

AUTOMATIC GENERATION OF MULTILINGUAL SPORTS

SUMMARIES

by

Fahim Hasan
B.Sc. in C.S.E., BRAC University (Bangladesh), 2007

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

In the
School of Computing Science

© Fahim Hasan 2011

SIMON FRASER UNIVERSITY

Summer 2011

All rights reserved. However, in accordance with the Copyright Act of Canada,
this work may be reproduced, without authorization, under the conditions for Fair
Dealing. Therefore, limited reproduction of this work for the purposes of private
study, research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

 ii

APPROVAL

Name: Fahim Hasan

Degree: Master of Science

Title of Thesis: Automatic Generation of Multilingual Sports
Summaries

Examining Committee:

 Chair: Dr. Richard T. Vaughan
Associate Professor – Computing Science

 Dr. Fred Popowich
Senior Supervisor
Professor – Computing Science

 Dr. Veronica Dahl
Supervisor
Professor – Computing Science

 Dr. Anoop Sarkar
Internal Examiner
Associate Professor – Computing Science

Date Defended/Approved: May 31, 2011

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

 iii

ABSTRACT

Natural Language Generation is a subfield of Natural Language

Processing, which is concerned with automatically creating human readable text

from non-linguistic forms of information. A template-based approach to Natural

Language Generation utilizes base formats for different types of sentences,

which are subsequently transformed to create the final readable forms of the

output. In this thesis, we investigate the suitability of a template-based approach

to multilingual Natural Language Generation of sports summaries. We implement

a system to generate English and Bangla summaries making use of a pipelined

architecture to transform data in multiple stages. Additionally, we demonstrate

how the automatically generated summaries differ from human generated

summaries. We show that by using a template-based approach the system can

generate acceptable output in multiple languages without requiring detailed

grammatical knowledge, which is important for languages such as Bangla where

computational resources are still scarce.

Keywords: Natural Language Processing; Natural Language Generation;
Bangla; Template; Pipeline.

 iv

DEDICATION

To my family

 v

ACKNOWLEDGEMENTS

I would like to thank my supervisors, Dr. Fred Popowich and Dr. Veronica

Dahl for their guidance and motivational comments on my work. I also thank my

family and friends for their support.

 vi

TABLE OF CONTENTS

Approval.. ii

Abstract...iii

Dedication .. iv

Acknowledgements ... v

Table of Contents... vi

List of Figures..viii

List of Tables.. ix

Chapter 1: Introduction...1

1.1 NLG Systems..2

1.2 Motivation..3

1.3 Contributions...5

1.4 Organization..6

Chapter 2: Related Work...8

2.1 Shallow versus In-Depth Generation Techniques..8

2.2 Template Based Approaches ..10

2.3 Other Approaches ...22

2.4 Chapter Summary ...32

Chapter 3: The Generation System..33

3.1 Overview...33

3.2 Input Conversion ...44

3.3 Pre-Processing ...48

3.4 Content Selection..48

3.4.1 Selection Rules for Batting Items...51
3.4.2 Selection Rules for Bowling Items..52
3.4.3 Selection Rules for Catching Items..53

3.5 Aggregation...54

3.6 Surface Realization ...56

3.6.1 Lexicon..57
3.6.2 Templates..58
3.6.3 Realization...61

3.7 Post-Processing ..65

3.8 Implementation Details..65

3.9 Application of the Gricean Maxims ..66

3.10 Chapter Summary ...68

 vii

Chapter 4: Performance Demonstration..69

4.1 Methodology ...69

4.2 Results..75

4.3 Discussion...81

Chapter 5: Conclusion ..84

5.1 Summary...84

5.2 Future Works ..86

Appendices..90

Appendix 1: Demonstration Details ...91

Input Case 1..91
Input Case 2..93
Input Case 3..95
Input Case 4..97

Appendix 2: Human Authored Game Bulletin ...99

Appendix 3: Templates ... 101

Syntax of Templates ... 101
Sentence Templates ... 102
Phrase Templates ... 104

Reference List ... 107

 viii

LIST OF FIGURES

Figure 1.1: The pipelined architecture of NLG systems ...3

Figure 2.1: An example test case in Z ...10

Figure 2.2: The corresponding NL description...11

Figure 2.3: An input agenda ..13

Figure 2.4: A text plan tree in XML ..14

Figure 2.5: A text specification tree ...14

Figure 2.6: Output text in JSML...15

Figure 2.7: A grammar template of XtraGen..17

Figure 2.8: Use of parameters in XtraGen...18

Figure 2.9: Template rule for the clause template..19

Figure 2.10: System architecture of GoalGetter...20

Figure 2.11: Output of the GoalGetter system ...21

Figure 2.12: An example RDF triplet ...24

Figure 2.13: The corresponding output text ...24

Figure 2.14: System architecture of SumTime-Mousam ..28

Figure 3.1: Plain text input...35

Figure 3.2: Human authored bulletin ...36

Figure 3.3: System architecture...38

Figure 3.4: News item with a custom tag ...46

Figure 3.5: The corresponding output text ...46

Figure 3.6: Formatted input ...47

Figure 3.7: Key semantic concepts..59

Figure 5.1: Revised system architecture..87

 ix

LIST OF TABLES

Table 3.1: System output 1..42

Table 3.2: System output 2..43

Table 3.3: Selection rules for batting items..52

Table 3.4: Selection rules for bowling items ..53

Table 3.5: Selection rules for catching items ...53

Table 3.6: Sentence templates with realized outputs...60

Table 3.7: Realization algorithm in pseudocode ..64

Table 4.1: Precision, recall and F-score results ...75

Table 4.2: Lengths of human authored and system generated reports76

Table 4.3: Precision, recall and F-score considering player actions...............................78

Table 4.4: System output for input case 5 ...80

Table 4.5: Player inclusion type details for input case 5 ..81

Table 5.1: System output for case 1 ..92

Table 5.2: Player inclusion type details for case 1 ...92

Table 5.3: System output for case 2 ..94

Table 5.4: Player inclusion type details for case 2 ...94

Table 5.5: System output for case 3 ..96

Table 5.6: Player inclusion type details for case 3 ...96

Table 5.7: System output for case 4 ..97

Table 5.8: Player inclusion type details for case 4 ...98

Table 5.9: Sentence templates (English) ... 102

Table 5.10: Sentence templates (Bangla).. 103

Table 5.11: Phrase templates (English)... 105

Table 5.12: Phrase templates (Bangla) ... 106

 1

CHAPTER 1: INTRODUCTION

Natural Language Generation (NLG) is a subfield of Natural Language

Processing (NLP) that utilizes techniques from Artificial Intelligence (AI) and

Computational Linguistics (CL) to automatically generate human understandable

Natural Language (NL) text. The generated text can be formatted as reports,

explanations, help messages, etc. from non-linguistic (structured) representation

of information as the input [1]. NLG systems typically use knowledge about the

target language and the application domain to produce their NL output.

The objective of our research is to explore cross-lingual NL summary

generation in the sports domain. We investigate the applicability of various NLG

techniques and propose a template based approach to automatically generate

sports summaries in multiple languages. We present an implementation of the

approach consisting of separate subsystems responsible for specific generation

tasks. The implemented system produces natural language text as output from

structured data in non-linguistic format as input. A key aspect of our approach is

to have a language independent system, i.e., the system would support having

template files for each language and not require modification to the core

components when adding new languages. We also provide a methodology to

demonstrate how human and computer generated summaries differ and discuss

outputs of our system, displaying its ability to extract the key semantic concepts

of the input data and successfully summarize those in NL sentences.

 2

1.1 NLG Systems

From a broad perspective, NLG systems can be categorized as either

standard systems that utilize generic linguistic and grammatical information or

template based systems that map the input directly to the surface structure

without requiring deep grammatical knowledge or in depth analyses [2]. NLG

systems usually have several different subsystems with well-defined interfaces to

each other that are responsible for specific subtasks of generating text. A widely

used architecture for NLG systems has three primary components: the document

planner, the micro planner and the surface realizer. The document planner is

responsible for the tasks of content determination and document planning that

specify the content and structure of the output text. The tasks of the micro

planner are sentence aggregation and referring expression generation that

determine which words and syntactic structures should be used to realize the

content and structure chosen by the document planner. Finally, the surface

realizer is responsible for linguistic realization, i.e. mapping the abstract

representation created by the micro planner into actual text as the final output of

the system [1].

This specific architecture described above is sometimes referred to as the

pipelined architecture since the different modules of the system are connected to

each other in a one-way pipeline. That is, the output of the document planner

acts as the input to the next module, which is the micro planner. In the same

way, the output of the micro planner acts as the input to the surface realizer. The

process is called one-way since a module in the pipeline can only have an

 3

influence on the operation of the modules that come after it. For example, since

the micro planner is placed after the document planner and before the surface

realizer, it can only control the outcome of the surface realizer since it produces

the input for the realizer, and not the document planner. Graphically, the pipeline

can be represented as shown in Figure 1.1, which is based on the depiction

provided by Reiter and Dale in [1].

Figure 1.1: The pipelined architecture of NLG systems

1.2 Motivation

For our research, we chose to focus on generation in two languages:

English and Bangla. As for the domain within sports, we decided to use Cricket,

since it is one of the most popular sports in the Commonwealth.

Document plan

Communicative goal

Document planner

Surface realizer

Micro planner

Output text

Text specification

 4

Bangla is the sixth most spoken language in the world [3], but work on

Bangla NLP is still not widespread compared to other languages such as English.

In fact, while studying the related research papers for this work, we found few

works on Bangla NLG [4, 5, 6] (except within Machine Translation systems). And

these were also quite different than our target area since [4] focuses on

morphological synthesis of word classes; [5] discusses sentence fusion

techniques by identifying clauses and types of input sentences and [6]

investigates appropriate discourse marker generation and aggregation using

grammatical knowledge, which makes our system the first of its kind since

Bangla is one of the target languages of the system. Although we will focus on

Bangla generation in one specific domain, we will consider situations that may be

useful or adaptable to other domains as well.

As input to an NLG system, we considered medical records of patients,

weather forecast data and game score cards, all of which are widely available as

structured data and also allow us to build on the ideas used by some of the

previous research in the area which will be examined in Chapter 2. We decided

upon game data because of its wide availability and more standardly structured

nature, compared to medical records or raw weather forecast data. Also, human

written reports are available alongside the actual game data, which can be

utilized for demonstrating the output differences of the generation system and

humans to some extent. We specifically selected score cards of Cricket games

as the input data to our system due to its structured nature and vast availability in

similar formats across different sources. A second reason for selecting Cricket

 5

score cards is the availability of domain knowledge. As mentioned previously,

NLG systems utilize domain knowledge or language specific information such as

grammars to generate output text. Since the proposed system would not have

access to sophisticated grammatical resources, proper utilization of domain

knowledge, which we are already familiar with in the Cricket domain, holds

significant importance for producing meaningful output. Furthermore, since the

output of the proposed system would be fairly simple sentences, it would also be

possible to use the output text as input to a Text to Speech (TTS) system in the

future. This has been done for several applied NLG systems previously [7, 8, 9].

Furthermore, a popular Bangla newspaper is already using TTS technology to

provide spoken version of its news through the Internet [10] and the proposed

system could be used alongside that to create audio bulletins of game results.

1.3 Contributions

The research in this paper will advance both the state of the art with

respect to generation of sports summaries, and the work being done in Bangla

language processing.

We present a template based cross-lingual approach to NLG utilizing the

pipelined architecture, which is widely used to build generation systems due to its

simplicity, flexibility, high cohesion and low coupling. The system is capable of

creating short game summaries of one-day international (ODI) Cricket matches in

Bangla and English from game scorecards in non-linguistic form.

 6

We verify the hypothesis that a template based approach to NLG

facilitates a decreased language dependency. We show that by utilizing

templates to design the system, it is possible to generate output in multiple

languages by only creating new templates and without requiring modifications to

the core components of the system.

Our system also demonstrates the fact that using templates allows

generation, even though in a constrained manner, without requiring embedding

of detailed grammatical knowledge within the system. Removing the need for

detailed grammatical knowledge is important for languages like Bangla where

computational resources are not widely available yet.

Another contribution of the presented work is that we discuss a

methodology to assess the performance of a generation system. We describe

how the output of an automatically generated summary could be compared

meaningfully to a human authored game report for the Cricket domain. Based on

the discussion, we present comparison results demonstrating that the system

accurately extracts and realizes the key semantic concepts, i.e. the most

important information from the input data as compared to human authored

reports.

1.4 Organization

The rest of this thesis is organized as follows. In chapter 2, we discuss the

different approaches to NLG and some of the previous work on generation tasks

such as creating textual summaries of ontology concepts, software engineering

 7

test cases written in Z, weather forecasts and soccer game results. In chapter 3,

we present our NLG system and discuss in detail the different aspects of the

system such as the general architecture and module specifics of content

determination, aggregation and cross-lingual surface realization. In chapter 4, we

discuss why evaluation in general is a difficult task for NLG and as such, present

the method that we followed to demonstrate the performance of our system. We

summarize the presented work in chapter 5 and subsequently provide our

conclusions.

 8

CHAPTER 2: RELATED WORK

In this chapter, we discuss previous approaches to NLG related to our

research, along with their benefits and drawbacks, and then discuss some

applied NLG systems. We examine their features, evaluation methods and how

the underlying ideas used to build those systems motivate the design of our NLG

system.

2.1 Shallow versus In-Depth Generation Techniques

According to Buseman and Horacek in [11], language generation

techniques can be categorized as either shallow or in-depth. An in-depth

approach is knowledge based and theoretically motivated whereas a shallow

approach is opportunistic and only models parts of the language that are

necessary for the task at hand. As stated by Reiter et al. in [12], a significant

amount of domain or language related background knowledge is required for

NLG systems to produce quality output comparable to that written by humans.

However, the process of knowledge acquisition for NLG tasks is by no means

easy due to the complexity, novelty, poorly understood nature and ambiguity of

the task. Therefore, since the shallow NLG methods can vastly differ in

complexity depending on the requirement of the generation task, they are

appropriate when the in-depth methods are not well understood or are less

efficient [11].

 9

Based on the above reasoning, Buseman and Horacek present a flexible

shallow method called the TEMSIS (Trans-national Environmental Management

Support and Information System) application for automatically generating reports

on the quality of air [11]. According to the authors, the approach requires little

linguistic information and can be adapted to new domains easily. It uses

templates, canned text as well as a detailed grammatical model for realizing

sentences. There are two components, the text organizer and the text realizer in

the application as well as an internal representation of information that is realized

in a language independent manner. The advantages of such an approach are

that it allows reusability of the modules, offers language-modelling flexibility and

has better processing speed than in-depth methods since processing complex

grammatical rules is not necessary. In addition, there is no language

dependency, which allows porting to a new language without requiring

considerable effort. Therefore, for the cross-lingual summary generation problem,

it suggests that the use of a template based approach might be a good idea

since it allows language flexibility and does not require grammars. However, the

authors also acknowledge the shortcomings of shallow approaches, i.e. domain

dependency of the realizer and internal representation, which prohibits reuse of

the internal representation in a new domain without requiring modification. Since

for our generation task, we focussed on reducing language dependency rather

than domain dependency, these drawbacks did not pose significant problems.

The authors also present a qualitative evaluation of the method by discussing its

 10

advantages and disadvantages. However, evaluation of the actual generated

output is not included in the paper.

2.2 Template Based Approaches

Buseman and Horacek state that the main difference between template

based and non-template based approaches is that the non-template based

methods are linguistically motivated and utilize a layer of internal representation

of information that is used by the surface realization component [11]. They argue

that the advantages of both the linguistically motivated and the template-based

approaches are limited and the former method is generally difficult to use

whereas the latter is too inflexible. However, as will be seen in some of the

systems discussed later, several template based approaches also utilize internal

representation of information.

Cristiá and Plüss [13] present a prototype NLG system aimed at creating

NL description of test cases written in a logical format called Z, created by Model

Based Testing (MBT) tools. As displayed in Figures 2.1 and 2.2, and stated by

the authors, test cases written in Z have to be converted to NL descriptions in

order for humans to be able to understand what operation is described in the test

case.

øaddsyesTCprocessing =∧=

byte3}}byte2,43

byte1,byte0,2{1{mid0blocks

aa

aaa=

〉〈=∧〉〈=∧= 2len?1sa?mid0m?

Figure 2.1: An example test case in Z

 11

Service (6,5) will be tested in a situation that verifies that:

• the state is such that:

• the on-board system is currently processing a telecommand and

has not answered it yet.

• the service type of the telecommand is DMAA.

• the set of sequences of available memory cells contains only

one sequence, associated to a memory ID, which has four

different bytes.

• the set of starting addresses of the chunks of memory that

have been requested by the ground is empty.

• the input memory ID to be dumped is the available memory ID, the

input set of start addresses of the memory regions to be dumped

is the unitary sequence composed of 1, the set of numbers of

memory cells to be dumped is the unitary sequence composed of 2.

Figure 2.2: The corresponding NL description

As the authors describe, since the Z test cases are essentially a set of

bindings between variables and values, a template based approach to generation

is suitable for creating NL descriptions where a grammar is defined to describe

templates for each test case. These templates are called NLTCT (Natural

Language Test Case Templates) and each template defines how a specific test

case in Z is converted to an NL description by including a parameterized

description of the test case. This idea was utilized to some extent in our

generation task, where the templates can be considered as parameterized

descriptions of specific type of sentences and define how they should be realized

in natural language.

The authors state that the parser they implemented that takes an NLTCT

and a Z test case as input produces an adequate NL description of the test case.

However, a limitation of the approach is that the solution is domain dependent

and as such, would not generalize well to specifications written for other

 12

domains. Also, it requires writing a template for each task, which might be difficult

for testing complex systems with many test cases.

Reiter et al. [14] describe a template based system called IDAS (Intelligent

Documentation Advisory System) that generates advanced help messages using

canned text, hyperlinks and Object Oriented techniques. The system can

produce answers to questions such as “What is it”, “Where is it”, “What are its

parts” about the objects in the knowledge base. The knowledge base is used to

store information such as domain knowledge, grammatical and content

determination rules and words. The system is also used to generate technical

documentation of automatic test equipment using information from the

knowledge base. As the authors report, the system is successfully extended for

multi-lingual support, which supports the hypothesis that a template based

approach might be suitable for cross-lingual generation tasks. For evaluating the

performance of the system, a user effectiveness study is done using three

human subjects where the subjects are asked to answer several questions using

the information obtained from the system and then fill out a questionnaire about

its performance. Thus, according to the authors, the results despite being

positive in general, should be considered suggestive and not statistically

significant. However, as we will find later in this chapter, this kind of evaluation

technique is often utilized when other methods may not be available.

In [7, 15, 16, 17], Wilcock discusses a pipelined approach to NLG that

generates text later used as input for a speech generation system. The

discussed method uses an XML based pipeline and XSLT templates for

 13

transforming text plan trees (where the leaves are domain specific concept

messages) to text specification trees (where the leaves are linguistic phrases).

Their approach is similar to ours in its use of templates, the internal

representation format, which is a set of concepts or facts, a transformation based

scheme that modifies the input data in different stages and finally a tree based

pipeline implemented in Java. A short example of how the system works, as

described in the paper is included below.

Assuming the input question is “Which bus goes to Miami?” the system is

supposed to provide the answer “Number 74”. The input to the generation

system is called an agenda, which is a set of concepts for realization as

determined by a separate component called the dialogue manager. The agenda

consists of the following XML description:

<agenda id="1">

<concept info="Topic">

<type>transportation</type>

<value>bus</value>

</concept>

<concept info="Topic">

<type>destination</type>

<value>Malmi</value>

</concept>

<concept info="Topic">

<type>bus</type>

<value>exists</value>

</concept>

<concept info="NewInfo">

<type>busnumber</type>

<value>74</value>

</concept>

</agenda>

Figure 2.3: An input agenda

 14

Using the agenda as input, the system performs content determination by

extracting the concept nodes and creating a text plan. It also determines whether

to generate the information as new information which has not been mentioned

previously, i.e. a NewInfo or whether to wrap it using a link to a previous topic.

The resulting text plan in XML is displayed below.

<TextPlan id="1">

<Message>

<type>NumMsg</type>

<concept info="NewInfo">

<type>busnumber</type>

<value>74</value>

</concept>

</Message>

</TextPlan>

Figure 2.4: A text plan tree in XML

During the micro-planning stage, the text plan tree displayed above is

transformed using XSLT templates to a text specification tree where the

messages in the concept nodes are changed to phrase specifications and

domain concepts are transformed into referring expressions, if necessary. The

resulting text specification tree is provided in XML as shown in Figure 2.5.

<TextSpec id="1">

<PhraseSpec>

<subject cat="NP">

<head>number</head>

<attribute>74</attribute>

</subject>

</PhraseSpec>

</TextSpec>

Figure 2.5: A text specification tree

 15

Finally, the realization stage processes the text specification tree as

displayed in Figure 2.6, and creates output in Java Speech Markup Language

(JSML) to be used as input data for the speech generation system.

<jsml lang="en">

<div type="sent"> Number

<sayas class="number">74</sayas>

</div>

</jsml>

Figure 2.6: Output text in JSML

As stated, the author considers the approach not to be a template based

generation method, but a system combining template based text planning and

transformation based micro-planning. Even though the output of the method is

reasonable, a formal evaluation of the system is not presented in the papers.

However, they do provide clear examples of how the different stages of the

pipeline of an NLG system could be designed in order to effectively perform the

generation task.

As described in [18], Web Ontology Language (OWL) is a family of

knowledge representation languages for authoring ontologies. Galanis and

Androutsopoulos [19] present an XML based verbalizer for OWL ontologies

implemented in Java, called the NaturalOWL system. NaturalOWL follows a

pipelined architecture where generation is carried out in three stages. Content

selection and document structuring, i.e. determination of the order of information

to be realized, are done in the first stage called document planning. In the

second stage known as micro-planning, an abstract sentence specification is

created for each message and these are aggregated as necessary. Referring

 16

expression generation is also done during this stage. Finally, in the surface

realization stage, text output is created from the abstract sentence specifications.

The system is similar to the one presented in [17], with the difference being

instead of using XSLT templates for transformation, NaturalOWL uses Java for

the same purpose. This provides clear separation of processing code with

linguistic resources and also allows easier transformation of data since XML

trees can be modified easily using available methods in Java rather than writing

custom XSLT templates.

White and Caldwell discuss an object oriented and rule based framework

named EXEMPLARS for Natural Language Generation in [20]. The system

focuses on ease of use, extensibility and efficiency using schema like text

planning rules that are called exemplars. These exemplars are used to determine

the content and form of the generated text by using a condition and an action.

The condition specifies when the rule should be applied given the state of the

input and the discourse context whereas the action specifies what should be

added to the output and how the discourse should be updated if the condition is

satisfied. As a concrete example, application of the IdentifyDate exemplar from

the paper is included below that generates a state of a task given its start and

end dates. If the start date is same as the end date, the phrase “same day” is

used instead of mentioning the date twice as displayed below in (2.1).

This task is scheduled to start next Thursday, June 25,

and to finish the same day.
(2.1)

 17

The idea of conditionally applying exemplars or rules on parts of the

template is utilized in our system, where the surface realizer determines whether

to apply a phrase template (action) depending on the features selected by the

content selector for realization (condition) that correspond to that template. The

idea of tracking the discourse context and updating it based on what information

is added to the output is also utilized.

A template based generation system called XtraGen is presented by

Stenzhorn in [21]. As the author describes, XtraGen is implemented in Java and

uses XML based interfacing for easy integration into real world applications and

scenarios. XtraGen uses grammar templates for the generation task, an example

of which is included in Figure 2.7.

<template id="String"

 category="String">

<conditions>

Condition*

</conditions>

<parameters>

Parameter*

</parameters>

<actions>

Action+

</actions>

<constraints>

Constraint*

</constraints>

</template>

Figure 2.7: A grammar template of XtraGen

The condition can be one or more in number that defines when a specific

template can be applied. It can also be simple or complex, i.e. a combination of

 18

several conditions connected by And, Or, Not phrases. As the author describes,

the parameters are used to specify a preference of style or rhetorical structure for

generation. For example, the template in Figure 2.8 is preferred when generating

text for the expert level users as specified by the parameter named level.

<template id="explainExpert"

 category="explain">

<parameters>

<parameter name="level"

 value="expert">

<parameter name="verbosity"

 value="low">

</parameters>

...

</template>

Figure 2.8: Use of parameters in XtraGen

The actions specify what should be generated, e.g. static or inflected text

when a condition of a template is fulfilled. Finally, the constraints are used to

apply morphological rules on the generated output. An example of the output

produced by XtraGen is included in (2.2).

The number of documents is 37, divided into 2 different

categories. The results have been produced using 3 fold-

cross-validation which means that the data-set is divided

into 1/3 test-set and 2/3 training-set.

(2.2)

As described previously, this condition-action styled transformation

technique, albeit in a simpler manner than discussed in the paper is utilized for

realizing the templates in our system. As stated by Stenzhorn, XtraGen has been

evaluated by successfully integrating it into an existing system called X-Booster,

which is a binary classifier. XtraGen is used to generate natural language text to

 19

explain the learning phase of X-Booster in multiple languages such as English,

German and French.

McRoy et al. discuss an approach called YAG (Yet Another Generator) in

[22] to improve template based text generation by increasing the flexibility of the

templates. According to the authors, this can be achieved by augmenting the

templates with linguistic or grammatical information and thereby making them

more flexible and reusable across different applications than traditional

templates. The advantages of using an augmented template based approach are

speed and robustness, i.e. the ability to realize even with errors such as subject-

verb disagreement in the input, and coverage, which is the ability to realize any

kind of sentence if an appropriate template exists. A simplified example of a

template for the output text “John walks”, as described in the paper is included in

Figure 2.9. In this example, John is evaluated as the agent, walking as the

process and the subject is null.

((EVAL agent)

(TEMPLATE verb-form

((process ^process)

(person (agent person))

(number (agent number))

(gender (agent gender))))

(EVAL object)

(PUNC "." left))

Figure 2.9: Template rule for the clause template

Although we did not directly use the augmentation technique described in

the paper during the current stage of development of our system, we designed

the templates in such a way so that augmentation would be possible without

 20

requiring major changes to the system as discussed in the future research

directions section in chapter 5.

Theune et al. discuss the GoalGetter system in [8], based on a previous

system called D2S (Data to Speech) that combines language and speech

generation techniques. GoalGetter generates spoken reports for football matches

in Dutch. For the text generation part, as the authors describe, it utilizes

syntactically enriched templates along with knowledge about the discourse

context. A major difference of GoalGetter with most other NLG systems is that it

does not use a pipelined architecture as can be seen in Figure 2.10.

Figure 2.10: System architecture of GoalGetter

In GoalGetter, the generation module contains the algorithms for creating

text that are applied to the input data using the syntactic templates. The syntactic

templates are tree structures that contain variable slots, which can be filled up by

appropriate values from the input data. The domain data contains background

knowledge about teams and players, e.g. nationality and play position that are

used to enhance the output quality by adding variation to it. The knowledge state

stores which part of the input has already been processed and considered to be

Enriched
text Data

Syntactic templates

Generation Prosody

Knowledge state Domain data

Context state

 21

known to the user, whereas the context state stores the current context and

discourse, i.e. which objects have been mentioned to be used for referring

expression generation. Some of these ideas from GoalGetter, such as the use of

domain data and context state in order to increase variation have been utilized in

designing our system. A sample output of GoalGetter is displayed in Figure 2.11.

Go Ahead Eagles / visited Fortuna Sittard // and drew ///

The duel ended in two // - all ///

Four thousand five hundred spectators / came to ‘de Baandert’

///

<new-par>

The team from Sittard / took the lead after seventeen minutes

/ through a goal by Hamming ///

One minute later / Schenning from Go Ahead Eagles / equalised

the score ///

After forty-eight minutes / the forward Hamming / had his

second goal noted ///

In the sixty-fifth minute / the Go Ahead Eagles player

Decheiver brought the final score to

two // - all ///

<new-par>

The match was officiated by referee Uilenberg ///

He did not issue any red cards ///

Marbus of Go Ahead Eagles / picked up a yellow card ///

Figure 2.11: Output of the GoalGetter system

From the above discussions, it can be stated that in general, the templates

in NLG tasks can be considered to be a collection of condition-action rules that

specify when a parameter of the template (which may itself be a template) can be

applied for realizing some property in the input data. And this is the definition that

we use in designing the templates for our system where a sentence template is a

collection of phrase templates where the applicability of the sentence template is

determined by the type of the concept being realized. Similarly, the applicability

of the parameters of the sentence templates, i.e. the phrase templates is

 22

determined by the realization features specified by the content selection

component.

2.3 Other Approaches

Bontcheva and Wilks present a system called MIAKT (Medical Imaging

and Advanced Knowledge Technologies) in [23] for automatically generating

documentation from ontology concepts encoded using the semantic web

standard. The proposed method is not template-based and according to the

authors, it provides better output standard than template-based methods and

uses information from the ontology in different stages of generation. This claim

by the authors is in line with the notion discussed by Deemter et al. in [2] that

NLG approaches not based on templates are in general superior to their template

based counterparts since they provide variation, better output quality and are

well-founded based on linguistic theories. However, as discussed by the authors,

and also apparent from the examples in the previous section, template based

methods can indeed afford variation in the output and are also able to use

linguistic knowledge, which makes this kind of distinction between the two

approaches increasingly blurred [2].

For the MIAKT project, the input is medical data of patients encoded in

semantic web standards, specifically the medical ontology, description of a

medical case in RDF [24], and the MIAKT lexicon. The job of the generator is to

generate textual descriptions given the semantic input. The lexicon is custom

built to provide mapping of medical terms to ontology concepts and is similar to

the lexicons used in our system that contain a mapping of player names and

 23

other language specific constructs from their internal representation format to the

corresponding surface forms in the different languages.

It is worth mentioning that the realizer in the MIAKT system is not template

based since it does not use a fixed structure where arguments are inserted to

realize the surface format. Instead, as the authors describe, the input is an RDF

statement and a concept which will be the subject of the output sentence. The

realizer treats the RDF statement as a graph. The input concept is considered as

the starting point and a path is traced through the RDF visiting all properties and

their arguments.

In the paper, the authors describe the evaluation process of the

robustness of the system, i.e. how it responds to and handles errors in the input.

Plans of doing a qualitative evaluation are mentioned but not included in the

paper which seems interesting considering the previous claim by the authors that

non-template based approaches provide better output quality than template

based methods.

Another approach to generate descriptions from RDF representations is

discussed by Sun and Mellish in [25]. According to the authors, the presented

method is domain independent and does not require a lexicon. However, the

quality of output text depends on the amount of linguistic information in the RDF

data and also its structure.

The approach takes a group of RDF triplets that represent a connected

RDF graph as input, determines the connections between them based on

common values and outputs the description in natural language. An example

 24

input and the corresponding output text is provided in Figures 2.12 and 2.13

respectively.

RDF triples

(LongridgeMerlot, RDF:type, Merlot)

(LongridgeMerlot, locatedIn, NewZealandRegion)

(LongridgeMerlot, hasMaker,Longridge)

(LongridgeMerlot, hasSugar, Dry)

(LongridgeMerlot, hasFlavor, Moderate)

(LongridgeMerlot, hasBody, Light)

Figure 2.12: An example RDF triplet

LongridgeMerlot is a kind of Merlot with dry

sugar, moderate flavour and light body. It is

located in the New Zealand Region and it has

maker Longridge.

Figure 2.13: The corresponding output text

It has been stated by the authors that evaluation of the method is not

carried out and included in the paper due to the fact that the output quality

depends upon numerous factors such as the generation process as well as the

conversion quality of an input RDF graph for processing. However, a blackbox

evaluation technique that checks the output of the system as a whole could be

utilized in such cases.

A stand-alone surface realizer for natural language generation called

RealPro is discussed by Lavoie and Rambow in [26]. According to the authors,

RealPro offers several advantages to generation such as the ability to run as a

separate server and also provides APIs in multiple languages. The input format

of RealPro is an unordered tree called a deep syntactic structure and is human

readable. The linguistic resources that it uses such as grammar and lexicon are

 25

stored in ASCII formatted text files and hence can be easily modified. However,

RealPro does not provide grammars for languages other than English and

French, which makes it difficult to use with languages such as Bangla where

developing a grammar might be a problem due to lack of resources. Also, the

ASCII formatted files might be troublesome for storing data of some languages

that require extended encoding formats such as Unicode support.

Hewlett et al. present a domain independent approach to generate

descriptions of concepts defined in OWL ontologies in [27]. The system

generates a parse tree structure of the input representing the connections

between a given class in the ontology and other entities. This tree is then

traversed starting from the root to create output sentences. The discussed

method is different from [19] where the system supports multiple languages and

utilizes templates for simplicity instead of creating parse trees. The difference

with [25] is that the method discussed there generates output from RDF input

data, whereas the current approach is capable of handling OWL, which is

significantly more complex than RDF. An example output is provided in (2.3).

A Beaujolais is a Wine that:

is made from at most 1 grape, which is Gamay Grape

• has Delicate flavor

• has Dry sugar

• has Red color

• has Light body

(2.3)

The authors mention that even though the approach is domain

independent, it uses a Part of Speech (PoS) tagger to determine the word class

of a property, which is not very flexible and has language dependency.

Evaluation of the approach is described in the paper where the output of the

 26

system is compared to that of two other systems by five users who always

selected the output of the presented system for being better than the others

based on correctness, readability and clarity. However, it is not mentioned how

these factors are measured, which can vary considerably between subjects.

In [28], Bontcheva discusses the ONTOSUM system that generates

textual summaries from Semantic Web Ontologies. The approach, which does

not utilize templates, is an extended version of the work presented in [23], i.e. the

MIAKT system and uses customized versions of existing set of tools to generate

the output text. ONTOSUM follows a pipelined architecture where the input

consists of a set of triplets from the ontology in RDF or OWL format. The input is

first pre-processed to remove repetition of information. Next, ordering and

aggregation schemes are applied on the input statements by the summary

structuring module. In the following stage, the data are converted into graphs and

provided to the realizer for generating output text.

Demir et al. present an approach for generating textual descriptions of

bar-chart graphics using a bottom up approach in [29]. The system takes the bar-

chart data, i.e. the number of bars and height of each bar as an XML description.

It then applies several manually crafted content selection rules on the graph to

determine the contents of the message conveyed by the graph. An example of a

rule from the paper is provided in (2.4).

If (message category equals increasing trend) then

include (propositions conveying the rate of increase of

the trend).

(2.4)

 27

This idea of developing content determination rules based on data

analysis is utilized in developing the content selection module of our system as

discussed in chapter 3 where we present a set of content selection rules created

by analyzing raw game data and the corresponding human authored news

bulletins.

The proposed system also aggregates the selected propositions for

realization and utilizes the SURGE [30] realizer for generating the final output

text. Evaluation of the system is done by generating summaries using different

combinations of system parameters. Then 15 participants are each given 4

summaries to rank according to the quality of conveying the message of the input

graph to the output summary. It is reported that the output generated using the

settings the authors used, i.e. using ordering and aggregation rules, and

selecting the output rated highest by the evaluation metric is chosen most of the

time (65.6%) by the evaluators to be the best generated summary.

Sripada et al. present a hypothesis on summary generation in [31]. Based

on their Knowledge Acquisition (KA) experiments on several projects, the authors

state that during the content determination stage of creating summaries, humans

first form a qualitative mental overview of the input data. Then the overview,

along with the input data itself is used to carry out content determination.

However, all the information present in the overview may or may not be used in

the actual output summary. This hypothesis is utilized in the text generation

system following a pipelined architecture as discussed by the authors in [32] for

generating marine weather forecasts for oilrigs. The system, called SumTime-

 28

Mousam generates textual weather forecasts in four steps given time series data

of weather prediction patterns as input. The output generated by the system is

used to help form the mental overview and is post edited by human authors

before passing on to the end-users. The architectural diagram from [32], along

with brief information on how the system works is given below.

Figure 2.14: System architecture of SumTime-Mousam

As displayed in Figure 2.14, control data is a collection of external files

that store end-user preferences. The data is used to customize the style and

level of detail of the output as per end-user requirements. The document planner

utilizes a bottom up segmentation algorithm primarily used in the KDD

(Knowledge Discovery in Databases) community for data mining tasks in order to

select the important facts from the input data that should be realized. In our

system, instead of applying such learning algorithms, we followed a rule-based

approach, the utility of which has been demonstrated by Demir et al. in [29].

In the micro planning stage, rules extracted from corpus analysis are used

for lexical selection and omission or suppression of words. For example, given

the input tuple (0600, 8, 13, W, nil), the micro planner produces the output in

(2.5).

Forecast
text

Input
data

Document
planning

Control data

Micro
planning

Realization

 29

Dir phrase 1: W

Speed Phrase 1: 8-13

Time Phrase 1: by early morning

(2.5)

Finally, during the realization stage, the output from the micro-planner is

ordered and augmented with punctuation markers to produce the textual

forecast. An example output that has the previously mentioned tuple as part of it

would look as shown in (2.6).

W 8-13 backing SW by mid afternoon and S 10-15 by

midnight.
(2.6)

As mentioned previously, the output of the SumTime-Mousam system is

edited by human authors before it is provided to the end-users. Thus, an

evaluation of the system is carried out by counting the number of edits done on

the forecast produced by the system. The system output is first segmented into

phrases and aligned with the phrases from the human edited forecasts. Then the

successfully aligned phrases are compared for exact matches where the result is

found to be 43%. It is reported by the authors that 40% of the phrases did not

match, i.e. were post edited by human authors and 17% of the phrases could not

be aligned due to segmentation difference of the input data by humans and the

system.

Yu et al. discuss the SUMTIME-Turbine system in [33], which generates

textual summaries of time series data of gas turbines using knowledge based

temporal abstraction (KBTA), pattern recognition and NLG techniques. After

using KBTA methods, a summary is generated from the high level abstraction

output of the KBTA module. The summary consists of two parts, the first being

 30

some background information about the scenario and the second is the related

interesting patterns extracted from the input data. A sample output of the system

taken from the paper is provided in (2.7).

This scenario is about Fuel Valve subsystem which is

being monitored by channels: TNH, FSR, FSGR, FSROUT,

when the gas turbine is running in normal load

state from 21:03:41.00 28 Nov 99 to 00:03:41 29 Nov

99.

(2.7)

This structure of the output document is similar to that of our system

where we start each section of the output with a single sentence that provides an

overview and the succeeding sentences then provide related details.

For evaluating the quality of the summary generated by the system, plans

of two methods are mentioned. The first one is to rank the system output by

domain experts while the second one is to collect expert written summaries of the

same scenario and compare them to the automatically generated outputs of the

system, which is similar to our method to demonstrate the differences between

human and system generated summaries as presented in chapter 4.

Belz discusses a probabilistic framework based approach to generating

weather forecast text in [34]. The method utilizes a set of user defined generation

rules as a context free language and estimates a probabilistic model based on a

corpus containting example output sentences. As described by the author, apart

from text quality comparable to that written by humans or generated by the

SUMTIME system in terms of manual evaluation scores, the approach has

benefits such as short development time and low computation time. However, the

author also mentions that the human evaluators actually preferred the output

 31

generated by the SUMTIME system in the experiments and the manually crafted

component of the probabilistic system can significantly affect the overall output

quality. Since such an approach would require users to define the base generator

and also require a corpus of example outputs, which is difficult in our domain due

to the extensive use of background information as will be discussed in chapter 3

and 4, we decided not to apply a probabilistic model in our system.

In [35], Sripada et al. describe how the Gricean Maxims [36] are applied

for automatically generating textual summaries of time series data from different

domains as discussed in [31, 32, 33]. This discussion motivated us to apply the

Gricean Maxims as a general guideline in designing different components of our

system. Below we present an overview of the Gricean Maxims, as described in

[35]. In chapter 3, we discuss their application in the design and output generated

by our system.

The Gricean Maxims are defined as a set of rules that specify the

behaviors that a human hearer expects from a speaker. The four maxims can be

briefly described as follows:

 32

Maxim of quality:

1. Do not say what you believe to be false.

2. Do not say that for which you lack adequate evidence.

Maxim of quantity:

1. Make your contribution as informative as is required.

2. Do not make your contribution more informative than is required.

Maxim of relevance:

 Be relevant.

Maxim of manner:

1. Avoid obscurity of expression.

2. Avoid ambiguity.

3. Be brief.

4. Be orderly.

As discussed by the authors of [35] the Gricean Maxims could be

considered a key element of data analysis and so their application is important

for effectively communicating information to human users. Hence we also apply

them in different stages of generation in our system, as will be seen in the next

chapter.

2.4 Chapter Summary

We have introduced some template based systems, identifying aspects

that might be useful in our own approach. While many of these systems have not

been formally evaluated, what evaluation has been done suggests that a

template based approach might be more flexible in terms of extension to a new

language and suitable for languages that have scarcity of computational

resources. We also saw some other approaches that did not use templates, but

gave us insight into automatic generation processes.

 33

CHAPTER 3: THE GENERATION SYSTEM

Having introduced the research problem of investigating the suitability of a

template based approach to cross-lingual NLG in the sports domain in chapter 1;

we now present our approach to solve the problem. Specifically, we discuss the

NLG system we built utilizing ideas from previous methods described in chapter

2, which is capable of generating short summaries of Cricket games in both

Bangla and English. First we provide input and output examples, followed by the

system architecture and an overview of how the input is transformed in different

stages to produce the output. Then we look at the system processes in more

detail and discuss the different operations carried out during generation. We

conclude the chapter with a discussion on how the Gricean Maxims [35, 36] are

applied during different phases of generation in our system.

3.1 Overview

We start with an example of a plain text input and the corresponding

human written news bulletin. We discuss why automatically generating such

output is difficult. Then we present the system architecture, the generated output

and provide an overview of how the input data is transformed in various stages in

order to generate the output.

The plain text input is a standard format of Cricket scorecards that is found

to be similar across different sources, e.g. newspaper articles and websites, with

 34

minor variations (for example, some of the sources may not include the number

of minutes played or the wicket losing order of a batsman) in format.

We used cricinfo [37], which is one of the largest Cricket related websites,

as the source of our input data. The scorecards retrieved from cricinfo are saved

as plain text files and used as the unformatted input data. This unformatted data

is converted to a structured format by the system, which can itself be considered

as a parsing task, the details of which will be discussed later in the chapter.

Figure 3.1 provides a shortened example of a plain text input to the system,

created from the scorecard of a one day international Cricket match [38].

 35

http://www.espncricinfo.com/the-ashes-2010-11/engine/current/match/446968.html

ODI 3098

Australia v England

England in Australia ODI Series - 7th ODI

Played at Western Australia Cricket Association Ground, Perth

Australia won by 57 runs

Toss Australia, who chose to bat

Series Australia won the 7-match series 6-1

Player of the match AC Voges (Australia)

Australia innings

TD Paine lbw b Plunkett 5 16 7 0 0 71.42

BJ Haddin† c Finn b Yardy 27 89 58 1 1 46.55

CJ Ferguson c Strauss b Anderson 15 21 23 3 0 65.21

CL White* c & b Yardy 24 70 47 1 0 51.06

DJ Hussey c Bell b Plunkett 60 76 60 5 1 100.00

AC Voges not out 80 106 72 4 0 111.11

MG Johnson c Prior b Anderson 26 31 25 2 0 104.00

JW Hastings c Wright b Anderson 6 10 4 1 0 150.00

JJ Krejza not out 6 9 4 0 0 150.00

Extras (lb 11, w 19) 30

Total (7 wickets; 50 overs; 219 mins) 279 (5.58 runs per over)

Did not bat SW Tait, DE Bollinger

Bowling

JM Anderson 10 1 48 3 4.80 (2w)

LE Plunkett 10 0 49 2 4.90 (6w)

ST Finn 10 1 57 0 5.70 (5w)

LJ Wright 9 0 47 0 5.22 (3w)

MH Yardy 10 0 59 2 5.90 (2w)

IJL Trott 1 0 8 0 8.00

England innings

AJ Strauss* b Tait 1 2 0 0 0 0.00

…

Extras (lb 3, w 19, nb 5) 27

Total (all out; 44 overs; 196 mins) 222 (5.04 runs per over)

Bowling

SW Tait 8 1 48 3 6.00 (1nb, 9w)

…

Figure 3.1: Plain text input

 36

The first 2 paragraphs of the human authored game bulletin corresponding

to the input data in Figure 3.1 are included in Figure 3.2. The whole bulletin is

available in appendix 2.

Australia rounded off their international summer in style

with a commanding 57-run victory in Perth. It wasn't a

high-quality match, with the exception of the batting from

Adam Voges and David Hussey, as a long season drew to a

close with two patched-up sides on show. However,

Australia's depth came to the fore again as Voges hit a

career-best 80 before England's mentally-finished top order

was blown away to end hopes of a face-saving win.

Nothing will compensate for the crushing loss in the Ashes

series, but Australia's resurgent one-day form has

suggested a fourth consecutive World Cup title isn't out of

reach, especially if key players return from injury. Even

taking into account England's own injury problems and

declining form, the home side's performances have boded

well in the absence of Ricky Ponting, Mike Hussey and

Nathan Hauritz - all key figures in the one-day side.

Figure 3.2: Human authored bulletin

If we analyze the news bulletin above, it becomes obvious why

automatically generating such output is difficult without background knowledge

that humans have access to. For example, the winning margin of Australia, as

mentioned in the first sentence is indeed available in the input data. However, it

is not clear how the fact mentioned in the second sentence that the match was

not a high-quality one except for the performances of Adam Voges and David

Hussey could be deduced since there was one other player (Michael Yardy) who

scored as many runs as Hussey, and two bowlers who took 3 wickets each, all of

which are considerable performances. In the same way, it is not possible to

deduce from the input that the English top order was mentally finished before

being blown away. The same observation holds for the second paragraph of the

 37

human written bulletin. Based on this argument, it can be stated that such text

cannot realistically be generated by a system. So instead, we focus on utilizing

the available data in the input to extract the key semantic concepts and realize

them into proper NL sentences, as will be seen later in the chapter.

We followed the standard pipelined architecture for designing the

generation system due to its advantages such as clear separation between

different phases where a single component has a well defined task of

transforming the data in a specific manner, low dependency of the components

where the task of one component does not rely on that of others to a significant

extent, and extensibility which allows adding new modules to the system as

necessary without requiring changes to the existing components. However, a

potential drawback of the architecture is the one way flow of data. For example, if

after aggregation it is found that some of the selected information should have

been excluded or some other information might have been included by the

content selector, there is no easy way in the standard pipeline to accomplish this.

However, since generation is usually done in a single pass, this kind of

requirements do not usually show up.

Figure 3.3 provides a high level diagram of the system that displays the

different phases of generation and their connectivity in the pipeline.

 38

Figure 3.3: System architecture

The input to the system is a Cricket match scorecard in plain text in

English. This is converted to a collection of key-value pairs, comprising a JSON

[39] formatted tree structure by the input converter, which can be considered as

the first phase of the pipeline. The reason behind choosing a tree structure is that

it allows defining a logical hierarchy as well as ordering of information in the

input, which is apparent by its widespread use in other NLG systems such as

those described in [7, 17, 21, 22]. JSON is chosen instead of XML because it is

Augmented data

Formatted input data

Input data

1. Input converter

4. Aggregator

3. Content selector

Output text

Document plan

2. Pre processor

Lexicon, phrase
and sentence
templates

Custom annotation

Generator

Text specification

Intermediate output

6. Post processor

5. Surface realizer

 39

easier to manipulate in Java and does not require templates such as XSLT for

transformation. Furthermore, it is more readable than XML and hence manually

annotating or editing the data is easier.

The formatted version of input data acts as the actual input to the core

generation system, which is provided to the document planning stage, consisting

of the pre-processor and the content selection components. During these stages,

the player portion of the input data is first formatted to create a list of news items

and augmented with previous performances of the players for further processing

by the pre-processor and passed to the content selection module. The content

selector applies a set of content selection rules to determine which items of the

input data should be selected for surface realization. It also specifies the

realization order of the selected items and thus produces a document plan. Next,

the document plan is provided to the aggregation module, which is the sole

component of the micro-planning stage since currently the system does not

perform referring expression generation. The aggregator determines which items

of the document plan could be aggregated together to realize them as part of the

same sentence in the output. After completing this stage, the modified document

plan becomes the final text specification plan and is provided to the surface

realizer. The surface realizer utilizes a set of sentence and phrase templates,

along with a lexicon to create natural language sentences from the news items in

the text specification tree as the intermediate output of the system. This

intermediate output is forwarded to the post processor, which applies

 40

capitalization or other rules on the output as specified in the language specific

lexicon and produces the final output text in natural language.

Having discussed an overview of the system architecture, we now look at

the transformation phases in the pipeline and the related data in more detail. In

doing so, it is useful to first have output examples generated by the system.

Game summaries of two different matches [38, 40] in both Bangla and English

are included below. The outputs in both languages as displayed in Table 3.1 and

3.2 are exact generated texts by the system. Output text 1 is produced using the

input data described in Figure 3.1.

 41

Output Text (Game 1)

Bangla English

������� �	�
 ���
�� Australia versus England

���	 �� ����	
��	��

��, ��
	�: ������	 ������� �����

���������	 �� �, !��"

One Day International at Western

Australia Cricket Association Ground,

Perth

������� #$ ���	 %���� ��� & Australia won by 57 runs.

������� �� !�' ���
 ���(�

�	 �) *

�� +	 & Adam Voges of Australia was the player

of the match.

��� �%�, -�(�
�� ���, �	�
 ������� #... ����� $ ����� /$0
��	 ��� &

After winning the toss & batting first

Australia scored a total of 279 runs in

50.0 overs for 7 wickets.

������� �� !�' ���
 ���(� $/ �� �1�� 23 ��� �+�4��(
�!���%, 5. ��	 ���	 &

For Australia, Adam Voges scored a half

century of 80 runs unbeaten off 72

balls with 4 fours.

����� +��� 6. �� �1�� #3 �� ���� ��� 73 ���� �� ���� ��
,
6. �8�� ���	 4�*� ��	���� 9"
 �*�� ,��� -:��;��< �*1��=� 	�
&

David Hussey scored a half century of

60 runs in 60 balls with 5 fours and 1

six despite having a shaky start to his

innings.

>
�� +
���	 73 ���� �� ���� ��
, /$ �8�� ���	 & Brad Haddin scored 27 runs with 1 six.

�
��� %	�	 /# �� �1�� /6 ��	 ���	 & Mitchell Johnson scored 26 runs off 25

balls.

�
��
�	 ����� /2 �8�� ���	 & Cameron White scored 24 runs.

���
�� �� !�' �%
� �
�����	 7... ���� �� ��� 25 ��	 �*��
? ���� ��� ���	 &

For England, James Anderson took 3

wickets for 48 runs in 10.0 overs.

����
 @��A� 7... ����� 20 ��	 �*�� / ���� �		 & Liam Plunkett took 2 wickets and

conceded 49 runs bowling 10.0 overs.

����� ������ 7... ����� / ���� �		 & Michael Yardy took 2 wickets bowling

10.0 overs.

%���� �
�� ���, �	�
 ���
�� 22.. ����� /// ��	 ��� ��- �
+� &

Batting second England scored a total

of 222 runs in 44.0 overs & were

allout.

����� ������ $6 �� �1�� ?3 ��� ��� 73 ���� �� ���� ��
,
�!���%, 6. ��	 ���	 &

Michael Yardy scored a half century of

60 runs unbeaten from 76 balls with 3

boundaries & 1 six.

�� 9���� ?3 ��� ��
, ?0 ��	 ���	 & Matt Prior scored 39 runs with 3

boundaries.

�� � ���� 70 �� �1�� ?3 �� ���� ��
, /2 ��	 ���	 ��� ,��
��	��3 B, ��C +�� 4�� &

Luke Wright scored 24 runs in 19 balls

with 3 fours and was back to the

pavilion before long.

����	 �!�����	 ?7 �� �1�� ?3 ��� �+�4��(/6 ��	 ���	 & Kevin Pietersen scored 26 runs in 31

balls with 3 fours.

����
 @��A� 73 D� ��
, /. �8�� ���	 & Liam Plunkett scored 20 runs with 1

six.

�E� �� � 7 �8�� ���	 ��� ��3 �9���%	<� �� �1�� - � +	 & Andrew Strauss scored 1 run and got out

playing a poor shot.

������� �� !�' �
��� %	�	 $.. ���� �� ��� 75 ��	 �*�� ? For Australia, Mitchell Johnson took 3

 42

 ���� �		 & wickets for 18 runs in 7.0 overs.

�	 ���� 5.. ���� �� ��� ? ���� �		 & Shawn Tait took 3 wickets bowling 8.0

overs.

�%�	 ��F� 0.. ����� / ���� �		 & Jason Krejza took 2 wickets bowling 9.0

overs.

>
�� +
���	 � ����� +��� ? � /3 �
�� �		 & Brad Haddin and David Hussey took 3 and

2 catches.

Table 3.1: System output 1

 43

Output Text (Game 2)

Bangla English

*�'G -�H�� �	�
 ���, South Africa versus India

���	 �� ����	
��	��

��, ��
	�: ��!�� �I���� !���, ��J� ���	 One Day International at SuperSport

Park, Centurion

*�'G -�H�� ?? ���	 %���� ��� & South Africa won by 33 runs.

*�'G -�H�� �� !�' +���
 -
��

�	 �) *

�� +	 & Hashim Amla of South Africa was the

player of the match.

��� �+�� -�(�
�� ���, �	�
 *�'G -�H�� 26.. ����� 0 �����
/#. ��	 ��� &

After losing the toss and batting first

South Africa scored a total of 250 runs

in 46.0 overs for 9 wickets.

*�'G -�H�� �� !�' +���
 -
�� 7?/ �� �1�� 03 �� ����
��
, �!���%, 776 ��	 ���	 &

For South Africa, Hashim Amla scored a

century of 116 runs unbeaten from 132

balls with 9 fours.

�3 (, #

��� ,�� ?� ��K-�,��K� ��	 & In the last 5 matches, it was his 3rd

score of 50 or more runs.

��	 �
�	 �� 6? �� �1�� 53 ��� �+�4��(#6 �8�� ���	 & Morne Van Wyk scored a half century of

56 runs from 63 balls with 8

boundaries.

%	-!� *��
�	 73 �� ���� �+�4��(?# ��	 ���	 & Jean-Paul Duminy scored 35 runs with 1

four.

���, �� !�'
�	�) !
���� 5.. ���� �� ��� ? ���� ���
���	 &

For India, Munaf Patel took 3 wickets

in 8.0 overs.

4����% ��� 5.. ���� �� ��� / ���� ��� ���	 & Yuvraj Singh took 2 wickets bowling 8.0

overs.

%�+� 1�	 0.. ����� / ���� �		 & Zaheer Khan took 2 wickets bowling 9.0

overs.

!�� �
�� ���, �	�
 ���, 2../ ����� /?2 ��	 ��� ��- � +�
&

Batting second India scored a total of

234 runs in 40.2 overs & were allout.

� ��) !�L�	 $. �� �1�� 53 ��� -� 53 D� �+�4��(7.# ��	
���	 &

Yusuf Pathan scored a century of 105

runs off 70 balls with 8 boundaries and

8 sixes.

!���"� !
���� ?2 �� �1�� 63 �� ���� ��
, ?5 ��	 ���	 & Parthiv Patel scored 38 runs from 34

balls with 6 boundaries.

%�+� 1�	 ?3 ��� ��
, /2 �8�� ���	 & Zaheer Khan scored 24 runs with 3

boundaries.

*�'G -�H�� �� !�'
��	
���� 5.. ���� �� ��� 2 ����
�		 &

For South Africa, Morne Morkel took 4

wickets in 8.0 overs.

��� ���	 0.. ���� �� ��� ?/ ��	 �*�� / ���� ��� ���	 & Dale Steyn took 2 wickets for 32 runs

in 9.0 overs.

�	������ �,����� $./ ����� / ���� �		 & Lonwabo Tsotsobe took 2 wickets bowling

7.2 overs.

��	
����,)�) *�
 �@��� � %	-!� *��
�	 /3 �
�� �		 & Morne Morkel, Faf Du Plessis and Jean-

Paul Duminy took 2 catches.

Table 3.2: System output 2

 44

It is worth mentioning that custom tags, which allow annotating the input

with background information not available in the actual data, were utilized to

improve the output quality. The details of the custom annotation tags are

discussed in the next section. Also, use of the player performance history,

aggregation, variation in the output sentences created using the same template,

and other rules can be noticed in the output examples listed above. For example,

balls faced and over-boundary, boundary counts are mentioned alongside the

respective scores for not all of the batsmen. Similarly, runs conceded is only

mentioned for some of the bowlers. These are accomplished by applying the

content selection rules that determine which features should be chosen for

surface realization. Details of these will be presented later in the chapter when

the respective generation phases are discussed.

3.2 Input Conversion

The plain text data discussed earlier acts as an intermediate form of input

that is transformed to create a tree structure during the first phase of the pipeline,

i.e. input conversion. The formatted input data is produced by the input converter

and acts as the main input to the generation system. It is essentially a JSON [39]

formatted tree structure which is required to segment the input data in different

sections such as game overview, game result, overall performance summaries of

the two teams and a list of players for each team. In the plain text, performance

data of a specific player might be scattered over multiple places, e.g. batting,

bowling and catching. The input converter aggregates these under a single

player node in the tree. Each player node consists of the batting and bowling

 45

order, scores and other details related to the performance in the game of the

corresponding player.

The formatted input supports adding custom annotation tags to each

player item as displayed in Figure 3.4 and 3.5, which is another reason why the

tree structured format is necessary. The custom tags allow users to optionally

annotate each player’s data with background information that are otherwise not

available in the input. For example, it is not possible for the system to deduce

from the input data that a player got out playing a poor shot, did not have a good

start to his innings despite scoring runs later, or played a short lived innings. So,

in order to improve the output text quality, a user having access to this kind of

background knowledge can annotate the player data with such tags, which

allows the system to include the corresponding phrase from the phrase template

while realizing that player’s data in the output (Figure 3.5). Furthermore, any

news item that has a custom tag is always selected for realization by the content

selection module, which allows users to override the content selection rules for

particular news items, if necessary.

Currently, the system supports a total of six custom tags, three of which

are used to annotate batting items and describe batting conditions such as a

shaky start to an innings, a batsman getting out playing a poor shot and a short

lived innings. The other three tags are bowling related, i.e. a player who bowled

with consistent line and length, a bowler giving away comparatively more runs

later during the batting innings or being expensive during his earlier spells. These

tags/playing conditions were chosen after studying several human written

 46

bulletins for frequently occurring situations that cannot be inferred from the input

data. This short list of tags can be extended easily as required.

For example, if there is a news item annotated with the short innings

custom tag (Figure 3.4), then it might be realized as displayed in Figure 3.5.

Figure 3.4: News item with a custom tag

Figure 3.5: The corresponding output text

Since not having access to background information is a major reason

behind output produced by NLG systems being considered inferior to that written

by humans [1], the use of custom tags is one possible way to solve this problem.

Also, the idea of using custom tags might be utilized in generation tasks in other

domains as well since it only requires carefully defining the phrases

corresponding to the tags once, that can later be plugged into the existing

sentences as many times as necessary without disrupting the flow.

The formatted version in shortened form, of the input data in Figure 3.1 is

listed in Figure 3.6.

{

"playerName": "jj krejza",

"team": "australia",

"runsScored": 6,

"ballsFaced": 4,

"customTag": "shortInnings",

},

Jason Krejza scored 6 runs off 4 balls and

was back to the pavilion before long.

 47

{ "gameId": 5003098,

 "gameOverview": {

 "team1": "australia",

 "team2": "england",

 "gameType": "ODI",

 "venue": "western australia cricket association ground, perth",

 "infoType": "gameOverview", },

 "gameResult": {

 "winnerTeam": "australia",

 "winBy": "57",

 "winByType": "runs",

 "pom": "ac voges",

 "pomTeam": "australia",

 "infoType": "gameResult", },

 "team1Summary": {

 "toss": "WIN",

 "batOrder": "first",

 "team": {

 "teamName": "australia",

 "over": 50.0,

 "wicket": 7,

 "run": 279,

 "extra": 30,

 "allOut": false },

 "infoType": "teamSummary", },

 "innings1Players": [{

 "playerName": "dj hussey",

 "keeper": false,

 "captain": false,

 "battingOrder": 5,

 "runsScored": 60,

 "ballsFaced": 60,

 "boundaryCount": 5,

 "overBoundaryCount": 1,

 "outType": "CATCH",

 "wicketTakerBowler": "plunkett",

 "wicketTakerAssist": "bell",

 "bowlingOrder": 6,

 "oversBowled": 4.0,

 "runsConceded": 16,

 "wicketsTaken": 0,

 "catchesTaken": 2, },],}

Figure 3.6: Formatted input

 48

3.3 Pre-Processing

Pre-processing of the input is the second phase of data transformation in

the pipeline. The first task of the pre-processor is to load previous performances

of each player item in the formatted input. The player information and previous

performances are stored by the pre-processor in a SQLite [41] database. It loads

the required information from the database and augments the player objects with

their previous performances, which are later used by the content selector to

provide additional information to the realization module. After loading previous

performances and updating the database with the player data of the current

game if necessary, the pre-processor creates four lists of play info type objects,

one batting and one bowling for each team from the list of player objects. Finally,

the pre-processor carries out the first stage of document planning by specifying

the realization order of the news items in the output text. At this stage, a fixed

structure is followed for the output document where the game overview and

result are followed by the summary of the team batting first. Then batting

information of that team is followed by the bowling information of the opposing

team in chronological order. After that, the summary of the team batting second

is included, followed by the player batting information of that team and the

bowling information of the opposing team.

3.4 Content Selection

The output of the pre-processor is forwarded for content selection, which

is the third phase in the pipeline. The content selector is responsible for choosing

the items and their features such as balls faced, overs bowled and catches

 49

taken, from the news item list that should be realized in the output document. It

also carries out the second stage of document planning by ordering the selected

items according to a weight metric. In order to determine the news items and

their features that should be included in the output text, the content selector runs

a set of selection rules on each item, the details of which will be discussed later

in the chapter.

It should be noted that, instead of the rule based approach similar to [20,

29] that we followed for content selection, a learning based approach could also

be applied as discussed by Barzilay and Lapata in [42] where algorithms are

applied to generate content selection rules for American football games from a

collection of parallel corpus documents and database where the entries that

should be included in the output are already specified. Since this approach would

require preparing a significant amount of input data along with the corresponding

documents, it was not followed for implementing our system. However, since the

inner workings of the separate modules of the generation pipeline are

encapsulated from each other, it could be implemented in future and compared

to the current rule based method.

As mentioned in the previous section, there can be four types of news

items, namely, game overview, game result, team summary and player

performance items. Of these, the game overview and result items are always

realized, have a fixed position in the output and do not contain optional features

for realization. So these are immediately selected for realization without further

processing. The two team summary items each precede the player performances

 50

of the corresponding team in the output. So when the content selector finds one

of these two items, it first checks the current team in the discourse to determine

the correct position of the item in the output. Then it checks whether the optional

toss feature has already been selected for realization. If not, then the feature gets

selected for the team summary being processed. Finally, the number of wickets

lost by the team being processed is tested to determine whether the feature

should be realized as the numerical value or the all out (used to indicate that the

team lost all 10 wickets) phrase and the appropriate value is added as a feature

for realization.

Next, the four lists of player info items (batting and bowling lists for each of

the two teams) are processed for content selection. The items are already

provided in chronological order in the input and are separated into four lists

based on their types (batting and bowling for each team) by the pre-processor.

The content selector iterates through the lists and adds the items to a processing

queue. The content selector also keeps track of the item type, i.e. batting or

bowling in the discourse, to determine when the content selection rules should be

run on the processing queue.

When the current item type changes in the discourse, the content selector

stops adding new items and instead processes the queue. During this stage, the

content selection rules are run on each item in the processing queue to

determine whether the item should be included in the output and more

importantly, the features of the item that should be realized. The items selected

for realization are added to a temporary output queue.

 51

Currently, the rules are embedded within the content selection module

since the list of rules and their respective weights are adjusted and finalized

during experiments on the development data set. The rules are not decoupled

from the content selector since they do not require frequent adjustments. So,

even though updating the existing rules or adding new ones is a straightforward

process, it does require modifying the content selector code. It would be possible

to represent the rules as displayed in Tables 3.3-3.5 using a high level language

such as first order logic and read them from an external source, which would

allow users to modify the rules. However, this was not implemented since it

would increase overall complexity by requiring a separate parser for processing

the rules and would not contribute to improve the output quality of the system.

Furthermore, it is not entirely clear how useful such a strategy of decoupling the

core algorithm from the system would prove to be since this approach was not

followed in any of the previous systems discussed in chapter 2.

3.4.1 Selection Rules for Batting Items

For a batting item, if the number of runs scored is over the threshold

amount set during the experiments on the development data set or if the item has

a custom tag set then it is selected for realization. For selecting the features to

include in the output text, the rules listed in Table 3.3 are applied on the item.

The weight metric is used to determine the realization order of the item in the

output. Initial weight is set as the amount of runs scored since it is the primary

performance indicator of a batsman. The added weight column in Table 3.3 lists

the amount by which the weight is increased when each rule is satisfied. The

 52

values are determined by starting from a base value of 1 for all rules that are

subsequently adjusted for each rule during the development stage to match the

contents of the human written news bulletins.

Rule Feature to realize Added weight

Runs scored is in the top nth (top 3) Runs scored 5

Runs scored ≥ 30 and player is team captain Captain 3

Runs scored ≥ 100 Century 10

Runs scored ≥ 50 and < 100

Half Century
(Selected with 20%
probability)

10

Runs scored ≥ 50 and 2 or more scores of 50 or
above in the history (last 10 games)

Batting history 7

Strike rate (runs scored/balls faced) is in the top nth
(top 3) or > 85

Balls faced 3

Boundaries scored is in the top nth (top 3) Boundary count 3

Over-boundaries scored is in the top nth (top 3) Over-boundary count 3

Player did not get out Not out 3

Table 3.3: Selection rules for batting items

3.4.2 Selection Rules for Bowling Items

For a bowling item, if the total calculated weight exceeds the threshold

amount or if the item has a custom tag set and the player has taken one or more

wickets then it is selected for realization. The threshold weight is determined by

experimenting on the development dataset to maximize content matching with

the human written output. Initial weight is set as the number of wickets taken

since it is the primary performance indicator of a bowler. Then the rules listed in

Table 3.4 are applied to calculate the total weight. As before, the added weight

column lists the amount by which the weight is increased when each rule is

satisfied. The values are determined by starting from a base value of 1 for all

 53

rules that are subsequently adjusted for each rule during the development stage

to match the contents of the human written news bulletins.

Rule Feature to realize Added weight

Wickets taken is in the top nth (top 3) Wickets taken 5

Wickets taken is in the top nth (top 3) and player is
team captain

Captain 3

Runs conceded is in bottom nth (bottom 3) or < 4 Runs conceded 3

Wickets taken ≥ 5 Wickets taken 5

Wickets taken ≥ 5 and 2 or more scores of 5 or
above wickets in the history (last 10 games)

Bowling history 7

If multiple players take the same amount of wickets,
the player bowling less overs should get higher
weight

Wickets taken 10 / overs
bowled

If multiple players take the same amount of wickets,
the player with less RPO (runs conceded per over)
should have higher weight, provided RPO < 4.5

Wickets taken 15 / RPO +
wickets taken

Table 3.4: Selection rules for bowling items

3.4.3 Selection Rules for Catching Items

Information on catches taken is included in the bowling section of the

output text. So when the bowling items are processed, they are also checked as

catching items and added to a catching queue if selected for realization by the

following rules listed in Table 3.5.

Rule Feature to realize Added weight

Catches taken is > 1 and is in the top nth (top 3) Catches taken Number of
catches taken

Player is a wicket keeper Wicket keeper 1

Table 3.5: Selection rules for catching items

After each item in the processing queue is checked, the output queue is

sorted according to the calculated item weights in descending order and added to

 54

the content selector’s output list. If the output queue is for bowling items,

additionally, the catching queue is also sorted and added to the output.

After content selection is completed for a batting or bowling list as

described above, the process queue is emptied and the next list of items is

processed in the same way. Finally, after every item in the input is processed

and the realization order is determined, the content selector iterates over the

output list of items. This time it keeps track of the current team in the discourse

and if the team feature of the item being processed is found to be different than

that of the discourse, then the feature is added for realization for the item and the

discourse is updated accordingly. This rule allows disambiguation of the player

team when the context moves from one team to the other, while at the same time

avoids repetition of mentioning the team name for members of the same team.

With this step, content selection, which is the second stage of document

planning, is completed and the output is forwarded to the aggregation

component.

3.5 Aggregation

The aggregation phase follows content selection in the pipeline and is the

fourth stage of data transformation. The aggregator takes the output list of items

produced by the content selector and determines which of these items can be

aggregated together. The items in the list can be of different types such as

overview, result, team summaries and batting, bowling or catching info items. For

aggregation, we followed an idea similar to that presented in [23, 28] where items

are semantically aggregated based on their domain and property similarity. In our

 55

approach, we extend this idea by aggregating items based on their order, type

(domain) and attribute. For example, in our system the aggregator may only

aggregate items in consecutive order as specified during the previous phases of

generation. For consecutive items that are potential candidates for aggregation,

the algorithm first checks whether the items are of the same type, e.g. batting,

bowling or catching. If the types match for consecutive items, then their attributes

are checked for similarity. Our approach is again different here than the

previously mentioned method since after matching order, type and attribute, we

also apply a list of rules, as listed below, on the items to determine whether they

can be effectively aggregated to form a single sentence. In order to be

aggregated with its previous or next item in the list, an item must satisfy all of the

rules. The items that conform to the rules are set to form chains where at most 3

items of the same type are aggregated to create a single output sentence during

the surface realization stage. The maximum chain length of 3 is determined by

experimenting with different lengths where it is found that for values greater than

3, the resulting sentences do not sound natural and become ambiguous, which

violates the Gricean maxim of manner as described in chapter 2.

1. Items must be in consecutive order.

2. Items must be of the same type.

3. At most 3 items can be chained together.

4. A batting item with did not bat status should not be aggregated.

This is because a did not bat status is unlikely to be present in the

output since it is not considered to be a useful piece of information

 56

and cannot effectively be aggregated with a sentence of the form

“X, Y and Z scored A, B and C runs”.

5. Batting items must have a positive value for the runs scored

feature. This and the following 2 rules are used to filter out items

with erroneous values in the input when the content selector might

be disabled.

6. Bowling items must have a positive value for the wickets taken

feature.

7. Catching items must have a positive value for the catches taken

feature.

8. An item can have at most one optional feature for realization, i.e.

either the team or the wicket keeper feature. Otherwise the

resulting sentence becomes complicated and contradicts the

Gricean maxim of manner, as introduced in chapter 2.

The resulting list where eligible items are marked for aggregation is

treated as the text specification plan and is forwarded to the surface realization

component for producing the output text.

3.6 Surface Realization

Surface realization is the fifth stage in the generation pipeline where

output text in natural language is produced from the internal representation

format. The surface realizer uses language specific lexicons and templates in

order to generate natural language text from the structured data. Below we first

 57

introduce the lexicon and templates and then discuss how the surface realizer

utilizes those to create the output text.

3.6.1 Lexicon

A lexicon is required for each of the target languages by the surface

realizer to provide generation support in multiple languages. The lexicon maps

specific portions of the input data to their appropriate forms in the selected output

language. The underlying idea of lexicons in our system is similar to those

discussed in [14, 19, 23, 28] where lexicons are used to provide multilingual

support and contain direct mappings of words or linguistic information such as

word classes. However, in our approach, the lexicon contains mostly mapping of

word forms and little linguistic information since the realizer does not utilize

grammars.

The lexicon is formatted as a key, value pair on each line and contains

mapping of player names and other language specific parameters such as the

sentence end marker, whether the language needs sentence capitalization used

to realize the input data, mappings of words such as and, or, with, by in the

specified language. For example, a lexicon for Bangla might contain the following

entries, among other things as shown in (3.1).

 58

language:Bangla

start digit:.

sentence end marker:&

end marker prefix space:true

capitalize sentence:false

place 1:

place 2:�

place 3:�

place 4:�"

place default:

mn van wyk:
��	 �
�	 ��

..

(3.1)

3.6.2 Templates

In chapter 2, we discussed how templates are utilized in previous works

on NLG. It can be noticed that the usage of templates varies from defining a

parameterized description of the whole output document [13], specific portions of

it [20, 21, 22] or even to describe a structure for the internal representation

formats [7, 15, 16, 17]. In our system, we use a combination and extension of

these ideas by introducing two levels of templates, i.e. the sentence templates

and the phrase templates that together allow substantial flexibility and also

provide variation in the output.

The sentence templates provide a means to specify basic structures of the

different types of sentences for the surface realization component. In Cricket, the

key semantic concepts of a game can be considered as the overview of the

game, the result, score summary of each team and actions of individual players.

The player actions can be further categorized as batting actions, consisting of

runs scored, balls faced, boundaries/over-boundaries scored and losing wicket,

bowling actions, which are wickets taken, overs bowled and runs conceded and

 59

catching action, i.e. catches taken. Figure 3.7 provides a diagram of these key

semantic concepts of Cricket.

Figure 3.7: Key semantic concepts

In our approach, we define templates for each of these actions so that all

the key semantic concepts can be realized in the output text. Of course, there

could be other kinds of actions in a Cricket game such as an attempt by a fielder

to stop a ball, captain choosing a specific bowler to bowl or a batsman attempting

to play a particular shot. However, these were not included in our set of selected

actions for these cannot be inferred from the input data. Also, the losing wicket

action of a batsman is represented implicitly in the system output by only

Concept

Score summary Player action Result Overview

Batting action Catching action Bowling action

Runs scored

Balls faced

Boundary

Over-boundary Wickets taken

Catches taken

Overs bowled

Runs conceded

Losing wicket

 60

specifically mentioning when a player remains not out at the end of the innings.

The wicket taking bowler name and the wicket losing method were initially

included in the realized output but were removed later to keep the sentence from

getting too long.

Each sentence template in the system is a collection of phrase templates

and static text values. The phrases can be specified as optional, in which case,

they are realized only if the content determination module has specified the

phrase as a feature for realization. The key or id of the template is matched with

the type of the news item describing one or more semantic concepts by the

surface realization module to determine which template is appropriate for

realizing a specific news item. If multiple templates are provided for the same

sentence, the system selects one template at random. Two example sentence

templates, for Bangla and English, specifying the structure of the sentence to

realize the team summary concept, along with their realized forms in the two

languages are listed in Table 3.6. Notice how some of the optional phrases, i.e.

those surrounded by (), are not present in the realized output. The other

sentence templates used by the system are provided in Appendix 3.

Sentence template Realized output

team summary:

([toss]) [batOrder] [bat]

[teamName] [over] ([wicket])

[totalRun] ([allout]) &

��� �%�, -�(�
�� ���, �	�
 ������� #... ����� $
 ����� /$0 ��	 ��� &

team summary:

([toss]) (and) [bat] [batOrder]

[teamName] [totalRun] [over] (and)

([allout]) ([wicket]).

Batting second England scored a

total of 222 runs in 44.0 overs &

were allout.

Table 3.6: Sentence templates with realized outputs

 61

While the sentence templates are used to define structures for the output

sentences, the phrase templates describe mappings of key phrases used by the

realizer to produce the surface forms of the corresponding phrases in the specific

language. The phrase templates allow the system to provide variety in the output

without requiring linguistic information to be specified in the input. They also

define the player action related semantic concepts such as runs scored, balls

faced and wickets taken. If there is more than one template specified for a

phrase, the system selects one of the templates at random. Three possible

phrase templates for Bangla as used by the system are displayed below in (3.2).

A list of all the phrase templates is provided in Appendix 3.

runs scored:[x] ��	 ���	

bat history:�3 (, [x]

��� ,�� [x][th] ��K-�,��K� ��	 &

wicketkeeper: �����'� �+����

(3.2)

3.6.3 Realization

Given a list of information items, along with their features to realize as

determined during the content selection stage, the surface realizer starts the

realization process by iterating over the items and checking whether each item is

a member of an aggregation chain. If the item is not specified for aggregation,

the surface realizer selects an appropriate sentence template for the item, based

on the item-type. On the other hand, if the item is found to be a part of an

aggregation chain, then the surface realizer stores the item in a temporary list

and continues processing the following items in the same way until the final item

of the chain is found. When all items of the chain are found, their item types are

updated for aggregation and an appropriate sentence template is selected for

 62

realizing the items as part of a single sentence. Key portions of the realization

algorithm are provided in pseudocode in Table 3.7.

Each sentence template object of the surface realizer is capable of

realizing a single type of sentence, in standard or aggregation mode. The correct

sentence template and the realization mode for an item are selected using the

item type, e.g. team summary, batting, battingAggregate, which can be

considered as the condition for applying a template. Once the template and

realization mode are selected, the module creates a list containing phrases or

phrase templates in the order defined by the sentence template and iterates over

each phrase in the list. If the phrase is specified as optional for realization, it is

checked whether the phrase is specified by the content selector for surface

realization in the list of features of the input item. If the phrase is found in the list,

an appropriate template is selected and the data from the input item are used to

realize the phrase template; otherwise the phrase is not included in the output.

On the other hand, if the phrase is not marked as optional, it is directly

passed to the appropriate template for realization. The “and” phrase is realized

after completing realization of all phrases in the list. Each “and” phrase is realized

only when both of its left and right neighbour phrases are realized. The

realization process is mostly similar for realizing a sentence in aggregation mode

with the difference being instead of a single input item, there are multiple of them

present. So for creating the output surface form of each phrase in the template, a

list of phrases is prepared using one phrase from each input item and these are

realized using the phrase template object.

 63

Now, in order to create the surface form of each phrase, first the realizer

tries to find an appropriate template for each. If a template is found, the matching

property of the input item is extracted and the output text is created using the

template and the property value. For example, if the runsScored phrase template

is being processed, the property returned by the input item when queried with the

runsScored phrase is retrieved and used in the slot of the template to create the

output text. If the phrase template contains multiple slots, then the list of values

are used in their retrieval order. The phrase template object also forces number,

e.g. singular and plural, and position, e.g. 1st, 2nd, 3rd, 4th agreement as specified

for the input language in the lexicon.

If a suitable template is not found, the realizer checks whether the lexicon

contains a mapping for the phrase and uses it to create the output text. If a

mapping is unavailable in the lexicon, the realizer considers the phrase as a

property name of the input item and extracts the value of the property. It then

tries the previous two steps, i.e. using the retrieved value as a template or finding

a mapping of the value in the lexicon, in order to generate the surface form. If

neither of these steps, nor treating the phrase as a property name works, then

the only possible step remaining is to treat the phrase or its extracted value from

the input item as a number and try to generate the output in the specified

language. If this step also fails, the realizer generates an error message, realizes

the phrase as-is and continues processing the next phrase in the list. In this

manner, after processing is completed for all the phrases, the intermediate output

text is forwarded to the post-processor.

 64

Realization algorithm

for each news item

add item to queue

if marked as aggregate candidate

change item type to aggregation

else

if item type has changed

append newline to output

update context

if queue size = 1

get matching sentence template for item

sentenceTemplate.realize(item)

else

get matching aggregated sentence template for queue

sentenceTemplate.realize(queue)

sentenceTemplate.realize(item)

for each phrase in template

if optional phrase

if chosen by content selector for realization

realizePhrase(phrase, item)

else

realizePhrase(phrase, item)

process special phrases, i.e. and, with, sentence end markers and

newlines

realizePhrase(phrase, item)

retrieve values of phrase from item

if matching phrase template is found

phraseTemplate.realize(values)

else if lexicon has matching entry for phrase

return matched entry

else if retrieved value from item is found

if the value is a number

generate language specific output

else if matching phrase template is found (for value)

phraseTemplate.realize(value)

else if lexicon has matching entry for value

return matched entry

else

use value as is

else if the phrase is a number

generate language specific output

else

print error message and use phrase as is

Table 3.7: Realization algorithm in pseudocode

 65

3.7 Post-Processing

The post processing phase, being the final stage of the pipeline, is

intended for applying orthographic rules on the output text that may not be

suitable for application in the earlier stages of the pipeline. At present, the system

applies a sentence capitalization rule during the post processing stage, if

specified in the corresponding lexicon. The rule is intended for output language

using the English alphabets and as such is not applicable for Bangla, which does

not use capitalization. Another rule was tested where the system would insert

appropriate adjectives or phrases before words in the output text, based on their

numeric values. However, this rule resulted in unnatural sentences in the output

when the aggregator was activated and hence was not enabled while generating

the output text examples discussed here.

3.8 Implementation Details

The generation system was written in the Java programming language

[43]. It uses the Google Gson library [44] for processing the JSON [39] formatted

input and output files. SQLite [41] is used as the database system for storing

player performance statistics. The system requires 1.65 and 0.57 seconds on

average (over 5 runs each) to generate output with and without database access

on a machine running Pentium 4 (Northwood) 2.60 GHz processor with 1 GB

DDR RAM (PC 3200). The documented source code is available at the SFU

Natural Language Laboratory website (http://natlang.cs.sfu.ca/) for viewing

and/or experimentation purposes.

 66

3.9 Application of the Gricean Maxims

We have already introduced the Gricean Maxims in chapter 2 and briefly

stated how one of the rules is applied in the aggregation phase. Now we discuss

how the maxims are used as a general guideline in different stages of generation

in the system. The maxims are applied at all times, regardless of the specified

output language of the system.

The maxim of quality is applied in the content determination, surface

realization and post-processing stages of the system where we decided to

generate text from game information available in the input data and not based on

background information that may or may not be true (lacks adequate evidence).

For example, a high individual score does not necessarily imply that the batsman

is on a good batting form. So, we decided to only state the fact in the output, i.e.

the number of runs scored such as “David Hussey scored a half century of 60”

and not “David Hussey continued his consistent batting form to score a half

century of 60”.

The maxim of quantity is applied also in the content determination and

surface realization stages where we decide to include only the most important

information from the game data (contribution should only be as informative as is

required), so we generate text for only the significant player performances. For

example, even for the highest score of the game, which might be considered one

of the most important information, we do not generate text for all of its features

such as balls played or boundaries scored unless those are among the top

values as well. So for the highest scorer, the system might generate “For

 67

Australia, Adam Voges scored a half century of 80 runs” instead of “For Australia,

Adam Voges scored a half century of 80 runs off 72 balls with 1 over-boundary

and 2 boundaries”.

The maxim of relevance is applied during content determination by not

mentioning the same information multiple times, which would make the

information irrelevant and redundant. For example, if the outcome of the toss is

mentioned in one team’s summary, it is skipped while generating text for the

other team. So the system might generate the following sentences as the surface

forms of the team summary items, “After winning the toss & batting first Australia

scored a total of 279 runs in 50.0 overs for 7 wickets”, and “Batting second

England scored a total of 222 runs in 44.0 overs & were allout”. In the same

manner, the team is only mentioned once while the context remains the same,

when generating text for the player performance items.

Finally, the maxim of manner is applied during the content determination,

aggregation and surface realization stages. As mentioned previously, the content

determination module only selects the most important facts for realization and

thus satisfies the maxim of being brief. It also maintains the chronological order

of batting and bowling of the teams and applies sorting by weight for the player

performance items, thus applying the maxim that encourages orderliness of the

items.

The aggregation component selects items for aggregation only when the

item types are identical and there is a single realization feature. This conforms to

the maxims avoid obscurity of expression and avoid ambiguity by generating

 68

simple aggregated sentences such as “Brad Haddin and David Hussey took 3

and 2 catches” instead of “Shawn Tait, Jason Krejza and Brad Haddin took 3 and

2 wickets, and 3 catches”.

The surface realization component applies the above mentioned two

maxims by avoiding the use of more than necessary phrases, which might also

contradict the maxim of quality as described above. So, for example, it generates

sentences such as “James Anderson took 3 wickets for 20 runs in 10.0 overs”

instead of “James Anderson took 3 wickets for a mere 20 runs bowling all of his

allotted 10.0 overs for a match winning performance”.

3.10 Chapter Summary

We have looked at input and output examples of our generation system

and explained why the automatically generated output would differ from a human

authored bulletin. We discussed the generation phases in detail including content

selection and aggregation rules, and utility of lexicon and templates in surface

realization. We also saw application of the Gricean maxims during different

stages of generation in our system.

 69

CHAPTER 4: PERFORMANCE DEMONSTRATION

In this chapter, after discussing the general issues related to the

evaluation of NLG techniques, we present the methodology followed to compare

the output of our system to that of human authors and discuss the corresponding

experimental results.

4.1 Methodology

In general, evaluation of NLG systems is not a straightforward task due to

the lack of standardized metrics and also the fact that not much is still known as

to how an NLG system can be effectively evaluated [1]. This is also apparent in

the discussion of NLG systems in chapter 2 where it can be noticed that an

actual evaluation method is presented for few of the systems and even when an

evaluation method is discussed it vastly differs from those mentioned in other

papers and is mainly dependent upon the generation task.

Also, as stated by Reiter and Dale in [1], it is not known how meaningful

the results of a quality evaluation are for predicting the success or failure of a

particular NLG system. According to the authors, due to these reasons, NLG

systems are usually evaluated based on user acceptance level. But then, this

kind of evaluation is problematic due to the length of the required time span, and

also for the fact that user acceptance might be influenced by factors which do not

properly reflect the NLG technology used to develop the system. Therefore, as

 70

the authors mention, other kinds of evaluation methods, such as testing success

rate of human users in performing a task using the NLG system, or asking a

group of expert users to judge the output of the system are used. These methods

are known as black box evaluations since they test the performance of the

system as a whole without knowledge of the internal workings of the system. On

the other hand, the glass box evaluation methods measure the performance of

each component of the system separately.

For our generation system, we performed glass box evaluation of the

different components as unit tests, i.e. whether the components produce the

expected results. For example, it was verified that for a given input case, whether

the content selection module was choosing the appropriate content for realization

and whether the order of the items to realize was according to expectation. In the

same way, for the aggregation component, it was checked whether the module

was selecting the proper items to be realized together and finally whether all

specified realization-features of the selected items were present in the generated

output.

However, black box evaluation, i.e. evaluating the performance of the

system as a whole proved to be rather difficult. This is due to the following

reasons. After analyzing several human authored reports of games, we found

that in all the cases, humans use background knowledge not available in the

input data to present information in the report. A few examples of this from actual

game bulletins extracted from the Cricinfo website [37] are given in (4.1) – (4.4)

below.

 71

Shane Watson produced one of Australia's finest one-day

hundreds to carry them to a record-breaking six-wicket

win at the MCG with the highest successful chase on the

ground. [45]

(4.1)

The other opener Parthiv Patel, who has had only one net

session to adapt to South African conditions after flying

in as a replacement for Sachin Tendulkar, was in far

better touch but in the 10th over he was lbw missing a

full delivery from Tsotsobe. [46]

(4.2)

Watson (16) cut to point and Brad Haddin (37) walked

across his stumps to give Finn his first ODI wicket. [47]
(4.3)

Zaheer shortened his length and dismissed Miller with an

offcutter that the batsman failed to pull and gloved to

short fine leg. [48]

(4.4)

In the above cases, we can see that in (4.1) and (4.2), the authors used

background knowledge such as “record breaking 6 wicket win at the MCG with

the highest successful chase on the ground”, and “who (Parthiv Patel) had only

one net session to adapt to South African conditions after flying in as a

replacement for Sachin Tendulkar” not available to the system from the input

data. Again, another important point to be noted in the examples is the subjective

manner in which background knowledge is used. For example, it is not clear how

to define a “one of finest one-day hundreds” and this can vary between different

human authors.

A different use of background information can be seen in (4.3) and (4.4).

Here, the authors used information taken from the game that is not available in

the input data. For example, it is not possible to interpret from the input that “Brad

Haddin walked across his stumps” or “Zaheer shortened his length and

 72

dismissed Miller with an offcutter”. The only information available is that “Brad

Haddin scored 37” and “Zaheer took Miller’s wicket”.

Since such information comprises a significant portion of human authored

game bulletins, it is subsequently not possible to do a word-by-word, phrase-by-

phrase or even presented-information wise comparison between the

automatically generated and human authored reports. Hence, evaluation metrics

such as BLEU [49] or ROUGE [50] would not be appropriate to evaluate the

performance of the generation system.

Based on these observations, it may seem that a reasonable technique to

compare the system and human authored outputs would then be to create a list

of players mentioned in the human authored report and find how many of them

are mentioned in the automatically generated report for the same game.

However, this approach also has the following weaknesses. The first problem is

that the length of human authored bulletins are significant as can be seen in [45,

46, 47 and 48] with lengths (in words) being 896, 845, 761 and 873 whereas the

objective of the generation system is to produce concise summaries consisting of

only the most important facts from the game (lengths in words of 261, 210, 253

and 240 for English; 277, 207, 260 and 249 for Bangla). Due to the extended

length, it was found that most of the players (82% to 95% of all players in the

games of the test data sets) were mentioned in the human authored reports

either due to their performances in the game, or by using background information

as discussed previously. On the other hand, mentioning all players is infeasible in

the automatically generated report since the focus is on extracting the most

 73

important facts from the game, i.e. including only the players whose

performances contribute significantly to the outcome of the game.

A second observation that we made while analyzing human authored

reports is that a player is mentioned there mainly for two reasons as described

above, i.e. for his own performance or for other reasons such as to include facts

not directly related to the outcome of the game, or for assisting some other

player’s performance. For the latter case, use of background information not

available in the input data is necessary. We also noticed that when a player is

mentioned for poor performance, on most of the cases information not available

in the input data is used significantly alongside it (examples above), which is why

we decided only to include positive performances in the system generated

summary, unless specifically instructed by the user through custom tags.

Examples of mentions due to own performances of players could be as

displayed in (4.5) and (4.6).

Trott's perfectly timed 102 off 126 balls [51] (4.5)

Chris Woakes, who took 6 for 45 [47] (4.6)

Whereas, examples of the second type of mention are as provided in (4.7)

and (4.8) below.

Shaun Marsh (16) lazily flicked to midwicket [47] (4.7)

best partnership was 50 for the sixth wicket between

Kevin Pietersen, who top-scored with 78, and Michael

Yardy [45] (Here Michael Yardy who scored only 9 runs was

mentioned for assisting Kevin Pietersen)

(4.8)

 74

Now, it is apparent from the above examples that since the system does

not have access to background information not available in the input data, it will

not be able to generate text comparable to humans who utilize such information.

Therefore, a direct player list comparison between the human authored report

and the system-generated summary may not be a very accurate measure to

judge the overall performance of the system. However, since a better approach

was not available, for demonstrating the output differences between the system

and human authors we decided to extract the list of players from the human

authored report and compare how many of them were included in the

automatically generated report for the same game. To this end, we calculate the

precision, recall and F-score measures [52] using the following formulae where

the players in the human authored report are considered the relevant values and

the players in the automatically generated report are considered the retrieved

values. It should be noted that English bulletins extracted from the Cricinfo

website [37] were focussed on for demonstrating the output differences since it

was found that Bangla bulletins in general contain more background information

than their English counterparts and thus would be less suitable to compare the

system generated output to that of humans.

reportautoinplayers

reportmanualinplayersreportautoinplayers
precision

∩
=

reportmanualinplayers

reportmanualinplayersreportautoinplayers
recall

∩
=

recallprecision

recallprecision
scoreF

+
=−

*
*2

 75

We used a set of seven games [38, 45, 47, 51, 53, 54, 55] as the

development data set, which were used to generate preliminary summaries.

These summaries were then compared to the human authored reports of the

same games, and the system parameters were adjusted accordingly so that the

generated reports covered most of the players mentioned in the human authored

news bulletins.

4.2 Results

In the next phase, we used a set of five games [40, 44, 48, 56, 57], none

of which were used previously for adjusting the parameters of the system, as the

test data set. The teams of the test data set were different from the development

data set and thus there was no overlap of players as well. We extracted the

mentioned player names from the bulletins of each of these five games and

compared those to the system-generated game summaries using the formulae

described above. The results are displayed in Table 4.1 below.

Case Players
mentioned in
human text (A)

Players
mentioned

in auto-text

Players in A

 mentioned

in auto-text

Precision Recall F-score

1 18 16 13 0.81 0.72 0.76

2 19 15 14 0.93 0.74 0.82

3 14 15 11 0.73 0.79 0.76

4 19 9 8 0.89 0.42 0.57

5 18 12 11 0.92 0.61 0.73

Table 4.1: Precision, recall and F-score results

 76

Case Length of human
written summary

(in English words)

Length of auto-

generated summary

(in English words)

Length of auto-
generated summary

(in Bangla words)

1 913 260 267

2 873 240 249

3 909 252 255

4 845 210 207

5 904 224 226

 Table 4.2: Lengths of human authored and system generated reports

From the above tables, it can be stated that the performance of the

system was reasonable in general. Average precision of the 5 input cases was

0.86 with lowest being 0.73 for input case 3 where the system included a player

in the output for taking 3 catches behind the wicket that it determined to be

important information. However, this did not match with the human authored

report and hence contributed to a significant decline of precision compared to the

other input cases. For input case 1, there were 3 system selected players that

were not chosen by human authors despite the fact that they took the highest

number of wickets, catches or scored runs with good strikes rates. This resulted

in 0.81 precision. In input case 2, 14 of the 15 system selected players were also

included in the human report, thus the precision was highest at 0.93. In input

case 4, precision was 0.89 since 8 of the 9 players that the system selected were

also mentioned in the human report whereas for input case 5, it was at 0.92.

Here, an interesting observation was that a player had the second best bowling

figure for his team but still was not included in the human report. However, the

system selected the player for realization and this was the only case where the

system-selected information did not match that of the human.

 77

For recall, the average was 0.66, which was lower than that of precision

since the human authored reports usually mention a lot more players than the

automatically generated ones due to their increased length as displayed in Table

4.2. The lowest recall was 0.42 for input case 4 where the system selected only 9

players for realization (compared to 12-16 in the other input cases), 8 of which

matched the human authored report. However, the human authored report also

mentioned other players (19 players in total, which is the highest of the input

cases) using background information such as “rarely found the middle of the bat

or his timing”, “adjudged caught-behind though it was unclear whether he edged

the ball” or “perished to some senseless running”, which contributed significantly

to the decline in recall. For input case 1, the 5 players from the human report that

the system did not select for realization were all found to be mentioned using

background information such as “moved across to drag a short-of-length

delivery”, or “played inside the line to lose his off stump”. In input case 2, recall

was the second highest at 0.72 where 14 of the 15 system selected players

matched with the human selection, whereas in input case 3, it increased to 0.79

since a comparatively lower number of players, 14 as opposed to 19 in case 2,

were mentioned by the human author in the report. In input case 5, recall

dropped to 0.61 even though the matched number of players remained the same,

i.e. 11 as in case 3, because the number of human selected players increased to

18 from 14.

 78

Instead of player names, if we consider the batting, bowling and catching

actions, e.g. runs scored, balls faced, overs bowled, wickets taken, catches

taken, then we can find some interesting patterns as displayed in Table 4.3.

Case Player actions

mentioned in

human text (A)

Actions
mentioned in
auto-text

Actions in A
mentioned in
auto-text

Precision Recall F-score

1 15 16 11 0.69 0.73 0.71

2 8 15 6 0.40 0.75 0.52

3 5 15 5 0.33 1.00 0.50

4 8 9 7 0.78 0.88 0.82

5 9 12 8 0.67 0.89 0.76

Table 4.3: Precision, recall and F-score considering player actions

The first observation that we can make by comparing the number of

players mentioned in the human reports from Table 4.1 to the number of actions

above, is that a significant portion of players (3, 11, 9, 11 and 9) are included in

the human reports not using actions but through other means such as

background information. However, the system successfully includes most of the

actions that are mentioned by humans in its output, which is apparent by the high

recall values.

Moving onto precision, we find that the values are considerably lower than

Table 4.1 because again human reports tend to include a small number of

actions directly. Instead, they rely more on background information to describe a

situation. For example, instead of specifying the number of overs bowled and

wickets taken by Zaheer Khan, the report in [40] would say, “troubles (of the

batsmen) against Zaheer Khan continued”. Whereas, everything in the system-

 79

generated report is based on player actions since it cannot utilize background

information like humans. Thus precision gets lower even though recall is higher.

Table 4.4 presents the system generated outputs for input data set 5.

Outputs for the rest of the data sets are available in appendix 1. Table 4.5 then

provides the list of players and whether they were included in the human written

English and Bangla bulletins [40, 58] and the system outputs.

 80

Bangla English

*�'G -�H�� �	�
 ���, South Africa versus India

���	 �� ����	
��	��

��, ��
	�: ��!�� �I���� !���, ��J� ���	 One Day International at SuperSport

Park, Centurion

*�'G -�H�� ?? ���	 %���� ��� & South Africa won by 33 runs.

*�'G -�H�� �� !�' +���
 -
��

�	 �) *

�� +	 & Hashim Amla of South Africa was the

player of the match.

��� �+�� -�(�
�� ���, �	�
 *�'G -�H�� 26.. ����� 0 �����
/#. ��	 ��� &

After losing the toss & batting first

South Africa scored a total of 250 runs

in 46.0 overs for 9 wickets.

*�'G -�H�� �� !�' +���
 -
�� 7?/ �� �1�� 03 ��� �+�4��(
�!���%, 776 ��	 ���	 &

For South Africa, Hashim Amla scored a

century of 116 runs unbeaten in 132

balls with 9 fours.

�3 (, #

��� ,�� ?� ��K-�,��K� ��	 & In the last 5 matches, it was his 3rd

score of 50 or more runs.

��	 �
�	 �� 6? �� �1�� 53 ��� ��
, #6 ��	 ���	 & Morne Van Wyk scored a half century of

56 runs in 63 balls with 8 boundaries.

%	-!� *��
�	 73 �� ���� ��
, ?# �8�� ���	 & Jean-Paul Duminy scored 35 runs with 1

boundary.

���, �� !�'
�	�) !
���� 5.. ���� �� ��� ? ���� �		 & For India, Munaf Patel took 3 wickets

bowling 8.0 overs.

4����% ��� 5.. ����� / ���� �		 & Yuvraj Singh took 2 wickets bowling 8.0

overs.

%�+� 1�	 0.. ����� / ���� ��� ���	 & Zaheer Khan took 2 wickets in 9.0

overs.

%���� �
�� ���, �	�
 ���, 2../ ����� /?2 ��	 ��� ��- �
+� &

Batting second India scored a total of

234 runs in 40.2 overs & were allout.

� ��) !�L�	 $. �� �1�� 53 ��� -� 53 ���� �� ���� �+�4��(
7.# ��	 ���	 &

Yusuf Pathan scored a century of 105

runs off 70 balls with 8 boundaries & 8

over-boundaries.

!���"� !
���� ?2 �� �1�� 63 ��� �+�4��(?5 ��	 ���	 & Parthiv Patel scored 38 runs from 34

balls with 6 fours.

%�+� 1�	 ?3 ��� �+�4��(/2 ��	 ���	 & Zaheer Khan scored 24 runs with 3

boundaries.

*�'G -�H�� �� !�'
��	
���� 5.. ����� 2 ���� �		 & For South Africa, Morne Morkel took 4

wickets bowling 8.0 overs.

��� ���	 0.. ����� ?/ ��	 �*�� / ���� �		 & Dale Steyn took 2 wickets conceding 32

runs bowling 9.0 overs.

�	������ �,����� $./ ����� / ���� �		 & Lonwabo Tsotsobe took 2 wickets in 7.2

overs.

��	
����,)�) *�
 �@��� � %	-!� *��
�	 /3 �
�� �		 & Morne Morkel, Faf Du Plessis & Jean-

Paul Duminy took 2 catches.

Table 4.4: System output for input case 5

 81

Player name Mention type (human

text in English)

Mention type (human

text in Bangla)

Included in

auto-text

Hashim Amla Action Action Yes

Morne van Wyk Action None Yes

Morne Morkel Action Action Yes

Lonwabo Tsotsobe Action None Yes

Jean-Paul Duminy Other Action Yes

Faf du Plessis Action Action Yes

Robin Peterson Other None No

Graeme Smith Other Other No

AB de Villiers Other None No

Dale Steyn None None Yes

Munaf Patel Action None Yes

Yusuf Pathan Action Action Yes

Mahendra Singh Dhoni Other None No

Virat Kohli Other None No

Rohit Sharma Other None No

Yuvraj Singh Action None Yes

Suresh Raina Action None No

Parthiv Patel Other None Yes

Zaheer Khan Other Action Yes

Table 4.5: Player inclusion type details for input case 5

4.3 Discussion

In Table 4.5, we can see that 9 of 18 players that the human report in

English includes are mentioned using player action events. The other 9 players

are included using background information that may or may not be available in

the input data. Of the 18 players and 9 actions mentioned in the human text, 12

and 8, respectively are present in the output generated by the system. One

player (Dale Steyn) is included in the system generated report for taking 2

wickets and not conceding many runs, but is not mentioned in the human report.

 82

On the other hand, the human report includes the explosive but brief innings of

Suresh Raina, which is not selected by the system for not having any eventual

impact on the game result. Again, comparing the system output to the Bangla

bulletin, we find that the bulletin (consisting of 361 words) mentions a total of 7

players, 6 of which match with the system output. Thus precision, recall and F-

score values are at 0.50, 0.86 and 0.63. Precision is comparatively lower for the

Bangla report since the system output mentions a total of 12 players, 6 of which

match the human authored output that mentions a total of only 7 players.

However, what can be considered a good or poor performance (and

hence included or excluded in a report) is a subjective matter and might depend

upon several factors. Thus, a comparison based on such measures might suffer

from being subjective where the result might not indicate the true accuracy of the

output. Therefore, for the test cases, ranking results of the system-generated

outputs may differ when compared to other reports written by different human

judges, none of which may in turn, match the ranking presented above. Again,

the discussed method mainly focuses on content determination and does not

cover testing the actual quality of the output text. However, this could be

compensated by doing a user evaluation study where domain experts would

assign a score to the output generated by the system.

Finally, the results may not be statistically significant due to the small size

of the test data set and thus should mainly be considered suggestive. A

comprehensive study consisting of multiple input cases covering each possible

game scenario, e.g. low/high scores for one or both teams should be useful for

 83

thoroughly evaluating the system by comparing its performance to that of a

baseline. The baseline generator could be created by disabling (one or more at a

time) some of the system components such as the content selector, aggregator

and post-processor that are intended for improving the overall output quality.

 84

CHAPTER 5: CONCLUSION

NLG is a subfield of NLP that is concerned with automatically generating

human readable text such as summaries or descriptions of objects and scenarios

from input data in non-linguistic format such as time series data, medical records,

game score cards and ontology concepts. A widely used architecture for building

NLG systems is based on a pipeline where the operations of each component of

the system are well defined and separated from each other. The components

process and transform input data in a specific order to produce the final output

text of the system. NLG systems can be template based, i.e. utilize shallow

processing where base structures of the output sentences are defined as

templates that are transformed and values from the input data are filled in to

generate the final output. The other approach is knowledge based and requires

detailed grammatical and linguistic information to be embedded within the

system. For languages such as Bangla, where much linguistic resources for NLP

are not available yet, a template based approach might be suitable for generation

tasks. Below, we summarize the work presented in the previous chapters on our

NLG system and conclude with some future research directions.

5.1 Summary

 In this thesis, we investigated the suitability of a template based approach

for generating short summaries of Cricket games in a cross-lingual manner from

structured input data, i.e. game score cards in a standard format. Based on our

 85

findings, we presented an implementation of such a system that utilizes the

pipelined architecture where the generation task is divided in subtasks performed

by different components such as conversion of input data structure, content

selection, aggregation and surface realization. The pre-processing stage

transforms the input data from raw text to a structured JSON [39] based format

that is used and augmented with information as necessary in later stages of the

pipeline. The content selection module applies selection rules on the input data

to determine which portions of it should be chosen for surface realization and

also defines the output document structure. The aggregation component

specifies which news items should be aggregated together in the output. Finally,

the surface realizer produces the natural language sentences in the specified

language from the structured data.

The presented system is based on two levels of templates, i.e. sentence

and phrase templates that are easily extensible for creating significant variation

in the output. Also, by utilizing domain knowledge in different stages of

generation, and by avoiding the use of language specific resources such as

grammars, it has been made possible for end users without expert linguistic

knowledge to be able to create new templates or modify existing ones easily. The

portability of the system to a new language is verified by first developing it with a

focus on Bangla and later updating it to generate outputs in English simply by

defining new sentence and phrase templates without requiring major modification

to the core system. Finally, as discussed in the previous chapter, evaluation of

NLG systems is difficult and non-trivial due to the lack of standardized methods

 86

and the application oriented nature of the task. As such, demonstration of the

system performance is carried out by comparing its output to contents taken from

human authored news bulletins, which confirms that the system is able to extract

the key semantic ideas from the input that match with the human authored text,

and output those as sentences in multiple languages with reasonable accuracy

with an average precision of 0.86 and average recall of 0.66 over 5 test cases.

5.2 Future Works

Having summarized the work on our NLG system, below we discuss some

future research directions that can be followed to further improve its output

quality.

Referring expression generation is one of the NLG tasks where the

system applies rules on the input data to determine appropriate places where

phrases such as he, she, they, it can be used to replace the corresponding

proper nouns. It is a part of the micro-planning stage and can be included in the

generation pipeline as phase 5, as displayed in Figure 5.1.

 87

Figure 5.1: Revised system architecture

For example, after applying referring expression generation rules on the

input, the system might determine that the consecutive sentences “Mitchell

Johnson scored 26 runs” and “Mitchell Johnson took 3 wickets” should be

realized as “Mitchell Johnson scored 26 runs” and “He also took 3 wickets”. Our

Augmented data

Formatted input data

Input data

1. Input converter

3. Content selector

Output text

Document plan

2. Pre processor

Lexicon, phrase
and sentence
templates

Custom annotation

Generator

Text specification

Intermediate output

7. Post processor

6. Surface realizer

4. Aggregator

5. Referring
expression generator

 88

system does not apply referring expression generation at present since a similar

effect is achieved in the output using the templates. Furthermore, it is apparent

by the automatically generated texts presented in chapter 3 and 4 that the scope

of using referring expressions is very limited in the current system. Nevertheless,

such a component could still be implemented, which would remove the present

dependency on the templates but might introduce language specific rules within

the system.

The content determination module could be improved further by analyzing

more game data, which would allow implementing additional content selection

rules or to adjust the existing ones in order to improve output accuracy. For

example, currently the system does not include a bowler’s performance

information in the output if he has not taken any wickets. However, in a real life

scenario, sometimes a bowler can influence the outcome without taking wickets.

And although this is a possibility, it cannot always be interpreted from the input

data and hence is not included in the content determination rules at present. But

by analyzing more data, it might be possible to design new rules that would

effectively address this case.

At present, the aggregation module of the system carries out aggregation

only when the target sentences are simple, i.e. have a single realization feature.

The reasoning behind this is explained in chapter 3, where the details of the

component are discussed. However, output quality could be improved even more

by adding appropriate phrases such as respectively (e.g. scored 26, 36, and 41

runs, respectively) or each (e.g. took 3 catches each) in the output based on the

 89

aggregation parameters. These were not included in the current stage since the

implementation is not straightforward within the template based framework and

hence would require significant effort resulting in minor improvement of the

output quality.

Variation in the output could be increased further by adding language

specific grammatical knowledge to the system and by allowing templates to

specify in which tense a parameter should be realized. For example, this sort of

knowledge would allow realizing the toss phrase in the following two ways,

[toss:present_continuous]: “After winning the toss”, and [toss:past_participle]:

“Having lost the toss”, where the system should have the knowledge that the

present continuous and past participle forms of win and loss are winning and lost,

respectively.

Since the system is dependent upon domain knowledge in order to

generate output in multiple languages, it is not possible to directly use it to

generate reports of a different sport. However, it would be interesting to see what

kind of modification is required to the system to produce summary of an entirely

different game such as Golf which, like Cricket, also uses a very structured

format of scorecards. And this might also help redesigning some of the

components to reduce domain dependency and decrease the time required to

port the system to a different domain.

 90

APPENDICES

 91

APPENDIX 1: DEMONSTRATION DETAILS

Input Case 1

System output

Bangla English

*�'G -�H�� �	�
 ���, South Africa versus India

���	 �� ����	
��	��

��, ��
	�: �����
�, �����	 One Day International at The Kingsmead,

Durban

*�'G -�H�� 7?# ���	 %���� ��� & South Africa won by 135 runs.

*�'G -�H�� �� !�' �	������ �,�����

�	 �) *

�� +	 & Lonwabo Tsotsobe of South Africa was

the player of the match.

��� �%�, -�(�
�� ���, �	�
 *�'G -�H�� #... ����� 0 �����
/50 ��	 ��� &

After winning the toss and batting

first South Africa scored a total of

289 runs in 50.0 overs for 9 wickets.

*�'G -�H�� �� !�' ��� �� �������� 60 �� �1�� $3 ��� � 73
���� �� ���� �+�4��($6 ��	 ���	 &

For South Africa, AB De Villers scored

a half century of 76 runs off 69 balls

with 7 fours and 1 six.

%	-!� *��
�	 73 ���� �� ���� �+�4��($? ��	 ���	 & Jean-Paul Duminy scored 73 runs with 1

over-boundary.

+���
 -
�� ?6 �� �1�� 53 ��� ��
, #. �8�� ���	 & Hashim Amla scored a half century of 50

runs from 36 balls with 8 boundaries.

���	 !���	� 70 �� �1�� 73 ���� �� ���� �+�4��(�!���%, /7
�8�� ���	 &

Wayne Parnell scored 21 runs unbeaten

off 19 balls with 1 over-boundary.

��4�+�	 ���"� /$ �� �1�� /? ��	 ���	 & Johan Botha scored 23 runs in 27 balls.

���, �� !�' ����+, ��
� $.. ����� ?. ��	 �*�� / ���� �		 & For India, Rohit Sharma took 2 wickets

and conceded 30 runs bowling 7.0 overs.

%�+� 1�	 7... ���� �� ��� 22 ��	 �*�� / ���� �		 & Zaheer Khan took 2 wickets and conceded

44 runs bowling 10.0 overs.

�	�) !
���� $.. ����� ?6 ��	 �*�� / ���� �		 & Munaf Patel took 2 wickets and gave 36

runs in 7.0 overs.

+��%	 ��� /3 �
�� �		 & Harbhajan Singh took 2 catches.

!�� �
�� ���, �	�
 ���, ?#.2 ����� 7#2 ��	 ��� ��- � +�
&

Batting second India scored a total of

154 runs in 35.4 overs and were allout.

����, ���+�� $. �� �1�� /3 ��� ��� 73 D� ��
, #2 ��	 ���	
&

Virat Kohli scored 54 runs from 70

balls with 2 fours & 1 over-boundary.

����� ���	� ?6 �� �1�� /3 �� ���� ��� 73 D� �+�4��(?/ ��	
���	 &

Suresh Raina scored 32 runs from 36

balls with 2 fours and 1 six.

�+N ��� �K��	 73 ��� ��
, /# ��	 ���	 & Mahendra Singh Dhoni scored 25 runs

with 1 boundary.

�'G -�H�� �� !�' �	������ �,����� 5.2 ����� ?7 ��	 ��� 2 For South Africa, Lonwabo Tsotsobe took

4 wickets conceding 31 runs in 8.4

 92

 ���� ��� ���	 & overs.

��	
���� #.. ���� �� ��� 7/ ��	 �*�� / ���� ��� ���	 & Morne Morkel took 2 wickets and gave 12

runs in 5.0 overs.

��� ���	 6.. ���� �� ��� / ���� ��� ���	 & Dale Steyn took 2 wickets bowling 6.0

overs.

���	 !���	� $.. ����� /# ��	 �*�� 7 ���� �		 & Wayne Parnell took 1 wicket and

conceded 25 runs in 7.0 overs.

����
 �O" /3 �
�� �		 & Graeme Smith took 2 catches.

Table 5.1: System output for case 1

Comparison with human authored report

Player name Mention type

(human text)

Included in

auto-text

AB De Villers Action Yes

Hashim Amla Action Yes

Jean-Paul Duminy Action Yes

Lonwabo Tsotsobe Action Yes

Morne Morkel Action Yes

Dale Steyn Action Yes

Wayne Parnell Other Yes

David Miller Action No

Johan Botha None Yes

Graeme Smith None Yes

Virat Kohli Action Yes

Munaf Patel Action Yes

Yuvraj Singh Action No

Murali Vijay Action No

Sachin Tendulkar Action No

Rohit Sharma Action Yes

Mahendra Singh Dhoni Action Yes

Harbhajan Singh Other Yes

Ashish Nehra Other No

Suresh Raina Action Yes

Zaheer Khan None Yes

 Table 5.2: Player inclusion type details for case 1

 93

Input Case 2

System output

Bangla English

*�'G -�H�� �	�
 ���, South Africa versus India

���	 �� ����	
��	��

��, ��
	�: �	 ���	������ ������
,
�%�+��	����(

One Day International at New Wanderers

Stadium, Johannesburg

���, 7 ���	 %���� ��� & India won by 1 run.

���, �� !�'
�	�) !
����

�	 �) *

�� +	 & Munaf Patel of India was the player of

the match.

��� �%�, -�(�
�� ���, �	�
 ���, 2$./ ����� 70. ��	 ���
��- � +� &

After winning the toss and batting

first India scored a total of 190 runs

in 47.2 overs & were allout.

���, �� !�' 4����% ��� 65 �� �1�� 23 �� ���� ��
, #? ��	
���	 &

For India, Yuvraj Singh scored 53 runs

from 68 balls with 4 boundaries.

�+N ��� �K��	 ��K	�������, ?5 �8�� ���	 & Mahendra Singh Dhoni as the team leader

scored 38 runs.

��<	 ���� ���� /3 ��� ��
, /2 ��	 ���	 & Sachin Tendulkar scored 24 runs with 2

fours.

����, ���+�� // �8�� ���	 & Virat Kohli scored 22 runs.

�'G -�H�� �� !�' �	������ �,����� 7... ����� // ��	 ���
2 ���� ��� ���	 &

For South Africa, Lonwabo Tsotsobe took

4 wickets and gave 22 runs in 10.0

overs.

��� ���	 0./ ����� ?# ��	 �*�� / ���� ��� ���	 & Dale Steyn took 2 wickets for 35 runs

in 9.2 overs.

��	
���� 5.. ����� / ���� �		 & Morne Morkel took 2 wickets in 8.0

overs.

��4�+�	 ���"� 7... ���� �� ��� ?# ��	 �*�� 7 ���� �		 & Johan Botha took 1 wicket for 35 runs

in 10.0 overs.

!�� �
�� ���, �	�
 *�'G -�H�� 2?.. ����� 750 ��	 ���
��- � +� &

Batting second South Africa scored a

total of 189 runs in 43.0 overs and

were allout.

����
 �O" 05 �� �1�� 53 ��� �+�4��(��K	������� $$ �8��
���	 &

Graeme Smith as the captain scored a

half century of 77 runs off 98 balls

with 8 boundaries.

����� �
��� /5 �� �1�� ?3 �� ���� ��� 73 D� �+�4��(/$
�8�� ���	 &

David Miller scored 27 runs in 28 balls

with 3 fours and 1 over-boundary.

���	 �P��
 ?. �� �1�� 73 �� ���� ��� 73 ���� �� ����
�+�4��(/# �8�� ���	 &

Colin Ingram scored 25 runs in 30 balls

with 1 four and 1 six.

���, �� !�'
�	�) !
���� 5.. ����� /0 ��	 �*�� 2 ���� �		
&

For India, Munaf Patel took 4 wickets

conceding 29 runs in 8.0 overs.

%�+� 1�	 0.. ���� �� ��� / ���� ��� ���	 & Zaheer Khan took 2 wickets in 9.0

overs.

+��%	 ��� 7... ���� �� ��� ?/ ��	 �*�� 7 ���� ��� ���	 & Harbhajan Singh took 1 wicket for 32

runs bowling 10.0 overs.

����+, ��
� /.. ���� �� ��� 7 ���� ��� ���	 & Rohit Sharma took 1 wicket in 2.0

 94

overs.

 �����'� �+����
�+N ��� �K��	 /3 �
�� �		 & Mahendra Singh Dhoni took 2 catches as

the wicket keeper.

Table 5.3: System output for case 2

Comparison with human authored report

Player name Mention type

(human text)

Included in

auto-text

Yuvraj Singh Action Yes

Mahendra Singh Dhoni Action Yes

Munaf Patel Action Yes

Yusuf Pathan Action No

Zaheer Khan Action Yes

Harbhajan Singh Other Yes

Suresh Raina Other No

Sachin Tendulkar Other Yes

Virat Kohli Other Yes

Rohit Sharma None Yes

Lonwabo Tsotsobe Action Yes

Graeme Smith Action Yes

Morne Morkel Other Yes

Wayne Parnell Action No

Colin Ingram Other Yes

Jean-Paul Duminy Other No

David Miller Other Yes

Hashim Amla Other No

Johan Botha Other Yes

Dale Steyn Other Yes

 Table 5.4: Player inclusion type details for case 2

 95

Input Case 3

System output

Bangla English

*�'G -�H�� �	�
 ���, South Africa versus India

���	 �� ����	
��	��

��, ��
	�: �	 �
���, ��!�� 	 One Day International at Newlands, Cape

Town

���, / ����� %���� ��� & India won by 2 wickets.

���, �� !�' � ��) !�L�	

�	 �) *

�� +	 & Yusuf Pathan of India was the player of

the match.

��� �%�, -�(�
�� ���, �	�
 *�'G -�H�� 20./ ����� //. ��	
��� ��- � +� &

After winning the toss & batting first

South Africa scored a total of 220 runs

in 49.2 overs and were allout.

*�'G -�H�� �� !�')�) *�
 �@��� /3 ��� �+�4��(6. ��	 ���	
&

For South Africa, Faf Du Plessis scored

a half century of 60 runs with 2 fours.

%	-!� *��
�	 #0 �� �1�� /3 ��� �+�4��(#/ �8�� ���	 & Jean-Paul Duminy scored a half century

of 52 runs from 59 balls with 2 fours.

����
 �O" ?3 �� ���� �+�4��(��K	������� 2? �8�� ���	 & Graeme Smith as the captain scored 43

runs with 3 fours.

���, �� !�' %�+� 1�	 0./ ���� �� ��� ? ���� �		 & For India, Zaheer Khan took 3 wickets

in 9.2 overs.

+��%	 ��� 0.. ���� �� ��� /? ��	 �*�� / ���� �		 & Harbhajan Singh took 2 wickets and gave

23 runs bowling 9.0 overs.

�	�) !
���� 7... ����� 2/ ��	 �*�� / ���� ��� ���	 & Munaf Patel took 2 wickets for 42 runs

in 10.0 overs.

����, ���+�� ?3 �
�� �		 & Virat Kohli took 3 catches.

%���� �
�� ���, �	�
 ���, 25./ ����� 5 ����� //? ��	 ���
&

Batting second India scored a total of

223 runs in 48.2 overs for 8 wickets.

� ��) !�L�	 #. �� �1�� 63 ��� ��� ?3 D� �+�4��(#0 ��	
���	 &

Yusuf Pathan scored a half century of

59 runs off 50 balls with 6 boundaries

and 3 over-boundaries.

����� ���	� 2$ �� �1�� 23 ��� ��
, ?$ �8�� ���	 & Suresh Raina scored 37 runs off 47

balls with 4 fours.

����, ���+�� #3 ��� ��
, /5 �8�� ���	 & Virat Kohli scored 28 runs with 5

fours.

+��%	 ��� /# �� �1�� /3 D� ��
, �!���%, /? �8�� ���	 & Harbhajan Singh scored 23 runs unbeaten

from 25 balls with 2 over-boundaries.

����+, ��
� /? ��	 ���	 & Rohit Sharma scored 23 runs.

*�'G -�H�� �� !�'
��	
���� 7... ����� /5 ��	 �*�� ?
 ���� ��� ���	 &

For South Africa, Morne Morkel took 3

wickets and conceded 28 runs bowling

10.0 overs.

��� ���	 7... ���� �� ��� ?7 ��	 �*�� / ���� �		 & Dale Steyn took 2 wickets conceding 31

runs bowling 10.0 overs.

�	������ �,����� 7... ���� �� ��� 27 ��	 �*�� 7 ���� ���
���	 &

Lonwabo Tsotsobe took 1 wicket and

conceded 41 runs in 10.0 overs.

 96

%	-!� *��
�	 /.. ���� �� ��� 7 ���� ��� ���	 & Jean-Paul Duminy took 1 wicket bowling

2.0 overs.

 �����'� �+���� ��� �� �������� ?3 �
�� �		 & AB De Villers took 3 catches as the

wicket keeper.

Table 5.5: System output for case 3

Comparison with human authored report

Player name Mention type

(human text)

Included in

auto-text

Yusuf Pathan Action Yes

Harbhajan Singh Action Yes

Suresh Raina Other Yes

Zaheer Khan Other Yes

Ashish Nehra Other No

Virat Kohli Other Yes

Munaf Patel Other Yes

Rohit Sharma None Yes

Morne Morkel Action Yes

Faf Du Plessis Action Yes

Jean-Paul Duminy Action Yes

Johan Botha Other No

Wayne Parnell Other No

Graeme Smith Other Yes

Jean-Paul Duminy Other Yes

Dale Steyn None Yes

Lonwabo Tsotsobe None Yes

AB De Villers None Yes

 Table 5.6: Player inclusion type details for case 3

 97

Input Case 4

System output

Bangla English

*�'G -�H�� �	�
 ���, South Africa versus India

���	 �� ����	
��	��

��, ��
	�: ���� %��%� !���, �!���
���%���"

One Day International at St. George's

Park, Port Elizabeth

*�'G -�H�� 25 ���	 %���� ��� & South Africa won by 48 runs.

*�'G -�H�� �� !�' %	-!� *��
�	

�	 �) *

�� +	 & Jean-Paul Duminy of South Africa was

the player of the match.

��� �%�, -�(�
�� ���, �	�
 *�'G -�H�� #... ����� $
 ����� /6# ��	 ��� &

After winning the toss & batting first

South Africa scored a total of 265 runs

in 50.0 overs for 7 wickets.

*�'G -�H�� �� !�' %	-!� *��
�	 $/ �� �1�� 73 D�
��
, �!���%, $7 �8�� ���	 &

For South Africa, Jean-Paul Duminy

scored a half century of 71 runs

unbeaten off 72 balls with 1 over-

boundary.

�3 (, 2

��� ,�� ?� ��K-�,��K� ��	 & In the last 4 matches, it was his 3rd

score of 50 or more runs.

+���
 -
�� 60 �� �1�� 53 �� ���� �+�4��(62 ��	 ���	
&

Hashim Amla scored 64 runs off 69 balls

with 8 boundaries.

��4�+�	 ���"� ?3 ��� �+�4��(22 ��	 ���	 & Johan Botha scored 44 runs with 3

boundaries.

���	 �!����	 ?# �� �1�� ?3 ��� ��
, ?7 ��	 ���	 & Robin Peterson scored 31 runs from 35

balls with 3 fours.

���, �� !�' 4����% ��� 5.. ���� �� ��� ?2 ��	 �*�� ?
 ���� ��� ���	 &

For India, Yuvraj Singh took 3 wickets

for 34 runs bowling 8.0 overs.

!�� �
�� ���, �	�
 ���, ?/.# ����� 6 ����� 72/ ��	
��� &

Batting second India scored a total of

142 runs in 32.5 overs for 6 wickets.

����, ���+�� 0/ �� �1�� $3 ��� ��� /3 ���� �� ����
�+�4��(�!���%, 5$ ��	 ���	 &

Virat Kohli scored a half century of 87

runs unbeaten in 92 balls with 7

boundaries and 2 sixes.

����� ���	� /. �8�� ���	 & Suresh Raina scored 20 runs.

*�'G -�H�� �� !�' �	������ �,����� 6.. ����� / ����
��� ���	 &

For South Africa, Lonwabo Tsotsobe took

2 wickets bowling 6.0 overs.

��	
���� 6.. ����� 7? ��	 �*�� 7 ���� �		 & Morne Morkel took 1 wicket and gave 13

runs in 6.0 overs.

���	 �!����	 5.. ���� �� ��� / ���� ��� ���	 & Robin Peterson took 2 wickets in 8.0

overs.

��4�+�	 ���"� 6.# ����� /$ ��	 �*�� 7 ���� �		 & Johan Botha took 1 wicket and gave 27

runs bowling 6.5 overs.

Table 5.7: System output for case 4

 98

Comparison with human authored report

Player name Mention type

(human text)

Included in

auto-text

Jean-Paul Duminy Action Yes

Hashim Amla Action Yes

Lonwabo Tsotsobe Action Yes

Graeme Smith Action No

Morne van Wyk Other No

AB de Villiers Other No

Faf Du Plessis Other No

Johan Botha Action Yes

Robin Peterson Action Yes

Morne Morkel None Yes

Yuvraj Singh Action Yes

Virat Kohli Action Yes

Zaheer Khan Other No

Munaf Patel Other No

Ashish Nehra Other No

Rohit Sharma Other No

Parthiv Patel Other No

Suresh Raina Other Yes

Mahendra Singh Dhoni Other No

Yusuf Pathan Other No

 Table 5.8: Player inclusion type details for case 4

 99

APPENDIX 2: HUMAN AUTHORED GAME BULLETIN

Voges helps Australia take series 6-1

Australia 7 for 279 (Voges 80*, Hussey 60, Anderson 3-48)

beat England 222 (Yardy 60, Johnson 3-18, Tait 3-48) by 57

runs

Australia rounded off their international summer in style

with a commanding 57-run victory in Perth. It wasn't a

high-quality match, with the exception of the batting from

Adam Voges and David Hussey, as a long season drew to a

close with two patched-up sides on show. However,

Australia's depth came to the fore again as Voges hit a

career-best 80 before England's mentally-finished top order

was blown away to end hopes of a face-saving win.

Nothing will compensate for the crushing loss in the Ashes

series, but Australia's resurgent one-day form has

suggested a fourth consecutive World Cup title isn't out of

reach, especially if key players return from injury. Even

taking into account England's own injury problems and

declining form, the home side's performances have boded

well in the absence of Ricky Ponting, Mike Hussey and

Nathan Hauritz - all key figures in the one-day side.

During the Test matches, Australia's reserves did not

appear up to international standard, but the team has not

retained its No.1 one-day ranking by luck. Their pace

attack is rapid, if wayward at times - they matched

England's wide tally of 19 - while the lack of a

matchwinning spinner isn't so harshly felt. Meanwhile, the

batting is packed with stroke-makers.

Two were on show here after the top order wobbled to 4 for

102 before Hussey and Voges added 95 in 13 overs. This

could be a one-off opportunity for Voges but if an injury

replacement is needed for the World Cup, and Shaun Marsh

doesn't recover, he might have put his name ahead of Callum

Ferguson, who edged James Anderson to slip for 15.

Once Australia had posted a competitive total it was always

unlikely that the visitors would be able to dig deep enough

to make it a contest with the prospect of their flight home

tomorrow evening. Mentally, a number of the players have

long since been in those aircraft seats.

 100

Andrew Strauss has plenty of reasons to be feeling weary

after arriving in Australia on October 29 and it was a

tired shot that ended his series when he was very late

against Shaun Tait. The bat had barely come down when the

ball knocked back the off stump. Steve Davies, back opening

after the reshuffle caused by Eoin Morgan's injury, was

unconvincing in his short stay until flapping at Doug

Bollinger to complete an unhappy few weeks.

Jonathan Trott and Kevin Pietersen briefly consolidated but

there was never any great sense of permanency even from the

in-form Trott. He was drawn into a flat-footed drive

against Johnson which sent a thick edge to first slip, then

Pietersen's uncertain stay ended with a drive to backward

point. Even taking into account the looseness of England's

batting this was the good Mitchell Johnson and he added a

third when Ian Bell carved down to third man.

At 5 for 64 the game was over. Matt Prior played some

handsome drives before giving Jason Krejza his maiden one-

day wicket to end another unfulfilled innings and Michael

Yardy battled hard to reduce the margin of defeat with his

highest ODI score. But it had ceased to matter in the wider

context.

England's makeshift bowling attack had done a decent job

through the first half of the innings as the quicks started

well and Yardy picked up two, but in a familiar pattern the

work of the front line bowlers was squandered. Hussey and

Voges took advantage with some positive strokeplay as they

dispatched the loose deliveries on offer. Hussey had been

given a life on 4 when Luke Wright dropped a return chance

that should have been held and reached his fifty from 44

balls, which included a pulled six off Yardy.

With his boundary-clearing ability and a Powerplay to come

he could have cut loose during the final 10 overs, but was

squared up by Liam Plunkett and got a leading edge to

backward point. Plunkett ended with 2 for 49, which was an

impressive effort considering that he only arrived in the

country three days ago following a 40-hour journey from the

Caribbean.

Voges, though, remained to reach fifty off 45 deliveries,

regularly showing his strength square of the wicket and

rapid running. Although the boundaries dried up he placed

the ball well to ensure 34 came off the last three overs,

but Australia were helped by England's waywardness. That

was symptomatic of a team not fully focussed and the

batting effort was further evidence that minds were

elsewhere. If they want to perform at the World Cup there

isn't much time to refocus, but Australia can leave for the

subcontinent this week in good spirits.

 101

APPENDIX 3: TEMPLATES

Syntax of Templates

Both the sentence and phrase templates follow a key:value structure

where the key of the template is followed by a colon “:” which precedes the value

as displayed in Tables 5.9 – 5.12. The sentence templates are structured as a

collection of phrase templates (surrouded by braces “[]”) or static text. The

phrase templates within a sentence template are specified as optional phrases

by surrounding them with braces “()”. For the aggregation templates, value of the

phrases that should be aggregated are specified by immediately following each

phrase with “…” as displayed in Tables 5.9 and 5.10.

 102

Sentence Templates

English Templates

language:english

game overview:

[team1] versus [team2]

[gameType] at [venue]

game result:

([resultTeam]) [result] ([margin]) ([marginType]).

[pom] [pomTeam] was the player of the match.

team summary:

([toss]) (and) [bat] [batOrder] [teamName] [totalRun] [over] (and)

([allout]) ([wicket]).

batting:

([team]) [playerName] ([captainLike]) scored ([century]) ([halfCentury])

[runsScored] ([notOut]) ([ballsFaced]) (with) ([boundaryCount]) (and)

([overBoundaryCount]) ([customTag]). ([batHistory])

battingAggregate:

([team]) [playerName...] scored [runsScored...].

bowling:

([team]) [playerName] [wicketsTaken] ([runsConceded]) [oversBowled]

([asCaptain]) ([customTag]). ([bowlHistory])

bowlingAggregate:

([team]) [playerName...] [wicketsTaken...].

catching:

([team]) [playerName] [catchesTaken] ([wicketKeeper]).

catchingAggregate:

([team]) [playerName...] [catchesTaken...].

Table 5.9: Sentence templates (English)

 103

Bangla Templates

language:bangla

game overview:

[team1] �	�
 [team2]

[gameType], ��
	� [venue]

game result:

([resultTeam]) ([margin]) ([marginType]) [result] &

[pomTeam] [pom]

�	 �) *

�� +	 &

team summary:

([toss]) [batOrder] [bat] [teamName] [over] ([wicket]) [totalRun]

([allout]) &

batting:

([team]) [playerName] ([ballsFaced]) ([boundaryCount]) (and)

([overBoundaryCount]) (with) ([captainLike]) (and) ([notOut])

[runsScored] ([customTag]) & ([batHistory])

battingAggregate:

([team]) [playerName...] [runsScored...] &

bowling:

([team]) ([asCaptain]) [playerName] [oversBowled] ([runsConceded])

[wicketsTaken] ([customTag]) & ([bowlHistory])

bowlingAggregate:

([team]) [playerName...] [wicketsTaken...] &

catching:

([team]) ([wicketkeeper]) [playerName] [catchesTaken] &

catchingAggregate:

([team]) [playerName...] [catchesTaken...] &

Table 5.10: Sentence templates (Bangla)

 104

Phrase Templates

English Templates

language:english

number agreement:true

runs scored: [x] runs

balls faced: off [x] balls

balls faced: from [x] balls

balls faced: in [x] balls

boundary count: [x] boundaries

boundary count: [x] fours

overBoundary count: [x] over-boundaries

overBoundary count: [x] sixes

wickets taken: took [x] wickets

runs conceded for wicket: for [x] runs

runs conceded: for [x] runs

runs conceded: and gave [x] runs

runs conceded: and conceded [x] runs

runs conceded: conceding [x] runs

bat history: In the last [x] matches, it was his [x][th] score of 50 or

more runs.

bowl history: In the last [x] matches, it was the [x][th] time he took 5

or more wickets.

catches taken: took [x] catches

team:For [x],

pomTeam:of [x]

over: in [x] overs

overs bowled: in [x] overs

overs bowled: bowling [x] overs

wicket: for [x] wickets

total run: scored a total of [x] runs

bat:batting

as captain: as the captain

as captain: as the team leader

as captain: as the leader

captain like: as the captain

captain like: as the team leader

captain like: as the leader

toss: After [x] the toss

all out: were allout

not out: unbeaten

respectively:respectively

wicketKeeper:as the wicket keeper

century:a century of

half century:a half century of

 105

shaky start: despite having a shaky start to his innings

poor shot: and got out playing a poor shot

short innings: and was back to the pavilion before long

won:won by

tied:match tied

consistent bowling: with consistent line and length

late run givaway: being expensive later in the innings

early run givaway: being expensive early on in the innings

Table 5.11: Phrase templates (English)

 106

Bangla Templates

language:bangla

runs scored:[x] ��	 ���	

runs scored:[x] �8�� ���	

balls faced: [x] �� �1��

boundary count:[x]3 ���

boundary count:[x]3 �� ����

overBoundary count:[x]3 D�

overBoundary count:[x]3 ���� �� ����

wickets taken:[x] ���� �		

wickets taken:[x] ���� ��� ���	

runs conceded for wicket:[x] ���	� ���	
��

runs conceded:[x] ��	 �*��

bat history:�3 (, [x]

��� ,�� [x][th] ��K -�,��K� ��	 &

bowl history:�3 (, [x]

��� ,�� [x][th] # �� ,�,��K� ���� &

zero score:. ���	 - � +	 &

out score:[x] ���	 - � +	

catches taken:[x]3 �
�� �		

team:[x] �� !�'

pomTeam:[x] �� !�'

over:[x] �����

overs bowled:[x] ���� �� ���

overs bowled:[x] �����

wicket:[x] �����

total run:[x] ��	 ���

bat:�
�� ���, �	�

captain like:��K	�������,

captain like:��K	�������

as captain:*��	,� �+����

as captain:��K	��� �+����

toss:��� [x]

all out:��- � +�

not out:�!���%,

respectively:4"���

wicketkeeper: �����'� �+����

shaky start:4�*� ��	���� 9"
 �*�� ,��� -:��;��< �*1��=� 	�

poor shot:��� ��3 �9���%	<� �� �1�� - � +	

short innings:��� ,�� ��	��3 B, ��C +�� 4��

won: %���� ���

tied:)��)� ��

����,

consistent bowling: ��� K������+����� ���
�� ������ ���	

late run givaway: 4�*� ��	���� �����, �,�	 ,� �	�
U������ �
 ��	 �*	

early run givaway: 4�*� ��	���� �����, �,�	 ,� �	�
U������ ���� ��	 �*	

Table 5.12: Phrase templates (Bangla)

 107

REFERENCE LIST

1. E. Reiter and R. Dale. (2000). Building Natural Language Generation Systems.
Cambridge University Press, Cambridge, UK.

2. K. van Deemter, E. Krahmer and M. Theune. (2005). Real Versus Template-
Based Natural Language Generation: A False Opposition? Computational
Linguistics 31(1):15–24.

3. M. P. Lewis. (2009). Ethnologue: Languages of the World, Sixteenth edition.
Dallas, Tex: SIL International. Online version: http://www.ethnologue.com/.

4. S. Bhattacharya, M. Choudhury, S. Sarkar and A. Basu. (2005). Inflectional
Morphology Synthesis for Bengali Noun, Pronoun and Verb Systems, In
Proceedings of the National Conference on Computer Processing of
Bangla (CCPB 05), pp. 34 - 43, Dhaka, Bangladesh.

5. A. Das and S. Bandyopadhyay. (2011). Syntactic Sentence Fusion
Techniques for Bengali. In International Journal of Computer Science and
Information Technologies (IJCSIT), Vol. 2 (1), 494-503.

6. S. Das, A. Basu and S. Sarkar. (2010). Discourse Marker Generation and
Syntactic Aggregation in Bengali Text Generation. In Proceedings of the
IEEE Students’ Technology Symposium, 3-4 April 2010, IIT Kharagpur,
India.

7. G. Wilcock. (2005). An Overview of Shallow XML-Based Natural Language
Generation. In Proceedings of the Second Baltic Conference on Human
Language Technologies, pp 67-78.

8. M. Theune, E. Klabbers, J. Odijk, J.R. de Pijper, and E. Krahmer. (2001). From
Data to Speech: A General Approach. Natural Lang. Eng. 7(1): 47–86.

9. G. Wilcock. (2003). Talking OWLs: Towards an Ontology Verbalizer. In
Proceedings of the Workshop on Human Language Technology for the
Semantic Web, 2nd International Semantic Web Conference, pages 109–
112, Sanibel Island, fl.

10. Prothom Alo (2010, September 2). Retrieved from http://www.prothom-
alo.com/detail/ref/nf/date/2010-09-02/news/91262

11. S. Busemann and H. Horacek. (1998). A Flexible Shallow Approach to Text
Generation. In Proceedings of the International Natural Language
Generation Workshop. Niagara-on-the-Lake, Canada.

 108

12. E. Reiter, S. Sripada, and R. Robertson. (2003). Acquiring Correct
Knowledge for Natural Language Generation. Journal of Artificial
Intelligence Research, 18: 491-516.

13. M. Cristiá, B. and Plüss. (2010). Generating Natural Language Descriptions
of Z Test Cases. In Proceedings of the 6th International Natural Language
Generation Conference, Dublin, Ireland.

14. E. Reiter, C. Mellish and J. Levine. (1995). Automatic Generation of
Technical Documentation. Applied Articial Intelligence 9: 259-287.

15. G. Wilcock. (2003). Integrating Natural Language Generation with XML Web
Technology. In Proceedings of the Demo Sessions of EACL-2003, pages
247–250, Budapest.

16. G. Wilcock. (2001). Pipelines, Templates and Transformations: XML for
Natural Language Generation. In Proceedings of the 1st NLP and XML
Workshop, Tokyo. 1–8.

17. G. Wilcock. (2002). XML-Based Natural Language Generation. In Towards
the Semantic Web and Web Services: XML Finland 2002 – Slide
Presentations, Helsinki. 40–63.

18. OWL Web Ontology Language Overview. (2011, June 6). Retrieved from
http://www.w3.org/TR/owl-features/

19. D. Galanis and I. Androutsopoulos. (2007). Generating Multilingual
Personalized Descriptions from OWL Ontologies on the Semantic Web:
the NaturalOWL System.

20. M. White and T. Caldwell. (1998). EXEMPLARS: A Practical Extensible
Framework for Dynamic Text Generation. In Proceedings of the Ninth
International Workshop on Natural Language Generation (INLG-1998),
Niagara-on-the-Lake, ON, pp. 266–275.

21. H. Stenzhorn. (2002). A Natural Language Generation System using XML
and Java Technologies. In Proceedings of the 2nd Workshop on NLP and
XML, Taipei, Taiwan.

22. S. W. McRoy, S. Channarukul and S. Ali. (2003). An Augmented Template-
Based Approach to Text Realization. Natural Language Engineering,
9(4):381–420.

23. K. Bontcheva and Y. Wilks. (2004). Automatic Report Generation from
Ontologies: The MIAKT Approach. In Proceedings of the 9th International
Conference on Applications of Natural Language to Information Systems
(NLDB’2004), Manchester, UK.

24. O. Lassila and R. Swick. (1999). Resource Description Framework (RDF)
Model and Syntax Specification. Technical Report 19990222, W3C
Consortium, http://www.w3.org/TR/REC-rdf-syntax/

 109

25. X. Sun and C. Mellish. (2006). Domain Independent Sentence Generation
from RDF Representations for the Semantic Web. In Combined Workshop
on Language Enabled Educational Technology and Development and
Evaluation of Robust Spoken Dialogue Systems, European Conference on
AI, Riva del Garda, Italy.

26. B. Lavoie and O. Rambow. (1997). A Fast and Portable Realizer for Text
Generation Systems. In Proceedings of the Fifth Conference on Applied
Natural Language Processing (ANLP 97), pp. 265-268, Washington, D.C.

27. D. Hewlett, A. Kalyanpur, V. Kolovski, and C. Halaschek-Wiener. (2005).
Effective NL Paraphrasing of Ontologies on the Semantic Web. In
Proceedings of the Workshop on End-User Semantic Web Interaction, 4th
International Semantic Web Conference, Galway, Ireland.

28. K. Bontcheva. (2005). Generating Tailored Textual Summaries from
Ontologies. In 2nd European Semantic Web Conference, ESWC 2005,
volume 3532 of LNCS, pages 241–256, Heraklion, Crete, Greece,
Springer.

29. S. Demir, S. Carberry, and K. F. McCoy. (2008). Generating Textual
Summaries of Bar Charts. In Proceedings of The International Natural
Language Generation Conference (INLG).

30. M. Elhadad and J. Robin. (1996). An Overview of SURGE: A Re-Usable
Comprehensive Syntactic Realization Component. In Proceedings of The
International Natural Language Generation Conference (INLG).

31. S. Sripada, E. Reiter, J. Hunter and J. Yu. (2001). A Two-Stage Model for
Content Determination. In Proceedings of ENLG-2001, 2001, pp. 3–10.

32. S. Sripada, E. Reiter and I. Davy. (2003). SumTime-Mousam: Configurable
Marine Weather Forecast Generator, Expert Update 6 (3), pp. 4–10.

33. J. Yu, E. Reiter, J. Hunter and S. Sripada. (2003). SumTime-Turbine: A
Knowledge-Based System to Communicate Gas Turbine Time-Series
Data, In Proceedings of the 16th international conference on
Developments in applied artificial intelligence, p.379-384, June 23-26,
2003, Laughborough, UK.

34. A. Belz. (2007). Probabilistic Generation of Weather Forecast Texts. In
Proceedings of NAACL-HLT.

35. S. Sripada, E. Reiter, J. Hunter and J. Yu. (2003). Generating English
Summaries of Time Series Data using the Gricean Maxims. In
Proceedings of KDD-2003, pp 187 –196.

36. H. P. Grice. (1975). Logic and Conversation. Speech Acts 3:41–58.

37. ESPN cricinfo. (2011). Retrieved from http://www.cricinfo.com/

 110

38. Australia v England, 7th ODI, Perth. (February 06, 2011). Retrieved from
http://www.espncricinfo.com/the-ashes-2010-11/content/story/499682.html

39. JSON. (2011, June 6). Retrieved from http://json.org/

40. South Africa v India, 5th ODI, Centurion. (January 23, 2011). Retrieved from
http://www.espncricinfo.com/south-africa-v-india-
2010/content/story/497947.html

41. SQLite. (2011, June 1). Retrieved from http://www.sqlite.org/index.html

42. R. Barzilay and M. Lapata. (2005). Collective Content Selection for Concept-
to-Text Generation. In Proceedings of the Human Language Technology
Conference and the Conference on Empirical Methods in Natural
Language Processing, 331–338, Vancouver.

43. Java (programming language). (2011, June 6). Retrieved from
http://www.oracle.com/technetwork/java

44. Google Gson. (2011, June 1). Retrieved from
http://code.google.com/p/google-gson/

45. Australia v England, 1st ODI, Melbourne. (January 16, 2011). Retrieved from
http://www.espncricinfo.com/the-ashes-2010-11/content/story/496936.html

46. South Africa v India, 4th ODI, Port Elizabeth. (January 21, 2011). Retrieved
from http://www.espncricinfo.com/south-africa-v-india-
2010/content/story/497680.html

47. Australia v England, 5th ODI, Brisbane. (January 30, 2011). Retrieved from
http://www.espncricinfo.com/the-ashes-2010-11/content/story/498740.html

48. South Africa v India, 2nd ODI, Johannesburg. (January 15, 2011). Retrieved
from http://www.espncricinfo.com/south-africa-v-india-
2010/content/story/496853.html

49. K. Papineni, S. Roukos, T. Ward and W.-J. Zhu. (2001). BLEU: A Method for
Automatic Evaluation of Machine Translation. Technical Report
RC22176(W0109-022), IBM Research Report.

50. C. Y. Lin. (2004). ROUGE: A Package for Automatic Evaluation of
Summaries. In Proceedings of the Workshop on Text Summarization
Branches Out. Post-Conference Workshop of ACL 2004, Barcelona,
Spain.

51. Australia v England, 4th ODI, Adelaide. (January 26, 2011). Retrieved from
http://www.espncricinfo.com/the-ashes-2010-11/content/story/498309.html

52. P. Koehn. (2010). Statistical Machine Translation. Cambridge University
Press, Cambridge, UK.

 111

53. Australia v England, 2nd ODI, Hobart. (January 21, 2011). Retrieved from
http://www.espncricinfo.com/the-ashes-2010-11/content/story/497617.html

54. Australia v England, 3rd ODI, Sydney. (January 23, 2011). Retrieved from
http://www.espncricinfo.com/the-ashes-2010-11/content/story/497909.html

55. Australia v England, 6th ODI, Sydney. (February 02, 2011). Retrieved from
http://www.espncricinfo.com/the-ashes-2010-11/content/story/499132.html

56. South Africa v India, 1st ODI, Durban. (January 12, 2011). Retrieved from
http://www.espncricinfo.com/south-africa-v-india-
2010/content/story/496451.html

57. South Africa v India, 3rd ODI, Cape Town. (January 18, 2011). Retrieved
from http://www.espncricinfo.com/south-africa-v-india-
2010/content/story/497291.html

58. South Africa v India, 5th ODI, Centurion. (January 23, 2011). Retrieved from
http://www.prothom-alo.com/detail/date/2011-01-24/news/125953

