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ABSTRACT

Cognitive radio is an interesting concept for solving the problem of
spectrum availability by allowing non-licensed users to exploit underutilized
licensed frequency bands. We note that a combination of the cognitive radio with
cooperative communication and/or MIMO technology can possibly enhance the
system performance significantly. In this research, a number of resource
allocation problems are examined for cognitive radio systems (CRS) that have
relaying and/or MIMO capabilities, and computationally efficient resource
allocation schemes are proposed. The general objective is to devise resource
allocation schemes in the cognitive radio that maximize the resource utilization
under the constraint of acceptable interference to the primary (licensed) users. In
particular, in this thesis we present efficient schemes for jointly deciding the
assignment of multiple relays to users and their power levels. Fairness is also
considered in assigning multiple relays to multiple secondary users. We also
propose low-complexity distributed schemes for joint subcarrier and relay
assignment in cooperative multi-carrier multi-cast CRS. Another class of
resource allocation problems addressed this thesis regards selecting and
scheduling users in multiuser systems. In multiuser cognitive MIMO systems,
user selection and scheduling significantly affects the system performance. This
thesis addresses joint user scheduling and power allocation in the CRS equipped
with multiple antennas. Optimization of such user scheduling and power
allocation has combinatorial aspects, and the exhaustive search for an exactly
optimal solution is impractical due to its computational complexity. This thesis
presents low-complexity suboptimal algorithms to maximize the sum-rate
capacity of the uplink communication in cognitive MIMO systems under the
constraint that the interference to the primary users is below a specified level.
Keywords: Relay assignment, Cognitive radio, Cooperative communication,

MIMO, User selection, Subcarrier allocation
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CHAPTER 1: INTRODUCTION
1.1 Research Motivation

The increasing service demand poses new challenges in future wireless
communication. One of the most prominent challenges in meeting the demand is
the scarcity of radio resources. In the past decade, a number of techniques have
been proposed in the literature for efficiently utilizing the radio resources (e.g.
cognitive radio [1] [2] [3], multiple-input multiple-output (MIMO) communication,
cooperative communication systems (CCS) etc). Cognitive radio is an emerging
technology intended to enhance the utilization of the radio frequency spectrum.
Multi-input multi-output (MIMO) system and cooperative communication systems
(CCS), with the same total power and bandwidth of legacy wireless
communication systems, can increase the data rate of the future wireless

communication systems.

A combination of cognitive radio with CCS and MIMO can further improve
the future wireless systems performance. However, the combination of these
techniques raises new issues in the wireless systems that need to be addressed.
One of the important issues is the complexity of resource allocation schemes in
the combined system. This thesis focuses on designing computationally efficient
algorithms for resource allocation in multiuser cognitive radio system (CRS) with
relaying and/or MIMO capabilities. In particular, in this thesis, a number of low-
complexity algorithms are proposed for power allocation, subcarrier assignment,
relay assignment and user scheduling in multiuser CRS with relaying and MIMO

capability.



1.2 Background

In this section, we provide a brief overview of the cognitive radio system,

cooperative communication, and green communication.

1.2.1 Cognitive Radio System

Formally, a cognitive radio is defined as [4]

“A radio that changes its transmitter parameters based on the interaction

with its environment’

The cognitive radio has been mainly proposed to improve the spectrum
utilization by allowing unlicensed (secondary) users to use underutilized licensed
frequency bands [1] [2] [3]. In reality, unlicensed wireless devices (e.g., automatic
garage doors, microwaves, cordless phones, TV remote controls etc.) are
already in the market [5] [6]. The IEEE 802.22 standard for Wireless Regional
Area Network (WRAN) addresses the cognitive radio technology to access white
spaces in the licensed TV band. In North America, the frequency range for the
IEEE 802.22 standard will be 54-862 MHz, while the 41-910MHz band will be
used in the international standard [2]. Table 1.1 shows the IEEE 802.22 system
parameters, e.g., frequency range, bandwidth, modulation types, maximum

transmit power ratings, multiple access schemes, etc. [7].

In the context of cognitive radio, the Federal Communications Commission
(FCC) recommended two schemes to prevent interference to the television
operations due to the secondary (unlicensed) users. These are listen-before-talk
and geo-location/database schemes [5] [6]. In the listen-before-talk scheme, the
secondary/unlicensed device senses the presence of TV signals in order to
select the TV channels that are not in use. In geo-location/database scheme, the
licensed/unlicensed users have a location-sensing device (e.g., GPS receiver
etc.) The locations of primary and secondary users are stored in a central
database. The central controller (also known as spectrum manager) of the

secondary/unlicensed users has the access to the location database.



Table 1.1 IEEE 802.22 system parameters.

Parameters Specification Remarks
Frequency range 54-862 MHz TV band

Bandwidth 6 MHz, 7 MHz, 8 MHz

Modulation QPSK, 16-QAM, 64-QAM
Transmit power aw ot';g; Eezﬁl’artg?;/ (\jlgxaiinns
Multiple access OFDMA

The main functions of cognitive radio to support intelligent and efficient

utilization of frequency spectrum are as follows:

1.2.1.1 Spectrum sensing

Spectrum sensing determines the status of the spectrum and activity of
the primary users [2] [8]. An intelligent cognitive radio transceiver senses the
spectrum hole without interfering with the primary users. Spectrum holes are the
frequency bands currently not used by the primary users. Spectrum sensing is
implemented either in a centralized or distributed manner. The centralized
spectrum sensing can reduce the complexity of the secondary user terminals,
since the centralized controller performs the sensing function. In distributed
spectrum sensing, each mobile device (secondary user terminal) senses the
spectrum independently. Both centralized and distributed decision-making is
possible in distributed spectrum sensing [2]. The central controller (spectrum
manager), based on the spectrum sensing information, allocates the resources
for efficient utilization of the available spectrum. One major role of the central
controller is to prevent overlapped spectrum sharing between the secondary
users [2] [3] [4].



1.2.1.2 Dynamic Spectrum Access

Dynamic spectrum access (DSA) is defined as real-time spectrum
management in response to the time varying radio environment - e.g., change of
location, addition or removal of some primary users, available channels,
interference constraints etc [2] [3]. There are three DSA models in the literature,
namely, exclusive-use model, common-use model and shared-use model [3].

Fig. 1.1 shows a hierarchal overview of DSA.

DSA

-I Shared-use
Exclusive-use Common-use Model Model

Model WiFi, ISM etc

| I
Spectrum Dynamic Spectrum Spectrum Spectrum
Property Rights Allocation Underlay Overlay

Fig. 1.1 Dynamic spectrum access strategies.

The exclusive-use model has two approaches, spectrum property rights
and dynamic spectrum allocation. In spectrum property rights, owner of the
spectrum can sell and trade spectrum; and is free to choose the technology of
interest. Dynamic spectrum allocation improves spectrum efficiency by exploiting
the spatial and temporal traffic statistics of different services [3]. The European
Union funded DRIVE (Dynamic Radio for IP Services in Vehicular Environments)
project is a classical example of dynamic spectrum allocation [9]. It uses cellular
(e.g., GSM, GPRS, and UMTS) and broadcast technologies (e.g., Digital Video
Broadcast Terrestrial, Digital Audio Broadcast) to enable spectrum efficient

vehicular multimedia services.
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The common-use model is an open sharing regime in which spectrum is
accessible to all users. The ISM (industrial, scientific and medical) band and Wi-
Fi are examples of the commons-use model. Spectrum underlay and overlay
approaches are used in the shared-use model [2] [3]. Spectrum overlay or
opportunistic spectrum access is shown in Fig. 1.2. In spectrum overlay, the
secondary users first sense the spectrum and find the location of a spectrum hole
(vacant frequency band). After locating the vacant frequency bands, the
secondary users transmit in these frequency bands. In spectrum underlay
technique, the secondary users can transmit on the frequency bands used by the
primary users as long as they do not cause unacceptable interference for the
primary users. This approach does not require secondary users to perform
spectrum sensing, however the interference caused by the secondary user’s
transmission must not exceed the interference threshold. Fig. 1.3 shows the

spectrum underlay model.

In [10], a joint spectrum overlay and underlay method is proposed for
better spectrum utilization. An illustration of joint spectrum overlay and underlay
is shown in Fig. 1.4. In joint spectrum overlay and underlay approach, the
secondary users with the help of spectrum sensing first try to find a spectrum
hole. If there is a spectrum hole then the secondary users can use the spectrum
overlay technique. If there is no spectrum hole then the secondary users will use

spectrum underlay technique.

1.2.2 Cooperative Communication

Recent research in wireless communication systems shows that relaying
techniques can offer significant benefits in the throughput enhancement, and
range extension [12]. A number of relaying schemes —e.g., amplify-and-forward
(AF) decode and forward (DF), incremental relaying etc. —for improving the
performance of the wireless networks are in the literature e.g., [12] [13]. In a
simple AF relaying scheme, a relay amplifies the received signal and forwards it

to the destination. In decode and forward relaying scheme, a relay first decodes



the received signal and then transmits the re-encoded signal to the destination.
Table 1.2 shows a simple cooperative communication protocol. In this protocol,
conveyance of each symbol from the source to the destination takes place in two
phases (two time slots). In the first phase, the source transmits its data symbol,
and the destination and the relay(s) receive the signal carrying the symbol. In the

second phase, the relay(s) forwards the data to the destination.

Table 1.2 Cooperative communication protocol.

Time T4 Time T,

S>D,S>R

R->D

The performance of a cooperative communication system can be
improved by using multiple relays, rather than a single relay, which convey the
same information to the destination. The multiple relays selection/assignment
gives more freedom to select good paths between source to relay(s) and relay(s)
to destination(s). Fig. 1.5 shows the multiuser cooperative communication
system with multiple relays. The use of multiple relays in a network comprising
single source and multiple destinations brings the issue of how to best assign the
relays to the destinations. Optimization of such relay assignment and power
control has combinatorial aspects, and the exhaustive search for an exactly
optimal solution is impractical due to its computational complexity. There are a
number of low-complexity relay selection/assignment schemes in the literature
[32] — [45]. However, these relay assignment schemes are not applicable to
CRS because optimal relay assignment and power allocation obtained from
these schemes may generate more interference to the primary users than

allowed.
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Fig. 1.5 Multiuser cooperative communication system.

1.2.3 Green Communication

Recent advances in the field of information and communication
technologies (ICTs) have significant impact on the environment. The enormous
growth of the telecommunication sector (especially the wireless sector) plays a
significant role in global warming. Research in green technology will enable the
communication system designer to develop and design the systems that will help

the environment by reducing carbon dioxide (COz) emissions.

According to the International Telecommunication Union (ITU) report [19],
primary sources of CO, emissions are electricity generation, transport vehicles,
buildings and agricultural by-products etc. By the year 2030, World Energy
Outlook (WEO) has forecasted that the demand of electricity will be twice as high
as compared to the current demand, driven by the rapid growth in population and
by the continuous increase in the residential and commercial electrical devices
[20]. The ICTs sector is responsible for approximately five percent of global
electricity demand and CO; emission [21] [22]. The CO, emission from the ICTs

sector is equivalent to the airline industry [19] [22].

The electricity demand of ICTs sector is divided into four major categories
as shown in Fig. 1.6. These are (1) servers (23%), (2) PCs data monitors (40%),



(3) telecommunications (31%), and miscellaneous (6%). From Fig. 1.6, we can
see that the landline and mobile telecommunications contribute to approximately
77% of the total telecommunication CO, emissions. As the ICTs industry is
growing faster than the rest of the economy, this share will likely increase over
time. The number of the mobile subscribers is nearly equal to half of the global
population [23]. There is a need in the design of future wireless communication
systems to reduce the transmission power of mobile devices to bring down the
CO; emissions. In the context of green communication, intelligent resource
allocation schemes for CRS with relaying capability can help in reducing the CO,

emissions.

PCs and Data
Monitors

F

Servers l

Telecom

LAN Mobile Fixed-Line Telecom

Fig. 1.6 Estimated distribution of global CO, emissions from ICTs.



1.3 Thesis Overview

The main objective of this thesis is to provide low-complexly algorithms for
resource allocation in cognitive radio and green communication systems. In the
context of resource allocation, this thesis basically discusses three problems: 1)
relay assignment, 2) subcarrier assignment, and 3) user scheduling. In all three
problems, we examine the effect of different system parameters (e.g.,
interference threshold level, the number of primary users, the number of
secondary users, relay power levels, etc.) on the performance of the proposed

algorithms.

1.3.1 Relay assignment

The use of multiple relays can increase the performance of a cooperative
communication system. A well designed multiple relay assignment and power
allocation scheme can be helpful in reducing the interference induced to the
primary users in multiuser CRS. In this work, we propose a framework and low-
complexity algorithm for interference aware joint power allocation and multiple
relays assignment (IAJPARA) in multiuser CRS. In the proposed multiuser CRS
framework, a secondary user can receive data through multiple relays. The
proposed IAJPARA, when mathematically formulated, is basically a non-convex
mixed integer non-linear optimization problem (NC-MINLP). The main objective
of IAJPARA in our mathematical formulation is to maximize the sum-capacity by
finding an optimal assignment of multiple relays to the secondary users in
multiuser CRS under the constraint of acceptable interference to the primary
users. The computational complexity of an obvious algorithm (exhaustive search-
based), for the IAJPARA, grows exponentially with the number of relays and
secondary users. We present a computationally efficient, suboptimal relay
assignment and power allocation scheme for IAJPARA. For comparison, we
provide an upper bound on the sum-rate capacity of IAJPARA. We examine the

effect interference threshold, number of primary users, relay power levels on the
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performance of the proposed scheme. We also show that with little modification

of our proposed algorithm, we can include fairness in the system.

The use of relays in a CRS can also reduce the overall transmission power
of the systems that can be helpful in reducing global warming by minimizing the
CO; emissions. In this research, we present a multi-objective architecture for
resource allocation in green cooperative cognitive radio network (GCCRN). The
proposed multi-objective framework jointly assigns the relays to the users and
allocates power to each relay in GCCRN while optimizing two conflicting
objectives. The first objective is to maximize the sum-rate capacity and the
second objective is to minimize the total CO, emissions. We apply an Estimation-
of-distribution Algorithm (EDA) to the multi-objective optimization for resource
allocation in GCCRN.

1.3.2 Subcarrier assignment

Orthogonal frequency division multiple access (OFDMA) is an emerging
technique in multiuser multiple-access system. Multiple-access is achieved in
OFDMA by allocating different subcarriers to the individual users. In this
research, we propose a framework for joint power, subcarrier allocation and relay
assignment (JPSARA) in multiuser multicast cognitive radio system (MMCRS).
The main objective of the proposed resource allocation is to maximize the total
system throughput of secondary users in MMCRS under the constraint of an
acceptable interference level to the primary users. In this research, for JPSARA,
we propose a low-complexity iterative algorithm based on primal dual
decomposition. We also present a max-min fairness aware scheme for resource
allocation in MMCRS.

1.3.3 User scheduling

Generally, in multiuser wireless systems, due to resource limitations, user
scheduling is an intelligent way to achieve high throughput. User scheduling

schemes select the best group of users at each time slot to maximize the sum-
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rate capacity of the multiuser MIMO system. The complexity of an exhaustive
search for user scheduling increases exponentially with the number of users. For

example, if K is the total number of users, then the number of possible ways of
K
scheduling/selecting k users is(kj. Enumerating all possible combinations to

find the one that gives the best performance is computationally inefficient. Due to
the high computational complexity of the optimal selection (e.g., Exhaustive
search algorithm), a number of suboptimal solutions were proposed in the
literature. These traditional user scheduling schemes in the multiuser MIMO
systems are not applicable in the CRS because the selected subset of users,
which maximize the sum-rate capacity in the traditional multiuser MIMO systems,
may generate more interference to the primary users than desirable. In this
thesis, we present low-complexity algorithms for joint user scheduling and power

control in multiuser MIMO CRS to maximize the sum-rate capacity, under the

constraint that the interference to the primary users is below specified levels.

1.4 Literature Review

This section contains a literature review for resource allocation strategies

in wireless communication system.

1.4.1 Relay assignment and power allocation

Table 1.3 summarizes the literature review for the relay assignment
strategies (RAS) in the wireless communication systems. The first column in
Table 1.3 lists the objective functions as defined in the literature. The succeeding
columns show the number of relays attached to any destination/user, cognitive
radio capability, protocol type (e.g. centralized, distributed or decentralized) and
power allocation capability respectively. There are three major classes of
resource allocation in cooperative communications. The classes are, centralized
resource allocation [32-35] [39] [42-43], distributed resource allocation [36] [45],

and decentralized resource allocation [37] [38] [44].
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In [32], joint bandwidth and power allocation strategies for a Gaussian
relay network are investigated. Orthogonal and shared-band AF and DF
schemes are analyzed for joint bandwidth and power allocation. The main
objective of joint bandwidth and power allocation is to maximize the signal-to-
noise ratio at the receiver using AF and DF schemes. The study in [33] proposes
a centralized framework that selects multiple relays for transmission in a two-hop
network. The aim of the multiple relay selection is to maximize the SNR at the
destination using binary power allocation at the relays. An optimal relay
assignment and power allocation in a cooperative cellular network is discussed in
[34]. Using the sum-rate maximization as a design metric, the authors proposed
a convex optimization problem that provides an upper bound on performance. A
heuristic water-filling algorithm is also suggested to find a near-optimal relay
assignment and power allocation. In [35], a linear-marking mechanism is
investigated for relay assignment in a multi-hop network with multiple source-
destination pairs. The aim of the proposed linear-marking mechanism is to

maximize the worst user capacity.

A distributed nearest neighbour relay selection protocol and its outage
analysis are presented in [36]. For the relay assignment in a multiuser
communication system, decentralized protocols are discussed in [37] and [41].
The decentralized framework in [37] uses decode and forward relaying and
assigns relays without exercising power control. In [41], decentralized amplify
and forward protocol is used for joint relay assignment and power control. The
scheme maximizes a harmonic mean-based approximate expression for the
instantaneous received signal-to-noise ratio. The relay assignment and selection
schemes described in [32] — [38] and [41] are not applicable in the CRS because
the interference caused by the relays to the primary users can exceed the

prescribed interference limit.

The relay selection scheme for a cognitive radio network has been
considered in several recent works [39]-[45]. In [39], a mathematical formulation
is proposed with the objective of minimizing the required network-wide radio

spectrum resource for a set of user sessions. The proposed formulation is a
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mixed-integer non-linear program. The authors proposed a lower bound for the
objective by relaxing the integer variables and using a linearization technique. A
near-optimal algorithm is presented that is based on a sequential fixing
procedure, where the integer variables are determined iteratively via a sequence
of linear programs. In [42], relay selection in multi-hop CRS with the objective of
minimizing the outage probability is proposed. The power allocation problem is
solved using standard convex optimization techniques for both AF and DF
protocols under Rayleigh fading conditions. A joint relay selection, spectrum
allocation and rate control (JRSR) scheme in CRS is proposed in [43]. A three-
stage sub-optimal algorithm is proposed to address the JRSR problem. A non-
cooperative game based decentralized power allocation for primary and
secondary users is considered in [44]. The two kinds of links, one of which
includes the primary users and their relay, the other includes the secondary
users and their relay, are treated as players of the non-cooperative game. Each
player competes against the other by choosing the power allocation strategy that
maximizes its own rate, subject to the QoS threshold of the primary system. A
relay-assisted iterative algorithm is proposed to efficiently reach the Nash
equilibrium. In [45], authors proposed both centralized and distributed power
allocation schemes for multi-hop wideband CRS. The main objective is to
maximize the output signal-to interference plus noise ratio (SINR) at the
destination node of the CRS. From the literature review, we separate the relay

assignment/selection schemes into two categories,

1.4.1.1 RAS without CR capability

a) Multiple relays assignment with one source and one destination [32] [33]
b) Single relay assignment with one source and multiple destinations [34].
c) Single relay assignment with multiple source-destination pairs [35].

d) Multiple relays assignment with one source, one destination and multi-
hops [38].
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Table 1.3 Relay Assignment.

Relays Ref
ef.

Objective to one CR Protocol Type Power

SD pair Control [Ref Num, Name]

per hop
Maximize the SNR of
AF/DF shared bandwidth | Multiple No Centralized Yes [32, I. Maric et. al]
schemes
Select the multiple relays .
to maximize the SNRin |\ ije | No | Centralized Do [33, Y. Jing et al]
shared bandwidth AF P » Yeving etal

Control

scheme
Sum-rate maximization Single No Centralized Yes [34, Kadloor et al.]
Maximize the minimum | i 10 | No | Centralized No [35, Y. Shi et al.]
capacity
Protocols and outage single | No | Distributed No [36, Sadek et al ]
analysis
Average sum-capacity Single No Decentralize No [37, P. Zhang et al.]
Maximize the
instantaneous received Single No Decentralize Yes [38, G. Farhadi et al.]
SNR
Minimize the total . .
bandwidth Single Yes | Centralized No [39, T. Hou et al.]
Closed-form expressions | gjnye | yeg | - No [40, J. Zhu et al ]
of detection probability T )
Cooperation between
primary user and
secondary Single Yes | - Yes [41, R. Manna et al.]
user.(secondary user act
as relay for primary user)
Minimize outage . . .
probability Single Yes | Centralized Yes [42, Jayasinghe et al.]
Maximize Average Single Yes | Centralized Yes [43, H. Chun et al.]
throughput
Max'mlze the rate utility Single Yes | Decentralize Yes [44, Xiaoyu et al.]
function
Maximize SNR of RD link | Single Yes | Distributed Yes [45, Mietzner et al.]
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1.4.1.2 RAS with CR capability

a) Multiple relay assignment with one source, one destination and multi-hops
[39].

b) Single relay assignment with multiple source-destination pairs [44].
c) Single relay assignment with one source and multiple destinations [43].

From the literature review of relay selection/assignment strategies as
summarized in Table 1.3, we can observe that the relay selection/assignment in
the wireless network is an active area of research. However, there is still a need
of low-complexity algorithms and protocols that can efficiently perform multiple

relay assignment in a multiuser CRS.

1.4.2 Subcarrier assignment and power allocation

Table 1.4 summarizes the literature review of the subcarrier assignment
(SA) and power allocation techniques in the multicarrier communication systems.
In [49], a centralized subcarrier assignment scheme is proposed in a multi-cell
CRS. The main objective is to maximize the weighted sum-rate of secondary
users over multiple cells. An iterative water-filling algorithm is suggested to
control the inter-cell interference. The study in [50] proposes a distributed
subcarrier assignment algorithm to maximize the rate of each user and its
perturbation analysis in the ad-hoc cognitive radio network. In particular, in [50],
an upper bound on perturbation of each user’'s allocated power, rate, and
interference caused to the primary users is investigated. In [51], a risk-return
model based subcarrier assignment is studied to maximize the sum-rate of
secondary users. A linear rate-loss function is introduced in the optimization. In a
cognitive radio environment, loss of useful power can be represented as a rate
loss whenever a primary user reoccupies the channel or when there is an error in
correctly sensing the channel. Two sub-optimal subcarrier assignment schemes,
step ladder and nulling, are studied to reduce the computational complexity of

subcarrier assignment. In the step ladder scheme, low power is assigned to

16



subcarriers that are closer to the primary users bands. In the nulling method,
zero power is allocated to subcarriers adjacent to a primary users’ band (one
nulling) or zero power to two subcarriers closest to the primary user's band on
each side (two nulling). In [52], authors proposed the nulling method to maximize
the downlink transmission capacity of the secondary users in an OFDM based
CRS.

In [53], the authors proposed optimal power control policies for secondary
users to minimize the outage probability for a given outage capacity under the
primary user's outage constraint, along with the average and peak transmit
power constraint of secondary users. A fairness aware joint rate and power
allocation scheme with a QoS constraint for CRS is studied in [55]. The authors
derived outage probabilities for secondary users and interference-constraint
violation probabilities for primary users. Based on the analysis, the authors
developed a framework to perform joint admission control and rate/power

allocation.

A non-cooperative game based subcarrier assignment is proposed in [56].
The authors model the competitive behaviour of the secondary users as a non-
cooperative game and address the existence and uniqueness of Nash
equilibrium. Based on the unique equilibrium, a non-convex pricing framework for
the primary service provider is discussed. A sub-optimal pricing scheme in terms
of revenue maximization of the primary service provider is presented. References
[57], [58] and [59] provide centralized and distributed algorithms for the

subcarrier assignment in multi-cast CRS.

In [59], authors introduce a general rate-loss function, which gives a
reduction in the attainable throughput whenever primary users reoccupy the
temporarily accessible sub-channels. The main objective is to maximize the
expected sum-rate of secondary users in multicast groups. A dual decomposition
based iterative algorithm is presented for joint subcarrier and power-allocation. In
[60], a decentralized fairness aware subcarrier assignment framework is

proposed for relay-assisted downlink cellular CRS.
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Table 1.4 Subcarrier Assignment With power allocation.

Ref.
Objective Relays | CR Protocol Type zower |
ontrol | Ref Num, Name]

Sum-rate maximization No Yes Centralized Yes [49, Y.Ma et. al]
Maximize the rate of each
user and user perturbation | No Yes Distributed Yes [50,H. Keshavar et. al]
analysis
Sym-rate max!mlzatlon No Yes Centralized Yes [51, Z.Hasan et. al]
with loss function
Sum-rate maximization No Yes Centralized Yes [62, G. Bansal et. al]
Mlnlmlgg the outage No Yes Centralized Yes [63, X. Kang et. al]
probability
Sum-rate maximization No Yes | Distributed Yes [54, X. Kang et. al]
with rate loss constraint
Sum-rate maximization No Yes Centralized Yes [65, D. I.LKim et. al]
Maximize the total revenue | No Yes Decentralize Yes [56, Z. Li et. al]
Minimize the expected No Yes Centralized Yes [57, W. Ren et. al]
energy (for Multicast )
Sum-rate Maximization of No Yes Centralized Yes [58, D. Ngo et. al]
Multicast groups
Sum-rate Maximization of
Multicast groups with rate No Yes Distributed Yes [59, D. Ngo et. al]
loss function
Av.e'rage wglghtefj goodput Yes Yes Distributed Yes [60, R.Wang et. al]
(utility maximization)
'V'ax'”?'ze the worst user Yes Yes Centralized Yes [61, J. Guo et. al]
capacity
BER analysis Yes No Centralized Yes [62, M. Adnan et. al]
1-Maximize the minimum
rate

No Yes Centralized Yes [63, L. B. Le et. al]
2- Maximize the rate with
proportional fairness
Sum-rate maximization No Yes Centralized Yes [64, K. Hamdi et. al]
Max'”?'ze the Ergodic No Yes Centralized Yes [65, R. Zhang et. al]
capacity
Maximize total No Yes Centralized Yes [66, A. T. Hoan et. al]

transmission rate
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Power | Ref.

Objective Relays | CR Protocol Type Control [Ref Num, Name]
Sum-rate maximization Yes No Centralized No [67, H. Rasouli et. al]
BER analysis Yes No Centralized Yes 5]8 S. Senthuran et.
Weighted sum-rate No Yes Centralized Yes [69, L. zhang et. al]
maximization

thﬁi’t‘;mize average system |\, Yes | Distributed Yes [70, R. Zhang et. al]
Maximize system goodput Yes No Distributed Yes [71,Y. Cui et. al]
Minimize energy per bit No Yes Distributed Yes [72, S. Gao et. al]

Survey of resource
allocation in OFDM

[73, S. Sdr et. al]

In [61], max-min capacity based centralized relay assignment scheme is
proposed for multi-hop cognitive radio network. In [63]-[66] and [69], a number of
centralized sub-optimal sub-carrier assignment algorithms are proposed for sum-
rate maximization in CRS. A time division protocol based downlink subcarrier
allocation in a cooperative multiuser OFDM system is proposed in [67]. In [68],
joint Subcarrier and power allocation schemes are proposed and analyzed for a
two-hop orthogonal frequency and code division multiplexing (OFCDM).
Distributed subcarrier assignment is investigated in [70]-[72]. Reference [73]
provides a survey of the downlink subcarrier assignment and power allocation in

multiuser wireless system.

1.4.3 User scheduling

Table 1.5 summarizes the literature review of user scheduling in multiple-
access MIMO systems. The main motivation of user scheduling is to improve the
system performance in terms of either sum-rate capacity or bit error rate. Due to
the high computational complexity of the optimal selection (e.g., ESA), a number

of suboptimal solutions were proposed in the literature [74] — [90]. In [74], [76]
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and [77], authors propose centralized iterative schemes for user scheduling
without power control for the multiuser MIMO system. The main objective of
these schemes was to maximize the sum-rate capacity. In [74], authors proposed
a centralized user selection framework for the uplink multiuser MIMO system. A
centralized downlink multiuser scheduling with power allocation for multiuser
MIMO systems is presented in [75] — [80] and [84]. In [82] [83] [88] and [90],
authors propose a centralized approach for user scheduling in the cognitive
MIMO system. A distributed user-scheduling scheme in a cognitive SISO system
is proposed in [81]. In [85] and [87], the authors presented decentralized user
scheduling schemes for SISO and MIMO cognitive radio systems respectively.
From the literature review of user scheduling in Table 1.5, it can be observed that
little work has been done on the uplink user scheduling and power allocation in
multiuser MIMO CRS. There is a need to develop low-complexity algorithms for

user scheduling in uplink multiuser MIMO CRS.
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Table 1.5 User scheduling in Multi Access MIMO System.

Uplink MIMO/
Objective sisom | cr | Protocol ower | Ref.
[Downlink | |sO ype ontro
Maximize sum-rate | Uplink MIMO No Centralized No [74, Y. Zhang et. al]
Maximize sum-rate | Downlink MIMO No Centralized Yes [75, Z. Shen et. al]
Maximize sum-rate | Downlink MIMO No Centralized No [76, R. Elliott et. al]
Maximize sum-rate | Downlink MIMO No Centralized No Z]? X Zhang et.
Maximize sum-rate | Downlink MIMO No Centralized Yes [78, Z. Min et. al]
Jointly maximize | p o ik | MIMO | No | Centralized | Yes [79, X. Zhang et. al]
each user's SNR
Maximize sum-rate | Downlink MIMO No Centralized Yes [80, B.C. Lim et. al]
Maximize the time - SISO Yes | Distributed No [81,Urgaonka et. al]
average rate
Maximize sum-rate | Downlink MIMO Yes Centralized Yes [82, W. Zong et. al]
Maximize Faimess | no\nink | MIMO | Yes | Centralized | Yes [83, Q. Meng et. al]
aware sum-rate
Maximize sum-rate | Downlink MIMO No Centralized Yes '[fj? A. Bayesteh et.
mﬁi’t‘;m'ze sum-rate | | iSO | Yes | Decentralized | Yes [85, A. Khisti et. al]
Maximize sum-rate | ———— MISO Yes | Decentralized | Yes [86, Jorswiek et. al]
Uplink ;
Maximize sum-rate SISO Yes Centrallzgd/ Binary [87, B. Zayen et. al]
/Downlink Decentralized
Maximize sum-rate | Downlink MIMO Yes Centralized Yes [88, J. Wang et. al]
Maximize sum-rate | Uplink SISO Yes | Centralized Yes [89, K. Hamdi et. al]
Max. sum-rate Downlink MIMO Yes | Centralized Yes [90,C. Lv et. al]

1.5 Summary of Contributions

This thesis solves resource allocation problems by proposing low-
complexity algorithms for cognitive radio with MIMO and relaying capabilities. All

the proposed algorithms in this thesis have polynomial-time complexity.
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First, we present a joint multiple relay assignment with discrete and
continuous power allocation, which is formulated as a non-convex mixed integer
non-linear programming problem. The complexity of the proposed easily
conceivable optimization of the relay assignment shows exponential growth with
the number of secondary users and number of relays. We propose an iterative
greedy algorithm that has very low complexity and its performance is near the
exhaustive search algorithm. This algorithm also shows some fairness in

assigning relays to the secondary users.

Second, a multi-objective framework is proposed for green resource
allocation in CRS. One of the objectives of green resource allocation is to reduce
CO;, emissions. We propose a hybrid estimation-of-distribution algorithm for

green resource allocation in CRS.

Third, we presented a low-complexity distributed algorithm for joint
subcarrier, relay assignment and power allocation in multicast CRS. A primal-
dual decomposition approach is used for distributed resource allocation. The
proposed algorithm has a polynomial-time complexity. We also present a max-
min fairness-based resource allocation framework for joint subcarrier and relay

assignment in multicast CRS.

In the last part of this thesis, three different algorithms are proposed for

joint user scheduling and power control in multiuser MIMO CRS.

1.6 Organization of Thesis

Fig. 1.7 shows the hierarchal overview of the thesis. Chapter 2 describes
different relay assignment schemes for relay assisted CRS. Green
communication is presented in Chapter 3. Chapter 4 contains the framework and
algorithms for subcarrier assignment in cooperative multicast CRS. User

scheduling is presented in Chapter 5.
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Organization of Thesis

Relay Assignment Distributed and Max-Min User Scheduling
Subcarrier Assignment Chapter 5
Chapter 4

Relay Assignment  Relay Assignment for
in CRS Green Communication
Chapter 2 Chapter 3

Fig. 1.7 Organization of thesis.
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CHAPTER 2: RELAY ASSIGNMENT AND POWER
ALLOCATION FOR CRS

The performance of a cooperative communication system can be
improved by using multiple relays, rather than a single relay, which convey the
same information to the destination [1] [2]. A larger number of relays in general
increase the diversity order and the channel capacity. However, in a cognitive
radio system (CRS), a large number of relays can collectively cause a significant
level of interference to the primary users. In a multi-user CRS in which the users’
signals are separated by frequency division, one can reduce the inference level
in each frequency band by cleverly grouping relays and assigning each group to
different frequency bands. In this chapter, we focus on the problem of assigning
multiple relays to the secondary users in a CRS so that the sum-capacity of CRS
is maximized under the constraint that the interference to the primary users is
below a specified threshold. For relay assignment, we consider a CRS that
employs amplify and forward (AF) relays in shared band mode. In shared band
AF scheme, all the relays assigned to any destination transmit in a same time
slot and in the same frequency band [1] [2]. We consider a CRS comprising
single source node, multiple destination nodes (multiple secondary users), and

multiple relays.

In our work, we propose relay assignment schemes with continuous and
discrete power allocation. Finding an optimal interference-aware multiple relay
assignment can be computationally extensive because of the combinatorial
nature of the problem. Exhaustive Search Algorithm (ESA) evaluates all possible
relay assignments, which is computationally inefficient. For relay assignment
and power allocation, we propose low-complexity algorithms for both continuous

and discrete power allocation.
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The main contribution of this work is the formulation of the optimization
framework for multiple relay assignment in multiuser CRS with power allocation
(both discrete and continuous power allocation). The proposed multiple relay
assignment and power allocation is a non-convex mixed' integer non-linear
programming (NC-MINLP) problem. In the context of the proposed framework,
we propose efficient algorithms for multiple relay assignment and power
allocation. For comparison, we provide an upper bound on the sum-rate capacity
in the relay assignment problem. A detailed performance analysis is examined to
show the effect of different system parameters (e.g., interference threshold level,
number of primary users, number of secondary users, relay power levels etc.) on

the performance of the proposed scheme.

Primary Users

Receivers/

<|> Destination

Fig. 2.1 Relay Assisted Cognitive Radio Network.

! For discrete power control, the relay assignment problem is a non-convex integer programming
problem.
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Table 2.1 Notations used in chapter 2.

Symbol Definition

K Number of secondary users

M Number of primary users

L Number of relays

h,, Channel gain from source to the /th relay

h,, Channel gain from source to the kth secondary user

h, Channel gain from fth relay to the kth secondary user

Sim Channel gain from /th relay to the mth primary user

g Channel gain from source to the mth primary user

P Transmission power of source to kth secondary user

w Bandwidth of non overlapping frequency bands to each
secondary user

P Set of relays’ discrete power levels. P, =
{O,p’”‘”‘ /2,2 p"* /ﬂ,....,p’”‘”}

e Maximum allowed transmission power of the th relay

e Maximum allowed interference at mth primary user on the

’ kth secondary user’'s band

&4 Binary assignment indicator indicating whether relay / is
assigned to the kth secondary user

A A matrix where elementA(,k)denotes individual SNR
contribution of relay / at kth secondary user

¥ Set of relays that individually satisfy the interference

constraints at all the primary users with non zero
transmission power level
! Summation of individual interference contribution of relay /

at all the primary users i.e.T’ = Zi;l(l,m)

A User receiving maximum individual SNR
C A vector where element ©(/)=argmaxA(l,k) Vie¥
ke(1,2,..,K)
represents the user where relay / generates its maximum

individual SNR

2.1 Problem Formulation

We consider a two-hop cooperative CRS, which comprises one
transmitting node (source), K receiving nodes (secondary users), and L relay

nodes. Our system model also includes M primary users, for which the
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transmission power of the cognitive radio nodes (secondary users) must be
limited. M primary users can mean, as well as primary user devices, M
geographic locations or regions in which the strengths of the cognitive radio

signals must be constrained. Each relay, transmitter and receiver is equipped

with a single antenna. We denote by %, the channel from the source to the /th
relay, %, the channel from the source to the kth secondary user, %, the channel
from the Ith relay to the kth secondary user, &, the channel from the source to

the mth primary user, and &;,, the channel from the /th relay to the mth primary

user. In our system, a central controller (also referred to as the spectrum
manager) jointly assigns relays to the secondary users and decides the relays’

power levels. We assume that the central controller has perfect knowledge of the
channel gains 4., ,n, and g,. We consider a two-step shared-band AF

scheme for cooperative communication [1] [2]. In our system model, each
secondary user will receive the data destined to it in its designated frequency
band that does not overlap with other users’ bands. We assume that all users are

given the same bandwidth in the radio spectrum. Each relay will transmit and

receive in the same frequency band. We denote by p,, the transmission power of

2, the interference power

the Ith relay. We denote byU(Pl,l,m)=p;‘gz,m

contributed to the mth primary user from the /th relay with power p, .

We denote by P* the transmission power of the source in the user band
indexed by k. We assume that a relay assigned to the kth user filters in the
received signal in the band indexed by k and then amplifies and transmits the
signal in the same band. In our system mode, the source’s transmission and the
relays’ transmission are separated in time. Each symbol is transmitted in two
time slots—in the first time slot by the source and in the second time slot by the

relays. Thus, in the first time slot, the signal received by the /th relay (after

listening to the kth user’s band) can be written as \/Pskh_g,,HZ,, where complex-

valued s represents the transmitted symbol and Z, represents the complex-
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valued white Gaussian noise at I, relay. In our system model, symbol value s is

normalized so that E(|s|2):1 and N,/2 is the power spectral density of the

noise Z,. The noise power N, in watts, in each user band can be written as
N:(N(') /2)2W:N(')W, where W is the bandwidth of each user band [10]. In the

second time slot, the relays amplify the received signal and re-transmit the
amplified signal. We are considering a system in which each relay can be
assigned to only one user while a user can receive data from multiple relays. The

channel capacity of the kth user with L relays using AF relaying is [1] [2]

I 2
P ln pt (Z hs,zhz,k‘ﬂz\/EJ

C, zélog 1+ + =

N L
N N 1+Z(ﬂl‘hl,k‘\/p_l)2
=1

2 -1/2
where ﬁ,=(Pf +N) . Our joint relay assignment and power allocation

hs,l

problem in a CRS is to determine the assignment of relays to the secondary

users and the relays’ powers, p; I=1,2,...,L, in order to maximize the sum-capacity
Zka under the constraint that interference to the primary users within a
specified value. The sum-capacity expression for shared AF in (2.1) is not a
concave function of relay powers. We define ¢,as a binary assignment

indicator:

{ 1 if thelthrelayis assigned to the kth receiver
Cix =

0 otherwise

The interference aware relay assignment problem can be defined as the

following mixed integer non-linear programming problem:
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OP1:

_ -
& hs,lhl,k‘ﬂl\/p_l
L1 Pih,| pr{ ™ \/Pf \hx,,\z +N
max Z:—log2 I+ — 4+ = >
{p/ . ‘1:_1,2,,,L} ~2 N N L ‘h ‘ p
e PF|k=12,.K +Z 1k !
I=1 Psk h,, ’ +N
subject to
K
Cl: zgl’ks 1, v/ (2.2)
k=1
L 2
C2: gl,kpl‘gl,m‘ < Iy, V(mk)
=1
C3: PHlg. [ <1, W(mk)

C4: 0<P'<P"™, Vk

K
CS: OSp,SZe,,kp,’"‘”, Vi

k=1

C6 : &, €{0,1},Y(Lk)

where p,/“ is the maximum allowable transmission power from the /th relay, and

I is the maximum tolerable interference at the mth primary user in the kth

secondary user’s band. The constraint C1 assures that a relay can only be
assigned to one user. The constraints C2 and C3 are the interference constraints
for source and relay transmissions respectively. The constraints C4 and C5 are
the power constraints for source and relay respectively. The constraint C5
ensures that if the /th relay is not assigned to any user then the transmit power of
the fth relay should be zero. The proposed multiple relay assignment and power
allocation in OP1 is a non-linear mixed integer programming problem. An
exhaustive search algorithm (ESA) for (2.2) would evaluate all the possible relay
assignments and for each assignment determines the power of each relay. The
number of different relays assignments increases exponentially with the number

of relays and the number of the secondary users. Moreover, even for a given

relay assignment, {5,’k|l:1,2,..,L,k:1,2,...,K}, the objective in (2.2) is not a
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concave function of the source’s and relays’ power levels, so this continuous
optimization is not a convex optimization problem. High-speed communications
demand an assignment scheme with low computational complexity. This
chapter proposes heuristic algorithms that have good performance and yet have

relatively low computational complexity.

2.1.1 Decoupling of source power

Optimization problem (2.2) has three sets of decision variables: the relay
assignment represented by {8,,k}, relay transmission power represented by
{pl,pz,....pL}, and the source’s transmission power represented by
{Pf |k=1,2,..,K}. We first note a special structure of the optimization problem
(2.2). For any choice of relay assignment represented by {8,,k} and relay
transmission power represented by {pl,pz,.-.-pL}, the objective function is an
increasing function of variable P‘, the source transmission power. In addition,

. . k k 2 k
the only constraints on variable P, are P, ‘gm‘ <I)V,Vm and 0<P < P™

k ] Ilmkax ] ;71 Zx ] ;‘1/; d. ;
which can be simplified to 0< P’ <minq P",—— ,——, ---,——+  and
gs,l gs,Z gS,M‘

variable P* do not appear in any other constraints in (2.2). That is, the interval

e ph e | e DI |
constraint 0< P’ <min< P™, =, >t > ¢ of P | is decoupled from all
gs,l gs,2 gs,M‘

other constraints in (2.2). Therefore, problem (2.2) can be written as:
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B 2
ZL: €1k hs,zhz,k‘\/;l
| e TP
max Y —log, 1+S—S’k+—
Pl k=12, K = 2 N ‘h ‘ p
+z k| Pi
k
{P/,S/km{ij;%u,lé} . P ‘h J‘
subjectto C3: Pf ‘gsﬂm‘z <L, VY(mk)
C4: 0<P' <P™, Vk
subject to )

K
Cl: Zgz,kﬁ , VI

C2: Zglkpl‘glm‘ <15, V(mk)

C5: OSp,SZEZ)kp,'””, Vi

k=1

C6 : ¢, €{0,1},V(l,k)

or equivalently,

Pk

N

hk

s,

= glk‘hslh/k‘\/i
D Ty
P P
+_
Plk=12..k =2 N

= ‘ lk‘ P
max +z .
{W/k 1.2,..L =1 P ‘h ‘

k12 K}

0T

max —log, {1+

b

. ] Jrex ]
subject to  0< P* <min{ P"*,—1% =, 2.k . M,kz Wk
g&‘,l gs,Z
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subjectto Cl1 : Zel,kél, )

k=1
L
C2: Zgl,kpl‘glm <15, V(mk)
[

K
C5: 0<p, <> &,p™, Vi

k=
C6 : &, €{0,1},(k)

For any choice of relay assignment {E,k} and relay transmission

power{pl,pz,----pL}, the inner maximization,

Znglk 1k‘\/7
) PJn D
max Z—log2 I+ < R
=Y N N g ‘hlk‘ »,
I+) ———>——
= Pin,, [+ N
Imax ]max Imax
subjectto 0 < P* <min{ P"*, 1”‘2, “2’...’ M,kz Yk
gs,l g3,2 gS,M‘

has a nice structure. Namely, the constraint on (Q‘,Pf,...,PS",...,PK) is a

rectangular constraint and the objective function is separable. Therefore, the
maximization can be achieved by performing the maximization over single

variable P*,
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2
Zngzk lk‘\/
1 Psk hsk P - R
max —log, ¢ 14+ ————+—
P! 2 N N L ‘h ‘p
16| P
I+) —— 5
=1 Pf‘hs’,‘ +N
) ] ]max Imax ]max
subjectto  0< P‘ <min{ P"™, 1”‘2, z’kz,---, M’kz
gs,l gs,2 gs,M‘

individually for k=1,2,..,K. The objective function is monotonically increasing

function of P* and the constraints set is an interval (Appendix A). Therefore, for

any choice of relay assignment {8,,k} and relay transmission power{pl,pz,.-.-pL},

. .. k . . max ]1’:1/;” I;’jl‘clx ]A”/;(T)lz
the maximizing source power F,is minq P™, 7 757" 5 for each k.
gs,l gs,2 gs,M‘
We denote the optimal source power as
_ [max ]max [max
k _ . max 1,k 2.k M .k
P =minq P™, ——5,—5, (2.3)
gs,Z

With P'=P* the optimization problem (2.2) is reduced to

OP2:
_ -
L& hs,lh/,k‘\/;l
K 1 Pk pk ; ]3S
max D —log,| 1+ s >
{chk L2l 1 2 N N L L ‘hl,k‘ P, 2.4)
I=1 1_)sk ‘hsﬂl‘z +N
subject to ) )

C1,C2,C5,C6 of OP1
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In the next section, we will present a low complexity sub-optimal algorithm for

solving problem OP2.

2.2 Algorithm for Relay Assignment with Continuous Power

In this section, we present an iterative joint relay assignment and power
allocation (IJRAPA) scheme for the multiuser CRS. The proposed IJRAPA is a
two-phase algorithm. In the first phase, the algorithm, based on the channel
conditions, assigns the relays to the secondary users. In the second phase, the
algorithm iteratively allocates power to the relays. The Tables 2.2 and 2.3 show

the pseudo code of the proposed algorithm.

2.2.1 Phase 1: Relay assignment

In this algorithm, the channel gains between the relays and the secondary
users play a key role in relay assignment. For each relay /, the algorithm

compares the channel gains from it to all secondary users,

17,

hl,2

hl,k

o\ Mals s ,~--,h,,,<‘. Then, the algorithm assigns relay / to the secondary

user to which relay | has the best channel. That is, relay / is assigned to

secondary user arz{gmw}i‘h,,k‘. The Table 2.2 shows the pseudo code for relay
ke{l,2,.,K

assignment. First, we will describe the notation used in the pseudo code, and

then we will describe the relay assignment algorithm.

We denote by H the LxK channel matrix and by L, the set of relays

assigned to kth user. At the start, the algorithm generates a vector

®(1)=ar(gma>)< H(l,k), Vle¥ that contains the index of the secondary users that
ke(1,2,..,K

has highest channel gain with the relays. After getting the relay and secondary
user pairs, the algorithm iteratively determines the subset of relays that are
assigned to each secondary user -e.g., at the kth iteration, based on ©, the

algorithm gets the L, subset of relays that are assigned to the kth user -i.e.,
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g,=1VIlel, . After getting the subset L, the algorithm iteratively allocates

power to each relay in the subset Ly .

2.2.2 Optimization of Relay Transmission Power for a Given Relay

Assignment

A relay assignment {6,,,{ l=12,.Lk= 1,2,...,K} is also specified by subsets

Ly, k=12,..,K . For a given relays assignment, power levels of the assigned

relays can be optimized. The formulation of such an optimization problem is

simply obtained by fixing {6,,k =12,.,Lk= 1,2,---,K} in Problem OP2. That is,

OP2a:
_ -
L Prlh Pt [Z hs,lhl,k‘ﬂl\/;/}
max Z —log,| 1+ s 1Tokl L Nlek .
A B Sy
1+ 8k 2
- 3
te, P ‘h&l‘ +N
subject to

> pilgn| < 1w womk

lel,

0<p <p"™, Vel .,k=12,.,K

Problem OPZ2a has a nice separable structure, which is mainly attributed to the
separation of frequency bands among different users k=1,2,...,K. Namely, in

order to solve Problem OPZ2a, one can solve the following problem for k=1,2,...,K:
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OP2a—k:

2
(il

lel,

max llog2 1+ 5
{pliet, 2 N N ‘h/k‘ )2

1+

— 2
leL, Psl‘ ‘hsl‘ +N

subject to

Cl: Zpl‘g,’m‘zﬁ Iy, V(m)

leL;

C2: 0<p <p"™, Vel

Solving Problems OPZ2a-k for k=1,2,...,K is a divide-and-conquer approach to
solving OP2a and is more efficient in terms of computational complexity.
However, Problem OPZ2a-k is not a convex optimization problem. In the next
subsection, we present an efficient suboptimal algorithm for solving Problem
OP2a-k.

2.2.3 Phase 2: Power Allocation

In Problem OP2a-k, the objective is to maximize the capacity for

secondary user k, and the high power gain of the channel ‘hl,k‘z from a relay / in

Ly to user K's receiver is favourable to the channel capacity for user k. On the
other hand, the high power gain of the channel from relay / to primary users is not
favourable because that adds interference to the primary users. For developing a

heuristic optimization algorithm, we can view the channel gain from the /th relay

2
to the kth secondary user ‘h,,k‘ as profit taken from investing unit transmission

power to relay I. We also view channel gain from the /th relay to its primary users

2

2
s 5" 7y

8

2
as loss. In particular, our algorithm views maX(‘gl,l g,,M‘ ) as loss

incurred from investing unit transmission power to relay /. At the start of the
power allocation phase, the algorithm sorts the relays in the subset L according

to the profit to loss ratio. After sorting, the algorithm greedily allocates power to
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the relays in the subset L, in the sorted order from the relay with the highest profit

to loss ratio to the lowest.

Now, we will describe the algorithm in detail. Table 2.3 provides the

pseudo code for power allocation routine for Problem OPZ2a-k. Initially, in this

routine, the relays’ powers are set to zero. We denote by A, the set of relays
whose power is already allocated. Initially A, is empty. The algorithm allocates

maximum power to that relay that has the maximum ratio of channel gains 7%, to

the channel gain with the worst primary user. We define a function ‘sortindex’

2
s

which sorts the relays according to the ratio > in

2
H 5"

2
&2 gl,M‘ )

descending order. The function ‘sortindex’ returns a vector that consists of the

max(‘g,1

relay indices according to the sorted values. The algorithm iterates over the relay

indices in the sorted order. In each iteration, it stores one relay from the sorted

relays to A,.

The objective of Problem OP2a-k is in the form of

P|h,
%logz{lﬁ' ‘s J\fj’k‘+7k],

(i |l 8 )
1+ (Bl )

monotonically increasing with 7, . Thus, we can solve OP2a-k by maximizing

(21 h,, hz,k‘ﬂz\/;z)z
1+Z,(ﬂz ‘hl,k‘\/;l)z

-1/2
where 7, = and 5, =(Pf hs,,‘2+N) , and the objective

k
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0
We observe that 7, is not increasing with respect to p,,VIeL,. By takingaf",
J

we observe that 7, is non-decreasing with respect to p; when

3ol »
ﬂ,\h,,k\[z b B P, ]

1]
observation, the power of the selected relay is determined using the equation

2

hs i

(see Appendix C). With the help of above

hs,l

B 12
max Sum hs’” (1 + Z (ﬂl ‘hl,k‘)z pl]
. Imk _Im max l¢a,l€Ap
p, =min| 220y, pre
ga,m
B\ ( z hy, hl,k‘ﬂl\/pl]
[#a,lel, ]

The minimum of all three entries not only satisfies the interference and maximum

power constraint but also ensures that the allocated power lies within the range
of values for which the cost function is non-decreasing with respect to p,. Then
the algorithm determines the total interference generated by this allocated power.
The algorithm continues until the set L, becomes empty. The algorithm will

terminate when all the users get their assigned relays.
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Table 2.2 lterative Joint Relay Assignment and Power Allocation (IJRAPA)

Main Algorithm Flops
Initialization: H (1,k)= ‘h,’k‘z Vv (1,k)
1:0(/):=argmax H(l,k) [=12,..L;
ke(1,2,.K) 1: LK
While k <K
2: K

2 L ={] @(l) =k}
3: If L, # Then
Power Allocation Routine
Endif
EndWhile
Output: © p,,VI

30 K|L[ (1+M)
+2K|L,|(1+ M)
+2KM

Table 2.3 Power Allocation Routine

Input: i=1k L., g .. h b, 0", 0 Vel Flops
l:p=0,VieL, I, =0,Ym,A, =&, p*" =0
2
o |
: A = sortindex 5 5 ~.Viel, 2:
maX(‘gl,l 2|81, "”i'gl,M‘ ) ‘Lk‘log(‘Lk‘)
While i <|L,|
3: a=A( 3:1
a=A40 4:1

4: A, =A, Ula};

]’t:ax _I;nS'um v o 5:

P E O 2M +4|L,|

. 2
> p,=mm hy, [1+ Z (ﬂl‘hl,k‘) pl}
l#a,le
= 6:2M
ﬂa ha,k ( Z hs,l hl,k‘ﬂl\/?[} 7: l
l¢a,leAp )

6: IX™ =1""+p, gl’m‘z Vm;
7. i=it+l
EndWhile
OutPut: p, Vie L,
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2.2.4 Complexity Analysis

Tables 2.2 and 2.3 describe the complexity of proposed IJRAPA scheme.

Complexity is measured in terms of flops Y'. A flop is defined as a real floating-
point operation [8]. A real addition, multiplication or division is counted as one
flop. A complex addition is counted as two flops and a complex multiplication has
four flops. The multiplication of a pxq matrix with a gxm matrix takes
approximately 2pgm flops. Addition and removal of an element from a set takes
one flop. The logical operator (e.g. comparison etc.) and assignment operator
take one flop [8]. From Tables 2.2 and 2.3, we can observe that the [JRAPA

takes approximately K (M L+ L [log (|L,|)+2|L,|+2M |L, |+ 2|Lk|M) +2K +LK
flops. To get the flop count Y -, , we set |Lk| =L . The flop count Y ., is

Y i © K (ML + Llog(L)+2L+2ML+2LM )+2K + LK
~O(KML)

2.2.5 Performance Results with Continuous Power

As mentioned in section 2.1, for given realization of integer variables, the

optimization problem in (2.2) is not a concave function of the relay powers due to

[i bl B )

l:lL -
ENVALAND
/=1

variables, convex optimization techniques cannot be applied to the resulting

the termy, = . Thus, even for a given realization of integer

optimization problem. For comparison, we provide an upper bound on the sum-
rate capacity of the relay assignment problem. The proposed upper bound is
concave for a given realization of integer variables. The upper bound can be

derived by using the Cauchy Schwarz inequality [5]
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(z hy, hl,k‘ﬂl\/;lj (Z( h,, )ZJZ(‘hl,k‘IBI)Z P
I=1 _ : <Nt . I=1 2 (2.5)
1+;(‘hl,k‘ﬂl\/;l) 1+Z(‘hl,k‘ﬂl) b

/=1

Appendix B shows that the upper bound is a concave function of relay powers.
Fig. 2.2 shows the comparison of the upper bound (UB) with the exact values of
the objective function. We consider the scenarios with relays

power p, ={P,/10,P,/50,P./100} . Fig.2.2 shows that the proposed bound is tight

when the numbers of relays are less.

— UB,pI=PS/10

° o Exact,p=Ps/10 Ps = 30dB

7| —=— UB,p=Ps/50 Ps = 20dB / ]
—O— Exact,p|=Ps/50 o

® UB,p=Ps/100 WA i{:

5 Exact,p=Ps/100 ——

Capacity (bits/s/Hz)

1
1 2 3 4 5 6 7 8 9 10
Number of relays

Fig. 2.2 Upper Bound on the AF channel capacity

We compare the proposed IJRAPA with exhaustive search algorithm that
uses upper bound (ESA-UB) for power allocation. In ESA-UB, for each set of
assigned relays, we run a convex optimization to allocate the relays power. We

also include an iterative joint relay assignment algorithm that uses upper bound,
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as mentioned in (2.5), for relays power allocation. We call this algorithm as
iterative joint relay assignment with upper bound [JRA-UB. In [JRA-UB, relays
are assigned using the algorithm mentioned in Table 2.2. For each set of
assigned relays, the relays powers are allocated using conventional convex
optimization techniques that uses upper bound as mentioned in (2.3). In the
simulation results, the channel gains between source, relays and destinations

have an independent complex Gaussian distribution.

In Fig. 2.3, we present the plot of sum-capacity versus the interference

threshold with the parameters (L, M, K) = (6, 1, 3) for different p" . There are

two scenarios with p™ = {1, 10} watts. We assume that each user’s occupies a

band of bandwidth 1 MHz. The results show that the performance of [JRAPA is
close to that of ESA-UB and IJRA-UB. The Fig. 2.3 also show that the sum-
capacity increases with the interference threshold because the feasible set of the
optimization problem with lower interference threshold is a subset of the feasible
set of the optimization problem with higher interference threshold. In Fig. 2.4, we
present the plot of sum-capacity versus the interference threshold for different
numbers of relays and primary users. We use the scenario (L,M,K) = (6,1,3) and
(3,3,3). The results show that the performance of IJRAPA is close to that of ESA-
UB and IJRA-UB. We observe that the sum-capacity increases with the number
of relays as more relays mean more degrees of freedom in relay assignment. We
also observe that the sum-capacity decreases with the increase in the number of
primary users because the optimization problem has more number of constraints
to satisfy. In Fig. 2.5, we present the plot of sum-capacity versus number of
primary users. The parameters are (L, K) = (5, 3). Fig. 2.5 shows the variation in
sum-capacity with the increase in the number of primary users. In this result, we
observe that sum-capacity decreases as the number of primary users increase.
This is because the relay assignment needs to satisfy more interference

constraints as the number of primary users increases.
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Fig. 2.4 Sum-rate capacity vs. Interference comparison. The parameters

are K=3, p. =10w, L = {6,3}, M ={1,3}
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2.3 Algorithm for Relay Assignment with Discrete Power
Allocation
The use of continuous relay power can lead to inefficient utilization of the
available bandwidth as more number of control bits may be required to express
the assigned relay power. Discrete power allocation (DPA) helps in simplifying
the end-to-end control channel traffic. The assumption of DPA is also relevant to
the networks, which deploy low cost relays that do not have sophisticated

circuitry to support transmissions on arbitrary power levels.

In this work, we consider inexpensive relays that can operate only at a

finite number of transmission power levels. Let P, be the set of relay power levels

comprising A+l uniformly spaced discrete power levels -ie.,

max

ax 2
P, :{0, pl/i , p/{ ,....,pl’""“‘}. We denote by |P,| the cardinality of set P,. For

discrete power allocation, the problem OP2 is changed to
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OP3:

2
p* (Zglk‘hslhlk‘ﬂl )

K P/c ‘h ‘ '
max z— og,| 1+ \
{ﬁ,/ki B 2 N N 1+ ;(ﬂz ‘hlk‘\/p_l) (2.6)
subject to _ _

C1,C2,C5,C6 of OP1
C7: peP, VI

The proposed multiple relay assignment and discrete power allocation in
OP3 is a non-convex non-linear integer programming problem. An exhaustive
search algorithm for OP3 evaluates all the possible relay assignments power
levels. The computational complexity of the optimal relay assignment algorithm
(e.g. exhaustive search algorithm) increases exponentially with the number of
relays and power levels. For efficient relay assignment and discrete power
allocation in the multiuser CRS, we propose a low-complexity interference aware
greedy assignment (IAGA) algorithm. The proposed algorithm, in each iteration,
assigns a relay or a set of relays to the secondary user that gives maximum SNR

and satisfies the interference constraints at the primary users.

2.3.1 |AGA for Discrete Power Allocation

One of the basic ideas in designing this algorithm is that we assign a relay
to the secondary user k only if the channel between that relay and the secondary
user k is best among all the secondary users and the relay satisfies the
interference constraint at all M primary users. In order to make the description of
this algorithm clear, we will use an example system and often interject an
illustration from this example system in our algorithm description. Tables 2.4 and
2.5 present the pseudo code and examples of IAGA respectively (For better
understanding of the algorithm, a flow diagram of IAGA is also shown in
appendix D). In the example of Table 2.5, we consider a system comprising

three secondary users Ky, K> and Ks, two primary users My, M2, and seven relays
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L4, Ly, ... ,L7. The interference thresholds of primary users M; and M, is 10mw

and 20mw in each secondary user’s band respectively.

The IAGA is performed in two stages. At stage 1, the algorithm determines

the transmission power, p;,of each relay / and computes some other quantities

for stage 2. Let us denote by n(p,l,m) = p‘g,,m‘zthe interference caused by relay /

on primary user m with power p, . In stage 1, the algorithm sets the transmission

power, p,, of each relay / to
* 2 max
pl ::max{pEI)L|77(pal:m)5p‘gl,m‘ S1717,k\v/(’/n=k)}

’ can be interpreted as the interference the /th relay would

Note that p, ‘g,,m

cause on primary user m if no other relay were transmitting at that time. In
words, the algorithm at stage 1 sets the transmission power of each relay as high
as possible with the constraint that the interference it individually causes on each
primary user is within its interference constraint (interference tolerance level).
Note that such a transmission power level for some relay can be ‘0’ if every
positive power value in set P, individually causes interference on some primary
user above its tolerance level. The relays with power level set to ‘0’ are removed
from consideration; it means at the end of stage one, the algorithm selects the
relays that individually satisfy the interference constraints at all the primary users.
We denote the set of selected relays as Y. For each of these selected relays
and power levels, the algorithm evaluates the individual SNR contribution by
each relay at each secondary user -that is, the individual SNR that each
secondary user would have if it does not receive a signal from the source or
other relays. These SNR contributions from the relays are stored in matrix A.

Table 2.5(a) illustrates the values stored in matrix A. The algorithm then

. i M *
calculates the aggregated or sum-interference, I' Ezmzlﬂ(pz,l,m), from each
relay to the primary users. Table 2.5(a) illustrates the transmission power levels

of all the relays determined as p,, the individual SNRs in A, and the individual
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interferences U(Pf,l,m)computed in stage 1. Note that relay L7 is removed from

further consideration for assignment in subsequent steps as its individual

interference contribution violates the interference constraints.

In stage 2, at each iteration, the algorithm determines the set of relays
assigned to a secondary user in a greedy manner. For clarity of exposition, we
now use our example system to illustrate the steps of stage 2. From Table 2.5(a),

for each relay, we select the user where it generates its maximum individual

SNR- e.g., relay L; generates maximum SNR at user K; as we have A(11)=
8>3=A(1,2)andA(1,1)=8>5=A(1,3). As mentioned earlier, we assign a relay
to the secondary user k only if that relay has the best channel to the user k
among all the secondary users. Thus, in Table 2.5(b) for each relay, we retain
the SNR value of that relay/user pair where the relay has the best channel gain.
The selection of relay/user pair from Table 2.5(a) in this manner results in Table

2.5(b), where e.g. for relay L the bins for A(1,2) and A(1,3) are blanked. Among

these selected relay/user pairs, the pair that has the highest SNR value is

chosen and the corresponding user is denoted as k. For illustration, in Table

2.5(b), A(2,3) has the highest individual SNR among all entries of A and

/€=K3. The relays whose individual SNR contributions are maximum at user k
can be potentially assigned to that user. From Table 2.5(b), these relays are Ly,
Ls and Le and they constitute the set R. Then, the algorithm checks whether the
cumulative interference level generated by these three relays at the primary
users is below the required tolerance level. We observe from Table 2.5(b) that
the cumulative interference from these three relays violates the interference
threshold of My —i.e., A, =7(p,,LD+7(ps,51)+1(pg,6,1) =@8+1+6)> 1 (10) . In
this algorithm, if the relays in set R violate the interference constraints at any of

the primary users, then the relay with the highest sum interference
r =ZZ:IT7(1?;J,H4) is removed from further consideration for relay assignment.

From Table 2.5(b), it is observed that relay Ls has the highest sum interference
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among the relays in set R as sum interferences from L,, L5, and Ls are 8+5 = 13,
3+1 = 4 and 6+10 = 16 respectively. Therefore, relay Ls is removed from set R
and Y. Since the remaining relays, L, and Ls, together satisfy the interference
constraints, they are both assigned to the user K3 as done in Table 2.5(c). The
relays and users that have been already assigned are no longer considered for
the rest of the algorithm, as illustrated by the blanks in Table 2.5(c). These steps
are repeated until all the remaining relays are assigned or removed from

consideration. The subsequent steps are illustrated in tables 2.3(c) — 2.3(f).

We now present a step-by-step description of the pseudo code of stage 2
given in Table 2.4. In line 2 of stage 2 in Table 2.4, for each relay a user, that
receives the maximum SNR from it, is chosen and stored in the variable © as

@(l):=argmaXA(l,k) VieVY
ke(1,2,.,K)

Line 3 determines the relay-secondary user pair that has the maximum SNR

which is mathematically expressed as

A=max {A(1,0(1)),A(2,0(2)),..., A(L,O(L))}

In line 4, the user k& which has the highest SNR is determined as

k=0() st. A(,0(1)=A . The relays that generate maximum SNR at user k

are determined from the set ® and stored in the set R in line 5.

In lines 6-15 of stage 2, the algorithm iterates over the relays in the set R.
In each iteration, for every primary user m the sum of the interference levels
generated by the relays in the set R (on primary user m) is evaluated as

A 2=Z77(pf,r,m), Vm . If the interference constraints, A, ;<I1'7.Vm are

reR

satisfied then the capacity of the user k is calculated for the relays in set R, the
assigned relays are removed from the sets R and ' . If the interference constraint

is violated at any primary user then we choose the relay r (from the set R) that
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causes maximum sum interference (as given by I'"). The selection of relay r is

mathematically written as 7:=argmax I'. The selected relay r is removed from the
leR

set R and Y. Note that the retention of relay r in the set ¥ may increase the

capacity of the system but it also increases the complexity of our algorithm. By

the end of first iteration over the set ‘¥, the user & has its assigned relays.

Lines 2-16 are repeated till ¥ =9 .
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Table 2.4 IAGA

IAGA Flops
INITIALIZATION: A(1,k) =0 V (,k),T'=0 v (I),C, =0,Vk ,¥ =0
STAGE 1:
1:For /=1 to L
* 2 max .
2 = max{p, e P, |n(p, Lom)=p, |, <125 V(m,k)} 2 3M|PL|
3 If p =0 4:2K
* 5M
4 ALK =Lon,[ 6:1
” N 8:1
5 =) n(plm);
6 Y=vU{l;
7. else
8 n(plm)=0;
9: EndlIf
10:EndFor
STAGE 2:
1: While ¥ = &
2:  O(/)=argmax A(L,k) VieV¥; 2:KL
ke(1.2,..K) 3:K
3 A=max {A(1,0(1)),A(2,0(2)),...,A(L,O(L))}; gf%
4 k=0() st. AN1,0()=A 6: LM
5 R={|0()=k}
6: While R« 7 M
7 A, =Y n(p.l,m), Vm 8: 11L°
8  if A <I™ Vm M
9: C. = Apply Eq. (2.1) for R;
. 12: L
10: A(lLk)=0,Vl,,¥ =¥ \Rand Goto 1:
11: else
12: r=argmax I'';
leR
13: n(p.,r,m)=0; T(r)=0; R:=R\r,¥:=¥\r;
14:  EndIf
15: EndWhile
16: A(LLk)=0,VI
17:EndWhile
K

OUTPUT: X' C,
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Table 2.5 Example of IAGA

Symbol ‘-‘ represents a relay that can be assigned and ‘x’ represents a relay that has been
removed from consideration from further relay assignment

First Iteration Second Iteration
P A n(p;,l,m) A n(p;.Lm)
K, | K> | K; M, M, K, | Ky | K; M, M,
L,—- e 8 3 5 6 13 L, — 8 6 13
L,— " 15 | 18 | 50 8 5 L, - 50 8 5
3pm
L~ TEr 49 | 23 | 44 2 7 L;— | 49 2 7
L
L,— " 8 39| 2 10 15 L, - 39 10 15
Ls— p" 20 | 22 | 26 1 1 Ls— 26 1 1
Li— | 2 9o | 1|40 6 10 | Lg- 40 6 10
' | B, | '
L; x 0 L; %
(a) Illustration of Stagel of IAGA, Columns K, K,
and K3, denote individual SNR contribution of each
relay at secondary user K;-K; respectively. Column 1 b) Selecti ¢ i—x d rel o b
(p)) and 5 (M, .M)) denote the interference ( ). e;c ron 0~ 1.1ser R_—3 LanL rz ays fo be
contributed by each relay individually at each primary assigned to user k i.¢. set R =1Ly, Ls, L}
user and the selected power level of each relay
respectively.
Third Iteration Fourth Iteration
A n(p;s1,m) A n(p;1,m)
K, K, K; M, M, K | K| K| M, M,
L - 8 6 13 L~ 8 6 13
L; K; L; K;
L; - 49 2 7 L; - 49 2 7
L,- 39 10 15 L,— 39 10 15
L; K; L; K;
Lg % Lg x
L7’ X L7, X
(c)Relays L, and L; are assigned to user k = K;. Relay Ls | (d) Selection of user k=K, and relays to be
is removed from set R due to violation of interference | assigned to user & i.e.set R = {L,, L;}.
constraints at M,
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Fifth Iteration Sixth Iteration
A 1(p; 1m) A n(p;.1,m)
K, | K> | K; M, M; Ky | K> K; M, M;
L K, L; K,
L; K; L; K;
L; K, L; K;
L, 39 10 15 L, K,
L5, K3 Li, K\?
Lg x Lg *
L; x L;
(e) Relays L; and L~3 are assigned to user K;. In the | (f) Relay L, is assigned to user & = K.
next iteration user k =K is selected and the relay in
setRis L,

2.3.2 Fairness aware IAGA

In this subsection, we modify the IAGA to consider the fairness in the relay
assignment. We use access proportional fairness (APF) and rate proportional
fairness (RPF) schemes for relay assignment [6]. In APF, all the secondary

users will get approximately same number of assigned relays, i.e., each user will
get \_L/KJ relays. To incorporate APF in our formulations, we need to add one

more constraint to the optimization problems OP1, OP2 and OP3.

Mathematically:

L L
Z%%—J, Vk=1,2,,K
- LK

For APF, a little change is required to the stage 2 of IAGA. In stage 2, if any user
is assigned |_L/KJ number of relays then that user cannot be assigned any
more relays. The rest of the algorithm is same as IAGA.

In RPF, every secondary user k gets a rate proportional to its weight

Ck

Zf:l C/f QA .

factor ¢, . In RPF, we compute the capacity ratioA(k)= We find the
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user that has minimum capacity ratio kK =argmin A(k). We select a relay that
k=1,2,..K

gives maximum SNR to the user 4 and individually satisfies the interference

constraint at all the primary users. The selected relay is then assigned to userk .
For fairness comparison, we are using Jain’s fairness index as performance

metric [7]. The Jain’s fairness index is defined as

>ial

KZk:l[Ck]

Jain's Fairness Index =

2.3.3 Complexity Analysis

The main advantage of the proposed algorithm is its low implementation
complexity. In this section, we will compare the complexity of the proposed
algorithm (IAGA) with the exhaustive search algorithm (ESA), which achieves an

exactly optimal solution.

Table 2.4 describes the complexity of IAGA operations. First, we will
describe the complexity of the objective function and the constraints. The term

inside the log in equation (2.1) requires approximately 11L flops. The

interference constraint for each primary user requires 2L|PL| flops. The sum

M

interference Z n(p,,l,m) for each relay requires M flops. IAGA takes

m=1

approximately ~ L(3M|P,|+2K+M +2)  flops  for  first stage and
110+ I* (K +2M +2)+ L(K +1)for second stage. Therefore the total number of

flops T require by IAGA is

1AGA

IAGA

T you AL+ L (K +2M +2)+ L(3M |P|+3K + M +3)

~ 0(L3 +I’K +L2M> 27)
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From the above complexity analysis, we conclude that IAGA has a polynomial-

time complexity with respect to number of relays and number of secondary users.

The computational complexity of ESAis O(K").

2.3.4 Relay Assignment Results with Discrete Power Levels

We present the simulation results of the proposed IAGA. The performance
of proposed IAGA algorithm is compared with 1) exhaustive search with upper
bound (ESA-UB), 2) exhaustive search with discrete power allocation (ESA-
Discrete) and 3) one-to-one exhaustive search assignment. For ESA-UB, a
conventional convex optimization technique is used to determine the power of all
the relay assignment subsets. The disadvantage of this approach is that for ESA
we have to compute power allocation over all the possible relay assignments.
One-to-one ESA obtains an optimal solution for one-to-one relay assignment.

One-to-one relay assignment is formulated by adding an additional constraint in

OP3 where a user can only get data from one relay i.e. Z; &, =1Vkand a relay

can send data to only one user i.e. Zf:l &, =1VI. Comparison between IAGA and

one-to-one ESA helps us to show the effect of multiple relay assignments in the
cognitive radio system. In the simulation results, the channel gains between
source, relays and destinations have an independent complex Gaussian

distribution.

In Figs. 2.6 and 2.7, we present the plot of sum-capacity versus
interference threshold, 1,5 . We used the scenarios (L, K, M, A, P, p/"") = (6, 4,

4, 1, 10w, 1w) and (5, 3, 4, 2, 10w, 1w) . Bandwidth assign to each user is 1
MHz. We observe that sum-capacity increases with the interference threshold
because a feasible set of the optimization problem with lower interference
threshold is a subset of a feasible set of the optimization problem with higher

interference threshold. In Figs. 2.8 and 2.9, we present the sum-capacity versus

the number of relays. We used two different scenarios (K, M, A4,B", p/" I)5) =

(4, 1,1, 10w, 1w, 10mw) and (2, 4, 2, 10w, 5w, 1mw). From these results, we
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observe that the sum-capacity increases with the number of relays. This is
because more relays in the system give more degrees of freedom in assigning

the relays to the secondary users. In Fig. 2.10, we present the sum-capacity
versus number of primary users. The parameters are (L, K, 4,P"", p/" | I)% ) =

(5, 2,1, 10w, 1w, 1mw). Fig. 2.10 illustrates the variation in sum-capacity with the
increase in the number of primary users. In this result, we observe that sum-
capacity decreases as the number of primary users increases. This is because
the relay assignment needs to satisfy more interference constraints as the
number of primary users increases. From the numerical results, Figs 2.13 and
2.14 and Tables 2.6 and 2.7, we can see that IAGA converges to with in 86
percent of that obtained by ESA-Discrete algorithm at low interference threshold

and 96 percent at high interference threshold.
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Fig. 2.6 Sum-capacity vs. maximum interference threshold to primary

users with L=6, K= 4, M= 4, =1, P"*=10wand p/“ =P" /10, p, {0, p/" | VI
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Fig. 2.7 Sum-capacity vs. maximum interference threshold to primary

users with L=5, K=3, M= 4, 1 =2, P"* =10w, p/ = P"* /10, p, {0, p/" /2, p}"}
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Fig. 2.8 Sum-capacity vs. number of relays with K=4, M=1, 1 =1,
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In Figs. 2.11 and 2.12, we present the results of the proposed IAGA with
access proportional fairness (APF) and rate proportional fairness (RPF). In these
Figs., y-axis shows the capacity of each secondary user and the x-axis presents

the index of each secondary users. We compare the IAGA with IAGA-RPF and
IAGA-APF. We use two scenarios (M, K, A4,B"", p/", I ) = (10, 10, 1, 5w,

0.5w, 1mw, 17/K) and (10, 10, 1, 10w, 1w, 10mw, 1/K). For Fig. 2.11 (a) and (b),
the fairness index for (IAGA, IAGA-APF, IAGA-RPF) are (0.4174, 0.6698,
0.6417) and (0.7438, 0.9159, 0.8929) respectively. Similarly, for Fig. 2.12 (a) and
(b), the fairness index for (IAGA, IAGA-APF, IAGA-RPF) are (0.3733, 0.6727,
0.7465) and (0.746, 0.9684, 0.9440) respectively. The fairness index shows that
IAGA- APF and IAGA-RPF fairness is higher than simple IAGA without fairness.

To check the feasibility of the proposed algorithms for practical
implementation, in Table 2.8, we present the number of flops required by ESA,
IAGA, and IJRAPA for different parameter settings (i.e., different search space
size). The comparison shows that the number of flops required by IAGA and
IJRAPA algorithms is much less than that of ESA.
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Table 2.6 Percentage IAGA performance to ESA-Discrete for different 7,3

Parameters I =107 I =10" I =107 I =107
[K,L,M,A]

[4,6,4,1] (Fig. 2.6) | 86.57% 98.97% 98.72% 98.70%
[3,5.4,2] (Fig. 2.7) | 96.64% 97.09% 96.25% 96.26%

Table 2.7 Percentage IAGA performance to ESA-Discrete for different L

Parameters L=2 L=3 L=4 L=5 L=6
[K,M,A, X

m,k

[4,4,1,10mw] (Fig.2.8) | 97.81% | 97.74% | 96.83% | 96.13% | 95.80%

[3,4,2,1mw] (Fig. 2.9) | 97.44% | 98.54% | 97.82% | 97.78% | 95.67%

Table 2.8 Number of flops required by ESA, IAGA and IJRAPA

Parameters ESA IAGA IJRAPA
[K,L,M,A]

[5,5,1,9] 3125 395 1710
[8,5,10,16] 32768 3296 4710
[10,5,1,1] 100000 790 1910
[10,10,1,1] 1.0000e+010 2540 12770
[10,10,4,8] 1.0000e+010 6200 14330
[20,10,1,1] 1.0240e+013 5080 14070
[30,10,1,1] 5.9049e+014 7620 15370
[30,20,1,1] 3.4868e+029 27120 103540
[30,30,1,1] 2.0589e+044 58620 330510
[30,30,10,16] 2.0589e+044 318360 361290
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2.4 Summary

In this chapter, we formulated an optimization problem for determining joint
source/relays’ transmission power levels and relay assignment in a CRS. We
have shown that the assignment of source transmission power and the relays’
transmission power levels are separable - i.e., the optimization (2.2) is reduced
to the optimization (2.4). Then, we presented algorithms for discrete and
continuous power allocation and relay assignment. The proposed algorithms
have low computational complexity and the performance results are comparable
to the exhaustive search algorithm and better than one to one ESA. The simple
model and low implementation complexity makes the proposed algorithms
suitable candidates for solving complex communication problems like

interference aware multiple relay assignment in real-time.
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CHAPTER 3: GREEN RESOURCE ALLOCATION

According to the International Telecommunication Union (ITU) report [1]
[2], primary sources of global warming (CO, emissions) are electricity generation,
transport vehicles, buildings, and agricultural by-products. World Energy Outlook
(WEO) has forecasted that by the year 2030, the demand of electricity will be
twice as high as compared to the current demand, driven by the rapid growth in
population and by the continuous increase in the residential and commercial

electrical devices [3].

The information and communication technologies (ICTs) (especially the
wireless sector) contribute significantly to CO, emissions [1] [2] [3]. The ICTs
sector is responsible for approximately five percent of the global electricity
demand and CO;, emission [6] [7]. The CO, emission from the ICTs sector is
equivalent to the airline industry [2] [7]. The Global e-Sustainability Initiative
(GeSl) reported that during the year 2002, the ICTs and their related
infrastructure caused 150 mega tons of CO, emissions, and by the year 2020
they will cause 350 mega tons of CO, emissions [4] [5]. Fig. 3.1 shows major
sectors in ICTs and their estimated contribution in CO, emissions in year 2002
and 2020.

The main aim of green ICTs is to minimize the CO, emissions. Research
in green ICTs will enable the communication system designer to develop and
design the communication systems that will use power more efficiently and thus
contribute to reducing the CO, emissions. There are a number of approaches to
green ICTs. One approach is to use renewable energy (i.e., energy generation
from natural resources such as sunlight, wind, rain, tides, and geothermal heat).
Another approach is to design low power electronics components and design

energy saving algorithms for ICTs operations [4].
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Fig. 3.1 CO, emission estimate by GeSl in Mega Tones/Year

In the last few years, there has been increasing efforts towards green
ICTs. A comprehensive survey on green networking is presented in [4]. A green
planning for wireless network is presented in [5]. In [6], authors presented the
concept of energy efficiency in telecommunication networks. A detailed
discussion about ICTs footprint and its impact on the environment is presented in
[8] [9] and [10]. In [11], authors described a variable power/bandwidth efficient
modulation strategy to save the battery life of the communication device.
Information and technology companies like Google and Microsoft have already

started working towards green ICTs [21] [22].

In the context of green communication, cooperative communication can
contribute to reducing the CO, emissions. In this chapter, we present a multi-
objective optimization framework that jointly solves the problem of spectrum
sharing and reducing CO, emissions. In particular, we propose a green multi-
objective optimization framework for joint relay assignment and power allocation

in cooperative CRS.
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3.1 Multi-objective Optimization

Multi-objective optimization (MOOQ) is used in many complex engineering
optimization problems [12] - [15]. In typical MOO problems, different objectives
can conflict with each other. Optimization with respect to any particular objective
can give unacceptable results with respect to other objectives [14]. For resource
allocation in green cooperative cognitive radio network (GCCRN), we have two
conflicting objectives, maximize the sum-capacity and minimize the CO,
emissions. Determining the optimal set of decision variables for a single
objective— e.g. CO, emissions minimization can result in a non-optimal set with
respect to other objectives, e.g. sum-capacity maximization. Two widely used
methods to solve multi-objective optimization are weighted sum method and
constraint objective method [12] — [15]. In the weighted sum method (WSM), a
weighted sum of the multiple objective function is considered as the metric to
minimize (maximize). In WSM, the weight of each objective is proportional to its
importance placed for decision-making. A general WSM multi-objective

optimization problem is expressed as follows:

0

min /(x)=3 /()

subject to
g, (x)<0,j=12,..,D

h(x)=0,i=12,..,E

0
ZW,- =1
i=1

where Q is the number of objective functions, D is the number of inequality
constraints; E is the number of equality constraints. In the constraint objective
method [14], each objective is transformed into a constraint. In our formulation,

we will use weighted sum method.

An important task in designing the weighted sum MOO is to normalize
objective functions so that each objective function has same range of values. A

weighted-sum method [ 14 ] for MOO, without normalization, would result in a
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biased fitness function—e.g., if the value of one objective function is in the range
[0, 1] and the value of second objective is in the range [0, x] (wherel <x <o)
then the second objective produces bias in the weighted fithess function. In this
work, we normalized all the objective values within the range [0, 1]. For
normalization, we divide each objective function with its upper bound. We
formulate the GCCRN MOO in a way that the range of combined objective

function is always within 0 and 1.

3.2 Green Relay Assignment for GCCRN

We consider a two-hop wireless network with one transmitter (source), K

receivers (secondary users), L relays, and M primary users. Each relay,

transmitter, and receiver is equipped with a single antenna. We denote by %,
the channel from the source to the /th relay, %, the channel from the fth relay to
the kth secondary user, and g,,, the channel from the /th relay to the mth primary

user. We denote by p,, the fth relay’s transmission power. We consider a two-

step amplify-and-forward (AF) scheme [16]. In our system model, each user will

receive the data on a separate frequency band. Each relay will transmit and
receive in the same frequency band. We define ¢&,,as a binary assignment

indicator

B { 1 if thelthrelayis assigned tothe kthreceiver
Lk

0 otherwise

The channel capacity of the kth user for amplify and forward relaying is [16] [17]

_ ) N
1 Pt (Z‘c“l,k hs,lhl,k‘ﬂl\/ pl]
K =1
Ck 2510g 1+W 7 .
1+[Z<ﬂl ‘hl,k‘\/pl)
o

(3.1)
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hs A

-1
2
+N/2j . Our first objective is to maximize the sum-rate

where B = [\/Pf

capacitnyzlck. As mentioned in section 3.1, to normalize the first objective

. . . . K max max
between 0 and 1, we will divide the sum-rate capacity with ZH C.™ , where C,

is an upper bound on the capacity of the kth secondary user. We use the

following upper bound, which is obtained from Schwartz inequality:

hs,l

pl(Edasa ] || T[S0 ) Eda) s

log| 1+— <log|1+—=| %~

S dadny || 1N el

=1

Mathematically, we can write the objective of the sum-rate capacity as

(3.2)

The second objective is to reduce the CO, emissions. The CO, emissions
are measured in grams. If P is the power used in the transmission and X is a
constant in grams/watt then the product of P and X (i.e., PX) represents the CO,
emissions in grams. The value of X is different for different types of material (fuel)
used for electricity generation. There are three major sources of fuel for electricity
generation. These fuels are oil, gas, and coal. The value of X for lignite/brown

coal, natural gas, crude oil and diesel oil is 940, 370, 640, and 670 grams/watt,

respectively [6] — [8]. We define by E,COZ ZZ; Xp, , the CO, emissions due to the

Ith relay. We can write the objective of CO, emissions as
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where E,.” =Zf=1XP,'"”X. To define a single objective, we can transform the

maximization objective f, into minimization using the relationﬁ:l—fc.

Mathematically, we can write the MOO for GCCRN as

OP1:
min {Wlfc + szcoz}

&0

subject to
Cl: Y" g, <LVl -
c2: Z;plg‘hz,m <1 (mk)
C3: 0sp <Y eup™, VI
C4: g, e{0.1)

The formulation in (3.4) is a multi-objective non-convex mixed integer non-linear
programming problem. The objective function in (3.4) is bounded by zero and
one. In (3.4), the constraint C1 assures that a relay can only be assigned to one
secondary user, C2 is the interference constraint, the constraints C3 and C4
jointly ensure that if the fth relay is not assigned to any secondary user then the
transmission power of the th relay should be zero. In the next section, we will
present a low-complexity hybrid estimation-of-distribution algorithm (EDA) for
GCCRN MOO problem.

3.3 Hybrid EDA for GCCRN MOO Problem

In this section, we will present a hybrid scheme for GCCRN multi-objective
problem. The proposed scheme is a combination of an evolutionary estimation-
of-distribution algorithm for power allocation and an iterative greedy algorithm for

relay assignment. Evolutionary algorithms (EAs) in general have been often used
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to solve multi-objective optimization problems. Evolutionary Algorithms are
inspired by the theory of biological evolution. Candidate solutions to a multi-
objective optimization problem are represented as individuals in the population.
In EAs, the objective function value of a candidate solution indicates the fitness
of the individual, which is associates with the concept of natural selection [18].
Unlike other evolutionary algorithms such as the genetic algorithm, in EDA, the
individuals are generated without the crossover and mutation operators. Instead,
in EDA, a new population is generated based on a probability distribution, which
is estimated from the best-selected individuals of the previous iterations [19]. In
general, EDA is used for discrete optimization problems; however, we introduce
EDA for continuous domain to allocate power to the relays. Table 3.1 illustrates

the parameters and notations used in continuous EDA (CEDA).

Table 3.1 Parameters and notations of CEDA

F Fitness function
Whign Upper limit of the EDA search window
Wiow Lower limit of the EDA search window
A The population (the set of individuals) at the /th iteration and
’ |A,| denotes its cardinality
The set of best candidate solutions selected from set A at
g the /th iteration.
The selection probability. The EDA selects ps|A| individuals
Ps from the set A, to make up the set n,.
I7er The maximum number of iterations

In CEDASs, each individual can be designated by an L-dimensional real-
valued vector. For GCCRN MOO problem. In our implementation of CEDA, each
individual represents the transmission power of the relays. We denote by a row

vector P = (p+, p2,- - -,p.) @s an individual where p; is the transmission power of
the ith relay. The transmission power of the ith relay is bounded by #,, and

Wi where W, and W, are the lower and upper limit of EDA search window. In
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each iteration, the CEDA maintains a population of individuals. The population is
denoted by set A, . We denote by |A/|, the number of individuals in the population.

Population A, can be specified by the following matrix

P' pnopmiop
P’ o op
Acppy = N (3.5)
A, A, A, A,
pl -~ p\z | \L\

where superscript j in the row vector P’ =(P{,p{,P§,---,pZ) indexes an individual

in the population. A flow diagram of EDA algorithm is shown in Fig. 3.2. The
CEDA applied to the GCCRN MOO problem can be described in the following
steps:

Step 0: Generate an initial population A,. Each element of matrix Ay, is

obtained from the following formula:

pyj = WLow + (WHigh - W

Low

)xrand,‘v’i =12,..n,j=12,..,

A (3.6)

where Wiow = 0, Whign = p"“and ‘rand’ is a random number generated from a

uniform distribution between 0 and 1. For iterations | = 1,2, ....,I1er, follow Step 1
through Step 7:

Step 1. Evaluate the individuals in the current population A, according to the

fitness function F. Sort the candidate solutions (individuals in the current

population) according to their fitness orders.

Step 2: In this step, the algorithm determines the assignment variable
5=[8131,61,2,..,gl,K,..,e,,k,..,eL,K] for each individual heuristically. We propose an
iterative  relay assignment algorithm that generates a feasible
5=[8”,81,2,..,817K,..,8,ﬂ,(,..,8L,K] and repairs each individual such that constraints

C2 and C3 are satisfied. The algorithm is described in section 3.3.2. At the end

of this step, the algorithm has a population, which comprises individuals with

81



feasible relays’ power levels and the associated assignment variables

&= [gm,51’2,..,glyK,..,g,ﬂk,..,gL,K )

Step 3: In this step, the cost function is evaluated to determine the fitness values
for each individual in the population, and the individuals are sorted according to
their fitness values. If the convergence criteria (e.g. number of iterations) is

satisfied, then terminate; else, go to step 4.

Step 4: Select the best p,|A.|=|n.| candidate solutions (individuals) from the

current population A.1. This selected population is used to compute the mean

and standard deviation.

Step 5. Determine the mean ‘m’ and standard deviation ‘c’. Based on these
estimates of ‘m’ and ‘o,” update the search window bounds W, ow and Wyign as

Wiow =m - o and Wyjgh =m + 0.
Step 6: Generate new |A,|—|f7,,1| individuals on the basis of this new estimated

Wiow and Whign using equation (3.6). Combine these newly generated |A,|—|77H|

individuals with members of 1,_, to form a new population A, .

Step 7: Go to step one and repeat the steps.

Even with this simple application of CEDA, the simulation results show
that it has very good performance. In addition, we were able to modify this basic
EDA algorithm and even further improve the algorithm’s performance. The
modification includes the introduction of thresholds in CEDA to avoid premature
convergence. We name this algorithm as Modified EDA (MEDA). In the next

section, we will explain the MEDA.

3.3.1 Modified EDA

During the execution of CEDA, the difference between the search window
bounds Wiow and Wyign may diminishes as the iterations proceeds. This may

cause the CEDA to get stuck in a search space and result in premature
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convergence. The premature convergence may occur if the difference between
W.,. and W, diminishes to an extremely small value. In that case, at every
future iteration, the algorithm will generate nearly same power levels. We

suggest restoring the W, and W, to their initial values (W, =0

andW,,,, = p/"",1=12,..,L) when the difference between W,,, and W, is less

than a pre-specified threshold 7 -i.e.

f High — Low < 7
w,

Low

endif

_ max
O Wngh p !

The above steps are illustrated in Fig. 3.3. In section 3.4, we present some
experimental results, which show the effect of threshold on the performance of

EDA. Now, we will describe the iterative greedy algorithm for relay assignment.

Generate Initial
population with

W/ligh =p"" W =0
Function
XI Xz o Xl_
Sort 1 00 0.9 0.0 e
g < 05% 5™ 0.9% p" e 0.0x P F
. . Evaluate v P . !
Assign and Repair Population 2 08xp" 045xp"™ - 0.1xp; F,
L Y, 3 0. 4><p, " 0.53x p" - 0.39% p F,
‘A/ 1‘ 0. 3>< P mx () Adx plm(lr .. 0.98x plm(lr ﬁAH\
( A

Generate new
population using new

window size <
onvergence :
- ~ riterion satisfied
No
Select the best || individuals
Compute upper
and lower window
size

if Wm&h WL{m = =

. Whign = Compute mean ‘m’ and Standard Deviation

dmg/, =p" Wy, = Wiow=m -0 ‘0" of |n| Selected individuals
en

Fig. 3.2 Flow diagram for continuous EDA
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W,.=0 — WHtgh = p/max
|4
L]
Wiow=m-0o v Whigh =m + o
L]
Wiow=m-0o v Whigh =m + o
L]
Wiow=m-o WHigh=m+0
;/' Woigh =Wiow <7
Wiow=m-o Whigh=m + 0
W, =0 —V W o omax
Low High = P

Fig. 3.3  Continuous EDA with threshold
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Table 3.2 lterative greedy relay assignment for each EDA individual

NOTE: This routine will be executed on each EDA individual in the
population. This table illustrates the relay assignment for the EDA
individual indexed by j.

INITIALIZATION:
S(1)=0,v1 k=1, C(k)= 0, Yk, =1;

Step 1:
While /<L

2 2
i

2 2\’
a"'|g1M|

hsl

2
s

1: §(1) = argmax
ke{l,2,..K} max(|g11

8

2: :=I+1
End While

Step 2:

pl = min{|l’" |2 Vm,p/},w ; I*power of the /th element of the jth individual*/
glm
While k<K
1. ¥, ={IS(l)=k}
2. 1f¥, =0
3:1 =0;
While =0
If (is interference constraint satisfied with ¥, ) = FALSE
I=Get the relay with largest interference;
Y, =Y\
Else
; 1=1;
10: C(k) = Get the capacity from eq. (3.1) using ¥,
11: End If
12:  End While
13: End If
14: k:= k+1;
End While

©® N AR
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3.3.2 lterative Greedy Algorithm

In this section, we present an iterative greedy relay assignment algorithm,
which determines the assignment variable ¢ =[81,1,81,2,--,81,K,--,51,k,--,€L,K:| for

each individual heuristically. The proposed algorithm also converts any infeasible
individual to feasible individual. Table 3.2 shows the pseudo code of the iterative

greedy algorithm?.

The proposed algorithm has two steps. In the first step, based on the
channel conditions, relays are assigned to the secondary users without satisfying
the interference constraint. In the second step, the algorithm performs final
assignment under the constraint that interference to the primary users is

satisfied..

3.3.2.1 Step 1: Relay Assignment without Interference Constraint

For developing this algorithm, we can view the product of channel gain from

the fth relay to the kth secondary user and channel gain from source to the /th

2
as profit (throughput) . We also view channel gain from the /th

hsl

2
relay as ‘h,,k‘

relay to its primary users as loss (interference). In particular, our algorithm views

2 2

; |g/M|2) as loss. The algorithm in Step 1 temporarily assigns

max(|g,1 &n

2

each relay to the secondary user that gives the maximum profit to loss ratio.
Mathematically, for each relay /, the algorithm temporarily assigns secondary

user:

2 2
A
2 2\’
|2l )

hsl

2
s

S(!)=argmax
kell,2,..K} max(|g,1

81

where S is an L-dimensional vector that stores this temporary assignment. At

the end of Step 1, relays are assigned to the secondary users with the power

% This algorithm (routine) will be executed on each EDA individual (sample). Table 3.2 illustrates
the relay assignment for the CEDA’s relay power vector sample indexed by j. .
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assignment p;./=12,..L may violate the interference constraint. In Step 2 of
the algorithm, based on temporary relay assignment in Step 1, the algorithm
performs joint relay assignment and power allocation such that the interference

constraint is satisfied at each primary user.

3.3.2.2 Step 2: Final Relay Assignment with Interference Constraint

In the second step, the algorithm performs final assignment under the

constraint that interference to the primary users is satisfied.

Note that the relays’ power levels randomly generated by the EDA algorithm
can violate the constraint of limited interference to the primary users. At the start
of the second step, the algorithm starts repairing the relays’ power levels if they
violate an interference constraint. First, the algorithm examines for each relay /

whether its transmission power would still violate any interference constraint
even if all other relays’ power level were set to zero. We denote by p/, the relay
I's power level in the jth sample drawn by the EDA, in accordance with
expression (3.5). If p/ violates any of the interference constraint, /,", even

under the assumption that other relays’ transmission power levels are all set o O,

then the algorithm first makes the following adjustment:

) . ]lnax Imax Imax .
p/ :=mln( 2= p) LV (3.7)
|g11 gn Em

After the power adjustment, the algorithm iterates over the secondary users and

completes the final assignment of relays.

At the kth iteration, the algorithm determines the set of relays ¥, that are
temporarily assigned to the kth secondary user in Step 1. Then, the algorithm
checks whether the relays in the set ¥, satisfies the interference constraint at all
the primary users. If the relays in the set ¥, violate the interference constraint at

any primary user, then the algorithm iteratively removes the relay from the set
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¥, that causes maximum interference to the primary users. This relay removal
process continues until the relays in the set Y, satisfy the interference

constraint. The algorithm will terminate when all the secondary users get their

assigned relays.
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Table 3.3 Explanation of abbreviations used in simulation results

DP-EDA Decrease in power using EDA

DP-GA Decrease in power using GA

DSC-EDA Decrease in sum-capacity using EDA

DSC-GA Decrease in sum-capacity using GA

(M)-EDA-f Performance of (Modified)-EDA on combined fitness function
(M)-EDA-fc Performance of (Modified)-EDA on f,

(M)-EDA-fCO, | Performance of (Modified)-EDA on f,,

3.3.3 Numerical Results

In all simulations, the channel gains between source, relays and
destinations have independent complex Gaussian distribution. All the simulations
are performed using Monte Carlo runs. Each result is an average of two
thousand independent simulation runs. We compare the results of Hybrid EDA
and MEDA with standard continuous genetic algorithm [20]. Table 3.3 describe

the notations used in the simulation results.

In Figs. 3.4, 3.5 and 3.6, we present the trade-off plots of sum-capacity
and power. The trade-off is calculated between the green communication and
without green communication. Trade-off is presented as percentage decrease in
sum-capacity (DSC) and percentage decrease in power consumption (DP). To
get the result without green communication, we set wy = 1 and w, = 0. Figs. 3.4
and 3.5 show the effect of green communication by changing the values of
weights wy and w,. The results show that when wy is more than wy there is more
reduction in CO, emissions (percentage decrease in power). The reduction in
CO, emissions comes at the cost of throughput reduction. From the results, we
can observe that CO, emissions will decrease by 50 to 70 percent at the cost of
10 to 30 percent loss of throughput when w2=w1. The different weights settings
are suitable for different geographical conditions and regulatory policies. The

results also show that performance of EDA is better than GA. Fig. 3.6 illustrate
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the trade-off plots of sum-capacity and power for different L, K and 1, . Results

show that there is less decrease in power at 1, = 10mw as compared with 1,
= 1w. This due to the fact that lower interference threshold itself makes the CRS
as a green communication device and there is less freedom for further

improvement.

Figs 3.7 and 3.8 present the iterations vs. fitness plot for different number

of relays and users. The parameters are (M, p", )" wilw2) =
(1,170w,10mw,0.5,0.5) and (1,10w,1w,0.5,0.5). From Figs. 3.7 and 3.8, we can
see that performance of MEDA is better than EDA and GA. A simple EDA and
GA can get stuck in local optimum after few iterations. We can also note that the
fitness values with large relays and less number of users (e.g., L = 20, K=10) is
better than fitness values with less relays and large number of users (e.g., L =
10, K = 20). This is because with the large number of relays and less number of
secondary users there is more freedom in assigning the relays to the secondary

users.

Figs. 3.9 and 3.10 present the performance of EDA, MEDA and GA on
each objective function. The parameters for Figs. 3.8 and 3.9 are (M,
S0 Kwlw2) = (1,10w,10mw,10,0.5,0.5) and (M, p/“. 1" Lwl,w2) =
(1,170w,1w,L,0.5,0.5) . The results shows per iteration performance of both EDA

and MEDA is better than GA on the fithess function and the individual objective

functions
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Fig. 3.4 Power and sum-capacity trade-off plot with K =10, L = 10,
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100 : :

I ©-DP-EDA

90 - [ |%DSC-EDA [
I % DP-GA

80f w, = 0.1 [ ]%DSC-GA

w, =0.9
701 T2 w, =03 1
60 w, = 0.7 i
l w, = 0.5
50 w, =05 1

40

30

20

10

18 VA

Fig. 3.5 Power and sum-capacity trade-off plot with K = 20, L = 10,
1™ =10mw

91



100

I °>DP-EDA
90+ [ 1%DSC-EDA
LTWLQ(,KTW I %DP-GA
80/ o ™ =W [ |%DSC-GA
Tax_a -
7oL Im - 10mw L=20,K=10
[MaX=10mw L=10,K=10
L=10,K=20 m IMeX=1qyy
60 - IMeX= 1 Omw "
m L=10,K=20
501 i |maX=1W |
| |
30+ .
20+ .
10+ H .
) 1 BN
1 2 3 4 5 6

Fig. 3.6 Power and sum-capacity trade-off plot with (K,L, /)™ ) =
(10/20,10/20,10mw/1mw)

0.41 :
EDAA, (LK) = (10,10)
MEDA-, (L,K) = (10,10)
0.405
GA, (L,K) = (10,10)
EDA, (LK) = (10,20)
0.4 MEDA-, (L,K) = (10,20)
GA, (LK) = (10,20)
0.395 | ]
@ 0.39 8
(0]
£ Rt
ic B T T e e e e e e A e ———
0.385
0.38 1
0.375 1
0.37 4
L L L L L L [ L L
10 20 30 40 50 60 70 80 90 100
lterations
Fig. 3.7 Iterations vs. Fitness plot for different (L,K) configuration. The

parameters are (M, p,/"*, 1" ,w1,w2)=(1,10w,10mw,0.5,0.5)
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3.4 Summary

In this chapter, we presented a multi-objective framework for green
resource allocation in multiuser cognitive radio network. Estimation-of-distribution
algorithm with an iterative relay assignment scheme is used to solve the multi-
objective optimization problem. Simple underlying concept and ease of
implementation of the proposed algorithm make EDA a suitable candidate for

green resource allocation.
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CHAPTER 4: RESOURCE ALLOCATION IN
COOPERATIVE MULTICAST CRS

In this chapter, we present resource allocation schemes for the
cooperative multiuser multicast cognitive radio system (MMCRS). For resource
allocation, we propose schemes that jointly assign subcarriers and relays to the
multicast groups and allocate power to the relays in the cooperative MMCRS. We
consider two separate optimization problems. In one optimization problem, we
maximize the total throughput of the cooperative MMCRS under the constraint of
acceptable interference to the primary users. In the other optimization problem,
we maximize the throughput of the worst multicast group in the cooperative
MMCRS under the constraint of acceptable interference to the primary users. For
each optimization problem, we propose an iterative algorithm with polynomial

time complexity.

4.1 Subcarrier Assignment for Sum-rate maximization
4.1.1 System Model

We consider an OFDMA based two-hop cooperative MMCRS with one
transmitting node (source), L relay nodes, N subcarriers, and G traffic flows (G
multicast groups). Each traffic flow is meant for a separate multicast group, and

we assume that each secondary user belongs to only one multicast group at a
time. We denote byK,.g=L2,---,G, the set of secondary users in the gth
multicast group. The total number of secondary users in MMCRS will be
|K|=ZZZI‘Kg‘, where |K| is the cardinality of the set K=UZ:1Kg. Our system

model also includes M primary users, for which the transmission power of the

secondary users must be limited. Fig. 4.1 shows the cooperative MMCRS.
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Fig. 4.1 Cooperative MMCRS.

We denote by %, the channel from the source to the /th relay on the nth
subcarrier, h,,the channel from the /th relay to the kth secondary user of group g
on the nth subcarrier, and 7%, the channel from the fth relay to the mth primary
user on the nth subcarrier. We denote by p/the maximum allowable
transmission power of the /th relay, p,' the transmission power of the Ith relay on
the nth subcarrier and by P, the transmission power of the source. We assume

that the central controller has the knowledge of channel gains 4, ,hg,zk and /4, and

there is a cooperation between primary and secondary user network to get the

channel state information. The bandwidth of each subcarrier is B.

The central controller decides the joint subcarrier, power allocation and

relay assignment. We define ¢,,as a binary assignment indicator
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. 1 if thelthrelay transmits to the gth group on the nth subcarrier
E =
0 otherwise

Setting variable ¢,, =1 means that the system controller is giving subcarrier n to

group g for data reception and having relay / forward the signal carried in
subcarrier n (to group g).

Fig. 4.2 Lower and upper limits of the primary band

The cumulative interference caused by transmission of all the L relays on primary
users in fth relay’s band can be written as,

L N
2.0

1=l n=1

n
hlm

eondr < om (4.1)

where p/#'(f) is the power spectral density of the /th relay on nth subcarrier and
1" is the interference limit defined by the regulatory body at each primary user.

#'(f) can be written as [1]
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sinelf _ffn)TSJ 4.2)

' ()=T, -

[ (/=L
where f.'=(2n-1)B/2 is the frequency of the nth subcarrier, Ts is the symbol
duration, f, and fy represent lower and upper limit of the frequency band being
used by the primary users ( which is also shared by the secondary users) as

shown in Fig 4.2.

We consider a two-step amplify-and-forward (AF) scheme, as given in [2]
[3]. In such a system, conveyance of each symbol from the source to destination
takes place in two time slots. In the first time slot, the source transmits its data
symbol for each multicast group on the subcarriers assigned to the multicast
group and its associated relays. In the second time slot, relays will transmit
amplified signal to the users of a multicast group using the subcarriers assigned
to them. In our system modes, we assume that different subcarriers are used to
carry different data streams, and a multicast group can receive multiple streams
of data through multiple subcarriers. We also assume that no two relays are
allowed transmit on the same subcarrier in our subcarrier assignment. Sharing of
a subcarrier among multiple relays is possible but it requires coherent combining
of the signals transmitted from the different relays, which may be quite

challenging in practical systems [8].

The capacity at the gth group using the nth subcarrier and the fth relay [2]
[3]is

! 1 )l n,2 K
Cei= log(1+mln{S;,l,SéjJ ""’S;,‘z g\})

2 2
h P'p/

sl

n
hg,lk

n
hg,lk

where S;jf =—> P is the SNR received by the kth secondary user
P+ p, +1

s

n
hsl

of the gth multicast group, if the gth multicast group is assigned with the nth
subcarrier and the ith relay. For this capacity formula, we assumed that the
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strength of the signal received directly from the source is negligible. It can be
observed that the capacity of gth multicast group is equal to the capacity of the

user (in the gth multicast group) with the worst channel conditions -i.e.

A : 2 . . .
Cq, =10g(1+5§,1) .k =argmin|h? I For notational convenience we define,
keKg
‘hg",, —g{n}gl‘h ‘ . We can rewrite C;,as
ERG
hn] hnl Pﬂpln
C,, =log| 1+ A
n n n n
hy Ps + hg,/ p+1

The main objective of the joint power, subcarrier allocation and relay
assignment (JPSARA) is to maximize the total rate of the cooperative MMCRS
under the constraint of acceptable interference to the primary users.

Mathematically:

L
max el
&,p =

1

v iM=

Cl:

=, 1Me

0 V(,n),

M= =

Cc2: Y pr < p Vi

=
Il
—_

C3: o[

£
M- 1=
3,

"()df <1 Im

Mo

C4: £, <1, Vn,

1

~
Il

1

€{0,1} V(l,g,n)

oq

CS:¢,,
where C2 is the constraint on total transmission power of the relay, C3 is the
interference constraint and constraint C4 ensures that no two relay transmit on a
subcarrier. The proposed optimization problem in (4.3) is a mixed integer non-
linear optimization problem. The complexity of exhaustive search for joint

subcarrier and relay assignment increases exponentially with the number of
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subcarriers, relays and groups. We now present a dual decomposition approach

to solve the optimization problem in (4.3).

4.1.2 Dual Decomposition Algorithm

For dual decomposition, we can write the Lagrangian function as follows:

(4.4)

N , G L M L
= Z(ZZ%% =D mp =20, p 1,’;]
o 1= =1

1 m=l

where 4,,l=1,2,...,Land 4,,m=12,..,M are the dual variables for power and

interference constraints respectively. The dual problem is

min max L(e,p,l,,u)

N &,p

subject to
G
Z z &g, <1, Vn
g=1 [=
!

p 20,6, € {0,1},‘v’(l,g,n)

L
1

Note that duality gap will not be zero due to the integer constraints. We can

decompose (4.4) into N sub-problems, which can be independently solved for

given 4 and # . The sub-problem at any subcarrier n is
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L M L
maX (Zzg’[C;,Z_Zﬂ[p[n_zﬂ’mzp;lllznj
1=1 m=1 =1

g=1 I=1
subject to
G L
n
Zel, <L Vn
g=1 I=1

p; 20,¢,,€{0,1}vg,l,n

(4.5)

From (4.5), we can observe that for any fixed fandé, we can find the power

P by solving the following optimization

M
max C..—up:—p: ) A1
g.l 11 lmZ::t l (46)

st p; 20

From (4.6), we can get the p,' value of power from the following equation:

h" h" P'p/ M
- log 1+ _;u[p/n_plnzﬂ’mll?n :O,
dp, N Y i
which is equivalent to
h" \ P”( P”+1)
(h;,za"+1+ ii;,, pr+|wf e [ ")(h;', P el+ ﬁ;,,zp,")

Z/l I =0

With some mathematical manipulation, we can obtain

N
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n

- 2
hn~P

hn

4(1?”) +4

where 7,; = ||h; . We denote by, a matrix whose each

- 5 yi—2-|nf P
element is ‘I’(g,l) the cost function using p; = max| 0,———— The
2\h;
optimal &, ,for any subcarrier n will be
1 (g.0)=(g**)=argmax ¥ (g,l)
&, = &l 4.7)
g
0 other wise
The dual variable can be updated as
A, (£+1) :{/1 (¢ )+a(t)[1,j’]‘”‘ —Zz p”I,',’nﬂ
/=1 n=1 (48)

p(t+1)= { (1) +ﬂ(t)(p, Zplﬂ

where «(t)and f(t) are the step size. A pseudo code for the dual decomposition

is mentioned in Table 4.1.

Table 4.1 Dual Decomposition Algorithm.

Step1: Initialize the dual variables A, and 4, .

I’l

n 7gl
Step2: Calculate p; =max| 0,

2
h’

gl

Step3: Get ‘I’(gll~ ) and &,,using (4.7)

Step4: update dual variables using (4.8)

Step5: Go to Step 2 if convergence criterion is not satisfied
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4.1.3 Computational complexity of dual decomposition algorithm

We measure the computational complexity in terms of flops Y [5]. In each
subcarrier, approximately GLM flops are required to calculate ¥ and GL flops
required to get the maximum of ¥. It means a total of GLMN + GLN flops for all N

subcarriers. The update of dual variables required GLMN + GLN +3M + 3L flops.
The overall complexity of algorithm will be 7,,, (2GLMN +2GLN +3M +3L), where

I, is the number of iterations for sub-gradient method. The complexity of

proposed dual decomposition based algorithm will be more for large network
size; also, more number of iterations will be required to converge to an
acceptable solution. In the next section, we present a low-complexity iterative

algorithm for joint subcarrier, relay assignment and power allocation (JPSARA).

4.1.4 Iterative Algorithm for JPSARA

For efficient subcarrier, power allocation and relay assignment in MMCRS,
we present a low-complexity iterative greedy algorithm for joint power, subcarrier
allocation and relay assignment (IJPSARA). The pseudo code of the proposed

algorithm is shown in Table 4.2.

This iterative algorithm is based on the plausible reasoning that the signal-
to-noise ratio of a secondary user on any subcarrier mostly depends on the
transmission power of the relay assigned to the multicast group (to which this
secondary user belongs) and the channel gain from this relay to the multicast
group>. The objective of optimization (4.3) is to maximize the total sum-rate
capacity in MMCRS. Further, in optimization (4.3), the interference constraints
may not always allow assigning the best multicast group*, the relays and
subcarriers with which it has good channel condition. In this algorithm, we
introduce a strategy that considers channel gains from both relay to the

secondary user and relay to primary users while assigning relays to the multicast

® Means worst user of the group
4 Best group is defined as the group with best worst channel condition among all the groups.
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groups. The algorithm considers the channel gain between the relays and the
secondary users as a profit (throughput) and the channel gain between the relays
and the primary users as a loss (interference). We want to choose the relay for
transmission that will give maximum profit to loss ratio. In other words, the
algorithm assigns a relay to that multicast group with which it has the maximum
ratio of channel gains with the secondary users to the channel gain with the worst
primary user’ -i.e. the algorithm first determines assigned relay, group and

subcarrier using the expression

n
hsl

n
hg

|

hl2

)

/
; (4.9)
2 ,...|th|2)

2
[g,i,ﬁ]: arg max

ge(1,2,..GYIe{1,2,.. Lhnely  max (|h“ 2

The relay [ that is assigned to the group g will transmit on subcarrier7i. In (4.9),

I'y is the set of available subcarriers. After getting g.l,and7i, the algorithm

determines the power of the selected relay. In Table 4.2, there is a sub-routine

‘Evaluate’ that jointly performs the power allocation and interference calculation.

We denote by p;", the total power allocated for the fth relay, I;"is the
cumulative interference on the mth primary user. The algorithm is initialized as

P =0, 127 =0.9m.pl =0, &(g.l.n)=0Vg.lon andC(g.k)=0.%(g.k).

The power of the selected relay is calculated using the expression

max sum )

p=miny(pf™ = p;

Imax_lsum
— ,Vm ;s (4.10)
h!

NG

m

where p;"" is the total power allocated for the /th relay and 1. is the cumulative

um sum
A

interference on the mth primary user. Initially, the values of p" ", and p, are

set to zero. The expression in (4.10) jointly ensures that the allocated power

satisfy the interference and power constraints.

5 Worst primary user is the primary user that has best channel with the relay.
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After getting the power level of the relayiat the nth subcarrier, the
proposed algorithm updates the capacity of all users in the groupg. The

algorithm terminates when all the subcarriers are assigned.
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Table 4.2 lterative greedy algorithm for JPSARA sum-rate maximization

INITIALIZATION:
pl"=0,p = OV(Z,n),[,‘;”’" =0,vm,I", = {1,2,...,N}, g(g,l,n) =0Vg,l,n

while '), #

1: [gaiaﬁ:| arg max
ge{1.2,, Gl Ie(1.2, L neT y max( ’ |th|)

2: (C, inunije)=Eva|uate(g”,1,ﬁ’c’liumjg)
3, =T, \n;
End
(C,I'", &)=Evaluate (g,/,i,C,I:" &)

i ; max sum I ::ax I Stm
1: p; =min (pl. —p[ ) ,‘v’m :

[ e

~ ~12
sum ,__ ysum i | 7,7

m m

3: g(g,i,ﬁ)=1;

4: p;um = pl +pl~ﬁ’
5: Update Capacity

[foar  vm

Output: p,¢

Calculation of computational complexity of IJPSARA is very straightforward. The
step 1 of the proposed IJPSARA algorithm requires GLN flops, and the Evaluate
routine require approximately 6 MN+15N flops. The total number of flops require

by the proposed greedy algorithm is GLN+6MN+15N which is much less than the

complexity of dual decomposition approach.

4.1.5 Numerical Results

proposed iterative greedy algorithm.

For performance comparison, we present the simulation results of the

between source, relays and destinations have independent complex Gaussian

distribution.
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In Figs. 4.3, 4.4 and 4.5, we present the plot for sum-capacity versus
interference threshold, 7**. For these three scenarios, we use (p*, L, N, G,
|K|,B, Ts) = (0.1w, 2, 8, 2, 200, 1MHz, 1u Sec), (0.1w, 2, 128, 4, 150, 1MHz, 1y
Sec) and (0.1w, 2, 64, 4, 100, 1MHz, 1u sec). In all these Figs., we observe that

as I, increases the capacity increases. This is because at smaller values of

™ certain relays and subcarriers, which yield higher capacity, are not optimal

m

because they violate the interference constraint at primary users but at larger
values of I these relays satisfy the interference constraint. We can also
observe that proposed IJPSARA is close to the dual. In Fig. 4.6, we present the
plot for sum-capacity versus number of primary users. We use (p™, L, N, G,
|K|,B, Ts) = (0.1w, 2, 32, 4, 200, 1MHz, 1y Sec). The interference threshold is set
to 77 = {100uw, 1mw, 10mw}.From the result, we observe that the sum-capacity
decreases with the increase in number of primary users. This is because by
increasing the number of primary users, the secondary users need to satisfy
more interference constraints. From the numerical results, Fig 4.7 and Table 4.3,

we can see that [IIPSARA converges to with in 70-85 percent of that obtained by

the dual decomposition algorithm.
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Fig. 4.3 Performance of [JPSARA with p/* =0.1w,, L=2, N=8, G =
2,|Kg|=200 ,9=1,2,....G,B=1MHz, and Ts = 1u sec
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Fig. 4.4 Performance of IJPSARA with p™* =0.1w,, L =2, G=4, N =128,
|Kg| =150,9=1,2,....G,B=1MHz,and Ts = 1u sec
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Fig. 4.5 Performance of [JPSARA with p/™ =0.1w,, L =2, G=4, N =64,
|Kg|=100 ,9=1,2,...,G,B=1MHz, and Ts = 1u sec
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Fig. 4.6 Performance of [JPSARA with p/™ =0.1w,, L =2, G=4, N= 32,
|Kg| =100,9=1,2,....G,B=1MHz, and Ts = 1u sec
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Table 4.3 Percentage IJPSARA performance to Dual algorithm

Parameters M=1 M=3 M=5 M=7

[L,G,N,M, /"]

[2,4,32,1,10mw] 70.81% 73.98% 73.93% 74.28%

[2,4,32,1,1mw] 85.57% 78.12% 74.29% 84.88%
74.5 T T T 86

74} 1
84! 1

73.5¢ R
82+ R
73¢ R

72.5¢ R 80 R

76| 1
nr 2 —o— For Fig. 4.6, IM*=1mw
—o— For Fig. 4.6, Imax=10mw %

70.5 : : : : 74 ‘ ‘ ‘
0 2 4 6 8 0 2 4 6 8

M M

Percentage IJPSARA performance to Dual
Percentage IJPSARA performance to Dual

Fig. 4.7 Percentage IIPSARA performance to the Dual algorithm

4.2 Max-Min Resource Allocation in Multicast CRS

In max-min multicast CRS (MMCRS), we define the capacity of each
multicast group as the capacity of its worst user. The mismatch of data rate
among users in a group occurs because different users in the group can have
different channel conditions. The main objective of JPSARA is to maximize the
rate of the worst group of users under the constraint of acceptable interference to

the primary users. Mathematically:
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N L
b n n
max  min zzglgCg,

&g €{0,1},p g=1,2,...G i
CI: Zp; <p™

5 4.11
o j " (N)df <I™ Ym (4.11)

1 n:l I

Constraint C1 is the constraint on total transmission power of the relay.
Constraint C2 is the interference constraint. Constraint C3 ensures that no two
relay transmit on a subcarrier. It means that relays’ transmissions occur on
orthogonal subcarriers. Sharing of a subcarrier among multiple relays is possible
but it requires coherent combining of the signals transmitted from the different

relays, which may be quite challenging in practical systems [8].

An obvious way to solve the non-linear optimization problem in (4.11) is to
exhaustively try all the combinations of assignment variables and solve the
subsequent nonlinear convex optimization problem using standard convex
optimization methods (e.g., interior point method [6] etc.). However, enumeration
of all the combinations of assignment variables requires intense computation due
to the combinatorial nature of the problem. Therefore, there is a need of low-
complexity algorithms for JSPARA. In the next section, we will present low-

complexity approach for JSPARA.

4.2.1 Proposed Algorithm and Complexity Analysis

For efficient subcarrier, power allocation and relay assignment in
MMCRS, we present a low-complexity iterative greedy max-min algorithm for
joint power, subcarrier allocation and relay assignment (IJSPARA). The pseudo
code of the proposed algorithm is shown in Table 4.4. The algorithm is similar to

the algorithm described in section 4.1.2.
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The algorithm considers the channel gain between the relays and the
secondary users as a profit (throughput) and the channel gain between the relays

and the primary users as a loss (interference). At the start of the algorithm,
equations (4.9) and (4.10) are used to select the multicast group g, relayi,

subcarrier 7 and powerp,ﬁ. The power determined by (4.10) greedily allocates

the power to the selected group of users.

To introduce max-min fairness in the system, we introduced a factor ¢ >1
(we call as greediness control factor) to control the greediness in the power
allocation. If we set greediness control factor near to one (0 ~1) then the
multicast group with best channel condition will always get the maximum benefit
and the multicast group with bad channel will always get least benefit. Less value
of greediness control factor is useful when one want to maximize the total profit
(i.e. sum-rate capacity). In the present scenario, we want to maximize the
minimum profit (i.e. worst multicast group capacity). For max-min optimization
problem, the value of J is selected so that there is always a win-win situation for
every multicast group. In the numerical results (section 4.2.2), we show the effect
of different values of 6 on the performance of the system. In the simulation
results, we show that a proper value of 0 improves the performance of the

proposed algorithm.

After getting the power level of the relayl~ using controlled greediness, the
proposed algorithm updates the capacity of all users in the group £. In the next
step, the algorithm iterates over the remaining subcarriers. In each iteration, the
algorithm selects that multicast group that has the lowest capacity using the

expression
[g] =arg min(C)
g

Then the relay and subcarrier that has the maximum ratio of channel gain with

the group £ to the worst channel gain with primary user is determined as
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hl2

[i,ﬁ} = argmax

16{1,2,.“,L},izel"N max (|hll

2
2
’

again the Evaluate subroutine is used to determine the power of the Ith relay on

the nith subcarrier. The algorithm terminates when all the relays powers are

determined.

The main advantage of the proposed algorithm is its low implementation
complexity. Complexity is measured in terms of flops Y'. The Table 4.4 shows the
flop of each operation. From Table 4.4, we can determine the total number of

flops require by the proposed greedy algorithm. The total numbers of flops are

T ~2LM +N(3M + LN +GL+G +12)
~O(GLN?)
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Table 4.4 IJPSARA for MMCRS

IJPSARA Flops
INITIALIZATION:
p" =0,p/ =0V (L,n),I;" =0,Ym,T, ={1,2,...,N},
8(g,l,n):0 Vg,l,n
1:
~ il (e et
[g,l,ﬁ}z arg max . . Y
ge{l,Z,...,G},le{l,Z,..,L},neFN max(|h” R hlZ ’...|th| ) 2 3M+12
2: (C,I'" ¢)=Evaluate(g,/,7,C,I'" &)
While T, #@ 3:GN
3: [g]=argmin(C);
¢ o 4:LM+LN?
4 |l - (hg’l ) 6:N
: ,i|= argmax ; :
1€{1,2,.., L}neT max(|h“ 2 I 2 ,_..|th |2)
5: (C,I'™, ¢)=Evaluate (g,l,i,C,I"" )
6: T, =TI, \{a};
End
(C,I'"™, ¢)=Evaluate (g,/,1,C,I'" ) .
7 . max sum I n’;’ax _I ;“m
1: p; =min (pl~ - p; ), T ,Vmy; 2:1
| [0
. ] . 3:2M
2: pl=p/lo
. ysum .__ ysum i ﬁz Ju i 41
3L =0"+pl | IfL ¢"(Ndf  Vm 5:1
4: £(g.0,i)=1; 68

sum sum

5: P = p; +p137;
6. Update capacity

Output: p,e
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4.2.2 Numerical Results

For performance comparison, we present the simulation results of the
proposed iterative algorithm. In our simulations, the channel gains between
source, relays and destinations have independent complex Gaussian distribution.
For a comparison, we suggest an upper bound on the JPSARA by relaxing the

integer constraint &/,and solve this optimization problem using non-linear

programming techniques.

In Fig. 4.8, we present the plot for minimum group capacity versus
interference threshold, 1, . We use p,"" =5w, L =3, N=10, B=1M Hz, and T;
=1l sec. The greediness control factor J is set to two and four. We observe that

as 1, increases the capacity increases. This is because at smaller values of

1™ certain relays and subcarriers, which yield higher capacity, are not optimal
because they violate the interference constraint at primary users but at larger
values of I,"these relays satisfy the interference constraint. In Figs 4.9 and
4.10, we present the effect of greediness control factor 0 d on the performance of
proposed iterative greedy algorithm. We used two different scenarios (K, M, L, G,

N, B, T, /") = (2,1, 3, 8, 16, 1IMHz, 1y sec, 5w) and (3, 4, 3, 8, 16, 1MHz, 1u

sec, 5w). In both scenarios, the interference threshold is set to /1, = {10uw,
100pw, 1Tmw, 10mw}. From Figs. 4.9 and 4.10, we observe that if greediness
control factor is set to one, the worst group capacity will be close to zero. This is
because the maximum power will be given to the selected relay and subcarrier. It
will be difficult for the remaining subcarriers and relays to allocate any power
because of constraint C2 of equation (4.9). On the other hand, if the value of
greediness control factor is high, the worst group capacity will be low because
available power may not be fully utilized. In Fig 4.10, we present the plot for
minimum group capacity versus number of primary users. We use, p;" =5W, L

=3, N=10, B=1M Hz, and Ts = 1y sec. The greediness control factor & is set

to two and four. The interference threshold is set to 1, = {1pw, 10uw,
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100uw}.From the result, we observe that the minimum group capacity decreases
with the increase in number of primary users. This is because by increasing the
number of primary users, the secondary users need to satisfy more interference

constraints.

—O— Upper Bound,G =4,K=1,M=1
—+—IJPSARA§=2G=4K=1M=1
—+—IJPSARA§=4,G=4K=1M=1
—%— Upper Bound,G =4,K=2M =2

—<—IJPSARA§=2G=4K=2M=2

Minimum Group Capacity (b/s)

e - —4A— IUPSARA 5= 4,G=4K=2M=2
10° 10" 10° 10°
I (w)
Fig. 4.8 Performance comparison of the multiuser multicast relay network

with, p/™ =5w,, L=3, N=10, B=1M Hz, and Ts = 1u sec
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Fig. 4.11 Minimum group capacity vs. the number of primary users
with p/™ =5w,, L =3, N=10, G=4, K=3B=1M Hz, and T = 1u sec.

To check the feasibility of the proposed algorithms for practical implementation,
in Table 4.5, we present the number of flops required by ESA, Dual, and
IJPSARA for different parameter settings (i.e., different search space size). The
comparison shows that the number of flops required by IJPSARA and Dual

algorithms is much less than that of ESA.

Table 4.5 Number of flops required by ESA, Dual and IJPSARA
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Parameters ESA Dual IJPSARA
[G,L,M,N,lsub]
[2,5,1,8,25] 1.0737e+009 | 8450 248
[2,5,1,32,25] 1.1259e+015 | 32450 992
[2,5,1,64,25] 1.1529e+018 | 64450 1984
[5,10,10,8,25] 1.4272e+045 | 221500 1000
[5,10,10,32,25] 1.8093e+075 | 881500 4000
[5,10,10,64,25] 2.0370e+090 | 1761500 8000
[10,10,10,8,25] 2.030e+090 441500 1400
[10,10,10,32,25] 3.2734e+150 | 1761500 5600
[10,10,10,64,25] 4.1495e+180 | 3521500 11200
4.3 Summary

In this chapter, we presented two iterative algorithms for joint power,
subcarrier allocation and relay assignment (JPSARA) scheme for MMCRS. The
proposed algorithms have low computational complexity. The simple model and
low implementation complexity make the proposed algorithms suitable

candidates for solving JPSARA problems.
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CHAPTER 5: USER SCHEDULING AND POWER
ALLOCATION IN CRS

Generally, in wireless communications, the multiple-input-multiple-output
(MIMO) system can achieve higher channel capacity than the single-input-single-
output (SISO) system for the same total transmission power and bandwidth [1].
We consider a network of cognitive radio communication systems in which the
secondary users and their base station are equipped with multiple antennas and
MIMO processing capabilities. We address user scheduling and power control in
the uplink multiuser MIMO CRS. We consider the system in which a node’s
transmission power can be chosen from only a finite set of values; reducing the
number of possible power levels reduces the number of bits in the power control
message and the complexity of the transmitting node. For each time-frame
(block, or slot), the base station ought to select the best group of users and their
transmission power levels under the constraint that the interference to the
primary users is below a specified level. We consider the sum-rate capacity of
the multiuser MIMO multiple access channels as the performance measure to
maximize with the assumption that the base station has the full knowledge of the
channel conditions. We will refer to this problem as joint secondary user
selection/scheduling and quantized power control (JSUS-QPC). Discrete power

levels make this optimization problem combinatorial in nature.

The exhaustive search algorithm (ESA) is an obvious method of non-linear
integer programming problems such as JSUS-QPC problem. Exhaustive search
algorithm evaluates all possible ways of user scheduling and power levels. The
complexity of exhaustive search for JSUS-QPC increases exponentially with the
number of users and power levels. Therefore, the exhaustive search algorithm is
not suitable for real-time user selection/scheduling and power control decisions,
which should be made at each time slot (frame). In a real-time environment, the

channel conditions may vary from slot to slot, and the decision of the uplink
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transmission power levels should be made at each time slot. The algorithm for
making such decisions should be computationally efficient. Traditional user
scheduling schemes in multiuser MIMO systems [2],[3],[4] and [5] are not
applicable in cognitive radio networks because the selected subset of users,
which maximizes the sum-rate capacity in traditional multiuser MIMO systems,

may generate more interference to the primary users than allowed.

For fast user selection and power control, we present three low-complexity
algorithms. We introduce 1) Estimation-of-distribution algorithm (EDA) 2)
interference aware capacity maximization algorithm (IACMA), and 3) iterative
user scheduling with interference minimization algorithm (IUSIM). The IACMA, in
each iteration, incrementally selects one secondary user with suitable power
level that has the maximum single-user capacity and whose addition in the set of
selected users keeps the total interference at the primary users below the
specified interference threshold. The IUSIM algorithm, in each iteration,
incrementally selects one user that induces the minimum interference to the
primary users. The proposed IACMA and IUSIM schemes have quadratic
complexity with respect to the number of secondary users K. Our experiments
indicate that the sum-rate capacity achieved by the proposed schemes is close to

that of the exhaustive search algorithm.
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Table 5.1 Notations

Symbol | Definition
K Number of secondary users
M Number of primary users
Nt Number of Transmit Antennas of each secondary user
Ngr Number of Receive Antennas at base station
H Channel matrix between the base station and the kth secondary
s user

H Channel matrix between the mth primary user and the kth

fom secondary user
B, power of the kth secondary user
Iy, Identity matrix of dimension Ngx Ng
K Maximum number of secondary user that can be selected to

S transmit at the given time slot

Set of selected secondary users

Jmax Maximum tolerable interference threshold for the mth primary

" user
A Number of power levels
™™ Maximum allowed transmission power of the kth secondary user
P, Set of discrete power levels
Y, Set of final selected secondary users
Y Set of current partially selected secondary users
e Capacity of the kth secondary user
| Interference from the kth secondary user to the mth primary user
Joum Cumulative interference induced at mth primary user from the

" selected secondary users
r ff’,’” Total interference induced by the kth secondary user

5.1 System Model

We consider information flow through uplinks of K secondary mobile users
each equipped for MIMO communication. Each secondary user has N7 transmit
antennas, and the central controller/base station of secondary users has Ng
receive antennas. There are M primary users with single receive antenna. We
assume that the secondary users do not have their uplink channel side

information (CSl), but the base station has the channel state information (CSl) for
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both secondary and primary users. Since the secondary users do not have the

uplink CSlI, it is reasonable for each of them to allocate equal transmission power
to each of their transmission antennas. We denote by #,,, eC"" the channel
matrix specifying the gains from the kth secondary user’s transmission antennas
to the base station’s receiver antennas and H,,, €C""" the gain of the channel

from the kth secondary user’s transmission antennas to the mth primary user.
We assume that the base station (central controller) of the secondary users has

knowledge of the primary users and secondary users locations and their channel

gainsH,,,H,,. On the basis of channel information of both secondary and

primary users, H, ., H, , , the base station will select the best subset of secondary

users at each time block/slot that will satisfy the interference constraint to the
primary users. The mobile radio channel is assumed to be quasi-static; that is,
the channel gain remains constant during each time block. The achievable sum-
rate capacity for all users in MIMO multiple access channel without regard to
interference to primary users is [11]

sum

K
c. (H",. . ,HY)=log, det(]NR +%ZH,§SQI(HZ,’“} (5.1)
k=1

where H;"” denotes Hermitian of channel matrix H,”,N is the noise power,
Q, =(P,JN,,)/NT, F, is the power of the kth mobile users, and I, is the identity
matrix.

In this chapter, we will consider imposing a restriction on the system that it
cannot schedule more than Ks secondary users to transmit together. This is
because the spatial degree of freedom is limited by the number of base station’s
receive antennas [12]. Therefore, the sum-rate capacity does not increase
significantly by adding more secondary users above a certain limit. Having an
additional constraint Ks reduces search space and therefore helps reducing

computational time of user selection (scheduling). In our system model, we
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assume thatK, =[N,/N.|. Although more than [N,/N,]| can transmit
simultaneously, the sum-rate capacity will not increase significantly as the

number of transmitting users increase beyond[NR /Nﬂ.

We denote by ¢ the set of secondary users selected for transmission in
one time block. The main objective of this work is to select a subset of
secondary users ¢ from K secondary users in such a manner that the sum-rate
capacity is maximized under the interference constraint to the primary users. We

1
denote by C,.(#.H,,,....H,,)=log, det([NR +N—ZE¢H1¢,/>SHZ,/”'] as the sum-

T4V keg
rate capacity of the selected |¢| users. Mathematically we can model user

selection/scheduling problem in MIMO CRS as a mixed integer non-linear

programming problem

1 .
max log, detLINR +—ZB¢Hk,bsHll,bsj

F.¢ NTN keg
subject to
Cl: lZngmH;”, <I™  Vm=l,---,M (52)
NT keg , )
C2: |¢| <K,

C3: ¢ed®,0<P <P™ Vk

1
where —ZPka,mH;j,m is the interference contributed by the |4| secondary
T keg

users on the mth primary user, and /," is the maximum tolerable interference

threshold for the mth primary user. The constraint C1 assures that interference to

the primary users is less than some acceptable interference threshold 7, . The

constraint C2 ensures that at most Ks secondary users can be selected at any
time simultaneously. The constraint C3 is the power constraints on each

secondary user.
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In this work, we assume that secondary users’ transmission power is
discretized into finite levels, which help in reducing the transmission frame

overhead as fewer bits are required to describe the user’s transmission power. In

our formulation £, is discrete and takes on the values in the set P, comprising

Pk max 2 Pkmax

A+1 discrete power levels, P, = {0, PR --,1’,3“""‘}[13], where F™ is the

maximum allowed transmission power of the kth secondary user. The fewer
choices of secondary users’ transmission power mean the fewer bits in a control

message. Mathematically:

max logzdet(l +— ZPHkaH,lbsj

b9 ke¢
subject to
—ZPH,WHZM <I™  Vm=l,--,M (5:3)
T keg
C2: |¢| <K,

pe®,P, P Vk

We denote by @ the collection of all possible secondary user selections. Then,
: : . k(K
the number of possible ways of selecting the users is |®|=)_ " . We show

that the JSUS-QPC is NP-Hard problem (Appendix E). Exhaustive Search
Algorithm (ESA) evaluates all possible |®| selections. Enumerating over all
possible combinations  and finding the one that maximizes
Con(@.H, ... Hy, Junder the interference constraint is computationally

inefficient. Computational complexity of exhaustive search increases
exponentially with the number of secondary users. High-speed communications
require user selection/scheduling schemes with lower complexity. In the next
section, we will describe EDA, IACMA and IUSIM schemes MIMO CRS.
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5.2 Proposed algorithms

In this section, we proposed low-complexity user selection schemes for

cognitive radio MIMO system.

5.2.1 Estimation-of-distribution Algorithm

Now, we will present an evolutionary Estimation-of-distribution Algorithm
(EDA) for JSUS-QPC [20]. Evolutionary algorithms (EAs) in general have been
often used to solve difficult optimization problems. Candidate solutions to an
optimization problem are represented as individuals in the population.
Evolutionary Algorithms (EAs) are inspired by the theory of biological evolution.
In EAs, the objective function value of a candidate solution indicates the fitness
of the individual in the concept of natural selection [19]. Unlike other evolutionary
algorithms such as the genetic algorithm, in EDA, the individuals are generated
without the crossover and mutation operators. Instead, in EDA, a new population
is generated based on a probability distribution, which is estimated from the best-

selected individuals of the previous iterations [20].

In general, conventional EDAs can be characterized and described by

parameters and notations (/,, ¥, A,,n,, p,,T,1;,.), where

1. Is denotes the space of all potential solutions (entire search space

of individuals).
2. F denotes the fitness function.

3. A, denotes the population (the set of individuals) at the Iy, iteration

and |A,| denotes its cardinality.

4. n; denotes the set of best candidate solutions selected from set A,

at the Iy, iteration.

5. ps is the selection probability. The EDA selects ps|A| individuals

from set A, to make up the set n,.
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6. We denote by I', the distribution estimated from n, (the set of

selected candidate solutions) at the Iy, iteration.
7. lter is the maximum number of iterations.

In conventional EDAs each individual can be designated by a binary string
of length n (n-dimensional binary vector). We denote by a binary row vector X =
(x1, X2, * - Xn), % €{0,1} as an individual. In each iteration, an EDA maintains a
population of individuals. We denote by |[A| the number of individuals in

population A,. Population A, can be specified by the following |A1|><n matrix

X' XX x)

Al X? B XX X

- - (5.4)
N R

where superscript j€{L2...|A|} in the row vector X’ =(x/,x/.x],...x/)

indexes an individual in the population. We first consider applying the
conventional EDA to the JSUS-QPC problem discussed in section Il. A typical
EDA applied to the JSUS-QPC problem can be described in the following steps:

Step 0: Generate an initial population Ay. The initial population (|Ao| individuals)
is typically obtained by sampling according the uniform (equally likely) distribution
[20]:

p(epez,"',en):Hpi (01),
i=1

0,0 =1)=p (6,=0)=05,i=12,..,n.

(5.5)

(In accordance with Eqn. (5.5), in a typical EDA the joint probability distribution
from which the individuals are sampled is factorized as a product of n univariate
marginal probability distributions, each following a Bernoulli distribution with

parameter value equal to 0.5.
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For iterations I = 1,2, ...., follow Step 1 through Step 6:

Step 1. Evaluate the individuals in the current population A, according to the

fitness function F. Sort the candidate solutions (individuals in the current

population) according to their fitness orders.

Step 2: If the best candidate solution satisfies the convergence criterion® or if the
number of iterations exceeds its limitl,, , then terminate; otherwise go to next

step.

Step 3: Select the best pS|A,,l|=|f7,,1| candidate solutions (individuals) from the

current population A.4. This selection is accomplished according to the sorted

candidate solutions.

Step 4: Estimate the probability distribution p(6,,6,,---,6,) on the basis of |n.1|

best candidate solutions. We denote this estimation by
rl—lzp(el’eza"'agn|771_1) (56)

Step 5: Generate new |A|—|n.4| individuals on the basis of this new estimated

probability distribution T',,. (In randomly generating the new individuals, if an
individual drawn from distribution (5.6), (x,,%,,%;,...,X,) has more than Ks 1’s in its

components, then Z;xi—Ks of those 1’s are randomly selected and are

replaced with 0 so that the total number of 1’s in each individual may not exceed
Ks.) Combine these newly generated |A| —|n.1| individuals with members of n.4 to

form a new population A,.

Step 6: Go to step 1 and repeat the steps.

® A simple example of the convergence criterion would be to terminate the algorithm if there is no
improvement of the fitness value in the iteration.
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Evaluate  |A,| Population X, X, X3 ... X, Function
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Sort] 1 1 1 0 0 F,
2 100 1 F,
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Fig. 5.1  EDA Flow Diagram

X, X, X, X, X5 X X,
1 1 0 1. 0 1 0 O
2 0 1 1 0 0 1 O
3 0 0 1 0 1 0 O
4 1. 0 1 1 0 0 O
5 0 1.1 0 1 0 O
6 1 0 1 0 0 1 O
7 0 1 1 1 0 0 O

Fig. 5.2 Biased Random Population

For the user-scheduling problem, the fitness function of our EDA is the

objective function in (5.3). The dimension, n, of the vector that represents each
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individual is equal to the total number of users K. We followed the steps of the
above pseudo code for our EDA implementation for the user-scheduling problem.
In our experimentation, for estimation, we used the simple scheme of estimating

the marginal distributions separately and using the product form

l—‘1—1 :p(191,¢92,---,t9n |771—1) :Hpi(ei |771_1)
i=1

(X0 6(x =6 1m) (5.7)

) 11:1[ |771—1|

In order to generate the samples in the next iteration (generation), where & is an

indicator function for the individual indexed by j in the set ;.

0 otherwise

5(x/ =6’|77,_1)={1 =0 (5.8)

Even with this simple application of EDA, the simulation results show that its
performance is better than previously proposed algorithms. In addition, we were
able to modify this basic EDA algorithm and even further improve the algorithm’s
performance. In this thesis, we propose one modification to the typical EDA in
solving the JSUS-QPC problem. The modification is applying thresholds in
estimating the distribution.

5.2.1.1 Method of Applying Threshold

A typical EDA can get stuck in a local optimum due to premature
convergence of the probability distributions, or can be slowed down due to no-

convergence of the probability distributions. During the execution of a typical
EDA, some of the estimated probabilities P(6, =17,_,),i=1,2,---,n may become 0

or become very close to 0 at an early stage of the execution (at a small value of

iteration count /). In that case, the algorithm is not likely to explore the candidate

solutions with x; =1 during the rest of the execution. For example, suppose that
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every individual, represented by row vector X = (x4, X2, - -,Xn), in the set n,
happens to have value x,=0. Then, in accordance with (5.7), empirical
distribution I', gives 0-probability of drawing a candidate solution with x; =1 in
population A, and this in turn provides no chance of drawing any candidate
solution with x;, =1 in the future generations. In this scenario, the value of x, =0 |
the ith component, is stuck with value 0 at iteration /, and solutions with x, =1 are
never explored thereafter by the algorithm. More specifically, we take an example
system that has seven users (K=7) and allows up to three users (Ks=3) to
transmit simultaneously. Let the population size be 7. We consider a scenario
illustrated in Fig. 5.2. In this figure, we can observe that the each individual of
the population has element x3 = 1. This causes the probability of selection of third
user to one. Now the user 3 will be selected in all candidate solutions in the
population at every future iteration of EDA. A similar situation occurs with x7,
where the probability of selection of seventh user is zero. We present a method

of avoiding these problems.

Our approach is to apply a threshold on estimated parameters of the
distributions. In order to thwart premature convergence, we present an idea of
adjusting the estimated probabilities P(6, =1|7,_,),i=1,2,---,n after estimating
these at each iteration. The adjustment in general can be regarded as a mapping

from set of n-tuples

I E{(P(el =1{n,), PO, =1[n,,),..., P(6, :1|77171))

0<P(6,=1|7,,)
<Li=12,..,n

to set Il itself. First, we address the problem that a marginal probability value, in

the estimated distribution, prematurely converges to 1. To avoid this, we set

some thresholds0.5<7,7,,...7, <l. At any iteration, if the probability
value P(0, =117,,),i=1,2,---,n is greater thany,, we set that value toy, -i.e., we

set P(6,=1|n_)=y,. This way, some degree of randomness remains in the

algorithm until the termination criterion is satisfied. A simpler application of this
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idea is to set the same thresholdy =7, =7,=..=7,. We can similarly address
the problem that a probability value prematurely converges to 0. We define
thresholds0<7,,7,,....7, <0.5. At any iteration, if the estimated probability
value P(6,=1{1,), i=1,2, ., n is less than 7, we set P(6,=1[7,,)=7 so that
some degree of randomness remains in the algorithm until the termination
criterion is satisfied. A simpler application of this idea is to set the same

threshold7? =7, =7, =...=7,.

5.2.2 Interference Aware capacity maximization algorithm

In this subsection, we describe interference aware capacity maximization
algorithm. The proposed IACMA greedily select a user with appropriate power
level that gives maximum single-user capacity among all the unselected users,
and whose addition in the set of selected users keeps the total interference to the
primary users under the interference constraint. The IACMA is a two-stage

algorithm. At the first stage , the algorithm determines the transmission power,

F.,of each secondary user and computes some other quantities for second

stage. In stage 1, the algorithm sets the transmission power, £, of each
secondary user k top, =max{p, € P, |(1/N;)BH, H], <I*V(m)}: Note that

I,..=(1/N,)BH, H], can be interpreted as the interference that user k

individually contribute to the interference on primary user m -that is, the
interference user k would cause on primary user m if no other secondary users
were transmitting. In words, the algorithm at stage 1 sets the transmission power
of each secondary user as high as possible with the constraint that the
interference it individually causes on each primary user is within its interference

constraint (interference tolerance level). Note that such a transmission power
level for some secondary user can be 0 if every positive power value in set P,

individually causes interference on some primary user above its tolerance level.
The secondary users with power level set to 0 are removed from consideration; it

means at the end of stage one, the algorithm selects the secondary users that
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individually satisfy the interference constraints at all the primary users. At stage

one, algorithm also computes the individual capacity of each selected user and

store inT’, .. The pseudo code of IACMA is described in Table 5.2.

To obtain the final selected secondary users that maximize the sum-rate
capacity under the interference constraint, the IACMA, in the second stage,

incrementally selects one user, with non-zero transmission power, in each

iteration. The algorithm first selects the user A:=argmaX(Fk,c) that gives
k

maximum single user capacity. Then, the interference induced by this selected

user is added to the sum-interferencel," +T, ,,V(m). If the interference
"™ +T, ., V(m) satisfies the interference constraint I then that user is
included into the set ¥, and its corresponding index/data is removed from I'; ,, ;

and I', .. The second stage steps are repeated for the remaining users with non-

zero transmission power.

5.2.3 Iterative User scheduling with interference minimization

Although the interference aware capacity maximization algorithm performs
very well, there are certain situations where performance of IACMA is not good.

An exemplary situation is shown in the Table 5.3. In this example, we have four
secondary users with their respective individual capacitiesI', ., interference I';,,;
induced by these users on the primary users’ m; and m,, and interference
thresholds 7, on primary users’ m; and m,. Let Ks = 2. If we apply IACMA on
Table 5.3 to select the users then greedily it will select first user 2 and store in
setV,s. The interference I',, induced by the user 2 on primary users’ m; and

my is 4.5 and 3.8 respectively. Since K = 2, the algorithm can select one more
user but by adding any other user to user 2 will violate the interference
constraint. One good solution to the above example is to select users 1 and 3. In

this subsection, we describe iterative user scheduling with interference
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minimization (IUSIM). The IUSIM algorithm, in each iteration, incrementally

selects one user that induces the minimum interference to the primary users.

Table 5.2 IACMA

IACMA Flops
INPUT: K,M,N7,N& ,P, I™ H, , H,, P Y(k,m), A
INITIALIZATION: ¥, ={ |, T,,, =0 Y(k,m) ,
[, =0Ym, ' =0,Ym, T, . =0 Vk
STAGE 1:
1: For k=1to K
. PH, HkT 2: 2M A Nt
2! py=maxyp €F |$S[’:MV(m) 3: 1
! 4: 2N.N,
3: If p,#0 5: 1
4: T, .=GetCapacity(p;,H,,.k); 6: MN7
H,  H]
5. T, =2k Tin gy,
ok NT
6: Endif
7: End for
STAGE 2:
9: while |¥ | <K,
10: A=argkmax(Fk’C),' 10: |\Pps|
110 If 19" 4T, <17 Y(m) 11: 2M
. . : 12: 1
12: W =W U{A}; 13- 21
13: Dme=r"+r, . Y(m) 15: 1
14: End if 16: 1
16: T,.=0 M
17. T',,,=0 Vm
18: End While
OUTPUT: ¥,

We denote by Y, the set of final selected secondary users, I',,  the

interference from the kth user to the mth primary user, I, the sum-interference

m

from the selected secondary users, and Fff, the total interference induced by the

kth user.
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The IUSIM is also a two-stage algorithm. At stage 1, the algorithm

determines the transmission power, p;, of each secondary user and computes

some other quantities for stage 2. The determination of transmission power p;,
is identical to the IACMA. The secondary users with power level set to 0 are
removed from consideration; it means at the end of stage one, the algorithm
selects the secondary users that individually satisfy the interference constraints
at all the primary users. For the users with non zero transmission power levels,

the algorithm then calculates the aggregated or sum-
interference, I} =Y T, where T,,,= (1/N,)RH, H], is the interference

that user k individually contribute to the interference on primary user m, from

each secondary user to the primary users. The pseudo code of IUSIM is

described in Table 5.4.

Table 5.3 Example

K Tc | - 1"

my mo my my
1 10 25 | 4.0 5 5
2 17 45 | 3.8 5 5
3 15 23 | 1.0 5 5
4 3 35 | 1.1 5 5

To obtain the final selected secondary users that minimize the sum-
interference, the IUSIM, in the second stage, incrementally selects a user with

non-zero transmission power in each iteration. The algorithm first selects the

Sum

user which gives minimum sum interference ;" . Then, the interference induced

by this selected user is added to the sum-interferencel,”. If the sum-
interference satisfies the interference constraint then that user is included in ¥

and the selected user data is removed from I, and Fff}'” . The second stage
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steps are repeated for the remaining users with non-zero transmission powers.
The IUSIM algorithm is described in Table 5.4.

Table 5.4 IUSIM

Iterative User Scheduling with interference Flops for
minimization (IUSIM) IUSIM

INPUT: KM N,Nr P, I" HY, H, Pk vk,m), A
INITIALIZATION: ¥, ={ }, T, =0V(k,m) ,
LY = Vk, I =0Vm, I[)"=0Ym,

STAGE 1:
For k=1 to K
* PH, HZ 2: 2M 4 Nt
2 p, =max p, < B, |t < 1 (m) 3: 1
. r 4: 2MN7+
3: If p,#0 5 M
H, H
4: 1—~k o — p/c k,m™ " k,m vm’
o, —NT
5: riu;n :Zmrk,m,l;
6: End if
7: End for
STAGE 2:
8: while |¥ | <K,
. 10: ¥,
9: @: 1—~Sum’. PS
e ks 11: 2M
10. If 0" +T, <1 v(m) 12: M
) o 13: 2M
11: V=W, U{0}); 15- 1
12: nm=n"+ry,, v(m) 16: M
13: End if
14: F,f’flmzoo
15: Ty, =0 Vm
16: End while
OUTPUT: ¥

5.3 Complexity Analysis

The main motivation of the proposed algorithms is low implementation

complexity. In this section, we will compare the complexity of the proposed
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algorithms with optimal (ESA) algorithm. Complexity is measured in terms of

flops Y.

5.3.1 Complexity of IACMA and IUSIM

Table 5.2 and 5.4 describe the complexity of IACMA and IUSIM

operations. The IACMA takes approximately K(2M/1NT+2+MNT+2N,§NT)

+KS(‘I’PS|+5M) flops. To get the flop count Y ¢, we set |¥,5|= K, and K = K.

The flop count Y ¢, is

Yo ® K (2M AN, +2+MN, +2N;N, )+ K (K +5M)

~ O(KMAN, + K’ + KN;N, ) (5.9)

The IUSIM requires approximately K (2M AN, +K + MK +2MN,)+K (|‘Pps|+5M)
flops. To get the flop count Y, , we set |‘PPS|= K and Ks = K. The flop count

Y‘I USIM

Y ysns ® K(2M AN, + K + MK +2MN, )+ K (| 15|+ 5M )

~ O(K*M +KMAN, ) (5.10)

5.3.2 Exhaustive Search Algorithm

The number of floating point operations for computing the term inside the

1

k rybs rybs
> P'HPH can be expressed as

T4V keg

determinant in (5.3), I, +

O(KSNﬁNT+NR)=0(KSN§NT) for the worst case of|¢|=K,”. Computing the

determinant requires N;/3 complex operations. Thus, computational complexity

1 A) A)
> PHH, TJ can be expressed as

of evaluating det(lNR+
74V keg

"1t may take much less if the number of selected users is less than K.
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O(KSNﬁNT+N§). The exhaustive search algorithm (ESA) needs to compute

(K
Z[il(lj determinants. The interference constraint takes 2MNr flops. The

computation of power level requires (Ks)ﬂflops. Finally, the computational

complexity of exhaustive search algorithm with discrete/quantize power (ESA-
D)is

2 & [ K
Yisip zO((KSN;NT—i-N;)X(KS) XZ;‘_I( j] (5.11)

1

The complexity analysis shows that the proposed IACMA and IUSIM have
quadratic complexity with respect to the number of users K. The complexity of
exhaustive search for user scheduling increases exponentially with the number of

users.

5.4 Numerical results

For performance comparison, we present the simulation results of the
proposed EDA, IACMA and IUSIM-based user selection. We use the objective
function of optimization problem (5.3) as the fitness function. For evaluating sum-

rate capacities for different user scheduling methods in our experiments, we
randomly generate channel gain H,;” under the assumption that elements of the

channel matrix have independent complex Gaussian distributions. In all
simulations noise variance is assumed to be one. The system parameters used
for simulations are selected such that we can examine the effect of different
system parameters (e.g., interference threshold level, number of primary users,
number of secondary users, quantize power levels etc.) on the performance of
the proposed schemes. From the results we compare EDA, IACMA, IUSIM,
exhaustive search algorithm with continuous power control (ESA-C), and the

exhaustive search algorithm with discrete (or quantized) power control (ESA-D).
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In Figs. 5.3-5.6, we used four different scenarios [K,KS,NT,NR, /1,1;““} =
8 3, 2 6 8 1mwl, |K.K.N.N,AL™| = [12, 3, 2, 6, 8 1mw],
[K.K,, Ny, Ny ,M] =112, 3,2, 6, 8, 41, and [K,K,,N,, Ny, ,M] =[8, 3,2, 6,8,

4], The performance is shown in terms of average sum-rate capacity SNR power
plots. The results show that average sum-rate capacities achieved by the
proposed EDA, IACMA and IUSIM are close to the ESA-D. From these figures,
we observe that for a given interference tolerance and power level by increasing
the user’s individual transmit power level (or increase in SNR) we can only
increase the sum-rate capacity up to a certain level. After that, further increase of
users’ individual transmit power will decrease the sum-rate capacity. The
decrease in the sum-rate capacity with the uniform increase of the users’ transmit
power can be explained by the fact that above some threshold further increase in
transmit power will also increase the interference to the primary users, so the
users are required to transmit at lower discrete power level which may not be the
optimum power level. In case of continuous power control the capacity will
always be non-decreasing because even by increasing the maximum transmit

power level, the users’ can still transmit on optimum transmit power level.

In Figs. 5.7 and 5.8, we show the sum-rate capacity versus number of
power levels. The result illustrates that increase in the power levels satisfy more
primary users’ interference constraint and increase the system capacity. There is
always trade-off between number of power levels and control channel traffic.
More power levels per user mean increase in the control channel traffic and vice

versa.

In Figs. 5.9 and 5.10, we present performance of the proposed algorithms
against number of primary users. We set [K,K,,N;,N,, SNR| =[8, 3, 2, 6, 8dB,
4] and [K,KS,NT,NR, 1,2‘”] =[8, 3, 2, 6, 10mw, 4], The result shows that average

sum-rate capacity achieved by the proposed IACMA and IUSIM is close to the
ESA-D for a wide range of M. From Figs. 5.9 and 5.10, we observe that we

achieve low sum-rate capacity by increasing the number of primary users. This is
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because by increasing the number of primary users, the secondary users need to
satisfy more interference constraints. In Figs. 5.11 and 5.12, we plot the sum-rate

capacity versus number of secondary users. For thses scenario, we set

[ K NN, DM | =[3,2,6, 1mw, 4] and [K,.N,.N,, SNR.M] =3, 2,6,

R> "m

8dB, 4] The result shows that average sum-rate capacity achieved by the
proposed EDA, IACMA and IUSIM is close to the ESA-D for a wide range of K.
The results also show that the performance of IUSIM improves with more number

of primary users.

Fig. 5.13 focuses on the method of applying thresholds. This figure reports
the results of applying different threshold values in shaping the distribution that

generates the population. We ran an EDA-R with parameters
[K.,K,,N;,N,, SNR,M]| =[12, 3, 2, 6, 8dB, 1] for threshold values y ={0.7, 0.8,
0.9, 1.0.} andy=1-y. Note that setting y =1 is equivalent to not applying the
threshold at all. Setting y close to 0.5 means that the algorithm generates the

population from an almost identical distribution in each iteration- that is, the
algorithm does not take advantage of the natural selection. An interesting issue is
what values of the threshold facilitates the computation. From Fig. 5.13, we can

observe that the performance of EDA-R is poor at y = 0.7. We can interpret that
at the threshold value y =0.7, which is close to 0.5, the algorithm does not evolve
significantly. We can see from Fig. 5.13 that threshold value y= 1.0 results in

better performance than all other threshold values (0.7, 0.8, and 0.9) at early

stage of the algorithm (up to iteration 4). However, for the case of y= 1.0 the

fitness value (average sum-capacity) does not improve much as we run more

iterations beyond the seventh iteration. On the other hand, in the case of y= 0.8

and 0.9, the fitness value continues to improve beyond iteration 5, and produced
the best solution if we terminate the algorithm at iteration 5,6,7,8 etc. From the
numerical results, we can see that IACMA and EDA converge to with in 97
percent of that obtained by the exhaustive search. The IUSIM converges to with

in 92 percent of that obtained by the exhaustive search.
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To check the feasibility of the proposed algorithms for practical
implementation, in Table 5.5, we present the number of flops required by ESA,
EDA, IACMA and IUSIM for different parameter settings (i.e., different search
space size). The comparison shows that the number of flops required by IACMA
and IUSIM is much less than that of EDA and ESA.
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Fig. 5.8

Fig. 5.9
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Table 5.5 Number of flops required by ESA, EDA, IACMA and IUSIM

Parameters ESA EDA IACMA IUSIM
[K.K,,M,N, N, |AlL, |

[20,3,1,4,2,2,20,10] 2954880 518400 1100 1224
[15,3,10,4,2,2,20,10] 1179360 518400 3855 5634
[10,5,1,2,2,10,10] 302400 120000 370 370
[30,2,1,2,2,10,10] 41760 9600 1710 2174
[25,4,4,2,2,10,10,10] 364320000 2880000 6100 1586
[18,8,1,2,2,16,18,10] 2.2942e+010 94371840 | 9882 968
[12,6,1,2,2,16,12,10] 238436352 30965760 | 6516 498

5.5 Summary

In this chapter, we presented three low-complexity user scheduling
schemes in cognitive MIMO systems. The proposed interference aware capacity
maximization algorithm and iterative wuser scheduling with interference
minimization have low computational complexities, and their performance is
close to that of the exhaustive search algorithm with discrete power control (ESA-
D). Simple underlying concept and ease of implementation with low-complexity
make the proposed schemes suitable candidates for the joint user

selection/scheduling and power control problem discussed in this chapter.
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CHAPTER 6: CONTRIBUTIONS AND FUTURE WORK

In this chapter, we present a brief overview of the contributions and discuss

open issues that can be addressed in future research.

6.1 Contributions

In this thesis, we have proposed a number of polynomial-time algorithms for
resource allocation in cooperative cognitive radio systems. In particular, we have

made following major contributions in this thesis:

6.1.1 Relay Assignment

1. We presented an optimization framework for joint multiple relay
assignment and power allocation in CRS. The optimal solution of the
proposed optimization problem can be obtained by using Exhaustive
Search Algorithm. However, its computational complexity increases
exponentially with the number of secondary users and the number of
relays. We propose iterative algorithms that have very low computational
complexity and their performance is close to the exhaustive search
algorithm. We also present fairness aware relay assignment schemes in
CRS.

2. A multi-objective optimization framework is proposed for joint relay
assignment and power allocation in green CRS. We proposed a hybrid
estimation-of-distribution algorithm for joint relay assignment and power

allocation in green CRS.
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6.1.2 Joint subcarrier allocation and relay assignment

We presented resource allocation schemes for cooperative multiuser
multicast cognitive radio system (MMCRS). For resource allocation, we proposed
schemes that jointly assign subcarriers and relays to the multicast groups and
allocate power to the relays in cooperative MMCRS. We considered two separate
optimization problems. In one optimization problem, we maximized the total
throughput of the cooperative MMCRS under the constraint of acceptable
interference to the primary users. In the other optimization problem, we
maximized the throughput of the worst multicast group in cooperative MMCRS
under the constraint of acceptable interference to the primary users. For each
optimization problem, we proposed an iterative algorithm with polynomial time

complexity.

6.1.3 User scheduling

We presented three low-complexity user scheduling schemes in cognitive
MIMO systems. The proposed schemes have polynomial-time complexity, and
their performance is close to that of the exhaustive search algorithm with discrete
power control. Simple underlying concept and ease of implementation with low-
complexity make the proposed schemes suitable candidates for the joint user

selection/scheduling and power control problem.

6.2 Future work

The proposed schemes in this thesis address some aspects of resource
allocation in CRS with MIMO and relaying capabilities. However, there are still
many open issues. In the following, we list some important future research

directions.
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6.2.1 Resource allocation in multi-hop CRS

In this thesis, we focused on two-hop cooperative CRS. A natural
extension would be to consider multiple relay assignment in multi-hop
cooperative CRS. The proposed resource allocation in cooperative CRS is for
single antenna systems. This work can also be extended to the multiple antenna

system.

6.2.2 Resource allocation in cooperative CRS with imperfect CSI

For resource allocation, we have assumed that the central controller
knows the perfect CSI. However, there always exists some uncertainty in the CSI
due to unreliable feedback channel. Therefore, a possible extension of the
proposed resource allocation formulation is to analyze the relay assignment
schemes with imperfect CSI in multi-hop CRS. Another interesting issue to
consider is the effect of quantized CSI on the relay assignment in multi-hop

cooperative CRS.

6.2.3 Green communication with adaptive weights

For green communication technologies, we proposed a multi-objective
optimization framework for relay assignment and power allocation. In this
framework, the weights of the objective functions are fixed. An extension of this
work would be to consider adaptive weights for each objective functions. The
adaptive weights can give better Pareto optimal front for the proposed multi-
objective green CRS framework. The adaptive weights will increase the
computational complexity thus low complexity algorithms will be needed to

address the complexity issues.
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APPENDICES

Appendix A

We need to show that for any set of fixed values of integer variables

&,.1=1..,L and p, the objective function in (2.2) is monotonically increasing

with P*. Forafixed ¢,,/=1..,L and p, , The objective function is

(A1)

Since log( ) is a monotonically increasing function, proving that its argument is

increasing with P*shows that the objective function is monotonically increasing
with P*. The first two terms inside the log( ) is obviously monotonically increasing

with P‘. Then, considering the last term inside the log( ), to establish

monotonicity of expression (A.1), we only need to show that the function

= ‘hz,k‘z b
I=1 P‘hs)l‘z +N

is monotonically increasing with P for each k. . Denoting p, , Epl‘hl,k‘z, we can

express H,(P) as
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2 _
hs,/ Py

g N (Zgl,k\/F},k(P)j

Plh,
Hk(P): L ﬁ = L
1+ 1+>°G, . (P)
=1 P‘h&[‘ +N I=1
where
2
P\h,| P _ PN
Fl,k(P) = # =Pii _+ (A.2)
Plh,[ +N Plh,,[ +N
and
P,
Gl,k(P):+
Plh,| +N

From (A.2), it is obvious that F,, (P),VI, is increasing with P for P>0, and from

(A.3), it is obvious that G, (P),VI, is decreasing with P for P>0. Thererfore,

H,(P) isincreasing with P for P>0. Q.E.D.
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Appendix B

We need to establish the concavity of function fR"—>R, defined as
L 2 L
Z(|h1,k|ﬂz) P sz
I= |

1

F(Propaspy) = , Where x, :(‘hl,k‘ﬂl)z p, . From definition,

1+i(|hz,k|ﬂz)2 yZ 1+ix1
= o

1

function fis concave if dom fis a convex set and if for all x,y € dom f, and A with

0<A<1,wehave

f(Ax+(1-2)7)2 A1 (X)+(1-2) £ (7) (B.1)

L
Let us define a linear function g:R"—R as g(xl,xz,..,xL)=Zx, and a
=1

concave function h:R—R, as h(z) = z

o We know that composition of a concave
+z

function with an affine mapping is concave- i.e. h(g(;?)) is concave. Therefore,
h(g(2%)+2((1-2)7)) 2 2h(g (%)) +(1-2)h(2(7)) (B.2)

Ay x+(1-2)D

/

_ !
_1+/12x,+(1—/1)2y,
/

i

Further, we observe that h(g(4x)+g((1-4)7))

f(Ax+(1-2)y) and ih(g(x))+(1-2)h(g(¥)) =2/(X)+(1-2)/(¥). Hence, from
(B.2), we conclude that f(ix+(1-2)y) 24f(X)+(1-2)f(¥) , which establishes

that function fis concave.
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Appendix C

Let us denote function

(Shh.lnla
1+ Z(IBI ‘hl,k ‘)2 b |

f(pipysspy)

The, the partial derivative with respect to p; is

[ b Y ANy (SN
(0 (S lpbo |

v Sl ]
Sl (lbls e (1S o)
(1l v |- (Sl

we observe that for any fixed set of values of p.,p, P 1sPj 5D

f(pl,pz,-'-,pL)is nondecreasing w.r.t p; for the values of p;,, that have

\hs,thj,k\/fjp;“{HZ(@MYPz}—(ﬁf\hj,k\)z{Z\hs,z\\hz,k\ﬂzﬂ}20, (C.1)

which is equivalent to

bl S o Bl { Sl |20 @2
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Inequality (C.2) is equivalent to

1 S8 o8 | Sl 0

(C.3)

Inequality (C.3) can be written as
ol il o Sl
> ol o+ Sl
"
Il b S
Al ol Sl |
which is equivalent to

‘hs,j‘{l + Z(ﬂl ‘hl,k‘)z pz}2 \/ZTJIB, ‘hj,k‘{;‘hs,luhl,k‘ﬂz\/;z} (C.4)

Finally, after rearranging the terms in (C.4) we obtain

2

‘hs,_/‘{l + Z(ﬂl ‘hl,k ‘)2 pl}
#j
B; ‘hj,k‘{/z hs,thl,k‘ﬂl\/pl}
L #] |
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Appendix D

The flow diagram of IAGA.

Stage 1

Initialization

A(l,k)=0,I" =0,Capacity (k)=0,¥ ={ }

!

for every /

%

2 max
P :max{pl eb | p |hl,m| <1 ,V(m,k)}

m,k

U(pl*vl’m) = pl* |hl,m|2

<>

Yes
E3 5 ]
AR =Bl [0 = 30 0] m)
Y=y U{l}

Fig. D.1  Stage 1 of IAGA
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©(/)=argmax A(L,k) VieV¥

ke(1,2,.,K)

A=max {A(L,O()),-, A(L,O(L))}

Capacity(/g) = GetCapacity(R) = o) s.t. A(1,0(])) = A
A(lk)=0,VI R={10(I)=k}
Y =Y\R ) J
Yes R+ ~
Yes
A, =Y n(p,Lm), Vm Al k)=0,v1
leR
GotoTag
No r=argmax !
leR
n(pr’r’m) = F(r) = 0

R =R\r,¥Y=%¥\r

Fig. D.2 Stage 2 of IAGA
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Appendix E

The optimization problem is

1
max log, det(lNR +—ZP/¢H/¢,[>XHZ,I7XJ

5.4 NTN keg
: 1 il max
subject to Cl: —ZPkamHkm <I Vm (E.1)
NT keg ) ,
C2: |4 <K,
C3: B eP, Vk

Let there are K secondary users and M primary users in the system. Each
secondary/primary user and central controller is equipped with a single antenna.

The noise variance is assumed to be one. With these assumptions, we can

rewrite (E.1) as

max log, det(l+ZPk ‘hk,bs 2]
B¢ keg
subject to Cl:ZPk‘hk’m‘z <™ Vm (E.2)
keg
C2:|¢| <K,
C3:F P, Vk

We define a binary indicator x;

{1 if the kth secondary user is selected for transmission
X, =

o otherwise

Let us define P, = {P}. We can write (E.2) as

max log, det [1 + f:ka‘hk,bS ‘2]
R k=1

2
<I™ m

K
subject to Cl: > Px,|h,,,
kzz; "‘ “ (E.3)

C2:ikaKS

k=1

C3:x, €{0,1},Vk
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Since log is monotonically increasing function, we can also write (E.3) as

K
max Zxkak
R k=1

K
subject to C1: » x, 5, <I™ Vm
;kk (E.4)

K
C2:Zxk <K,
k=1

C3:xke{0,1},Vk

2 2
and S, =P‘hk,,,, . The multidimensional cardinality constraint

knapsack problem (MCCKP) is

Where «, =P‘hk,,,s

K
max ZxkAk
Xk k=1
K
subject to Cl:Zkak <C Vi
k=1

K
C2:) x, <N
k=1

C3:x, €{0,1},Vk

We can see that the user-scheduling problem is identical to MCCKP. Since

MCCKP is NP-Hard, it means that user-scheduling problem is also NP-Hard.
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