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ABSTRACT 

Cognitive radio is an interesting concept for solving the problem of 

spectrum availability by allowing non-licensed users to exploit underutilized 

licensed frequency bands. We note that a combination of the cognitive radio with 

cooperative communication and/or MIMO technology can possibly enhance the 

system performance significantly. In this research, a number of resource 

allocation problems are examined for cognitive radio systems (CRS) that have 

relaying and/or MIMO capabilities, and computationally efficient resource 

allocation schemes are proposed. The general objective is to devise resource 

allocation schemes in the cognitive radio that maximize the resource utilization 

under the constraint of acceptable interference to the primary (licensed) users. In 

particular, in this thesis we present efficient schemes for jointly deciding the 

assignment of multiple relays to users and their power levels. Fairness is also 

considered in assigning multiple relays to multiple secondary users.  We also 

propose low-complexity distributed schemes for joint subcarrier and relay 

assignment in cooperative multi-carrier multi-cast CRS. Another class of 

resource allocation problems addressed this thesis regards selecting and 

scheduling users in multiuser systems. In multiuser cognitive MIMO systems, 

user selection and scheduling significantly affects the system performance.  This 

thesis addresses joint user scheduling and power allocation in the CRS equipped 

with multiple antennas.  Optimization of such user scheduling and power 

allocation has combinatorial aspects, and the exhaustive search for an exactly 

optimal solution is impractical due to its computational complexity.  This thesis 

presents low-complexity suboptimal algorithms to maximize the sum-rate 

capacity of the uplink communication in cognitive MIMO systems under the 

constraint that the interference to the primary users is below a specified level.  

Keywords: Relay assignment, Cognitive radio, Cooperative communication, 

MIMO, User selection, Subcarrier allocation 
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CHAPTER 1: INTRODUCTION 

1.1 Research Motivation 

The increasing service demand poses new challenges in future wireless 

communication. One of the most prominent challenges in meeting the demand is 

the scarcity of radio resources. In the past decade, a number of techniques have 

been proposed in the literature for efficiently utilizing the radio resources (e.g. 

cognitive radio [1] [2] [3], multiple-input multiple-output (MIMO) communication,  

cooperative communication systems (CCS) etc). Cognitive radio is an emerging 

technology intended to enhance the utilization of the radio frequency spectrum. 

Multi-input multi-output (MIMO) system and cooperative communication systems 

(CCS), with the same total power and bandwidth of legacy wireless 

communication systems, can increase the data rate of the future wireless 

communication systems.  

A combination of cognitive radio with CCS and MIMO can further improve 

the future wireless systems performance. However, the combination of these 

techniques raises new issues in the wireless systems that need to be addressed. 

One of the important issues is the complexity of resource allocation schemes in 

the combined system.  This thesis focuses on designing computationally efficient 

algorithms for resource allocation in multiuser cognitive radio system (CRS) with 

relaying and/or MIMO capabilities. In particular, in this thesis, a number of low-

complexity algorithms are proposed for power allocation, subcarrier assignment, 

relay assignment and user scheduling in multiuser CRS with relaying and MIMO 

capability.  
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1.2 Background 

In this section, we provide a brief overview of the cognitive radio system, 

cooperative communication, and green communication.  

1.2.1 Cognitive Radio System  

Formally, a cognitive radio is defined as [4]  

“A radio that changes its transmitter parameters based on the interaction 

with its environment” 

The cognitive radio has been mainly proposed to improve the spectrum 

utilization by allowing unlicensed (secondary) users to use underutilized licensed 

frequency bands [1] [2] [3]. In reality, unlicensed wireless devices (e.g., automatic 

garage doors, microwaves, cordless phones, TV remote controls etc.) are 

already in the market [5] [6].  The IEEE 802.22 standard for Wireless Regional 

Area Network (WRAN) addresses the cognitive radio technology to access white 

spaces in the licensed TV band. In North America, the frequency range for the 

IEEE 802.22 standard will be 54–862 MHz, while the 41–910MHz band will be 

used in the international standard [2]. Table 1.1 shows the IEEE 802.22 system 

parameters, e.g., frequency range, bandwidth, modulation types, maximum 

transmit power ratings, multiple access schemes, etc. [7].  

In the context of cognitive radio, the Federal Communications Commission 

(FCC) recommended two schemes to prevent interference to the television 

operations due to the secondary (unlicensed) users. These are listen-before-talk 

and geo-location/database schemes [5] [6]. In the listen-before-talk scheme, the 

secondary/unlicensed device senses the presence of TV signals in order to 

select the TV channels that are not in use.  In geo-location/database scheme, the 

licensed/unlicensed users have a location-sensing device (e.g., GPS receiver 

etc.) The locations of primary and secondary users are stored in a central 

database. The central controller (also known as spectrum manager) of the 

secondary/unlicensed users has the access to the location database.   
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Table  1.1 IEEE 802.22 system parameters.  

Parameters Specification Remarks 

Frequency range 54-862 MHz TV band 

Bandwidth 6 MHz, 7 MHz, 8 MHz  

Modulation QPSK, 16-QAM, 64-QAM  

Transmit power 4W For USA, may vary in 
other regulatory domains 

Multiple access OFDMA  

 

The main functions of cognitive radio to support intelligent and efficient 

utilization of frequency spectrum are as follows:  

1.2.1.1 Spectrum sensing 

Spectrum sensing determines the status of the spectrum and activity of 

the primary users [2] [8]. An intelligent cognitive radio transceiver senses the 

spectrum hole without interfering with the primary users. Spectrum holes are the 

frequency bands currently not used by the primary users. Spectrum sensing is 

implemented either in a centralized or distributed manner. The centralized 

spectrum sensing can reduce the complexity of the secondary user terminals, 

since the centralized controller performs the sensing function. In distributed 

spectrum sensing, each mobile device (secondary user terminal) senses the 

spectrum independently. Both centralized and distributed decision-making is 

possible in distributed spectrum sensing [2]. The central controller (spectrum 

manager), based on the spectrum sensing information, allocates the resources 

for efficient utilization of the available spectrum. One major role of the central 

controller is to prevent overlapped spectrum sharing between the secondary 

users [2] [3] [4]. 
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1.2.1.2 Dynamic Spectrum Access  

Dynamic spectrum access (DSA) is defined as real-time spectrum 

management in response to the time varying radio environment − e.g., change of 

location, addition or removal of some primary users, available channels, 

interference constraints etc [2] [3]. There are three DSA models in the literature, 

namely, exclusive-use model, common-use model and shared-use model [3]. 

Fig. 1.1 shows a hierarchal overview of DSA.  

 

Fig. 1.1 Dynamic spectrum access strategies. 

 

The exclusive-use model has two approaches, spectrum property rights 

and dynamic spectrum allocation. In spectrum property rights, owner of the 

spectrum can sell and trade spectrum; and is free to choose the technology of 

interest. Dynamic spectrum allocation improves spectrum efficiency by exploiting 

the spatial and temporal traffic statistics of different services [3]. The European 

Union funded DRiVE (Dynamic Radio for IP Services in Vehicular Environments) 

project is a classical example of dynamic spectrum allocation [9]. It uses cellular 

(e.g., GSM, GPRS, and UMTS) and broadcast technologies (e.g., Digital Video 

Broadcast Terrestrial, Digital Audio Broadcast) to enable spectrum efficient 

vehicular multimedia services. 
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Fig. 1.2 Overlay spectrum access. 
 

 

Fig. 1.3 Underlay spectrum access. 

 
Fig. 1.4 Joint overlay and underlay spectrum access. 
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The common-use model is an open sharing regime in which spectrum is 

accessible to all users. The ISM (industrial, scientific and medical) band and Wi-

Fi are examples of the commons-use model. Spectrum underlay and overlay 

approaches are used in the shared-use model [2] [3]. Spectrum overlay or 

opportunistic spectrum access is shown in Fig. 1.2. In spectrum overlay, the 

secondary users first sense the spectrum and find the location of a spectrum hole 

(vacant frequency band). After locating the vacant frequency bands, the 

secondary users transmit in these frequency bands. In spectrum underlay 

technique, the secondary users can transmit on the frequency bands used by the 

primary users as long as they do not cause unacceptable interference for the 

primary users. This approach does not require secondary users to perform 

spectrum sensing, however the interference caused by the secondary user’s 

transmission must not exceed the interference threshold. Fig. 1.3 shows the 

spectrum underlay model.  

In [10], a joint spectrum overlay and underlay method is proposed for 

better spectrum utilization. An illustration of joint spectrum overlay and underlay 

is shown in Fig. 1.4. In joint spectrum overlay and underlay approach, the 

secondary users with the help of spectrum sensing first try to find a spectrum 

hole. If there is a spectrum hole then the secondary users can use the spectrum 

overlay technique. If there is no spectrum hole then the secondary users will use 

spectrum underlay technique.  

1.2.2 Cooperative Communication  

Recent research in wireless communication systems shows that relaying 

techniques can offer significant benefits in the throughput enhancement, and 

range extension [12]. A number of relaying schemes −e.g., amplify-and-forward 

(AF) decode and forward (DF), incremental relaying etc. −for improving the 

performance of the wireless networks are in the literature e.g., [12] [13]. In a 

simple AF relaying scheme, a relay amplifies the received signal and forwards it 

to the destination. In decode and forward relaying scheme, a relay first decodes 
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the received signal and then transmits the re-encoded signal to the destination. 

Table 1.2 shows a simple cooperative communication protocol. In this protocol, 

conveyance of each symbol from the source to the destination takes place in two 

phases (two time slots). In the first phase, the source transmits its data symbol, 

and the destination and the relay(s) receive the signal carrying the symbol. In the 

second phase, the relay(s) forwards the data to the destination.   

 

Table  1.2 Cooperative communication protocol. 

Time T1 Time T2 

S  D, S  R   

 R  D 

 
The performance of a cooperative communication system can be 

improved by using multiple relays, rather than a single relay, which convey the 

same information to the destination. The multiple relays selection/assignment 

gives more freedom to select good paths between source to relay(s) and relay(s) 

to destination(s). Fig. 1.5 shows the multiuser cooperative communication 

system with multiple relays. The use of multiple relays in a network comprising 

single source and multiple destinations brings the issue of how to best assign the 

relays to the destinations. Optimization of such relay assignment and power 

control has combinatorial aspects, and the exhaustive search for an exactly 

optimal solution is impractical due to its computational complexity. There are a 

number of low-complexity relay selection/assignment schemes in the literature 

[32] – [45].  However, these relay assignment schemes are not applicable to 

CRS because optimal relay assignment and power allocation obtained from 

these schemes may generate more interference to the primary users than 

allowed. 
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 Fig. 1.5 Multiuser cooperative communication system. 

 

1.2.3 Green Communication 

Recent advances in the field of information and communication 

technologies (ICTs) have significant impact on the environment. The enormous 

growth of the telecommunication sector (especially the wireless sector) plays a 

significant role in global warming. Research in green technology will enable the 

communication system designer to develop and design the systems that will help 

the environment by reducing carbon dioxide (CO2) emissions.  

According to the International Telecommunication Union (ITU) report [19], 

primary sources of CO2 emissions are electricity generation, transport vehicles, 

buildings and agricultural by-products etc. By the year 2030, World Energy 

Outlook (WEO) has forecasted that the demand of electricity will be twice as high 

as compared to the current demand, driven by the rapid growth in population and 

by the continuous increase in the residential and commercial electrical devices 

[20]. The ICTs sector is responsible for approximately five percent of global 

electricity demand and CO2 emission [21] [22]. The CO2 emission from the ICTs 

sector is equivalent to the airline industry [19] [22].  

The electricity demand of ICTs sector is divided into four major categories 

as shown in Fig. 1.6. These are (1) servers (23%), (2) PCs data monitors (40%), 
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(3) telecommunications (31%), and miscellaneous (6%).  From Fig. 1.6, we can 

see that the landline and mobile telecommunications contribute to approximately 

77% of the total telecommunication CO2 emissions. As the ICTs industry is 

growing faster than the rest of the economy, this share will likely increase over 

time. The number of the mobile subscribers is nearly equal to half of the global 

population [23]. There is a need in the design of future wireless communication 

systems to reduce the transmission power of mobile devices to bring down the 

CO2 emissions. In the context of green communication, intelligent resource 

allocation schemes for CRS with relaying capability can help in reducing the CO2 

emissions.  

 

 

Fig. 1.6 Estimated distribution of global CO2 emissions from ICTs. 
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1.3 Thesis Overview 

The main objective of this thesis is to provide low-complexly algorithms for 

resource allocation in cognitive radio and green communication systems. In the 

context of resource allocation, this thesis basically discusses three problems: 1) 

relay assignment, 2) subcarrier assignment, and 3) user scheduling.  In all three 

problems, we examine the effect of different system parameters (e.g., 

interference threshold level, the number of primary users, the number of 

secondary users, relay power levels, etc.) on the performance of the proposed 

algorithms.     

1.3.1 Relay assignment 

The use of multiple relays can increase the performance of a cooperative 

communication system. A well designed multiple relay assignment and power 

allocation scheme can be helpful in reducing the interference induced to the 

primary users in multiuser CRS.  In this work, we propose a framework and low-

complexity algorithm for interference aware joint power allocation and multiple 

relays assignment (IAJPARA) in multiuser CRS. In the proposed multiuser CRS 

framework, a secondary user can receive data through multiple relays. The 

proposed IAJPARA, when mathematically formulated, is basically a non-convex 

mixed integer non-linear optimization problem (NC-MINLP). The main objective 

of IAJPARA in our mathematical formulation is to maximize the sum-capacity by 

finding an optimal assignment of multiple relays to the secondary users in 

multiuser CRS under the constraint of acceptable interference to the primary 

users. The computational complexity of an obvious algorithm (exhaustive search-

based), for the IAJPARA, grows exponentially with the number of relays and 

secondary users.  We present a computationally efficient, suboptimal relay 

assignment and power allocation scheme for IAJPARA. For comparison, we 

provide an upper bound on the sum-rate capacity of IAJPARA. We examine the 

effect interference threshold, number of primary users, relay power levels on the 
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performance of the proposed scheme. We also show that with little modification 

of our proposed algorithm, we can include fairness in the system.  

The use of relays in a CRS can also reduce the overall transmission power 

of the systems that can be helpful in reducing global warming by minimizing the 

CO2 emissions.  In this research, we present a multi-objective architecture for 

resource allocation in green cooperative cognitive radio network (GCCRN).  The 

proposed multi-objective framework jointly assigns the relays to the users and 

allocates power to each relay in GCCRN while optimizing two conflicting 

objectives. The first objective is to maximize the sum-rate capacity and the 

second objective is to minimize the total CO2 emissions. We apply an Estimation-

of-distribution Algorithm (EDA) to the multi-objective optimization for resource 

allocation in GCCRN. 

1.3.2 Subcarrier assignment 

Orthogonal frequency division multiple access (OFDMA) is an emerging 

technique in multiuser multiple-access system. Multiple-access is achieved in 

OFDMA by allocating different subcarriers to the individual users. In this 

research, we propose a framework for joint power, subcarrier allocation and relay 

assignment (JPSARA) in multiuser multicast cognitive radio system (MMCRS). 

The main objective of the proposed resource allocation is to maximize the total 

system throughput of secondary users in MMCRS under the constraint of an 

acceptable interference level to the primary users. In this research, for JPSARA, 

we propose a low-complexity iterative algorithm based on primal dual 

decomposition. We also present a max-min fairness aware scheme for resource 

allocation in MMCRS. 

1.3.3 User scheduling  

Generally, in multiuser wireless systems, due to resource limitations, user 

scheduling is an intelligent way to achieve high throughput. User scheduling 

schemes select the best group of users at each time slot to maximize the sum-
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rate capacity of the multiuser MIMO system. The complexity of an exhaustive 

search for user scheduling increases exponentially with the number of users. For 

example, if K is the total number of users, then the number of possible ways of 

scheduling/selecting k users is
K
k

⎛ ⎞
⎜ ⎟
⎝ ⎠

. Enumerating all possible combinations to 

find the one that gives the best performance is computationally inefficient. Due to 

the high computational complexity of the optimal selection (e.g., Exhaustive 

search algorithm), a number of suboptimal solutions were proposed in the 

literature.  These traditional user scheduling schemes in the multiuser MIMO 

systems are not applicable in the CRS because the selected subset of users, 

which maximize the sum-rate capacity in the traditional multiuser MIMO systems, 

may generate more interference to the primary users than desirable. In this 

thesis, we present low-complexity algorithms for joint user scheduling and power 

control in multiuser MIMO CRS to maximize the sum-rate capacity, under the 

constraint that the interference to the primary users is below specified levels. 

1.4 Literature Review 

This section contains a literature review for resource allocation strategies 

in wireless communication system. 

1.4.1  Relay assignment and power allocation 

Table 1.3 summarizes the literature review for the relay assignment 

strategies (RAS) in the wireless communication systems. The first column in 

Table 1.3 lists the objective functions as defined in the literature. The succeeding 

columns show the number of relays attached to any destination/user, cognitive 

radio capability, protocol type (e.g. centralized, distributed or decentralized) and 

power allocation capability respectively. There are three major classes of 

resource allocation in cooperative communications. The classes are, centralized 

resource allocation [32-35] [39] [42-43], distributed resource allocation [36] [45], 

and decentralized resource allocation [37] [38] [44]. 
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In [32], joint bandwidth and power allocation strategies for a Gaussian 

relay network are investigated. Orthogonal and shared-band AF and DF 

schemes are analyzed for joint bandwidth and power allocation. The main 

objective of joint bandwidth and power allocation is to maximize the signal-to-

noise ratio at the receiver using AF and DF schemes. The study in [33] proposes 

a centralized framework that selects multiple relays for transmission in a two-hop 

network. The aim of the multiple relay selection is to maximize the SNR at the 

destination using binary power allocation at the relays. An optimal relay 

assignment and power allocation in a cooperative cellular network is discussed in 

[34]. Using the sum-rate maximization as a design metric, the authors proposed 

a convex optimization problem that provides an upper bound on performance. A 

heuristic water-filling algorithm is also suggested to find a near-optimal relay 

assignment and power allocation.  In [35], a linear-marking mechanism is 

investigated for relay assignment in a multi-hop network with multiple source-

destination pairs. The aim of the proposed linear-marking mechanism is to 

maximize the worst user capacity.  

A distributed nearest neighbour relay selection protocol and its outage 

analysis are presented in [36]. For the relay assignment in a multiuser 

communication system, decentralized protocols are discussed in [37] and [41]. 

The decentralized framework in [37] uses decode and forward relaying and 

assigns relays without exercising power control. In [41], decentralized amplify 

and forward protocol is used for joint relay assignment and power control. The 

scheme maximizes a harmonic mean-based approximate expression for the 

instantaneous received signal-to-noise ratio. The relay assignment and selection 

schemes described in [32] − [38] and [41] are not applicable in the CRS because 

the interference caused by the relays to the primary users can exceed the 

prescribed interference limit. 

The relay selection scheme for a cognitive radio network has been 

considered in several recent works [39]−[45].  In [39], a mathematical formulation 

is proposed with the objective of minimizing the required network-wide radio 

spectrum resource for a set of user sessions. The proposed formulation is a 
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mixed-integer non-linear program. The authors proposed a lower bound for the 

objective by relaxing the integer variables and using a linearization technique. A 

near-optimal algorithm is presented that is based on a sequential fixing 

procedure, where the integer variables are determined iteratively via a sequence 

of linear programs. In [42], relay selection in multi-hop CRS with the objective of 

minimizing the outage probability is proposed. The power allocation problem is 

solved using standard convex optimization techniques for both AF and DF 

protocols under Rayleigh fading conditions. A joint relay selection, spectrum 

allocation and rate control (JRSR) scheme in CRS is proposed in [43]. A three-

stage sub-optimal algorithm is proposed to address the JRSR problem. A non-

cooperative game based decentralized power allocation for primary and 

secondary users is considered in [44]. The two kinds of links, one of which 

includes the primary users and their relay, the other includes the secondary 

users and their relay, are treated as players of the non-cooperative game. Each 

player competes against the other by choosing the power allocation strategy that 

maximizes its own rate, subject to the QoS threshold of the primary system. A 

relay-assisted iterative algorithm is proposed to efficiently reach the Nash 

equilibrium. In [45], authors proposed both centralized and distributed power 

allocation schemes for multi-hop wideband CRS. The main objective is to 

maximize the output signal-to interference plus noise ratio (SINR) at the 

destination node of the CRS. From the literature review, we separate the relay 

assignment/selection schemes into two categories, 

1.4.1.1 RAS without CR capability  

a) Multiple relays assignment with one source and one destination [32] [33] 

b) Single relay assignment with one source and multiple destinations [34]. 

c) Single relay assignment with multiple source-destination pairs [35].  

d) Multiple relays assignment with one source, one destination and multi-

hops [38]. 
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Table  1.3 Relay Assignment. 

Objective 
Relays 
to one 
SD pair 
per hop 

CR Protocol Type Power 
Control 

Ref. 

[Ref Num, Name] 

Maximize the SNR of 
AF/DF shared bandwidth 
schemes 

Multiple No Centralized Yes [32, I. Maric et. al] 

Select the multiple relays 
to maximize the SNR in 
shared bandwidth AF 
scheme 

Multiple No Centralized 
Binary 
Power 
Control 

[33, Y. Jing et al.] 

Sum-rate maximization Single No Centralized Yes [34, Kadloor et al.] 

Maximize the minimum 
capacity Single No Centralized No [35, Y. Shi et al.] 

Protocols and outage 
analysis Single No Distributed No [36, Sadek et al.] 

Average sum-capacity Single No Decentralize No [37, P. Zhang et al.] 

Maximize the 
instantaneous received 
SNR 

Single No Decentralize Yes [38, G. Farhadi et al.] 

Minimize the total 
bandwidth Single Yes Centralized No [39, T. Hou et al.] 

Closed-form expressions 
of detection probability Single Yes ---- No [40, J. Zhu et al.] 

Cooperation between 
primary user and 
secondary 
user.(secondary user act 
as relay for primary user) 

Single Yes ---- Yes [41, R. Manna et al.] 

Minimize outage 
probability Single Yes Centralized Yes [42, Jayasinghe et al.] 

Maximize Average 
throughput Single Yes Centralized Yes [43, H. Chun et al.] 

Maximize the rate utility 
function Single Yes Decentralize Yes [44, Xiaoyu et al.] 

Maximize SNR of RD link Single Yes Distributed Yes [45, Mietzner et al.] 
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1.4.1.2 RAS with CR capability  

a) Multiple relay assignment with one source, one destination and multi-hops 

[39].  

b) Single relay assignment with multiple source-destination pairs [44]. 

c) Single relay assignment with one source and multiple destinations [43]. 

From the literature review of relay selection/assignment strategies as 

summarized in Table 1.3, we can observe that the relay selection/assignment in 

the wireless network is an active area of research.  However, there is still a need 

of low-complexity algorithms and protocols that can efficiently perform multiple 

relay assignment in a multiuser CRS.  

1.4.2 Subcarrier assignment and power allocation  

Table 1.4 summarizes the literature review of the subcarrier assignment 

(SA) and power allocation techniques in the multicarrier communication systems. 

In [49], a centralized subcarrier assignment scheme is proposed in a multi-cell 

CRS. The main objective is to maximize the weighted sum-rate of secondary 

users over multiple cells. An iterative water-filling algorithm is suggested to 

control the inter-cell interference. The study in [50] proposes a distributed 

subcarrier assignment algorithm to maximize the rate of each user and its 

perturbation analysis in the ad-hoc cognitive radio network. In particular, in [50], 

an upper bound on perturbation of each user’s allocated power, rate, and 

interference caused to the primary users is investigated. In [51], a risk-return 

model based subcarrier assignment is studied to maximize the sum-rate of 

secondary users. A linear rate-loss function is introduced in the optimization. In a 

cognitive radio environment, loss of useful power can be represented as a rate 

loss whenever a primary user reoccupies the channel or when there is an error in 

correctly sensing the channel. Two sub-optimal subcarrier assignment schemes, 

step ladder and nulling, are studied to reduce the computational complexity of 

subcarrier assignment. In the step ladder scheme, low power is assigned to 
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subcarriers that are closer to the primary users bands. In the nulling method, 

zero power is allocated to subcarriers adjacent to a primary users’ band (one 

nulling) or zero power to two subcarriers closest to the primary user's band on 

each side (two nulling). In [52], authors proposed the nulling method to maximize 

the downlink transmission capacity of the secondary users in an OFDM based 

CRS.  

In [53], the authors proposed optimal power control policies for secondary 

users to minimize the outage probability for a given outage capacity under the 

primary user's outage constraint, along with the average and peak transmit 

power constraint of secondary users.  A fairness aware joint rate and power 

allocation scheme with a QoS constraint for CRS is studied in [55]. The authors 

derived outage probabilities for secondary users and interference-constraint 

violation probabilities for primary users. Based on the analysis, the authors 

developed a framework to perform joint admission control and rate/power 

allocation.  

A non-cooperative game based subcarrier assignment is proposed in [56]. 

The authors model the competitive behaviour of the secondary users as a non-

cooperative game and address the existence and uniqueness of Nash 

equilibrium. Based on the unique equilibrium, a non-convex pricing framework for 

the primary service provider is discussed. A sub-optimal pricing scheme in terms 

of revenue maximization of the primary service provider is presented. References 

[57], [58] and [59] provide centralized and distributed algorithms for the 

subcarrier assignment in multi-cast CRS.  

In [59], authors introduce a general rate-loss function, which gives a 

reduction in the attainable throughput whenever primary users reoccupy the 

temporarily accessible sub-channels. The main objective is to maximize the 

expected sum-rate of secondary users in multicast groups. A dual decomposition 

based iterative algorithm is presented for joint subcarrier and power-allocation. In 

[60], a decentralized fairness aware subcarrier assignment framework is 

proposed for relay-assisted downlink cellular CRS.  
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Table  1.4 Subcarrier Assignment With power allocation.  

Objective Relays CR  Protocol Type Power 
Control 

Ref. 

[Ref Num, Name] 

Sum-rate maximization No Yes Centralized Yes [49, Y.Ma et. al] 

Maximize the rate of each 
user and user perturbation 
analysis 

No Yes Distributed Yes [50,H. Keshavar et. al] 

Sum-rate maximization 
with loss function No Yes Centralized Yes [51, Z.Hasan et. al] 

Sum-rate maximization No Yes Centralized Yes [52, G. Bansal et. al] 

Minimize the outage 
probability No Yes Centralized Yes [53, X. Kang et. al] 

Sum-rate maximization 
with rate loss constraint No Yes Distributed Yes [54, X. Kang et. al] 

Sum-rate maximization No Yes Centralized Yes [55, D. I.Kim et. al] 

Maximize the total revenue No Yes Decentralize Yes [56, Z. Li et. al] 

Minimize the expected 
energy (for Multicast ) No Yes Centralized Yes [57, W. Ren et. al] 

Sum-rate Maximization of 
Multicast groups No Yes Centralized Yes [58, D. Ngo et. al] 

Sum-rate Maximization of 
Multicast groups with rate 
loss function 

No Yes Distributed Yes [59, D. Ngo et. al] 

Average weighted goodput 
(utility maximization) Yes Yes Distributed Yes [60, R.Wang et. al] 

Maximize the worst user 
capacity Yes Yes Centralized Yes [61, J. Guo et. al] 

BER analysis Yes No Centralized Yes [62, M. Adnan et. al] 

1-Maximize the minimum 
rate 

2- Maximize the rate with 
proportional fairness 

No Yes Centralized Yes [63, L. B. Le et. al] 

Sum-rate maximization No Yes Centralized Yes [64, K. Hamdi et. al] 

Maximize the Ergodic 
capacity No Yes Centralized Yes [65, R. Zhang et. al] 

Maximize total 
transmission rate No Yes Centralized Yes [66, A. T. Hoan et. al] 
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Objective Relays CR  Protocol Type Power 
Control 

Ref. 

[Ref Num, Name] 

Sum-rate maximization Yes No Centralized No [67, H. Rasouli et. al] 

BER analysis Yes No Centralized Yes [68, S. Senthuran et. 
al] 

Weighted sum-rate 
maximization No Yes Centralized Yes [69, L. zhang et. al] 

Maximize average system 
utility No Yes Distributed Yes [70, R. Zhang et. al] 

Maximize system goodput Yes No Distributed Yes [71, Y. Cui et. al] 

Minimize energy per bit No Yes Distributed Yes [72, S. Gao et. al] 

Survey of resource 
allocation in OFDM  

   [73, S. Sdr et. al] 

 

In [61], max-min capacity based centralized relay assignment scheme is 

proposed for multi-hop cognitive radio network. In [63]-[66] and [69], a number of 

centralized sub-optimal sub-carrier assignment algorithms are proposed for sum-

rate maximization in CRS. A time division protocol based downlink subcarrier 

allocation in a cooperative multiuser OFDM system is proposed in [67].  In [68], 

joint Subcarrier and power allocation schemes are proposed and analyzed for a 

two-hop orthogonal frequency and code division multiplexing (OFCDM). 

Distributed subcarrier assignment is investigated in [70]-[72]. Reference [73] 

provides a survey of the downlink subcarrier assignment and power allocation in 

multiuser wireless system. 

1.4.3 User scheduling  

Table 1.5 summarizes the literature review of user scheduling in multiple-

access MIMO systems. The main motivation of user scheduling is to improve the 

system performance in terms of either sum-rate capacity or bit error rate. Due to 

the high computational complexity of the optimal selection (e.g., ESA), a number 

of suboptimal solutions were proposed in the literature [74] − [90]. In [74], [76] 
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and [77], authors propose centralized iterative schemes for user scheduling 

without power control for the multiuser MIMO system.   The main objective of 

these schemes was to maximize the sum-rate capacity. In [74], authors proposed 

a centralized user selection framework for the uplink multiuser MIMO system. A 

centralized downlink multiuser scheduling with power allocation for multiuser 

MIMO systems is presented in [75] − [80] and [84].  In [82] [83] [88] and [90], 

authors propose a centralized approach for user scheduling in the cognitive 

MIMO system. A distributed user-scheduling scheme in a cognitive SISO system 

is proposed in [81]. In [85] and [87], the authors presented decentralized user 

scheduling schemes for SISO and MIMO cognitive radio systems respectively. 

From the literature review of user scheduling in Table 1.5, it can be observed that 

little work has been done on the uplink user scheduling and power allocation in 

multiuser MIMO CRS.  There is a need to develop low-complexity algorithms for 

user scheduling in uplink multiuser MIMO CRS. 
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Table  1.5 User scheduling in Multi Access MIMO System.  

Objective 
Uplink 

/Downlink 

MIMO/
SISO/M
ISO 

CR Protocol 
Type 

Power 
Control Ref. 

Maximize sum-rate  Uplink MIMO No Centralized No [74, Y. Zhang et. al] 

Maximize sum-rate  Downlink MIMO No Centralized Yes [75, Z. Shen et. al] 

Maximize sum-rate  Downlink MIMO No Centralized No [76, R.  Elliott et. al] 

Maximize sum-rate  Downlink MIMO No Centralized No [77, X . Zhang et. 
al] 

Maximize sum-rate  Downlink MIMO No Centralized Yes [78, Z. Min et. al] 

Jointly maximize 
each user’s SNR Downlink MIMO No Centralized Yes [79, X. Zhang et. al] 

Maximize sum-rate  Downlink MIMO No Centralized Yes [80, B.C. Lim et. al] 

Maximize the time 
average rate 

 SISO Yes Distributed No [81,Urgaonka et. al] 

Maximize sum-rate Downlink MIMO Yes Centralized Yes [82, W. Zong et. al] 

Maximize Fairness 
aware sum-rate Downlink MIMO Yes Centralized Yes [83, Q. Meng et. al] 

Maximize sum-rate  Downlink MIMO No Centralized Yes [84, A. Bayesteh et. 
Al] 

Maximize sum-rate 
utility  SISO Yes Decentralized Yes [85, A. Khisti et. al] 

Maximize sum-rate   MISO Yes Decentralized Yes [86,  Jorswiek et. al] 

Maximize sum-rate  
Uplink 

/Downlink 
SISO Yes Centralized/ 

Decentralized Binary [87, B. Zayen et. al] 

Maximize sum-rate Downlink MIMO Yes Centralized Yes [88, J. Wang et. al] 

Maximize sum-rate  Uplink SISO Yes Centralized Yes [89, K. Hamdi et. al] 

Max. sum-rate Downlink MIMO Yes Centralized Yes [90,C. Lv et. al] 

1.5 Summary of Contributions 

This thesis solves resource allocation problems by proposing low-

complexity algorithms for cognitive radio with MIMO and relaying capabilities. All 

the proposed algorithms in this thesis have polynomial-time complexity.  
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First, we present a joint multiple relay assignment with discrete and 

continuous power allocation, which is formulated as a non-convex mixed integer 

non-linear programming problem. The complexity of the proposed easily 

conceivable optimization of the relay assignment shows exponential growth with 

the number of secondary users and number of relays. We propose an iterative 

greedy algorithm that has very low complexity and its performance is near the 

exhaustive search algorithm. This algorithm also shows some fairness in 

assigning relays to the secondary users.  

Second, a multi-objective framework is proposed for green resource 

allocation in CRS. One of the objectives of green resource allocation is to reduce 

CO2 emissions.  We propose a hybrid estimation-of-distribution algorithm for 

green resource allocation in CRS. 

Third, we presented a low-complexity distributed algorithm for joint 

subcarrier, relay assignment and power allocation in multicast CRS. A primal-

dual decomposition approach is used for distributed resource allocation. The 

proposed algorithm has a polynomial-time complexity. We also present a max-

min fairness-based resource allocation framework for joint subcarrier and relay 

assignment in multicast CRS. 

In the last part of this thesis, three different algorithms are proposed for 

joint user scheduling and power control in multiuser MIMO CRS. 

1.6 Organization of Thesis  

Fig. 1.7 shows the hierarchal overview of the thesis.  Chapter 2 describes 

different relay assignment schemes for relay assisted CRS. Green 

communication is presented in Chapter 3. Chapter 4 contains the framework and 

algorithms for subcarrier assignment in cooperative multicast CRS. User 

scheduling is presented in Chapter 5.  
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Organization of Thesis

Relay Assignment User Scheduling
Chapter 5

Distributed and Max-Min
Subcarrier Assignment

Chapter 4

Relay Assignment
in CRS

Chapter 2

Relay Assignment for
Green Communication

Chapter 3  

Fig. 1.7 Organization of thesis. 
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PART   1:           RELAY ASSIGNMENT 
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CHAPTER 2: RELAY ASSIGNMENT AND POWER 
ALLOCATION FOR CRS  

The performance of a cooperative communication system can be 

improved by using multiple relays, rather than a single relay, which convey the 

same information to the destination [1] [2]. A larger number of relays in general 

increase the diversity order and the channel capacity. However, in a cognitive 

radio system (CRS), a large number of relays can collectively cause a significant 

level of interference to the primary users. In a multi-user CRS in which the users’ 

signals are separated by frequency division, one can reduce the inference level 

in each frequency band by cleverly grouping relays and assigning each group to 

different frequency bands. In this chapter, we focus on the problem of assigning 

multiple relays to the secondary users in a CRS so that the sum-capacity of CRS 

is maximized under the constraint that the interference to the primary users is 

below a specified threshold. For relay assignment, we consider a CRS that 

employs amplify and forward (AF) relays in shared band mode. In shared band 

AF scheme, all the relays assigned to any destination transmit in a same time 

slot and in the same frequency band [1] [2]. We consider a CRS comprising 

single source node, multiple destination nodes (multiple secondary users), and 

multiple relays.  

In our work, we propose relay assignment schemes with continuous and 

discrete power allocation. Finding an optimal interference-aware multiple relay 

assignment can be computationally extensive because of the combinatorial 

nature of the problem.  Exhaustive Search Algorithm (ESA) evaluates all possible 

relay assignments, which is computationally inefficient.  For relay assignment 

and power allocation, we propose low-complexity algorithms for both continuous 

and discrete power allocation.  
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The main contribution of this work is the formulation of the optimization 

framework for multiple relay assignment in multiuser CRS with power allocation 

(both discrete and continuous power allocation). The proposed multiple relay 

assignment and power allocation is a non-convex mixed1 integer non-linear 

programming (NC-MINLP) problem. In the context of the proposed framework, 

we propose efficient algorithms for multiple relay assignment and power 

allocation.  For comparison, we provide an upper bound on the sum-rate capacity 

in the relay assignment problem. A detailed performance analysis is examined to 

show the effect of different system parameters (e.g., interference threshold level, 

number of primary users, number of secondary users, relay power levels etc.) on 

the performance of the proposed scheme.  

 

,s lh
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Fig. 2.1 Relay Assisted Cognitive Radio Network.  

                                            
1 For discrete power control, the relay assignment problem is a non-convex integer programming 

problem.  
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Table  2.1 Notations used in chapter 2. 

Symbol Definition 
K Number of secondary users 
M Number of primary users 
L Number of relays 

,s lh  Channel gain from source to the lth relay  

,s kh  Channel gain from source to the kth secondary user  

,l kh  Channel gain from lth relay to the kth secondary user 

,l mg  Channel gain from lth relay to the mth primary user 

,s mg  Channel gain from source to the mth primary user 
k

sP  Transmission power of source to kth secondary user 
W Bandwidth of non overlapping frequency bands to each 

secondary user 
PL Set of relays’ discrete power levels. PL = 

{ }0, / , 2 / , ....,max max maxp p pλ λ  
max
lp  Maximum allowed transmission power of the lth  relay 

,
max
m kI  Maximum allowed interference at mth primary user on the 

kth secondary user’s band 
,l kε  Binary assignment indicator indicating whether relay l is 

assigned to the kth secondary user 
Λ  A matrix where element ( , )l kΛ denotes individual SNR 

contribution of relay l at kth secondary user 
Ψ  Set of relays that individually satisfy the interference 

constraints at all the primary users with non zero 
transmission power level 

lΓ  Summation of individual interference contribution of relay l 
at all the primary users i.e.

1
( , )Ml

m
I l m

=
Γ =∑  

k�  
User receiving maximum individual SNR 

Θ  A vector where element ( )
( )1,2,..,

arg max ( , )
k K

l l k l
∈

Θ = Λ ∀ ∈Ψ
 

represents the user where relay l generates its maximum 
individual SNR  

2.1 Problem Formulation  

We consider a two-hop cooperative CRS, which comprises one 

transmitting node (source), K receiving nodes (secondary users), and L relay 

nodes. Our system model also includes M primary users, for which the 
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transmission power of the cognitive radio nodes (secondary users) must be 

limited. M primary users can mean, as well as primary user devices, M 

geographic locations or regions in which the strengths of the cognitive radio 

signals must be constrained. Each relay, transmitter and receiver is equipped 

with a single antenna. We denote by ,s lh   the channel from the source to the lth 

relay, ,s kh  the channel from the source to the kth secondary user, ,l kh  the channel 

from the lth relay to the kth secondary user, ,s mg  the channel from the source to 

the mth primary user, and ,l mg  the channel from the lth relay to the mth primary 

user. In our system, a central controller (also referred to as the spectrum 

manager) jointly assigns relays to the secondary users and decides the relays’ 

power levels. We assume that the central controller has perfect knowledge of the 

channel gains ,s lh , ,l kh  and ,l mg .   We consider a two-step shared-band AF 

scheme for cooperative communication [1] [2]. In our system model, each 

secondary user will receive the data destined to it in its designated frequency 

band that does not overlap with other users’ bands. We assume that all users are 

given the same bandwidth in the radio spectrum.  Each relay will transmit and 

receive in the same frequency band. We denote by lp , the transmission power of 

the lth relay. We denote by
2

,( , , )l l l mp l m p gη = , the interference power 

contributed to the mth primary user from the lth relay with power lp  . 

We denote by k
sP  the transmission power of the source in the user band 

indexed by k. We assume that a relay assigned to the kth user filters in the 

received signal in the band indexed by k and then amplifies and transmits the 

signal in the same band. In our system mode, the source’s transmission and the 

relays’ transmission are separated in time. Each symbol is transmitted in two 

time slots−in the first time slot by the source and in the second time slot by the 

relays. Thus, in the first time slot, the signal received by the lth relay (after 

listening to the kth user’s band) can be written as ,
k

s s l lP h s Z+ , where complex-

valued s represents the transmitted symbol and lZ  represents the complex-
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valued white Gaussian noise at lth relay. In our system model, symbol value s is 

normalized so that ( )2 1E s =   and '
0 / 2N  is the power spectral density of the 

noise lZ . The noise power N , in watts, in each user band can be written as 

( )' '
0 0/ 2 2N N W N W= = , where W is the bandwidth of each user band [10]. In the 

second time slot, the relays amplify the received signal and re-transmit the 

amplified signal. We are considering a system in which each relay can be 

assigned to only one user while a user can receive data from multiple relays. The 

channel capacity of the kth user with L relays using AF relaying is [1] [2]  

( )

2

, ,
, 1

2

,
1

1 log 1
2 1

L

k s l l k l lk
s s k ls

k L

l l k l
l

h h pP h PC
N N h p

β

β

=

=

⎡ ⎤⎞⎛
⎢ ⎥⎟⎜

⎝ ⎠⎢ ⎥= + +⎢ ⎥
+⎢ ⎥

⎢ ⎥⎣ ⎦

∑

∑  
(2.1) 

where ( ) 1/22

,
k

l s s lP h Nβ
−

= + . Our joint relay assignment and power allocation 

problem in a CRS is to determine the assignment of relays to the secondary 

users and the relays’ powers, pl, l=1,2,...,L, in order to maximize the sum-capacity 

kk
C∑ under the constraint that interference to the primary users within a 

specified value. The sum-capacity expression for shared AF in (2.1) is not a 

concave function of relay powers.  We define ,l kε as a binary assignment 

indicator:  

,

1 th
0l k

if the l relay is assigned to the kth receiver
otherwise

ε
⎧⎪⎪= ⎨⎪⎪⎩  

The interference aware relay assignment problem can be defined as the 

following mixed integer non-linear programming problem: 
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(2.2)

where max
lp is the maximum allowable transmission power from the lth relay, and 

,
max
m kI is the maximum tolerable interference at the mth primary user in the kth 

secondary user’s band. The constraint C1 assures that a relay can only be 

assigned to one user. The constraints C2 and C3 are the interference constraints 

for source and relay transmissions respectively. The constraints C4 and C5 are 

the power constraints for source and relay respectively. The constraint C5 

ensures that if the lth relay is not assigned to any user then the transmit power of 

the lth relay should be zero. The proposed multiple relay assignment and power 

allocation in OP1 is a non-linear mixed integer programming problem. An 

exhaustive search algorithm (ESA) for (2.2) would evaluate all the possible relay 

assignments and for each assignment determines the power of each relay. The 

number of different relays assignments increases exponentially with the number 

of relays and the number of the secondary users. Moreover, even for a given 

relay assignment, { }, 1,2,.., , 1,2,...,l k l L k Kε = = , the objective in (2.2) is not a 
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concave function of the source’s and relays’ power levels, so this continuous 

optimization is not a convex optimization problem.  High-speed communications 

demand an assignment scheme with low computational complexity.   This 

chapter proposes heuristic algorithms that have good performance and yet have 

relatively low computational complexity. 

2.1.1 Decoupling of source power  

Optimization problem (2.2) has three sets of decision variables: the relay 

assignment represented by { },l kε , relay transmission power represented by 

{ }1 2, ,.... Lp p p , and the source’s transmission power represented by 

{ }1,2,..,k
sP k K= . We first note a special structure of the optimization problem 

(2.2). For any choice of relay assignment represented by { },l kε  and relay 

transmission power represented by { }1 2, ,.... Lp p p , the objective function is an  

increasing function of variable k
sP , the source transmission power. In addition, 

the only constraints on variable k
sP  are  

2

, , ,k max
s s m m kP g I m≤ ∀  and 0 k max

s sP P≤ ≤ , 

which can be simplified to   1, 2, ,
2 2 2

,1 ,2 ,

0 min , , , ,
max max max

k k M kk max
s s

s s s M

I I I
P P

g g g

⎧ ⎫⎪ ⎪≤ ≤ ⎨ ⎬
⎪ ⎪⎩ ⎭

" , and 

variable k
sP  do not appear in any other constraints in (2.2).  That is, the interval 

constraint 1, 2, ,
2 2 2

,1 ,2 ,

0 min , , , ,
max max max

k k M kk max
s s

s s s M

I I I
P P

g g g

⎧ ⎫⎪ ⎪≤ ≤ ⎨ ⎬
⎪ ⎪⎩ ⎭

"  of k
sP , is decoupled from all 

other constraints in (2.2). Therefore, problem (2.2) can be written as: 
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 For any choice of relay assignment { },l kε  and relay transmission 

power{ }1 2, ,.... Lp p p , the inner maximization,  
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has a nice structure. Namely, the constraint on ( )1 2, ,..., ,...,k K
s s s sP P P P  is a 

rectangular constraint and the objective function is separable.   Therefore, the 

maximization can be achieved by performing the maximization over single 

variable  k
sP , 
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individually for k=1,2,..,K.  The objective function is monotonically increasing 

function of k
sP  and the constraints set is an interval (Appendix A). Therefore, for 

any choice of relay assignment { },l kε  and relay transmission power{ }1 2, ,.... Lp p p , 

the maximizing source power k
sP is 1, 2, ,

2 2 2
,1 ,2 ,

min , , , ,
max max max

k k M kmax
s

s s s M

I I I
P

g g g
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"  for each k. 

We denote the optimal source power as 
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(2.3) 

With k k
s sP P= ,the optimization problem (2.2) is reduced to 
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In the next section, we will present a low complexity sub-optimal algorithm for 

solving problem OP2. 

2.2 Algorithm for Relay Assignment with Continuous Power  

In this section, we present an iterative joint relay assignment and power 

allocation (IJRAPA) scheme for the multiuser CRS. The proposed IJRAPA is a 

two-phase algorithm. In the first phase, the algorithm, based on the channel 

conditions, assigns the relays to the secondary users. In the second phase, the 

algorithm iteratively allocates power to the relays. The Tables 2.2 and 2.3 show 

the pseudo code of the proposed algorithm. 

2.2.1 Phase 1: Relay assignment 

In this algorithm, the channel gains between the relays and the secondary 

users play a key role in relay assignment. For each relay l, the algorithm 

compares the channel gains from it to all secondary users, 

,1 ,2 , ,, , , , ,l l l k l Kh h h h" " . Then, the algorithm assigns relay l to the secondary 

user to which relay l has the best channel. That is, relay l is assigned to 

secondary user 
{ }

,
1,2,..,

arg max l k
k K

h
∈

. The Table 2.2 shows the pseudo code for relay 

assignment. First, we will describe the notation used in the pseudo code, and 

then we will describe the relay assignment algorithm.     

We denote by H the L K×  channel matrix and by Lk the set of relays 

assigned to kth user. At the start, the algorithm generates a vector 
( )

( )1,2,..,
arg max ( , ),
k K

l H l k l
∈

Θ = ∀ ∈Ψ  that contains the index of the secondary users that 

has highest channel gain with the relays. After getting the relay and secondary 

user pairs, the algorithm iteratively determines the subset of relays that are 

assigned to each secondary user −e.g., at the kth iteration, based on Θ , the 

algorithm gets the Lk subset of relays that are assigned to the kth user −i.e., 
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, 1,l k kl Lε = ∀ ∈ . After getting the subset Lk, the algorithm iteratively allocates 

power to each relay in the subset Lk .  

2.2.2 Optimization of Relay Transmission Power for a Given Relay 
Assignment 

A relay assignment { }, 1,2,.., , 1,2,...,l k l L k Kε = =  is also specified by subsets 

Lk, 1,2,...,k K= .  For a given relays assignment, power levels of the assigned 

relays can be optimized. The formulation of such an optimization problem is 

simply obtained by fixing { }, 1,2,.., , 1,2,...,l k l L k Kε = =  in Problem OP2.  That is, 

{

2

, ,
,

2 21,2,.., } 1 ,
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,
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, ,
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1max log 1
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Problem OP2a has a nice separable structure, which is mainly attributed to the 

separation of frequency bands among different users k=1,2,...,K. Namely, in 

order to solve Problem OP2a, one can solve the following problem for k=1,2,...,K: 
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Solving Problems OP2a-k for k=1,2,...,K is a divide-and-conquer approach to 

solving OP2a and is more efficient in terms of computational complexity. 

However, Problem OP2a-k is not a convex optimization problem.  In the next 

subsection, we present an efficient suboptimal algorithm for solving Problem 

OP2a-k. 

2.2.3 Phase 2: Power Allocation 

In Problem OP2a-k, the objective is to maximize the capacity for 

secondary user k, and the high power gain of the channel 
2

,l kh  from a relay l in 

Lk  to user k’s receiver is favourable to the channel capacity for user k.  On the 

other hand, the high power gain of the channel from relay l to primary users is not 

favourable because that adds interference to the primary users. For developing a 

heuristic optimization algorithm, we can view the channel gain from the lth relay 

to the kth secondary user 
2

,l kh  as profit taken from investing unit transmission 

power to relay l. We also view channel gain from the lth relay to its primary users 

as loss. In particular, our algorithm views ( )2 2 2

,1 ,2 ,max , , ,l l l Mg g g"  as loss 

incurred from investing unit transmission power to relay l. At the start of the 

power allocation phase, the algorithm sorts the relays in the subset Lk according 

to the profit to loss ratio.  After sorting, the algorithm greedily allocates power to 
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the relays in the subset Lk in the sorted order from the relay with the highest profit 

to loss ratio to the lowest.   

Now, we will describe the algorithm in detail. Table 2.3 provides the 

pseudo code for power allocation routine for Problem OP2a-k. Initially, in this 

routine, the relays’ powers are set to zero. We denote by pΛ  the set of relays 

whose power is already allocated. Initially pΛ  is empty.  The algorithm allocates 

maximum power to that relay that has the maximum ratio of channel gains ,l kh  to 

the channel gain with the worst primary user. We define a function ‘sortindex’ 

which sorts the relays according to the ratio ( )
2

,
2 2 2

,1 ,2 ,max , , ,
l k

l l l M

h

g g g"
 in 

descending order.  The function ‘sortindex’ returns a vector that consists of the 

relay indices according to the sorted values. The algorithm iterates over the relay 

indices in the sorted order. In each iteration, it stores one relay from the sorted 

relays to pΛ .  

The objective of Problem OP2a-k is in the form of  

 ,
2

1 log 1 ,
2

k
s s k

k

P h
N

γ
⎡ ⎤
+ +⎢ ⎥
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k

l s s lP h Nβ
−

= + , and the objective 

monotonically increasing with kγ .  Thus, we can solve OP2a-k by maximizing  
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We observe that kγ  is not increasing with respect to ,l kp l L∀ ∈ . By taking k

jp
γ∂
∂

, 

we observe that kγ  is non-decreasing with respect to pj when 

( )
2

2

, ,

, , ,

1s j l l k l
l j

j

j j k s l l k l l
l j

h h p
p

h h h p

β

β β

≠

≠
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∑

∑
(see Appendix C).  With the help of above 

observation, the power of the selected relay is determined using the equation 

( )
2

2

, ,max
,,

,
, , ,

,

1

min , , p

p

s a l l k lSum
l a lm k m max

a a
a m

a a k s l l k l l
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I I

p m p
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β β
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∑
 

The minimum of all three entries not only satisfies the interference and maximum 

power constraint but also ensures that the allocated power lies within the range 

of values for which the cost function is non-decreasing with respect to ap . Then 

the algorithm determines the total interference generated by this allocated power. 

The algorithm continues until the set kL  becomes empty. The algorithm will 

terminate when all the users get their assigned relays. 
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Table  2.2 Iterative Joint Relay Assignment and Power Allocation (IJRAPA) 

Main Algorithm Flops 

Initialization: ( ) ( )2

,, ,l kH l k h l k= ∀    

1: ( )
( )1,2,..,

: arg max ( , ) 1,2,..,
k K

l H l k l L
∈

Θ = = ;   

While k K≤  
2:    ( ) : { | }kL l l k= Θ =   
3:    If kL ≠ ∅  Then  
          Power Allocation Routine 
     Endif 
EndWhile 
Output: Θ , ,lp l∀  

 
1: LK 
 
2: K 
3: ( )2 1kK L M+   

( )2 1kK L M+ +  
2KM+  

Table  2.3 Power Allocation Routine  
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6: 
2

,: ;Sum Sum
m m a l mI I p g m= + ∀  

7:  i := i+1 
EndWhile 
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3: 1 
4: 1 
 
5: 
2 4 kM L+  
 
 
 
6: 2M  
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2.2.4 Complexity Analysis 

Tables 2.2 and 2.3 describe the complexity of proposed IJRAPA scheme. 

Complexity is measured in terms of flopsϒ . A flop is defined as a real floating-

point operation [8]. A real addition, multiplication or division is counted as one 

flop. A complex addition is counted as two flops and a complex multiplication has 

four flops. The multiplication of a p×q matrix with a q×m matrix takes 

approximately 2pqm flops. Addition and removal of an element from a set takes 

one flop. The logical operator (e.g. comparison etc.) and assignment operator 

take one flop [8]. From Tables 2.2 and 2.3, we can observe that the IJRAPA 

takes approximately ( )( )2 log 2 2 2k k k k k kK M L L L L M L L M+ + + + 2K+ LK+  

flops. To get the flop count IJRAPAϒ , we set kL L= . The flop count  IJRAPAϒ   is  

( )( )
( )

2

2

log 2 2 2 2IJRAPA K ML L L L ML LM K LK

O KML

ϒ ≈ + + + + + +

≈
 

2.2.5 Performance Results with Continuous Power  

As mentioned in section 2.1, for given realization of integer variables, the 

optimization problem in (2.2) is not a concave function of the relay powers due to 

the term
( )

2

, ,
1

2

,
1

1

L

s l l k l l
l

k L

l l k l
l

h h p

h p

β
γ

β

=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠=
+

∑

∑
. Thus, even for a given realization of integer 

variables, convex optimization techniques cannot be applied to the resulting 

optimization problem. For comparison, we provide an upper bound on the sum-

rate capacity of the relay assignment problem. The proposed upper bound is 

concave for a given realization of integer variables. The upper bound can be 

derived by using the Cauchy Schwarz inequality [5] 
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(2.5) 

 Appendix B shows that the upper bound is a concave function of relay powers. 

Fig. 2.2 shows the comparison of the upper bound (UB) with the exact values of 

the objective function. We consider the scenarios with relays 

power { }/10, / 50, /100l s s sp P P P= . Fig.2.2 shows that the proposed bound is tight 

when the numbers of relays are less.  
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Fig. 2.2 Upper Bound on the AF channel capacity 

 

We compare the proposed IJRAPA with exhaustive search algorithm that 

uses upper bound (ESA-UB) for power allocation. In ESA-UB, for each set of 

assigned relays, we run a convex optimization to allocate the relays power. We 

also include an iterative joint relay assignment algorithm that uses upper bound, 
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as mentioned in (2.5), for relays power allocation. We call this algorithm as 

iterative joint relay assignment with upper bound IJRA-UB.  In IJRA-UB, relays 

are assigned using the algorithm mentioned in Table 2.2. For each set of 

assigned relays, the relays powers are allocated using conventional convex 

optimization techniques that uses upper bound as mentioned in (2.3). In the 

simulation results, the channel gains between source, relays and destinations 

have an independent complex Gaussian distribution. 

In Fig. 2.3, we present the plot of sum-capacity versus the interference 

threshold with the parameters (L, M, K) = (6, 1, 3) for different max
lp  . There are 

two scenarios with max
lp  = {1, 10} watts. We assume that each user’s occupies a 

band of bandwidth 1 MHz. The results show that the performance of IJRAPA is 

close to that of ESA-UB and IJRA-UB. The Fig. 2.3 also show that the sum-

capacity increases with the interference threshold because the feasible set of the 

optimization problem with lower interference threshold is a subset of the feasible 

set of the optimization problem with higher interference threshold. In Fig. 2.4, we 

present the plot of sum-capacity versus the interference threshold for different 

numbers of relays and primary users. We use the scenario (L,M,K) = (6,1,3) and 

(3,3,3). The results show that the performance of IJRAPA is close to that of ESA-

UB and IJRA-UB. We observe that the sum-capacity increases with the number 

of relays as more relays mean more degrees of freedom in relay assignment. We 

also observe that the sum-capacity decreases with the increase in the number of 

primary users because the optimization problem has more number of constraints 

to satisfy. In Fig. 2.5, we present the plot of sum-capacity versus number of 

primary users. The parameters are (L, K) = (5, 3). Fig. 2.5 shows the variation in 

sum-capacity with the increase in the number of primary users. In this result, we 

observe that sum-capacity decreases as the number of primary users increase. 

This is because the relay assignment needs to satisfy more interference 

constraints as the number of primary users increases.  
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Fig. 2.3 Sum-rate capacity vs. Interference comparison. The parameters 

are L = 7, K = 3,M = 1, { }10w, 10w,1ws lp p= =  
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Fig. 2.4 Sum-rate capacity vs. Interference comparison. The parameters 

are K = 3, 10wsp = , L = {6,3}, M = {1,3}   
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Fig. 2.5 Sum-rate capacity vs. number of primary user’s comparison. The 

parameters are L = 5, K = 3, { }max
, 10 ,1m kI mw mw=  

2.3 Algorithm for Relay Assignment with Discrete Power 
Allocation 

The use of continuous relay power can lead to inefficient utilization of the 

available bandwidth as more number of control bits may be required to express 

the assigned relay power. Discrete power allocation (DPA) helps in simplifying 

the end-to-end control channel traffic. The assumption of DPA  is also relevant to 

the networks, which deploy low cost relays that do not have sophisticated 

circuitry to support transmissions on arbitrary power levels. 

In this work, we consider inexpensive relays that can operate only at a 

finite number of transmission power levels. Let PL be the set of relay power levels 

comprising 1λ +  uniformly spaced discrete power levels −i.e., 

20, , ,....,
max max

maxl l
L l

p pP p
λ λ

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

. We denote by LP  the cardinality of set PL. For 

discrete power allocation, the problem OP2 is changed to  
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(2.6)

The proposed multiple relay assignment and discrete power allocation in 

OP3 is a non-convex non-linear integer programming problem. An exhaustive 

search algorithm for OP3 evaluates all the possible relay assignments power 

levels. The computational complexity of the optimal relay assignment algorithm 

(e.g. exhaustive search algorithm) increases exponentially with the number of 

relays and power levels. For efficient relay assignment and discrete power 

allocation in the multiuser CRS, we propose a low-complexity interference aware 

greedy assignment (IAGA) algorithm.  The proposed algorithm, in each iteration, 

assigns a relay or a set of relays to the secondary user that gives maximum SNR 

and satisfies the interference constraints at the primary users. 

2.3.1 IAGA for Discrete Power Allocation 

One of the basic ideas in designing this algorithm is that we assign a relay 

to the secondary user k only if the channel between that relay and the secondary 

user k is best among all the secondary users and the relay satisfies the 

interference constraint at all M primary users. In order to make the description of 

this algorithm clear, we will use an example system and often interject an 

illustration from this example system in our algorithm description.  Tables 2.4 and 

2.5 present the pseudo code and examples of IAGA respectively (For better 

understanding of the algorithm, a flow diagram of IAGA is also shown in 

appendix D).  In the example of Table 2.5, we consider a system comprising 

three secondary users K1, K2 and K3, two primary users M1, M2, and seven relays 
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L1, L2, … ,L7. The interference thresholds of primary users M1 and M2 is 10mw 

and 20mw in each secondary user’s band respectively. 

The IAGA is performed in two stages. At stage 1, the algorithm determines 

the transmission power, ,lp of each relay l and computes some other quantities 

for stage 2. Let us denote by ( ) 2

,, , l mp l m p gη ≡ the interference caused by relay l 

on primary user m with power lp . In stage 1, the algorithm sets the transmission 

power, ,lp  of each relay l to  

( ){ }2*
, ,: max | , , ( , )max

l L l m m kp p P p l m p g I m kη= ∈ ≡ ≤ ∀

 
 

Note that 
2

,l l mp g  can be interpreted as the interference the lth relay would 

cause on primary user m if no other relay were transmitting at that time.  In 

words, the algorithm at stage 1 sets the transmission power of each relay as high 

as possible with the constraint that the interference it individually causes on each 

primary user is within its interference constraint (interference tolerance level). 

Note that such a transmission power level for some relay can be ‘0’ if every 

positive power value in set PL individually causes interference on some primary 

user above its tolerance level. The relays with power level set to ‘0’ are removed 

from consideration; it means at the end of stage one, the algorithm selects the 

relays that individually satisfy the interference constraints at all the primary users. 

We denote the set of selected relays as Ψ . For each of these selected relays 

and power levels, the algorithm evaluates the individual SNR contribution by 

each relay at each secondary user −that is, the individual SNR that each 

secondary user would have if it does not receive a signal from the source or 

other relays. These SNR contributions from the relays are stored in matrix Λ . 

Table 2.5(a) illustrates the values stored in matrix Λ . The algorithm then 

calculates the aggregated or sum−interference, *
1

( , , )Ml
lm

p l mη
=

Γ ≡∑ , from each 

relay to the primary users. Table 2.5(a) illustrates the transmission power levels 

of all the relays determined as *
lp , the individual SNRs in Λ , and the individual 



 

 57

interferences ( )*, ,lp l mη computed in stage 1. Note that relay L7 is removed from 

further consideration for assignment in subsequent steps as its individual 

interference contribution violates the interference constraints. 

In stage 2, at each iteration, the algorithm determines the set of relays 

assigned to a secondary user in a greedy manner. For clarity of exposition, we 

now use our example system to illustrate the steps of stage 2. From Table 2.5(a), 

for each relay, we select the user where it generates its maximum individual 

SNR− e.g., relay L1 generates maximum SNR at user K1 as we have ( )1,1Λ =  

( )8 3 1, 2> = Λ and ( ) ( )1,1 8 5 1,3Λ = > = Λ . As mentioned earlier, we assign a relay 

to the secondary user k only if that relay has the best channel to the user k 

among all the secondary users. Thus, in Table 2.5(b) for each relay, we retain 

the SNR value of that relay/user pair where the relay has the best channel gain. 

The selection of relay/user pair from Table 2.5(a) in this manner results in Table 

2.5(b), where e.g. for relay L1 the bins for ( )1, 2Λ  and ( )1,3Λ  are blanked. Among 

these selected relay/user pairs, the pair that has the highest SNR value is 

chosen and the corresponding user is denoted as k� . For illustration, in Table 

2.5(b), ( )2,3Λ   has the highest individual SNR among all entries of Λ  and  

3k K=� . The relays whose individual SNR contributions are maximum at user k�  

can be potentially assigned to that user. From Table 2.5(b), these relays are L1, 

L5 and L6 and they constitute the set R. Then, the algorithm checks whether the 

cumulative interference level generated by these three relays at the primary 

users is below the required tolerance level. We observe from Table 2.5(b) that 

the cumulative interference from these three relays violates the interference 

threshold of M1 −i.e., * * *
1 1 5 6( ,1,1) ( ,5,1) ( ,6,1)p p pη η η∆ = + +  1(8 1 6) (10)maxI= + + > . In 

this algorithm, if the relays in set R violate the interference constraints at any of 

the primary users, then the relay with the highest sum interference 

( )*
1

, ,Ml
lm

p l mη
=

Γ =∑  is removed from further consideration for relay assignment.  

From Table 2.5(b), it is observed that relay L6 has the highest sum interference 
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among the relays in set R as sum interferences from L2, L5, and L6 are 8+5 = 13, 

3+1 = 4 and 6+10 = 16 respectively. Therefore, relay L6 is removed from set R 

andΨ . Since the remaining relays, L2 and L5, together satisfy the interference 

constraints, they are both assigned to the user K3 as done in Table 2.5(c).    The 

relays and users that have been already assigned are no longer considered for 

the rest of the algorithm, as illustrated by the blanks in Table 2.5(c). These steps 

are repeated until all the remaining relays are assigned or removed from 

consideration. The subsequent steps are illustrated in tables 2.3(c) − 2.3(f).  

We now present a step-by-step description of the pseudo code of stage 2 

given in Table 2.4. In line 2 of stage 2 in Table 2.4, for each relay a user, that 

receives the maximum SNR from it, is chosen and stored in the variable Θ  as 

( )
( )1,2,..,

: arg max ( , )
k K

l l k l
∈

Θ = Λ ∀ ∈Ψ

 
 

Line 3 determines the relay-secondary user pair that has the maximum SNR 

which is mathematically expressed as 

{ }: max (1, (1)), (2, (2)),...., ( , ( ))L LΛ = Λ Θ Λ Θ Λ Θ

 
 

In line 4, the user k�  which has the highest SNR is determined as 

( ) . . ( , ( ))k l s t l l= Θ Λ Θ = Λ� . The relays that generate maximum SNR at user k�  

are determined from the set Θ   and stored in the set R in line 5.  

In lines 6-15 of stage 2, the algorithm iterates over the relays in the set R. 

In each iteration, for every primary user m the sum of the interference levels 

generated by the relays in the set R (on primary user m) is evaluated as 

( )*
, : , , ,rm k

r R
p r m mη

∈

∆ = ∀∑� . If the interference constraints, , , ,max
m k m kI m∆ ≤ ∀� �  are 

satisfied then the capacity of the user k�  is calculated for the relays in set R, the 

assigned relays are removed from the sets R andΨ . If the interference constraint 

is violated at any primary user then we choose the relay r (from the set R) that 
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causes maximum sum interference (as given by rΓ ). The selection of relay r is 

mathematically written as : arg max l

l R
r

∈
= Γ . The selected relay r is removed from the 

set R and Ψ . Note that the retention of relay r in the set Ψ  may increase the 

capacity of the system but it also increases the complexity of our algorithm. By 

the end of first iteration over the set Ψ , the user  k�  has its assigned relays. 

Lines 2-16 are repeated till Ψ =∅ . 
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Table  2.4 IAGA 

IAGA 
 

Flops 

INITIALIZATION: ( , )l kΛ  = 0 ∀ (l,k), lΓ =0 ∀ (l), 0,kC k= ∀ ,Ψ =∅    

STAGE 1: 
1:For l=1 to L 

2:    { }2*
, ,: max | ( , , ) ( , )max

l l L l l l m m kp p P p l m p g I m kη= ∈ ≡ ≤ ∀
 

3:   If  * 0lp ≠  

4:         
*

2
,( , ) l

l k
pl k h
N

Λ = ; 

5:         *
1

( , , )Ml
lm

p l mη
=

Γ = ∑ ; 

6:         { }: lΨ = Ψ ∪ ; 
7:    else    
8:         *( , , ) 0;lp l mη =  
9:    EndIf  
10:EndFor 

 
 
2: 2M LP  
3: 1 
4:2K 
5:M 
6:1 
8:1 
 
 

STAGE 2: 
1: While Ψ ≠ ∅  
2:      ( )

( )1,2,..,
arg max ( , )
k K

l l k l
∈

Θ = Λ ∀ ∈Ψ ; 

3:      { }max (1, (1)), (2, (2)), ...., ( , ( ))L LΛ = Λ Θ Λ Θ Λ Θ ; 

4:      ( ) . . ( , ( ))k l s t l l= Θ Λ Θ = Λ�  

5:      ( ){ | }R l l k= Θ = �  
6:     While R ≠ ∅   
7:          *( , , ),m lr R

p l m mη
∈

∆ = ∀∑    

8:          if  max
, , ,m k m kI m∆ ≤ ∀� �  

9:                kC �  = Apply Eq. (2.1) for R; 

10:              ( , ) 0,l k lΛ = ∀� , , \ RΨ = Ψ and Goto 1: 
11:       else    
12:             arg max l

l R
r

∈
= Γ ;     

13:             *( , , ) 0rp r mη = ; ( ) 0rΓ = ; R := R \ r, : \ rΨ = Ψ ; 
14:      EndIf 
15:   EndWhile 
16:    ( , ) 0,l k lΛ = ∀�  
17:EndWhile 

 
 
2:KL 
3:K 
4:L 
5:1 
6: LM 
 
 
7: M 
8: 11L2 
9: M 
 
 
12: L 
 
 

OUTPUT: 
1

K
kk

C
=∑  K 
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Table  2.5 Example of IAGA  
Symbol ‘−‘ represents a relay that can be assigned and ‘×’ represents a relay that has been  

removed from consideration from further relay assignment  

First Iteration Second Iteration 

 *
lp  Λ  *( , , )lp l mη   Λ  *( , , )lp l mη  

  K1 K2 K3 M1 M2  K1 K2 K3 M1 M2 

L1,− maxp  8 3 5 6 13 L1, − 8   6 13 

L2,− maxp  15 18 50 8 5 L2, −   50 8 5 

L3, − 
max3

L

p
P

 49 23 44 2 7 L3, − 49   2 7 

L4, − maxp  8 39 2 10 15 L4, −  39  10 15 

L5, − maxp  20 22 26 1 1 L5, −   26 1 1 

L6, − | |

max

L

p
P

 9 1 40 6 10 L6, −   40 6 10 

L7, × 0       L7, ×      

(a) Illustration of Stage1 of  IAGA, Columns K1, K2 
and K3, denote individual SNR contribution of each 
relay at secondary user K1-K3 respectively. Column 1 
( *

lp ) and 5 (M1,M2)  denote the interference 
contributed by each relay individually at each primary 
user and the selected power level of each relay 
respectively. 

(b) Selection of user k� =K3 and relays to be 
assigned to user k�  i.e. set R = {L2, L5, L6}. 

 
Third Iteration Fourth Iteration 

 Λ  *( , , )lp l mη   Λ  *( , , )lp l mη  

 K1 K2 K3 M1 M2  K1 K2 K3 M1 M2 

L1, − 8   6 13 L1, − 8   6 13 

L2, K3      L2, K3      

L3, − 49   2 7 L3, − 49   2 7 

L4, −  39  10 15 L4, −  39  10 15 

L5, K3      L5, K3      

L6, ×      L6, ×      

L7, ×      L7, ×      

(c)Relays L2 and L5 are assigned to user k� = K3. Relay L6 
is removed from set R due to violation of interference 
constraints at M1 

(d) Selection of user k� =K1 and relays to be 
assigned to user k�  i.e. set R = {L1, L3}. 
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Fifth Iteration Sixth Iteration 

 Λ  *( , , )lp l mη   Λ  *( , , )lp l mη  

 K1 K2 K3 M1 M2  K1 K2 K3 M1 M2 

L1, K1      L1, K1      

L2, K3      L2, K3      

L3, K1      L3, K1      

L4, −  39  10 15 L4, K2      

L5, K3      L5, K3      

L6, ×      L6, ×      

L7, ×      L7, ×      

(e) Relays L1 and L3 are assigned to user K1. In the 
next iteration user k� =K2 is selected and the relay in 
set R is L4 

(f) Relay L4 is assigned to user k� = K2. 

2.3.2 Fairness aware IAGA 

In this subsection, we modify the IAGA to consider the fairness in the relay 

assignment. We use access proportional fairness (APF) and rate proportional 

fairness (RPF) schemes for relay assignment [6].  In APF, all the secondary 

users will get approximately same number of assigned relays, i.e., each user will 

get /L K⎢ ⎥⎣ ⎦  relays. To incorporate APF in our formulations, we need to add one 

more constraint to the optimization problems OP1, OP2 and OP3. 

Mathematically: 

,
1

, 1,2, ,
L

l k
l

L k K
K

ε
=

⎢ ⎥≥ ∀ =⎢ ⎥⎣ ⎦
∑ "  

For APF, a little change is required to the stage 2 of IAGA.  In stage 2, if any user 

is assigned /L K⎢ ⎥⎣ ⎦  number of relays then that user cannot be assigned any 

more relays. The rest of the algorithm is same as IAGA.  

 In RPF, every secondary user k gets a rate proportional to its weight 

factor kα . In RPF, we compute the capacity ratio ( )
1

k
K

k kk

CA k
C α

=

=
∑

.  We find the 
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user that has minimum capacity ratio ( )
1,2,...,

arg min
k K

k A k
=

=� . We select a relay that 

gives maximum SNR to the user k�  and individually satisfies the interference 

constraint at all the primary users. The selected relay is then assigned to user k� .  

For fairness comparison, we are using Jain’s fairness index as performance 

metric [7]. The Jain’s fairness index is defined as  

[ ]

2

1
2

1

'

K
kk

K
kk

C
Jain s Fairness Index

K C
=

=

⎡ ⎤
⎣ ⎦=
∑
∑

 

2.3.3 Complexity Analysis 

The main advantage of the proposed algorithm is its low implementation 

complexity. In this section, we will compare the complexity of the proposed 

algorithm (IAGA) with the exhaustive search algorithm (ESA), which achieves an 

exactly optimal solution.  

Table 2.4 describes the complexity of IAGA operations.  First, we will 

describe the complexity of the objective function and the constraints. The term 

inside the log in equation (2.1) requires approximately 11L flops.  The 

interference constraint for each primary user requires 2 LL P  flops. The sum 

interference *
1

( , , )M
lm

p l mη
=∑  for each relay requires M flops. IAGA takes 

approximately (3 2 2)LL M P K M+ + +  flops for first stage and 

( ) ( )3 211 2 2 1L L K M L K+ + + + + for second stage. Therefore the total number of 

flops IAGAϒ  require by IAGA is 

( ) ( )
( )

3 2

3 2 2

11 2 2 3 3 3IAGA LL L K M L M P K M

O L L K L M

ϒ ≈ + + + + + + +

≈ + +
 (2.7) 
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From the above complexity analysis, we conclude that IAGA has a polynomial-

time complexity with respect to number of relays and number of secondary users. 

The computational complexity of ESA is ( )LO K . 

2.3.4 Relay Assignment Results with Discrete Power Levels 

We present the simulation results of the proposed IAGA. The performance 

of proposed IAGA algorithm is compared with 1) exhaustive search with upper 

bound (ESA-UB), 2) exhaustive search with discrete power allocation (ESA-

Discrete) and 3) one-to-one exhaustive search assignment. For ESA-UB, a 

conventional convex optimization technique is used to determine the power of all 

the relay assignment subsets. The disadvantage of this approach is that for ESA 

we have to compute power allocation over all the possible relay assignments. 

One-to-one ESA obtains an optimal solution for one-to-one relay assignment. 

One-to-one relay assignment is formulated by adding an additional constraint in 

OP3 where a user can only get data from one relay i.e. ,1
1L

l kl
kε

=
= ∀∑ and a relay 

can send data to only one user i.e. ,1
1K

l kk
lε

=
= ∀∑ . Comparison between IAGA and 

one-to-one ESA helps us to show the effect of multiple relay assignments in the  

cognitive radio system. In the simulation results, the channel gains between 

source, relays and destinations have an independent complex Gaussian 

distribution.  

In Figs. 2.6 and 2.7, we present the plot of sum-capacity versus 

interference threshold, max
,m kI . We used the scenarios (L, K, M, , ,max max

s lP pλ ) = (6, 4, 

4, 1, 10w, 1w) and (5, 3, 4, 2, 10w, 1w) . Bandwidth assign to each user is 1 

MHz. We observe that sum-capacity increases with the interference threshold 

because a feasible set of the optimization problem with lower interference 

threshold is a subset of a feasible set of the optimization problem with higher 

interference threshold.  In Figs. 2.8 and 2.9, we present the sum-capacity versus 

the number of relays. We used two different scenarios (K, M, , ,max max
s lP pλ , max

,m kI ) = 

(4,  1, 1, 10w, 1w, 10mw) and (2, 4, 2, 10w, 5w, 1mw). From these results, we 
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observe that the sum-capacity increases with the number of relays. This is 

because more relays in the system give more degrees of freedom in assigning 

the relays to the secondary users. In Fig. 2.10, we present the sum-capacity 

versus number of primary users. The parameters are (L, K, , ,max max
s lP pλ , max

,m kI  ) = 

(5, 2, 1, 10w, 1w, 1mw). Fig. 2.10 illustrates the variation in sum-capacity with the 

increase in the number of primary users. In this result, we observe that sum-

capacity decreases as the number of primary users increases. This is because 

the relay assignment needs to satisfy more interference constraints as the 

number of primary users increases. From the numerical results, Figs 2.13 and 

2.14 and Tables 2.6 and 2.7, we can see that IAGA converges to with in 86 

percent of that obtained by ESA-Discrete algorithm at low interference threshold 

and 96 percent at high interference threshold. 
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Fig. 2.6 Sum-capacity vs. maximum interference threshold to primary 

users with L=6, K= 4, M= 4, 1λ = , max
sP =10w and /10max max

l sp P= , { }0, max
l lp p∈ l∀  
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Fig. 2.7 Sum-capacity vs. maximum interference threshold to primary 
users with L=5, K=3, M= 4, 2λ = , max

sP =10w, /10max max
l sp P= , { }0, 2,max max

l l lp p p∈   
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Fig. 2.8 Sum-capacity vs. number of relays with K = 4, M= 1, 1,λ =  
max

sP =10w, /10max max
l sp P= , { }0, max

l L lp P p∈ =  l∀ and ,
max
m kI = 10mw m∀  
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Fig. 2.9 Sum-capacity vs. number of relays with K = 2, M= 2, 2,λ =  
max

sP =10watt, /10max max
l sp P=  , { }0, 2 ,max max

l l lp p p∈ l∀  and ,
max
m kI = 1mw m∀  
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Fig. 2.10 Sum-capacity vs. number of primary users with K = 2, L= 5, 
1,λ =  max

sP =10watt,  /10max max
l sp P=  , { }0, max

l lp p l∈ ∀ , and ,
max
m kI = 1mw m∀  
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In Figs. 2.11 and 2.12, we present the results of the proposed IAGA with 

access proportional fairness (APF) and rate proportional fairness (RPF). In these 

Figs., y-axis shows the capacity of each secondary user and the x-axis presents 

the index of each secondary users. We compare the IAGA with IAGA-RPF and 

IAGA-APF. We use two scenarios (M, K, , ,max max
s lP pλ , max

,m kI  , kα ) = (10, 10, 1, 5w, 

0.5w, 1mw,1/K) and (10, 10, 1, 10w, 1w, 10mw,1/K). For Fig. 2.11 (a) and (b), 

the fairness index for (IAGA, IAGA-APF, IAGA-RPF) are (0.4174, 0.6698, 

0.6417) and (0.7438, 0.9159, 0.8929) respectively. Similarly, for Fig. 2.12 (a) and 

(b), the fairness index for (IAGA, IAGA-APF, IAGA-RPF) are (0.3733, 0.6727, 

0.7465) and (0.746, 0.9684, 0.9440) respectively. The fairness index shows that 

IAGA- APF and IAGA-RPF fairness is higher than simple IAGA without fairness. 

To check the feasibility of the proposed algorithms for practical 

implementation, in Table 2.8, we present the number of flops required by ESA, 

IAGA, and IJRAPA for different parameter settings (i.e., different search space 

size). The comparison shows that the number of flops required by IAGA and 

IJRAPA algorithms is much less than that of ESA. 
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Fig. 2.11 User’s individual capacities vs. user index with K = 10, M= 
10, 2λ =  , max

sP  =10w,  /10max max
l sp P= , and ,

max
m kI = 10mw for m∀  
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Fig. 2.12 User’s individual capacities vs. user index with K = 10, M= 
10, 4λ =  max

sP =5w, /10max max
l sp P= , and ,

max
m kI = 1mw for m∀  
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Table  2.6 Percentage IAGA performance to ESA-Discrete for different max
,m kI  

Parameters  
[K,L,M,λ] 

max 5
, 10m kI −=  max 4

, 10m kI −=  max 3
, 10m kI −=  max 2

, 10m kI −=  

[4,6,4,1] (Fig. 2.6) 86.57% 98.97% 98.72% 98.70% 

[3,5,4,2] (Fig. 2.7) 96.64% 97.09% 96.25% 96.26% 

Table  2.7 Percentage IAGA performance to ESA-Discrete for different L 

Parameters  
[K,M,λ, max

,m kI ] 
L = 2 L = 3 L = 4 L = 5 L = 6 

[4,4,1,10mw] (Fig.2.8) 97.81% 97.74% 96.83% 96.13% 95.80% 

[3,4,2,1mw] (Fig. 2.9) 97.44% 98.54% 97.82% 97.78% 95.67% 

Table  2.8 Number of flops required by ESA, IAGA  and IJRAPA 

Parameters  
[K,L,M,λ] 

ESA IAGA IJRAPA 

[5,5,1,5] 3125 395 1710 

[8,5,10,16] 32768 3296 4710 

[10,5,1,1] 100000 790 1910 

[10,10,1,1] 1.0000e+010 2540 12770 

[10,10,4,8] 1.0000e+010 6200 14330 

[20,10,1,1] 1.0240e+013 5080 14070 

[30,10,1,1] 5.9049e+014 7620 15370 

[30,20,1,1] 3.4868e+029 27120 103540 

[30,30,1,1] 2.0589e+044 58620 330510 

[30,30,10,16] 2.0589e+044 318360 361290 
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Fig. 2.13 Percentage IAGA performance to ESA-Discrete for different max
,m kI  
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For Fig. 2.8
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Fig. 2.14 Percentage IAGA performance to ESA-Discrete for different max
,m kI  
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2.4 Summary  

In this chapter, we formulated an optimization problem for determining joint 

source/relays’ transmission power levels and relay assignment in a CRS. We 

have shown that the assignment of source transmission power and the relays’ 

transmission power levels are separable − i.e., the optimization (2.2) is reduced 

to the optimization (2.4).  Then, we presented algorithms for discrete and 

continuous power allocation and relay assignment. The proposed algorithms 

have low computational complexity and the performance results are comparable 

to the exhaustive search algorithm and better than one to one ESA. The simple 

model and low implementation complexity makes the proposed algorithms 

suitable candidates for solving complex communication problems like 

interference aware multiple relay assignment in real-time.  
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CHAPTER 3: GREEN RESOURCE ALLOCATION 

According to the International Telecommunication Union (ITU) report [1] 

[2], primary sources of global warming (CO2 emissions) are electricity generation, 

transport vehicles, buildings, and agricultural by-products. World Energy Outlook 

(WEO) has forecasted that by the year 2030, the demand of electricity will be 

twice as high as compared to the current demand, driven by the rapid growth in 

population and by the continuous increase in the residential and commercial 

electrical devices [3].  

The information and communication technologies (ICTs) (especially the 

wireless sector) contribute significantly to CO2 emissions [1] [2] [3]. The ICTs 

sector is responsible for approximately five percent of the global electricity 

demand and CO2 emission [6] [7]. The CO2 emission from the ICTs sector is 

equivalent to the airline industry [2] [7]. The Global e-Sustainability Initiative 

(GeSI) reported that during the year 2002, the ICTs and their related 

infrastructure caused 150 mega tons of CO2 emissions, and by the year 2020 

they will cause 350 mega tons of CO2 emissions [4] [5]. Fig. 3.1 shows major 

sectors in ICTs and their estimated contribution in CO2 emissions in year 2002 

and 2020.  

The main aim of green ICTs is to minimize the CO2 emissions. Research 

in green ICTs will enable the communication system designer to develop and 

design the communication systems that will use power more efficiently and thus 

contribute to reducing the CO2 emissions. There are a number of approaches to 

green ICTs. One approach is to use renewable energy (i.e., energy generation 

from natural resources such as sunlight, wind, rain, tides, and geothermal heat). 

Another approach is to design low power electronics components and design 

energy saving algorithms for ICTs operations [4]. 

 



 

 75

64.93

177.99

Mobile

Year
2002

Year
2020

63.42

52.35 69.80 48.86

18.12
4.53

Fixed Narrowband

Telecom Devices Fixed Broadband

All Values in
MTons/Year

 

Fig. 3.1 CO2 emission estimate by GeSI in Mega Tones/Year 
 

In the last few years, there has been increasing efforts towards green 

ICTs. A comprehensive survey on green networking is presented in [4].  A green 

planning for wireless network is presented in [5]. In [6], authors presented the 

concept of energy efficiency in telecommunication networks. A detailed 

discussion about ICTs footprint and its impact on the environment is presented in 

[8] [9] and [10]. In [11], authors described a variable power/bandwidth efficient 

modulation strategy to save the battery life of the communication device. 

Information and technology companies like Google and Microsoft have already 

started working towards green ICTs [21] [22]. 

In the context of green communication, cooperative communication can 

contribute to reducing the CO2 emissions. In this chapter, we present a multi-

objective optimization framework that jointly solves the problem of spectrum 

sharing and reducing CO2 emissions. In particular, we propose a green multi-

objective optimization framework for joint relay assignment and power allocation 

in cooperative CRS.  
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3.1 Multi-objective Optimization  

Multi-objective optimization (MOO) is used in many complex engineering 

optimization problems [12] − [15]. In typical MOO problems, different objectives 

can conflict with each other. Optimization with respect to any particular objective 

can give unacceptable results with respect to other objectives [14]. For resource 

allocation in green cooperative cognitive radio network (GCCRN), we have two 

conflicting objectives, maximize the sum-capacity and minimize the CO2 

emissions. Determining the optimal set of decision variables for a single 

objective− e.g. CO2 emissions minimization can result in a non-optimal set with 

respect to other objectives, e.g. sum-capacity maximization. Two widely used 

methods to solve multi-objective optimization are weighted sum method and 

constraint objective method [12] – [15]. In the weighted sum method (WSM), a 

weighted sum of the multiple objective function is considered as the metric to 

minimize (maximize). In WSM, the weight of each objective is proportional to its 

importance placed for decision-making. A general WSM multi-objective 

optimization problem is expressed as follows: 

( ) ( )

( )
( )

1

min

0, 1, 2,...,

0, 1, 2,...,

1

Q

i i
i

j

i

Q

i
i

f x w f x

subject to
g x j D

h x i E

w
=

=

≤ =

= =

=

∑

∑

 

where Q is the number of objective functions, D is the number of inequality 

constraints; E is the number of equality constraints. In the constraint objective 

method [14], each objective is transformed into a constraint. In our formulation, 

we will use weighted sum method.  

An important task in designing the weighted sum MOO is to normalize 

objective functions so that each objective function has same range of values. A 

weighted-sum method [ 14 ] for MOO, without normalization, would result in a 
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biased fitness function–e.g., if the value of one objective function is in the range 

[0, 1] and the value of second objective is in the range [0, x] (where1 x≤ < ∞ ) 

then the second objective produces bias in the weighted fitness function.  In this 

work, we normalized all the objective values within the range [0, 1]. For 

normalization, we divide each objective function with its upper bound. We 

formulate the GCCRN MOO in a way that the range of combined objective 

function is always within 0 and 1.  

3.2 Green Relay Assignment for GCCRN  

We consider a two-hop wireless network with one transmitter (source), K 

receivers (secondary users), L relays, and M primary users. Each relay, 

transmitter, and receiver is equipped with a single antenna.  We denote by ,s lh , 

the channel from the source to the lth relay, ,l kh the channel from the lth relay to 

the kth secondary user, and ,l mg  the channel from the lth relay to the mth primary 

user.  We denote by lp , the lth relay’s transmission power. We consider a two-

step amplify-and-forward (AF) scheme [16]. In our system model, each user will 

receive the data on a separate frequency band.  Each relay will transmit and 

receive in the same frequency band. We define ,l kε as a binary assignment 

indicator    

,

1
0l k

if the lth relay is assigned to the kth receiver
otherwise

ε
⎧⎪⎪= ⎨⎪⎪⎩

 

The channel capacity of the kth user for amplify and forward relaying is [16] [17]  

( )

2

, , ,
1

2

,
1

1 log 1
2 1

L

l k s l l k l lk
ls

k L

l l k l
l

h h p
PC
N h p

ε β

β

=

=

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎜ ⎟= +⎢ ⎥⎜ ⎟

+⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑
 (3.1)



 

 78

where 
1

2

, / 2k
l s s lP h Nβ

−
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 . Our first objective is to maximize the sum-rate 

capacity 1

K
kk

C
=∑ . As mentioned in section 3.1, to normalize the first objective 

between 0 and 1, we will divide the sum-rate capacity with max
1

K
kk

C
=∑ , where max

kC  

is an upper bound on the capacity of the kth secondary user. We use the 

following upper bound, which is obtained from Schwartz inequality:  

( )

( ) ( )

( )

2
2 2

, , , ,
1 1 1

2 2

, ,
1 1

log 1 log 1
1 1

L L L

s l l k l l s l l k l lk k
l l ls s

L L

l k l l l k l l
l l

h h p h h p
P P
N Nh p h p

β β

β β

= = =

= =

⎡ ⎤⎛ ⎞ ⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟
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∑ ∑ ∑

∑ ∑

Mathematically, we can write the objective of the sum-rate capacity as 

1

max

1

K

k
k

c K

k
k

C
f

C

=

=

=
∑

∑
 (3.2) 

The second objective is to reduce the CO2 emissions. The CO2 emissions 

are measured in grams. If P is the power used in the transmission and X is a 

constant in grams/watt then the product of P and X (i.e., PX) represents the CO2 

emissions in grams. The value of X is different for different types of material (fuel) 

used for electricity generation. There are three major sources of fuel for electricity 

generation. These fuels are oil, gas, and coal. The value of X for lignite/brown 

coal, natural gas, crude oil and diesel oil is 940, 370, 640, and 670 grams/watt, 

respectively [6] − [8]. We define by 2

1

LCO
ll l

E Xp
=

=∑ , the CO2 emissions due to the 

lth relay. We can write the objective of CO2 emissions as 
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where 2
max 1

KCO max
ll k

E Xp
=

= ∑ .  To define a single objective, we can transform the 

maximization objective cf  into minimization using the relation 1c cf f= − . 

Mathematically, we can write the MOO for GCCRN as 

{ }
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∑

∑

 (3.4) 

The formulation in (3.4) is a multi-objective non-convex mixed integer non-linear 

programming problem. The objective function in (3.4) is bounded by zero and 

one.  In (3.4), the constraint C1 assures that a relay can only be assigned to one 

secondary user, C2 is the interference constraint, the constraints C3 and C4 

jointly ensure that if the lth relay is not assigned to any secondary user then the 

transmission power of the lth relay should be zero. In the next section, we will 

present a low-complexity hybrid estimation-of-distribution algorithm (EDA) for 

GCCRN MOO problem.  

3.3 Hybrid EDA for GCCRN MOO Problem  

In this section, we will present a hybrid scheme for GCCRN multi-objective 

problem. The proposed scheme is a combination of an evolutionary estimation-

of-distribution algorithm for power allocation and an iterative greedy algorithm for 

relay assignment. Evolutionary algorithms (EAs) in general have been often used 
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to solve multi-objective optimization problems. Evolutionary Algorithms are 

inspired by the theory of biological evolution. Candidate solutions to a multi-

objective optimization problem are represented as individuals in the population. 

In EAs, the objective function value of a candidate solution indicates the fitness 

of the individual, which is associates with the concept of natural selection [18]. 

Unlike other evolutionary algorithms such as the genetic algorithm, in EDA, the 

individuals are generated without the crossover and mutation operators. Instead, 

in EDA, a new population is generated based on a probability distribution, which 

is estimated from the best-selected individuals of the previous iterations [19]. In 

general, EDA is used for discrete optimization problems; however, we introduce 

EDA for continuous domain to allocate power to the relays. Table 3.1 illustrates 

the parameters and notations used in continuous EDA (CEDA).   

Table  3.1 Parameters and notations of CEDA 

F Fitness function 

WHigh  Upper limit of the EDA search window 

WLow  Lower limit of the EDA search window 

∆l  
The population (the set of individuals) at the lth iteration and 

l∆  denotes its cardinality 

ηl   
The set of best candidate solutions selected from set ∆l at 
the lth iteration. 

ps  
The selection probability. The EDA selects ps|∆l| individuals 
from the set ∆l to make up the set ηl. 

ITer  The maximum number of iterations 

 

In CEDAs, each individual can be designated by an L-dimensional  real-

valued vector. For GCCRN MOO problem. In our implementation of CEDA, each 

individual represents the transmission power of the relays. We denote by a row 

vector P = (p1, p2,· · ·,pL) as an individual where ip  is the transmission power of 

the ith relay. The transmission power of the ith relay is bounded by LowW and 

HighW where LowW and HighW are the lower and upper limit of EDA search window. In 
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each iteration, the CEDA maintains a population of individuals. The population is 

denoted by set ∆l . We denote by |∆l|, the number of individuals in the population.  

Population ∆l can be specified by the following matrix 

CEDAΛ

1 1 1 1
1 2

2 2 2 2
1 2

1 2
l l l l

L

L

L

p p p
p p p

p p p∆ ∆ ∆ ∆

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

#
#

# " " " "

#

P
P

P

 (3.5)

where superscript j in the row vector ( )1 2 3, , ,...,j j j j j
LP p p p p=   indexes an individual 

in the population. A flow diagram of EDA algorithm is shown in Fig. 3.2. The 

CEDA applied to the GCCRN MOO problem can be described in the following 

steps: 

Step 0: Generate an initial population ∆0.  Each element of matrix CEDAΛ  is 

obtained from the following formula: 

( ) 0, 1,2,.., , 1,2,...,j
i Low High Lowp W W W rand i n j= + − × ∀ = = ∆  (3.6) 

where WLow = 0, WHigh = lpmax and ‘rand’ is a random number generated from a  

uniform distribution between 0 and 1.  For iterations l = 1,2, ....,ITer , follow Step 1 

through Step 7: 

Step 1:  Evaluate the individuals in the current population 1l−∆  according to the 

fitness function F. Sort the candidate solutions (individuals in the current 

population) according to their fitness orders.  

Step 2: In this step, the algorithm determines the assignment variable 

1,1 1,2 1, , ,, ,.., ,.., ,..,K l k L Kε ε ε ε ε ε⎡ ⎤= ⎣ ⎦  for each individual heuristically.  We propose an 

iterative relay assignment algorithm that generates a feasible 

1,1 1,2 1, , ,, ,.., ,.., ,..,K l k L Kε ε ε ε ε ε⎡ ⎤= ⎣ ⎦  and repairs each individual such that constraints 

C2 and C3 are satisfied. The algorithm is described in section 3.3.2.   At the end 

of this step, the algorithm has a population, which comprises individuals with 
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feasible relays’ power levels and the associated assignment variables 

1,1 1,2 1, , ,, ,.., ,.., ,..,K l k L Kε ε ε ε ε ε⎡ ⎤= ⎣ ⎦ .  

Step 3: In this step, the cost function is evaluated to determine the fitness values 

for each individual in the population, and the individuals are sorted according to 

their fitness values. If the convergence criteria (e.g. number of iterations) is 

satisfied, then terminate; else, go to step 4. 

Step 4: Select the best 1 1s l lρ η− −∆ =  candidate solutions (individuals) from the 

current population ∆l-1. This selected population is used to compute the mean 

and standard deviation. 

Step 5: Determine the mean ‘m’ and standard deviation ‘σ’. Based on these 

estimates of ‘m’ and ‘σ,’ update the search window bounds WLow and WHigh as 

WLow = m - σ and WHigh = m + σ.  

Step 6: Generate new 1l lη −∆ −  individuals on the basis of this new estimated 

WLow and WHigh using equation (3.6). Combine these newly generated 1l lη −∆ −  

individuals with members of 1lη −  to form a new population ∆l . 

Step 7: Go to step one and repeat the steps. 

Even with this simple application of CEDA, the simulation results show 

that it has very good performance. In addition, we were able to modify this basic 

EDA algorithm and even further improve the algorithm’s performance. The 

modification includes the introduction of thresholds in CEDA to avoid premature 

convergence. We name this algorithm as Modified EDA (MEDA). In the next 

section, we will explain the MEDA. 

3.3.1 Modified EDA  

      During the execution of CEDA, the difference between the search window 

bounds WLow and WHigh may diminishes as the iterations proceeds. This may 

cause the CEDA to get stuck in a search space and result in premature 
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convergence. The premature convergence may occur if the difference between 

LowW  and HighW diminishes to an extremely small value. In that case, at every 

future iteration, the algorithm will generate nearly same power levels. We 

suggest restoring the LowW  and HighW  to their initial values ( 0LowW =  

and , 1, 2,..,High lW p l L= =max ) when the difference between LowW  and HighW  is less 

than a pre-specified threshold γ  −i.e. 

max0,
High Low

Low High l

if W W

W W p
endif

γ− ≤

= =  

The above steps are illustrated in Fig. 3.3. In section 3.4, we present some 

experimental results, which show the effect of threshold on the performance of 

EDA. Now, we will describe the iterative greedy algorithm for relay assignment. 

1

1 2

1

2

3

1

1 0.05 0.9 0.0
2 0.8 0.45 0.1
3 0.4 0.53 0.39

0.3 0.44 0.98
l

L

max max max
l l l

max max max
l l l
max max max
l l l

max max max
l l l l
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X X X
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p p p F
p p p F
p p p F

p p p F
−− ∆

× × ×
× × ×
× × ×

∆ × × ×

"

"
"
"

# # # # # #
"

lη, 0
High Low

max
High l Low

if W W

W p W

end

γ− ≤

= =

, 0max
High l LowW p W= =

lη

 

Fig. 3.2 Flow diagram for continuous EDA 
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γ

γ

γ

γ

γ

γ

0LowW = max
High lW p=

WLow = m - σ WHigh = m + σ

0LowW = max
High lW p=

High LowW W γ− ≤

WHigh = m + σ

WHigh = m + σ

WLow = m - σ

WLow = m - σ

WLow = m - σ WHigh = m + σ

 

Fig. 3.3 Continuous EDA with threshold  
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 Table  3.2 Iterative greedy relay assignment for each EDA individual 

NOTE: This routine will be executed on each EDA individual in the 
population. This table illustrates the relay assignment for  the EDA 
individual indexed by j. 
INITIALIZATION: 
( ) 0,S l l= ∀ ,k = 1; C(k)= 0, k∀ ,l = 1; 

 
Step 1: 
While l L≤  

1: ( )
{ } ( )

2 2

,

2 2 2
1,2,...,

1 2

arg max ;
, ,

sl l k

k K
l l lM

h h
S l

max g g g∈
=

"
 

2: l:=l+1 
End While 
Step 2: 

max

2: min , ,j jm
l l

lm

Ip m p l
g

⎛ ⎞
= ⎜ ∀ ⎟ ∀

⎜ ⎟
⎝ ⎠

; /*power of the lth element of the jth individual*/

While k K≤  
1: ( ){ | }k l S l kΨ = =  
2: If kΨ ≠∅   
3: I  = 0; 
4:     While I = 0 
5:             If  (is interference constraint satisfied with kΨ ) = FALSE 
6:                  l=Get the relay with largest interference; 
7:                  { }: \k k lΨ = Ψ ;  
8:              Else 
9:                   I = 1; 
10:                 C(k) = Get the capacity from eq. (3.1) using kΨ  
11:            End If 
12:     End While 
13: End If 
14:  k := k+1; 
End While 
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3.3.2 Iterative Greedy Algorithm  

In this section, we present an iterative greedy relay assignment algorithm, 

which determines the assignment variable 1,1 1,2 1, , ,, ,.., ,.., ,..,K l k L Kε ε ε ε ε ε⎡ ⎤= ⎣ ⎦  for 

each individual heuristically. The proposed algorithm also converts any infeasible 

individual to feasible individual. Table 3.2 shows the pseudo code of the iterative 

greedy algorithm2.  

The proposed algorithm has two steps. In the first step, based on the 

channel conditions, relays are assigned to the secondary users without satisfying 

the interference constraint.  In the second step, the algorithm performs final 

assignment under the constraint that interference to the primary users is 

satisfied.. 

3.3.2.1 Step 1: Relay Assignment without Interference Constraint 

For developing this algorithm, we can view the product of channel gain from 

the lth relay to the kth secondary user and channel gain from source to the lth 

relay as  
2 2

,l k slh h  as profit (throughput) . We also view channel gain from the lth 

relay to its primary users as loss (interference). In particular, our algorithm views 

( )2 2 2
1 2, ,l l lMmax g g g"  as loss. The algorithm in Step 1 temporarily assigns 

each  relay to the secondary user that gives the maximum profit to loss ratio. 

Mathematically, for each relay l, the algorithm temporarily assigns secondary 

user: 

( )
{ } ( )

2 2

,

2 2 2
1,2,...,

1 2

arg max ,
, ,

sl l k

k K
l l lM

h h
S l

max g g g∈
=

"
  

where S is an L-dimensional vector that stores this temporary assignment.    At 

the end of Step 1, relays are assigned to the secondary users with the power 
                                            
2 This algorithm (routine) will be executed on each EDA individual (sample). Table 3.2 illustrates 

the relay assignment for the CEDA’s relay power vector sample indexed by j.  . 
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assignment  , 1,2,..,j
lp l L=  may violate the interference constraint. In Step 2 of 

the algorithm, based on temporary relay assignment in Step 1, the algorithm 

performs joint relay assignment and power allocation such that the interference 

constraint is satisfied at each primary user. 

3.3.2.2 Step 2: Final Relay Assignment with Interference Constraint 

In the second step, the algorithm performs final assignment under the 

constraint that interference to the primary users is satisfied.  

 Note that the relays’ power levels randomly generated by the EDA algorithm 

can violate the constraint of limited interference to the primary users. At the start 

of the second step, the algorithm starts repairing the relays’ power levels if they 

violate an interference constraint. First, the algorithm examines for each relay l 

whether its transmission power would still violate any interference constraint 

even if all other relays’ power level were set to zero. We denote by j
lp , the relay 

l’s power level in the jth sample drawn by the EDA, in accordance with 

expression (3.5). If j
lp  violates any of the interference constraint, max

mI , even 

under the assumption that other relays’ transmission power levels are all set o 0, 

then the algorithm first makes the following adjustment: 

max max max
1 2

2 2 2
1 2

: min , , , , ,j jM
l l

l l lM

I I Ip p l
g g g

⎞⎛
= ∀⎟⎜⎜ ⎟

⎝ ⎠
"  (3.7) 

After the power adjustment, the algorithm iterates over the secondary users and 

completes the final assignment of relays.  

At the kth iteration, the algorithm determines the set of relays kΨ  that are 

temporarily assigned to the kth secondary user in Step 1. Then, the algorithm 

checks whether the relays in the set kΨ  satisfies the interference constraint at all 

the primary users. If the relays in the set kΨ  violate the interference constraint at 

any primary user, then the algorithm iteratively removes the relay from the set 
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kΨ  that causes maximum interference to the primary users. This relay removal 

process continues until the relays in the set kΨ  satisfy the interference 

constraint. The algorithm will terminate when all the secondary users get their 

assigned relays. 
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Table  3.3 Explanation of abbreviations used in simulation results 
DP-EDA Decrease in power using EDA 

DP-GA Decrease in power using GA 

DSC-EDA Decrease in sum-capacity using EDA 

DSC-GA Decrease in sum-capacity using GA 

(M)-EDA-f Performance of (Modified)-EDA on combined fitness function 

(M)-EDA-fc Performance of (Modified)-EDA on cf  

(M)-EDA-fCO2 Performance of (Modified)-EDA on 2COf  

3.3.3 Numerical Results  

In all simulations, the channel gains between source, relays and 

destinations have independent complex Gaussian distribution. All the simulations 

are performed using Monte Carlo runs. Each result is an average of two 

thousand independent simulation runs. We compare the results of Hybrid EDA 

and MEDA with standard continuous genetic algorithm [20].  Table 3.3 describe 

the notations used in the simulation results. 

In Figs. 3.4, 3.5 and 3.6, we present the trade-off plots of sum-capacity 

and power.  The trade-off is calculated between the green communication and 

without green communication. Trade-off is presented as percentage decrease in 

sum-capacity (DSC) and percentage decrease in power consumption (DP). To 

get the result without green communication, we set w1 = 1 and w2 = 0. Figs. 3.4 

and 3.5 show the effect of green communication by changing the values of 

weights w1 and w2. The results show that when w2 is more than w1 there is more 

reduction in CO2 emissions (percentage decrease in power). The reduction in 

CO2 emissions comes at the cost of throughput reduction. From the results, we 

can observe that CO2 emissions will decrease by 50 to 70 percent at the cost of 

10 to 30 percent loss of throughput when w2≥w1. The different weights settings 

are suitable for different geographical conditions and regulatory policies. The 

results also show that performance of EDA is better than GA. Fig. 3.6 illustrate 
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the trade-off plots of sum-capacity and power for different L, K and max
mI . Results 

show that there is less decrease in power at max
mI  = 10mw as compared with max

mI  

= 1w. This due to the fact that lower interference threshold itself makes the CRS 

as a green communication device and there is less freedom for further 

improvement. 

Figs 3.7 and 3.8 present the iterations vs. fitness plot for different number 

of relays and users. The parameters are  (M, ,max max
l mp I ,w1,w2) = 

(1,10w,10mw,0.5,0.5) and (1,10w,1w,0.5,0.5). From Figs. 3.7 and 3.8, we can 

see that performance of MEDA is better than EDA and GA.  A simple EDA and 

GA can get stuck in local optimum after few iterations. We can also note that the 

fitness values with large relays and less number of users (e.g., L = 20, K=10) is 

better than fitness values with less relays and large number of users (e.g., L = 

10, K = 20). This is because with the large number of relays and less number of 

secondary users there is more freedom in assigning the relays to the secondary 

users.  

Figs. 3.9 and 3.10 present the performance of EDA, MEDA and GA on 

each objective function. The parameters for Figs. 3.8 and 3.9 are  (M, 

,max max
l mp I ,K,w1,w2) = (1,10w,10mw,10,0.5,0.5) and (M, ,max max

l mp I ,L,w1,w2) = 

(1,10w,1w,L,0.5,0.5)  . The results shows per iteration performance of both EDA 

and MEDA is better than GA on the fitness function and the individual objective 

functions. 
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Fig. 3.4 Power and sum-capacity trade-off plot with K = 10, L = 10, 
max 10 wmI m=  
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Fig. 3.5 Power and sum-capacity trade-off plot with K = 20, L = 10, 

max 10 wmI m=  
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Fig. 3.6 Power and sum-capacity trade-off plot with (K,L, max

mI  ) = 
(10/20,10/20,10mw/1mw) 
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Fig. 3.7 Iterations vs. Fitness plot for different (L,K) configuration. The 

parameters are (M, ,max max
l mp I ,w1,w2)=(1,10w,10mw,0.5,0.5) 
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Fig. 3.8 Iterations vs. Fitness plot for different (L,K) configuration. The 

parameters are (M, ,max max
l mp I ,w1,w2)=(1,10w,1w,0.5,0.5) 
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Fig. 3.9 Iterations vs. Fitness plot for different number of relays. The 

parameters are (M, ,max max
l mp I ,K ,w1,w2)=(1,10w,1w,20, 0.5 0.5 
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Fig. 3.10 Iterations vs. Fitness plot for different number of relays. The 

parameters are (M, ,max max
l mp I ,L ,w1,w2)=(1,10w,1w,20, 0.5 0.5) 

3.4 Summary  

In this chapter, we presented a multi-objective framework for green 

resource allocation in multiuser cognitive radio network. Estimation-of-distribution 

algorithm with an iterative relay assignment scheme is used to solve the multi-

objective optimization problem. Simple underlying concept and ease of 

implementation of the proposed algorithm make EDA a suitable candidate for 

green resource allocation. 
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PART   2: SUBCARRIER ASSIGNMENT 

 



 

 98

CHAPTER 4: RESOURCE ALLOCATION IN 
COOPERATIVE MULTICAST CRS  

In this chapter, we present resource allocation schemes for the 

cooperative multiuser multicast cognitive radio system (MMCRS). For resource 

allocation, we propose schemes that jointly assign subcarriers and relays to the 

multicast groups and allocate power to the relays in the cooperative MMCRS. We 

consider two separate optimization problems. In one optimization problem, we 

maximize the total throughput of the cooperative MMCRS under the constraint of 

acceptable interference to the primary users. In the other optimization problem, 

we maximize the throughput of the worst multicast group in the cooperative 

MMCRS under the constraint of acceptable interference to the primary users. For 

each optimization problem, we propose an iterative algorithm with polynomial 

time complexity.  

4.1 Subcarrier Assignment for Sum-rate maximization 

4.1.1 System Model  

We consider an OFDMA based two-hop cooperative MMCRS with one 

transmitting node (source), L relay nodes, N subcarriers, and G traffic flows (G 

multicast groups). Each traffic flow is meant for a separate multicast group, and 

we assume that each secondary user belongs to only one multicast group at a 

time. We denote by , 1, 2, ,gK g G= " , the set of secondary users in the gth 

multicast group. The total number of secondary users in MMCRS will be 

1

G
gg

K K
=

= ∑ , where K  is the cardinality of the set 1

G
gg

K K
=

=∪ . Our system 

model also includes M primary users, for which the transmission power of the 

secondary users must be limited. Fig. 4.1 shows the cooperative MMCRS. 
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Fig. 4.1 Cooperative MMCRS. 

 

We denote by n
slh , the channel from the source to the lth relay on the nth 

subcarrier, ,
n
g lkh the channel from the lth relay to the kth secondary user of group g 

on the nth subcarrier, and n
lmh  the channel from the lth relay to the mth primary 

user on the nth subcarrier. We denote by max
lp the maximum allowable 

transmission power of the lth relay, n
lp  the transmission power of the lth relay on 

the nth subcarrier and by sP  the transmission power of the source. We assume 

that the central controller has the knowledge of channel gains n
slh , ,

n
g lkh  and n

lmh  and 

there is a cooperation between primary and secondary user network to get the 

channel state information. The bandwidth of each subcarrier is B. 

 The central controller decides the joint subcarrier, power allocation and 

relay assignment. We define ,
n
g lε as a binary assignment indicator 
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,

1
0

n
g l

if  the lth relay transmits to the gth group on the nth subcarrier
otherwise

ε
⎧

= ⎨
⎩

 

Setting variable , 1n
g lε =  means that the system controller is giving subcarrier n to 

group g for data reception and having relay l forward the signal carried in 

subcarrier n (to group g). 
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Fig. 4.2 Lower and upper limits of the primary band 

The cumulative interference caused by transmission of all the L relays on primary 

users in lth relay’s band can be written as, 

2

1 1

( )U

L

L N fn n n max
l lm l mf

l n

p h f df I mφ
= =

≤ ∀∑∑ ∫  (4.1)

where ( )n n
l lp fφ  is the power spectral density of the lth relay on nth subcarrier and 

max
mI is the interference limit defined by the regulatory body at each primary user. 

( )n
l fφ can be written as [1] 
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( )
( )

2
sin

( )
n

c sn
l s n

c s

f f T
f T

f f T

π
φ

π

⎛ ⎞−
⎜ ⎟=
⎜ ⎟−⎝ ⎠

 (4.2)

where (2 1) / 2n
cf n B= −  is the frequency of the nth subcarrier, Ts is the symbol 

duration,  fL and fU  represent lower and upper limit of the frequency band being 

used by the primary users ( which is also shared by the secondary users) as 

shown in Fig 4.2. 

We consider a two-step amplify-and-forward (AF) scheme, as given in [2] 

[3]. In such a system, conveyance of each symbol from the source to destination 

takes place in two time slots. In the first time slot, the source transmits its data 

symbol for each multicast group on the subcarriers assigned to the multicast 

group and its associated relays. In the second time slot, relays will transmit 

amplified signal to the users of a multicast group using the subcarriers assigned 

to them. In our system modes, we assume that different subcarriers are used to 

carry different data streams, and a multicast group can receive multiple streams 

of data through multiple subcarriers.  We also assume that no two relays are 

allowed transmit on the same subcarrier in our subcarrier assignment. Sharing of 

a subcarrier among multiple relays is possible but it requires coherent combining 

of the signals transmitted from the different relays, which may be quite 

challenging in practical systems [8].   

The capacity at the gth group using the nth subcarrier and the lth relay [2] 

[3] is 

{ }( ),,1 ,2
, , , ,log 1 min , , , n Kgn n n

g l g l g l g lC S S S= + "  

where 

2 2

,,
, 2 2

, 1

n n n n
sl g lk s ln k

g l n n n n
sl s g lk l

h h P p
S

h P h p
=

+ +
 is the SNR received by the kth secondary user 

of the gth multicast group, if the  gth multicast group is assigned with the nth 

subcarrier and the lth relay. For this capacity formula, we assumed that the 
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strength of the signal received directly from the source is negligible.  It can be 

observed that the capacity of gth multicast group is equal to the capacity of the 

user (in the gth multicast group) with the worst channel conditions −i.e. 

( ),
, ,log 1n n k

g l g lC S= +
�

 
2

,, arg min n
g lk

k Kg
k h

∈
=� . For notational convenience we define, 

2 2

, ,min .n n
g l g lkk Kg

h h
∈

=�  We can rewrite ,
n
g lC as 

22

,
, 22

,

log 1
1

n n n n
sl g l s ln

g l
n n n n
sl s g l l

h h P p
C

h P h p

⎛ ⎞
⎜ ⎟= +
⎜ ⎟⎜ ⎟+ +⎝ ⎠

�

�  

The main objective of the joint power, subcarrier allocation and relay 

assignment (JPSARA) is to maximize the total rate of the cooperative MMCRS 

under the constraint of acceptable interference to the primary users. 

Mathematically: 

, ,, 1 1 1

1

2

1 1

,
1 1

,

max

1: 0 ( , ),

2 :

3 : ( )

4 : 1, ,

5 : {0,1} ( , , )

U

L

G N L
n n
g l g l

g n l

n
l

N
n max
l l

n

L N fn n n max
l lm l mf

l n

G L
n
g l

g l

n
g l

C

C p l n

C p p l

C p h f df I m

C n

C l g n

ε

φ

ε

ε

= = =

=

= =

= =

≥ ∀

≤ ∀

≤ ∀

≤ ∀

∈ ∀

∑∑∑

∑

∑∑ ∫

∑∑

ε p

 (4.3)

where C2 is the constraint on total transmission power of the relay, C3 is the 

interference constraint and  constraint C4 ensures that no two relay transmit on a 

subcarrier. The proposed optimization problem in (4.3) is a mixed integer non-

linear optimization problem. The complexity of exhaustive search for joint 

subcarrier and relay assignment increases exponentially with the number of 
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subcarriers, relays and groups.  We now present a dual decomposition approach 

to solve the optimization problem in (4.3).  

4.1.2 Dual Decomposition Algorithm 

For dual decomposition, we can write the Lagrangian function as follows: 

, ,
1 1 1 1 1

1 1 1

, ,
1 1 1 1 1 1

1 1

G N L L N
n n max n
g l g l l l l

g n l l n

M L N
max n n

m m l lm
m l n

N G L L M L
n n n n n
g l l g l l m l lm

n g l l m l

L M
max max

l l m m
l m

C p p

I p I

C p p I

p I

ε µ

λ

ε µ λ

µ λ

= = = = =

= = =

= = = = = =

= =

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

⎛ ⎞+ −⎜ ⎟
⎝ ⎠

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠

+ +

∑∑∑ ∑ ∑

∑ ∑∑

∑ ∑∑ ∑ ∑ ∑

∑ ∑

 (4.4) 

where , 1, 2,...,l l Lµ = and , 1, 2,...,m m Mλ = are the dual variables for power and 

interference constraints respectively. The dual problem is  

( )

( )

, ,

,
1 1

,

min max , , ,

1,

0, {0,1}, , ,

G L
n
g l

g l

n n
l g l

L

subject to

n

p l g n

ε

ε
= =

≤ ∀

≥ ∈ ∀

∑∑

λ µ ε p
ε p λ µ

 

Note that duality gap will not be zero due to the integer constraints. We can 

decompose (4.4) into N sub-problems, which can be independently solved for 

given λ  and µ . The sub-problem at any subcarrier n is  
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, ,, 1 1 1 1 1

,
1 1

,

max

1,

0, {0,1} , ,

G L L M L
n n n n n
g l g l l l m l lmp g l l m l

G L
n
l g

g l

n n
l g l

C p p I

subject to

n

p g l n

ε
ε µ λ

ε

ε

= = = = =

= =

⎛ ⎞
− −⎜ ⎟

⎝ ⎠

≤ ∀

≥ ∈ ∀

∑∑ ∑ ∑ ∑

∑∑
 (4.5)

From (4.5), we can observe that for any fixed l� and g� , we can find the power 

p by solving the following optimization 

,
1

max

. . 0

M
n n n n

m lmg l l l l
m

n
l

C p p I

s t p

µ λ
=

− −

≥

∑� � � ��

�

 (4.6)

From (4.6), we can get the n
lp  value of power from the following equation: 

22

,

22
1

,

log 1 0
1

n n n n M
sl g l s l n n n

l l l m lmn n n n n ml sl s g l l

h h P pd p p I
dp h P h p

µ λ
=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟+ − − =⎢ ⎥⎜ ⎟⎜ ⎟+ +⎢ ⎥⎝ ⎠⎣ ⎦

∑
�

� , 

which is equivalent to  

( )
( )( )

22 2

,

2 2 22 2 2

, , ,

1

1

1 1

0

n n n n n
sl g l s sl s

n n n n n n n n n n n n
sl s g l l sl g l s l sl s g l l

M
n

l m lm
m

h h P h P

h P h p h h P p h P h p

Iµ λ
=

+

+ + + + +

− − =∑

�

� � �
  

With some  mathematical manipulation, we can obtain 

2

,
2

,

2
max 0,

2

n n n
sg l sln

l n
g l

h P
p

h

γ⎛ ⎞− −⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

� ��
�

��
�
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where ( )
22

24 ,
,

1

4
n n n

ssl g ln n n
s Mg l sl

n
m lml

m

h h P
h P

I
γ

µ λ
=

= +
+∑

� ��
� ��

�

�
. We denote byΨ , a matrix whose each 

element is ( ),g lΨ ��  the cost function using

2

,
2

,

2
max 0,

2

n n n
sg l sln

l n
g l

h P
p

h

γ⎛ ⎞− −⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

� ��
�

��
�

. The 

optimal ,
n
g lε for any subcarrier n will be 

( ) ( ) ( )
,

,

1 , *, * arg max ,

0
n g l
g l

g l g l g l

other wise
ε

⎧ = = Ψ⎪= ⎨
⎪⎩

 (4.7)

The dual variable can be updated as 

( ) ( )

( ) ( )

1 1

1

1 ( )

1 ( )

L N
max n n

m m m l lm
l n

N
max n

l l l l
n

t t t I p I

t t t p p

λ λ α

µ µ β

+

= =

+

=

⎡ ⎤⎛ ⎞+ = + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞+ = + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑∑

∑
 (4.8)

where ( )tα and ( )tβ  are the step size. A pseudo code for the dual decomposition 

is mentioned in Table 4.1.  

Table  4.1 Dual Decomposition Algorithm. 

Step1: Initialize the dual variables mλ and lµ . 

Step2: Calculate 

2

,
2

,

2
max 0,

2

n n n
sg l sln

l n
g l

h P
p

h

γ⎛ ⎞− −⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

� ��
�

��
�

 

Step3: Get ( ),g lΨ ��  and ,
n
g lε using (4.7) 

Step4: update dual variables using (4.8) 

Step5: Go to Step 2 if convergence criterion is not satisfied 
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4.1.3 Computational complexity of dual decomposition algorithm  

We measure the computational complexity in terms of flops ϒ  [5].  In each 

subcarrier, approximately GLM flops are required to calculate Ψ  and GL flops 

required to get the maximum of Ψ . It means a total of GLMN GLN+ flops for all N 

subcarriers. The update of dual variables required 3 3GLMN GLN M L+ + + flops. 

The overall complexity of algorithm will be ( )2 2 3 3subI GLMN GLN M L+ + + , where 

subI  is the number of iterations for sub-gradient method. The complexity of 

proposed dual decomposition based algorithm will be more for large network 

size; also, more number of iterations will be required to converge to an 

acceptable solution.  In the next section, we present a low-complexity iterative 

algorithm for joint subcarrier, relay assignment and power allocation (JPSARA). 

4.1.4 Iterative Algorithm for JPSARA  

For efficient subcarrier, power allocation and relay assignment in MMCRS, 

we present a low-complexity iterative greedy algorithm for joint power, subcarrier 

allocation and relay assignment (IJPSARA). The pseudo code of the proposed 

algorithm is shown in Table 4.2.  

This iterative algorithm is based on the plausible reasoning that the signal-

to-noise ratio of a secondary user on any subcarrier mostly depends on the 

transmission power of the relay assigned to the multicast group (to which this 

secondary user belongs) and the channel gain from this relay to the multicast 

group3.  The objective of optimization (4.3) is to maximize the total sum-rate 

capacity in MMCRS. Further, in optimization (4.3), the interference constraints 

may not always allow assigning the best multicast group4, the relays and 

subcarriers with which it has good channel condition. In this algorithm, we 

introduce a strategy that considers channel gains from both relay to the 

secondary user and relay to primary users while assigning relays to the multicast 

                                            
3 Means worst user of the group 
4 Best group is defined as the group with best worst channel condition among all the groups. 
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groups. The algorithm considers the channel gain between the relays and the 

secondary users as a profit (throughput) and the channel gain between the relays 

and the primary users as a loss (interference). We want to choose the relay for 

transmission that will give maximum profit to loss ratio. In other words, the 

algorithm assigns a relay to that multicast group with which it has the maximum 

ratio of channel gains with the secondary users to the channel gain with the worst 

primary user5 −i.e. the algorithm first determines assigned relay, group and 

subcarrier using the expression 

{ } { }

( )
( )

22

,

2 2 2
1,2,..., , 1,2,..., ,

1 2

, , arg max ;
, ,N

n n
sl g l

g G l L n
l l lM

h h
g l n

max h h h∈ ∈ ∈Γ

⎡ ⎤ =⎣ ⎦

�
�� �

"
 (4.9)

The relay l� that is assigned to the group g� will transmit on subcarrier n� . In (4.9), 

NΓ  is the set of available subcarriers. After getting , ,g l�� and n� , the algorithm 

determines the power of the selected relay. In Table 4.2, there is a sub-routine 

‘Evaluate’ that jointly performs the power allocation and interference calculation.  

We denote by Sum
lp , the total power allocated for the lth relay, sum

mI is the 

cumulative interference on the mth primary user. The algorithm is initialized as 

0,Sum
lp =  0, , 0,sum n

m lI m p= ∀ =  ( ), , 0 , ,g l n g l nε = ∀  and ( ) ( ), 0, ,C g k g k= ∀ . 

The power of the selected relay is calculated using the expression 

( )max
2, , ;

( )U

L

max sum
n sum m m

fl l l n n
lm f

I Ip min p p m
h f dfφ

⎧ ⎫⎛ ⎞
−⎪ ⎪⎜ ⎟= − ∀⎨ ⎬⎜ ⎟

⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭∫

�
� � �

� �
�

 (4.10)

where Sum
lp  is the total power allocated for the lth relay and sum

mI  is the cumulative 

interference on the mth primary user. Initially, the values of , ,Sum sum
l mp I  and n

lp  are 

set to zero. The expression in (4.10) jointly ensures that the allocated power 

satisfy the interference and power constraints. 

                                            
5 Worst primary user is the primary user that has best channel with the relay. 
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 After getting the power level of the relay l� at the nth subcarrier, the 

proposed algorithm updates the capacity of all users in the group g� . The 

algorithm terminates when all the subcarriers are assigned.  
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Table  4.2 Iterative greedy algorithm for JPSARA sum-rate maximization 
 

INITIALIZATION: 
( ) { }0, 0 , , 0, , 1, 2,..., ,Sum n sum

l l m Np p l n I m N= = ∀ = ∀ Γ = ( ), , 0 , ,g l n g l nε = ∀  
while NΓ ≠ ∅  

1: 
{ } { }

( )
( )

22

,

2 2 2
1,2,..., , 1,2,..., ,

1 2

, , arg max ;
, ,N

n n
sl g l

g G l L n
l l lM

h h
g l n

max h h h∈ ∈ ∈Γ

⎡ ⎤ =⎣ ⎦

�
�� �

"
 

2: ( , , )sum
mC I ε =Evaluate ( , , , , , )sum

mg l n C I ε�� �   
3: : \ ;N N nΓ = Γ �   
End 
( , , )sum

mC I ε =Evaluate ( , , , , , )sum
mg l n C I ε�� �    

1: ( )max
2, , ;

( )
l U

L

max sum
n sum m m

fl l n n
lm f

I Ip min p p m
h f dfφ

⎧ ⎫⎛ ⎞
−⎪ ⎪⎜ ⎟= − ∀⎨ ⎬⎜ ⎟

⎪ ⎪⎜ ⎟
⎝ ⎠⎩ ⎭∫

�
� � �

� �
�

 

2: 
2

: ( )l l

U

L

fsum sum n n n
m m f

I I p h f df mφ= + ∀∫� � �
� �               

3:  ( ), , 1g l nε =�� � ; 

4:   : ;l
sum sum n
l lp p p= + �
� � �  

5:   Update Capacity  
Output: p,ε  

 

Calculation of computational complexity of IJPSARA is very straightforward. The 

step 1 of the proposed IJPSARA algorithm requires GLN flops, and the Evaluate 

routine require approximately 6MN+15N flops. The total number of flops require 

by the proposed greedy algorithm is GLN+6MN+15N which is much less than the 

complexity of dual decomposition approach. 

4.1.5 Numerical Results  

For performance comparison, we present the simulation results of the 

proposed iterative greedy algorithm. In our simulations, the channel gains 

between source, relays and destinations have independent complex Gaussian 

distribution.  
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In Figs. 4.3, 4.4 and 4.5, we present the plot for sum-capacity versus 

interference threshold, max
mI . For these three scenarios, we use ( max

lp , L, N, G, 

|K|,B, Ts) = (0.1w, 2, 8, 2, 200, 1MHz, 1µ Sec), (0.1w, 2, 128, 4, 150, 1MHz, 1µ 

Sec) and (0.1w, 2, 64, 4, 100, 1MHz, 1µ sec). In all these Figs., we observe that 

as max
mI  increases the capacity increases. This is because at smaller values of 

max
mI  certain relays and subcarriers, which yield higher capacity, are not optimal 

because they violate the interference constraint at primary users but at larger 

values of max
mI these relays satisfy the interference constraint. We can also 

observe that proposed IJPSARA is close to the dual. In Fig. 4.6, we present the 

plot for sum-capacity versus number of primary users.  We use ( max
lp , L, N, G, 

|K|,B, Ts ) = (0.1w, 2, 32, 4, 200, 1MHz, 1µ Sec). The interference threshold is set 

to max
mI = {100uw, 1mw, 10mw}.From the result, we observe that the sum-capacity 

decreases with the increase in number of primary users. This is because by 

increasing the number of primary users, the secondary users need to satisfy 

more interference constraints. From the numerical results, Fig 4.7 and Table 4.3, 

we can see that IJPSARA converges to with in 70-85 percent of that obtained by 

the dual decomposition algorithm. 
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Fig. 4.3 Performance of IJPSARA with max 0.1w,lp = , L = 2, N = 8, G = 

2, gK =200 , g = 1, 2,…,G ,B = 1M Hz, and Ts = 1µ sec 
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Fig. 4.4 Performance of IJPSARA with max 0.1w,lp = , L = 2, G = 4, N = 128, 

gK =150 , g = 1, 2,…,G ,B = 1M Hz, and Ts = 1µ sec 
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Fig. 4.5 Performance of IJPSARA with max 0.1w,lp = , L = 2, G = 4, N = 64, 

gK =100 , g = 1, 2,…,G ,B = 1M Hz, and Ts = 1µ sec 
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Fig. 4.6 Performance of IJPSARA with max 0.1w,lp = , L = 2, G = 4, N = 32, 

gK =100 , g = 1, 2,…,G ,B = 1M Hz, and Ts = 1µ sec 
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Table  4.3 Percentage IJPSARA performance to Dual algorithm 

Parameters  
[L,G,N,M, max

mI ] 
M = 1 M = 3 M = 5 M = 7 

[2,4,32,1,10mw]  70.81% 73.98% 73.93% 74.28% 

[2,4,32,1,1mw] 85.57% 78.12% 74.29% 84.88% 
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Fig. 4.7 Percentage IJPSARA performance to the Dual algorithm 

 

4.2 Max-Min Resource Allocation in Multicast CRS 

In max-min multicast CRS (MMCRS), we define the capacity of each 

multicast group as the capacity of its worst user. The mismatch of data rate 

among users in a group occurs because different users in the group can have 

different channel conditions. The main objective of JPSARA is to maximize the 

rate of the worst group of users under the constraint of acceptable interference to 

the primary users. Mathematically: 
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(4.11) 

Constraint C1 is the constraint on total transmission power of the relay. 

Constraint C2 is the interference constraint. Constraint C3 ensures that no two 

relay transmit on a subcarrier. It means that relays’ transmissions occur on 

orthogonal subcarriers. Sharing of a subcarrier among multiple relays is possible 

but it requires coherent combining of the signals transmitted from the different 

relays, which may be quite challenging in practical systems [8]. 

An obvious way to solve the non-linear optimization problem in (4.11) is to 

exhaustively try all the combinations of assignment variables and solve the 

subsequent nonlinear convex optimization problem using standard convex 

optimization methods (e.g., interior point method [6] etc.). However, enumeration 

of all the combinations of assignment variables requires intense computation due 

to the combinatorial nature of the problem. Therefore, there is a need of low-

complexity algorithms for JSPARA. In the next section, we will present low-

complexity approach for JSPARA. 

4.2.1 Proposed Algorithm and Complexity Analysis  

 For efficient subcarrier, power allocation and relay assignment in 

MMCRS, we present a low-complexity iterative greedy max-min algorithm for 

joint power, subcarrier allocation and relay assignment (IJSPARA). The pseudo 

code of the proposed algorithm is shown in Table 4.4. The algorithm is similar to 

the algorithm described in section 4.1.2.  
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The algorithm considers the channel gain between the relays and the 

secondary users as a profit (throughput) and the channel gain between the relays 

and the primary users as a loss (interference). At the start of the algorithm, 

equations (4.9) and (4.10) are used to select the multicast group g� , relay l� , 

subcarrier n�  and power n
lp �
� .  The power determined by (4.10) greedily allocates 

the power to the selected group of users.  

To introduce max-min fairness in the system, we introduced a factor  1δ ≥  

(we call as greediness control factor) to control the greediness in the power 

allocation. If we set greediness control factor near to one ( 1δ ≈ ) then the 

multicast group with best channel condition will always get the maximum benefit 

and the multicast group with bad channel will always get least benefit. Less value 

of greediness control factor is useful when one want to maximize the total profit 

(i.e. sum-rate capacity). In the present scenario, we want to maximize the 

minimum profit (i.e. worst multicast group capacity). For max-min optimization 

problem, the value of δ  is selected so that there is always a win-win situation for 

every multicast group. In the numerical results (section 4.2.2), we show the effect 

of different values of δ  on the performance of the system. In the simulation 

results, we show that a proper value of δ  improves the performance of the 

proposed algorithm.  

After getting the power level of the relay l�  using controlled greediness, the 

proposed algorithm updates the capacity of all users in the group g� . In the next 

step, the algorithm iterates over the remaining subcarriers. In each iteration, the 

algorithm selects that multicast group that has the lowest capacity using the 

expression  

[ ] ( )arg min
g

g C=�   

Then the relay and subcarrier that has the maximum ratio of channel gain with 

the group g�  to the worst channel gain with primary user is determined as  
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again the Evaluate subroutine is used to determine the power of the lth�  relay on 

the nth� subcarrier. The algorithm terminates when all the relays powers are 

determined.  

The main advantage of the proposed algorithm is its low implementation 

complexity. Complexity is measured in terms of flopsϒ . The Table 4.4 shows the 

flop of each operation. From Table 4.4, we can determine the total number of 

flops require by the proposed greedy algorithm. The total numbers of flops are  

( )

( )2

2 3 12LM N M LN GL G

O GLN

ϒ≈ + + + + +

≈
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Table  4.4 IJPSARA for MMCRS 
 

IJPSARA Flops 
INITIALIZATION: 
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l l m Np p l n I m N= = ∀ = ∀ Γ =  
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2: ( , , )sum
mC I ε =Evaluate ( , , , , , )sum

mg l n C I ε�� �    
While NΓ ≠ ∅  
3:    [ ] ( )arg min

g
g C=� ;  
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5:     ( , , )sum
mC I ε =Evaluate ( , , , , , )sum

mg l n C I ε�� �    
6:    { }: \ ;N N nΓ = Γ �  
End 
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6: Update capacity  

 
1:M 
 
2:1 
 
3: 2M 
 
4:1 
5:1 
 
6:8 
 

Output: p,ε   
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4.2.2 Numerical Results  

For performance comparison, we present the simulation results of the 

proposed iterative algorithm. In our simulations, the channel gains between 

source, relays and destinations have independent complex Gaussian distribution. 

For a comparison, we suggest an upper bound on the JPSARA by relaxing the 

integer constraint ,
n
l gε and solve this optimization problem using non-linear 

programming techniques.  

    In Fig. 4.8, we present the plot for minimum group capacity   versus 

interference threshold, max
mI . We use max 5w,lp =  L = 3, N = 10, B = 1M Hz, and Ts 

= 1µ sec.  The greediness control factor δ is set to two and four. We observe that 

as max
mI  increases the capacity increases. This is because at smaller values of 

max
mI  certain relays and subcarriers, which yield higher capacity, are not optimal 

because they violate the interference constraint at primary users but at larger 

values of max
mI these relays satisfy the interference constraint. In Figs 4.9 and 

4.10, we present the effect of greediness control factor δ δ on the performance of 

proposed iterative greedy algorithm. We used two different scenarios (K, M, L, G, 

N, B, Ts,
max
lp ) = (2, 1, 3, 8, 16, 1MHz, 1µ sec, 5w) and (3, 4, 3, 8, 16, 1MHz, 1µ 

sec, 5w). In both scenarios, the interference threshold is set to max
mI = {10µw, 

100µw, 1mw, 10mw}. From Figs. 4.9 and 4.10, we observe that if greediness 

control factor is set to one, the worst group capacity will be close to zero. This is 

because the maximum power will be given to the selected relay and subcarrier. It 

will be difficult for the remaining subcarriers and relays to allocate any power 

because of constraint C2 of equation (4.9). On the other hand, if the value of 

greediness control factor is high, the worst group capacity will be low because 

available power may not be fully utilized. In Fig 4.10, we present the plot for 

minimum group capacity   versus number of primary users.  We use, max 5w,lp = L 

= 3, N = 10, B = 1M Hz, and Ts = 1µ sec.  The greediness control factor δ is set 

to two and four. The interference threshold is set to max
mI = {1µw, 10µw, 
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100uw}.From the result, we observe that the minimum group capacity decreases 

with the increase in number of primary users. This is because by increasing the 

number of primary users, the secondary users need to satisfy more interference 

constraints. 
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Fig. 4.8 Performance comparison of the multiuser multicast relay network 

with, max 5w,lp = , L = 3, N = 10, B = 1M Hz, and Ts = 1µ sec 
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Fig. 4.9 Effect of greediness control factor on the performance of proposed 

algorithm with max 5w,lp =  L = 3, N = 16, G = 8, B = 1M Hz, and Ts = 1µ sec 
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Fig. 4.10 Effect of greediness control factor on the performance of proposed 

algorithm with max 5w,lp =  L = 3, N = 16, G = 8, B = 1M Hz, and Ts = 1µ sec 
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Fig. 4.11 Minimum group capacity vs. the number of primary users 
with max 5w,lp = , L = 3, N = 10, G = 4, K = 3,B = 1M Hz, and Ts = 1µ sec. 

 
 
To check the feasibility of the proposed algorithms for practical implementation, 

in Table 4.5, we present the number of flops required by ESA, Dual, and 

IJPSARA for different parameter settings (i.e., different search space size). The 

comparison shows that the number of flops required by IJPSARA and Dual 

algorithms is much less than that of ESA. 

 
Table  4.5 Number of flops required by ESA, Dual and IJPSARA 
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Parameters  
[G,L,M,N,Isub] 

ESA Dual IJPSARA 

[2,5,1,8,25] 1.0737e+009 8450 248 

[2,5,1,32,25] 1.1259e+015 32450 992 

[2,5,1,64,25] 1.1529e+018 64450 1984 

[5,10,10,8,25] 1.4272e+045 221500 1000 

[5,10,10,32,25] 1.8093e+075 881500 4000 

[5,10,10,64,25] 2.0370e+090 1761500 8000 

[10,10,10,8,25] 2.030e+090 441500 1400 

[10,10,10,32,25] 3.2734e+150 1761500 5600 

[10,10,10,64,25] 4.1495e+180 3521500 11200 
 
 
 

4.3 Summary  

In this chapter, we presented two iterative algorithms for joint power, 

subcarrier allocation and relay assignment (JPSARA) scheme for MMCRS. The 

proposed algorithms have low computational complexity. The simple model and 

low implementation complexity make the proposed algorithms suitable 

candidates for solving JPSARA problems.  
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PART   3:     USER SCHEDULING 
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CHAPTER 5: USER SCHEDULING AND POWER 
ALLOCATION IN CRS  

Generally, in wireless communications, the multiple-input-multiple-output 

(MIMO) system can achieve higher channel capacity than the single-input-single-

output (SISO) system for the same total transmission power and bandwidth [1]. 

We consider a network of cognitive radio communication systems in which the 

secondary users and their base station are equipped with multiple antennas and 

MIMO processing capabilities. We address user scheduling and power control in 

the uplink multiuser MIMO CRS. We consider the system in which a node’s 

transmission power can be chosen from only a finite set of values; reducing the 

number of possible power levels reduces the number of bits in the power control 

message and the complexity of the transmitting node. For each time-frame 

(block, or slot), the base station ought to select the best group of users and their 

transmission power levels under the constraint that the interference to the 

primary users is below a specified level. We consider the sum-rate capacity of 

the multiuser MIMO multiple access channels as the performance measure to 

maximize with the assumption that the base station has the full knowledge of the 

channel conditions.  We will refer to this problem as joint secondary user 

selection/scheduling and quantized power control (JSUS-QPC). Discrete power 

levels make this optimization problem combinatorial in nature. 

The exhaustive search algorithm (ESA) is an obvious method of non-linear 

integer programming problems such as JSUS-QPC problem. Exhaustive search 

algorithm evaluates all possible ways of user scheduling and power levels. The 

complexity of exhaustive search for JSUS-QPC increases exponentially with the 

number of users and power levels. Therefore, the exhaustive search algorithm is 

not suitable for real-time user selection/scheduling and power control decisions, 

which should be made at each time slot (frame). In a real-time environment, the 

channel conditions may vary from slot to slot, and the decision of the uplink 
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transmission power levels should be made at each time slot. The algorithm for 

making such decisions should be computationally efficient. Traditional user 

scheduling schemes in multiuser MIMO systems [2],[3],[4] and [5] are not 

applicable in cognitive radio networks because the selected subset of users, 

which maximizes the sum-rate capacity in traditional multiuser MIMO systems, 

may generate more interference to the primary users than allowed. 

For fast user selection and power control, we present three low-complexity 

algorithms. We introduce 1) Estimation-of-distribution algorithm (EDA) 2) 

interference aware capacity maximization algorithm (IACMA), and 3) iterative 

user scheduling with interference minimization algorithm (IUSIM). The IACMA, in 

each iteration, incrementally selects one secondary user with suitable power 

level that has the maximum single-user capacity and whose addition in the set of 

selected users keeps the total interference at the primary users below the 

specified interference threshold. The IUSIM algorithm, in each iteration, 

incrementally selects one user that induces the minimum interference to the 

primary users. The proposed IACMA and IUSIM schemes have quadratic 

complexity with respect to the number of secondary users K. Our experiments 

indicate that the sum-rate capacity achieved by the proposed schemes is close to 

that of the exhaustive search algorithm.  
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Table  5.1 Notations  
 

Symbol Definition 
K Number of secondary users 
M Number of primary users 
NT Number of Transmit Antennas of each secondary user 
NR Number of Receive Antennas at base station 

,k bsH  
Channel matrix between the base station and the kth secondary 
user 

,k mH  Channel matrix between the mth primary user and the kth 
secondary user 

kP  power of the kth secondary user 

RNI  Identity matrix of dimension NR× NR 

Ks 
Maximum number of secondary user that can be selected to 
transmit at the given time slot 

φ  Set of selected secondary users 
max
mI  

Maximum tolerable interference threshold for the mth primary 
user 

λ  Number of power levels 
max

kP  Maximum allowed transmission power of the kth secondary user 
PL Set of discrete power levels 

FSΨ  Set of final selected secondary users 

PSΨ  Set of current partially selected secondary users 

,k CΓ  Capacity of the kth secondary user 

, ,k m IΓ  Interference from the kth secondary user to the mth primary user
sum
mI  

Cumulative interference induced at mth primary user from the 
selected secondary users 

,
Sum
k IΓ  Total interference induced by the kth secondary user 

5.1 System Model  

We consider information flow through uplinks of K secondary mobile users 

each equipped for MIMO communication. Each secondary user has NT transmit 

antennas, and the central controller/base station of secondary users has NR 

receive antennas. There are M primary users with single receive antenna. We 

assume that the secondary users do not have their uplink channel side 

information (CSI), but the base station has the channel state information (CSI) for 
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both secondary and primary users. Since the secondary users do not have the 

uplink CSI, it is reasonable for each of them to allocate equal transmission power 

to each of their transmission antennas. We denote by ,
R TN N

k bsH ×∈^  the channel 

matrix specifying the gains from the kth secondary user’s transmission antennas 

to the base station’s receiver antennas and 1
,

TN
k mH ×∈^   the gain of the channel 

from the kth secondary user’s transmission antennas to the mth primary user.  

We assume that the base station (central controller) of the secondary users has 

knowledge of the primary users and secondary users locations and their channel 

gains , ,,k bs k mH H . On the basis of channel information of both secondary and 

primary users, , ,,k bs k mH H , the base station will select the best subset of secondary 

users at each time block/slot that will satisfy the interference constraint to the 

primary users. The mobile radio channel is assumed to be quasi-static; that is, 

the channel gain remains constant during each time block. The achievable sum-

rate capacity for all users in MIMO multiple access channel without regard to 

interference to primary users is [11] 

†
1 2 k

1

1( ,..., ) log det
R

K
bs bs bs bs

sum K N k k
k

C H H I H H
N =

⎛ ⎞= + Ω⎜ ⎟
⎝ ⎠

∑  (5.1)

where bs
kH † denotes Hermitian of channel matrix bs

kH ,N is the noise power, 

( ) /
Tk N TP I NΩ =k , kP  is the power of the kth mobile users, and 

RNI  is the identity 

matrix. 

In this chapter, we will consider imposing a restriction on the system that it 

cannot schedule more than Ks secondary users to transmit together. This is 

because the spatial degree of freedom is limited by the number of base station’s 

receive antennas [12].  Therefore, the sum-rate capacity does not increase 

significantly by adding more secondary users above a certain limit.  Having an 

additional constraint Ks reduces search space and therefore helps reducing 

computational time of user selection (scheduling). In our system model, we 
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assume that /s R TK N N≅ ⎡ ⎤⎢ ⎥ .  Although more than /R TN N⎡ ⎤⎢ ⎥  can transmit 

simultaneously, the sum-rate capacity will not increase significantly as the 

number of transmitting users increase beyond /R TN N⎡ ⎤⎢ ⎥ . 

We denote by φ  the set of secondary users selected for transmission in 

one time block.  The main objective of this work is to select a subset of 

secondary users φ  from K secondary users in such a manner that the sum-rate 

capacity is maximized under the interference constraint to the primary users. We 

denote by 1, ,( , ,..., )sum bs K bsC H Hφ = †
2 , ,

1log det
RN k k bs k bs

kT

I P H H
N N φ∈

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑  as the sum-

rate capacity of the selected φ  users. Mathematically we can model user 

selection/scheduling problem in MIMO CRS as a mixed integer non-linear 

programming problem 

†
2 , ,

,

† max
, ,

max

1max log det

subject to
11: 1, ,

2 :

3: ,0

R
k

N k k bs k bs
P kT

k k m k m m
kT

s

k k

I P H H
N N

C P H H I m M
N

C K

C P P k

φ φ

φ

φ

φ

∈

∈

⎛ ⎞
+⎜ ⎟

⎝ ⎠

≤ ∀ =

≤

∈Φ ≤ ≤ ∀

∑

∑ "  (5.2)

where †
, ,

1
k k m k m

kT

P H H
N φ∈
∑ is the interference contributed by the φ  secondary  

users on the mth primary user, and max
mI is the maximum tolerable interference 

threshold for the mth primary user. The constraint C1 assures that interference to 

the primary users is less than some acceptable interference threshold max
mI . The 

constraint C2 ensures that at most Ks secondary users can be selected at any 

time simultaneously. The constraint C3 is the power constraints on each 

secondary user.  
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In this work, we assume that secondary users’ transmission power is 

discretized into finite levels, which help in reducing the transmission frame 

overhead as fewer bits are required to describe the user’s transmission power. In 

our formulation  kP  is discrete and takes on the values in the set PL comprising 

1λ +  discrete power levels, PL = 
max max

max20, , ....,k k
k

P P P
λ λ

⎧ ⎫
⎨ ⎬
⎩ ⎭

[13], where max
kP  is the 

maximum allowed transmission power of the kth secondary user. The fewer 

choices of secondary users’ transmission power mean the fewer bits in a control 

message. Mathematically: 

†
2 , ,

,

† max
, ,

1max log det

subject to
11: 1, ,

2 :
3: , ,

R
k

N k k bs k bs
P kT

k k m k m m
kT

s

k L

I P H H
N N

C P H H I m M
N

C K
C P P k

φ φ

φ

φ
φ

∈

∈

⎛ ⎞
+⎜ ⎟

⎝ ⎠

≤ ∀ =

≤

∈Φ ∈ ∀

∑

∑ "  
(5.3) 

We denote by Φ the collection of all possible secondary user selections. Then, 

the number of possible ways of selecting the users is 1
sK

i

K
i=

⎛ ⎞
Φ = ⎜ ⎟

⎝ ⎠
∑ .  We show 

that the JSUS-QPC is NP-Hard problem (Appendix E). Exhaustive Search 

Algorithm (ESA) evaluates all possible |Φ| selections. Enumerating over all 

possible combinations and finding the one that maximizes 

1, ,( , ,..., )sum bs K bsC H Hφ under the interference constraint is computationally 

inefficient. Computational complexity of exhaustive search increases 

exponentially with the number of secondary users. High-speed communications 

require user selection/scheduling schemes with lower complexity. In the next 

section, we will describe EDA, IACMA and IUSIM schemes MIMO CRS. 
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5.2 Proposed algorithms   

In this section, we proposed low-complexity user selection schemes for 

cognitive radio MIMO system. 

5.2.1 Estimation-of-distribution Algorithm 

Now, we will present an evolutionary Estimation-of-distribution Algorithm 

(EDA) for JSUS-QPC  [20]. Evolutionary algorithms (EAs) in general have been 

often used to solve difficult optimization problems.   Candidate solutions to an 

optimization problem are represented as individuals in the population. 

Evolutionary Algorithms (EAs) are inspired by the theory of biological evolution. 

In EAs, the objective function value of a candidate solution indicates the fitness 

of the individual in the concept of natural selection [19]. Unlike other evolutionary 

algorithms such as the genetic algorithm, in EDA, the individuals are generated 

without the crossover and mutation operators. Instead, in EDA, a new population 

is generated based on a probability distribution, which is estimated from the best-

selected individuals of the previous iterations [20].  

In general, conventional EDAs can be characterized and described by 

parameters and notations ( ), , , , , ,s l l s TerI F p Iη∆ Γ , where
  

 

1. Is denotes the space of all potential solutions (entire search space 

of individuals).  

2. F denotes the fitness function. 

3. ∆l denotes the population (the set of individuals) at the lth iteration 

and l∆  denotes its cardinality. 

4. ηl  denotes the set of best candidate solutions selected from set ∆l 

at the lth iteration. 

5. ps is the selection probability. The EDA selects ps|∆l| individuals 

from set ∆l to make up the set ηl.  
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6. We denote by lΓ  the distribution estimated from ηl (the set of 

selected candidate solutions) at the lth iteration. 

7. ITer is the maximum number of iterations.  

In conventional EDAs each individual can be designated by a binary string 

of length n (n-dimensional binary vector). We denote by a binary row vector X = 

(x1, x2,· · ·,xn), { }0,1ix ∈ as an individual. In each iteration, an EDA maintains a 

population of individuals. We denote by |∆l| the number of individuals in 

population ∆l. Population ∆l can be specified by the following l n∆ ×   matrix
 

1 1 11
1 2
2 2 22
1 2

1 2
l l ll

n

n

n

x x x
x x x

x x x∆ ∆ ∆∆

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟Λ = = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

#
#

" " " "#

#

X
X

X
, 

(5.4)

where superscript { }1, 2,..., lj ∈ ∆  in the row vector  jX ( )1 2 3, , ,...,j j j j
nx x x x=  

indexes an individual in the population. We first consider applying the 

conventional EDA to the JSUS-QPC problem discussed in section II. A typical 

EDA applied to the JSUS-QPC problem can be described in the following steps: 
 

 
Step 0: Generate an initial population ∆0.  The initial population (|∆0| individuals) 

is typically obtained by sampling according the uniform (equally likely) distribution 

[20]:   

( )1 2
1

, , , ( ) ,

( 1) ( 0) 0.5, 1, 2,..., .

n

n i i
i

i i i i

p p

p p i n

θ θ θ θ

θ θ
=

=

= = = = =

∏"

 
(5.5)

(In accordance with Eqn. (5.5), in a typical EDA the joint probability distribution 

from which the individuals are sampled is factorized as a product of n univariate 

marginal probability distributions, each following a Bernoulli distribution with 

parameter value equal to 0.5.  
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For iterations l = 1,2, ....,  follow Step 1 through Step 6: 

Step 1:  Evaluate the individuals in the current population 1l−∆  according to the 

fitness function F. Sort the candidate solutions (individuals in the current 

population) according to their fitness orders.  

Step 2: If the best candidate solution satisfies the convergence criterion6 or if the 

number of iterations exceeds its limit TerI , then terminate; otherwise go to next 

step. 

Step 3: Select the best 1 1s l lp η− −∆ =  candidate solutions (individuals) from the 

current population ∆l-1. This selection is accomplished according to the sorted 

candidate solutions. 

Step 4: Estimate the probability distribution ( )1 2, , , np θ θ θ"  on the basis of |ηl-1| 

best candidate solutions. We denote this estimation by   

1 1 2 1( , , , | ) l n lP θ θ θ η− −Γ ≡ "  (5.6) 

Step 5: Generate new |∆l|− |ηl-1| individuals on the basis of this new estimated 

probability distribution 1l−Γ . (In randomly generating the new individuals, if an 

individual drawn from distribution (5.6), ( )1 2 3, , ,..., nx x x x has more than Ks 1’s in its 

components, then 1

n
i si

x K
=

−∑  of those 1’s are randomly selected and are 

replaced with 0 so that the total number of 1’s in each individual may not exceed 

Ks.) Combine these newly generated |∆l|− |ηl-1| individuals with members of ηl-1 to 

form a new population ∆l. 

Step 6: Go to step 1 and repeat the steps. 

 

                                            
6  A simple example of the convergence criterion would be to terminate the algorithm if there is no 

improvement of the fitness value in the iteration.   
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Convergence
Criterion satisfied

Yes

No

Select
Best Soultions

Evaluate             Population

Terminate

Sort

Apply Thresholding

1l
F

−∆

Generate New
Solutions with Conditional

Prob. Vector

Produce          population

1l−∆

l∆

l lη∆ −

0l=∆

1lη −

1 2 1( , , , | ) n lP −Γ = "θ θ θ η

Update Counter
l=l+1

is l = 0

No

Yes

Evaluate                  Populationl lη∆ −

Interference Constraint
Routine

          X1  X2  X3   …   Xn   Function
                                          Values
  1      1    1    0    …    0    F1
  2      1    0    0    …    1    F2
...     ...   ...   ...   …    ...   ...
      1    0    0    …    1

         X1  X2  X3   …   Xn
  1     1    1    0    …    0
  2     1    0    0    …    1
  ...     ...   ...   ...   …    ...
          0    1    0    …    11lη −

 

Fig. 5.1 EDA Flow Diagram 
 

 
 

Fig. 5.2 Biased Random Population 

 

 For the user-scheduling problem, the fitness function of our EDA is the 

objective function in (5.3). The dimension, n, of the vector that represents each 



 

 135

individual is equal to the total number of users K. We followed the steps of the 

above pseudo code for our EDA implementation for the user-scheduling problem.  

In our experimentation, for estimation, we used the simple scheme of estimating 

the marginal distributions separately and using the product form  

( )1

1 1 2 1 1
1

11

1 1

( , , , | ) = ( | )

|l

n

l n l i i l
i

jn i i lj

i l

p p

xη

θ θ θ η θ η

δ θ η

η

−

− − −
=

−=

= −

Γ =

⎛ ⎞=
⎜ ⎟=
⎜ ⎟
⎝ ⎠

∏

∑
∏

"

 (5.7) 

In order to generate the samples in the next iteration (generation), where δ is an 

indicator function for the individual indexed by j in the set ηl-1. 

( )1
1

|
0

j
j i

i l
if x

x
otherwise

θ
δ θ η −

⎧ =
= = ⎨

⎩
 (5.8) 

Even with this simple application of EDA, the simulation results show that its 

performance is better than previously proposed algorithms. In addition, we were 

able to modify this basic EDA algorithm and even further improve the algorithm’s 

performance.   In this thesis, we propose one modification to the typical EDA in 

solving the JSUS-QPC problem. The modification is applying thresholds in 

estimating the distribution.  

5.2.1.1 Method of Applying Threshold 

A typical EDA can get stuck in a local optimum due to premature 

convergence of the probability distributions, or can be slowed down due to no-

convergence of the probability distributions. During the execution of a typical 

EDA, some of the estimated probabilities 1( 1| ), 1, 2, ,i lP i nθ η −= = "  may become 0 

or become very close to 0 at an early stage of the execution (at a small value of 

iteration count l).  In that case, the algorithm is not likely to explore the candidate 

solutions with 1ix =  during the rest of the execution.  For example, suppose that 
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every individual, represented by row vector X = (x1, x2,· · ·,xn), in the  set ηl  

happens to have value 0ix = . Then, in accordance with (5.7), empirical 

distribution lΓ  gives 0-probability of drawing a candidate solution with 1ix =   in 

population 1l+∆ , and this in turn provides no chance of drawing any candidate 

solution with 1ix =  in the future generations. In this scenario, the value of 0ix =  , 

the ith component, is stuck with value 0 at iteration l, and solutions with 1ix =  are 

never explored thereafter by the algorithm. More specifically, we take an example 

system that has seven users (K=7) and allows up to three users (Ks=3) to 

transmit simultaneously. Let the population size be 7. We consider a scenario 

illustrated in Fig. 5.2.  In this figure, we can observe that the each individual of 

the population has element x3 = 1. This causes the probability of selection of third 

user to one. Now the user 3 will be selected in all candidate solutions in the 

population at every future iteration of EDA. A similar situation occurs with x7, 

where the probability of selection of seventh user is zero. We present a method 

of avoiding these problems.   

      Our approach is to apply a threshold on estimated parameters of the 

distributions. In order to thwart premature convergence, we present an idea of 

adjusting the estimated probabilities 1( 1| ), 1, 2, ,i lP i nθ η −= = "  after estimating 

these at each iteration. The adjustment in general can be regarded as a mapping 

from set of n-tuples  

( ) 1
1 1 2 1 1

0 ( 1| )
( 1| ), ( 1| ),..., ( 1| )  

1, 1,2,...,
i l

l l n l

P
P P P

i n
θ η

θ η θ η θ η −
− − −

⎧ ≤ = ⎫⎪ ⎪Π ≡ = = =⎨ ⎬≤ =⎪ ⎪⎩ ⎭
 

to set Π  itself. First, we address the problem that a marginal probability value, in 

the estimated distribution, prematurely converges to 1. To avoid this, we set 

some thresholds 1 20.5 , ,..., 1nγ γ γ< < . At any iteration, if the probability 

value 1( 1| ), 1, 2, ,i lP i nθ η −= = "  is greater than iγ , we set that value to iγ  −i.e., we 

set 1( 1| )i l iP θ η γ−= = .  This way, some degree of randomness remains in the 

algorithm until the termination criterion is satisfied. A simpler application of this 
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idea is to set the same threshold 1 2 ... nγ γ γ γ= = = = .  We can similarly address 

the problem that a probability value prematurely converges to 0. We define 

thresholds 1 20 , ,..., 0.5nγ γ γ< <� � � . At any iteration, if the estimated probability 

value 1( 1| )i lP θ η −= ,  i = 1, 2, .., n, is less than iγ� , we set 1( 1| )i l iP θ η γ−= = �  so that 

some degree of randomness remains in the algorithm until the termination 

criterion is satisfied. A simpler application of this idea is to set the same 

threshold 1 2 ... nγ γ γ γ= = = =� � � � .
 

5.2.2 Interference Aware capacity maximization algorithm 

      In this subsection, we describe interference aware capacity maximization 

algorithm. The proposed IACMA greedily select a user with appropriate power 

level that gives maximum single-user capacity among all the unselected users, 

and whose addition in the set of selected users keeps the total interference to the 

primary users under the interference constraint. The IACMA is a two-stage 

algorithm. At the first stage , the algorithm determines the transmission power, 

,kP of each secondary user and computes some other quantities for second 

stage. In stage 1, the algorithm sets the transmission power, ,kP  of each 

secondary user k to ( ){ }* †
, ,max | 1/ ( )max

k k L T k k m k m mp p P N P H H I m= ∈ ≤ ∀ ;  Note that 

( ), , , ,1 / †
k m I T k k m k mN P H HΓ =  can be interpreted as the interference that user k  

individually contribute to the interference on primary user m −that is, the 

interference user k would cause on primary user m if no other secondary users 

were transmitting. In words, the algorithm at stage 1 sets the transmission power 

of each secondary user as high as possible with the constraint that the 

interference it individually causes on each primary user is within its interference 

constraint (interference tolerance level). Note that such a transmission power 

level for some secondary user can be 0 if every positive power value in set LP  

individually causes interference on some primary user above its tolerance level. 

The secondary users with power level set to 0 are removed from consideration; it 

means at the end of stage one, the algorithm selects the secondary users that 
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individually satisfy the interference constraints at all the primary users.  At stage 

one, algorithm also computes the individual capacity of each selected user and 

store in ,k CΓ . The pseudo code of IACMA is described in Table 5.2. 

   To obtain the final selected secondary users that maximize the sum-rate 

capacity under the interference constraint, the IACMA, in the second stage, 

incrementally selects one user, with non-zero transmission power, in each 

iteration. The algorithm first selects the user ( ),: arg max k C
k

Λ = Γ  that gives 

maximum single user capacity. Then, the interference induced by this selected 

user is added to the sum-interference ( ), , ,sum
m m II mΛ+Γ ∀ . If the interference 

( ), , ,sum
m m II mΛ+Γ ∀  satisfies the interference constraint max

mI  then that user is 

included into the set FSΨ  and its corresponding index/data is removed from , ,k m IΓ  

and ,k CΓ . The second stage steps are repeated for the remaining users with non-

zero transmission power.  

5.2.3 Iterative User scheduling with interference minimization 

Although the interference aware capacity maximization algorithm performs 

very well, there are certain situations where performance of IACMA is not good. 

An exemplary situation is shown in the Table 5.3.  In this example, we have four 

secondary users with their respective individual capacities ,k CΓ , interference , ,k m IΓ  

induced by these users on the primary users’ m1 and m2, and interference 

thresholds max
mI on primary users’ m1 and m2. Let Ks = 2. If we apply IACMA on 

Table 5.3 to select the users then greedily it will select first user 2 and store in 

set FSΨ .  The interference , ,k m IΓ induced by the user 2 on primary users’ m1 and 

m2 is 4.5 and 3.8 respectively. Since Ks = 2, the algorithm can select one more 

user but by adding any other user to user 2 will violate the interference 

constraint. One good solution to the above example is to select users 1 and 3. In 

this subsection, we describe iterative user scheduling with interference 
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minimization (IUSIM). The IUSIM algorithm, in each iteration, incrementally 

selects one user that induces the minimum interference to the primary users.  

 
Table  5.2 IACMA  
IACMA Flops  

INPUT: K,M,NT,NR ,P, 
max
mI ,k mH , , ,k bsH Pk, ( , ),k m∀ λ   

INITIALIZATION: { }FSΨ = , , , 0 ( , )k m I k mΓ = ∀  , 
0 ,mI m= ∀ 0,sum

mI m= ∀ , , 0k C kΓ = ∀  

 

STAGE 1: 
1: For k=1 to K 

2: 
†

, ,* max | ( )k k m k m max
k k L m

T

P H H
p p P I m

N
⎧ ⎫⎪ ⎪= ∈ ≤ ∀⎨ ⎬
⎪ ⎪⎩ ⎭  

3:   If  * 0kp ≠   
4:   ,k CΓ =GetCapacity ( )*

,, ,k k bsp H k ;     

5:    
*

, ,
, , ;

†
k k m k m

k m I
T

p H H
m

N
Γ = ∀  

6:   End if 
7: End for 

 
 
2: 2Mλ NT 
3:  1 
4: 22 R TN N  
5: 1 
6: MNT 
 

STAGE 2: 
9: while FS sKΨ ≤  

10:    ( ),arg max k C
k

Λ = Γ ; 

11:    If ( ), ,
sum max
m m I mI I mΛ+Γ ≤ ∀   

12:        { }: ;FS FSΨ =Ψ ∪ Λ     
13:        ( ), ,:sum sum

m m m II I mΛ= + Γ ∀  
14:   End if 
16:   , 0CΛΓ =  
17:   , , 0m I mΛΓ = ∀  
18:    End While 

 
 
 
10: PSΨ  
11: 2M 
12: 1 
13: 2M 
15: 1 
16: 1 
17: M 
 

OUTPUT: FSΨ   
 

 We denote by FSΨ  the set of final selected secondary users, , ,k m IΓ the 

interference from the kth user to the mth primary user, sum
mI the sum-interference 

from the selected secondary users, and ,
Sum
k IΓ the total interference induced by the 

kth user. 
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The IUSIM is also a two-stage algorithm. At stage 1, the algorithm 

determines the transmission power, ,kp  of each secondary user and computes 

some other quantities for stage 2. The determination of transmission power ,kp  

is identical to the IACMA. The secondary users with power level set to 0 are 

removed from consideration; it means at the end of stage one, the algorithm 

selects the secondary users that individually satisfy the interference constraints 

at all the primary users. For the users with non zero transmission power levels, 

the algorithm then calculates the aggregated or sum-

interference, , , ,
Sum
k I k m Im

Γ = Γ∑ where  , ,k m IΓ =  ( ) , ,1 / T k k m k mN P H H †  is the interference 

that user k individually contribute to the interference on primary user m, from 

each secondary user to the primary users. The pseudo code of IUSIM is 

described in Table 5.4. 

Table  5.3 Example   

K ,k CΓ  , ,k m IΓ  max
mI  

  m1 m2 m1 m2 

1 10 2.5 4.0 5 5 

2 17 4.5 3.8 5 5 

3 15 2.3 1.0 5 5 

4 3 3.5 1.1 5 5 

 

To obtain the final selected secondary users that minimize the sum-

interference, the IUSIM, in the second stage, incrementally selects a user with 

non-zero transmission power in each iteration. The algorithm first selects the 

user which gives minimum sum interference ,
Sum
k IΓ . Then, the interference induced 

by this selected user is added to the sum-interference sum
mI . If the sum-

interference satisfies the interference constraint then that user is included in FSΨ  

and the selected user data is removed from , ,k m IΓ  and ,
Sum
k IΓ  . The second stage 
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steps are repeated for the remaining users with non-zero transmission powers. 

The IUSIM algorithm is described in Table 5.4. 

Table  5.4 IUSIM 
 

Iterative User Scheduling with interference 
minimization      (IUSIM) 

Flops for 
IUSIM 

INPUT: K,M,NT,NR ,P, max
mI k

mH , ,bs
kH Pk, ( , ),k m∀ λ   

INITIALIZATION: { }FSΨ = , , , 0 ( , )k m I k mΓ = ∀  , 
,

Sum
k I kΓ = ∞ ∀ , 0 ,mI m= ∀ , 0Sum

mI m= ∀ , 

 

STAGE 1: 
For k=1 to K 

2: 
†

, ,* max | ( )k k m k m max
k k L m

T

P H H
p p P I m

N
⎧ ⎫⎪ ⎪= ∈ ≤ ∀⎨ ⎬
⎪ ⎪⎩ ⎭  

3:   If  * 0kp ≠   

4:    
*

, ,
, , ;

†
k k m k m

k m I
T

p H H
m

N
Γ = ∀  

5:    , , , ;Sum
k I k m Im

Γ = Γ∑  
6:   End if 
7: End for 

 
 
2: 2Mλ NT 
3:  1 
4:  2MNT 
5: M 

STAGE 2: 
8: while FS sKΨ ≤  
9:    ,arg min Sum

k I
k

Θ = Γ ; 

10:    If ( ), ,
sum max
m m I mI I mΘ+Γ ≤ ∀   

11:        { }: ;FS FSΨ =Ψ ∪ Θ     
12:        ( ), ,:sum sum

m m m II I mΘ= + Γ ∀  
13:   End if 
14:   ,

Sum
k IΓ = ∞  

15:   , , 0m I mΘΓ = ∀  
16:    End while 

 
 
10: PSΨ  
11: 2M 
12: M 
13: 2M 
15: 1 
16: M 

OUTPUT: FSΨ   
 

5.3 Complexity Analysis  

The main motivation of the proposed algorithms is low implementation 

complexity. In this section, we will compare the complexity of the proposed 
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algorithms with optimal (ESA) algorithm. Complexity is measured in terms of 

flops ϒ .  

5.3.1 Complexity of IACMA and IUSIM  

Table 5.2 and 5.4 describe the complexity of IACMA and IUSIM 

operations.  The IACMA takes approximately  ( )22 2 2T T R TK M N MN N Nλ + + +  

( )5s PSK M+ Ψ +  flops. To get the flop count IACMAϒ , we set PSΨ = K, and Ks = K. 

The flop count IACMAϒ   is 

( ) ( )
( )

2

2 2

2 2 2 5IACMA T T R T

T R T

K M N MN N N K K M

O KM N K KN N

λ

λ

ϒ ≈ + + + + +

≈ + +
 

(5.9) 

The IUSIM requires approximately ( ) ( )2 2 5T T s PSK M N K MK MN K Mλ + + + + Ψ +  

flops. To get the flop count IUSIMϒ , we set PSΨ = K and Ks = K. The flop count 

IUSIMϒ  

( ) ( )
( )2

2 2 5IUSIM T T s PS

T

K M N K MK MN K M

O K M KM N

λ

λ

ϒ ≈ + + + + Ψ +

≈ +
 

(5.10) 

5.3.2 Exhaustive Search Algorithm  

The number of floating point operations for computing the term inside the 

determinant in (5.3), †1
R

k bs bs
N k k

kT

I P H H
N N φ∈

+ ∑   can be expressed as 

( ) ( )2 2
s R T R s R TO K N N N O K N N+ =  for the worst case of sKφ = 7.  Computing the 

determinant requires 3 / 3RN  complex operations. Thus, computational complexity 

of evaluating †1det
R

k bs bs
N k k

kT

I P H H
N N φ∈

⎛ ⎞
+⎜ ⎟

⎝ ⎠
∑  can be expressed as 

                                            
7 It may take much less if the number of selected users is less than Ks. 
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( )2 3
s R T RO K N N N+ . The exhaustive search algorithm (ESA) needs to compute 

1

Ks

i

K
i=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑  determinants. The interference constraint takes 2MNT flops. The 

computation of power level requires ( )sK λ
flops. Finally, the computational 

complexity of exhaustive search algorithm with discrete/quantize power (ESA-

D)is  

( ) ( )2 3
1

Ks
ESA D s R T R s i

K
O K N N N K

i
λ

− =

⎛ ⎞⎛ ⎞
ϒ ≈ + × ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

 
(5.11) 

The complexity analysis shows that the proposed IACMA and IUSIM have 

quadratic complexity with respect to the number of users K. The complexity of 

exhaustive search for user scheduling increases exponentially with the number of 

users. 

5.4 Numerical results  

 For performance comparison, we present the simulation results of the 

proposed EDA, IACMA and IUSIM-based user selection. We use the objective 

function of optimization problem (5.3) as the fitness function. For evaluating sum-

rate capacities for different user scheduling methods in our experiments, we 

randomly generate channel gain bs
kH  under the assumption that elements of the 

channel matrix have independent complex Gaussian distributions.  In all 

simulations noise variance is assumed to be one. The system parameters used 

for simulations are selected such that we can examine the effect of different 

system parameters (e.g., interference threshold level, number of primary users, 

number of secondary users, quantize power levels etc.) on the performance of 

the proposed schemes. From the results we compare EDA, IACMA, IUSIM, 

exhaustive search algorithm with continuous power control (ESA-C), and the 

exhaustive search algorithm with discrete (or quantized) power control (ESA-D).   
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In Figs. 5.3−5.6, we used four different scenarios max, , , , ,s T R mK K N N Iλ⎡ ⎤⎣ ⎦  = 

[8, 3, 2, 6, 8, 1mw], 
max, , , , ,s T R mK K N N Iλ⎡ ⎤⎣ ⎦  = [12, 3, 2, 6, 8, 1mw], 

[ ], , , , ,s T RK K N N Mλ  = [12, 3, 2, 6, 8, 4], and [ ], , , , ,s T RK K N N Mλ  = [8, 3, 2, 6, 8, 

4], The performance is shown in terms of average sum-rate capacity SNR power 

plots. The results show that average sum-rate capacities achieved by the 

proposed EDA, IACMA and IUSIM are close to the ESA-D. From these figures, 

we observe that for a given interference tolerance and power level by increasing 

the user’s individual transmit power level (or increase in SNR) we can only 

increase the sum-rate capacity up to a certain level. After that, further increase of 

users’ individual transmit power will decrease the sum-rate capacity. The 

decrease in the sum-rate capacity with the uniform increase of the users’ transmit 

power can be explained by the fact that above some threshold further increase in 

transmit power will also increase the interference to the primary users, so the 

users are required to transmit at lower discrete power level which may not be the 

optimum power level.  In case of continuous power control the capacity will 

always be non-decreasing because even by increasing the maximum transmit 

power level, the users’ can still transmit on optimum transmit power level.  

   In Figs. 5.7 and 5.8, we show the sum-rate capacity versus number of 

power levels. The result illustrates that increase in the power levels satisfy more 

primary users’ interference constraint and increase the system capacity.  There is 

always trade-off between number of power levels and control channel traffic. 

More power levels per user mean increase in the control channel traffic and vice 

versa. 

In Figs. 5.9 and 5.10, we present performance of the proposed algorithms 

against number of primary users. We set  [ ], , , ,s T RK K N N SNR  = [8, 3, 2, 6, 8dB, 

4] and max, , , ,s T R mK K N N I⎡ ⎤⎣ ⎦  = [8, 3, 2, 6, 10mw, 4]. The result shows that average 

sum-rate capacity achieved by the proposed IACMA and IUSIM is close to the 

ESA-D for a wide range of M. From Figs. 5.9 and 5.10, we observe that we 

achieve low sum-rate capacity by increasing the number of primary users. This is 



 

 145

because by increasing the number of primary users, the secondary users need to 

satisfy more interference constraints. In Figs. 5.11 and 5.12, we plot the sum-rate 

capacity versus number of secondary users. For thses scenario, we set 
max, , , ,s T R mK N N I M⎡ ⎤⎣ ⎦   = [ 3, 2, 6, 1mw, 4] and [ ], , , ,s T RK N N SNR M   = [ 3, 2, 6, 

8dB, 4] The result shows that average sum-rate capacity achieved by the 

proposed EDA, IACMA and IUSIM is close to the ESA-D for a wide range of K. 

The results also show that the performance of IUSIM improves with more number 

of primary users. 

Fig. 5.13 focuses on the method of applying thresholds. This figure reports 

the results of applying different threshold values in shaping the distribution that 

generates the population. We ran an EDA-R with parameters  

[ ], , , , ,s T RK K N N SNR M  = [12, 3, 2, 6, 8dB, 1] for threshold values γ  = {0.7, 0.8, 

0.9, 1.0.} and 1γ γ= −� .   Note that setting 1γ =  is equivalent to not applying the 

threshold at all. Setting γ  close to 0.5 means that the algorithm generates the 

population from an almost identical distribution in each iteration− that is, the 

algorithm does not take advantage of the natural selection. An interesting issue is 

what values of the threshold facilitates the computation.  From Fig. 5.13, we can 

observe that the performance of EDA-R is poor at γ = 0.7. We can interpret that 

at the threshold value γ =0.7, which is close to 0.5, the algorithm does not evolve 

significantly. We can see from Fig. 5.13 that threshold value γ = 1.0 results in 

better performance than all other threshold values (0.7, 0.8, and 0.9) at early 

stage of the algorithm (up to iteration 4). However, for the case of γ = 1.0 the 

fitness value (average sum-capacity) does not improve much as we run more 

iterations beyond the seventh iteration. On the other hand, in the case of γ = 0.8 

and 0.9, the fitness value continues to improve beyond iteration 5, and produced 

the best solution if we terminate the algorithm at iteration 5,6,7,8 etc. From the 

numerical results, we can see that IACMA and EDA converge to with in 97 

percent of that obtained by the exhaustive search. The IUSIM converges to with 

in 92 percent of that obtained by the exhaustive search. 



 

 146

To check the feasibility of the proposed algorithms for practical 

implementation, in Table 5.5, we present the number of flops required by ESA, 

EDA, IACMA and IUSIM for different parameter settings (i.e., different search 

space size). The comparison shows that the number of flops required by IACMA 

and IUSIM is much less than that of EDA and ESA.  
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Fig. 5.3 Sum-rate capacity comparison. The parameters are 
max, , , , ,s T R mK K N N Iλ⎡ ⎤⎣ ⎦  =  [8, 3, 2, 6, 8, 1mw]. 
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Fig. 5.4 Sum-rate capacity comparison .The parameters are  

max, , , , ,s T R mK K N N Iλ⎡ ⎤⎣ ⎦  = [12, 3, 2, 6, 8, 1mw]. 
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Fig. 5.5 Sum-rate capacity comparison .The parameters are 

[ ], , , , ,s T RK K N N Mλ  = [8, 3, 2, 6, 8, 4]. 
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Fig. 5.6 Sum-rate capacity comparison .The parameters are 

[ ], , , , ,s T RK K N N Mλ  = [12, 3, 2, 6, 8, 4]. 
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Fig. 5.7 Sum-rate capacity comparison for different power levels .The 

parameters are [ ], , , , ,s T RK K N N SNR M   = [8, 3, 2, 6, 8dB, 4]. 
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Fig. 5.8 Sum-rate capacity comparison for different power levels .The 

parameters are [ ], , , , ,s T RK K N N SNR M   = [12, 3, 2, 6, 16dB, 4]. 
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Fig. 5.9 Sum-rate capacity vs. number of primary users. The parameters 

are [ ], , , ,s T RK K N N SNR   = [8, 3, 2, 6, 8dB]. 
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Fig. 5.10 Sum-rate capacity vs. number of primary users. The parameters 

are max, , , ,s T R mK K N N I⎡ ⎤⎣ ⎦   =  [8, 3, 2, 6, 10mw]. 
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Fig. 5.11 Sum-rate capacity vs. number of secondary users. The parameters 

are max, , , ,s T R mK N N I M⎡ ⎤⎣ ⎦   =  [ 3, 2, 6, 1mw, 4]. 
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Fig. 5.12 Sum-rate capacity vs. number of secondary users. The parameters 

are [ ], , , ,s T RK N N SNR M   =  [ 3, 2, 6, 8dB, 4]. 
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Fig. 5.13 Effect of threshold on the performance of EDA. 

[ ], , , , ,s T RK K N N SNR M   =  [12, 3, 2, 6, 8dB, 1]. 
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Table  5.5 Number of flops required by ESA, EDA, IACMA and IUSIM 
 

Parameters  

s T R TerK ,K ,M ,N ,N , ,I⎡ ⎤∆⎣ ⎦  
ESA EDA IACMA IUSIM 

[20,3,1,4,2,2,20,10] 2954880 518400 1100 1224 

[15,3,10,4,2,2,20,10] 1179360 518400 3855 5634 

[10,5,1,2,2,10,10] 302400 120000   370 370 

[30,2,1,2,2,10,10] 41760 9600 1710 2174 

[25,4,4,2,2,10,10,10] 364320000 2880000 6100 1586 

[18,8,1,2,2,16,18,10] 2.2942e+010 94371840 9882 968 

[12,6,1,2,2,16,12,10] 238436352 30965760 6516 498 
 

5.5 Summary 

In this chapter, we presented three low-complexity user scheduling 

schemes in cognitive MIMO systems. The proposed interference aware capacity 

maximization algorithm and iterative user scheduling with interference 

minimization have low computational complexities, and their performance is 

close to that of the exhaustive search algorithm with discrete power control (ESA-

D). Simple underlying concept and ease of implementation with low-complexity 

make the proposed schemes suitable candidates for the joint user 

selection/scheduling and power control problem discussed in this chapter.  
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CHAPTER 6: CONTRIBUTIONS AND FUTURE WORK 

In this chapter, we present a brief overview of the contributions and discuss 

open issues that can be addressed in future research.  

6.1 Contributions 

In this thesis, we have proposed a number of polynomial-time algorithms for 

resource allocation in cooperative cognitive radio systems. In particular, we have 

made following major contributions in this thesis: 

6.1.1 Relay Assignment  

1. We presented an optimization framework for joint multiple relay 

assignment and power allocation in CRS. The optimal solution of the 

proposed optimization problem can be obtained by using Exhaustive 

Search Algorithm. However, its computational complexity increases 

exponentially with the number of secondary users and the number of 

relays. We propose iterative algorithms that have very low computational 

complexity and their performance is close to the exhaustive search 

algorithm. We also present fairness aware relay assignment schemes in 

CRS.  

2. A multi-objective optimization framework is proposed for joint relay 

assignment and power allocation in green CRS.  We proposed a hybrid 

estimation-of-distribution algorithm for joint relay assignment and power 

allocation in green CRS. 
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6.1.2 Joint subcarrier allocation and relay assignment  

We presented resource allocation schemes for cooperative multiuser 

multicast cognitive radio system (MMCRS). For resource allocation, we proposed 

schemes that jointly assign subcarriers and relays to the multicast groups and 

allocate power to the relays in cooperative MMCRS. We considered two separate 

optimization problems. In one optimization problem, we maximized the total 

throughput of the cooperative MMCRS under the constraint of acceptable 

interference to the primary users. In the other optimization problem, we 

maximized the throughput of the worst multicast group in cooperative MMCRS 

under the constraint of acceptable interference to the primary users. For each 

optimization problem, we proposed an iterative algorithm with polynomial time 

complexity. 

6.1.3 User scheduling  

We presented three low-complexity user scheduling schemes in cognitive 

MIMO systems. The proposed schemes have polynomial-time complexity, and 

their performance is close to that of the exhaustive search algorithm with discrete 

power control. Simple underlying concept and ease of implementation with low-

complexity make the proposed schemes suitable candidates for the joint user 

selection/scheduling and power control problem. 

6.2 Future work 

The proposed schemes in this thesis address some aspects of resource 

allocation in CRS with MIMO and relaying capabilities. However, there are still 

many open issues. In the following, we list some important future research 

directions. 



 

 157

6.2.1 Resource allocation in multi-hop CRS  

In this thesis, we focused on two-hop cooperative CRS. A natural 

extension would be to consider multiple relay assignment in multi-hop 

cooperative CRS. The proposed resource allocation in cooperative CRS is for 

single antenna systems. This work can also be extended to the multiple antenna 

system. 

6.2.2 Resource allocation in cooperative CRS with imperfect CSI  

For resource allocation, we have assumed that the central controller 

knows the perfect CSI. However, there always exists some uncertainty in the CSI 

due to unreliable feedback channel. Therefore, a possible extension of the 

proposed resource allocation formulation is to analyze the relay assignment 

schemes with imperfect CSI in multi-hop CRS. Another interesting issue to 

consider is the effect of quantized CSI on the relay assignment in multi-hop 

cooperative CRS.  

6.2.3 Green communication with adaptive weights 

For green communication technologies, we proposed a multi-objective 

optimization framework for relay assignment and power allocation. In this 

framework, the weights of the objective functions are fixed. An extension of this 

work would be to consider adaptive weights for each objective functions. The 

adaptive weights can give better Pareto optimal front for the proposed multi-

objective green CRS framework.  The adaptive weights will increase the 

computational complexity thus low complexity algorithms will be needed to 

address the complexity issues. 
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APPENDICES 

Appendix A 

We need to show that for any set of fixed values of integer variables  

, , 1,...,l k l Lε =  and lp  the objective function in (2.2) is monotonically increasing 

with  k
sP . For a fixed  , , 1,...,l k l Lε =  and lp  , The objective function is  
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Since log( ) is a monotonically increasing function, proving that its argument is 

increasing with k
sP shows that the objective function is monotonically increasing 

with k
sP . The first two terms inside the log( ) is obviously monotonically increasing 

with k
sP . Then, considering the last term inside the log( ), to establish 

monotonicity of expression (A.1), we only need to show that the function  
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is monotonically increasing  with P  for each k. . Denoting 
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express ( )kH P  as  
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From (A.2), it is obvious that  , ( ), ,l kF P l∀  is increasing with P  for 0P > ,  and from 

(A.3), it is obvious that , ( ), ,l kG P l∀  is decreasing with P  for 0P > . Thererfore, 

( )kH P   is increasing with P  for 0P > .  Q.E.D. 
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Appendix B 

 

We need to establish the concavity of function f:RL→R, defined as  
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,l l k l lx h pβ= . From definition, 

function f is concave if dom f is a convex set and if for all ,x y є dom f, and λ with 

0 ≤ λ ≤ 1, we have 

                        ( )( ) ( ) ( ) ( )1 1f x y f x f yλ λ λ λ+ − ≥ + −                      (B.1) 

Let us define a linear function g:RL→R as 1 2
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concave function h:R→R, as ( )
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. We know that composition of a concave 

function with an affine mapping is concave− i.e. ( )( )h g x is concave. Therefore,  
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( )( )1f x yλ λ+ −  and ( )( ) ( ) ( )( )1h g x h g yλ λ+ −  ( ) ( ) ( )1f x f yλ λ= + − . Hence, from 

(B.2), we conclude that ( )( )1f x yλ λ+ −  ( ) ( ) ( )1f x f yλ λ≥ + −  , which establishes 

that function f is concave. 

 



 

 161

Appendix C 
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Inequality (C.2) is equivalent to 
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Inequality (C.3) can be written as  
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Finally, after rearranging the terms in (C.4) we obtain  
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Appendix D 

The flow diagram of IAGA. 
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Fig. D.1 Stage 1 of IAGA 
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Ψ ≠∅

( )
( )

{ }

( )

1,2,..,
arg max ( , )

max (1, (1)), , ( , ( ))

( ) . . ( , ( ))

{ | }

k K
l l k l

L L

k l s t l l

R l l k

∈
Θ = Λ ∀ ∈Ψ

Λ= Λ Θ Λ Θ

= Θ Λ Θ = Λ

= Θ =

"
�

�

R ≠ ∅

( , , ),m l
l R

p l m mη
∈

∆ = ∀∑max
, , ,m k m kI m∆ ≤ ∀� �

( )

arg max

( , , ) 0
 \ ; \

l

l R

r

r

p r m r
R R r r
η

∈
= Γ

= Γ =

= Ψ = Ψ

( , ) 0,l k l
GotoTag
Λ = ∀�

( ) ( )

( , ) 0,
\

Capacity k GetCapacity R

l k l
R

=

Λ = ∀
Ψ = Ψ

�
�

 

Fig. D.2 Stage 2 of IAGA 
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Appendix E 

The optimization problem is 

     

†
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(E.1) 

Let there are K secondary users and M primary users in the system. Each 

secondary/primary user and central controller is equipped with a single antenna. 

The noise variance is assumed to be one. With these assumptions, we can 

rewrite (E.1) as 
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(E.2) 

We define a binary indicator kx  

     

1
0k

if the kth secondary user is selected for transmission
x

otherwise
⎧

= ⎨
⎩            

 

Let us define { }LP P= . We can write (E.2) as 
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Since log is monotonically increasing function, we can also write (E.3) as 
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(E.4) 

Where 
2

,k k bsP hα =  and 
2

,k k mP hβ = . The multidimensional cardinality constraint 

knapsack problem (MCCKP) is   
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We can see that the user-scheduling problem is identical to MCCKP. Since 

MCCKP is NP-Hard, it means that user-scheduling problem is also NP-Hard. 




