Selection 

Word selection is the simplest form of analysis. A document is tokenized 

into a collection of tokens, and each token is taken to be a feature. 

4.2.2.2 Bi-grams 

Real estate listings can contain important features that have no 

neighbouring tokens. For example, a price may appear between two pictures. In 

such cases it is useful to allow for single and multi-token features. Bi-gram 

analysis selects all individual tokens to be features, as well as all contiguous 

pairs of tokens (Tan et al., 2002). 

4.2.2.3 Sparse Binary Polynomial Hash (SBPH) 

The shortcoming of word selection is the inability to capture phrases. 

SBPH examines the document with a sliding window of   tokens at a time and 

selects all phrases from within this window (Yerazunis, 2003). For example, the 

first window with     in this definition would be “the shortcoming of word 

selection”. The second window would be “shortcoming of word selection is”. And 

so on until the end of the document. Within each window several features are 

selected (specifically     ). The first token of the window is always part of the 

feature, along with all possible combinations of the remaining     token. Table 

2 shows all features for the first window in this paragraph. 
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Table 2: SBPH Sample Analysis 

the shortcoming of word selection  the shortcoming of word selection 

the shortcoming of word selection the shortcoming of word selection 

the shortcoming of word selection the shortcoming of word selection 

the shortcoming of word selection the shortcoming of word selection 

the shortcoming of word selection the shortcoming of word selection 

the shortcoming of word selection the shortcoming of word selection 

the shortcoming of word selection the shortcoming of word selection 

the shortcoming of word selection the shortcoming of word selection 

4.2.2.4 Orthogonal Sparse Bi-gram (OSB) 

The problem with SBPH is that it generates a very large number of 

features. OSB attempts to maintain the benefit of combining tokens without the 

overhead of such a large feature count (Yerazunis, 2003). The same windowing 

technique is used as in SBPH, but this time only combinations of two tokens are 

considered to be features. Table 3 shows features from the preceding SBPH 

example using OSB analysis instead.  

Table 3: OSB Sample Analysis 

the shortcoming 

the of 

the word 

the selection 

4.2.2.5 Choosing Feature Set 

The first step in choosing a feature set is converting the training 

documents into features using one of the implemented analyzers. As documents 

are converted, the output features are also scored so that they can be ranked. 

This implementation includes three scoring algorithms: 1) term frequency, 2) 

document frequency, and 3) term frequency-inverse document frequency, each 
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of which is described in 2.2.3. The features from the positive and negative 

training sets are scored, collected, and ranked independently so that a desirable 

ratio, r, of positive to negative features can be selected. A total of n features are 

selected from both sets using the ratio r to form the feature set. This 

implementation uses r = 1. 

4.2.3 Supervised Learning 

Vector-based supervised learning has two applications within the 

proposed solution: 1) the input SRP classifier and 2) the site-specific DP 

classifier generated once enough training data is collected. This implementation 

includes four different supervised learning algorithms, varying in complexity from 

the “simplest” classifier to the state of the art. The simple implementation is 

included as both a sanity check on more complex implementations and to test 

whether good training data can overcome simple classification assumptions. 

4.2.3.1 Simple (Density) Classifier 

The density classifier accepts a feature set of weighted words or phrases 

as input. Weights can be positive or negative, and occurrences of features with 

positive weights suggest a document‟s inclusion in the desired class (and vice 

versa for negative weights). Longer documents tend to contain more occurrences 

of all features, including those in the feature set. Document length normalization 

adjusts a document‟s score to reflect the density of features it contains. The 

output score is compared against a threshold to produce binary classification. 

Density classification is shown below in Figure 18. 
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Density Classifier

Document (feature vector)

loop
[For each document feature]

Set score = 0

score += (# feature occurences * weight)

Normalize score by document length

 

Figure 18: Density Classifier Algorithm 

4.2.3.2 k-Nearest Neighbour Classifier 

The challenge implementing  -NN is with finding neighbours. Ternary 

search trees (TST) offer a fast and efficient way to find neighbouring strings 

using hamming distance to define neighbourhoods (Bentley et al., 1997). Each 

node in a TST is a modified binary search tree where the left child represents a 

value greater than the node, the right child represents a value less than the node, 

and a third child is used if the lookup character is found on the node. This allows 

string lookup to consist of a series of binary searches for individual characters. 

More importantly to implementing  -NN, it also allows for fast neighbouring string 

matches. This algorithm is shown in C++ style pseudo code in Algorithm 2. 
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Algorithm 2: Ternary Near Search 

Inputs Ternary search tree,   

Search string,   
Maximum distance from  ,   

Output List contains near matches, srcharr 

Algorithm void NearSearch(Tptr p, char *s, int d) 

{ 

    if (!p || d < 0) return; 

    nodecnt++; 

    if (d > 0 || *s < p->Value) 

        NearSearch (p->LowChild, s, d); 

    if (p->Value == 0) { 

        if ((int) strlen(s) <= d) 

            srcharr[srchtop++] =(char *) p->EqualChild; 

    }  

    else 

        NearSearch(p-> EqualChild, *s ? s+1:s,  

                                   (*s==p->Value) ? d:d-1); 

    if (d > 0 || *s > p->Value) 

        NearSearch (p->HighChild, s, d); 

} 

This algorithm has four if statements. The first statements checks for bad 

input arguments or for searching past the end of the tree. The second and fourth 

if statements check if the query character is larger (or smaller) than the node‟s 

Value, and recursively search the appropriate child (low or high). The third if 

checks for matches within the desired distance and adds them to the output, and 

also recursively searches the middle child. 
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 -NN logically deals with vector-space features, but its implementation for 

neighbourhood search converts these vectors back into strings. This thesis 

translated a C# library (de Halleux, 2004) to Java for its implementation.  

4.2.3.3 Naïve Bayes Classifier 

CRM114 is an open source spam filtering project that includes several 

machine learning implementations, including Naïve Bayes (Yerazunis, 2007). 

The CRM114 implementation is translated from C++ to Java for use in this 

project. Naïve Bayes classification is described in 2.1.2.1.3.  

4.2.3.4 Support Vector Machine Classifier 

LIBSVM is a software library for support vector classification, regression 

and distribution estimation (Chang et al., 2007). The original software is written in 

C++, but LIBSVM has an active community that offers translations in many 

languages, including Java. LIVSVM‟s parameter list, shown in Table 4, is a 

concise summary of its capabilities. 

Table 4: LIBSVM Parameter List 

Parameter Name Available Values / Description 

SVM Type C-SVC 
nu-SVC 
one-class SVM 
epsilon-SVR 
nu-SVR 

Kernel Type Linear: u'*v 
Polynomial: (gamma*u'*v + coef0)^degree 
Radial Basis Function: exp(-gamma*|u-v|^2) 
Sigmoid: tanh(gamma*u'*v + coef0) 

Degree Degree in the kernel function (default = 3) 

Gamma Gamma in kernel function (default = 1/#features) 
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Coefficient 0 Coefficient 0in kernel function (default = 0) 

Cost C in C-SVC, epsilon-SVR and nu-SVR (default = 1) 

Nu Nu in nu-SVC, one-class SVM, and nu-SVR (default = 
0.5) 

Epsilon Epsilon of loss function in epsilon-SVR (default = 0.1) 

Cache Size Cache size in MB (default = 100) 

Tolerance Tolerance of termination criterion (default = 0.001) 

Shrinking Boolean indicates whether to use the shrinking 
heuristics (default = 1) 

Probability Estimates Boolean indicates whether to train a SVC or SVR 
model for probability estimates (default = 0) 

Weighti Set C for class i to weight*C in C-SVC (default = 1) 

This implementation uses LIBSVM‟s classification functionality. C-SVC and nu-

SVC are both soft margin algorithms (errors are acceptable but are penalized). In 

C-SVC, C is the capacity constant that is proportional to the penalty. A large C 

may lead to over fitting. In nu-SVM the soft margin has to lie in the range of zero 

and one. Nu does not control the trade off between the training error and the 

generalization error, but has two different roles. It is an upper bound on the 

fraction of margin errors and is the lower bound on the fraction of support 

vectors. 

4.2.4 Clustering 

Carrot2 is an open source clustering library that includes several algorithm 

implementations and a pluggable framework for adding new algorithms (Osiński 

et al., 2005). This project uses two Carrot2 algorithms and integrates (and 

contributes to open source) a third.  
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4.2.4.1 Lingo Clustering 

Lingo, which Carrot2„s default clustering algorithm, implements the 

paradigm: “description comes first” (Osiński et al., 2004). Before clustering 

documents, Lingo determines the descriptions, or clusters, that are relevant to 

the document set before assigning each document into ones of these clusters. 

The four step algorithm prepares the document set, extracts key indicators, 

creates labels and clusters documents, and then adds meta data to each cluster 

as shown below in Algorithm 3. The cluster label induction in Step 3 is 

conceptually similar to  -NN classification.  
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Algorithm 3: Lingo Clustering 

Inputs Document set to cluster,   

Output List of labelled clusters 

Algorithm {Step 1: Pre-Processing} 

for all     do 

  perform text segmentation of  ; {Detect word boundaries etc.} 
  if language of   recognized then 

    apply stemming and mark stop-words in  ; 
  end if 
end for 

{Step 2: Frequent Phrase Extraction} 
concatenate all documents; 
  ← discover complete phrases; 
  ←   *                ( )                          +; 

{Step 3: Cluster Label Induction} 
 ← term-document matrix of terms not marked as stop-words and 

       with frequency higher than the                         ; 
      ←    ( ); {Product of     decomposition of  } 

 ←  ; {Start with zero clusters} 
 ←     ( ); 
repeat 

   ←    ; 

   ← (∑    
 
   ) (∑    

 
   ); 

until                            ; 
 ← phrase matrix for   ; 

for all columns of   
   do 

  find the largest component    in the column; 

  add the corresponding phrase to the                          set; 
            ←   ; 
end for 

calculate cosine similarities between all pairs of candidate labels; 
identify groups of labels that exceed                           ; 
for all groups of similar labels do 
  select one label with the highest score; 
end for 

{Step 4: Cluster Content Discovery} 

for all                            do 
  create cluster   described with  ; 

  add to   all documents whose similarity to   exceeds the  

                                ; 
end for 
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put all unassigned documents in the “Others” group; 

{STEP 5: Final Cluster Formation} 
for all clusters do 

              ←              ‖ ‖; 
end for 

4.2.4.2 Suffix Tree Clustering 

Suffix tree clustering (STC) is unique in that a single document can appear 

in multiple clusters (Zamir et al., 1999). Algorithm 4 shows the summary below. 

Algorithm 4: STC Clustering 

Inputs Document set to cluster,   

Output List of labelled clusters 

Algorithm 1. Construct suffix tree 
2. Score nodes in the tree 
3. Find clusters 
  3.1 Construct an undirected graph whose vertices are nodes in the    
  suffix tree. An arc exists between two nodes if  
    a. either node is a top scoring node 
    b. the number of documents in the intersection of two nodes is at  
    least half of the bigger of the two nodes 
  3.2 Each connected component of this graph is a cluster 

Constructing the suffix tree is like building an inverted index of phrases in 

the document set. Each phrase is associated with a collection of documents. A 

node‟s score is based on the number of documents in its sub-tree. For each node 

  in the tree, let   ( ) be the set of documents in  ‟s sub-tree, and  ( ) be the 

phrase label of  . The score of the node is  ( )  | ( )|   (|  ( )|), where 

 ( )    for    , and  ( )    for    . The top 500 scoring nodes and all 

nodes that have intersecting documents with these nodes are candidates to 

become part of a cluster. A graph is constructed by comparing each pair of 
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candidate nodes. If the size of the intersection between any two of these nodes is 

greater than half the size of either node then an arc is drawn between the two 

nodes in the graph. After all candidate nodes have been compared, each 

connected component in the graph forms a cluster.  

4.2.4.3 URL Clustering Algorithm 

The previous two clustering algorithms were designed for documents, not 

URLs. This project includes a simple clustering algorithm specifically designed to 

cluster URLs, not documents, as shown in Algorithm 5. The runtime performance 

of this algorithm is exponential. 

Algorithm 5: URL Clustering 

Inputs Document set to cluster,   

Output List of labelled clusters 

Algorithm          ←     (                                   )  
for all document pairs         do 
          ←            (     ) 
  if                    then 

    if    or    belong to an existing cluster  
      merge all clusters that    or    belong to 
    else 
      create a new cluster with       as its content 
    end if 
  end if 
end for 

This algorithm was contributed to Carrot2 under the name 

ByFullUrlClusteringAlgorithm. The output clusters are sorted in ascending order 

by the standard deviation of the length of the URLs within each cluster. An output 

cluster is assumed to contain links to detail pages if its URL length standard 
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deviation is less than 0.001 (an empirically chosen threshold). If no good clusters 

are found, the distance threshold is loosened (using a multiple of the distance 

standard deviation) and the algorithm is run again. This is repeated until a good 

cluster is found, or until 20 attempts have been made. The measure of success 

for this algorithm is if exactly one output cluster contains links to detail pages. 

Both other cases are considered failures: 

1) More than one output cluster meets the detail pages assumption 

(regardless of how many clusters are actually created) 

2) No output clusters meet the details page assumption (also regardless of 

how many clusters are actually created) 

URL Clustering (UC) is similar to Affinity Propagation Clustering (APC) 

(Frey et al., 2007) because both create clusters based on pair wise distance 

between every pair of points. APC uses maximum similarity to determine 

clusters. URL Clustering creates clusters based on similarity above some 

threshold, not just the maximum. 
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5: RESULTS 

This thesis proposes an adaptive classification algorithm to improve 

document classification of rich web documents. A series of experiments was run 

to test this hypothesis using real estate listings as the target document type. A 

baseline result is needed to observe improvement. The first set of experiments 

optimizes the configuration of a static real estate listing classifier by applying 

different normalization, feature selection, and machine learning algorithms. This 

provides both a baseline and configuration for the site-specific classifier created 

by the adaptive algorithm. Each baseline configuration was tested using 

precision and recall to measure success of identifying real estate listings. The 

class labels for classifying real estate listings are 

{
                     

                          
 

The next set of experiments applies the adaptive classification algorithm, 

including parameter variation to the supervised learner and varying the clustering 

algorithm used to select training sets. A set of test sites is chosen and the 

baseline detail page classifier‟s results are compared against the site-specific 

detail page classifier created by the adaptive algorithm. The adaptive algorithm 

evaluation includes testing the algorithm‟s ability to produce a site-specific 

classifier. Producing a site-specific classifier is controlled by two mechanisms 

within the algorithm:  
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1) ability to identify search result pages, and   

2) ability to cluster links to detail pages from the search result page 

5.1 Static Document Classification 

The purpose of building a baseline real estate listing classifier is to test 

whether ADC can improve classification. The tuned choice of parameters 

(including learning algorithm) will be re-used twice in ADC: first to build the 

search result page classifier that is passed in, and second to build site-specific 

classifiers at runtime. Optimizing parameter selection for the static classifier then 

re-using these parameters in the proposed algorithm suggests that the baseline 

results are an upper bound of what can be expected, and the proposed 

algorithm‟s results have room for improvement. 

The first step in training a supervised learning algorithm is to build the 

training set. Preliminary experiments and current research indicate that time 

spent “tuning” the training set was more productive than time spent tuning the 

learner. Approximately three thousand positive and negative training documents 

were collected from across five hundred websites, and then sampled to construct 

training and test sets. The top ten most visited real estate websites in the United 

States account for approximately 35% of traffic to all American real estate 

websites (Experian, 2011). The next hundred websites account for approximately 

the same traffic, and the remaining traffic is split among thousands of small 

websites. In the context of American real estate websites, a sample using five 

hundred websites is representative. 
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Diversity and correctness were the quality metrics for collecting 

documents. To a learner, many documents from a single website can look the 

same. The number of documents per website was limited to five positive and five 

negative examples to reduce the influence of any one website on the training set 

(the total size of the training set is discussed in 5.1.1). The five positive 

documents were made as different as possible by selecting a variety of listings 

(high price and low price, single family homes and land, etc). The five negative 

documents consisted of the home page, a contact page, a search form, and two 

other pages relevant to each website. Collecting documents is a manual process, 

so error is inevitable. Each document was screened twice to ensure correct 

labelling. In addition to labelling documents as positive or negative, websites as a 

whole were marked by template groups. Several prominent website vendors offer 

slight variations of the same website to real estate agents. For the purpose of 

machine learning these websites are all identical. 

A utility was written to randomly select three document sets, each 

consisting of a positive and negative subset, from the superset of training 

documents. One set was used to train the learner, and the other two sets were 

used to test it. The sets were chosen using the following rules: 

1. Choose m documents for each positive set, and m for each negative 

set, where 2m is the desired size of the feature set 

2.  Choose at most three positive and three negative documents from 

each template group (websites that look the same). 

3. Each template group can only appear in one of the sets. 
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The intention behind these rules is to mimic real-world scenarios as 

closely as possible by eliminating training data from the test sets. Classifiers that 

are part of large scale crawlers encounter a negligible number of documents from 

their training sets at runtime. Using two distinct test sets helps eliminate manual 

collection errors such as not recognizing some collection of websites as 

belonging to a single group. 

The following sections present experiments and results for optimizing 

classification parameters. These experiments were run iteratively to retest prior 

optimizations given some improved downstream configuration. The results of 

each parameter‟s most significant optimization are shown. 

5.1.1 Training Set Size 

The size of the training set plays an important role in trade-off between 

generalization and over-fitting. Figure 19 shows the classification accuracy of a 

real estate listings classifier against its training set size. Classification accuracy 

was measured against a set of documents whose domains and templates were 

not in the training set. 
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Figure 19: Accuracy vs. Training Set Size for Baseline Real Estate Listing Classifier 

Training sets up to 950 documents in size were tested, but showed no 

improvement over the presented data. 

5.1.2 Pre Processing 

The following sections present four measurements for each parameter 

change:  

1. True positive: the percent of documents accurately classified into the 

desired set. 

2. False positive: the percent of documents inaccurately classified into 

the desired set. 

3. True negative: the percent of documents accurately classified into the 

undesired set. 

4. False negative: the percent of documents inaccurately classified into 

the undesired set. 
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Depending on the system, a different type of error is acceptable. In static 

document classification false positives are preferred to false negatives. In 

adaptive document classification‟s SRP classifier the opposite is true. 

5.1.2.1 HTML Analysis 

Figure 20 (a) – (d) shows results for the following HTML analyzers: 

 NoTransform: Baseline test with no HTML analysis. 

 RemoveAllTags: Remove all HTML tags, leaving only each element‟s 

value behind. 

 RemoveallTagsIgnoreImages: Remove all tags except for images. 

Each setting was tested with two independent test sets (labelled Test 1 

and Test 2). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 20: HTML Analysis 
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Figure 20 shows the importance of removing HTML mark-up from each 

document. Customizing the behaviour of individual HTML elements (such as 

images) had little effect on the overall performance.  

5.1.2.2 Part of Speech Analysis 

Figure 21 (a) – (d) shows results for the following Part-of-Speech 

analyzers: 

 NT (no transform): Baseline test with no part-of-speech analysis. 

 NNDV (nouns, numbers, dollars and verbs): Keep only nouns, 

numbers, dollars and verbs. 

 NND (nouns, numbers and dollars): Keep only nouns, numbers and 

dollars. 

 FT (final transform): TODO: describe 

As with HTML analysis, each setting was tested with two independent test 

sets (labelled Test 1 and Test 2). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 21: Part of Speech Analysis 

The effect of part of speech analysis is less than HTML analysis, but does 

improve classification by using only some parts of speech.  
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5.1.2.3 Stop Word Analysis 

Figure 22 (a) – (d) shows the effect of applying stop words to documents 

before classification. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 22: Stop Word Analysis 

5.1.2.4 Stemming Analysis 

Figure 23 (a) – (d) shows the effect of stemming words before 

classification. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 23: Stemming Analysis 

5.1.2.5 Feature Weighting 

Figure 24 (a) – (d) shows results for the following phrase weighting 

algorithms: 

 TF: Term Frequency. 
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 TFIDF: Term Frequency Inverse Document Frequency. 

 

0%
20%
40%
60%
80%

100%

Porter
Stemming

No Stemming

True-Positive 

0%

20%

40%

60%

80%

100%

Porter
Stemming

No Stemming

True-Negative 

0%
20%
40%
60%
80%

100%

Porter
Stemming

No Stemming

False-Positive 

0%
20%
40%
60%
80%

100%

Porter
Stemming

No Stemming

False-Negative 



 

 90 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 24: Feature Weighting 

5.1.3 Feature Selection 

Figure 25 (a) – (d) shows the results of applying various feature selection 

algorithms. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 25: Feature Selection 
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5.1.4 Learning Algorithms 

The best pre-processing parameters for one machine learning algorithm 

do not necessarily make them the best parameters for another algorithm. Figure 

26 (a) – (c) presents optimized configuration results for three algorithms:  

  -NN:  -Nearest Neighbour. 

 NB: Naïve Bayes. 

 SVM: Support Vector Machines. 

Each algorithm is trained with the same set of data, and tested against 

three independent test sets. 
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(a) 

 

(b) 

 

(c) 

 

Figure 26: Algorithm Comparison 
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document classification to the optimized static results obtained earlier. A search 

result page classifier was built using the optimized static method, but trained to 

detect search result pages instead of listing detail pages. 

5.2.1 Baseline Static Classification 

Table 5 presents the chosen seven listing websites, along with 

classification accuracy for the optimized SVM static classifier for real estate 

listings. Note that Average* indicates the average when ignoring the best and 

worst results. 

Table 5: Baseline Static Classification 

Site Precision Recall F-Score 

ApartmentHunterz 99.06% 100.00% 99.53% 
BillClarkHomes 66.67% 4.21% 7.92% 
JpmStGeorge 89.87% 86.59% 88.20% 
LasVegasLiving 66.30% 100.00% 79.74% 
ScottFindlay 98.10% 100.00% 99.04% 
SeattleRentals 91.60% 100.00% 95.62% 
WorldProperties 95.80% 66.31% 78.37% 

Average 86.77% 79.59% 78.34% 
Average* 88.07% 88.75% 86.55% 

5.2.2 Search Result Page Classification 

The search result page classifier was built using the same configuration as 

the baseline detail page classifier, but was given different training examples from 

the same set of sample websites. Its accuracy is better than the detail page 

classifier‟s accuracy, as shown in Table 6. This is expected based on the 

assumptions stated earlier: data elements in the summary view of a given vertical 

are consistent across most websites. The same is not true for detail pages.  
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Table 6: Search Result Page Classification 

Site Precision Recall F-Score 

ApartmentHunterz 98.59% 99.29% 98.59% 
BillClarkHomes 100.00% 100.00% 100.00% 
JpmStGeorge 90.91% 95.24% 90.91% 
LasVegasLiving 90.00% 94.74% 90.00% 
ScottFindlay 88.89% 94.12% 88.89% 
SeattleRentals 94.90% 97.38% 94.90% 
WorldProperties 98.35% 99.17% 98.35% 

Average 94.52% 97.13% 94.52% 
Average* 96.21% 98.04% 96.21% 

 

5.2.3 Detail Page Link Clustering 

The output of the search result page classifier is mined for clusters of links 

to detail pages. Several clustering algorithms were tested and only 

ByFullUrlClusteringAlgorithm produced useful results. Most clustering algorithms 

are designed for “richer” input (i.e. full documents). Table 7 shows 

ByFullUrlClusteringAlgorithm’s accuracy on the test websites.  

Table 7: Link Clustering Accuracy 

Site Able to find detail 
page link cluster 

ApartmentHunterz Yes 
BillClarkHomes Yes 
JpmStGeorge Yes 
LasVegasLiving No 
ScottFindlay Yes 
SeattleRentals Yes 
WorldProperties Yes 



 

 96 

ByFullUrlClusteringAlgorithm has one success condition: a cluster is found that 

looks like it contains links to detail pages. If more or less than one such cluster 

are found then the algorithm does not return any clusters. 

5.2.4 Adaptive Classification Results 

Table 8 presents the classification results for the system proposed by this 

thesis as a direct comparison against Table 5. Adaptive site-specific detail page 

classifiers were constructed using the same configuration and SVM classifier 

used in both the baseline detail page classifier and the SRP classifier. 

Table 8: Adaptive Document Classification 

Site Precision Recall F-Score 

ApartmentHunterz 100.00% 99.46% 99.73% 
BillClarkHomes 100.00% 100.00% 100.00% 
JpmStGeorge 100.00% 84.15% 91.39% 
LasVegasLiving 100.00% 0.00% 0.00% 
ScottFindlay 100.00% 100.00% 100.00% 
SeattleRentals 100.00% 100.00% 100.00% 
WorldProperties 100.00% 98.77% 99.38% 

Average 100.00% 83.20% 84.36% 
Average* 100.00% 94.26% 95.81% 

5.2.5 Performance Analysis 

Adaptive document classification enhances the classification piece of the 

general purpose crawling design presented earlier in Figure 5. The runtime 

performance of the entire system is limited by its slowest piece, which is web 

crawling. Efficient web crawling is bottlenecked by network bandwidth (Najork et 

al., 2001). In steady-state operation, adaptive document classification does not 

change the system‟s performance characteristics; performance is only affected 
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while the site-specific classifier is being built. Building the adaptive classifier 

requires uses additional resources to identify and collect possible training 

samples. The identification process uses a classifier similar in complexity to the 

adaptive classifier that is built for each website. The runtime penalty is paid 

immediately after the site-specific classifier is built, and all previously crawled 

web pages are classified. Document classification, even in batch mode, is still 

significantly faster than downloading web pages. Collecting training samples 

uses additional memory to avoid re-fetching training documents for re-

classification. Websites that contain either very deep or no acceptable training 

examples will cause the crawler to use the most amount of memory. The 

websites explored during the writing of this thesis did not cause excessive 

memory usage. A simple work-around is to impose artificial memory usage limits, 

which would require the crawler to re-fetch some (or all) documents visited 

before the site-specific classifier is built. The additional work imposed by adaptive 

document classification does not significantly change runtime performance. 

5.3 Discussion 

Building a static, site-specific classifier with manually selected training 

examples is both easy and very accurate (assuming one has time to manually 

collect all these examples). Adaptive document classification shows that similar 

accuracy can be obtained using an automated process for selecting training 

examples. For the selected set of websites adaptive document classification 

improves classification f-score by about 9%, with a significant gain in both 

precision and recall. Improvements in classification become exponentially harder 



 

 98 

as accuracy increases, so achieving this same improvement using only static 

methods is unlikely.  

Comparing Table 5 and Table 8 shows clear patterns developing. The 

ratio of precision to recall indicates which of the two measures a classifier is 

tuned for. Table 9 shows this ratio for the benchmark and proposed algorithms, 

where Recall/Precision* ignores the best and worst results. 

Table 9: Recall to Precision Ratio Comparison 

 Benchmark Proposed 

Recall/Precision 0.92 0.83 
Recall/Precision* 1.01 0.94 

The proposed algorithm is tuned more towards precision than the benchmark 

algorithm. This is quite intuitive when remembering the training data that was 

supplied to each. The benchmark classifier is trained using examples from many 

websites, which causes it to prefer generic features and leads to more false 

positives. The proposed classifier is trained only with examples from the target 

website, so it prefers website-specific features including presentation structure, 

language, and terminology that are all consistent across detail pages within the 

website. This leads to near-perfect precision. 

 The proposed algorithm is tuned for precision, but also shows 

improvement in recall. This can again be explained by analyzing the training sets 

of both classifiers. The benchmark algorithm requires a diverse set of features to 

work well across all websites. Inevitably, the classifier will be missing some 

features that are key indicators for some listings or even websites, resulting in 
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false negatives. The proposed algorithms can be much more selective in 

choosing features; a few very well chosen features can be absolute indicators 

within a website. Absolute indicators prevent any listing from being missed. 

Each classifier has one site that is completely fails on in the test data. For 

the benchmark classifier, the site is BillClarkHomes. Structurally, this site is 

consistent with the other sites in that it has search result pages that point to 

detailed listing pages. The problem is that the detail pages have very sparse 

content, so the classifier does not have many features to work with. The 

proposed classifier has no problems because the structure of the site lets it 

choose the required site specific training documents. The proposed classifier 

failed on the LasVegasLiving site. The structure of this website‟s documents is 

also consistent with the assumed model (search result pages leading to detail 

pages). Table 7 shows clustering accuracy per website, and in particular, shows 

that the clustering algorithm is unable to cluster LasVegasLiving‟s links. Table 10 

shows sample links from the website that do not lend themselves to easily be 

clustered. 

Table 10: Difficult Links for Clustering 

URL Page Type 

http://www.lasvegasliving.com/adiamo/adiamo_rates.cfm 
http://www.lasvegasliving.com/adiamo/adiamo_fp.cfm 

Not details page 
Not details page 

http://www.lasvegasliving.com/adiamo/fp_montellano.cfm Details page 
http://www.lasvegasliving.com/adiamo/fp_sorrento.cfm Details page 

WordProperties is a site that produced good data for both classifiers, but 

the proposed algorithm significantly outperformed the benchmark algorithm on 

recall. The training data for the benchmark classifier was only from North 

http://www.lasvegasliving.com/adiamo/adiamo_fp.cfm
http://www.lasvegasliving.com/adiamo/fp_sorrento.cfm
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American websites, so it is expected to perform poorly in other contexts where 

language and terminology are different. The adaptive algorithm‟s search result 

page classifier was also trained with North American data. Search result pages 

shows concise summary information, and are more consistent across sites than 

detail pages. In this example, the search result pages are consistent across both 

North American and international listings. This allows the adaptive algorithm to 

correctly identify search result pages and build a site-specific classifier that takes 

international listings into account.  

The proposed classifier demonstrated hit-or-miss results. If it was able to 

classify even a single listing detail on a website then it scored well for all 

documents on the website. However, there is no guarantee that even one listing 

will be correctly classified. There are two classes of failure for the adaptive 

algorithm: 1) the SRP classifier fails to detect any search result pages, meaning 

that the site-specific classifier cannot be built, and 2) the SRP classifier works 

correctly, but the link clustering algorithm fails again meaning that the site-

classifier cannot be built. Both classes of failure are easier to fix than improving a 

static detail page classifier. Re-training the SRP classifier with examples from 

previously failed websites is unlikely to break existing “good” classification results 

because of the concise nature of the data. New heuristics for link clustering can 

target only specific sites (or patterns of links) to maintain existing desirable 

behaviour. 
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6: CONCLUSION 

Building a website-specific classifier produces high accuracy classification 

results within a given website. The results above indicate that the proposed 

adaptive document classification algorithm can be used to dynamically generate 

this high accuracy solution resulting in a significant improvement over general-

purpose classifier accuracy. The idea that structure can be used to improve 

classification accuracy is not a new one (Cohen, 2002), but this particular 

approach is new to the best of this author‟s knowledge. 

6.1 Limitations 

The sample implementation includes several limitations. The sample size 

for static document classification and parameter selection optimization was 

sufficiently large to call the results generalizations. Adaptive document 

classification was tested with a set of only seven websites due to the manual 

work involved in testing the results. The set of test websites was selected using 

similar guidelines that were used for selecting test sets for static classification: 

only one website from any template group appeared in the set. The classes of 

problems encountered in the test set was an accurate representation of what is 

expected on a “random” real estate listings website. The results presented are 

accurate and predictive of other sites; the uncertainty is how many sites are 

BillClarkHomes versus how many are like LasVegasLiving. 
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 Another limitation of the sample implementation is the collection of link 

clustering algorithms used. The selected clustering algorithm 

(ByFullUrlClusteringAlgorithm) worked well for the test sets, but was not based 

on the academic community‟s current standards. Broader applications of 

adaptive document classification would likely exposes weaknesses in 

ByFullUrlClusteringAlgorithm. 

 A third limitation of this work is intentional: the classification parameters 

were not optimized for adaptive document classification; instead they were 

inherited from the best performing static classifier. The intention was to 

demonstrate that well chosen training sets are significantly more valuable to a 

classifier than incremental improvements in the underlying mathematical models. 

The results agreed with approach. 

6.2 Future Work 

The future work falls in to three classes: 1) overcome the described 

limitations of this implementation, 2) implement the full system design of the 

solution, and 3) improve known vulnerabilities in the existing implementation. 

This work‟s most significant limitation is the sample size. The existing 

solution should be verified against more real estate listing websites (including 

baseline tests using a static document classifier). Real estate listings were 

chosen as the sample domain, but the proposed algorithm is not domain-specific. 

Applying adaptive document classification to other domains coincides nicely with 

increasing the sample size.  
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The system design chapter describes an end-to-end solution that includes 

more intelligent web crawling than was implemented here, and a data extraction 

system to consume the output of the adaptive classifier. The data extraction 

component has more unknowns, so should be implemented next. Similar to 

document classification, data extraction benefits strongly from data 

normalization. When chained together with classification, many of the 

normalization techniques could and should be shared across both components. 

Adaptive document classification exhibits hit-or-miss behaviour tied to two 

inputs: 1) the search result page classifier, and 2) the link clustering algorithm. 

Both inputs include high confidence thresholds to allow ADC to execute. 

Dynamically reducing the confidence threshold when an error condition is 

detected would allow ADC to provide some output. Experiments are needed to 

understand the usefulness of such output. 
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