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Abstract

Due to intra-class variation, camera jitter, background clutter, etc, human activity recog-

nition is a challenging task in computer vision. We propose an exemplar-based key pose

sequence model for human interaction recognition. In our model, an activity is modelled

with a sequence of key poses, important atomic-level actions performed by the actors. We

employ a strict temporal ordering of the key poses for each actor, an exemplar representa-

tion is used to model the variability in the instantiation of key poses. To utilize interaction

information, spatial arrangements between the actors are included in the model. Quantita-

tive results that form a new state-of-the-art on the benchmark UT-Interaction dataset are

presented. Results on a subset of the TRECVID dataset are also promising.

Keywords: Human interaction recognition, Exemplar, Key poses
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Chapter 1

Introduction

Computer vision based analysis of human movement is a broad, active area of research. In

this thesis, we are interested in human activity recognition. Human activity recognition

is crucial to understand the visual world. The techniques can be used in surveillance,

entertainment, video search, etc. Nowadays, video surveillance systems are widely used in

airports, nursing homes and other public places. Thousands of hours of videos are captured

everyday across the world. However, most surveillance systems are not equipped with

effective algorithms to perform surveillance tasks, thus people are required to perform those

laborious and tedious monitoring. Using computers to analyse videos and trigger alarms

when abnormal activity detections arise is an intelligent solution, which could frees human

labour from heavy burden in video surveillance.

Recognition of each individual’s activity using state-of-the-art methods in computer vi-

sion is challenging. The reasons are manifold. The first and probably the most important

reason is intra-class variations – people perform the same activity in their own way, which

introduces variations within each activity. Intra-activity variations are common. For exam-

ple, when people deliver kicks, they raise legs to different heights before they attack targets,

hence there are low kicks, high kicks, etc. Fig. 1.1 is an example of intra-class variations in

kick and punch. In real-world scenario, activity recognition systems also have to face the

challenges of different lighting situations, camera jitter, background clutter, occlusion, etc.

Different lighting conditions change the appearance of a person therefore cast influence on

extracted features. Camera jitter not only blurs images but also confuses classifiers when

motion features are included. Cluttered environments and human part occlusions introduce

1



CHAPTER 1. INTRODUCTION 2

high level of noise. All these issues together increase the difficulty of localizing and recog-

nizing human activities. A successful activity recognition system should be able to solve

classification tasks without being affected by the factors.

Figure 1.1: Activities are performed with large intra-class variations. The figure illustrates

the variations of human poses in two activities–punch and kick.

Activity recognition starts by extracting features from video sequences. Generally speak-

ing, most of the activity feature extraction methods can be categorized into two lines of work

– spatial feature extraction and temporal feature extraction.

For spatial features, the popular approaches include local features and global features.

In local features, human figure are decomposed into parts, which are described by separate

features. Global features represent human figure holistically and the features are computed

densely on a regular grid within a region of interest(ROI). The approach is simpler than

local features, thus more computationally efficient. It also preserves structural information

of images intrinsically. Hence, we use global features for spatial feature representation in

our model.

Template-based approaches and key frames are frequently used to represent temporal

features. Templates represent human movement in temporal blocks of video sequences.

Templates are usually computed over long sequences of frames. Consequently, they tend to

be large in size, and place heavy burden on computation. Characteristic frames of an activity

are key frames, such as crucial moments containing salient human poses in each activity.

The representation describes a video as a few time independent frames, thus dramatically

reduces the computational load. The representation is also robust to temporal variation
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such as the speed of an activity. However, key frame approach does not model temporal

relationships in activities.

Based on the above consideration, we combine templates and key frames approaches

together as our temporal feature representation. We use single-frame templates – exemplars

to represent human poses in our model. A few exemplars describing human dynamics are

selected to represent an activity. Introduction of exemplars is beneficial for our model since

a good exemplar usually is representative for a few similar human poses. Nevertheless,

exemplar representations have difficulty in adapting to new examples which have not ap-

peared in training. We hope to cover most of pose variations by a set of exemplars extracted

from training data. In our case, key frames are actually frames with characteristic poses in

an activity. We choose to use key pose sequences to represent activities for three reasons.

First of all, it is intuitive to describe an activity using its key frames. Second, it is ro-

bust to noisy frames and tracking errors. The representation can tolerant some inaccurate

human localization in trajectory since only a few human poses will be included in a key

pose sequence. Third, key pose representation shrinks feature space greatly and makes our

algorithm computationally efficient.

Human activities are rarely performed in isolation. The way people interact with oth-

ers also provides us crucial cues. Body-part motion and poses are important for activity

recognition. For instance, push and kick are less likely to be confused given their unique

motion and poses. However, simply considering motion and poses can be misleading. Take

push and punch for example, since both of the activities contain outreach arms and defen-

sive actions with similar motion, it is hard to differentiate between them if a classifier only

accounts for information contained in poses and motion. At this moment, interaction can

serve as another crucial information resource. The fact that push ends with relatively larger

inter-person distance comparing with that of punch may help to classify one activity from

the other.

Based on these observations, we develop a discriminative model for recognizing human

interaction in video. The intuition is many of the interactions can be summarized by a few

key frames performed by actors. For example, a standard scenario for push is: one person

steps forward, raises his hands, and pushes the other while the other takes a defensive pose,

steps backward and falls back in the end. We use an animation term “key pose” to denote

human pose in key frames. Observing key poses and their chronological order can be used

to recognize an interaction. We propose a model that enables us to find the key poses of an
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Time

... ...

Figure 1.2: High level depiction of our model. Horizontal axis represents time. Localiza-
tions of key poses are highlighted in red and blue bounding boxes, exemplars are matched
correspondingly. Spatial distances are marked by double-headed arrows in yellow.

activity in a video. As we do not know the key poses in the training data, we treat them as

latent variables in a constrained variant of a structured latent variable model. To benefit

from the interaction of individuals, we also use inter-person distance in interaction to help

recognition. A high-level depiction of the model is shown in Figure 1.2.

At the beginning of the dissertation, we would like to clarify some terminologies fre-

quently used throughout the thesis. We use the term “action” to denote a simple, atomic

pose or movement performed by a single actor. If we consider the moment one delivers a

punch, this is an action. We use the term “activity” to refer to a more complex scenario that

involves a series of human actions. For instance, in punch, one person steps forward and

delivers a punch while the other one steps backward and takes a defensive action. The series

of actions compose an activity. We view human interactions as part of human activities.

The interactions we consider include handshake, hug, punch and push. In these activities,

handshake and hug are symmetric, one can not distinguish subjects from objects. On the

other side, one can tell subjects from objects in activities like punch and push. We distin-

guish symmetric interactions from asymmetric ones and make use of activity symmetry in

interaction modelling. Activity recognition is the assignment of an output value or a class

label to a given input video instance. An example of activity recognition is activity classi-

fication, whose goal is to correctly classify video sequences into some predefined categories

according to human activities performed in videos. However, activity recognition is a more
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general problem, it may also include other types of output, such as a valued output or a

structured output. Different from activity classification, activity detection requires localiz-

ing spatial-temporal activity locations in videos instead of just choosing class labels for the

entire video. We design our model for activity recognition. However, it can be adapted to

tackle detection tasks.

1.1 Individual Activity Recognition

Individual activity recognition is our first step towards interaction recognition. Given a

video consisting of actors performing an activity, we want to find key poses in the sequence

and use them to describe the activity. Key poses have large variations in appearances. To

handle the variations, we introduce a set of exemplars to match key poses. Key poses occur

rarely in a video. Much of each video may consist of highly variable human action that

can be misleading when attempting to build an activity model. To cope with the problem

and extract representative exemplars, We use heuristics to select representative exemplars

from noisy training data. Details about the method to select discriminative exemplars are

presented in Chapter 3.

In our model, we assume a reliable human detector and human tracker can detect in-

dividuals and extract trajectories of individuals in videos. For this reason, its performance

depends on the accuracy of detection and tracking. To be robust to the performance of

detectors and trackers, we instantiate every key pose of a video sequence as a three-element

tuple, not only includes what it looks like, appearance described by the selected exemplar,

but also include the other two aspects: where it occurs and when it appears. We search

for the perturbation around each trajectory to find where the best key pose matching lo-

cates. Actions occur in order, so it is also intuitive to match key poses with respect to

their chronological order. We encode time constraint in time via an efficient algorithm to

guarantee that key poses are matched to the input sequence in chronological order. Please

refer to Chapter 3 for implementation details.

1.2 Human Interaction Recognition

In this thesis, our goal is to recognize human interactions in videos. There are several

ways to extend our single person model to capture interactions. The easiest way is to learn
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parameters of the model for each individual involved in the interaction and then use them

to score each participant separately. The method fails to capture crucial interaction. It also

goes against the intuition that the model parameters should be different for each participant

especially in asymmetric activities like push, kick and punch. For example, in push the key

poses for the subject are stepping forward, rising hands in front, and shoving. However, for

the object who is pushed the key poses are defending, stepping backward, and falling back.

We expect to see a different group of key poses for the subject and object trajectories.

One can capture the interaction by defining a potential function between the latent

key poses of the two trajectories. In this case, the model is rich enough to capture the

co-occurrence of the key poses in an interaction. A rich model that encodes co-occurrence

of key pose will be computationally prohibitive. In the matching of a key pose to the

subject, all other possible key poses at all possible frames of the object trajectory should

be considered.

Considering both computational speed and model richness, we take an intermediate ap-

proach. We assume that we are given the rough trajectories of a potential subject and object

in interaction, and then we match key poses to each trajectory. To model the asymmetry

in the interaction, we define two different key pose sequence models for subject and object

trajectories, and include a new hidden boolean variable to decide whether a participant of

interaction is subject or object. In this way, we can match different key poses for subjects

and objects, and learn different weights in a joint way.

To utilize spatial arrangements in interaction, we include the distances between indi-

viduals when key poses appear in our model. Individual distances are discriminative both

within activities and among activities. For example in hug, subjects open their arms at

certain distances and then embrace at very nearby spatial locations afterwards. Among

activities, it is also obvious that the distances between individuals are usually larger in ac-

tivities without physical contact. For instance, the distances between individuals in point

should be larger than that in hug, which can also be used to classify activities.

We do not limit ourselves to model interactions between two people. We can modify

our model for group interaction. Group interaction with more than two people get involved

always can be factored into interaction pairs. Our algorithm can be applied on the pairs

before we aggregate responses for group interaction recognition. Therefore, our model has

an good generality.
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1.3 Collaboration

The work is done in collaboration with Arash Vahdat, Mani Ranjbar and Greg Mori. The

contribution of the author was centred around the design and implementation of interaction

key pose sequence model. The author is also responsible to make the TRECVID Em-

brace dataset, select suitable human detector and tracker for UT-Interaction dataset and

TRECVID Embrace dataset. Besides, the part using pose information to help exemplar

matching is proposed and implemented, and experimentally evaluated by the author.

1.4 Outline

The rest of this thesis is organized as follow:

Chapter 2 reviews related works in computer vision. First, we survey popular approaches

for human action recognition. Then we expand the chapter around topics most relevant

to our work: popular approaches in human action recognition, exemplar representation,

temporal models and interaction recognition methods.

Chapter 3 focuses on key pose sequence model for recognizing human interactions. De-

tailed descriptions of single subject key pose sequence model and interaction key pose se-

quence model are included. We also propose a way to extract exemplars and a method to

encode time constraint in exemplar matching via an efficient algorithm. In the end, inference

and problem solving details are given.

Chapter 4 shows the effectiveness of our model in recognizing human interactions.

We evaluate our model’s performance on the UT-Interaction dataset and a subset of the

TRECVID dataset. Experimental results demonstrate our model’s strength. We also visu-

alize the learnt weights and explain their meanings.

Chapter 5 concludes this thesis and discusses potential future work.



Chapter 2

Previous work

In this chapter, we review the works related to our model. Section 2.1 will briefly summarize

popular approaches for human activity recognition. Section 2.2 will focus on methods related

to exemplar representation. Section 2.3 will give an overview of a variety of temporal models

have been developed, ranging from template matching to probabilistic temporal sequence

models. Section 2.4 will summarize the models proposed for interaction recognition in video.

2.1 Human Activity Recognition

Human activity recognition is a challenging task in computer vision. Literature in this

field is immense [12, 17, 36]. A typical activity recognition system includes two critical

components: feature representation and model construction. Generally speaking, proposed

features can be divided into local features and global features. Local features represent

human figure as sets of local interest points or cuboids with critical information. Global

features describe human figure holistically, using appearance, motion, etc.

One of the popular approaches in activity recognition is based on local features. Schuldt

et al. [26] propose a local space-time feature descriptor that can be adapted to size, frequency

and velocity of moving patterns. They detect local structures in space-time volumes where

the pixel values have significant local variations and compute scale-invariant spatio-temporal

features at theses locations. Finally, support vector machines (SVM) are trained on the

features for classification tasks. Figure 2.1 is a visualization of local space-time features

used in their work.

8
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(a) 3D video volume (b) Spatial-temporal feature point

Figure 2.1: Results of detecting spatio-temporal interest points from the motion of the legs
of a walking person. (a) 3-D plot with a thresholded level surface of a leg pattern (here
shown upside down to simplify interpretation) and the detected interest points illustrated
by ellipsoids; (b) spatio-temporal interest points overlayed on single frames in the original
sequence. The figure comes from [26].

Niebles and Fei-Fei [18] use a collection of spatial-temporal words extracted from space-

time interest points to represent a video sequence. They first extract local space-time cubes

using a space-time interest point detector and then cluster them to form a codebook. Their

algorithm learns the probability distributions of the words by using a probabilistic Latent

Semantic Analysis model.

Shechtman and Irani [28] define a behaviour-based similarity measurement to correlate

small space-time video to entire video sequences in spatial-temporal volume. They ex-

haustively search space-time intensity patterns of two different video segments for similar

underlying motion, and then aggregate responses for behaviour matching.

Appearance and motion features are global features widely used in activity recognition.

Dalal and Triggs [4] use Histograms of Oriented Gradient (HOG) as features for pedestrian

detection. They study influential parameters in feature computation (e.g. gradient scale,

orientation and spatial binning, local contrast normalization, etc) and illustrate their influ-

ences on HOG feature quality. Further, they compare with other feature sets to demonstrate
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HOG descriptor is promising for human detection tasks.

Efros et al. [7] aggregate blurred optical flow in time to form spatial-temporal motion

features. They account for activity variations using temporal smoothing and recognize

activities according to frame-level feature similarity between sequences. Similar to their

method, we also calculate optical flow and bin flow directions to build histogram of optical

flow (HOF) as described in [5]. We concatenate the HOG and HOF together as our features

aiming to capture both appearance and motion information.

Given extracted features, a model is required to accomplish classification tasks. Con-

structed models typically can be divided into two categories: generative models and dis-

criminative models.

In a generative approach, the joint distribution of features and labels P (x, y) are mod-

elled. This can be done by learning the class prior probability P (y) and the class-conditional

density P (x|y) separately. Classification can be done by calculating conditional probability

of a class given an observation P (y|x) using Bayesian rules. Hidden Markov Model(HMM)

is probably the most famous generative model, its fame rises with its great success in speech

recognition. HMM are also widely used in activity recognition. Ogale et al. [20] represent

human activities as short sequences of body poses. Body poses are stored as sets of silhou-

ettes seen from multiple viewpoints. Activities and their atomic poses are extracted from

sets of multi-view video sequences by applying an automatic key frame selection algorithm,

and they are used to construct HMMs. Given new single viewpoint sequences, the system

can recognize key pose sequences and changes viewpoint. Further, activity classification can

be achieved by recognizing pose sequences.

In a discriminative approach, a parametric model for the posterior probabilities is intro-

duced, and the values of the parameters is inferred from a set of labelled training data. Wang

and Mori [34] model a human action in a discriminative way. They use a flexible set of parts

conditioned on image observations and combine both large-scale global features and local

patch features in a max-margin hidden conditional random field framework (MMHCRF) for

action recognition. Our work is closely related to the method since we also use MMHCRF

framework to build our model, however, we aim for interaction recognition. To cope with

problems we encountered in interaction recognition, such as intra-class pose variations and

trajectory jitter, we develop an exemplar-based key-pose sequence model.
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2.2 Exemplar-based Representation

Traditional approaches model activities as space-time representations which explicitly or

implicitly encode human dynamics in time. Bobick and Davis [2] extract temporal template

features in video. They use binary cumulative motion images referred to motion-energy im-

ages (MEI) and temporal history of motion called motion-history images (MHI) as features.

MEI suggest the shape of movement and MHI record how motion is moving. In recognition,

a Mahalanobis distance is calculated between the features of the input and that of each

known movement. Our model is similar to their approach in using templates to represent

video sequences. However, our algorithm learns to select key poses.

In contrast, Weinland et al. [35] represent sequences as a set of exemplars without mod-

elling any temporal ordering. The time-invariant features simplify learning and recognition

by removing information in time. In their methods, an activity sequence is matched against

a set of exemplars. For each exemplar the minimum matching distance to any of the frames

in the sequence is determined. The resulting set of distances form a vector in the em-

bedding space, so that point representations of videos can be used in activity recognition.

Their method is similar to ours in using exemplars. On the other hand, our model uses the

concept of key pose, and focuses on those informative frames instead of the whole video.

Considering the importance of temporal information, we also encode hard temporal order

for matched exemplars.

Schindler and van Gool [25] present a system for activity recognition from snippets of

1 – 10 frames. Experimental results show that short snippets can be effective in activity

recognition. It strengthens our belief that a small number of key poses can be enough to

effectively recognize activities. As an extension of activity recognition from snippets, Satkin

and Hebert [24] present a framework for estimating what portions of videos contain the

most salient information. They explore the impact of temporal cropping of training videos

on the overall accuracy of an activity recognition system. Their work could be integrated

into ours as a preprocessing step to filter out noisy data and help us extract exemplars in a

more accurate way.

Exemplar matching approaches usually require a large set of training images as exemplar

candidates. Sequentially searching for the best match is a slow process in nature. To

overcome the problem, it is possible to organize exemplars in a data structure suitable for

fast searching. Shakhnarovich et al. [27] use parameter sensitive hashing for approximate
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exemplar matching. The idea is to build a hash function that is more likely to map similar

exemplars in the same bucket. Lin et. al [15] organize exemplars in a prototype tree via

hierarchical k-means clustering, and use it to speed up the exemplar matching process. We

can adapt the methods in our model for fast exemplar matching, and it will be helpful when

the size of exemplar set is huge.

Deformation of highly articulated human figure also contributes to the difficulty of ex-

emplar matching. A matching that takes configuration cues (e.g. pose) into consideration

can be more accurate. Yang et al. [38] adapt the concept of “poselet” proposed by Bourdev

and Malik [3] into their work. They treat human poses as latent variables and make use

of pose information in action recognition. The method may help us to achieve a better

exemplar matching. Developing a faster exemplar searching method and utilizing pose for

better exemplar matching are two promising directions. We consider them as part of our

future work.

2.3 Temporal Model for Activity Recognition

In activity recognition, some methods represent activities as sequences of templates and the

activity recognition problem is approached as a template matching process.

Lin et al. [15] build an action prototype tree, which is learned in a shape and motion space

via hierarchical k-means clustering, then they match input frames to prototypes based on

shape and motion similarity. Dynamic time warping is used to align two activity sequences

and measure distances between them. Similar to our method, their work employs shape

and motion similarity in prototype matching. However, our matching scheme is built in a

patch-based manner and our model only focuses on key pose matching, not the whole video.

Recently, Niebles et al. [19] develop a model representing activities as temporal compo-

sitions of motion segments. They extend key frames to short motion segments and exploit

the temporal structure of human activities. Although similar to our model, they model

without strict temporal ordering and the non-parametric exemplar matching.

Instead of representing activities as templates, some temporal models describe activities

as sequences of moments in feature space. A common way for these models to approximate

activities is to model similar features and configurations as states and learn transitions

between states. The first work using Hidden Markov Models (HMM) for activity recognition

dates back to Yamato et al. [37]. In this paper, a discrete HMM is used to represent a specific
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activity sequences over a set of quantized image features. To recognize an observed sequence,

the HMM that best matches the sequence is chosen. A drawback of HMM model is the

assumption that a state transition is conditioned on only previous state, not on other states.

The assumption about state independence is necessary to make the model computationally

tractable. However, it comes with contextual information loss. The generative HMM also

has difficulty in modelling independent movements of human parts. Different from their

approach, our work uses a discriminative framework focusing on salient poses of an activity.

Furthermore, our part-based matching scheme is able to model independent shape and

movements of human parts.

Given a video of one person conducting a sequence of continuous actions, Shi et al. [29]

define a set of features to capture the characteristics of action segments, boundary frames

of segments and the relationship between neighbouring action segments. They combine the

features under a discriminative semi-Markov framework for human action segmentation and

recognition. Different from HMM, frames in one segment share one label and this label

depends on its adjacent segment labels in the semi-Markov model. Their work provides an

interesting way to model multiple activity detection in a video, which could be integrated

into our model for multiple activity detection in videos.

2.4 Models for Interaction Recognition in Video

A variety of interaction recognition algorithms have been proposed. Ryoo and Aggar-

wal [22] introduce a spatio-temporal relationship matching kernel, which is designed to

measure structural similarity between features extracted from two videos. It considers

spatio-temporal patterns among interest points, enabling detection and localization of com-

plex activities.

Yao et al. [39] use a set of interest points to represent a video and approach activity

recognition in the Hough transform voting framework. They train random trees to learn a

mapping between sampled feature patches and votes in a Hough space. Leaves of trees are

learnt to be a discriminative codebook, so they can vote for activity centres with probabili-

ties. In testing, randomly extracted patches from a video are used to pass through the trees

in the forest and the leaves that the patches arrive in are used to cast votes.

Yu et al. [40] present a real-time solution which utilizes local appearance and structural

information. Semantic texton forests (STFs) are applied to convert local space-time patches
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to discriminative codewords. To capture the structural information of activities, pyramidal

spatio-temporal relationship match (PSRM) is introduced. Different from searching for

spatial-temporal structure of interest points in previous methods, we model exemplars and

their temporal order to address interaction recognition problems.



Chapter 3

Human interaction recognition

In this chapter, we consider the problem of human interaction recognition. In Section 3.1, a

single subject key pose sequence model is proposed to model the activity of a single person

involved in interaction. In Section 3.2, we extend it to interaction model after introducing

spatial placement between individuals and distinguishing subject from object. A description

of the feature we use and how to select exemplars in training is available in Section 3.3. We

present our inference for the model and learn the weights using NRBM in Section 3.4.

Our goal in this thesis is to recognize human interactions in videos. We will model these

interactions by a sequence of key poses. Observing them and their chronological order can

be used to recognize an interaction.

Given an input video and a putative interaction, four things are unknown:

1. Who is involved in the interaction? More specifically, which person is taking which

role in the interaction – many interactions, such as pushing or kicking, have distinct “sub-

ject” and “object” roles.

2. When do the key poses occur? We model each interaction by a fixed-length sequence

of key poses, but we do not know a priori when these key poses occur in an input video.

3. How are the key poses executed? There is variation in appearance for the key poses

of an interaction – e.g. is the push with one hand, two hands, a forceful push, or a weak

push.

4. Where are the people when the key poses occur? The spatial arrangement of these

key poses is important – interactions such as pushing or embracing have stereotypical relative

distances between the people involved.

These are unknown and, while inferring them is useful, are not our direct goal of recognizing

15
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interactions. Hence, we treat them as latent variables in a novel constrained variant of a

structured latent variable model.

Following the standard notation in structured latent variable models, we now provide a

formulation of our model. Let x ∈ X be a video sequence that consists of people performing

an interaction y ∈ Y where Y is the finite set of interactions. Given a set of video and

interaction label pairs, our task in training is to learn a scoring function F : X ×Y → < over

these pairs. Following the usual latent variable formulation, we will assume F maximizes a

model G that includes the latent variables H: F (x, y) = maxHG(x, y,H).

In our work, the latent variables H answer the four questions above. Namely, H =

[b, t, e, p], where:

1. b specifies who takes which role in the interaction. In this work we assume we are

provided roughly correct tracks of the people in a scene, and b denotes which person is the

subject and object of the interaction.

2. t specifies when the key poses occur. Our interaction model has a fixed number of

key poses (e.g. 5 in experiments). t specifies when in the (much longer) input video x these

key poses occur. This key pose sequence will be constrained to be in chronological order.

3. e specifies how the key poses are executed. We use an exemplar-based representation

in which e specifies which discrete type of execution of a key pose is present in a video.

Essentially, this is similar to an aspect or mixture model to account for key pose variation.

4. p specifies the spatial locations in the video frames for the key poses. As with b, we

will rely on a tracker to assist with this information, allowing small shifts in position from

tracker output to account for tracker error.

3.1 Single Subject Key Pose Sequence Model

We start from a model of a single person performing an activity. Given a set of videos, our

goal is to find a set of key poses in these sequences and use them to describe the activity

class. First, large portion of each video in our dataset consist of highly irrelevant, even

misleading human activities, which is one of our main obstacle when attempting to build an

activity model. Considering push for example, there are poses such as standing or walking at

the beginning or the end of the video that are variable and not discriminative. We introduce

key poses, which are important, infrequent in activities to provide robustness to noisy and

ambiguous frames. Second, each of the key poses will have variation in appearance. We
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would like to use a set of discriminative exemplars automatically extract from training

data to enumerate the major pose variation. Finally, our model is built on the assumption

that trajectories provided by trackers are reliable, however, even state-of-the-art method

in human tracking can not always assure accurate trajectory, for this reason, the spatial

arrangement of these key poses is locally perturbed for robustness to trackers performance,

so the model also should include where in a video frame key pose may locate.

y

h1 h2 hK

x

(.)0

…

(.)1
(.)2

Figure 3.1: The graphical depiction of our model for single subject key pose sequence
matching. The lower layer x is the observed sequence of frames, and the middle layer h
is the key pose sequence layer and the top layer y is the activity label. Edges with boxes
denote factors in our model. Dash lines represent time constraints between key poses.

An instantiation of a single subject key pose model in a video sequence consists three

parts: when do the key poses occur, how is each key pose executed, and where in space

do they occur. We assume that we are given a rough track of the subject, via human

detection and tracking algorithms. We represent each key pose in a sequence by a triple

h = [e, t, p]. Variables t and p are its spatio-temporal locations, with p restricted to locations

near the tracker output. The variable e ∈ E denotes which appearance variant of the key

pose is taking place at time t and location p. A discrete set of exemplars E is used as a

representation of the appearance of key poses - for instance, the different types of pushes

noted above would each be represented by its own element of E . As noted above, a model

contains multiple key poses in sequence, and we denote the K key poses of a sequence by

H = [h1, h2, .., hK ], where each hi is a triple [ei, ti, pi]. Our model also has a constraint on

the temporal component of the key poses H. The key poses should be matched to the input

sequence in chronological order, hence ti < tj if i < j. This hard constraint will be enforced
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in inference via an efficient algorithm.

We now describe the scoring function G(x, y,H) for a single subject model. A graphical

depiction of our model is shown in Fig. 3.1. Factors in this model include terms measuring

compatibility between input sequences and instantiations of key poses, between key poses

and activity label, and among the three. Based on this model, a sequence of key poses H

is scored for the input x and the label y by G(x, y,H) = ωTΦ(x, y,H) which is a linear

function on ω, the parameters of the model. We formulate the scoring function as:

ωTΦ(x, y,H) =

K∑
i=1

αTφ0(x, hi) +

K∑
i=1

βi
Tφ1(y, hi) +

K∑
i=1

γTφ2(x, y, hi) (3.1)

where φ0(·), φ1(·) and φ2(·) are the potential functions defined on the links which will be

described below. α, β = [β1,β2, . . . ,βK ] and γ are the parameters of the model which are

grouped in ω = [α,β,γ] .

Exemplar Matching Link: αTφ0(x, hi) measures the compatibility between key pose

hi and the whole image of one track at time ti and location pi. It is formulated as:

αTφ0(x, hi) =
∑
e∈E

αe
TD(f(x, ti, pi), g(ei))1{ei=e} (3.2)

where f(x, t, p) computes features for sequence x at the location p and time t contained in

h. Similar to f(·), g(·) calculates the features for exemplars. The details of these features

and distance measure D are described in Sec. 3.3. 1 is an indicator function selecting for

the weight vector associated with the exemplar used in h.

Activity-Key Pose Link: βi
Tφ1(y, hi) models the compatibility between activity y

and exemplar ei as the ith key pose (hi = (·, ·, ei)). It reflects our model’s exemplar preference

at different time in each activity, and high value means that particular type of key pose is

strongly associated with ith key pose in activity y:

βi
Tφ1(y, hi) =

∑
a∈Y

∑
e∈E

βiae1{y=a}1{ei=e} (3.3)

The activity-key pose term is indexed on key poses βi, and it means that an exemplar

may have different compatibility with an activity at different times. This models the fact

that key poses have a particular order in each activity. For example bending starts with a

standing pose, continues with bending until the subject reaches ground, and ends with a

standing pose. An exemplar record bending should have a high probability to be selected

to match key pose in the middle instead of the first or the last key pose.
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Direct Root Model: γTφ2(x, y, hi) measures the compatibility of global features ex-

tracted from x at hi and activity class label y. This directly models the features of the input

to the activity class label, without exemplars. It is parametrized as:

γTφ2(x, y, hi) =
∑
a∈Y

γa
TM(f(x, ti, pi))1{y=a} (3.4)

A multi-class SVM is trained on training data. Given input feature, M return a vector

containing scores for classifying the input as all the class labels. γ is the concatenation of

γa for all a ∈ Y.

3.2 Interaction Key Pose Sequence Model

Our goal is to recognize human interactions in a video. There are several ways to extend

our model in Sec. 3.1 to capture interactions. The easiest way would be to learn parameters

of the model for each individual of the interaction, and use them to score each participant

separately. The problem with this method is that it cannot capture any information about

interaction. For asymmetric activities such as kick, push, or punch the model parameters

should be different for each participant. The participants of these interactions include the

subject of activity, the one who does the activity, and the object of the activity, the one

to whom activity occurs. The subject and object in an interaction should have different

key poses. For example, in push the key poses for the subject are stepping forward, putting

hands in front, and shoving actions. However, for the object who is pushed the key poses are

a defensive pose, stepping backward, and falling back. So, we expect to see a different group

of key poses for the subject and object trajectories. Further, as noted above relative spatial

position of the subject and object of an interaction is an important cue for recognition.
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x1

x2
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Figure 3.2: Illustration of our interaction model. The lower layer x1 and x2 is the observed

sequence of frames for two trajectories in interaction, and the middle layer h is the key pose

sequence layer and the top layer y is the activity label. Edges with boxes denote factors in

our model. We hide φ2 for clearance of the figure.

We modify our single subject model to incorporate this information: who is playing

which role, and additional cues about how close these people are. The model is depicted

in Fig. 3.2. We assume we are given the rough trajectories of a potential subject and

object of an interaction, and similar to our model in Fig. 3.1 we match key poses to each

trajectory. However, we model the asymmetry in the interaction, and we define two different

compatibilities between key poses and activity for subject and object tracks. In other words,

in Eq. 3.1, we use βs and βo for subject and object trajectories. Further, we model the

spatial distance of the key poses by an additional term in the scoring function, denoted by

θ. The intuition is that the key poses of an activity occur at common spatial distances from

each other. For example in hug subjects open their hands at a certain distance and then

embrace at very nearby spatial locations afterwards.

Let x be a video that contains two people interacting. In our interaction model the latent

variables are H = [H1,H2, b]. H1 and H2 are the key pose configuration for each person.

The variable b = (b1, b2) selects which person trajectories take the subject and object roles

in the interaction. We assume a tracker provides the rough trajectories of the people in the

video. We use l(x, t, b1) to denote the location of subject actor in sequence x at time t (same

as l(x, t, b2) for object trajectory). Given a sequence, a latent variable configuration, and a
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class label, we calculate the score of each participant, and include the score of the spatial

distance link. The scoring function for the interaction model is formulated as:

L(x, y,H;ω) = G(x, y,H1, b1;ωs) +G(x, y,H2, b2;ωo) +Q(x, y,H;µ) (3.5)

where we make explicit the dependence of G on different parameter subsets

ωs = [α,βs,γ], ωo = [α,βo,γ] for different trajectories. The parameter b is used to

select tracks (not considered in the single-subject model). Note that α and γ are assumed

to be identical for the subject’s and object’s trajectories, while β, the compatibility of key

poses and activity is different. µ = [µ1,µ2, ...µK ], µi are the parameters that measure the

compatibility between activity y and binned distance between tracks at the time of the ith

key pose. Q(x, y,H;µ) measures the relative distance of two tracks at the time of the key

poses and is formulated as:

Q(x, y,H;µ) =
K∑
i=1

µi
Tθ(x, y, h1i , b) +

K∑
i=1

µi
Tθ(x, y, h2i , b) (3.6)

where

µi
Tθ(x, y, hji , b) =

∑
a∈Y

µia
Tbin(‖l(x, tji , b

1)− l(x, tji , b
2)‖2)1{y=a} (3.7)

i.e., the distance between the tracks at the time of the ith key pose in jth trajectory. The

function bin(·) discretizes this distance. To summarize, the full set of parameters is ω =

[βs,βo,α,γ,µ]. Note that the scoring function L is a linear function of ω. Essentially, the

average of the distances at the times of these key poses are considered to model the spatial

distance between the people. Figure 3.2 is an illustration of our interaction model.

3.3 Features

Our goal of exemplar matching is to find an exemplar that shares maximum pose similarity

with input from an exemplar set. We employ patch-based similarity in appearance and

motion feature space to tackle the problem. We also try to parse human poses directly

and include them as part of our features. The weights learnt on exemplar patches or pose

features should specify their importance in exemplar matching.
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3.3.1 Appearance and Motion Features

In order to match key poses to the input sequence with similarity in both appearance

and motion, we choose histograms of oriented gradients (HOG) and histograms of optical

flow (HOF) as features to capture shape and movement of individuals. We use 240 × 180

bounding box for each individual. To limit feature dimension, we resize each cropped image

into half of its origin size before features are extracted. We break each resized image into

8× 8 non-overlapping cells, each cell is represented by a histogram of oriented gradient and

oriented optical flow. HOG feature extraction starts from gradient computation, followed

by creating cell histogram. Pixels within a cell will cast a weighted vote for an orientation-

based histogram channel based on gradient magnitudes. To account for illumination and

contrast, gradient values are locally normalized. The final descriptor is the concatenation of

the histograms of oriented gradients for each cell. We use the code provided by Felzenszwalb

et al. [10] to calculate HOG features. Their code bins oriented gradients into 9 orientations

for each pixel and aggregates all discretized oriented gradients in a cell to form a histogram.

In the end, principle component analysis is employed to further slim feature dimension. We

compute optical flow of entire images using the Lucas-Kanade [16] algorithm, then crop out

motion in bounding boxes, and we calculate HOF in a similar way. We represent images

using a concatenation of HOG and HOF features in 8 × 8 non-overlapping cells organized

on grids inside bounding boxes around the subjects. Figure 3.3.1 is an illustration of HOG

and HOF features we used.

Figure 3.3: Illustration of features we use. The first image is the output of human detection
in a video clip of kick. We illustrate HOG features to its right, followed by its optical flow
magnitude in horizontal and vertical directions. We concatenate their patch-based features
to form our appearance and motion descriptor.

In Eq. 3.2 we use a function D(·, ·) to measure the distance of two bounding boxes in
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feature space. The inputs to D are HOG and HOF features of the two bounding boxes and

the output is a vector with ith component storing normalized Euclidean distance between

HOG and HOF features at the ith cell. In other words, D calculates the Euclidean distance

of features at corresponding cells provided by HOG and HOF. We sample feature distances

from training data to calculate means and variances on each feature dimension. Then, we

apply feature distance normalization using the means and variances. The learnt weights

for α explain how important each patch-based similarity between input and exemplar is in

measuring exemplar-input similarity, i.e. the weights specify how discriminative the path-

based distances are in exemplar matching process.

3.3.2 Pose Features

A more straight forward way is to parse human poses directly and include pose as one part

of features. Introduction of pose features should be beneficial to our model, however, pose

estimation in images, specifically for articulated human body is hard since large number

of degrees of freedom need to be estimated. Estimation results may be not accurate, even

noisy. Therefore, it is still unknown whether pose features will improve our algorithm’s

performance or not.

Ferrari et al. [11] integrate a group of their works in pose estimation together in a 2D

articulated human pose estimation software. Their approach is built on top of the pictorial

structure given an initial human body detection. They progressively reduce the search space

for body parts, and extend the model by adding priori about the orientation of the torso and

head to be near-vertical. We use their software to parse human poses. The pose estimation

software returns the joint locations of kinematic body parts (upper-limb, lower-limb, torso,

head). A pose representation is required given the parsing results. The absolute positions

of joints in bounding boxes are an intuitive way to represent poses. However, it is sensitive

to trajectory jitter, which is common in our case. Given two endpoint coordinates of the ith

human body parts {(xi1, yi1), (xi2, yi2)}, i ∈ [1, 2, ..., 10]. We can obtain its center coordinate

and denote it as (xi, yi). Then we concatenate the Euclidean distance between the center

of torso (x1, y1) and that of the rest body parts as pose representation:

o = [d((x1, y1), (x2, y2)) d((x1, y1), (x3, y3)) ... d((x1, y1), (x10, y10))] (3.8)

d(·) is the function compute the Euclidean distance between two coordinates. In the end,

we normalize pose features to zero mean and unit variance on each feature dimension.
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Given a set of bounding boxes pi restricted to N locations near tracker output x at

time t, we run our parser for each bounding box to obtain human pose features oi and

corresponding confidence score si,

[si oi] = c(x, t, pi), i ∈ [1, 2, ..., N ] (3.9)

We select oi∗ – pose features corresponding to the maximum score, to describe human pose

in track x at time t.

i∗ = arg max
i

si, i ∈ [1, 2, ..., N ] (3.10)

We redefine function f(x, t, p) used in Equation 3.2 to concatenate pose features as well as

motion and appearance features.

f(x, t, p) = [f1(x, t, p) f2(x, t)] (3.11)

where

f2(x, t) = l · oi∗ (3.12)

f1(·) calculate HOG and HOF features as described in Section 3.3.1. Since the dimension

of HOG and HOF features are much larger than that of pose features, we normalize pose

feature so that the summation of pose feature is comparable to that of HOG/HOF features.

The constant l is the scale for normalization, it is the ratio of HOG/HOF feature dimension

and pose feature dimension. Please refer Chapter 4 for experimental results with pose

features.

3.3.3 Selecting Exemplars

Our model requires an exemplar set including various discriminative key poses. Given

the tracks of subjects in training sequences we have access to thousands of samples of

cropped images of human subjects. We define the distance between samples using function

D(·, ·). A clustering algorithm such as k-means could be used to extract various human

poses from cropped bounding boxes. But naive clustering methods focus on common rather

than discriminative poses. In order to get varied, discriminative key poses, we trained a

multiclass linear SVM classifier using LIBLINEAR [8] on top of all cropped bounding boxes

from different activities. This classifier is used to score the training samples as a measure

of how discriminative a sample is. Next, we clustered the samples with highest score using

k-means. Note that the k-means centres are virtual poses that does not exist in training



CHAPTER 3. HUMAN INTERACTION RECOGNITION 25

samples. We use the nearest samples of the training set to the centres provided by k-means

as set of key human pose candidates. This heuristic procedure is efficient and effective in our

experiments. Figure 3.4 is an illustration of the exemplars selected from the training data.

Other supervised clustering techniques could also be used. Lazebnik and Raginsky [14] use

a technique for simultaneously discretizing features and the posterior of their class labels

through minimizing information loss, so that the quantized representation retains as much

information as possible for correctly classifying the feature.

Figure 3.4: Visualization of exemplars selected from UT-Interaction dataset. Each column
includes five exemplars for an activity. The activities are handshake, hug, kick, point, punch,
push. Large pose variations are presented in selected exemplars for each activity.

3.3.4 Initialization

Parameter initialization is crucial in learning latent variable models. We use the following

heuristics to initialize the parameters. In order to initialize β, which affects the valid key

pose sequence, each trajectory in class a is divided into K (number of key poses) equal



CHAPTER 3. HUMAN INTERACTION RECOGNITION 26

length, non-overlapping temporal segments. Each frame of a trajectory in the ith segment

is matched to its nearest exemplar, and βiae is set to the frequency of matching exemplar

e. We initialize α and γ as equally distributed values with unit summations.

3.4 Learning and Inference

Given the training set, we need to learn the parameters of the model to be able to find the

key poses in a test sequence and recognize its activity class. The learning algorithm we use

requires the inference procedure, so we first describe the inference procedure to find the key

poses for a sequence, and then explain how we train the parameters of the model.

3.4.1 Inference

Given a video sequence x, model parameters ω, and a hypothesized activity label y, we score

the sequence by finding the best sequence of key poses. The activity label for a sequence is

the y that maximizes this score. We assume we are given a tracker that produces human

trajectories, but we do not know which of these people takes which role in the activity. We

define the scoring function E(x, y):

E(x, y;ω) = max
b1,b2

max
H∈H1×H2

L(x, y,H;ω), (3.13)

with L being the dual-trajectory scoring function defined in Eq. 3.5. b1 and b2 select which

person trajectories take the subject and object roles in the interaction. Recall from Sec. 3.1

that key pose sequences are constrained by a chronological ordering. H1 and H2 are the

sets of chronologically valid keypose sequences for the trajectories corresponding to people

b1 and b2.

Note that the interaction distance term Q in Eq. 3.6 uses the trajectory of each person,

which is provided by the tracker and is fixed. Hence, the maximization in Eq. 3.13 can be
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decomposed into maximization for each trajectory. So, we can write it as:

max
b1,b2

max
H∈H1×H2

L(x, y,H;ω) = (3.14)

max
b1,b2

{
max

H1∈H1

{
G(x, y,H1;ωs) +

K∑
i=1

µi
Tθ(x, y, h1i )

}
︸ ︷︷ ︸

subject trajectory

+ max
H2∈H2

{
G(x, y,H2;ωo) +

K∑
i=1

µi
Tθ(x, y, h2i )

}
︸ ︷︷ ︸

object trajectory

}
.

The score maximization for each trajectory consists of finding K key poses, hi =

(ei, ti, pi) ,∀i ∈ 1, ...,K that match to the sequence. However, our model has a chrono-

logical ordering constraint on the key poses found in the input sequence, which states

t1 < t2 < · · · < tK . The exemplar and spatial perturbation of the key pose are free

from this constraint, so we can maximize the score of our model for the ith key pose at

frame t over possible exemplars and spatial perturbation:

Ati = max
ei,pi

{
αTφ0(x, hi) + βi

Tφ1(y, hi) + γTφ2(x, y, hi) + µi
Tθ(x, y, hi)

}
where t = 1, 2, · · · , T , and T is the number of frames in x. Next, considering the con-

straint, Arash Vahdat proposes an efficient dynamic programming algorithm to solve this

maximization. He rewrites the score maximization of a trajectory in Eq. 3.14 as:

max

K∑
i=1

Atii (3.15)

s.t. ti < ti+1 ∀i = 1, 2, · · · ,K − 1

He defines M τ
j as the best score using j elements of A until the τ th frame:

M τ
j = max

j∑
i=1

Atii (3.16)

s.t. 1 ≤ ti < ti+1 ≤ τ ∀ i = 1, 2, · · · , j − 1

Writes M τ
j as a recursive function:

M τ
j = max{M τ−1

j−1 +Aτj ,M
τ−1
j } 1 < j ≤ K, j < τ ≤ T

M j
j = M j−1

j−1 +Ajj 1 < j ≤ K

M τ
1 = max{A1

1, A
2
1, · · · , Aτ1} 1 ≤ τ ≤ T

(3.17)
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The optimal solution of Eq. 3.15 is MT
K , and can be calculated in time O(KT ), the number

of keyposes multiplied by the number of frames in the video sequence.

3.4.2 Learning

We use y∗ = arg maxy E(x, y;ω) as the predicted label of x. Given {(x1, y1), (x2, y2), ..., (xn, yn)},
the set of training data, we aim to find parameters that score xi and yi higher than other

activity types. Similar to Felzenszwalb et al. [10] and Wang and Mori [34] we formulate the

training criteria in the Max-Margin framework. We set ω by:

min
ω,ξi

λ

2
‖ω‖2 +

n∑
i

ξi (3.18)

s.t. E(xi, yi;ω)− E(xi, y;ω) > ∆(yi, y)− ξi ∀i,∀y ∈ Y

where λ is a tradeoff constant and ∆(yi, y) is 0-1 loss.

The constraint in Eq. 3.18 forces the score of the true labeling for each training sequence

to be higher than the best score for an incorrect hypothesized label. The optimization prob-

lem in Eq. 3.18 is a non-convex optimization problem and we use the non-convex extension

of the cutting plane algorithm using NRBM [6] to learn the parameters.

3.5 Summary

In this chapter, we build an exemplar-based key pose model for single subject at the begin-

ning, then enrich the model for human interaction recognition task. We infer key poses in

each sequence using an efficient dynamic programming algorithm, and learn weights using

NRBM. We describe features used, the ways to select exemplar set and how to initialize

model parameters. We would like to demonstrate our model’s power by showing recognition

accuracy improvement on both benchmark choreographed dataset and surveillance videos,

visualize weights learnt by our model and explain their meanings.
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Experiments

We consider two datasets to gauge our model’s effectiveness in classifying human interac-

tions. First, we test our model on the UT-Interaction dataset [22], a publicly available

benchmark with comparative results. Second, we construct a dataset for recognizing em-

brace interactions by selecting a subset of the TRECVID 2008 Surveillance Event Detection

challenge [30] and demonstrate our model on a non-choreographed dataset. See Fig. 4.1 for

example frames from the UT-Interaction dataset and TRECVID embrace datasets.

4.1 UT-Interaction Dataset

The UT-Interaction dataset contains videos of 6 classes of human-human interactions: hand-

shake, hug, kick, point, punch, and push. There are 20 video sequences in total. Each video

contains at least one execution per interaction, providing 8 executions of human activities

per video on average. The dataset is divided into two sets. Set 1 is recorded in a parking lot

with a stationary background and set 2 is recorded on a lawn with slight background move-

ment and camera jitter. Ground truth labels for these interactions are provided, including

time intervals and bounding boxes. Note that for the point activity, the ground truth in the

UT-Interaction dataset only contains the person performing the activity without the other

one being pointed at. We decide to search horizontally for a person nearest to the one per-

forming the point activity and include him as the other part of the activity. We follow the

experimental setting of the classification task described in the High-level Human Interaction

Recognition Challenge [22] – bounding boxes are used as input and the performance of our

model is evaluated using leave-one-out cross validation on each set. Note that no additional

29
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Figure 4.1: Representative frames from UT-Interaction dataset and TRECVID embrace
dataset. The first two rows are sample frame of six actions in UT-Interaction dataset and
the third row shows sampled embrace event come from our embrace dataset.

information is used – in particular roles in the interaction (b variables) are inferred both in

learning and test time.

4.1.1 Implementation Details

The bounding boxes provided as input contain the two humans performing an interaction,

not tracks of individuals. We employ a pedestrian detector [4] to obtain initial positions

of the people in the first frame of every video clip. Figure 4.2 is some detections given by

our human detector. We select a pair of detections with the minimum horizontal distance

out of the three highest scoring detections, then run a tracker [1] to find trajectories of two

individuals interacting with each other in the subsequent frames. Figure 4.3 is an example

of our tracker’s output given human detection in the first frame. To handle tracker jitter,

we allow key pose positions to have freedom to perturb around the tracker output. We use

a 20 pixel step size and allow up to 1 step horizontally, a 15 pixel step size and allow up to

1 step vertically to locate p, the position of key pose in the track, so p has 9 positions to

enumerate in our case. In UT-Interaction dataset, actors’s movement occur in horizontal

direction, so our horizontal perturbation step is larger than vertical one. Considering camera
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Figure 4.2: Sample of Human detection results of the first frames of video clips in UT-
Interaction dataset.

zoom in Set 1, we also perform multi-scale search at 2 scales. In multi-scale searching, we

use different bounding box sizes to crop images and resize them to standard size, compute

potential scores on different scales for the maximum. Our model can extend for multi-scale

search with linear computational time increase.

4.1.2 Results

Confusion matrices of the two sets in the UT-Interaction dataset are shown in Fig. 4.4.

The figure shows some confusion between the activities push and punch on Set 2. This

is consistent with the fact that pushing and punching are similar in both appearance and

motion. Comparisons with other approaches are summarized in Table 4.1. Two methods

for activity recognition on UT-Interaction dataset are available, they are proposed by Yao

et al. [39] and Yu et al. [40]. Yao et al. train random trees to learn a mapping between

sampled feature patches and votes in a Hough space. Leaves of trees are learnt to be a

discriminative codebook and vote activity centres with probability. In testing, randomly

extracted patches are used to pass through each of the trees in the forest, the leaves that

the patches arrive in are used to cast votes. Yu et al. use semantic texton forests to convert

local space-time patches to discriminative codewords. To capture the structural information

of actions, pyramidal spatio-temporal relationship match is introduced. A direct comparison

is possible, and our methods clearly outperform their methods.
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Figure 4.3: Sample trajectories extracted from a 63 frame–long video. The trajectories are
the output of our tracker given the human detection in the first frame of the video clip.

Table 4.1: Comparison of per-clip classification accuracy with other approaches on UT-

interaction dataset.

Method Set 1 Set 2 Avg

Our method 0.93 0.90 0.92

Yu et al. [40] N/A N/A 0.83

Yao et al. [39] 0.88 0.80 0.84

(a) Set 1 (b) Set 2

Figure 4.4: Confusion matrices of per-clip classification result on UT-Interaction dataset.
Horizontal rows are ground truth and vertical columns are predictions.

We also test our algorithm’s performance with pose features. First, we visualize some
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results given by pose parser in Fig. 4.5.

Figure 4.5: Parsing results for different activities in UT-Interaction dataset. The parser

performs reasonably for activities like point and handshake. The upper part of the figure

shows some good parsing results on the activities. However, it has difficulty in parsing

extreme poses in activities like hug, push. Those pose estimation results are listed in the

lower part of the figure.

Since videos in Set 2 of UT-Interaction dataset have little scale difference, we choose

to test our pose features on it as the first step. After adding pose features, we see our

algorithm’s performance drop slightly, please refer to Table 4.2.
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Table 4.2: Experimental result after adding pose features on Set 2 of UT-Interaction dataset.

Method Set 2

HOG + HOF 0.90

HOG + HOF+ Pose 0.87

The main reason that more confusion present can be inaccurate pose estimation. The

pose parser performs reasonably at the beginning and the end of video sequences when actors

maintain upright poses, but when extreme poses appear, such as punching and pushing, pose

estimation fails. The failure is probably due to the fact that extreme poses are hard to parse

in nature, and the situation becomes worse when near-vertical human torso orientation is

added as priori. Extreme poses that our estimator fails to parse are those discriminative

poses, which should be selected as key poses. The inaccurate pose estimation mingles noisy

data with discriminative information, should be responsible for the drop of classification

accuracy.

“Poselet” can be another direction to utilize pose information. This notation of poselet

is proposed by Bourdev and Malik [3] and used to denote a set of patches with similar

pose configurations. It is an exemplar-based pose representation. Given 2D images and

their joints labels, each poselet provides examples to train a classifier which can then slide

over entire images for detections. Instead of trying to infer poses correctly using a pose

estimation algorithm, poses are treated as latent variables in a model for action recognition

task in the paper by Yang et al. [38]. They manually label human joints, train poselet

classifiers for different body parts. Part configurations are treated as latent variables, they

connect different human body parts represented by poselets in a tree structure for action

recognition. We can combine patch-based matching with their scheme for better exemplar

matching accuracy. Given their good experimental results, we believe it is a promising

direction worth exploring.

4.1.3 Visualization of Model Weights

In this section we provide visualization of portions of our model to understand what it

has learned. We visualize the exemplar matching model to demonstrate that our model

is able to localize key poses in the trajectory and fire on discriminative patches for pose.

Figure 4.6 shows our exemplar-matching model. We show weights between exemplars and
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activity labels to show our model can handle pose variation via the exemplar representa-

tion. Figure 4.7 visualizes our learned activity-exemplar weights. We visualize the weights

for distances between the localization of key poses in each trajectory to illustrate the con-

tribution of spatial constraints. The first bin (bin 1) is assigned to distance smaller than

a threshold, and the last bin (bin 5) is assigned to all distances larger than the maximum

step size. Figure 4.8 shows the learned spatial distance weights.

4.2 TRECVID Embrace Dataset

We collected a subset from the development dataset of the TRECVID 2008 Surveillance

Event Detection challenge [30] for the embrace event classification task. Our goal is to

examine performance on non-choreographed activities. The full TRECVID dataset is very

challenging, and state-of-the-art methods perform poorly on it. Considering the fact that

human detectors and trackers have difficulty in challenging datasets like TRECVID, we

manually select a subset of the dataset on which the detector/tracker perform well. This

subset will certainly be easier than the full dataset, but it can be argued that with a better

detector/tracker, performance should improve.

We choose five days of video recorded in 2007 from camera view 3. We manually select

a positive set of 36 embrace clips where our detector and tracker provide reasonable output,

from all 343 embrace clips. We randomly sample 300 video clips that do not temporally

overlap with the embrace events using the same human detector and tracker used for positive

examples to obtain trajectories. We select from this a negative set of 108 pairs of trajectories

that overlap in space.

The TRECVID Event Annotation Guidelines states that embrace starts at the lastest

time when subjects do not have physical contact prior to the embrace. However, we believe

important and discriminative information is also present in frames before people have phys-

ical contact. For example, pairs of people with both arms outstretched strongly indicates

the upcoming embrace event. So we decide to label the starting frame of embrace 20 frames

earlier that the TRECVID ground truth. We also fix the length of embrace activity event as

60 frames for both positive and negative samples. Note that the negative class come from

videos randomly sampled in time, hence is a fair comparison to non-embrace videos but

our dataset lacks the “near”-embrace events that would require non-maximum suppression.

Our embrace dataset excludes groups hugging and other serious occlusions in which case
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Frame 69Frame 58Frame 52Frame 41Frame 40Frame 1

... ...

Frame 39

... ...

Frame 38 Frame 49 Frame 52 Frame 54 Frame 58 Frame 60Frame 1

Figure 4.6: Discriminative frames of a trajectory are automatically extracted. Separated
by a dashed line, the upper part of the figure comes from the UT-Interaction dataset and
the lower part from the TRECVID embrace dataset. The localizations of key poses in
trajectories are highlighted by red bounding boxes. In the upper part, our model localizes 5
key poses in a 69-frame long trajectory and selects exemplars for each of them. The frame
number under each key pose localization indicates its time in the trajectory. Exemplars are
selected based on similarity in appearance and localization of key pose. The similarity is
defined as patch-weighted distance. The model learns to give high weights on patches where
poses appear to be unique. Patch-based weights are shown beside each exemplar. The
weights spread over the contour of each individual and concentrate on outstretched arms for
the push activity. Similar visualizations are shown in the lower part for a trajectory from
the TRECVID embrace dataset.
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Push

Hand-shake Hug Kick

Point Punch

Figure 4.7: Visualization of exemplar indicator model for one trajectory. For the heatmap
of each activity, the horizontal axis is the concatenation of the 5 key poses in the activity
and the vertical axis specifies 20 exemplars belong to the activity. Each pixel describes the
score for an exemplar being matched to a key pose in the activity. The weights represent our
model’s preference for an exemplar in a key pose. For the second key pose in each activity,
we also visualize the exemplars with highest weights. For each activity, selected exemplars
have large pose variation.
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Figure 4.8: Spatial distance model for all six activities in UT-Interaction dataset. Three
axes are discrete distance, key poses and weights. For a key pose in each activity, the heights
of bars indicate our model’s preference among different distances. Bars are also coloured
according to height. The spatial distances in the hug activity are preferred to be smaller
than that in the point activity, which illustrates the fact that people are closer to each other
in hugging compared with pointing. For the push activity, the spatial distance preferred by
the last key pose is much greater than previous ones, reflecting the separation of the two
individuals at the end of the activity.
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one can barely see embrace event. However, the dataset still inherit the characteristics of

TRECVID videos, it contains large activity variety on a cluttered background, which make

it challenging. The precise dataset will be available for download at our website.

4.2.1 Preprocessing

Our dataset is created by collecting a set of trajectories from the TRECVID dataset. There

are 539 embrace activities occurs in the TRECVID development dataset. We use those

captured by camera 3 for our new dataset, which include around 63% of all the embrace

activities in the whole dataset. We fix the length of clips to 60 frames for negative examples

considering the average time people take to embrace. To avoid potential bias introduced by

difference between the length of negative examples and positive examples in classification,

we also fix the clip length for positive examples to be 60 frames, filter out those clips whose

length is shorter and crop those clips whose length is longer. It left with us 260 clips. Then

we run an SVM human detector on the first frames of the clips, the number of clips with

both interacting individuals detected reduce to 73. Figure 4.9 is a demo of the output of

human detector. We manually select out interacting individuals from the detections given

Figure 4.9: Human detection on the first frame of video clips in TRECVID embrace dataset.

by the human detector. In the end, we track individuals and successfully obtain 36 pairs

of trajectories as positive examples. Figure 4.10 is an example of the trajectories extracted

from positive examples.
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Figure 4.10: Sample trajectories extracted from a TRECVID embrace video. The trajecto-
ries are the output of our tracker given the human detection in the first frame of the video
clip. Embracing people are manually selected from the output of human detector.

As noted above, a negative set is created by randomly sampling pairs of trajectories

that overlap spatio-temporally. We detect people using a combination of motion and HOG

human detection. We use the tracker proposed by Babenko et al. [1] to obtain trajectories

of individuals. The positive set is acquired using the TRECVID ground-truth, adding an

annotation of which two people in a scene are embracing. The task is now a classification

task – given a pair of trajectories, is there an embrace activity occurring or not.

4.2.2 Results

We evaluated our method using 6-fold cross-validation on the dataset. To evaluate the

effectiveness of different parts of our model, we introduce two baseline methods to compare

with our full model. The first baseline is our full model without the root model, the direct

link between key poses and activity labels. The second baseline is our full model without

the spatial distance model, the link between localizations of key poses in one trajectory and

poses in the other trajectory simultaneously.

We produce a ROC curve to measure the performance of our algorithm, it is shown in

Figure 4.11. Even though we try our algorithm on the embrace dataset, we still can interpret

performance of our method on the complete TRECVID dataset. Camera view 3 captures
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Figure 4.11: ROC curve on TRECVID embrace dataset. The 6% increase in Area Under
ROC (AUR) from the first baseline to our full model reflects the contribution of the root
model to our full model. Since we only select trajectories that overlap spatio-temporally for
negative examples, which restrain the benefits of spatial distance model, one can expect the
AUR of models with and without spatial distance have little difference.

the majority of embrace events. In the worst case, if we misclassify all the rest positive

examples, maximum achievable true positive rate (TPR) in ROC drops to 63%. Due to

the failure of human detector, tracker and ignorance of short positive samples, our TPR

will at most decrease to 10%× 63% of our reported TPR. However, our negative examples

are randomly selected pairs of trajectories which overlap in space and time, they are much

harder comparing to most of the negative examples in the complete TRECVID dataset. The

experimental result on our dataset indicate promising performance on the full TRECVID

dataset.
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Conclusion and Future Work

5.1 Conclusion

The main contribution of this thesis is developing an exemplar-based key pose sequence

model for recognizing human interactions. To tackle the problem of interaction recognition,

we propose to use a sequence of key poses to represent an activity. We use heuristics to

extract exemplars from training data. We represent key poses by exemplars to handle human

pose variations. We define the matching distance between input and exemplar as a weighted

sum of patch-based distance in HOG and HOF feature space. Spatial arrangements between

interacting people are modelled. We train our model in max-margin hidden conditional

random filed (MMHCRF) [34] and use non-convex regularized bundle method (NRBM) [?]

to learn the weights. Quantitative results that form a new state-of-the-art on the benchmark

UT-Interaction dataset [23] are presented. Experiments on a subset of the TRECVID

dataset [30] also demonstrate the potency of our model.

5.2 Future Work

The work in this dissertation is illustrated to form state-of-the-art classification performance

in the benchmark UT-Interaction dataset, and quantitative results on TRECVID embrace

dataset also demonstrate its effectiveness. Seeking for better solutions for subtasks in our

model uncovers lots of interesting research directions in the future.

Our model is built based on the assumption that a human tracker is able to provide

approximately accurate human trajectories in video clips. Although slide around trajectories

42
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and employ key pose representation for robustness to trajectory jitter, our algorithm still

heavily relies on the performance of human tracker. However, human tracking is challenging,

state-of-the-art methods available in the field are not always reliable, which could be a

bottleneck of our model. Examining the addition of tracking as a latent variable could

alleviate this direct prerequisite. Inspired by our perturbing operation around humans

in trajectory, we can go one step further – use sliding window approach to search entire

frames for best matches. We can add human tracking into our model to solve both human

tracking and classification task in a joint way. Designing a smart sliding window approach

with acceptable computational cost and treating human trajectory as latent variables is an

interesting direction for further research.

Input-exemplar matching scheme is heavily used in searching for best exemplars in

videos. Nevertheless computing input-exemplar similarity for each exemplar is time consum-

ing. We need to maintain a large number of exemplars for accurate matching since exemplar

representation is used to cover human pose variations. Considering both computation cost

and matching accuracy, we believe there is a reason to organize exemplars according to pose

similarity in a data structure (e.g. tree or hash table) suitable for fast matching. Reduc-

ing our parameter space would also be possible via sharing weights via a tree structure on

exemplars. Exemplar methods are successful, but require enormous numbers of exemplars.

Scaling our method would be interesting.

We use patch-based Euclidean distance in feature space to measure similarity between

input and exemplar. The patch-based matching scheme measures global similarity with tol-

erance to local appearance and motion deformation. However, the similarity measurement

does not model discriminative pose information in images. One can directly use available

pose estimation algorithms to extract human poses and include pose as part of features for

better matching. An alternative way is to treat human poses as latent variables, infer the

best poselet configurations, and define input-exemplar distance based on poselet configu-

ration similarity. Both of the methods directly utilize human pose similarity in exemplar

matching. Pose information seems to be quite different from our HOG and HOF features,

so we expect the new approaches will contribute to a better recognition performance.

Our model is suitable for interaction recognition between two people, and could be

easily simplified for single subject activity recognition. Group interaction with more than

two people get involved always can be factored into interaction pairs. Therefore our model

has an good generality. It is interesting to extend our model for multiple activity detection
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in a video. Modifying our model for more complex yet real-world scenario (e.g. group

interaction recognition, multiple activity detection) holds significant meanings, we believe

it would be worth exploring.

Our interaction model goes beyond individual activity recognition. It not only develops

an effective way to model individual activity but also utilize human interactions to help

recognition. We believe the model opens a door to many interesting research problems and

holds promise in improving interaction recognition and related vision applications.
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