

ADAPTIVE DOCUMENT DISCOVERY
FOR VERTICAL SEARCH ENGINES

by

Wojciech Piaseczny
B.A.Sc., Simon Fraser University, 2005

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in the
School of Engineering Science

Faculty of Applied Sciences

© Wojciech Piaseczny 2011

SIMON FRASER UNIVERSITY

Summer 2011

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for Fair
Dealing. Therefore, limited reproduction of this work for the purposes of private

study, research, criticism, review and news reporting is likely to be in accordance
with the law, particularly if cited appropriately.

 ii

APPROVAL

Name: Wojciech Piaseczny

Degree: Master of Applied Science

Title of Thesis: Adaptive Document Discovery for Vertical Search
Engines

Examining Committee:

 Dr. Marek Syrzycki

Chair
Professor of Engineering Science, SFU

 Dr. Bozena Kaminska

Senior Supervisor
Professor of Engineering Science, SFU

 Dr. Lesley Shannon

Supervisor
Assistant Professor of Engineering Science, SFU

 Dr. Anoop Sarkar

Examiner
Assistant Professor of Computing Science, SFU

Date Defended/Approved: April 20, 2011

Last revision: Spring 09

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

 iii

ABSTRACT

Vertical search engines attempt to aggregate all available online data for a

specific vertical into a normalized and structured data model. There are two

common strategies for aggregating data: 1) data feeds, and 2) web crawling.

Data feeds use source-specific translation rules to collect structured data, but

require the source to specifically expose the data. Web crawling collects data

through the same interface that users view it, which requires additional work to

identify and extract the relevant content from unstructured or semi-structured

text. Generalizing these tasks across many websites is difficult because each

website presents content in its own arbitrary way. This thesis proposes a strategy

for identifying relevant content across many websites with improved accuracy.

Many well known statistical document classification algorithms can

distinguish between classes of documents with high accuracy. These algorithms

fail when test data is significantly different than training data, as is often the case

in the vertical search context. This thesis adaptively builds website-specific

document classifiers to avoid common classification failure conditions. Training

data is selected dynamically by exploiting common user interface patterns. The

results obtained here demonstrate that using adaptive document classifiers

improves accuracy with minimal performance costs.

 iv

Keywords: Adaptive document classification; supervised learning; clustering;
vertical search; entity extraction.

 v

DEDICATION

This thesis is dedicated to my wife, Sheena. I love you.

 vi

ACKNOWLEDGEMENTS

I would like to thank Prof. Bozena Kaminska for her guidance,

encouragement and patience during my studies. I would like to thank the

members of my thesis committee: Prof. Anoop Sarkar, Prof. Lesley Shannon,

and Prof. Marek Syrzycki.

I would like to thank my co-workers Sean Whitley, John Schaub, Tristen

Georgiou, and Jake Pan for their feedback on my research. I would also like to

thank Move, Inc. for its support of my work.

Finally, I would like to thank my family. My beautiful, kind, patient, and

loving wife Sheena gave me the time and encouragement I needed to complete

this thesis. My son, Mikolaj, gave me the motivation to wrap things up. My

parents gave me inspiration to start this thesis and helped me persevere along

the way, qualities that I hope to pass on to my son.

 vii

TABLE OF CONTENTS

Approval .. ii

Abstract .. iii

Dedication ... v

Acknowledgements .. vi

Table of Contents ...vii

List of Figures... ix

List of Tables .. xi

List of Algorithms ..xii

Glossary .. xiii

1: Introduction ... 1

2: Related Work ... 6

2.1 Statistical Learning .. 6

2.1.1 Learning Context ... 7
2.1.2 Learning Algorithms ... 12

2.2 Document Classification .. 23

2.2.1 Pre-processing .. 24
2.2.2 Feature Extraction ... 26
2.2.3 Feature Selection .. 27

2.3 Adaptive Document Classification ... 29

2.3.1 Adapting to User Interests ... 30
2.3.2 Incremental Context Mining ... 32
2.3.3 Dynamic Class Creation .. 33

2.4 Summary... 34

3: System Design .. 36

3.1 Crawling .. 37

3.2 Adaptive Document Classification ... 41

3.2.1 Pre-Processing .. 47
3.2.2 Feature Selection .. 47
3.2.3 Supervised Learning .. 49
3.2.4 Unsupervised Learning .. 51

3.3 Data Extraction and Search... 54

4: Implementation.. 58

4.1 Crawling .. 59

4.2 Document Classification .. 62

4.2.1 Pre-Processing .. 62
4.2.2 Feature Extraction and Selection ... 65

 viii

4.2.3 Supervised Learning .. 69
4.2.4 Clustering .. 73

5: Results ... 79

5.1 Static Document Classification .. 80

5.1.1 Training Set Size ... 82
5.1.2 Pre Processing .. 83
5.1.3 Feature Selection .. 90
5.1.4 Learning Algorithms ... 92

5.2 Adaptive Document Classification ... 93

5.2.1 Baseline Static Classification ... 94
5.2.2 Search Result Page Classification ... 94
5.2.3 Detail Page Link Clustering.. 95
5.2.4 Adaptive Classification Results .. 96
5.2.5 Performance Analysis .. 96

5.3 Discussion... 97

6: Conclusion .. 101

6.1 Limitations ... 101

6.2 Future Work .. 102

Reference List ... 104

 ix

LIST OF FIGURES

Figure 1: (a) In Supervised Learning all outputs are assumed to be caused by a
set of inputs. (b) In Unsupervised Learning all outputs are caused by a
set of latent variables. (Valpola, 2000) .. 11

Figure 2: Unsupervised learning can discover hierarchical relationships (Valpola,
2000)... 12

Figure 3: (a) Many possible hyperplanes can separate this data. (b) SVM
chooses the maximum margin line of separation. .. 18

Figure 4: (a) Non-linearly separable data in two-dimensional space. (b)
Transformation to three-dimensional space makes it linearly separable. 21

Figure 5: Vertical Search Engine System Design .. 37

Figure 6: Crawling Design ... 38

Figure 7: Adaptive Document Classification Flowchart .. 43

Figure 8: Adaptive Document Classification with Functional Components 46

Figure 9: Training Time Feature Selection ... 48

Figure 10: Classification Time Feature Selection ... 49

Figure 11: Training-Time Supervised Learning .. 50

Figure 12: Classification-Time Supervised Learning .. 51

Figure 13: Unsupervised Learning ... 52

Figure 14: Data Extraction ... 55

Figure 15: Search Design .. 56

Figure 16: Implemented System Design. Shaded area is not implemented. 59

Figure 17: Feature Extraction .. 66

Figure 18: Density Classifier Algorithm .. 70

Figure 19: Accuracy vs. Training Set Size for Baseline Real Estate Listing
Classifier ... 83

Figure 20: HTML Analysis ... 85

Figure 21: Part of Speech Analysis ... 87

Figure 22: Stop Word Analysis .. 88

Figure 23: Stemming Analysis ... 89

Figure 24: Feature Weighting .. 90

Figure 25: Feature Selection ... 91

 x

Figure 26: Algorithm Comparison .. 93

 xi

LIST OF TABLES

Table 1: Grouping Examples ... 65

Table 2: SBPH Sample Analysis ... 68

Table 3: OSB Sample Analysis ... 68

Table 4: LIBSVM Parameter List ... 72

Table 5: Baseline Static Classification ... 94

Table 6: Search Result Page Classification ... 95

Table 7: Link Clustering Accuracy ... 95

Table 8: Adaptive Document Classification ... 96

Table 9: Recall to Precision Ratio Comparison .. 98

Table 10: Difficult Links for Clustering ... 99

 xii

 LIST OF ALGORITHMS

Algorithm 1: Incremental Context Mining ... 32

Algorithm 2: Ternary Near Search ... 71

Algorithm 3: Lingo Clustering .. 75

Algorithm 4: STC Clustering .. 76

Algorithm 5: URL Clustering .. 77

 xiii

GLOSSARY

Document
Classification

Assigning a document to one or more categories using
supervised or unsupervised learning.

Entity Extraction Identifying atomic elements in text into a predefined data
model.

Indexed Data A representation of any data that improves search or
lookup performance.

Rich Document The content that users target in a vertical search engine.
E.g., real estate listings on a real estate listing search
website.

Structured Data Data organized into structure so that it can be identified.

Supervised
Learning

Machine learning algorithms that infer a function from
labelled input training data.

Unstructured Data Data with no identifiable structure.

Unsupervised
Learning

Machine learning algorithms that determine how data is
organized without the use of labelled training examples.

Vertical Specific industry, topic, or type of content.

 1

1: INTRODUCTION

The internet has grown into a vast collection of information on most

imaginable subjects (Murray et al., 2000). Finding information relevant to one‟s

specific needs is manageable using tools like Google‟s search engine when the

relevance of the data is the same for all web users. Data publishers gain trust

within a community by producing high quality data and search engines recognize

this trust and use it to influence relevance. For highly structured data, relevance

is user-specific rather than community based. For example, a student and a

retiree would likely purchase very different vehicles even though they may go to

the same dealership to buy them. Much of the internet‟s richest data is highly

structured and is not indexed effectively by large-scale search engines for

several reasons relating to the data‟s structure:

1) the structure is obvious to a human user but not to a program that

indexes the web,

2) the structure is vertical-specific, and

3) the structure is website specific, even when dealing with a single

vertical.

Vertical search engines expose subsets of these rich documents in useful

ways for their chosen domain. Unlike general purpose search engines, most

vertical search engines do not crawl the web to find their data. Even with the

 2

simplifications of being within a single vertical, it is very difficult to find and then

index rich documents using static algorithms. Each website presents its

documents with varying amounts of verboseness and unique terminology.

However, simplifying this problem to a single website presents an obvious

solution to finding these rich documents. Document classification is a well studied

and understood application of machine learning algorithms. Good training

conditions are the key to building high precision and high recall classifiers. Within

a single website, there is significant similarity between one rich document and

the next. The structure (order of elements, terminology, etc.) will be consistent

because:

1) human users have to use the website and understand what they are

looking at, and

2) for sites with a large number of documents, each document is

templated.

This scenario is ideal for building a high precision, high recall classifier to identify

rich documents.

Generalizing this solution requires some observations about modern

websites. Every website with a large number of documents provides some

search interface to find documents. For example, a real estate listings search

interface typically allows a user to specify their location, price range, home size,

and some home features. The result of a search provides a summary view of the

data, listing only key elements for several documents at a time, as well as a link

to deeper information for each document. Note that the summary view will have a

 3

high frequency of key data fields (one for each document). Continuing the real

estate listings example, the summary view will likely include the address, price,

and size for each home that matches the search criteria. The summary view

would likely not include information about each home‟s garage because this is

not considered a key data field. If a website does contain summary views, then

the links to the deep document views will share significant structural similarities.

Again using the real estate listings example, one home‟s detail page may have a

URL like: example.com/properties/details?listing_id=1234, while another could

be: example.com/properties/details?listing_id=4321. Just as deep documents

within a single website share significant structural similarity, summary documents

across all websites (within the vertical) share a small set of high frequency data

elements and labels. This creates another scenario that is ideal for building high

accuracy classifiers.

The objective of this work is to develop a high accuracy document

classifier for rich documents across all websites within a vertical. Certainty about

a document‟s classification simplifies the task of indexing the document, both

when the data is structured and unstructured. In the case of wanting structured

data, entity extraction also benefits by knowing a document‟s classification and

can make otherwise unsafe assumptions about data elements. For example, a

document classified as a real estate listing likely includes a price. If there is only

one price in the document, it can safely be assumed to be the listing‟s price.

Without knowing the classification, this assumption cannot be made.

 4

Traditional static document classifiers work well when the training context

is consistent with the “real world” the classifier later lives in. This is not the case

for rich documents due to their variability between across websites. This thesis

proposes a novel strategy named adaptive document classification for identifying

domain-specific structured data by exploiting consistency requirements both

within a single website, and across all websites within a vertical. Adaptive

document classification uses two levels of document classifiers: 1) a general-

purpose summary view classifier (whose training examples are manually

collected by a domain expert), and 2) an adaptive, website-specific rich

document classifier trained with dynamically collected examples. Once the data

is identified, it can be indexed using traditional strategies or more intelligent

domain-specific entity extraction. The strategy is demonstrated using real estate

as the example domain.

The remainder of this thesis is organized into five chapters. Chapter 2

presents prior work related to this thesis, starting with an introduction to

supervised, unsupervised, and active machine learning algorithms. Document

classification is introduced next as an application of machine learning. Finally,

works similar to this one are discussed. Chapter 3 details this thesis‟ system

design for a vertical search engine powered by crawled data. The focus of the

design discussion is on adaptive document classification, which is the novel

piece introduced here. Chapter 4 presents the subset of the design that is

included in this thesis‟ sample implementation. The sample implementation

demonstrates the novelty introduced by this thesis, adaptive document

 5

classification, but does not implement entity extraction or search/indexing. While

the design chapter includes general items like “machine learning algorithm”, the

implementation chapter lists the specific algorithms used. Chapter 5 discusses

the set of experiments used to test the implementation, including all results.

Chapter 6 summarizes this thesis, including its successes, limitations and future

work.

 6

2: RELATED WORK

The goal of this thesis is to produce high accuracy, context-sensitive

document classifiers for rich documents where traditional classifiers do not

perform well. This chapter introduces the necessary background and prior

research relevant to this thesis.

2.1 Statistical Learning

Statistical learning commonly refers to learning from data (Nilsson, 1998;

Hastie et al., 2001). In the computing science domain, this is also called machine

learning (ML). An ML algorithm is given a set of input data from which it derives

relationships that it applies to future input. The opposite of ML (in the context of

computing science) is an explicit encoding of a problem and instructions for how

to solve it. This opposite is impossible (or at least highly impractical) to

implement in many real world applications, resulting in the need for ML. Some

tasks cannot be defined well except by example. Some tasks involve data that

has deep correlations that are difficult for a human to extract, understand, and/or

describe. Some tasks change over time due to changes in their environments,

new information becoming available, new expertise being acquired, and/or

changes to the inputs. A statistical approach assumes that these difficulties are

all encoded in a set of training data, or can be included in a future set. Current

research indicates that this is a very good assumption (Cortes and Vapnik, 1995;

Joachims, 1998).

 7

ML accuracy is often measured with two metrics: precision and recall (van

Rijsbergen, 1979). Precision is defined as:

And recall:

These metrics require the number of true and false positives and negatives to be

known, so are only applicable in training situations. Unfortunately, training is

always done with a subset of the data, so the results are only as representative

as the data itself. Subsets are used for two reasons:

1) subsets are usually all that is known, and

2) there are practical performance implications to using too much training

data.

2.1.1 Learning Context

ML has a simple task: given some input, predict the output. This can be

represented as learning a function . The learner proposes a solution →

from all possible solutions , which maps → , where is the set of all

possible inputs and is the set of all possible outputs. The difference between

and results in some loss: (()), where (). The ultimate goal is

to minimize this loss function for all inputs. For some algorithms it is more

convenient to represent the learning problem in the form of a conditional

 8

probability model () (|), or as the joint probability model ()

 ().

2.1.1.1 Supervised Learning

Learning based on training data is called supervised learning (Vapnik,

2000; Hastie et al., 2001). The training data is a set of pairs of the form

*() ()+, where both and can be vectors, and each () pair is

an example of the desired input-output mappings. The learning algorithm

attempts to generalize the relationship between input-output pairs and infers

some function, , as a result. When is discrete the learning task is called

classification, and when continuous it is called regression. The strict

distinguishing factor of a supervised learning algorithm is that it requires training

data. Training data has several important implications:

1) all classes of outputs must be known ahead of time, and

2) unseen classes of inputs must be handled in reasonable ways.

The size and quality of training data has significant effects on the accuracy

of an algorithm. Given a reasonably good algorithm with some training data, the

fastest (and often easiest) way to improve accuracy is to choose a better training

set. Some algorithms have tuning parameters that can be optimized. These

optimizations usually affect the variance and bias of an algorithm. Given an

algorithm with several sets of training data, it is said to be biased against some

input if it systematically predicts the wrong output value for regardless of

which training set was used. Conversely, an algorithm that makes a different

 9

prediction for using different training sets is said to have high variance. The

ideal algorithm has low bias and low variance, and fittingly, the error rate of an

algorithm is related to the sum of these two values.

There is a trade off between flexible (low bias, high variance) and

inflexible (high bias, low variance) either set by parameters or built into each

algorithm. Flexible algorithms can adapt to data well, but sometimes so well that

the underlying concept is not generalized. This is called over-fitting. Inflexible

algorithms avoid the over-fitting problem, but risk missing good information from

the training set. Simple problems can be solved by inflexible algorithms with even

a small amount of data. More complex problems need flexible algorithms and a

lot more examples to extract relationships from the training data.

Some problems can appear to be more complex than they really are. Input

training data is a collection of samples, where each sample, , can be a vector.

High dimensionality of can introduce a lot of data that does not contribute to ,

the function we are trying to discover. As a domain expert preparing the training

data one might know this, but to an algorithm, all dimensions of the input are

equally likely to contribute to the output.

2.1.1.1.1 Semi-Supervised Learning

Semi-supervised learning learns how to act given an observation (Zhu and

Goldberg, 2009). Every action has some impact, and a supervisor provides

feedback about the impact that guides the learning algorithm. The learner is

allowed to choose which data to use for training, which usually results in needing

 10

fewer labelled examples overall at the risk of focusing on the wrong, irrelevant, or

even invalid examples. This type of learning is useful when there is an

abundance of unlabelled data that is expensive to label.

A popular (and effective) class of semi-supervised learning algorithms

uses Minimum Marginal Hyperplane methods, including Transductive Support

Vector Machines (SVMs). The distance between each unlabeled example and a

separating hyperplane is measured, and the examples closest to the hyperplane

are assumed to be the strongest indicators so are chosen for labelling. This

creates a new hyperplane and the process repeats iteratively. SVM is discussed

in depth later in this chapter.

2.1.1.2 Unsupervised Learning

Learning without training data is called unsupervised learning (Hofmann et

al, 1999). Unlike supervised learning, the class of outputs is unknown at training

time. From a theoretical point of view, supervised learning defines the effect a set

of inputs has on a set of outputs. Unsupervised learning assumes that all

observations are caused by a set of latent variables. This distinction is shown in

Figure 1.

 11

Figure 1: (a) In Supervised Learning all outputs are assumed to be caused by a set of
inputs. (b) In Unsupervised Learning all outputs are caused by a set of latent
variables. (Valpola, 2000)

As with supervised learning, the quality of input data is essential to learn

useful relationships. A practical advantage of unsupervised learning over

supervised learning is the complexity of relationships that it can learn.

Supervised learning tries to find the relationship between two sets of data (input

and output), and the difficulty of this task increases exponentially with each

hierarchical step between the sets. In unsupervised learning, an algorithm can

learn one hierarchical step at a time, making the cost per step linear rather than

exponential. Unsupervised learning can be used to solve supervised problems by

assuming that a set of latent variables causes both the input and the output, as

shown in Figure 2.

 12

Figure 2: Unsupervised learning can discover hierarchical relationships (Valpola, 2000)

Data mining is among the practical applications of unsupervised learning

(Chakrabarti, 2000; Berkhin, 2002). When used to „discover‟ new relationships

within some data set, it is difficult to judge an algorithm‟s effectiveness (other

than „good‟ or „bad‟). Many applications of unsupervised learning are equally

difficult to evaluate, which has led to the introduction of many algorithms based

on many different heuristics, with none provably better than others.

2.1.2 Learning Algorithms

This section introduces a selection of supervised and unsupervised

learning algorithms that lead up to the academic community‟s current standard.

Much of the current research focuses on optimizing and improving existing

methods rather than introducing entirely new methods. Both classes of

algorithms are used in this thesis‟ system design.

 13

2.1.2.1 Supervised Learning Algorithms

2.1.2.1.1 Linear Least Squares Fit

Linear classifiers create a model to fit a given vector of inputs

() to predict the output based on a linear combination of the input

(Lawson, 1974). The model takes the form

 ̂ ̂ ∑ ̂

where ̂ is known as the bias. Combining the bias (and) into vector of

coefficients ̂, we can rewrite the model as

 ̂ ̂.

There are two broad classes of algorithms for determining the parameter ̂ of a

linear classifier: 1) discriminative models and 2) generative models.

Discriminative models attempt to maximize the quality of the output of a training

set, and generative models use probability density functions to estimate a given

input‟s likelihood of belonging to a particular output class. Linear least squares fit

(LLSF) is a discriminative model that picks ̂, which characterizes the entire fitted

surface, to minimize the sum of squares

 () ∑(
)

This quadratic always has at least one minimum that can be demonstrated by

writing the sum in matrix notation, then differentiating with respect to

 14

 () () ()

Setting the derivative to zero, we get:

 ()

If a unique solution exists, it is given by

 ̂ ()

where is an input vector and is -vector of outputs from the training

data. The prediction of an unknown input is ̂()
 ̂. Linear decision

boundaries produced by LLSF assume that such boundaries are appropriate for

the problem, making it a low variance and potentially high bias learning

algorithm. Despite its relative simplicity, LLSF has been shown to perform

comparably to some of today‟s best classifiers (Yang, 1999).

2.1.2.1.2 k-Nearest Neighbour

The idea of Nearest Neighbour (-NN) classification in based on simple

intuition: new input that is „close‟ to some training input is likely to have the same

output as said training input (Yang, 1994). A single input may have several

similar training inputs, so an average of these training outputs can be used:

 ̂()

∑

 ()

Where () is the set of similar training documents, or neighbourhood. A

common definition of this neighbourhood for inputs represented as vectors is

cosine similarity:

 15

 ()
∑

√∑

 √∑

where is a vector and is the weight of the th element in input . Unlike

LLSF, -NN does not build a fitted model at training time. Instead, every new

input is compared to the training data at classification time. There are two main

parameters for -NN:

1) the size of the neighbourhood, , and

2) the definition of distance to collect neighbouring items.

Optimizing the selection of is meaningless at training time, since using

 will always minimize the error for the training set. The error on the training

set to roughly an increasing function of . The decision boundaries produced by

 -NN can be non-linear and are independent of assumptions about their

appropriateness for the problem. Any subset of the decision boundary depends

only on inputs, making -NN a high variance, low bias learning algorithm.

 Current -NN research focuses on runtime performance optimizations.

Since this algorithm has no training, runtime depends entirely on speed of

discovering and evaluating neighbours. There are two classes of optimizations:

1) better search strategies, and

2) reducing search space by combining neighbours.

There is no decrease in classification accuracy associated with 1), but

start-up and runtime memory usage increases. Search space reduction methods

 16

trade classification accuracy for runtime performance. Runtime savings can be

significant (up to a factor of 10) at an accuracy cost of about 1%.

2.1.2.1.3 Naïve Bayes

Naïve Bayes is a generative classifier that models the conditional

probability density function (|), and is based on Bayes‟ Theorem (Ng,

2002):

 (|)
 (|) ()

 ()

 is a collection of characteristics about the input, so the conditional probability

can be rewritten as:

 (|)
 () (|)

 ()

The denominator () is effectively a constant because it does not

depend on and the values are given. The numerator portion of the

probability can be rewritten using the definition of conditional probability as

follow:

 () (|)

= () (|) (|)

= () (|) (|) (|)

which generalizes to:

= () (|) (|) (|)

 17

At this point the „naive‟ assumption is made. The distinguishing idea behind

Naïve Bayes classification is that presence or absence of one input is

independent of the presence or absence of any other input. Mathematically

speaking, this means:

 (|) (|)

for all inputs where . This simplifies our previous generalization to:

= () (|) (|) (|)

The entire conditional distribution simplifies to:

 (|)

 ()∏ (|)

where is a constant. To classify an input we can calculate the probability that

it belongs to each possible class:

 ()

 ()∏ (|)

The desired output is a classification, not a probability, so this algorithm will be

correct if the actual classification is the most likely, regardless of how accurate

the class probabilities turn out to be. By assuming independence between all

inputs, Naïve Bayes remains a one-dimensional problem. This simplifies

computation, implementation, and analysis while working well for many real world

problems.

 18

Naïve Bayes classifiers are commonly used in commercial applications

and in benchmarking state-of-the-art research, but are no longer a popular topic

among the latest research. The methods introduced next are more widely

researched.

2.1.2.1.4 Support Vector Machines

A support vector machine (SVM) creates a hyperplane in an n-

dimensional space to separate a set of training points, as shown in Figure 3 (a)

(Joachims, 1998; Brown, 2010). More precisely, SVM chooses the hyperplane

whose sum of distances to the nearest data points on each side is maximized, as

shown by the solid line in Figure 3 (b).

Figure 3: (a) Many possible hyperplanes can separate this data. (b) SVM chooses the
maximum margin line of separation.

This section shows the formalization of SVM for the simplest case in which the

data is linearly separable. SVM training data is of the form

 {()|
 * +}

 19

where is a -dimensional data point, and is the classification for which

can be either -1 or 1. A hyperplane dividing the points and can be

written as the set of points that satisfy the equation , where is

the normal vector perpendicular to the hyperplane and

‖ ‖
 is the hyperplane‟s

offset along . SVM chooses and to maximize the distance between the

hyperplane and each class‟ nearest points through which parallel hyperplanes

run. These parallel hyperplanes are characterized by and

 , and are represented by the dotted lines in Figure 3(b). The distance

between these two hyperplanes is

‖ ‖
. The goal is to minimize ‖ ‖ while

keeping all data points outside of the margin, formalized as ()

for all data points. This optimization problem can be solved with a linear

combination of training vectors:

 ∑

where is the set of Lagrange multipliers, most of which will be zero to satisfy

the KKT conditions (Kuhn et al., 1951). Each non-zero corresponds to a

support vector which lies on the margin.

 This formalization makes several simplifying assumptions. The first

assumption is that the training set is linearly separable. There are several

methods for dealing with non-separable data, including:

1) the use of slack variables to maximize the boundary while allowing

some data to be on the wrong side of the margin, and

 20

2) transforming the data into a linearly separable set using kernel

methods, which will be discussed in the next section.

A second assumption is two-class classification. A single hyperplane

separates data into two classes. Multi-class SVM classification generally reduces

to several binary classifiers.

Current SVM research focuses on reducing runtime computational

requirements (memory and processing time), and on improving the efficiency of

multi-class classification (Hsu et al., 2002; Shao et al., 2008; Dong et al., 2008).

Computational gains are generally achieved by using approximations that do not

affect the relative output of an SVM. The most common multi-class SVM

methods are:

1) one vs. one, and

2) one vs. all.

In 1), every unique combination of classes is used to build an SVM.

Similar to Naïve Bayesian methods, an input document is tested against every

SVM and the classification is based on which class has the most votes. In 2),

only one SVM is built for every class, in which the positive training documents

are examples from the target class and the negative training documents are

examples from all other classes. Similar to the previous method, a new document

is tested against each SVM and the highest scoring class indicates the

classification.

 21

2.1.2.1.5 Kernel Methods

Linear SVMs are powerful but their applications are limited. Many real

world problems are not linearly separable so SVM cannot be applied directly.

However, transforming the input data to a higher dimensional space might make

it linearly separable, as shown in Figure 3 (Rodriguez, 2004).

Figure 4: (a) Non-linearly separable data in two-dimensional space. (b) Transformation to
three-dimensional space makes it linearly separable.

Using a linear classifier on the transformed input space will result in linear

classification in the new space, but non-linear classification in the original space.

SVM has a convenient application of this method: replacing the dot product with

a kernel function results in a boundary between classes: () . The

resulting formalization is similar and enables non-linear classification.

2.1.2.2 Unsupervised Learning Algorithms

Clustering is a common form of unsupervised learning that groups items

based on some measure of similarity. There are three classes of clustering

 22

algorithms: hierarchical, partitional, and spectral. This section focuses on

clustering because it is the only type of unsupervised learning algorithm used in

this thesis‟ design.

2.1.2.2.1 Hierarchical Clustering

Hierarchical clustering is an iterative approach that, given some set of

clusters, refines them to a better set of clusters (Hastie et al., 2001). This is

repeated until some convergence (or termination) criterion is met. Hierarchical

clustering algorithms are iterative and either divisive or agglomerative. Divisive

algorithms initially assume that all examples form a single cluster and clusters

are divided at each iteration. Conversely, agglomerative algorithms initially

assume that each example is in its own unique cluster and clusters are merged

at each iteration. A similarity function measures the distance between any two

given examples. Merging or dividing sets is determined by the pair-wise distance

between examples. Common forms of the similarity function include Euclidean,

Manhattan, and Hamming distance.

2.1.2.2.2 Partitional Clustering

Hierarchical algorithms require several iterations to reach a useful state.

Partitional algorithms attempt to separate the examples all at once, although they

can also iterate to improve results (MacQueen, 1967). Partitional clustering starts

with randomly generated clusters from the training set. Next, the centroid of

each cluster is calculated and all examples are re-clustered by being place in the

cluster whose centroid each is nearest to. Repeating the previous two steps can

 23

refine the choice of clusters, and as with hierarchical clustering, any similarity

metric can be used. The initial randomization plays a significant role in

determining the final clusters. Including a heuristic into the randomization

scheme can help guide clustering in a desired direction.

2.1.2.2.3 Spectral Clustering

Accurate pair-wise similarity between examples is the key to good

clustering. Spectral clustering represents the similarity between all examples in a

matrix , where is the similarity between examples and (Bach et al., 2003).

Dimensionality reduction simplifies , then another method (a partitional

clustering algorithm for example) is applied to cluster the examples. Similar to

previously discussed non-linear classification implementation, dimensionality

reduction can introduce non-linear transformations to produce non-linear

clustering.

2.2 Document Classification

A machine learning algorithm applied to the contents of a document is

called document classification. Learning algorithms take a collection of vectors as

input. In document classification, each vector represents a single document, and

each element of the vector represents some word, or more generally, feature in

the document (Joachims, 1998). Machine learning algorithms have been

introduced in 2.1.2, so this section focuses on methods for converting input

documents to vectors.

 24

2.2.1 Pre-processing

A feature set is the collection of all possible features that a document can

contain. In the simplest case, each document in the training set is converted to a

set of features, and the superset of all document features makes up the feature

set. A problem with this approach is the high dimensionality caused by

considering every possible feature in each document (Yang, 2002). The goal of

pre-processing is to reduce the size of the feature set without reducing the

amount of information contained in it. Language lends itself well to this goal

because the same information can be communicated in many different ways.

Three common strategies are:

1) stemming,

2) synonyms, and

3) grouping.

Each strategy benefits from heuristics. A more domain-specific heuristic will lead

to better results.

2.2.1.1 Stemming

Stemming is the process of reducing inflected words to their base form

(van Rijsbergen et al., 1980). For example, the base form of the word ‘swimming’

is ‘swim’. In document classification, the form of the word usually does not

matter. A document that contains any of the words ‘swim’, ‘swimming’, ‘swims’, or

‘swimmer’ might be about swimming. The form of the word it contains does not

change this probability, so reducing all forms to the base form reduces the size of

 25

the feature set. The base form is chosen out of convenience rather than

necessity. There are two classes of stemming algorithms: one that stems based

on a lookup table, and one that stems based on patterns. As the name implies,

lookup table methods must know the relationships between all root forms and

inflected forms ahead of time. This has the benefit of always producing the

correct result, but is a difficult requirement. Pattern-based methods are language

specific, and attempt to generalize how inflected forms are allowed to relate to

base forms. The key benefit is that no lookup table is required, but there is no

guarantee that output will be valid. An inflected might produce the wrong base

form (e.g. „ran‟ reducing to itself instead of the correct „run‟), or the base form

might not be a valid word (e.g. „friendliest‟ reducing to „friendl‟). The first form of

error limits the effectiveness of stemming for document classification, but the

second form of error is a negligible concern. Document classification requires

consistent features, not necessarily grammatically correct features.

2.2.1.2 Synonyms and Grouping

Synonyms are different words that have the same or similar meanings.

Their application to document classification is similar to stemming: reducing the

size of the feature set. Synonyms also help highlight important dimensions in the

feature set. For example, if n training documents each contained a different

version of the same synonym, a machine learning algorithm will see n different

dimension, each with very little data. A synonym list reduces these to a single

dimension, making it a stronger indicator for learning algorithms. Note that

stemming provides a similar benefit.

 26

Grouping takes similar features and reduces them to a common form. For

example, the presence of a phone number might be an important indicator for a

class of documents. However, the exact phone number is unlikely to matter.

Grouping recognizes patterns, like phone numbers, and represents them with a

common symbol. Another practical use of grouping is for prices. As with phone

numbers, the precise value rarely matters, but unlike phone numbers, orders of

magnitude may be good indicators. For example, $0.29 might be an insignificant

indicator for documents about cars for sale, but $13,299 could be a very

significant indicator.

2.2.2 Feature Extraction

Converting a document into a list of features (or at least potential features)

is called feature extraction, and is done using tokenization (Weston et al., 2000).

Tokenization is the process of breaking up a collection of words into tokens,

where each token can be any subset of the original set, including a word, phrase,

sentence, paragraph, or even the original set. The simplest tokenization

algorithm uses whitespace to split a document into multiple tokens, where each

word becomes a token. This works reasonably well for some languages (e.g.

English) but fails for others (e.g. Japanese). Language-specific techniques such

as part-of-speech tagging and parsing can function on any language, but are

considerably more complicated. The order of tokens is often ignored; the set is

treated as an unordered bag of words. A grouping pre-processor can handle

order-dependant tokens by converting them into a single token. Another way to

 27

impose token order is with n-grams, where each token is combined with up to n

trailing tokens to form the following tokens: “ ”, “ ”, ..., “ ”.

2.2.3 Feature Selection

Feature extraction converts a document to a collection of features.

Feature selection chooses a subset of these features to form the feature set

based on training documents. At runtime, a document is converted to a collection

of features in exactly the same way, but only its features that are in the feature

set are used for classification. Feature selection as a dimensionality reduction

technique is optional. Using the superset of all training features is possible, but

has some limitations including: 1) high dimensionality, 2) potential over-training to

the training set, and 3) obscuring intuitive interpretation of a classifier‟s

performance. Feature selection algorithms assign a predictive weight to each

feature, and then choose the top features based on some threshold.

Document frequency (DF) counts the number of training documents that

contains each feature (Salton et al., 1988). The features with the highest counts

form the feature set. Similarly, term frequency (TF) counts each feature‟s

occurrence in the training set (can occur multiple times per document),

normalizes against the size of each document, and then applies the same

threshold method for choosing the feature set. TF incorrectly emphasizes

common words (e.g. ‘the’). Term frequency-inverse document frequency (TF-

IDF) attempts to overcome this emphasis by penalizing frequently occurring

features‟ weight. More formally, the TF of term in document is

 28

∑

where is the number of times occurs in and ∑ is the number of

features in . The inverse document frequency is

| |

|* +|

where | | is the size of the training set and |* +| is the number of training

documents that contain . TF-IDF is

()

Frequency alone is not always a good indicator the predictive power of a

feature. Chi-squared () identifies features that are highly dependent and

assumes these features are the best classification indicators (Rogati et al.,

2002). For a feature in class ,
 is:

(() ())

 ()

((̅ ̅) (̅ ̅))

 (̅ ̅)

((̅) (̅))

 (̅)

((̅) (̅))

 (̅)

where () is the number of training documents of category in which

contain , (̅ ̅) is the number of training documents not of category which

do not contain , (̅) is the number of training documents of category in

which do not contain , and (̅) is the number of training documents not of

category which contain . is the expected value of similarly defined pair

 29

assuming that the feature and category are independent. For independent

feature-category pairs is zero. is averaged over all categories for every

feature to find each feature‟s marginal value. The feature set is formed of the

 features with largest marginal value, where is the desired size of the

feature set.

 Information theory measures the amount of new knowledge provided by

some evidence as a probability that this evidence will alter the current result

(Mitchell, 1997). In a binary classification case, evidence that is equally likely to

predict either class contains no information. Information gain (IG) measures the

number of bits of new knowledge toward predicting a class:

 () () (
 ()

 () ()
) (̅) (

 (̅)

 () (̅)
)

where ()
 ()

| |
⁄ is the probability that a document contains

feature and belongs to class . The ̅ notation is consistent with the

explanation of Chi-squared. The probabilities are computed based on

occurrences in the training set and, as in Chi-squared, each feature‟s information

gain is averaged over all classes to calculate a marginal value. The feature set is

made up of the most informative features.

2.3 Adaptive Document Classification

As document collections evolve, the context of the classification problem

also evolves. One goal of automatic document classification is to classify a

 30

document as a human would. If a human‟s preferences change over time then

their classification decision can also change. Terminology and content are

perpetually changing aspects of language (Kroch, 1989), so using linguistic

features for classification is time-sensitive. Classifiers need to evolve with the

language. Domain changes can make the original document classes obsolete.

As the logical lines between document classes begin to blur, new classes should

be created. The document classification techniques described in 2.2 work well

with consistent data, but do not adapt to changes. Using non-adaptive methods

on a changing data set leads to accuracy degradation over time until new training

sets are built (to reflect changes in the data), and new classifiers are trained

against said sets. Many real-world document classification problems have

evolving data. For example, an English language spam classifier would have to

understand new slang and nomenclature that is added to the language every

year. Rather than waiting for performance to drop below some threshold, there

are classification methods that absorb new information as it becomes available.

The methods presented in the remainder of this chapter will be used to evaluate

the motivations for this thesis rather than for functional or performance

comparison.

2.3.1 Adapting to User Interests

(Potamias, 2001) proposes an adaptive classification system for web

documents that tailors results to user preferences. Web document classification

is a specialization of document classification that takes advantage of structured

data in web documents. Web documents contain tags that indicate the relative

 31

important of some words or phrases in a document, allowing feature selection to

treat these features preferentially. Potamias‟s adaptive approach is described in

the following steps.

1. A non-adaptive, supervised classification model is built using

techniques described in 2.2. All output classes are known ahead of

time.

2. Users create profiles that indicate classes and keywords of interest.

Profiles do not contribute to classifier training therefore can be updated

dynamically by users.

3. Incoming documents are classified against the generated models using

non-adaptive techniques.

4. Classification output is compared against user preferences, and any

document that is un-interesting based on the user profile is removed

from the result set.

5. Users can also specify which web document tags they trust most, and

if specified, the output set is refined further based on these tags.

Steps 4 and 5 implement this algorithm‟s adaptiveness, allowing each user to

see results specific to their own preferences. As user preferences change, their

profiles are updated and their result sets immediately reflect the change.

However, changes to relevant features in the taxonomy are not detected or

consumed.

 32

2.3.2 Incremental Context Mining

Every class of documents has a key set of distinguishing features.

Incremental context mining maintains a set of features per class, which the

authors call a class‟ contextual requirement (Liu et al., 2002). This feature set is

updated by every incoming training document, as shown in Algorithm 1.

Algorithm 1: Incremental Context Mining

Inputs A text hierarchy .
A training document and the most specific category that
belongs to.

Output Update the feature set of and its related categories in

Algorithm
1. ← * | +

2. While (is not the root of) do

2.1. For each feature in do

2.1.1. If is not in feature set of , add to feature set

2.2. For each of ‟s features do

2.2.1. Update strength of

2.2.2. For each sibling category of do

2.2.2.1. If is in ‟s feature set, update strength

2.3. ←

Dynamic feature sets require a classification algorithm that does not regenerate

its model as feature sets change. -NN, which was introduced earlier, is an

example of such an algorithm. The authors propose a similar algorithm whose

distance measure is called degree of acceptance. Incremental context mining

addresses the problem of vocabulary and context change with a class of

documents assuming that it is presented with new training documents.

 33

2.3.3 Dynamic Class Creation

The growth of the internet, including most subsets of documents within it,

makes it impossible for a fixed class set to provide accurate classification of its

documents. To maintain accuracy, an algorithm either needs to be re-trained, or

it needs to be able to expand the class set. Dynamic class creation represents

the category set as a hierarchy, and new categories can be added as leaf nodes

in the tree (Choi et al., 2004).

Dynamic class creation consists of two stages: the first stage is to create a

category tree that defines the current state of knowledge, and the second stage

is to classify documents and update the category tree when needed. The choice

of categories is dependent on the domain and is up to the user. As with other

classification assumptions, the better the input, the better the generated class

structure will be. Each category is used to generate a set of features that best

predict its members. Next, the features are propagated from child nodes to

parent nodes recursively, so that any node includes the union of all of its own

features and all features of all its children. The importance of the features

decreases as they move up the hierarchy to maintain each node‟s core

relevance. Unique features among sibling nodes are considered key features,

and are the basis of the search algorithm used for classification in the second

stage.

Each node in the classification tree has a classifier that answers the

question: “what is the probability that the input document belong in this class”.

Starting at the root node, an input document is classified against the root. If it

 34

passes, the same process it then classified against each of the root‟s children,

and at most one child is chosen to continue the path. Passing means exceeding

some probabilistic threshold based on statistics about each class‟ members. This

process is repeated until classification does not pass, or it passes on a leaf node.

Since each leaf node‟s feature were propagated upwards, a document belonging

anywhere in the tree will have sufficient features along the path from the root to

ensure correct classification, similar to how decision trees propagate conditions.

There are two special cases where action is taken even when classification does

not pass. When a document fails at any level in the tree, a new subclass is

created under the class that the document had the highest probability of

belonging to. This is called a deeper expansion. The second expansion occurs

when a document is much more likely to belong to a parent node than to any of

this parent‟s children. A new sibling node to the parent is created, called wider

expansion. Once a document is assigned to a class, the features that most

distinguish the document are incorporated into the class, and propagated

upwards, allowing the class itself to further distinguish itself from other classes.

Creating dynamic classes ensures that classes remain distinct. The

challenge becomes doing something useful with the generated classes. Similar

to unsupervised learning, the output is statistically valid but highly subjective.

2.4 Summary

This chapter has introduced the current state of research in both static and

adaptive document classification. The stated problem is to develop a

classification system that works well across all web documents, where some

 35

subsets of documents are related by belonging to the same website. Data

diversity and change over time makes this problem impossible to solve with a

single document classifier, so an adaptive approach is required.

Adapting to user preferences is analogous to adapting to each website.

The presented algorithm requires user preferences to be manually entered, so in

the context of the stated problem, would require manual input for each website,

which is an unreasonable requirement. Incremental context mining is a similar

problem because just as two documents can represent the same information

using different vernacular, so can two websites present the same documents

using different templates. This algorithm requires labelled incremental training

data, which would again require manual work per website in context of the stated

problem. Creating dynamic classes theoretically allows each website to consist of

a subset of classes. However, it is more likely that subsets across websites

would collide, making it difficult to distinguish which classes contain the sought-

after rich data (assuming that this data was correctly clustered, an unlikely

assumption). The prior works do not address the problem of identifying rich data

across web documents. Rich data is constantly changing, but summary data is

concise and therefore much more consistent across all corpora. The solution

proposed by this thesis is the first to take advantage of this consistency to solve

the stated problem.

 36

3: SYSTEM DESIGN

Vertical search engines provide a search service focused on a specific

subset of internet content, such as research articles or classified ads. Their goal

is to discover all relevant information available online, understand it, and make it

searchable to their users. To achieve this goal there are three functional

components that all search engines implement:

1) web crawling,

2) document classification, and

3) data extraction and indexing,

as shown in Figure 5 (Bialecki, 2009).

 37

Extraction
and Indexing

Crawling

Search Interface

Searchers

Indexes

Indexers

Web DB

Fetchers

Fetch List

Updates

Document Classification

Data Extraction

Figure 5: Vertical Search Engine System Design

Adaptive document classification uses the same general system design as

shown in Figure 5 with several important distinctions to allow for feedback

between the crawling and classification components to create site-specific

classifiers. This chapter explains each of the core components involved, with

special focus given to designs unique to this thesis.

3.1 Crawling

Crawling is the time consuming process of scouring the internet for

content. While general-purpose (or whole-web) crawling might take several

weeks or more on many computers, vertical crawling focuses on a subset of the

internet so is much quicker (although it may still take days or weeks). A single

 38

cycle of crawling is shown below in Figure 6, which includes more details than

the summary version presented earlier.

Web DB

Fetchers

Fetch List

Updater

Seed URLs

Internet

Scheduler

Shared Components

Figure 6: Crawling Design

A crawl starts with a seed list of Universal Resource Locators (URLs) that tell the

crawler where to start. These URLs are stored in Web DB, which contains just

URLs for pages to be visited, and complete information after a page has been

visited including timestamps of when each document was downloaded and link

structure of the document space. Each URL is then placed into a queue of items

to be downloaded. A collection of Fetchers is responsible for monitoring this

queue and fulfilling its requests. A Fetcher downloads the contents of a URL, and

then passes it on to an Updater that is responsible for determining future URLs to

 39

visit and updating Web DB‟s content and context relating to the downloaded

URL. This cycle continues until all desirable URLs have been visited.

Future URLs are based on outgoing links from a page, and for vertical

search applications, are usually restricted to links within the current domain.

Such crawlers are bounded by the set of domains provided in the seed set. The

content of a page is used in a downstream collection of processes that will

convert it into something searchable for a user. The context of a page is used to

indicate relevance, or trust-worthiness, of its content. A page that has many

incoming links means that many internet users find its content interesting and link

to it from their blog, social networking medium or other form of website. In

general, a web page with more incoming links has better information than one

with fewer incoming links, so in cases where their content disagrees, the more

popular page should be trusted. Google calls this trust system PageRank.

There are several important considerations to make crawling practical.

Some websites want to be crawled so their content is more widely available, but

others want to remain hidden (with more certainty than using voluntary crawl

restrictions such as robots.txt). Such sites may set crawler traps that makes

static content across an infinite number of pages appear unique. This will cause

an infinite crawling loop. Some sites create crawler traps accidently by exposing

the same content through several different URLs. The simplest way around such

a trap is to restrict the depth that a crawler can visit, where depth is measured as

the length of the link path away from a seed URL. The Updater is responsible for

tracking depth and ignoring links that exceed that maximum allowed.

 40

As soon as a URL is visited, its downloaded version becomes stale. Its

author will not notify all crawlers when the URL content changes, so it is up to the

crawler to determine how stale a URL is allowed to become. The rate of content

change is highly variable from one website to another, but often consistent within

a single website. Measuring this rate over several crawls of a single website

gives a good indication of how frequently the website needs to be visited. The re-

crawl frequency of a website can be controlled by a feedback system (e.g. PID

controller) to maintain some acceptable level of staleness. As shown in Figure 6,

the Scheduler is logically between the Updater and Web DB because in addition

to scheduling re-crawl tasks, it is also responsible for scheduling real-time

crawling tasks.

Crawlers access a website through the same interface as the websites

users. Every website has some finite set of resources powering it, meaning that

its concurrency rates are also finite. Aggressive crawlers can eat up a significant

portion of these resources to the detriment of users visiting the same website.

Polite crawling restricts where on a website a crawler is allowed to go, and the

maximum bandwidth per unit time that a crawler can consume. The robots.txt

standard allows webmasters to broadcast how they want their website crawled.

The most time consuming process in web crawling is downloading content

from the internet. After the content is retrieved, the required series of tasks to

process the content executes relatively quickly. Crawl parallelization allows

multiple crawls and disjoint parts of the same crawl to run simultaneously across

multiple machines. A key goal of crawl parallelization is to minimize the amount

 41

of overhead introduced from parallelization control while maximizing the

download rate. Parallel crawling requires coordination to ensure the disparate

crawlers do not download the same page, and that polite rules are obeyed

across the superset of crawlers, not just within each individual crawler. A

singleton model is used per domain to ensure politeness to that domain‟s

resources by running all processing for a single domain on one logical machine.

This simplifies de-duplication of newly discovered URLs by keeping all relevant

data per domain in a single memory space.

A common set of utilities are used by several functional blocks, shown in

Figure 6 as Shared Components. These components include URL content-type

parsers, which translate specific content types like HTML and PDF into text, link

parsers, which extract links from specific content types, URL filters, which have

rules for acceptability of URLs, URL normalizers, which translates relative or

partial URLs into a common form, and rendering engines, which render content

and styles the same way a user would see them.

3.2 Adaptive Document Classification

This thesis‟ proposed adaptive document classification algorithm

distinguishes it from other data gathering strategies for vertical search engines.

Most websites that have many documents related to a single vertical have the

same user flow for finding these documents:

1) a user enters some search criteria (either in a form or by selecting a

pre-defined set),

 42

2) the website presents the user many results showing summary

information for each result, and

3) selecting a summary view takes the user to a detailed document about

the entry.

Adaptive document classification creates a details page (DP) classifier per

website. After the classifier is created, each page found by the crawler is

classified using the classifier. Creating the classifier is described here, and

shown in Figure 7. Each page found by the crawler is checked for usefulness as

a training example. For each crawled page, the general purpose search result

page (SRP) classifier is used to check if the page contains summary information

about multiple detail pages. Note that this classifier is assumed to be an input to

the algorithm. If the page is not an SRP then it is collected as a negative DP

example. If the page is an SRP then it is mined for links to detail pages using a

clustering algorithm on all the links on the page. If a cluster of links to detail

pages cannot be found then the page is not used as a training example.

Otherwise, each DP link is downloaded and its content is added to the collection

of positive training examples, and the SRP is added to the list of negative

examples. If a sufficient number of training examples are collected, then the site-

specific DP classifier is trained. Otherwise, the crawler continues to its next

location. After the DP classifier is trained, all pages visited within the website up

to that point are classified. This thesis empirically found that five positive and five

negative examples are sufficient to create a high accuracy classifier.

 43

Start

Input document

Have detail page
classifier? yes Classify and collect

document

Document is
search result

page?

no

Collect as negative
detail page exampleno

Cluster outgoing
links within site

yes

Has detail page
link cluster?

Do not collect
documentno

Download all detail
page links and add
to positive detail
page examples

yes

Sufficient data
to build detail

page classifier?
Exitno

Build detail page
classifier

yes

Classify and collect
all Documents not

yet run through
detail page classifier

Exit

Figure 7: Adaptive Document Classification Flowchart

 44

As an example of how this works, assume a very simple website with a

search box on its home page which takes users to a search result page, which

contains links to detail pages. The crawler would first see the home page, and

ADC would classify it as not being an SRP, so it would be collected as a negative

DP training example. Next, the crawler would get to an SRP page, and ADC

would recognize this fact (using the input SRP classifier). Next, ADC would find a

cluster of links pointing to the DPs, download each link, and then add each to the

collection of positive training examples. The SRP would be collected as a

negative training example. The crawler would continue until at least five positive

and five negative training examples were collected, at which point ADC would

train a site-specific DP classifier, classify all pages visited within the website up

to that point, and then continue crawling and classifying each new page using the

DP classifier. A more realistic example would include pages within the website

that are not in the search path. ADC would treat these similarly to the home page

in the example.

The URL structure of all DP is assumed to be consistent within a single

website. For example, the real estate listings website realtor.ca uses URLs like

http://www.realtor.ca/propertyDetails.aspx?propertyId=10067266 and

http://www.realtor.ca/propertyDetails.aspx?propertyId=9915829 to distinguish

between two specific real estate listing detail pages. The only difference between

these URLs is an identifier specific to each real estate property. When a

document is classified as an SRP, a clustering algorithm is used to group all links

from the document by similarity to each other. If the website fulfils the similarity

http://www.realtor.ca/propertyDetails.aspx?propertyId=10067266
http://www.realtor.ca/propertyDetails.aspx?propertyId=9915829

 45

assumption, then one of the resulting clusters will be a set of URLs that point to

detail pages. The size of each cluster, statistics about the URL similarities, and

domain-specific heuristics allow ADC to select the cluster containing the DP

URLs. Each link from this cluster is downloaded, and its content is blindly added

to the list of positive training examples for the DP classifier. Once a minimum

threshold of training document size is met, a DP classifier is created for the

website. All past documents are run through this classifier in a batch to find any

DPs that have already been missed, and future documents are all classified in

real time. The flowchart presented above includes several uses of the same

logical components, but this may not be clear from the labels used. A similar

flowchart is shown in Figure 8, but using common component names wherever

applicable.

 46

Start

Input document

Have detail page
classifier? yes Classify and collect

document

Feature
Selection,

Supervised
Learning

no

Collect as negative
detail page exampleno

Feature Selection,
Unsupervised

Learning

yes

Has detail page
link cluster?

Do not collect
documentno

Download all detail
page links and add
to positive detail
page examples

yes

Sufficient data
to build detail

page classifier?
Exitno

Feature Selection,
Supervised Learning

yes

Classify and collect
all Documents not

yet run through
detail page classifier

Exit

Figure 8: Adaptive Document Classification with Functional Components

 47

Feature selection, supervised learning, and unsupervised learning are the core

reusable components of ADC. The remainder of this section will describe the

design of these components, regardless of where in the system they are used.

3.2.1 Pre-Processing

Pre-processing is intended to reduce dimensionality of the feature-space

by normalizing input. At both training and classification time pre-processing is

applied before anything else is done to a document. At training time this means

before generating the feature set, and at classification time this means before

converting an input document to a feature vector. The same pre-processing

steps must be applied to preserve the relevance of the machine learning model.

There are three common cases that normalization is intended to handle: 1)

inconsistent word or phrase usage, 2) rogue documents skewing feature counts,

and 3) mark-up overwhelming the content.

3.2.2 Feature Selection

Feature selection is the process of converting a document into a vector in

a feature space. In the case of supervised learning, a feature set is calculated at

training time, and defines the feature space. In the case of unsupervised

learning, the feature set is infinite. This section focuses on the supervised case,

as it will become clear that the unsupervised case is a simplified form of the

supervised case.

 48

Feature selection has two distinct phases. The training-time phase

determines the feature space and the classification-time phase determines the

feature space vector for each input document. At training-time a feature

extraction method (like those presented in 2.2.3) is applied to select the strongest

indicators of each document class. The features are aggregated into a feature

set, and then refined by retaining only the top positive and negative indicators.

This sequence is shown in Figure 9.

Feature Selector Feature Extractor Feature Set

Training Set

loop
[For each training document]

Get all possible features

features

Add features to feature set

Aggregate features

Select top features

Refined feature set

Figure 9: Training Time Feature Selection

Classification-time feature selection uses the feature set as a filter for

input documents, as shown in Figure 10. In this context, classification-time

 49

means any time the system needs to convert a document into a feature vector. In

the context of supervised learning, this needs to happen at both training-time and

classification time.

Feature Selector Feature Extractor Feature Set

Input Document

Get all possible features

features

Filter features

filtered features

Figure 10: Classification Time Feature Selection

3.2.3 Supervised Learning

Supervised learning is used for both SRP and DP classification, with the

SRP classifier provided as an input to the system, and the DP classifier trained

dynamically per website. In both cases, the sequence of tasks performed is

identical. The training-time tasks are shown in Figure 11.

 50

Learner Feature Selector Feature Set

Training Set

Get feature set for training documents

feature set

Convert training documents to feature vectors

feature vectors

Machine Learning Algorithm

Build classification model

Figure 11: Training-Time Supervised Learning

The learner receives a training set as input, consisting of positive and

negative training examples. The training set is passed to the feature selector to

generate an appropriate feature set. Next, each training example is converted to

a feature-space vector using the feature set, and finally, the vector representation

of all training data is passed to the supervised machine-learning algorithm to

generate a classification model. Generating this model is the purpose of training.

At this point, the classifier is ready to handle new (unclassified) data. The

sequence of tasks at classification-time is shown in Figure 12.

 51

Learner Feature Set

Input Document

Convert document to feature vector

feature vector

Machine Learning Algorithm

Classify document

classification score

Figure 12: Classification-Time Supervised Learning

The same feature set must be used at both training and classification time

to generate consistent feature-space vectors. At classification-time, a classifier

logically deals with one document at time. The document is converted to a

feature-space vector using the feature set, then the vector is compared against

the classification model to generate a score. Depending on the algorithm used,

the score can either be a discrete value indicating membership in some class, or

a probability of inclusion in some class.

3.2.4 Unsupervised Learning

Unsupervised learning is used to cluster URLs on Search Result Pages to

find a set of Detail Page documents. Detail Page URLs share patterns that allow

them to be clustered with high accuracy. Unsupervised learning algorithms are

 52

not trained using labelled data so the only computation is at runtime, which is

shown in Figure 13.

Learner Feature Set

Documents to cluster

Convert training documents to feature vectors

feature vectors

Machine Learning Algorithm

Build clusters

loop
[While cluster quality threshold not met]

clusters

Refine clusters

Figure 13: Unsupervised Learning

Unsupervised learning deals with documents, and in this solution each

document is a URL. A set of documents is passed to the learner to be clustered.

A feature set is used to convert each document into a feature space vector. In

this case the feature space is set of all possible URLs, so each URL is converted

to a vector containing itself. In other solutions, the feature set can be optimized

using the approach described in 3.2.2. The collection of URL vectors is passed to

the unsupervised machine learning algorithm for clustering. The beginning state

of unsupervised algorithms is implementation-dependant, but all algorithms share

 53

the flow of iteratively improving the existing cluster set until some exit criteria is

achieved.

This thesis includes two uses of unsupervised learning. URL clustering is

consistent with traditional unsupervised learning applications, and is the obvious

first example. The second example is more subtle. The flowchart in Figure 7

shows that for every website a site-specific DP classifier is created. At a high

level, the input to this algorithm is:

1) a target website (while simplifies to a collection of documents), and

2) an SRP classifier (a domain-specific heuristic).

Note that the input does not include DP training data. The output of this

algorithm is two sets, or clusters, of documents:

1) a set of DP documents, and

2) a set of non-DP documents.

The implementation details include supervised learning to generate these

output sets, but the supervised learner‟s training data is generated at runtime

rather than being passed as input. This differs from traditional unsupervised

learning algorithms because the classes of the output clusters are known ahead

of time (DPs and non-DPs). Traditional algorithms cluster the input documents

based on how the data itself is most obviously separable, and the classes of the

output clusters are unknown.

 54

3.3 Data Extraction and Search

The content of online documents can be categorized in two ways:

unstructured and structured. Unstructured data is a collection of text with no

logical distinction between any subsets of the text. The core content of an article

about importing cars from the United States to Canada is an example of

unstructured data. Structured data is a collection of name – value pairs, where

both names and values are arbitrary strings. The career statistics of a

professional athlete are an example of structured data. There is a middle ground

in data categorization called semi-structured data, which contains the same

information as structured data, but the presentation of the data does not conform

to any formal standard. An HTML page showing the career statistics of a

professional athlete in a table is an example of semi-structured data. For vertical

search, structured data is needed but generally not available to crawlers.

However, DPs contain semi-structured data that can be converted to structured

data. This is called data extraction.

The end goal of data extraction is to obtain structured data to present is

some domain-specific product, so data extraction is inherently a domain-specific

task and implementations rely heavily on rules or heuristics. One of the key

challenges in data extraction is ambiguity. A word or phrase can have different

meaning and relevance depending on its context. Continuing a previous

example, a document with an athlete‟s statistics may also include a date. This

date might be the current date, the date on which the statistics were compiled, or

a date indicating statistics of a subset of the athlete‟s career. In the first two

 55

cases the date would be irrelevant, and in the third case the date would be

relevant, and its meaning would be necessary to understand. Accurate document

classification helps alleviate (but not eliminate) the ambiguity problem. The

richest semi-structured data on a website will reside on DPs. Other pages within

the site will also contain semi-structured data, sometimes relevant to the desired

subject, but also irrelevant data that looks indistinguishable from the relevant

data. Document classification eliminates the irrelevant non-DP documents from

ever getting to data extraction. Ambiguity within a single DP is handled within the

extraction implementation. The sequence diagram of such an implementation is

shown below in Figure 14.

Data Extractor Document Normalizer Extraction Patterns

DP document

loop
[For each interesting attribute]

Normalize document

Apply extraction patterns

structured attribute values

Figure 14: Data Extraction

Each interesting attribute has two sets of inputs: 1) normalization rules,

and 2) extraction patterns. Normalization rules eliminate the variation of attribute

names and values between sources. Using the athlete example again, an

 56

athlete‟s point total may be indicated by any of the following strings: “pts”,

“points”, “pt”, etc. Extraction patterns identify relationships between normalized

name-value pairs in text, and extract the values. Extraction patterns can

sometimes be generalized, and sometimes need to be website specific.

Structured data needs to be exposed after it has been collected. A search

interface (similar to the one whose structured is taken advantage of to build the

adaptive document classifier) is built to allow users to browse whatever subset of

the data interests them. A search service is the empowering component of such

an interface, the design of which is shown in Figure 15.

Content Index

Search Service

Query Engine

Extracted Content

Index Engine

Figure 15: Search Design

The extracted data is fed to an index engine to build an index. Search

indexes store data in a way that makes search fast. Traditional data stores

persist entries as key-value pairs, where the key is the document‟s identifier (for

example, title) and the value is the content of the document. An index engine

inverts this relationship and stores the content as the key because user queries

 57

are run against content, not identifiers. A single document will have many entries

in an index, one for each token in the document, where a token is some subset of

the document. This structure allows query engines to accept query trees of

Boolean logic and perform set operations on document identifiers to fulfill each

query.

 58

4: IMPLEMENTATION

The sample implementation focuses on the novel algorithms proposed in

this thesis, including relevant comparisons to existing methods. Adaptive

document classification proposes a method for creating high-accuracy, website-

specific detail page classifiers to capture rich and relevant data. Of the three

main components introduced earlier, only crawling and classification are

implemented. Crawling is required to find and download web pages, and

classification includes the novel solution. Data extraction and search are

excluded from this implementation. There are well known patterns for their

implementations, and their exclusion here does not change this thesis‟ ability to

evaluate the proposed methods. A revised system design is shown in Figure 16

that strikes out the excluded components. Real estate listings are chosen as the

target data, and a Search Result Page classifier for real estate listings is built and

passed to the system as input.

 59

Extraction
and Indexing

Crawling

Search Interface

Searchers

Indexes

Indexers

Web DB

Fetchers

Fetch List

Updates

Document Classification

Data Extraction

Figure 16: Implemented System Design. Shaded area is not implemented.

4.1 Crawling

This implementation‟s crawler uses the open source framework called the

Smart and Simple Web Crawler (SSWC) (Torunski, 2009). This crawler is written

in Java and implements most of the design shown in Figure 16. This section

presents key features of this crawler, its limitations, and implementation details of

this project‟s customizations.

SSWC controls the lifespan of a crawl in two ways: 1) maximum depth of a

crawl and 2) maximum crawl iterations. Crawling generates a link (or page) graph

by following links from one page to the next. Maximum depth restrictions prevent

the crawler from traversing more than n links away from a seed URL, where n is

the specified limit. The link graph‟s depth is restricted to this same maximum, but

the total size of the link graph is unbounded. The memory footprint of maximum

 60

depth restrictions is considerable since the full link graph must be maintained.

Maximum crawl iteration restrictions limit the total size of the link graph, but do

not constrain its depth. The memory footprint of crawl iteration restrictions is

minimal since a link graph is not necessary.

Some links are undesirable to crawl for a variety of reasons including

unknown content types, irrelevant data, and recognized crawler traps. SSWC

provides a filter interface that allows the implementer to specify acceptable URL

patterns. Each filter is constructed with a user-specified list of acceptable links,

but this list has a different meaning in the context of each filter. The Beginning

Path Filter accepts links that begin with the same substring as any one of

acceptable links. This restricts a crawler to a sub-tree of the link structure within a

website. The File Extension Filter accepts links that have the same extensions as

any of the acceptable links. This eliminates unknown content types and can

protect against some crawler traps. The Regular Expression Filter treats each

acceptable link as a pattern, and incoming links must match one of these

patterns to be accepted. These filters implement heuristics when targeting a

subset of URLs on a specific website or when avoiding specific crawler traps,

and do not generalize well. The Server Filter limits a crawl to the collection of

domains present in the acceptable links list. These filters can be combined using

arbitrary Boolean logic. ADC uses the server and regular expression filters to

restrict crawls to individual domains, and to exclude known bad content types like

Portable Document Format (PDF) and Flash (SWF), where bad content simply

means that this crawler does not know how to treat the content as plain text.

 61

SSWC supports single and multi-threaded modes. Network bandwidth is a

single-threaded crawler‟s bottle neck, so multi-threaded crawling allows

concurrent downloading of several web pages. Starting from an input seed list (of

an arbitrary number of URLs), multi-threaded begins by downloading each seed,

then waiting for events to continue the crawl. SSWC exposes two events: 1)

download complete, and 2) link graph parser events. The first event is well

described by its name. The link graph parsing event is triggered after basic

parsing and processing has been applied to a downloaded web page, including

updating the link graph to include new page and parsing its links to trigger

subsequent downloads. SSWC uses the same event-based model for single-

threaded, but limits the total number of threads to one.

The event-driven design allows for simple integration of ADC-specific

components into the crawling flow. ADC uses the link graph parsing event to

include itself in the data flow. Every downloaded document triggers the sequence

of events shown in Figure 7. If a Site-Specific Classifier (SSC) already exists

then new documents are treated strictly as candidates to be Detail Pages, and

are classified using the SSC. If a SSC does not yet exist then new documents go

through several processes. First the document is classified using the Search

Result Page Classifier to check if it contains training data for the SSC. Next, the

document is marked as needing to be classified by the SSC when it is eventually

built. Finally, if sufficient training data exists after including new training data from

this document then the SSC is built, and all documents marked as needing to be

 62

classified are classified in a one-time batch process. Once the SSC is built, new

documents are classified immediately.

SSWC does not implement the full crawling design described earlier.

Specifically, it excludes scheduling and only optionally tracks link graphs. The

exclusion of these components does not affect this thesis‟ ability to demonstrate

ADC and measure its effectiveness.

4.2 Document Classification

Document classification involves three distinct functional components: 1)

document pre-processing, 2) feature selection, and 3) machine learning. Pre-

processing applies normalization rules to generate consistent documents from

inconsistent sources. Feature selection computes a feature set, and then

converts text to feature-space vectors.

4.2.1 Pre-Processing

Document classification benefits from pre-processing by producing a

smaller and more relevant feature set. This section lists the specific pre-

processors used.

4.2.1.1 HTML Decoding and Filtering

Web pages contain mark-up (i.e. HTML), advertising, navigation, and

other irrelevant content that does not contribute to the core content of the

document. The visible content of a web page is typically a small subset of its

underlying HTML code. The additional HTML code includes structural and meta-

 63

data for the page. For example, displaying content in tabular form requires the

use of the table, tr, and td HTML tags. Structural HTML code is quite consistent

across all types of web pages, so in general it is not useful for web page

classification. Meta-data is supposed to represent a page‟s content, but because

the author has complete freedom to add arbitrary meta-data, the containers are

frequently abused for the purpose of enhancing a page‟s rank in a search index.

It has been empirically shown that classifying a page using its meta-data actually

reduces accuracy (Chekuri et al., 1997).

HTML decoding and filtering has two objectives: first to translate any

encoded data into its symbolic representation, and second to keep just the

relevant portion of the marked-up web page. Most mark-up (including meta-data

and other invisible elements) should be removed from the document, but some

may be desirable when it corresponds to visual elements that are emphasized to

the user, such as a document‟s title. This implementation uses the Jericho HTML

Parser (Jericho, 2009) to convert web pages into object model instances, and

allows ADC‟s start-up parameters to specify which HTML elements are desirable.

4.2.1.2 Part of Speech Selection

The English language has many words that are ambiguous without

context. Words can have different meanings depending on whether they are

acting as nouns or verbs, preceded by adjectives or adverbs, or separated by an

indicator like a quote or comma. This implementation uses a Part of Speech

tagger called OpenNLP (Baldridge et al., 2003) to tag every word in each input

document, allowing ADC‟s start-up parameters to choose which tags are

 64

important. The implementation demonstrates several different choices and

compares their performance.

4.2.1.3 Stemming

As described in 2.2.1.1, stemming reduces all forms of a single word to its

base form. This implementation uses the Porter stemming algorithm (van

Rijsbergen, 1980), a pattern based algorithm originally introduced more than 20

years ago. Porter stemming does not produce the paradigm form of every word,

but does produce consistent stems.

4.2.1.4 Synonym Lists

Section 2.2.1.2 describes two classes of synonyms:

1) several different words (or abbreviations) with the same meaning, and

 2) a specific value where only the type of the value matters.

This implementation includes many synonyms of each type. For example,

the United States Postal Service‟s official list of abbreviations is used to equate

state/provinces with their abbreviations, street suffixes with their common and

abbreviated forms, and unit designators with their abbreviated forms (USPS,

1998). Table 1 below presents a sample of the grouping synonyms that help

identify real estate listings.

 65

Table 1: Grouping Examples

Group Name Synonyms

MonthOfYear January, February, March, …, December

Remodel Renovate, new paint, fresh paint

Neighbourhood Neighborhood, community, location

Price10^6 $[1-9][0-9]{5}(\.[0-9]{2})?

NorAmPhoneNum [0-9]{3}-[0-9]{3}-[0-9]{4}

City Vancouver,Surrey,Richmond,…

4.2.1.5 Other Text Normalization

Several other normalization techniques are used here that do not fit into

any of the preceding headings, and do not warrant in-depth discussion. A case

filter is used to consistently case all incoming text, with lower case arbitrarily

chosen here. A length filter is used to limit the maximum number of characters in

an incoming document. Web pages must are meant to display information to a

human, and it is unlikely for a real estate listing to exceed several pages of text.

Other legitimate content (e.g. research articles) may exceed this length, but hurts

the computational performance of feature selection and machine learning. Similar

to how structural information does not contribute to HTML pages, the English

language contains many words that do not contribute significantly to the meaning

of a sentence (at least from a bag-of-words document classification perspective).

A stop word filter eliminates these words from all input documents.

4.2.2 Feature Extraction and Selection

Feature extraction and selection work together to solve two problems: 1)

converting all training documents to collections of features and selecting the top

n as the feature set, and 2) converting classification-time documents to feature

vectors by filtering their features through the feature set. Both operations begin

 66

by converting input documents into a collection of features, as shown in Figure

17.

Feature Extractor Tokenizer Analyzer

Input document

Convert text to tokens

tokens

Convert tokens to features

features

Figure 17: Feature Extraction

The first step is to tokenize the input document‟s text into an ordered list of

tokens. This implementation includes two different tokenizers: a whitespace

tokenizer, which splits text by whitespace, and a non-alpha-numeric-character

tokenizer, which splits text by any non-letter, non-number character. A more

intelligent tokenizer might have knowledge of English grammar. Tokens form the

basis for features, but are not necessarily features themselves. To include

contextual meaning, it can help to combine contiguous (or nearby) tokens into a

single feature. For example, “New York” as a single feature would likely

contribute very differently to a document classifier than two individual features

“New” and “York”. Analyzers convert the token stream into an unordered

 67

collection of features, where each feature contains one or more tokens and a

count for the number of times it occurs in the document. This implementation

includes several different analyzers.

4.2.2.1 Word Selection

Word selection is the simplest form of analysis. A document is tokenized

into a collection of tokens, and each token is taken to be a feature.

4.2.2.2 Bi-grams

Real estate listings can contain important features that have no

neighbouring tokens. For example, a price may appear between two pictures. In

such cases it is useful to allow for single and multi-token features. Bi-gram

analysis selects all individual tokens to be features, as well as all contiguous

pairs of tokens (Tan et al., 2002).

4.2.2.3 Sparse Binary Polynomial Hash (SBPH)

The shortcoming of word selection is the inability to capture phrases.

SBPH examines the document with a sliding window of tokens at a time and

selects all phrases from within this window (Yerazunis, 2003). For example, the

first window with in this definition would be “the shortcoming of word

selection”. The second window would be “shortcoming of word selection is”. And

so on until the end of the document. Within each window several features are

selected (specifically). The first token of the window is always part of the

feature, along with all possible combinations of the remaining token. Table

2 shows all features for the first window in this paragraph.

 68

Table 2: SBPH Sample Analysis

the shortcoming of word selection the shortcoming of word selection

the shortcoming of word selection the shortcoming of word selection

the shortcoming of word selection the shortcoming of word selection

the shortcoming of word selection the shortcoming of word selection

the shortcoming of word selection the shortcoming of word selection

the shortcoming of word selection the shortcoming of word selection

the shortcoming of word selection the shortcoming of word selection

the shortcoming of word selection the shortcoming of word selection

4.2.2.4 Orthogonal Sparse Bi-gram (OSB)

The problem with SBPH is that it generates a very large number of

features. OSB attempts to maintain the benefit of combining tokens without the

overhead of such a large feature count (Yerazunis, 2003). The same windowing

technique is used as in SBPH, but this time only combinations of two tokens are

considered to be features. Table 3 shows features from the preceding SBPH

example using OSB analysis instead.

Table 3: OSB Sample Analysis

the shortcoming

the of

the word

the selection

4.2.2.5 Choosing Feature Set

The first step in choosing a feature set is converting the training

documents into features using one of the implemented analyzers. As documents

are converted, the output features are also scored so that they can be ranked.

This implementation includes three scoring algorithms: 1) term frequency, 2)

document frequency, and 3) term frequency-inverse document frequency, each

 69

of which is described in 2.2.3. The features from the positive and negative

training sets are scored, collected, and ranked independently so that a desirable

ratio, r, of positive to negative features can be selected. A total of n features are

selected from both sets using the ratio r to form the feature set. This

implementation uses r = 1.

4.2.3 Supervised Learning

Vector-based supervised learning has two applications within the

proposed solution: 1) the input SRP classifier and 2) the site-specific DP

classifier generated once enough training data is collected. This implementation

includes four different supervised learning algorithms, varying in complexity from

the “simplest” classifier to the state of the art. The simple implementation is

included as both a sanity check on more complex implementations and to test

whether good training data can overcome simple classification assumptions.

4.2.3.1 Simple (Density) Classifier

The density classifier accepts a feature set of weighted words or phrases

as input. Weights can be positive or negative, and occurrences of features with

positive weights suggest a document‟s inclusion in the desired class (and vice

versa for negative weights). Longer documents tend to contain more occurrences

of all features, including those in the feature set. Document length normalization

adjusts a document‟s score to reflect the density of features it contains. The

output score is compared against a threshold to produce binary classification.

Density classification is shown below in Figure 18.

 70

Density Classifier

Document (feature vector)

loop
[For each document feature]

Set score = 0

score += (# feature occurences * weight)

Normalize score by document length

Figure 18: Density Classifier Algorithm

4.2.3.2 k-Nearest Neighbour Classifier

The challenge implementing -NN is with finding neighbours. Ternary

search trees (TST) offer a fast and efficient way to find neighbouring strings

using hamming distance to define neighbourhoods (Bentley et al., 1997). Each

node in a TST is a modified binary search tree where the left child represents a

value greater than the node, the right child represents a value less than the node,

and a third child is used if the lookup character is found on the node. This allows

string lookup to consist of a series of binary searches for individual characters.

More importantly to implementing -NN, it also allows for fast neighbouring string

matches. This algorithm is shown in C++ style pseudo code in Algorithm 2.

 71

Algorithm 2: Ternary Near Search

Inputs Ternary search tree,

Search string,
Maximum distance from ,

Output List contains near matches, srcharr

Algorithm void NearSearch(Tptr p, char *s, int d)

{

 if (!p || d < 0) return;

 nodecnt++;

 if (d > 0 || *s < p->Value)

 NearSearch (p->LowChild, s, d);

 if (p->Value == 0) {

 if ((int) strlen(s) <= d)

 srcharr[srchtop++] =(char *) p->EqualChild;

 }

 else

 NearSearch(p-> EqualChild, *s ? s+1:s,

 (*s==p->Value) ? d:d-1);

 if (d > 0 || *s > p->Value)

 NearSearch (p->HighChild, s, d);

}

This algorithm has four if statements. The first statements checks for bad

input arguments or for searching past the end of the tree. The second and fourth

if statements check if the query character is larger (or smaller) than the node‟s

Value, and recursively search the appropriate child (low or high). The third if

checks for matches within the desired distance and adds them to the output, and

also recursively searches the middle child.

 72

 -NN logically deals with vector-space features, but its implementation for

neighbourhood search converts these vectors back into strings. This thesis

translated a C# library (de Halleux, 2004) to Java for its implementation.

4.2.3.3 Naïve Bayes Classifier

CRM114 is an open source spam filtering project that includes several

machine learning implementations, including Naïve Bayes (Yerazunis, 2007).

The CRM114 implementation is translated from C++ to Java for use in this

project. Naïve Bayes classification is described in 2.1.2.1.3.

4.2.3.4 Support Vector Machine Classifier

LIBSVM is a software library for support vector classification, regression

and distribution estimation (Chang et al., 2007). The original software is written in

C++, but LIBSVM has an active community that offers translations in many

languages, including Java. LIVSVM‟s parameter list, shown in Table 4, is a

concise summary of its capabilities.

Table 4: LIBSVM Parameter List

Parameter Name Available Values / Description

SVM Type C-SVC
nu-SVC
one-class SVM
epsilon-SVR
nu-SVR

Kernel Type Linear: u'*v
Polynomial: (gamma*u'*v + coef0)^degree
Radial Basis Function: exp(-gamma*|u-v|^2)
Sigmoid: tanh(gamma*u'*v + coef0)

Degree Degree in the kernel function (default = 3)

Gamma Gamma in kernel function (default = 1/#features)

 73

Coefficient 0 Coefficient 0in kernel function (default = 0)

Cost C in C-SVC, epsilon-SVR and nu-SVR (default = 1)

Nu Nu in nu-SVC, one-class SVM, and nu-SVR (default =
0.5)

Epsilon Epsilon of loss function in epsilon-SVR (default = 0.1)

Cache Size Cache size in MB (default = 100)

Tolerance Tolerance of termination criterion (default = 0.001)

Shrinking Boolean indicates whether to use the shrinking
heuristics (default = 1)

Probability Estimates Boolean indicates whether to train a SVC or SVR
model for probability estimates (default = 0)

Weighti Set C for class i to weight*C in C-SVC (default = 1)

This implementation uses LIBSVM‟s classification functionality. C-SVC and nu-

SVC are both soft margin algorithms (errors are acceptable but are penalized). In

C-SVC, C is the capacity constant that is proportional to the penalty. A large C

may lead to over fitting. In nu-SVM the soft margin has to lie in the range of zero

and one. Nu does not control the trade off between the training error and the

generalization error, but has two different roles. It is an upper bound on the

fraction of margin errors and is the lower bound on the fraction of support

vectors.

4.2.4 Clustering

Carrot2 is an open source clustering library that includes several algorithm

implementations and a pluggable framework for adding new algorithms (Osiński

et al., 2005). This project uses two Carrot2 algorithms and integrates (and

contributes to open source) a third.

 74

4.2.4.1 Lingo Clustering

Lingo, which Carrot2„s default clustering algorithm, implements the

paradigm: “description comes first” (Osiński et al., 2004). Before clustering

documents, Lingo determines the descriptions, or clusters, that are relevant to

the document set before assigning each document into ones of these clusters.

The four step algorithm prepares the document set, extracts key indicators,

creates labels and clusters documents, and then adds meta data to each cluster

as shown below in Algorithm 3. The cluster label induction in Step 3 is

conceptually similar to -NN classification.

 75

Algorithm 3: Lingo Clustering

Inputs Document set to cluster,

Output List of labelled clusters

Algorithm {Step 1: Pre-Processing}

for all do

 perform text segmentation of ; {Detect word boundaries etc.}
 if language of recognized then

 apply stemming and mark stop-words in ;
 end if
end for

{Step 2: Frequent Phrase Extraction}
concatenate all documents;
 ← discover complete phrases;
 ← * () +;

{Step 3: Cluster Label Induction}
 ← term-document matrix of terms not marked as stop-words and

 with frequency higher than the ;
 ← (); {Product of decomposition of }

 ← ; {Start with zero clusters}
 ← ();
repeat

 ← ;

 ← (∑

) (∑

);

until ;
 ← phrase matrix for ;

for all columns of
 do

 find the largest component in the column;

 add the corresponding phrase to the set;
 ← ;
end for

calculate cosine similarities between all pairs of candidate labels;
identify groups of labels that exceed ;
for all groups of similar labels do
 select one label with the highest score;
end for

{Step 4: Cluster Content Discovery}

for all do
 create cluster described with ;

 add to all documents whose similarity to exceeds the

 ;
end for

 76

put all unassigned documents in the “Others” group;

{STEP 5: Final Cluster Formation}
for all clusters do

 ← ‖ ‖;
end for

4.2.4.2 Suffix Tree Clustering

Suffix tree clustering (STC) is unique in that a single document can appear

in multiple clusters (Zamir et al., 1999). Algorithm 4 shows the summary below.

Algorithm 4: STC Clustering

Inputs Document set to cluster,

Output List of labelled clusters

Algorithm 1. Construct suffix tree
2. Score nodes in the tree
3. Find clusters
 3.1 Construct an undirected graph whose vertices are nodes in the
 suffix tree. An arc exists between two nodes if
 a. either node is a top scoring node
 b. the number of documents in the intersection of two nodes is at
 least half of the bigger of the two nodes
 3.2 Each connected component of this graph is a cluster

Constructing the suffix tree is like building an inverted index of phrases in

the document set. Each phrase is associated with a collection of documents. A

node‟s score is based on the number of documents in its sub-tree. For each node

 in the tree, let () be the set of documents in ‟s sub-tree, and () be the

phrase label of . The score of the node is () | ()| (| ()|), where

 () for , and () for . The top 500 scoring nodes and all

nodes that have intersecting documents with these nodes are candidates to

become part of a cluster. A graph is constructed by comparing each pair of

 77

candidate nodes. If the size of the intersection between any two of these nodes is

greater than half the size of either node then an arc is drawn between the two

nodes in the graph. After all candidate nodes have been compared, each

connected component in the graph forms a cluster.

4.2.4.3 URL Clustering Algorithm

The previous two clustering algorithms were designed for documents, not

URLs. This project includes a simple clustering algorithm specifically designed to

cluster URLs, not documents, as shown in Algorithm 5. The runtime performance

of this algorithm is exponential.

Algorithm 5: URL Clustering

Inputs Document set to cluster,

Output List of labelled clusters

Algorithm ← ()
for all document pairs do
 ← ()
 if then

 if or belong to an existing cluster
 merge all clusters that or belong to
 else
 create a new cluster with as its content
 end if
 end if
end for

This algorithm was contributed to Carrot2 under the name

ByFullUrlClusteringAlgorithm. The output clusters are sorted in ascending order

by the standard deviation of the length of the URLs within each cluster. An output

cluster is assumed to contain links to detail pages if its URL length standard

 78

deviation is less than 0.001 (an empirically chosen threshold). If no good clusters

are found, the distance threshold is loosened (using a multiple of the distance

standard deviation) and the algorithm is run again. This is repeated until a good

cluster is found, or until 20 attempts have been made. The measure of success

for this algorithm is if exactly one output cluster contains links to detail pages.

Both other cases are considered failures:

1) More than one output cluster meets the detail pages assumption

(regardless of how many clusters are actually created)

2) No output clusters meet the details page assumption (also regardless of

how many clusters are actually created)

URL Clustering (UC) is similar to Affinity Propagation Clustering (APC)

(Frey et al., 2007) because both create clusters based on pair wise distance

between every pair of points. APC uses maximum similarity to determine

clusters. URL Clustering creates clusters based on similarity above some

threshold, not just the maximum.

 79

5: RESULTS

This thesis proposes an adaptive classification algorithm to improve

document classification of rich web documents. A series of experiments was run

to test this hypothesis using real estate listings as the target document type. A

baseline result is needed to observe improvement. The first set of experiments

optimizes the configuration of a static real estate listing classifier by applying

different normalization, feature selection, and machine learning algorithms. This

provides both a baseline and configuration for the site-specific classifier created

by the adaptive algorithm. Each baseline configuration was tested using

precision and recall to measure success of identifying real estate listings. The

class labels for classifying real estate listings are

{

The next set of experiments applies the adaptive classification algorithm,

including parameter variation to the supervised learner and varying the clustering

algorithm used to select training sets. A set of test sites is chosen and the

baseline detail page classifier‟s results are compared against the site-specific

detail page classifier created by the adaptive algorithm. The adaptive algorithm

evaluation includes testing the algorithm‟s ability to produce a site-specific

classifier. Producing a site-specific classifier is controlled by two mechanisms

within the algorithm:

 80

1) ability to identify search result pages, and

2) ability to cluster links to detail pages from the search result page

5.1 Static Document Classification

The purpose of building a baseline real estate listing classifier is to test

whether ADC can improve classification. The tuned choice of parameters

(including learning algorithm) will be re-used twice in ADC: first to build the

search result page classifier that is passed in, and second to build site-specific

classifiers at runtime. Optimizing parameter selection for the static classifier then

re-using these parameters in the proposed algorithm suggests that the baseline

results are an upper bound of what can be expected, and the proposed

algorithm‟s results have room for improvement.

The first step in training a supervised learning algorithm is to build the

training set. Preliminary experiments and current research indicate that time

spent “tuning” the training set was more productive than time spent tuning the

learner. Approximately three thousand positive and negative training documents

were collected from across five hundred websites, and then sampled to construct

training and test sets. The top ten most visited real estate websites in the United

States account for approximately 35% of traffic to all American real estate

websites (Experian, 2011). The next hundred websites account for approximately

the same traffic, and the remaining traffic is split among thousands of small

websites. In the context of American real estate websites, a sample using five

hundred websites is representative.

 81

Diversity and correctness were the quality metrics for collecting

documents. To a learner, many documents from a single website can look the

same. The number of documents per website was limited to five positive and five

negative examples to reduce the influence of any one website on the training set

(the total size of the training set is discussed in 5.1.1). The five positive

documents were made as different as possible by selecting a variety of listings

(high price and low price, single family homes and land, etc). The five negative

documents consisted of the home page, a contact page, a search form, and two

other pages relevant to each website. Collecting documents is a manual process,

so error is inevitable. Each document was screened twice to ensure correct

labelling. In addition to labelling documents as positive or negative, websites as a

whole were marked by template groups. Several prominent website vendors offer

slight variations of the same website to real estate agents. For the purpose of

machine learning these websites are all identical.

A utility was written to randomly select three document sets, each

consisting of a positive and negative subset, from the superset of training

documents. One set was used to train the learner, and the other two sets were

used to test it. The sets were chosen using the following rules:

1. Choose m documents for each positive set, and m for each negative

set, where 2m is the desired size of the feature set

2. Choose at most three positive and three negative documents from

each template group (websites that look the same).

3. Each template group can only appear in one of the sets.

 82

The intention behind these rules is to mimic real-world scenarios as

closely as possible by eliminating training data from the test sets. Classifiers that

are part of large scale crawlers encounter a negligible number of documents from

their training sets at runtime. Using two distinct test sets helps eliminate manual

collection errors such as not recognizing some collection of websites as

belonging to a single group.

The following sections present experiments and results for optimizing

classification parameters. These experiments were run iteratively to retest prior

optimizations given some improved downstream configuration. The results of

each parameter‟s most significant optimization are shown.

5.1.1 Training Set Size

The size of the training set plays an important role in trade-off between

generalization and over-fitting. Figure 19 shows the classification accuracy of a

real estate listings classifier against its training set size. Classification accuracy

was measured against a set of documents whose domains and templates were

not in the training set.

 83

Figure 19: Accuracy vs. Training Set Size for Baseline Real Estate Listing Classifier

Training sets up to 950 documents in size were tested, but showed no

improvement over the presented data.

5.1.2 Pre Processing

The following sections present four measurements for each parameter

change:

1. True positive: the percent of documents accurately classified into the

desired set.

2. False positive: the percent of documents inaccurately classified into

the desired set.

3. True negative: the percent of documents accurately classified into the

undesired set.

4. False negative: the percent of documents inaccurately classified into

the undesired set.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300

A
c
c
u
ra

c
y

Training Set Size

Accuracy vs Training Set Size

Precision

Recall

 84

Depending on the system, a different type of error is acceptable. In static

document classification false positives are preferred to false negatives. In

adaptive document classification‟s SRP classifier the opposite is true.

5.1.2.1 HTML Analysis

Figure 20 (a) – (d) shows results for the following HTML analyzers:

 NoTransform: Baseline test with no HTML analysis.

 RemoveAllTags: Remove all HTML tags, leaving only each element‟s

value behind.

 RemoveallTagsIgnoreImages: Remove all tags except for images.

Each setting was tested with two independent test sets (labelled Test 1

and Test 2).

 85

(a)

(b)

(c)

(d)

Figure 20: HTML Analysis

0%

20%

40%

60%

80%

100%

RemoveallTagsIgnoreImages RemoveAllTags NoTransform

Tr
u

e
-P

o
si

ti
ve

True Positive
Test 1

Test 2

0%

20%

40%

60%

80%

100%

RemoveallTagsIgnoreImages RemoveAllTags NoTransform

Tr
u

e
-N

eg
a

ti
ve

True Negative

0%
20%
40%
60%
80%

100%

RemoveallTagsIgnoreImages RemoveAllTags NoTransform

Fa
ls

e
-P

o
si

ti
ve

False-Positive

0%

20%

40%

60%

80%

100%

RemoveallTagsIgnoreImages RemoveAllTags NoTransform

Fa
ls

e
-N

eg
a

ti
ve

 False-Negative

 86

Figure 20 shows the importance of removing HTML mark-up from each

document. Customizing the behaviour of individual HTML elements (such as

images) had little effect on the overall performance.

5.1.2.2 Part of Speech Analysis

Figure 21 (a) – (d) shows results for the following Part-of-Speech

analyzers:

 NT (no transform): Baseline test with no part-of-speech analysis.

 NNDV (nouns, numbers, dollars and verbs): Keep only nouns,

numbers, dollars and verbs.

 NND (nouns, numbers and dollars): Keep only nouns, numbers and

dollars.

 FT (final transform): TODO: describe

As with HTML analysis, each setting was tested with two independent test

sets (labelled Test 1 and Test 2).

 87

(a)

(b)

(c)

(d)

Figure 21: Part of Speech Analysis

The effect of part of speech analysis is less than HTML analysis, but does

improve classification by using only some parts of speech.

0%
20%
40%
60%
80%

100%

NT NNDV NND FTTr
u

e
-P

o
si

ti
ve

 True-Positive
Test 1

Test 2

0%
20%
40%
60%
80%

100%

NT NNDV NND FTTr
u

e
-N

eg
a

ti
ve

True-Negative

0%
20%
40%
60%
80%

100%

NT NNDV NND FTFa
ls

e
-P

o
si

ti
ve

 False-Positive

0%
20%
40%
60%
80%

100%

NT NNDV NND FTFa
ls

e
-N

eg
a

ti
ve

 False-Negative

 88

5.1.2.3 Stop Word Analysis

Figure 22 (a) – (d) shows the effect of applying stop words to documents

before classification.

(a)

(b)

(c)

(d)

Figure 22: Stop Word Analysis

5.1.2.4 Stemming Analysis

Figure 23 (a) – (d) shows the effect of stemming words before

classification.

0%

20%

40%

60%

80%

100%

Standard Stop
Words

No Stop Words

True-Positive

0%

20%

40%

60%

80%

100%

Standard Stop
Words

No Stop
Words

True-Negative

0%

20%

40%

60%

80%

100%

Standard Stop
Words

No Stop Words

False-Positive

0%

20%

40%

60%

80%

100%

Standard Stop
Words

No Stop
Words

False-Negative

 89

(a)

(b)

(c)

(d)

Figure 23: Stemming Analysis

5.1.2.5 Feature Weighting

Figure 24 (a) – (d) shows results for the following phrase weighting

algorithms:

 TF: Term Frequency.

 DF: Document Frequency.

 TFIDF: Term Frequency Inverse Document Frequency.

0%
20%
40%
60%
80%

100%

Porter
Stemming

No Stemming

True-Positive

0%

20%

40%

60%

80%

100%

Porter
Stemming

No Stemming

True-Negative

0%
20%
40%
60%
80%

100%

Porter
Stemming

No Stemming

False-Positive

0%
20%
40%
60%
80%

100%

Porter
Stemming

No Stemming

False-Negative

 90

(a)

(b)

(c)

(d)

Figure 24: Feature Weighting

5.1.3 Feature Selection

Figure 25 (a) – (d) shows the results of applying various feature selection

algorithms.

0%

20%

40%

60%

80%

100%

TF DF TFIDF

True-Positive

0%

20%

40%

60%

80%

100%

TF DF TFIDF

True-Negative

0%

50%

100%

TF DF TFIDF

False-Positive

0%

50%

100%

TF DF TFIDF

False-Negative

 91

(a)

(b)

(c)

(d)

Figure 25: Feature Selection

0%

20%
40%

60%

80%

100%

Bi-gram Sbph5 Osb2

Tr
u

e
-P

o
si

ti
ve

True-Positive

0%

20%

40%

60%

80%

100%

Bi-gram Sbph5 Osb2Tr
u

e
-N

e
ga

ti
ve

True-Negative

0%

20%

40%

60%

80%

100%

Bi-gram Sbph5 Osb2

Fa
ls

e
-P

o
si

ti
ve

False-Positive

0%

20%

40%

60%
80%

100%

Bi-gram Sbph5 Osb2Fa
ls

e
-N

eg
a

ti
ve

False-Negative

 92

5.1.4 Learning Algorithms

The best pre-processing parameters for one machine learning algorithm

do not necessarily make them the best parameters for another algorithm. Figure

26 (a) – (c) presents optimized configuration results for three algorithms:

 -NN: -Nearest Neighbour.

 NB: Naïve Bayes.

 SVM: Support Vector Machines.

Each algorithm is trained with the same set of data, and tested against

three independent test sets.

 93

(a)

(b)

(c)

Figure 26: Algorithm Comparison

5.2 Adaptive Document Classification

The best performing parameters from 5.1 were used in all the following

tests, the most significant of which was using SVM as the machine learning

algorithm. Seven real estate listings websites were chosen to compare adaptive

0%

20%

40%

60%

80%

100%

Baseline 1 Baseline 2 Optimized

P
re

ci
si

o
n

Precision

KNN

SVM

Nb

0%

20%

40%

60%

80%

100%

Baseline 1 Baseline 2 Optimized

P
re

ci
si

o
n

Recall

KNN

SVM

Nb

0%

20%

40%

60%

80%

100%

Baseline 1 Baseline 2 Optimized

P
re

ci
si

o
n

F-Score

KNN

SVM

Nb

 94

document classification to the optimized static results obtained earlier. A search

result page classifier was built using the optimized static method, but trained to

detect search result pages instead of listing detail pages.

5.2.1 Baseline Static Classification

Table 5 presents the chosen seven listing websites, along with

classification accuracy for the optimized SVM static classifier for real estate

listings. Note that Average* indicates the average when ignoring the best and

worst results.

Table 5: Baseline Static Classification

Site Precision Recall F-Score

ApartmentHunterz 99.06% 100.00% 99.53%
BillClarkHomes 66.67% 4.21% 7.92%
JpmStGeorge 89.87% 86.59% 88.20%
LasVegasLiving 66.30% 100.00% 79.74%
ScottFindlay 98.10% 100.00% 99.04%
SeattleRentals 91.60% 100.00% 95.62%
WorldProperties 95.80% 66.31% 78.37%

Average 86.77% 79.59% 78.34%
Average* 88.07% 88.75% 86.55%

5.2.2 Search Result Page Classification

The search result page classifier was built using the same configuration as

the baseline detail page classifier, but was given different training examples from

the same set of sample websites. Its accuracy is better than the detail page

classifier‟s accuracy, as shown in Table 6. This is expected based on the

assumptions stated earlier: data elements in the summary view of a given vertical

are consistent across most websites. The same is not true for detail pages.

 95

Table 6: Search Result Page Classification

Site Precision Recall F-Score

ApartmentHunterz 98.59% 99.29% 98.59%
BillClarkHomes 100.00% 100.00% 100.00%
JpmStGeorge 90.91% 95.24% 90.91%
LasVegasLiving 90.00% 94.74% 90.00%
ScottFindlay 88.89% 94.12% 88.89%
SeattleRentals 94.90% 97.38% 94.90%
WorldProperties 98.35% 99.17% 98.35%

Average 94.52% 97.13% 94.52%
Average* 96.21% 98.04% 96.21%

5.2.3 Detail Page Link Clustering

The output of the search result page classifier is mined for clusters of links

to detail pages. Several clustering algorithms were tested and only

ByFullUrlClusteringAlgorithm produced useful results. Most clustering algorithms

are designed for “richer” input (i.e. full documents). Table 7 shows

ByFullUrlClusteringAlgorithm’s accuracy on the test websites.

Table 7: Link Clustering Accuracy

Site Able to find detail
page link cluster

ApartmentHunterz Yes
BillClarkHomes Yes
JpmStGeorge Yes
LasVegasLiving No
ScottFindlay Yes
SeattleRentals Yes
WorldProperties Yes

 96

ByFullUrlClusteringAlgorithm has one success condition: a cluster is found that

looks like it contains links to detail pages. If more or less than one such cluster

are found then the algorithm does not return any clusters.

5.2.4 Adaptive Classification Results

Table 8 presents the classification results for the system proposed by this

thesis as a direct comparison against Table 5. Adaptive site-specific detail page

classifiers were constructed using the same configuration and SVM classifier

used in both the baseline detail page classifier and the SRP classifier.

Table 8: Adaptive Document Classification

Site Precision Recall F-Score

ApartmentHunterz 100.00% 99.46% 99.73%
BillClarkHomes 100.00% 100.00% 100.00%
JpmStGeorge 100.00% 84.15% 91.39%
LasVegasLiving 100.00% 0.00% 0.00%
ScottFindlay 100.00% 100.00% 100.00%
SeattleRentals 100.00% 100.00% 100.00%
WorldProperties 100.00% 98.77% 99.38%

Average 100.00% 83.20% 84.36%
Average* 100.00% 94.26% 95.81%

5.2.5 Performance Analysis

Adaptive document classification enhances the classification piece of the

general purpose crawling design presented earlier in Figure 5. The runtime

performance of the entire system is limited by its slowest piece, which is web

crawling. Efficient web crawling is bottlenecked by network bandwidth (Najork et

al., 2001). In steady-state operation, adaptive document classification does not

change the system‟s performance characteristics; performance is only affected

 97

while the site-specific classifier is being built. Building the adaptive classifier

requires uses additional resources to identify and collect possible training

samples. The identification process uses a classifier similar in complexity to the

adaptive classifier that is built for each website. The runtime penalty is paid

immediately after the site-specific classifier is built, and all previously crawled

web pages are classified. Document classification, even in batch mode, is still

significantly faster than downloading web pages. Collecting training samples

uses additional memory to avoid re-fetching training documents for re-

classification. Websites that contain either very deep or no acceptable training

examples will cause the crawler to use the most amount of memory. The

websites explored during the writing of this thesis did not cause excessive

memory usage. A simple work-around is to impose artificial memory usage limits,

which would require the crawler to re-fetch some (or all) documents visited

before the site-specific classifier is built. The additional work imposed by adaptive

document classification does not significantly change runtime performance.

5.3 Discussion

Building a static, site-specific classifier with manually selected training

examples is both easy and very accurate (assuming one has time to manually

collect all these examples). Adaptive document classification shows that similar

accuracy can be obtained using an automated process for selecting training

examples. For the selected set of websites adaptive document classification

improves classification f-score by about 9%, with a significant gain in both

precision and recall. Improvements in classification become exponentially harder

 98

as accuracy increases, so achieving this same improvement using only static

methods is unlikely.

Comparing Table 5 and Table 8 shows clear patterns developing. The

ratio of precision to recall indicates which of the two measures a classifier is

tuned for. Table 9 shows this ratio for the benchmark and proposed algorithms,

where Recall/Precision* ignores the best and worst results.

Table 9: Recall to Precision Ratio Comparison

 Benchmark Proposed

Recall/Precision 0.92 0.83
Recall/Precision* 1.01 0.94

The proposed algorithm is tuned more towards precision than the benchmark

algorithm. This is quite intuitive when remembering the training data that was

supplied to each. The benchmark classifier is trained using examples from many

websites, which causes it to prefer generic features and leads to more false

positives. The proposed classifier is trained only with examples from the target

website, so it prefers website-specific features including presentation structure,

language, and terminology that are all consistent across detail pages within the

website. This leads to near-perfect precision.

 The proposed algorithm is tuned for precision, but also shows

improvement in recall. This can again be explained by analyzing the training sets

of both classifiers. The benchmark algorithm requires a diverse set of features to

work well across all websites. Inevitably, the classifier will be missing some

features that are key indicators for some listings or even websites, resulting in

 99

false negatives. The proposed algorithms can be much more selective in

choosing features; a few very well chosen features can be absolute indicators

within a website. Absolute indicators prevent any listing from being missed.

Each classifier has one site that is completely fails on in the test data. For

the benchmark classifier, the site is BillClarkHomes. Structurally, this site is

consistent with the other sites in that it has search result pages that point to

detailed listing pages. The problem is that the detail pages have very sparse

content, so the classifier does not have many features to work with. The

proposed classifier has no problems because the structure of the site lets it

choose the required site specific training documents. The proposed classifier

failed on the LasVegasLiving site. The structure of this website‟s documents is

also consistent with the assumed model (search result pages leading to detail

pages). Table 7 shows clustering accuracy per website, and in particular, shows

that the clustering algorithm is unable to cluster LasVegasLiving‟s links. Table 10

shows sample links from the website that do not lend themselves to easily be

clustered.

Table 10: Difficult Links for Clustering

URL Page Type

http://www.lasvegasliving.com/adiamo/adiamo_rates.cfm
http://www.lasvegasliving.com/adiamo/adiamo_fp.cfm

Not details page
Not details page

http://www.lasvegasliving.com/adiamo/fp_montellano.cfm Details page
http://www.lasvegasliving.com/adiamo/fp_sorrento.cfm Details page

WordProperties is a site that produced good data for both classifiers, but

the proposed algorithm significantly outperformed the benchmark algorithm on

recall. The training data for the benchmark classifier was only from North

http://www.lasvegasliving.com/adiamo/adiamo_fp.cfm
http://www.lasvegasliving.com/adiamo/fp_sorrento.cfm

 100

American websites, so it is expected to perform poorly in other contexts where

language and terminology are different. The adaptive algorithm‟s search result

page classifier was also trained with North American data. Search result pages

shows concise summary information, and are more consistent across sites than

detail pages. In this example, the search result pages are consistent across both

North American and international listings. This allows the adaptive algorithm to

correctly identify search result pages and build a site-specific classifier that takes

international listings into account.

The proposed classifier demonstrated hit-or-miss results. If it was able to

classify even a single listing detail on a website then it scored well for all

documents on the website. However, there is no guarantee that even one listing

will be correctly classified. There are two classes of failure for the adaptive

algorithm: 1) the SRP classifier fails to detect any search result pages, meaning

that the site-specific classifier cannot be built, and 2) the SRP classifier works

correctly, but the link clustering algorithm fails again meaning that the site-

classifier cannot be built. Both classes of failure are easier to fix than improving a

static detail page classifier. Re-training the SRP classifier with examples from

previously failed websites is unlikely to break existing “good” classification results

because of the concise nature of the data. New heuristics for link clustering can

target only specific sites (or patterns of links) to maintain existing desirable

behaviour.

 101

6: CONCLUSION

Building a website-specific classifier produces high accuracy classification

results within a given website. The results above indicate that the proposed

adaptive document classification algorithm can be used to dynamically generate

this high accuracy solution resulting in a significant improvement over general-

purpose classifier accuracy. The idea that structure can be used to improve

classification accuracy is not a new one (Cohen, 2002), but this particular

approach is new to the best of this author‟s knowledge.

6.1 Limitations

The sample implementation includes several limitations. The sample size

for static document classification and parameter selection optimization was

sufficiently large to call the results generalizations. Adaptive document

classification was tested with a set of only seven websites due to the manual

work involved in testing the results. The set of test websites was selected using

similar guidelines that were used for selecting test sets for static classification:

only one website from any template group appeared in the set. The classes of

problems encountered in the test set was an accurate representation of what is

expected on a “random” real estate listings website. The results presented are

accurate and predictive of other sites; the uncertainty is how many sites are

BillClarkHomes versus how many are like LasVegasLiving.

 102

 Another limitation of the sample implementation is the collection of link

clustering algorithms used. The selected clustering algorithm

(ByFullUrlClusteringAlgorithm) worked well for the test sets, but was not based

on the academic community‟s current standards. Broader applications of

adaptive document classification would likely exposes weaknesses in

ByFullUrlClusteringAlgorithm.

 A third limitation of this work is intentional: the classification parameters

were not optimized for adaptive document classification; instead they were

inherited from the best performing static classifier. The intention was to

demonstrate that well chosen training sets are significantly more valuable to a

classifier than incremental improvements in the underlying mathematical models.

The results agreed with approach.

6.2 Future Work

The future work falls in to three classes: 1) overcome the described

limitations of this implementation, 2) implement the full system design of the

solution, and 3) improve known vulnerabilities in the existing implementation.

This work‟s most significant limitation is the sample size. The existing

solution should be verified against more real estate listing websites (including

baseline tests using a static document classifier). Real estate listings were

chosen as the sample domain, but the proposed algorithm is not domain-specific.

Applying adaptive document classification to other domains coincides nicely with

increasing the sample size.

 103

The system design chapter describes an end-to-end solution that includes

more intelligent web crawling than was implemented here, and a data extraction

system to consume the output of the adaptive classifier. The data extraction

component has more unknowns, so should be implemented next. Similar to

document classification, data extraction benefits strongly from data

normalization. When chained together with classification, many of the

normalization techniques could and should be shared across both components.

Adaptive document classification exhibits hit-or-miss behaviour tied to two

inputs: 1) the search result page classifier, and 2) the link clustering algorithm.

Both inputs include high confidence thresholds to allow ADC to execute.

Dynamically reducing the confidence threshold when an error condition is

detected would allow ADC to provide some output. Experiments are needed to

understand the usefulness of such output.

 104

REFERENCE LIST

Bach, Francis R. and Michael I. Jordan. Learning Spectral Clustering. In
Advances in Neural Information Processing Systems, Vol. 16. 2003. MIT
Press.

Baldridge, Jason, Thomas Morton, Gann Bierner and Jörn Kottmann. (2003, Mar.
21). The OpenNLP Maximum Entropy Package [Online]. Available:
http://opennlp.sourceforge.net.

Bentley, Jon L. and Robert Sedgewick. 1997. Fast algorithms for sorting and
searching strings. In SODA '97 Proceedings of the eighth annual ACM-
SIAM symposium on Discrete algorithms.

Berkhin, Pavel. 2002. Survey of clustering data mining techniques. Technical
report, Accrue Software.

Bialecki, Andrzej. (2009, Nov. 5). Web-scale search engine toolkit: Today and
tomorrow [Online]. Available: Apache Conference 2009, Apache Software
Foundation:
http://wiki.apache.org/nutch/Presentations?action=AttachFile&do=get&targ
et=apachecon09.pdf

Bomhardt, Christian. 2004. NewsRec, a SVM-driven Personal Recommendation
System for News Websites. In Proceedings of the 2004 IEEE/WIC/ACM
International Conference on Web Intelligence.

Brown, David J. 2010. Developing an Automatic Document Classification
System. Technical Memorandum, Defence Research and Development
Canada.

Chakrabarti, Soumen. 2000. Data mining for hypertext: a tutorial survey. In ACM
SIGKDD Explorations, 1-11.

Chang, Chih-Chung and Chih-Jen Lin (2007, Apr 1). LIBSVM - A Library for
Support Vector Machines [Online]. Available:
http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Chen, Yan, Lili Qiu, Weiyu Chen, Luan Nguyen and Randy H. Katz. 2002.
Clustering Web Content for Efficient Replication. In Proceedings of the
10th IEEE International Conference on Network Protocols (INCP).

Chekuri, Chandra, Michael H. Goldwasser, Prabhakar Raghavan and Eli Upfal.
1997. Web Search Using Automatic Classification. In Proceedings of the
6th International Conference on the World Wide Web.

http://opennlp.sourceforge.net/
http://wiki.apache.org/nutch/Presentations?action=AttachFile&do=get&target=apachecon09.pdf
http://wiki.apache.org/nutch/Presentations?action=AttachFile&do=get&target=apachecon09.pdf

 105

Choi, Ben and Xiaogang Peng. Dynamic and hierarchical classification of Web
pages. In Online Information Review, Vol. 28. 2004. Emerald Group
Publishing.

Cohen, William W. 2002. Improving A Page Classifier with Anchor Extraction and
Link Analysis. In Advances in Neural Information Processing Systems 15,
Papers from Neural Information Processing Systems.

Cortes, Corinna, Vladimir Vapnik. 1995. Support vector networks. Machine
Learning, 20:273–297.

Dong, Jianxiong, Ching Y. Suen and Adam Krzyzak. 2008. Effective Shrinkage of
Large Multi-Class Linear SVM Models for Text Categorization. In
Proceedings of International Conference on Pattern Recognition.

de Halleux, Jonathan. (2004, Jan. 27). Ternary Search Tree Dictionary in C#:
Faster String Dictionary! [Online]. Available:
http://www.codeproject.com/KB/recipes/tst.aspx

Experian Hitwise United States. (2011). Top 10 visited Real Estate sites [Online].
Available: http://www.hitwise.com/us/datacenter/main/dashboard-
10133.html

Frey, Brendan J., and Delbert Dueck. 2007. Clustering by Passing Messages
Between Data Points. In Science 315: 972-76.

Hastie, Trevor, Robert Tibshirani and Jerome Friedman, The elements of
statistical learning: Data mining, inference and prediction. Springer Verlag,
2001.

Hofmann, Thomas, Jan Puzicha, and Michael I. Jordan. Unsupervised learning
from dyadic data. In Advances in Neural Information Processing Systems,
Vol. 11. 1999. MIT Press.

Hsu, Chih-Wei and Chih-Jen Lin. A Comparison of Methods for Multiclass
Support Vector Machines. In IEEE Transactions on Neural Networks, Vol.
13. 2002.

Joachims, Thorsten. 1998. Text Categorization with Support Vector Machines:
Learning with Many Relevant Features. In Proceedings of the 10th
European Conference on Machine Learning.

Jericho, Martin. (2009, Jun 11). Jericho HTML Parser [Online]. Available:
http://jericho.htmlparser.net.

Kroch, Anthony. 1989. Reflexes of Grammar in Patterns of Language Change. In
Language Variation and Change 1:199–244.

Kuhn, Harold W., and Albert W. Tucker. 1951. Nonlinear programming. In
Proceedings of 2nd Berkeley Symposium: 481-492.

http://www.codeproject.com/KB/recipes/tst.aspx
http://jericho.htmlparser.net/

 106

Lawson, Charles. L. and Richard. J. Hanson. Solving Least Squares Problems.
Prentice-Hall, 1974.

Liu, Rey-Long and Yun-Ling Lu. 2002. Incremental context mining for adaptive
document classification. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining.

MacQueen, James B. 1967. Some Methods for classification and Analysis of
Multivariate Observations. In Proceedings of 5th Berkeley Symposium on
Mathematical Statistics and Probability.

Mitchell, Tom M. Machine Learning. The Mc-Graw-Hill Companies, Inc., 1997.

Murray, Brian H. and Alvin Moore. 2000. Sizing the internet. White Paper,
Cyveillance, Inc.
http://www.cs.toronto.edu/~leehyun/papers/Sizing_the_Internet.pdf.

Najork, Marc and Allan Heydon. 2001. High Performance Web Crawling. SRC
Research Report 173, Compaq Systems Research Center.

Ng, Andrew and Michael I. Jordan. On Discriminative vs. Generative Classifiers:
A comparison of logistic regression and Naïve Bayes. In Advances in
Neural Information Processing Systems, Vol. 14. 2002. MIT Press.

Nilsson, Nils J. (1998, Nov. 3). Introduction to Machine Learning: An Early Draft
of a Proposed Textbook [Online]. Available: Department of Computer
Science, Stanford University: http://ai.stanford.edu/~nilsson/MLBOOK.pdf

Osiński, Stanisław, Jerzy Stefanowski and Dawid Weiss. 2004. Lingo: Search
Results Clustering Algorithm Based on Singular Value Decomposition. In
Proceedings of the International IIS.

Osiński, Stanisław and Dawid Weiss. 2005. Carrot2: Design of a Flexible and
Efficient Web Information Retrieval Framework. In Proceedings of the third
International Atlantic Web Intelligence Conference (AWIC 2005).

Potamias, George. 2001. Adaptive Classification of Web Documents to Users
Interests. In Proceedings of the 8th Panhellenic conference on
Informatics.

Rodriguez, Carlos C. (2004, Oct. 24). The Kernel Trick [Online]. Available:
Department of Mathematics and Statistics, University at Albany:
http://omega.albany.edu:8008/machine-learning-dir/notes-dir/ker1/ker1-
l.html

Rogati, Monica and Yiming Yang. 2002, High-Performing Feature Selection for
Text Classification. In Proceedings of the 11th international conference on
Information and Knowledge Management.

http://www.cs.toronto.edu/~leehyun/papers/Sizing_the_Internet.pdf
http://ai.stanford.edu/~nilsson/MLBOOK.pdf
http://omega.albany.edu:8008/machine-learning-dir/notes-dir/ker1/ker1-l.html
http://omega.albany.edu:8008/machine-learning-dir/notes-dir/ker1/ker1-l.html

 107

Salton, Gerard and Christopher Buckley. Term-weighting approaches in
automatic text retrieval. In Information Processing & Management, Vol. 24.
1988. Elsevier Ltd.

Shao, Fubo, Guoping He, and Xin Zhang. 2008. An Improved Algorithm for
Multiclass Text Categorization with Support Vector Machines. In
Proceedings of International Symposium on Computational Intelligence
and Design.

Tan, Chade-Meng, Yuan-Fang Wang and Chan-Do Lee. 2002. The Use of
Bigrams to Enhance Text Categorization. In Information Processing and
Management: An International Journal.

Torunski, Lars. (2009, Jun. 7). Smart and Simple Web Crawler - v1.3 [Online].
Available: java.net: https://crawler.dev.java.net

USPS National Customer Support Center. (1998). Official USPS Abbreviations
[Online]. Available:
http://www.usps.com/ncsc/lookups/usps_abbreviations.html

Valpola, Harri. 2000. Bayesian Ensemble Learning for Nonlinear Factor Analysis.
Ph.D. thesis, Neural Networks Research Centre, Helsinki University of
Technology.

van Rijsbergen, Keith. Information Retrieval (2nd Ed.). Butterworths, 1979.

van Rijsbergen, Keith, Stephen E. Robertson and Martin F. Porter. 1980. New
models in probabilistic information retrieval. London: British Library.

Vapnik, Vladimir. The Nature of Statistical Learning Theory (2nd Ed.), Springer
Verlag, 2000.

Weston, Jason, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil, Tomaso
Poggio and Vladimir Vapnik. Feature Selection for SVMs. In Advances in
Neural Information Processing Systems, Vol. 13. 2000. MIT Press.

Yang, Yiming. 1994. Expert network: effective and efficient learning from human
decisions in text categorization and retrieval. In Proceedings of SIGIR-94,
17th ACM International Conference on Research and Development in
Information Retrieval.

Yang, Yiming and Xin Liu. 1999. A Re-Examination of Text Categorization
Methods. In Proceedings of SIGIR-99, 22nd ACM International
Conference on Research and Development in Information Retrieval.

Yang, Yiming, Sean Slattery and Rayid Ghani. 2002. A Study of Approaches to
Hypertext Categorization. In Journal of Intelligent Information Systems.

Yerazunis, William S. 2003. Sparse Binary Polynomial Hashing and the CRM114
Discriminator. In Cambridge Spam Conference Proceedings.

https://crawler.dev.java.net/
http://www.usps.com/ncsc/lookups/usps_abbreviations.html

 108

Yerazunis, William S. (August 10, 2007). CRM114 - the Controllable Regex
Mutilator [Online]. Available: http://crm114.sourceforge.net.

Zamir, Oren and Oren Etzioni. 1999. Grouper: a dynamic clustering interface to
Web search results. In Proceedings of the eighth international conference
on World Wide Web.

Zhu, Xiaojin and Andrew B. Goldberg. 2009. Introduction to Semi-Supervised
Learning. Morgan and Claypool Publishers.

http://crm114.sourceforge.net/

